WO2018036210A1 - 生物传感器的微信号精密测量装置及方法 - Google Patents
生物传感器的微信号精密测量装置及方法 Download PDFInfo
- Publication number
- WO2018036210A1 WO2018036210A1 PCT/CN2017/084228 CN2017084228W WO2018036210A1 WO 2018036210 A1 WO2018036210 A1 WO 2018036210A1 CN 2017084228 W CN2017084228 W CN 2017084228W WO 2018036210 A1 WO2018036210 A1 WO 2018036210A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- differential amplifier
- micro
- biosensor
- differential
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45475—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
Definitions
- the present invention relates to the technical field of signal measurement, and in particular, to a micro-signal precision measuring device and method for a biosensor.
- micro signals The amplification of micro signals is the basis of signal measurement and measurement. For small signals within 50mV, it cannot be directly used for chips such as AD sampling. The signal must be amplified by the amplifier circuit before it can be measured. Micro-signal measurement is often a difficult point in signal measurement, and small signals within 50mV are difficult to detect by signal measurement circuits. Generally, bioelectrical signals output by biosensors (such as blood glucose, body temperature, heart rate biosensors, etc. in vital signs monitoring biosensors) are relatively weak. Since the bioelectrical signals to be measured are weak, the bioelectricity to be measured must be measured by an amplifying circuit. The signal can only be measured after it has been amplified.
- biosensors such as blood glucose, body temperature, heart rate biosensors, etc. in vital signs monitoring biosensors
- the amplifying circuit in the existing signal measuring device amplifies the weak signal, and the amplifying circuit often generates a temperature drift phenomenon and causes strong signal interference, so that the weak bioelectric signal is submerged in the interference signal, thus causing The measurement result of the weak measured bioelectrical signal is inaccurate, and even the weak measured bioelectrical signal cannot be measured at all.
- a main object of the present invention is to provide a micro-signal precision measuring apparatus and method for a biosensor, which are directed to solving the problem of inaccurate measurement results in measuring a weak signal due to a temperature drift caused by an amplifying circuit.
- the present invention provides a micro-signal precision measuring device for a biosensor, a micro-signal precision measuring device for a biosensor, and the micro-signal precision measuring device is connected with a first biosensor and a second biological device.
- a sensor, a third biosensor, and a fourth biosensor wherein the micro signal precision measuring device comprises a first differential amplifier, a second differential amplifier, a third differential amplifier, an ADC amplification chip, and a single chip, the first differential Both the amplifier and the second differential amplifier are included Two first resistors and two second resistors are included, and the third differential amplifier includes two third resistors and two fourth resistors, wherein:
- the first differential op amp is configured to acquire a first micro signal from a first biosensor and acquire a second micro signal from a second biosensor, and pass the first micro signal and the second micro signal through the first differential
- the amplification factor of the amplifier is differentially operated and amplified to obtain a first differential signal, and the amplification factor of the first differential amplifier is equal to a ratio of the resistance of the second resistor and the first resistor in the first differential amplifier;
- the second differential amplifier is configured to acquire a third micro signal from a third biosensor and acquire a fourth micro signal from a fourth biosensor, and pass the third micro signal and the fourth micro signal through the second differential amplifier Amplifying the differential operation and amplifying the second differential signal, the amplification factor of the second differential amplifier being equal to the amplification factor of the first differential amplifier;
- the third differential amplifier is configured to perform differential operation on the first differential signal and the second differential signal by using the amplification factor of the third differential amplifier, and obtain a measurement characteristic signal, where the amplification factor of the third differential amplifier is equal to a ratio of a resistance value of the fourth resistor and the third resistor in the third differential amplifier;
- the ADC amplifying chip includes an amplifying circuit chip and an ADC circuit chip, and the amplifying circuit chip is configured to amplify the measured characteristic signal by using a magnification of the amplifying circuit chip, and output the signal to the A DC circuit chip.
- the amplification factor of the amplification circuit chip is an inherently specific value of the amplification circuit chip;
- the temperature coefficient of the first differential amplifier is equal to a ratio of a temperature coefficient of the second resistor to a temperature coefficient of the first resistor
- a temperature coefficient of the second differential amplifier is equal to a temperature coefficient of the first differential amplifier
- the third differential amplifier The temperature coefficient is equal to the ratio of the temperature coefficient of the fourth resistor to the temperature coefficient of the third resistor
- the product of the temperature coefficient of the first differential amplifier and the temperature coefficient of the third differential amplifier is equal in magnitude and opposite in sign to the temperature coefficient of the amplifying circuit chip.
- the first input end of the first differential amplifier is connected to the first biosensor, the second input end of the first differential amplifier is connected to the second biosensor; the first input of the second differential amplifier Connected to the third biosensor, the second input of the second differential amplifier is connected to the fourth biosensor; the output of the first differential amplifier is connected to the first input of the third differential amplifier, the second differential amplifier The output end is connected to the second input end of the third differential amplifier; the output end of the third differential amplifier is connected to the input end of the amplifying circuit chip, and the output end of the amplifying circuit chip is connected to the input end of the ADC circuit chip The output of the ADC circuit chip is connected to the single chip microcomputer [0011] Further, the first differential amplifier further includes a first transistor, one of the first resistors of the first differential amplifier is connected in series to the first input end of the first transistor, and the other of the first differential amplifier a resistor is connected in series to the second input end of the first transistor, one end of one of the second resistors of the first
- the second differential amplifier further includes a first transistor, one of the first resistors of the second differential amplifier is connected in series to the first input end of the first transistor, and the other of the second differential amplifier a resistor is connected in series to the second input end of the first transistor, one end of one of the second resistors of the second differential amplifier is connected to the first input end of the first transistor and the other end of the second resistor is connected to the first crystal An output end of the transistor, one end of the other second resistor of the second differential amplifier is connected to the second input end of the first transistor and the other end of the second resistor is connected to the ground line
- the third differential amplifier further includes a second transistor, wherein a third resistor is connected in series to the first input end of the second transistor, and the other third resistor is connected in series to the second transistor a second input end, wherein one end of the fourth resistor is connected to the first input end of the second transistor and the other end of the fourth resistor is connected to the output end of the second transistor, wherein one end of the other fourth resistor is connected to The second input of the second transistor and the other end of the fourth resistor are connected to the ground line.
- the first biosensor is configured to sense a first micro-signal generated by the first-wavelength infrared light irradiation on the target detection object
- the second bio-sensor is configured to sense the second-wavelength infrared light to be irradiated on the target Detecting a second micro signal generated on the object, a third biosensor for sensing a third micro signal generated by the third wavelength infrared light on the target detection object, and a fourth biosensor for sensing the fourth wavelength infrared light irradiation A fourth microsignal generated on the target detection object.
- the present invention also provides a micro-signal precision measuring method for a biosensor, which is applied to a micro-signal precision measuring device, and the micro-signal precision measuring device is connected with a first biological transmission.
- the micro signal precision measuring device comprising a first differential amplifier, a second differential amplifier, a third differential amplifier, an ADC amplification chip, and a single chip, the first differential The amplifier and the second differential amplifier each include two first resistors and two second resistors, the third differential amplifier includes two third resistors and two fourth resistors, and the A DC amplification chip includes an amplifying circuit chip and an ADC circuit a chip, wherein the micro-signal precision measurement method of the biosensor comprises the following steps:
- the first differential op amp acquires a first micro signal from a first biosensor and a second micro signal from a second biosensor;
- the first differential op amp performs differential operation on the first micro-signal and the second micro-signal through the amplification factor of the first differential op amp and amplifies the first differential signal, where the first differential amplifier
- the amplification factor is equal to a ratio of a resistance of the second resistor and the first resistor in the first differential amplifier
- the second differential amplifier acquires a third micro signal from a third biosensor and obtains a fourth micro signal from a fourth biosensor;
- the second differential amplifier performs differential operation on the third micro signal and the fourth micro signal by the amplification factor of the second differential amplifier, and amplifies the second differential signal, where the amplification factor of the second differential amplifier is equal to a magnification of a differential amplifier;
- the third differential amplifier performs differential operation on the first differential signal and the second differential signal by the amplification factor of the third differential amplifier, and amplifies the measurement characteristic signal, and the amplification factor of the third differential amplifier is equal to the third a ratio of a resistance value of a fourth resistor of the differential amplifier to a third resistor;
- the amplifying circuit chip amplifies the measured characteristic signal by the amplification factor of the amplifying circuit chip, and outputs the signal to the ADC circuit chip, where the amplification factor of the amplifying circuit chip is an inherent specific value of the amplifying circuit chip;
- the ADC circuit chip performs digital-to-analog conversion on the amplified measurement characteristic signal and outputs the signal to the single-chip microcomputer for signal measurement and analysis;
- the temperature coefficient of the first differential amplifier is equal to a ratio of a temperature coefficient of the second resistor to a temperature coefficient of the first resistor
- a temperature coefficient of the second differential amplifier is equal to a temperature coefficient of the first differential amplifier
- the third differential amplifier The temperature coefficient is equal to the ratio of the temperature coefficient of the fourth resistor to the temperature coefficient of the third resistor, and the product and amplification of the temperature coefficient of the first differential amplifier and the temperature coefficient of the third differential amplifier
- the temperature coefficients of the circuit chips are equal in magnitude and opposite in sign.
- the first micro signal is that the first biosensor senses the characteristic electric signal generated by the first wavelength infrared light irradiation on the target detection object
- the second micro signal is that the second biosensor senses the second The two-wavelength infrared light illuminates the characteristic electric signal generated on the target detection object
- the third micro-signal is that the third bio-sensor senses the characteristic electric signal generated by the third-wavelength infrared light irradiation on the target detection object
- the fourth micro-signal is The fourth biosensor senses the characteristic electric signal generated by the fourth wavelength infrared light on the target detection object.
- the micro-signal precision measuring device and method of the biosensor of the present invention adopts the above technical solution, and obtains the following technical effects: by acquiring four weak characteristic electric signals and passing multi-level difference
- the amplifier performs differential operation and performs high-magnification amplification to obtain the measured characteristic signal, so that the weak characteristic electrical signal can be measured.
- the influence of the temperature drift generated by the multi-stage differential amplifier on the weak signal interference cancels out the temperature drift generated by the amplifying circuit chip itself.
- the influence of weak signal interference can eliminate the signal interference caused by the temperature drift of the weak signal in the signal amplification of the high-magnification amplifier circuit, and improve the accuracy of measuring the weak signal.
- FIG. 1 is a schematic diagram showing the circuit structure of a preferred embodiment of a micro-signal precision measuring device for a biosensor of the present invention.
- FIG. 2 is a flow chart of a method of a preferred embodiment of the micro-signal precision measuring method of the biosensor of the present invention.
- FIG. 1 is a circuit diagram showing a preferred embodiment of a micro-signal precision measuring apparatus for a biosensor of the present invention.
- the fine signal precision measuring device 1 includes, but is not limited to, a first differential amplifier 11, a second differential amplifier 12, a third differential amplifier 13, an ADC (digital to analog conversion) amplification chip 14, and a single chip microcomputer 15. .
- the first input of the first differential amplifier 11 is connected to the first biosensor 2
- the second input of the first differential amplifier 11 is connected to the second biosensor 3
- the first input of the second differential amplifier 12 is connected to the third
- the biosensor 4 the second input of the second differential amplifier 12 is connected to the fourth biosensor 5.
- An output of the first differential amplifier 11 is coupled to a first input of the third differential amplifier 13, and an output of the second differential amplifier 12 is coupled to a second input of the third differential amplifier 13, the third differential amplifier 13
- the output is connected to the input of the ADC amplifier chip 14, and the output of the ADC amplifier chip 14 is connected to the microcontroller 15.
- the first biosensor 2 is for acquiring a first micro signal from a target detection object
- the second biosensor 3 is for acquiring a second micro signal from a target detection object
- the third biosensor 4 is for detecting a target object from a target
- the third micro-signal is acquired
- the fourth biosensor 5 is configured to acquire the fourth micro-signal from the target detection object.
- the first micro signal is that the first biosensor 2 senses that the first wavelength infrared light is generated on the target detection object.
- the second micro signal is that the second biosensor 3 senses a characteristic electric signal generated by the second wavelength infrared light on the target detection object
- the third micro signal is that the third biosensor 4 senses the third
- the wavelength infrared light illuminates the characteristic electrical signal generated on the target detection object
- the fourth micro signal is the fourth electrical sensor 5 senses the characteristic electric signal generated by the fourth wavelength infrared light irradiation on the target detection object.
- four kinds of micro signals which are irradiated to the target detection object by infrared light of four different wavelengths are obtained, and the measurement characteristic signals of the target detection object are measured by performing multi-level differential operation on the four kinds of micro signals and amplifying.
- the micro-signal precision measuring device 1 performs multi-stage differential operation and amplifies to obtain a blood glucose concentration signal of the human body, and outputs the signal to the single-chip microcomputer 5 for subsequent blood glucose concentration analysis.
- the first differential amplifier 11 and the second differential amplifier 12 each include two first resistors R1, two second resistors R2, and a first transistor Q1.
- One of the first differential amplifiers 11 The first resistor R1 is connected in series to the first input end of the first transistor Q1, and the other first resistor R1 of the first differential amplifier 11 is connected in series to the second input terminal of the first transistor Q1;
- One end of a second resistor R2 is connected to the first input end of the first transistor Q1 and the other end of the second resistor R2 is connected to the output end of the first transistor Q1, and the other second of the first differential amplifier 11
- One end of the resistor R2 is connected to the second input terminal of the first transistor Q1 and the other end of the second resistor R2 is connected to the ground line.
- One of the first resistors R1 of the second differential amplifier 12 is connected in series to the first input terminal of the first transistor Q1, and the other one of the first resistors R1 of the second differential amplifier 12 is connected in series to the second input terminal of the first transistor Q1.
- One end of one of the second resistors R 2 of the second differential amplifier 12 is connected to the first input end of the first transistor Q1 and the other end of the second resistor R2 is connected to the output end of the first transistor Q1
- the second One end of the other second resistor R2 of the differential amplifier 12 is connected to the second input terminal of the first transistor Q1 and the other end of the second resistor R2 is connected to the ground line.
- the first differential op amp 11 is configured to acquire a first micro signal from the first biosensor 2 and acquire a second micro signal from the second biosensor 3, and pass the first micro signal and the second micro signal through the first
- the amplification of a differential op amp 11 is differentially operated and amplified to obtain a first differential signal.
- the second differential amplifier 12 is configured to acquire a third micro signal from the third biosensor 4 and acquire a fourth micro signal from the fourth biosensor 5, and pass the third differential signal and the fourth micro signal through the second differential amplifier
- the amplification of 12 is differentially operated and amplified to obtain a second differential signal.
- the amplification factor of the first differential amplifier 11 is equal to the ratio of the resistance of the second resistor R2 in the first differential amplifier 11 and the first resistor R1, and the amplification factor of the second differential amplifier 12 is equal to the amplification factor of the first differential amplifier 11.
- the temperature coefficient K1 of the first differential amplifier 11 is determined by the temperature coefficient of the second resistor R2 and the first resistor R1 in the first differential amplifier 11. It can be understood that the temperature coefficient of the one resistor refers to the relative change value of the resistance value of the resistor when the temperature changes by 1 ° C, and the unit is ppm : .
- the temperature coefficient is usually The average temperature coefficient is used, and there is a negative temperature coefficient, a positive temperature coefficient, and a critical temperature coefficient at which the resistance will only mutate at a certain temperature.
- the temperature coefficient of the second differential amplifier 12 is equal to the temperature coefficient of the first differential amplifier 11
- the third differential amplifier 13 includes two third resistors R3, two fourth resistors R4, and a second transistor Q2.
- One of the third resistors R3 of the third differential amplifier 13 is connected in series to the first input terminal of the second transistor Q2, wherein the other third resistor R3 is connected in series to the second input terminal of the second transistor Q2;
- the third differential amplifier 13 One end of the fourth resistor R4 is connected to the first input end of the second transistor Q2 and the other end of the fourth resistor R4 is connected to the output end of the second transistor Q2, wherein one end of the other fourth resistor R4 Connected to the second input terminal of the second transistor Q2 and the other end of the fourth resistor R4 is connected to the ground line.
- the third differential amplifier 13 is configured to perform differential operation on the first differential signal and the second differential signal by the amplification factor of the third differential amplifier 13 and amplify the measured characteristic signal.
- the amplification factor of the third differential amplifier 13 is equal to the ratio of the resistance values of the fourth resistor R4 and the third resistor R3 in the third differential amplifier 13.
- the temperature coefficient K2 of the third differential amplifier 13 is determined by the temperature coefficients of the fourth resistor R4 and the third resistor R3 in the third differential amplifier 13.
- QCR3 is the temperature of the third resistor R3.
- the coefficient, QCR4 is the temperature coefficient of the fourth resistor R4, ? T is the temperature change value, ? R3 is the resistance change value of the third resistor R3 under temperature change, ? R4 is the resistance change value of the fourth resistor R4 under temperature change, / represents the division operation, ? Represents multiplication.
- the ADC amplification chip 14 includes, but is not limited to, an amplification circuit chip 141 and an ADC circuit chip 142.
- the input end of the amplifying circuit chip 141 is connected to the output end of the third differential amplifier 13.
- the output end of the amplifying circuit chip 141 is connected to the input end of the ADC circuit chip 142, and the output end of the ADC circuit chip 142 is connected to The single chip microcomputer 15.
- the amplifying circuit chip 141 is configured to amplify the measured characteristic signal by the amplification factor of the amplifying circuit chip 141 and output the signal to
- the ADC circuit chip 142 is configured to perform digital-to-analog conversion on the amplified measurement characteristic signal and output it to the single-chip microcomputer 15 for subsequent signal measurement analysis.
- the amplifying circuit chip 141 is composed of an amplifying circuit in the prior art
- the AD C circuit chip 142 is composed of a digital-to-analog converting circuit in the prior art.
- the amplification factor of the amplifying circuit chip 141 is an inherent specific value of the amplifying circuit chip 141, that is, an intrinsic amplification property of the amplifying circuit chip 141, but is subjected to the amplifying circuit chip during operation.
- the temperature coefficient K3 of 141 produces the effect of temperature drift.
- the temperature coefficient K3 of the amplifying circuit chip 141 is an inherent temperature characteristic of the amplifying circuit chip 141, which reflects the severity of the temperature drift of the amplifying circuit chip 141 caused by the amplifying circuit chip 141 in the case of a change in operating temperature.
- the amplifying circuit chip 141 generates a temperature drift phenomenon with a change in operating temperature to cause signal interference with the measured characteristic signal, thereby causing the measured characteristic signal to be submerged in the interfering signal, so that the measured characteristic signal cannot be accurately measured.
- the temperature coefficient of the fourth resistor R4 is such that the product of the temperature coefficient K1 of the first differential amplifier 11 and the temperature coefficient K2 of the third differential amplifier 13 is equal in magnitude and opposite in sign to the temperature coefficient K3 of the amplifying circuit chip 141, thus making the first
- the influence of the temperature drift generated by the differential amplifier 11 and the third differential amplifier 13 on the signal interference and the influence of the temperature drift generated by the amplifying circuit chip 141 on the signal interference cancel each other, thereby eliminating the signal amplification of the weak signal in the high-magnification amplifier circuit. Signal interference caused by temperature drift encountered, improving the accuracy of measuring weak signals.
- the present invention also provides a micro-signal precision measuring method for a biosensor, which is applied to the micro-signal precision measuring device 1 shown in FIG.
- Fig. 2 is a flow chart showing a method of a preferred embodiment of the micro-signal precision measuring method of the biosensor of the present invention.
- the temperature drift compensation method includes steps S21 to S27.
- Step S21 the first differential amplifier acquires the first micro signal from the first biosensor and acquires the second micro signal from the second biosensor; specifically, the first differential op amp 11 obtains the first biosensor 2 from the first biosensor 2 A microsignal and a second microsignal is obtained from the second biosensor 3.
- the first micro signal is that the first biosensor 2 senses a characteristic electric signal generated by the first wavelength infrared light being irradiated on the target detection object, and the second micro signal is sensed by the second biosensor 3 Measuring the second wavelength of infrared light to illuminate the target detection pair A characteristic electrical signal generated on the image.
- Step S22 the first differential amplifier performs differential operation on the first micro signal and the second micro signal through the amplification factor of the first differential op amp 11 and amplifies the first differential signal; specifically, the first differential op amp
- the first and second micro signals are differentially operated by the amplification of the first differential op amp 11 and amplified to obtain a first differential signal.
- the amplification factor of the first differential op amp 11 is equal to the ratio of the second resistor R2 of the first differential amplifier 11 and the resistance value of the first resistor R1, and is generated by the temperature coefficient K1 of the first differential op amp 11 The effect of temperature drift.
- the temperature coefficient K1 of the first differential amplifier 11 is determined by the temperature coefficient of the second resistor R2 and the first resistor R1 in the first differential amplifier 11.
- QCR1 is the temperature of the first resistor R1.
- the coefficient, QCR2 is the temperature coefficient of the second resistor R2
- ? T is the temperature change value
- ? R1 is the resistance change value of the first resistor R1 under temperature change
- ? R2 is the resistance change value of the second resistor R2 under temperature change
- / represents the division operation
- the temperature coefficient usually uses the average temperature coefficient, and has a negative temperature coefficient, a positive temperature coefficient, and a critical temperature coefficient at which the resistance will only mutate at a certain temperature.
- Step S23 the second differential amplifier acquires the third micro signal from the third biosensor and acquires the fourth micro signal from the fourth biosensor; specifically, the second differential amplifier 12 acquires the third micro from the third biosensor 4.
- the signal and the fourth micro-signal are acquired from the fourth biosensor 5.
- the third micro signal is that the third biosensor 4 senses the characteristic electric signal generated by the third wavelength infrared light on the target detection object, and the fourth micro signal is sensed by the fourth biosensor 5
- the fourth wavelength infrared light is irradiated to illuminate the characteristic electrical signal generated on the target detection object.
- Step S24 the second differential amplifier performs differential operation on the third micro signal and the fourth micro signal by using the amplification factor of the second differential amplifier, and amplifies the second differential signal; specifically, the second differential amplifier 12
- the third micro signal and the fourth micro signal are differentially operated by the amplification factor of the second differential amplifier 12 and amplified to obtain a second differential signal.
- the amplification factor of the second differential amplifier 12 is equal to the amplification factor of the first differential amplifier 11.
- step S25 the third differential amplifier passes the first differential signal and the second differential signal through the third differential
- the second amplification factor of the amplifier performs a differential operation and amplifies the measurement characteristic signal; specifically, the third differential amplifier 13 differentially operates and amplifies the first differential signal and the second differential signal by the amplification factor of the third differential amplifier 13 A measurement characteristic signal is obtained.
- the amplification factor of the third differential amplifier 13 is equal to the ratio of the resistance values of the fourth resistor R4 and the third resistor R3 in the third differential amplifier 13, and is affected by the temperature drift caused by the temperature coefficient K2 of the third differential amplifier 13.
- the temperature coefficient K2 of the third differential amplifier 13 is determined by the temperature coefficients of the fourth resistor R4 and the third resistor R3 in the third differential amplifier 13.
- QCR3 is the temperature of the third resistor R3.
- the coefficient, QCR4 is the temperature coefficient of the fourth resistor R4, ? T is the temperature change value, ? R3 is the resistance change value of the third resistor R3 under temperature change, ? R4 is the resistance change value of the fourth resistor R4 under temperature change, / represents the division operation, ?
- Step S26 the amplification circuit chip amplifies the measurement characteristic signal by the amplification factor of the amplification circuit chip, and outputs the signal to the ADC circuit chip.
- the amplification circuit chip 141 passes the measurement characteristic signal through the amplification factor of the amplification circuit chip 141.
- the signal is amplified and output to the ADC circuit chip 142.
- the amplifying circuit chip 141 is composed of an amplifying circuit in the prior art
- the AD C circuit chip 142 is composed of a digital-to-analog converting circuit in the prior art.
- the amplification factor of the amplifying circuit chip 141 is an inherent specific value of the amplifying circuit chip 141, that is, the amplifying circuit chip 141 has an inherent amplification property, but is subjected to the amplifying circuit chip 141 during operation.
- the temperature coefficient K3 produces the effect of temperature drift.
- the temperature coefficient K3 of the amplifying circuit chip 141 is a temperature characteristic inherent to the amplifying circuit chip 141, which reflects the severity of temperature drift of the amplifying circuit chip 141 when the amplifying circuit chip 141 changes in operating temperature.
- the amplifying circuit chip 141 generates a temperature drift phenomenon as a function of the operating temperature, causing a signal interference with the measurement characteristic signal, thereby causing the measurement characteristic signal to be submerged in the interference signal, and thus the measurement characteristic signal cannot be accurately measured.
- the temperature coefficient of the fourth resistor R4 such that the temperature coefficient K1 and the third differential amplification of the first differential amplifier 11
- the product of the temperature coefficient K2 of the amplifier 13 is equal in magnitude and opposite in sign to the temperature coefficient K3 of the amplifying circuit chip 141, thus causing the influence of temperature drift caused by the first differential amplifier 11 and the third differential amplifier 13 on weak signal interference and amplification.
- the influence of the temperature drift generated by the circuit chip 141 on the weak signal interference cancels each other, thereby eliminating the signal interference caused by the signal amplification and temperature drift of the weak signal in the high-magnification amplifier circuit.
- Step S27 the ADC circuit chip performs digital-to-analog conversion on the amplified measurement characteristic signal, and outputs the signal to the single-chip microcomputer for signal measurement and analysis.
- the ADC circuit chip 142 performs digital-to-analog conversion on the amplified measurement characteristic signal and outputs the signal to the ADC.
- the single chip microcomputer 15 is used for subsequent signal measurement analysis.
- the micro-signal precision measuring device and method of the biosensor of the present invention can obtain a measured characteristic signal by acquiring four weak characteristic electric signals and performing differential operation through a multi-stage differential amplifier and performing high-magnification amplification, thereby being able to measure Weak characteristic electrical signal; the effect of temperature drift caused by multi-stage differential amplifier on weak signal interference cancels out the influence of temperature drift generated by the amplifying circuit chip itself on weak signal interference, thereby eliminating weak signal in high-magnification amplifier circuit Amplify the signal interference caused by the temperature drift encountered by ⁇ , and improve the accuracy of measuring weak signals.
- the micro-signal precision measuring device and method of the biosensor of the present invention adopts the above technical solutions, and obtains the following technical effects: by acquiring four weak characteristic electric signals and passing multi-level difference
- the amplifier performs differential operation and performs high-magnification amplification to obtain the measured characteristic signal, so that the weak characteristic electrical signal can be measured.
- the influence of the temperature drift generated by the multi-stage differential amplifier on the weak signal interference cancels out the temperature drift generated by the amplifying circuit chip itself.
- the influence of weak signal interference can eliminate the signal interference caused by the temperature drift of the weak signal in the signal amplification of the high-magnification amplifier circuit, and improve the accuracy of measuring the weak signal.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Power Engineering (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Optics & Photonics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
一种生物传感器的微信号精密测量装置(1)及方法,该微信号精密测量装置(1)包括第一差分放大器(11)、第二差分放大器(12)、第三差分放大器(13)、ADC放大芯片(14)和单片机(15)。第一差分放大器(11)从第一生物传感器(2)获取第一微信号并从第二生物传感器(3)获取第二微信号进行差分运算放大得到第一差分信号。第二差分放大器(12)从第三生物传感器(4)获取第三微信号并从第四生物传感器(5)获取第四微信号进行差分运算放大得到第二差分信号。第三差分放大器(13)将第一差分信号和第二差分信号进行差分运算并放大得到测量特征信号。ADC放大芯片(14)将测量特征信号进行信号放大和数模转换后输出至单片机(15)进行信号测量分析。该装置(1)及方法能够测量出微弱的特征电信号,并提高了测量微弱信号的准确性。
Description
说明书 发明名称:生物传感器的微信号精密测量装置及方法 技术领域
[0001] 本发明涉及信号测量的技术领域, 尤其涉及一种生物传感器的微信号精密测量 装置及方法。
背景技术
[0002] 微信号的放大是信号测量和计量的基础, 对于 50mV以内的微小信号, 无法直 接用于 AD采样等芯片, 必须通过放大电路将信号放大后才能测量出来。 微信号 测量往往是信号测量中的难点, 50mV以内的微小信号很难被信号测量电路检测 得到。 一般地, 生物传感器 (例如体征监测生物传感器中的血糖、 体温、 心率 生物传感器等) 输出的生物电信号都比较微弱, 由于被测生物电信号很弱, 因 此必须通过放大电路将被测生物电信号放大后才能测量出来。 现有信号测量设 备中的放大电路对微弱信号进行放大吋, 放大电路往往会产生温度漂移现象而 造成较强的信号干扰, 导致微弱的生物电信号则会被淹没在干扰信号之中, 因 此导致造成微弱的被测生物电信号的测量结果不准确, 甚至根本无法测量出微 弱的被测生物电信号。
技术问题
[0003] 本发明的主要目的在于提供一种生物传感器的微信号精密测量装置及方法, 旨 在解决在测量微弱信号吋因放大电路产生的温度漂移而造成测量结果不准确的 问题。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 本发明提供了一种生物传感器的微信号精密测量装置, 一种 生物传感器的微信号精密测量装置, 该微信号精密测量装置连接有第一生物传 感器、 第二生物传感器、 第三生物传感器以及第四生物传感器, 其特征在于, 所述微信号精密测量装置包括第一差分放大器、 第二差分放大器、 第三差分放 大器、 ADC放大芯片以及单片机, 所述第一差分放大器和第二差分放大器均包
括两个第一电阻以及两个第二电阻, 所述第三差分放大器包括两个第三电阻以 及两个第四电阻, 其中:
[0005] 所述第一差分运放器用于从第一生物传感器获取第一微信号并从第二生物传感 器获取第二微信号, 将第一微信号和第二微信号通过该第一差分运放器的放大 倍数进行差分运算并放大得到第一差分信号, 所述第一差分放大器的放大倍数 等于第一差分放大器中的第二电阻和第一电阻的电阻值的比值;
[0006] 所述第二差分放大器用于从第三生物传感器获取第三微信号并从第四生物传感 器获取第四微信号, 将第三微信号和第四微信号通过该第二差分放大器的放大 倍数进行差分运算并放大得到第二差分信号, 所述第二差分放大器的放大倍数 等于第一差分放大器的放大倍数;
[0007] 所述第三差分放大器用于将第一差分信号和第二差分信号通过该第三差分放大 器的放大倍数进行差分运算并放大得到测量特征信号, 所述第三差分放大器的 放大倍数等于第三差分放大器中的第四电阻和第三电阻的电阻值的比值;
[0008] 所述 ADC放大芯片包括放大电路芯片以及 ADC电路芯片, 所述放大电路芯片用 于将所述测量特征信号通过该放大电路芯片的放大倍数进行信号放大后输出至 A DC电路芯片, 所述放大电路芯片的放大倍数为该放大电路芯片的固有特定值;
[0009] 其中, 第一差分放大器的温度系数等于第二电阻的温度系数与第一电阻的温度 系数的比值, 第二差分放大器的温度系数与第一差分放大器的温度系数相等, 第三差分放大器的温度系数等于第四电阻的温度系数与第三电阻的温度系数的 比值, 第一差分放大器的温度系数和第三差分放大器的温度系数的乘积与放大 电路芯片的温度系数大小相等且符号相反。
[0010] 进一步地, 所述第一差分放大器的第一输入端连接至第一生物传感器, 第一差 分放大器的第二输入端连接至第二生物传感器; 所述第二差分放大器的第一输 入端连接至第三生物传感器, 第二差分放大器的第二输入端连接至第四生物传 感器; 所述第一差分放大器的输出端连接至第三差分放大器的第一输入端, 第 二差分放大器的输出端连接至第三差分放大器的第二输入端; 所述第三差分放 大器的输出端连接至所述放大电路芯片的输入端, 所述放大电路芯片的输出端 连接至 ADC电路芯片的输入端, 所述 ADC电路芯片的输出端连接至所述单片机
[0011] 进一步地, 所述第一差分放大器还包括第一晶体三极管, 第一差分放大器的其 中一个第一电阻串联至第一晶体三极管的第一输入端, 第一差分放大器的其中 另一个第一电阻串联至第一晶体三极管的第二输入端, 第一差分放大器的其中 一个第二电阻的一端连接至第一晶体三极管的第一输入端且该第二电阻的另一 端连接至第一晶体三极管的输出端, 第一差分放大器的其中另一个第二电阻的 一端连接至第一晶体三极管的第二输入端且该第二电阻的另一端连接至接地线
[0012] 进一步地, 所述第二差分放大器还包括第一晶体三极管, 第二差分放大器的其 中一个第一电阻串联至第一晶体三极管的第一输入端, 第二差分放大器的其中 另一个第一电阻串联至第一晶体三极管的第二输入端, 第二差分放大器的其中 一个第二电阻的一端连接至第一晶体三极管的第一输入端且该第二电阻的另一 端连接至第一晶体三极管的输出端, 第二差分放大器的其中另一个第二电阻的 一端连接至第一晶体三极管的第二输入端且该第二电阻的另一端连接至接地线
[0013] 进一步地, 所述第三差分放大器还包括第二晶体三极管, 其中一个第三电阻串 联至第二晶体三极管的第一输入端, 其中另一个第三电阻串联至第二晶体三极 管的第二输入端, 其中一个第四电阻的一端连接至第二晶体三极管的第一输入 端且该第四电阻的另一端连接至第二晶体三极管的输出端, 其中另一个第四电 阻的一端连接至第二晶体三极管的第二输入端且该第四电阻的另一端连接至接 地线。
[0014] 进一步地, 所述第一生物传感器用于感测第一波长红外光照射在目标检测对象 上产生的第一微信号, 第二生物传感器用于感测第二波长红外光照射在目标检 测对象上产生的第二微信号, 第三生物传感器用于感测第三波长红外光照射在 目标检测对象上产生的第三微信号, 第四生物传感器用于感测第四波长红外光 照射在目标检测对象上产生的第四微信号。
[0015] 为实现本发明上述目的, 本发明还提供了一种生物传感器的微信号精密测量方 法, 应用于微信号精密测量装置中, 该微信号精密测量装置连接有第一生物传
感器、 第二生物传感器、 第三生物传感器以及第四生物传感器, 所述微信号精 密测量装置包括第一差分放大器、 第二差分放大器、 第三差分放大器、 ADC放 大芯片以及单片机, 第一差分放大器和第二差分放大器均包括两个第一电阻以 及两个第二电阻, 第三差分放大器包括两个第三电阻以及两个第四电阻, 所述 A DC放大芯片包括放大电路芯片和 ADC电路芯片, 其中, 所述生物传感器的微信 号精密测量方法包括如下步骤:
[0016] 所述第一差分运放器从第一生物传感器获取第一微信号并从第二生物传感器获 取第二微信号;
[0017] 所述第一差分运放器将第一微信号和第二微信号通过该第一差分运放器的放大 倍数进行差分运算并放大得到第一差分信号, 所述第一差分放大器的放大倍数 等于第一差分放大器中的第二电阻和第一电阻的电阻值的比值;
[0018] 所述第二差分放大器从第三生物传感器获取第三微信号并从第四生物传感器获 取第四微信号;
[0019] 所述第二差分放大器将第三微信号和第四微信号通过该第二差分放大器的放大 倍数进行差分运算并放大得到第二差分信号, 所述第二差分放大器的放大倍数 等于第一差分放大器的放大倍数;
[0020] 所述第三差分放大器将第一差分信号和第二差分信号通过该第三差分放大器的 放大倍数进行差分运算并放大得到测量特征信号, 所述第三差分放大器的放大 倍数等于第三差分放大器的第四电阻和第三电阻的电阻值的比值;
[0021] 所述放大电路芯片将所述测量特征信号通过该放大电路芯片的放大倍数进行信 号放大后输出至 ADC电路芯片, 所述放大电路芯片的放大倍数为该放大电路芯 片的固有特定值;
[0022] 所述 ADC电路芯片将放大后的测量特征信号进行数模转换并输出至所述单片机 进行信号测量分析;
[0023] 其中, 第一差分放大器的温度系数等于第二电阻的温度系数与第一电阻的温度 系数的比值, 第二差分放大器的温度系数与第一差分放大器的温度系数相等, 第三差分放大器的温度系数等于第四电阻的温度系数与第三电阻的温度系数的 比值, 第一差分放大器的温度系数和第三差分放大器的温度系数的乘积与放大
电路芯片的温度系数大小相等且符号相反。
[0024] 进一步地, 所述第一微信号是第一生物传感器感测到第一波长红外光照射在目 标检测对象上产生的特征电信号, 第二微信号是第二生物传感器感测到第二波 长红外光照射在目标检测对象上产生的特征电信号, 第三微信号是第三生物传 感器感测到第三波长红外光照射在目标检测对象上产生的特征电信号, 第四微 信号是第四生物传感器感测到第四波长红外光照射在目标检测对象上产生的特 征电信号。
发明的有益效果
有益效果
[0025] 相较于现有技术, 本发明所述生物传感器的微信号精密测量装置及方法采用上 述技术方案, 取得了如下的技术效果: 通过获取四路微弱的特征电信号并通过 多级差分放大器进行差分运算并进行高倍数放大得到测量特征信号, 从而能够 测量出微弱的特征电信号; 利用多级差分放大器产生的温度漂移对微弱信号干 扰的影响抵消掉放大电路芯片本身产生的温度漂移对微弱信号干扰的影响, 从 而能够消除微弱信号在高倍数放大电路进行信号放大吋所遇到的温度漂移产生 的信号干扰, 提高测量微弱信号的准确性。
对附图的简要说明
附图说明
[0026] 图 1是本发明生物传感器的微信号精密测量装置优选实施例的电路结构示意图
[0027] 图 2是本发明生物传感器的微信号精密测量方法优选实施例的方法流程图。
[0028] 本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式
[0029] 为更进一步阐述本发明为达成上述目的所采取的技术手段及功效, 以下结合附 图及较佳实施例, 对本发明的具体实施方式、 结构、 特征及其功效进行详细说 明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定
本发明。
[0030] 如图 1所示, 图 1是本发明生物传感器的微信号精密测量装置优选实施例的电路 结构示意图。 在本实施例中, 所述微信号精密测量装置 1包括, 但不仅限于, 第 一差分放大器 11、 第二差分放大器 12、 第三差分放大器 13、 ADC (数模转换) 放大芯片 14以及单片机 15。 第一差分放大器 11的第一输入端连接至第一生物传 感器 2, 第一差分放大器 11的第二输入端连接至第二生物传感器 3, 第二差分放 大器 12的第一输入端连接至第三生物传感器 4, 第二差分放大器 12的第二输入端 连接至第四生物传感器 5。 所述第一差分放大器 11的输出端连接至第三差分放大 器 13的第一输入端, 第二差分放大器 12的输出端连接至第三差分放大器 13的第 二输入端, 第三差分放大器 13的输出端连接至所述 ADC放大芯片 14的输入端, 所述 ADC放大芯片 14的输出端连接至所述单片机 15。
[0031] 所述第一生物传感器 2用于从目标检测对象获取第一微信号, 第二生物传感器 3 用于从目标检测对象获取第二微信号, 第三生物传感器 4用于从目标检测对象获 取第三微信号, 第四生物传感器 5用于从目标检测对象获取第四微信号。 在本实 施例中, 通过分别使用四种不同波长的红外光照射到目标检测对象上, 因此, 第一微信号是第一生物传感器 2感测到第一波长红外光照射在目标检测对象上产 生的特征电信号, 第二微信号是第二生物传感器 3感测到第二波长红外光照射在 目标检测对象上产生的特征电信号, 第三微信号是第三生物传感器 4感测到第三 波长红外光照射在目标检测对象上产生的特征电信号, 第四微信号是第四生物 传感器 5感测到第四波长红外光照射在目标检测对象上产生的特征电信号。 本实 施例通过获取四种不同波长的红外光照射到目标检测对象上的四种微信号, 并 对四种微信号进行多级差分运算并放大即可测量出目标检测对象的测量特征信 号。 例如, 需要测量人体血糖浓度吋, 分别使用四种不同波长的红外光照射到 人体血糖测量部位 (目标检测部位) , 即可通过四个生物传感器分别获得四种 微弱的血糖浓度电信号, 再通过所述微信号精密测量装置 1进行多级差分运算并 放大即可得到人体血糖浓度信号, 并输出至单片机 5进行后续的血糖浓度分析。
[0032] 在本实施例中, 第一差分放大器 11和第二差分放大器 12均包括两个第一电阻 R1 、 两个第二电阻 R2以及一个第一晶体三极管 Ql。 第一差分放大器 11的其中一个
第一电阻 Rl串联至第一晶体三极管 Ql的第一输入端, 第一差分放大器 11的其中 另一个第一电阻 R1串联至第一晶体三极管 Q1的第二输入端; 第一差分放大器 11 的其中一个第二电阻 R2的一端连接至第一晶体三极管 Q1的第一输入端且该第二 电阻 R2的另一端连接至第一晶体三极管 Q1的输出端, 第一差分放大器 11的其中 另一个第二电阻 R2的一端连接至第一晶体三极管 Q1的第二输入端且该第二电阻 R2的另一端连接至接地线。 第二差分放大器 12的其中一个第一电阻 R1串联至第 一晶体三极管 Q1的第一输入端, 第二差分放大器 12的其中另一个第一电阻 R1串 联至第一晶体三极管 Q1的第二输入端; 第二差分放大器 12的其中一个第二电阻 R 2的一端连接至第一晶体三极管 Q1的第一输入端且该第二电阻 R2的另一端连接至 第一晶体三极管 Q1的输出端, 第二差分放大器 12的其中另一个第二电阻 R2的一 端连接至第一晶体三极管 Q1的第二输入端且该第二电阻 R2的另一端连接至接地 线。
[0033] 第一差分运放器 11用于从第一生物传感器 2获取第一微信号并从第二生物传感 器 3获取第二微信号, 以及将第一微信号和第二微信号通过该第一差分运放器 11 的放大倍数进行差分运算并放大得到第一差分信号。 所述第二差分放大器 12用 于从第三生物传感器 4获取第三微信号并从第四生物传感器 5获取第四微信号, 以及将第三微信号和第四微信号通过该第二差分放大器 12的放大倍数进行差分 运算并放大得到第二差分信号。 第一差分放大器 11的放大倍数等于第一差分放 大器 11中的第二电阻 R2和第一电阻 R1的电阻值的比值, 第二差分放大器 12的放 大倍数与第一差分放大器 11的放大倍数相等。
[0034] 在本实施例中, 第一差分放大器 11的温度系数 K1由第一差分放大器 11中的第二 电阻 R2和第一电阻 R1的温度系数确定。 可以理解, 所述某一个电阻的温度系数 是指当温度改变 1°C吋该电阻的电阻值的相对变化值, 单位为 ppm :。 例如, 第 一电阻 R1的温度系数表示为 QCR1=?R1
/R1??T, 第二电阻 R2的温度系数表示为 QCR2=?R2 /R2??T, 其中, QCR1为第一 电阻 R1的温度系数, QCR2为第二电阻 R2的温度系数, ? T为温度变化值, ? R1是 指在温度变化下第一电阻 R1的电阻变化值, ? R2是指在温度变化下第二电阻 R2的 电阻变化值, /代表除法运算, ?代表乘法运算。 在实际应用吋, 温度系数通常采
用平均温度系数, 且有负温度系数、 正温度系数及在某一特定温度下电阻只会 发生突变的临界温度系数。 所述第一差分放大器 11的温度系数 K1等于第二电阻 R 2的温度系数 QCR2与第一电阻 R1的温度系数 QCR1的比值, 即: Kl= QCR2/ QCR1。 所述第二差分放大器 12的温度系数与第一差分放大器 11的温度系数相等
[0035] 在本实施例中, 第三差分放大器 13包括两个第三电阻 R3、 两个第四电阻 R4以 及一个第二晶体三极管 Q2。 第三差分放大器 13的其中一个第三电阻 R3串联至第 二晶体三极管 Q2的第一输入端, 其中另一个第三电阻 R3串联至第二晶体三极管 Q2的第二输入端; 第三差分放大器 13的其中一个第四电阻 R4的一端连接至第二 晶体三极管 Q2的第一输入端且该第四电阻 R4的另一端连接至第二晶体三极管 Q2 的输出端, 其中另一个第四电阻 R4的一端连接至第二晶体三极管 Q2的第二输入 端且该第四电阻 R4的另一端连接至接地线。
[0036] 所述第三差分放大器 13用于将第一差分信号和第二差分信号通过该第三差分放 大器 13的放大倍数进行差分运算并放大得到测量特征信号。 在本实施例中, 所 述第三差分放大器 13的放大倍数等于第三差分放大器 13中的第四电阻 R4和第三 电阻 R3的电阻值的比值。 所述第三差分放大器 13的温度系数 K2由第三差分放大 器 13中的第四电阻 R4和第三电阻 R3的温度系数确定。 例如, 第三电阻 R3的温度 系数表示为 QCR3=?R3 /R3??T, 第四电阻 R4的温度系数表示为 QCR4=?R4 /R4??T, 其中, QCR3为第三电阻 R3的温度系数, QCR4为第四电阻 R4的温度系 数, ? T为温度变化值, ? R3是指在温度变化下第三电阻 R3的电阻变化值, ? R4是 指在温度变化下第四电阻 R4的电阻变化值, /代表除法运算, ?代表乘法运算。 所 述第三差分放大器 13的温度系数 K2等于第四电阻 R4的温度系数 QCR4与第三电阻 R3的温度系数 QCR3的比值, 即: K2= QCR4/ QCR3。
[0037] 在本实施例中, 所述 ADC放大芯片 14包括, 但不仅限于, 放大电路芯片 141和 ADC电路芯片 142。 所述放大电路芯片 141的输入端连接至第三差分放大器 13的 输出端, 所述放大电路芯片 141的输出端连接至 ADC电路芯片 142的输入端, 所 述 ADC电路芯片 142的输出端连接至所述单片机 15。 所述放大电路芯片 141用于 将所述测量特征信号通过该放大电路芯片 141的放大倍数进行信号放大后输出至
ADC电路芯片 142, 该 ADC电路芯片 142用于将放大后的测量特征信号进行数模 转换并输出至单片机 15, 以便进行后续的信号测量分析。
[0038] 在本实施例中, 所述放大电路芯片 141为现有技术中的放大电路组成, 所述 AD C电路芯片 142均为现有技术中的数模转换电路组成。 本领域技术人员可以理解 的是, 所述放大电路芯片 141的放大倍数为该放大电路芯片 141的固有特定值, 即该放大电路芯片 141固有的放大属性, 但在工作吋会受到该放大电路芯片 141 的温度系数 K3产生温度漂移的影响。 所述放大电路芯片 141的温度系数 K3为该放 大电路芯片 141固有的温度特性, 其反映该放大电路芯片 141在工作温度变化的 情况下造成放大电路芯片 141发生温度漂移的严重程度。 所述放大电路芯片 141 随着工作温度变化会产生温度漂移现象对测量特征信号产生信号干扰, 从而导 致测量特征信号被淹没在干扰信号之中, 因此无法准确地测量出测量特征信号 。 在本实施例中, 通过确定第一差分放大器 11和第二差分放大器 12中的第一电 阻 R1和第二电阻 R2的温度系数, 以及通过确定第三差分放大器 13中的第三电阻 R3和第四电阻 R4的温度系数, 使得第一差分放大器 11的温度系数 K1和第三差分 放大器 13的温度系数 K2的乘积与所述放大电路芯片 141的温度系数 K3大小相等且 符号相反, 因此使得第一差分放大器 11和第三差分放大器 13产生的温度漂移对 信号干扰的影响与放大电路芯片 141产生的温度漂移对信号干扰的影响相互抵消 , 从而能够消除微弱信号在高倍数放大电路进行信号放大吋所遇到的温度漂移 产生的信号干扰, 提高测量微弱信号的准确性。
[0039] 为实现本发明目的, 本发明还提供了一种生物传感器的微信号精密测量方法, 应用于如图 1所示的微信号精密测量装置 1中。 如图 2所示, 图 2是本发明生物传 感器的微信号精密测量方法优选实施例的方法流程图。 在本实施例中, 所述的 温度漂移补偿方法包括步骤 S21至步骤 S27。
[0040] 步骤 S21, 第一差分放大器从第一生物传感器获取第一微信号并从第二生物传 感器获取第二微信号; 具体地, 第一差分运放器 11从第一生物传感器 2获取第一 微信号并从第二生物传感器 3获取第二微信号。 在本实施例中, 所述第一微信号 是由第一生物传感器 2感测第一波长红外光照射在目标检测对象上产生的特征电 信号, 第二微信号是由第二生物传感器 3感测第二波长红外光照射在目标检测对
象上产生的特征电信号。
[0041] 步骤 S22, 第一差分放大器将第一微信号和第二微信号通过第一差分运放器 11 的放大倍数进行差分运算并放大得到第一差分信号; 具体地, 第一差分运放器 1 1将第一微信号和第二微信号通过该第一差分运放器 11的放大倍数进行差分运算 并放大得到第一差分信号。 所述第一差分运放器 11的放大倍数等于第一差分放 大器 11中的第二电阻 R2和第一电阻 R1的电阻值的比值, 并受到第一差分运放器 1 1的温度系数 K1产生温度漂移的影响。 在本实施例中, 第一差分放大器 11的温度 系数 K1由第一差分放大器 11中的第二电阻 R2和第一电阻 R1的温度系数确定。 例 如, 第一电阻 R1的温度系数表示为 QCR1=?R1 /R1??T, 第二电阻 R2的温度系数 表示为 QCR2=?R2 /R2??T, 其中, QCR1为第一电阻 R1的温度系数, QCR2为第 二电阻 R2的温度系数, ? T为温度变化值, ? R1是指在温度变化下第一电阻 R1的 电阻变化值, ? R2是指在温度变化下第二电阻 R2的电阻变化值, /代表除法运算 , ?代表乘法运算。 在实际应用吋, 温度系数通常采用平均温度系数, 且有负温 度系数、 正温度系数及在某一特定温度下电阻只会发生突变的临界温度系数。 所述第一差分放大器 11的温度系数 K1等于第二电阻 R2的温度系数 QCR2与第一电 阻 R1的温度系数的 QCR1的比值, 即: K1= QCR2/ QCR1。
[0042] 步骤 S23, 第二差分放大器从第三生物传感器获取第三微信号并从第四生物传 感器获取第四微信号; 具体地, 第二差分放大器 12从第三生物传感器 4获取第三 微信号并从第四生物传感器 5获取第四微信号。 在本实施例中, 所述第三微信号 是由第三生物传感器 4感测第三波长红外光照射在目标检测对象上产生的特征电 信号, 第四微信号是由第四生物传感器 5感测第四波长红外光照射在目标检测对 象上产生的特征电信号。
[0043] 步骤 S24, 第二差分放大器将第三微信号和第四微信号通过该第二差分放大器 的放大倍数进行差分运算并放大得到第二差分信号; 具体地, 第二差分放大器 1 2将第三微信号和第四微信号通过该第二差分放大器 12的放大倍数进行差分运算 并放大得到第二差分信号。 在本实施例中, 所述第二差分放大器 12的放大倍数 与第一差分放大器 11的放大倍数相等。
[0044] 步骤 S25, 第三差分放大器将第一差分信号和第二差分信号通过该第三差分放
大器的第二放大倍数进行差分运算并放大得到测量特征信号; 具体地, 第三差 分放大器 13将第一差分信号和第二差分信号通过该第三差分放大器 13的放大倍 数进行差分运算并放大得到测量特征信号。 所述第三差分放大器 13的放大倍数 等于第三差分放大器 13中的第四电阻 R4和第三电阻 R3的电阻值的比值, 并受到 第三差分放大器 13的温度系数 K2产生温度漂移的影响。 在本实施例中, 所述第 三差分放大器 13的温度系数 K2由第三差分放大器 13中的第四电阻 R4和第三电阻 R3的温度系数确定。 例如, 第三电阻 R3的温度系数表示为 QCR3=?R3 /R3??T, 第四电阻 R4的温度系数表示为 QCR4=?R4 /R4??T, 其中, QCR3为第三电阻 R3 的温度系数, QCR4为第四电阻 R4的温度系数, ? T为温度变化值, ? R3是指在温 度变化下第三电阻 R3的电阻变化值, ? R4是指在温度变化下第四电阻 R4的电阻变 化值, /代表除法运算, ?代表乘法运算。 所述第三差分放大器 13的温度系数 K2等 于第四电阻 R4的温度系数 QCR4与第三电阻 R3的温度系数 QCR3的比值, 即: K2 = QCR4/ QCR3。
步骤 S26, 放大电路芯片将测量特征信号通过该放大电路芯片的放大倍数进行 信号放大后输出至 ADC电路芯片; 具体地, 放大电路芯片 141将所述测量特征信 号通过该放大电路芯片 141的放大倍数进行信号放大后输出至 ADC电路芯片 142 。 在本实施例中, 所述放大电路芯片 141为现有技术中的放大电路组成, 所述 AD C电路芯片 142为现有技术中的数模转换电路组成。 本领域技术人员可以理解的 是, 所述放大电路芯片 141的放大倍数为该放大电路芯片 141的固有特定值, 即 该放大电路芯片 141固有放大属性, 但在工作吋会受到该放大电路芯片 141的温 度系数 K3产生温度漂移的影响。 所述放大电路芯片 141的温度系数 K3为该放大电 路芯片 141固有的温度特性, 其反映该放大电路芯片 141在工作温度变化的情况 下造成放大电路芯片 141发生温度漂移的严重程度。 所述放大电路芯片 141随着 工作温度变化会产生温度漂移现象对测量特征信号产生信号干扰, 从而导致测 量特征信号被淹没在干扰信号之中, 因此无法准确地测量出测量特征信号。 在 本实施例中, 通过确定第一差分放大器 11和第二差分放大器 12中的第一电阻 R1 和第二电阻 R2的温度系数, 以及通过确定第三差分放大器 13中的第三电阻 R3和 第四电阻 R4的温度系数, 使得第一差分放大器 11的温度系数 K1和第三差分放大
器 13的温度系数 K2的乘积与所述放大电路芯片 141的温度系数 K3大小相等且符号 相反, 因此使得第一差分放大器 11和第三差分放大器 13产生的温度漂移对微弱 信号干扰的影响与放大电路芯片 141产生的温度漂移对微弱信号干扰的影响相互 抵消, 从而能够消除微弱信号在高倍数放大电路进行信号放大吋温度漂移产生 的信号干扰。
[0046] 步骤 S27, ADC电路芯片将放大后的测量特征信号进行数模转换后输出至单片 机进行信号测量分析; 具体地, ADC电路芯片 142将放大后的测量特征信号进行 数模转换并输出至单片机 15, 以便进行后续的信号测量分析。
[0047] 本发明所述生物传感器的微信号精密测量装置及方法, 通过获取四路微弱的特 征电信号并通过多级差分放大器进行差分运算并进行高倍数放大得到测量特征 信号, 从而能够测量出微弱的特征电信号; 利用多级差分放大器产生的温度漂 移对微弱信号干扰的影响抵消掉放大电路芯片本身产生的温度漂移对微弱信号 干扰的影响, 从而能够消除微弱信号在高倍数放大电路进行信号放大吋所遇到 的温度漂移产生的信号干扰, 提高测量微弱信号的准确性。
[0048] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效功能变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
工业实用性
[0049] 相较于现有技术, 本发明所述生物传感器的微信号精密测量装置及方法采用上 述技术方案, 取得了如下的技术效果: 通过获取四路微弱的特征电信号并通过 多级差分放大器进行差分运算并进行高倍数放大得到测量特征信号, 从而能够 测量出微弱的特征电信号; 利用多级差分放大器产生的温度漂移对微弱信号干 扰的影响抵消掉放大电路芯片本身产生的温度漂移对微弱信号干扰的影响, 从 而能够消除微弱信号在高倍数放大电路进行信号放大吋所遇到的温度漂移产生 的信号干扰, 提高测量微弱信号的准确性。
Claims
[权利要求 1] 一种生物传感器的微信号精密测量装置, 该微信号精密测量装置连接 有第一生物传感器、 第二生物传感器、 第三生物传感器以及第四生物 传感器, 其特征在于, 所述微信号精密测量装置包括第一差分放大器
、 第二差分放大器、 第三差分放大器、 ADC放大芯片以及单片机, 所述第一差分放大器和第二差分放大器均包括两个第一电阻以及两个 第二电阻, 所述第三差分放大器包括两个第三电阻以及两个第四电阻 , 其中: 所述第一差分运放器用于从第一生物传感器获取第一微信号 并从第二生物传感器获取第二微信号, 将第一微信号和第二微信号通 过该第一差分运放器的放大倍数进行差分运算并放大得到第一差分信 号, 所述第一差分放大器的放大倍数等于第一差分放大器中的第二电 阻和第一电阻的电阻值的比值; 所述第二差分放大器用于从第三生物 传感器获取第三微信号并从第四生物传感器获取第四微信号, 将第三 微信号和第四微信号通过该第二差分放大器的放大倍数进行差分运算 并放大得到第二差分信号, 所述第二差分放大器的放大倍数等于第一 差分放大器的放大倍数; 所述第三差分放大器用于将第一差分信号和 第二差分信号通过该第三差分放大器的放大倍数进行差分运算并放大 得到测量特征信号, 所述第三差分放大器的放大倍数等于第三差分放 大器中的第四电阻和第三电阻的电阻值的比值; 所述 ADC放大芯片 包括放大电路芯片以及 ADC电路芯片, 所述放大电路芯片用于将所 述测量特征信号通过该放大电路芯片的放大倍数进行信号放大后输出 至 ADC电路芯片, 所述放大电路芯片的放大倍数为该放大电路芯片 的固有特定值; 其中, 第一差分放大器的温度系数等于第二电阻的温 度系数与第一电阻的温度系数的比值, 第二差分放大器的温度系数与 第一差分放大器的温度系数相等, 第三差分放大器的温度系数等于第 四电阻的温度系数与第三电阻的温度系数的比值, 第一差分放大器的 温度系数和第三差分放大器的温度系数的乘积与放大电路芯片的温度 系数大小相等且符号相反。
[权利要求 2] 如权利要求 1所述的生物传感器的微信号精密测量装置, 其特征在于
: 所述第一差分放大器的第一输入端连接至第一生物传感器, 第一差 分放大器的第二输入端连接至第二生物传感器; 所述第二差分放大器 的第一输入端连接至第三生物传感器, 第二差分放大器的第二输入端 连接至第四生物传感器; 所述第一差分放大器的输出端连接至第三差 分放大器的第一输入端, 第二差分放大器的输出端连接至第三差分放 大器的第二输入端; 所述第三差分放大器的输出端连接至所述放大电 路芯片的输入端, 所述放大电路芯片的输出端连接至 ADC电路芯片 的输入端, 所述 ADC电路芯片的输出端连接至所述单片机。
[权利要求 3] 如权利要求 1所述的生物传感器的微信号精密测量装置, 其特征在于
, 所述第一差分放大器还包括第一晶体三极管, 第一差分放大器的其 中一个第一电阻串联至第一晶体三极管的第一输入端, 第一差分放大 器的其中另一个第一电阻串联至第一晶体三极管的第二输入端, 第一 差分放大器的其中一个第二电阻的一端连接至第一晶体三极管的第一 输入端且该第二电阻的另一端连接至第一晶体三极管的输出端, 第一 差分放大器的其中另一个第二电阻的一端连接至第一晶体三极管的第 二输入端且该第二电阻的另一端连接至接地线。
[权利要求 4] 如权利要求 1所述的生物传感器的微信号精密测量装置, 其特征在于
, 所述第二差分放大器还包括第一晶体三极管, 第二差分放大器的其 中一个第一电阻串联至第一晶体三极管的第一输入端, 第二差分放大 器的其中另一个第一电阻串联至第一晶体三极管的第二输入端, 第二 差分放大器的其中一个第二电阻的一端连接至第一晶体三极管的第一 输入端且第二电阻的另一端连接至第一晶体三极管的输出端, 第二差 分放大器的其中另一个第二电阻的一端连接至第一晶体三极管的第二 输入端且第二电阻的另一端连接至接地线。
[权利要求 5] 如权利要求 1所述的生物传感器的微信号精密测量装置, 其特征在于
, 所述第三差分放大器还包括第二晶体三极管, 其中一个第三电阻串 联至第二晶体三极管的第一输入端, 其中另一个第三电阻串联至第二
晶体三极管的第二输入端, 其中一个第四电阻的一端连接至第二晶体 三极管的第一输入端且该第四电阻的另一端连接至第二晶体三极管的 输出端, 其中另一个第四电阻的一端连接至第二晶体三极管的第二输 入端且该第四电阻的另一端连接至接地线。
[权利要求 6] 如权利要求 1至 5任一项所述的生物传感器的微信号精密测量装置, 其 特征在于, 所述第一生物传感器用于感测第一波长红外光照射在目标 检测对象上产生的第一微信号, 第二生物传感器用于感测第二波长红 外光照射在目标检测对象上产生的第二微信号, 第三生物传感器用于 感测第三波长红外光照射在目标检测对象上产生的第三微信号, 第四 生物传感器用于感测第四波长红外光照射在目标检测对象上产生的第 四微信号。
[权利要求 7] —种生物传感器的微信号精密测量方法, 应用于微信号精密测量装置 中, 该微信号精密测量装置连接有第一生物传感器、 第二生物传感器 、 第三生物传感器以及第四生物传感器, 其特征在于, 所述微信号精 密测量装置包括第一差分放大器、 第二差分放大器、 第三差分放大器 、 ADC放大芯片以及单片机, 第一差分放大器和第二差分放大器均 包括两个第一电阻以及两个第二电阻, 第三差分放大器包括两个第三 电阻以及两个第四电阻, 所述 ADC放大芯片包括放大电路芯片和 AD C电路芯片, 其中, 所述生物传感器的微信号精密测量方法包括如下 步骤: 所述第一差分运放器从第一生物传感器获取第一微信号并从第 二生物传感器获取第二微信号; 所述第一差分运放器将第一微信号和 第二微信号通过该第一差分运放器的放大倍数进行差分运算并放大得 到第一差分信号, 所述第一差分放大器的放大倍数等于第一差分放大 器中的第二电阻和第一电阻的电阻值的比值; 所述第二差分放大器从 第三生物传感器获取第三微信号并从第四生物传感器获取第四微信号 ; 所述第二差分放大器将第三微信号和第四微信号通过该第二差分放 大器的放大倍数进行差分运算并放大得到第二差分信号, 所述第二差 分放大器的放大倍数等于第一差分放大器的放大倍数; 所述第三差分
放大器将第一差分信号和第二差分信号通过该第三差分放大器的放大 倍数进行差分运算并放大得到测量特征信号, 所述第三差分放大器的 放大倍数等于第三差分放大器的第四电阻和第三电阻的电阻值的比值 ; 所述放大电路芯片将所述测量特征信号通过该放大电路芯片的放大 倍数进行信号放大后输出至 ADC电路芯片, 所述放大电路芯片的放 大倍数为该放大电路芯片的固有特定值; 所述 ADC电路芯片将放大 后的测量特征信号进行数模转换并输出至所述单片机进行信号测量分 析; 其中, 第一差分放大器的温度系数等于第二电阻的温度系数与第 一电阻的温度系数的比值, 第二差分放大器的温度系数与第一差分放 大器的温度系数相等, 第三差分放大器的温度系数等于第四电阻的温 度系数与第三电阻的温度系数的比值, 第一差分放大器的温度系数和 第三差分放大器的温度系数的乘积与放大电路芯片的温度系数大小相 等且符号相反。
[权利要求 8] 如权利要求 7所述的生物传感器的微信号精密测量方法, 其特征在于
, 其特征在于, 所述第一微信号是第一生物传感器感测到第一波长红 外光照射在目标检测对象上产生的特征电信号, 第二微信号是第二生 物传感器感测到第二波长红外光照射在目标检测对象上产生的特征电 信号, 第三微信号是第三生物传感器感测到第三波长红外光照射在目 标检测对象上产生的特征电信号, 第四微信号是第四生物传感器感测 到第四波长红外光照射在目标检测对象上产生的特征电信号。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610741562.0A CN106344039A (zh) | 2016-08-26 | 2016-08-26 | 生物传感器的微信号精密测量装置及方法 |
CN201610741562.0 | 2016-08-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018036210A1 true WO2018036210A1 (zh) | 2018-03-01 |
Family
ID=57855490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/084228 WO2018036210A1 (zh) | 2016-08-26 | 2017-05-12 | 生物传感器的微信号精密测量装置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106344039A (zh) |
WO (1) | WO2018036210A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108593180A (zh) * | 2018-04-26 | 2018-09-28 | 国网江西省电力有限公司南昌供电分公司 | 一种用于杆塔拉线张力测量仪的张力变送器 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106343974A (zh) * | 2016-08-26 | 2017-01-25 | 深圳市前海安测信息技术有限公司 | 用于测量微信号的温度漂移补偿装置及方法 |
CN206151465U (zh) * | 2016-08-26 | 2017-05-10 | 深圳市前海安测信息技术有限公司 | 微信号精密测量电路 |
CN106374861A (zh) * | 2016-08-26 | 2017-02-01 | 深圳市前海安测信息技术有限公司 | 生物传感器的微信号多级放大装置及方法 |
CN106344039A (zh) * | 2016-08-26 | 2017-01-25 | 深圳市前海安测信息技术有限公司 | 生物传感器的微信号精密测量装置及方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060091294A1 (en) * | 2004-10-29 | 2006-05-04 | Michael Frank | Apparatus and method for interference suppression in optical or radiation sensors |
CN1989404A (zh) * | 2004-05-28 | 2007-06-27 | 霍尼韦尔国际公司 | 差分热传感器 |
CN103026252A (zh) * | 2010-07-23 | 2013-04-03 | 皇家飞利浦电子股份有限公司 | 用于去除互耦mri 干扰的双压力传感器信号链 |
CN205139762U (zh) * | 2015-12-04 | 2016-04-06 | 潍坊医学院 | 一种平铺结构的线性差分霍尔电压发生器 |
CN106344039A (zh) * | 2016-08-26 | 2017-01-25 | 深圳市前海安测信息技术有限公司 | 生物传感器的微信号精密测量装置及方法 |
CN106343974A (zh) * | 2016-08-26 | 2017-01-25 | 深圳市前海安测信息技术有限公司 | 用于测量微信号的温度漂移补偿装置及方法 |
CN106374861A (zh) * | 2016-08-26 | 2017-02-01 | 深圳市前海安测信息技术有限公司 | 生物传感器的微信号多级放大装置及方法 |
CN206151465U (zh) * | 2016-08-26 | 2017-05-10 | 深圳市前海安测信息技术有限公司 | 微信号精密测量电路 |
-
2016
- 2016-08-26 CN CN201610741562.0A patent/CN106344039A/zh not_active Withdrawn
-
2017
- 2017-05-12 WO PCT/CN2017/084228 patent/WO2018036210A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1989404A (zh) * | 2004-05-28 | 2007-06-27 | 霍尼韦尔国际公司 | 差分热传感器 |
US20060091294A1 (en) * | 2004-10-29 | 2006-05-04 | Michael Frank | Apparatus and method for interference suppression in optical or radiation sensors |
CN103026252A (zh) * | 2010-07-23 | 2013-04-03 | 皇家飞利浦电子股份有限公司 | 用于去除互耦mri 干扰的双压力传感器信号链 |
CN205139762U (zh) * | 2015-12-04 | 2016-04-06 | 潍坊医学院 | 一种平铺结构的线性差分霍尔电压发生器 |
CN106344039A (zh) * | 2016-08-26 | 2017-01-25 | 深圳市前海安测信息技术有限公司 | 生物传感器的微信号精密测量装置及方法 |
CN106343974A (zh) * | 2016-08-26 | 2017-01-25 | 深圳市前海安测信息技术有限公司 | 用于测量微信号的温度漂移补偿装置及方法 |
CN106374861A (zh) * | 2016-08-26 | 2017-02-01 | 深圳市前海安测信息技术有限公司 | 生物传感器的微信号多级放大装置及方法 |
CN206151465U (zh) * | 2016-08-26 | 2017-05-10 | 深圳市前海安测信息技术有限公司 | 微信号精密测量电路 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108593180A (zh) * | 2018-04-26 | 2018-09-28 | 国网江西省电力有限公司南昌供电分公司 | 一种用于杆塔拉线张力测量仪的张力变送器 |
Also Published As
Publication number | Publication date |
---|---|
CN106344039A (zh) | 2017-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018036211A1 (zh) | 用于测量微信号的温度漂移补偿装置及方法 | |
WO2018036210A1 (zh) | 生物传感器的微信号精密测量装置及方法 | |
US9933387B1 (en) | Miniaturized sub-nanoampere sensitivity low-noise potentiostat system | |
WO2018036209A1 (zh) | 生物传感器的微信号多级放大装置及方法 | |
WO2018036212A1 (zh) | 微信号精密测量电路 | |
JP6619471B2 (ja) | 内部集積回路抵抗の較正 | |
NO324175B1 (no) | Biosensoranordning og fremgangsmate for pavisning av provetype og -volum | |
Palaparthy et al. | E-nose: Multichannel analog signal conditioning circuit with pattern recognition for explosive sensing | |
US9759714B2 (en) | Methods and apparatus for normalizing path length in non-invasive glucose monitoring | |
JP2014521930A5 (zh) | ||
CN103389333B (zh) | 一种基于复合纳米材料修饰电极的血糖快速检测装置 | |
US7171842B2 (en) | Breath alcohol measuring device | |
US20100312080A1 (en) | Regional oximetry analog front end | |
CN112432988B (zh) | 电化学测试系统的温度校正方法 | |
Thulasi et al. | Portable impedance measurement device for sweat based glucose detection | |
Hayatleh et al. | A high-performance skin impedance measurement circuit for biomedical applications | |
CN107607144B (zh) | 一种传感器基线漂移校正方法及检测设备 | |
TWI464397B (zh) | 生物感測器、感測單元與方法 | |
Tabrizi et al. | A low-cost handheld reconfigurable impedimetric readout system for diagnostics of viral infections | |
JP4942621B2 (ja) | インピーダンス測定装置、及び検出方法 | |
KR101597943B1 (ko) | 혈당량과 헤마토크릿의 동시측정을 위한 센서 측정장치 | |
US9936893B2 (en) | Device for detecting electric potentials | |
TWI781063B (zh) | 電化學感測模組及方法 | |
CN205049573U (zh) | 一种免疫试条读数仪的模拟前端检测电路 | |
CN114778626B (zh) | 一种葡萄糖传感器信号调理电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17842635 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25.07.2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17842635 Country of ref document: EP Kind code of ref document: A1 |