WO2018036032A1 - 一种基于游标原理的可调谐光滤波器 - Google Patents

一种基于游标原理的可调谐光滤波器 Download PDF

Info

Publication number
WO2018036032A1
WO2018036032A1 PCT/CN2016/110349 CN2016110349W WO2018036032A1 WO 2018036032 A1 WO2018036032 A1 WO 2018036032A1 CN 2016110349 W CN2016110349 W CN 2016110349W WO 2018036032 A1 WO2018036032 A1 WO 2018036032A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
cavity etalon
etalon
tec
optical filter
Prior art date
Application number
PCT/CN2016/110349
Other languages
English (en)
French (fr)
Inventor
吕亚平
薛振峰
付永安
孙莉萍
张军
高庭
罗超
武超群
Original Assignee
武汉电信器件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉电信器件有限公司 filed Critical 武汉电信器件有限公司
Publication of WO2018036032A1 publication Critical patent/WO2018036032A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring

Definitions

  • the invention belongs to the field of optical communications, and in particular relates to a tunable optical filter based on a cursor principle.
  • the access network mainly uses a tree-structured PON (Passive Optical Network) technology, and a time division multiplexing-based optical network (TDM-PON) is widely used.
  • PON technology is being developed for wavelength division multiplexing, such as WDM-PON (wavelength division multiplexing-passive optical network), TWDM-PON (time wavelength division multiplexing-passive optical netw ork).
  • WDM-PON wavelength division multiplexing-passive optical network
  • TWDM-PON time wavelength division multiplexing-passive optical netw ork
  • Wavelength tunable filters have been widely studied as common devices for optical communication.
  • tunable filters such as filter filtering, dielectric film filtering, and FP (Fabry-Perot) cavity etalon filtering.
  • the FP cavity etalon filtering method has the advantages of small volume, easy integration, simple processing, mature process, high processing precision, low cost, convenient mass production, simple wavelength tuning, convenient multi-channel expansion, good filtering quality, and the like. Received people's attention.
  • the Chinese patent "A FP cavity structure TWDM-PON tunable receiver” uses FP cavity etalon superposition filtering to stack two or more FP cavity etalons of the same specification and filter them to improve the filtering quality.
  • the patented product is capable of high quality filtering and convenient wavelength tuning, but its FSR is limited by the etalon processing capability and cannot meet the application requirements with high channel spacing requirements.
  • the present invention proposes a tunable optical filter based on the vernier principle, which filters out the optical signal of one wavelength and performs photoelectric conversion under the premise of ensuring signal quality. Or do not directly convert the photoelectric conversion, which can widen the FSR and tunable filter wavelength.
  • a tunable optical filter based on a cursor principle consisting of an optical path portion and a control portion
  • the optical path portion includes: an incident collimator for inputting an optical signal;
  • the FP cavity etalon can adjust the transmission spectrum bandwidth of the FP cavity etalon to meet the requirements of the adjustable receiver operating bandwidth;
  • the APD chip can receive the optical signal filtered by the FP cavity etalon and convert it into a current of a certain intensity to facilitate subsequent signal transmission and processing;
  • the control portion is a TEC capable of temperature control of the FP cavity etalon
  • the FP cavity etalon is mounted between the incident collimator and the APD chip, the FP cavity etalon is tightly bonded to an upper portion of the TEC, the incident collimator and the APD
  • the chips are concentrically axially aligned on both sides of the package housing, and the TEC is fixed to the bottom of the package housing.
  • the FP cavity etalon is at least two.
  • each of the FP cavity etalons differs only in thickness.
  • the number of the FP cavity etalon is consistent with the number of the TECs.
  • the invention also provides a method for using a tunable optical filter based on a cursor principle, the method comprising the following steps:
  • the multi-wavelength optical signal incident from the incident collimator is collimated light, and the collimated light is filtered by at least two FP cavity etalons;
  • the APD chip converts the received optical signal of the transmitted light into a current signal for subsequent processing.
  • the invention also provides a tunable optical filter based on a cursor principle, comprising an incident collimator, a first FP cavity etalon, a second FP cavity etalon, a first TEC, a second TEC, and a packaged APD chip, a package housing; wherein the incident collimator is aligned with the packaged APD chip and optical path coupling is achieved.
  • first FP cavity etalon and the second FP cavity etalon are solid etalon, located between the incident collimator and the packaged APD chip, and have FSR of 200 GHz and 300 GHz, respectively.
  • first FP cavity etalon is tightly bonded to the first TEC through the transition block; the second FP cavity etalon is bonded and fixed in the same manner as the second TEC.
  • first TEC and the second TEC are fixed to the package housing by a highly heat-insulating adhesive.
  • the FP cavity etalon, collimator, APD, TEC and other optical devices used in the patent of the present invention are small-sized devices, which are easy to realize integrated packaging and meet the volume of the ONU module of the optical access network. strict requirements.
  • the invention patent uses two or more FP cavity etalons to achieve adjustment of the transmission spectral bandwidth of a single FP cavity etalon. Compared to a single FP cavity etalon, multiple FP cavity etalons have a narrower bandwidth to meet the requirements for tunable receiver isolation.
  • each FP cavity etalon has different transmission spectra and different FSR, and can be separately controlled by each FP cavity etalon, and the wavelength is realized based on the vernier principle. Continuous adjustment, while the filter FSR is greatly broadened compared to the same thickness FP cavity etalon and single-chip FP cavity etalon filtering.
  • the invention patent adopts superposition filtering of FP cavity etalon with different thicknesses, adjusts the wavelength based on the vernier principle, can obtain a larger FSR without excessively thinning the FP cavity etalon, and the FP cavity etalon has a moderate thickness and is convenient. Processing and guarantee accuracy, which is conducive to mass production and cost reduction.
  • the thickness of the FP cavity etalon can be flexibly selected, and the filter channel spacing can be flexibly controlled.
  • the invention patent adopts TEC to adjust the temperature of the FP cavity etalon to adjust the filtering wavelength, and switches the filtering channel, the principle is simple, easy to implement, and the wavelength adjustment is fast.
  • FIG. 1 is a schematic structural view of a tunable optical filter based on a cursor principle according to the present invention
  • FIG. 2 is a schematic diagram of transmission spectrum shifting of an FP cavity etalon
  • Figure 3 is a schematic diagram of the principle of filtering the cursor
  • FIG. 4 is a schematic diagram of an optical path according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of application of a tunable optical filter based on a cursor principle in a TWDM-PON system according to the present invention
  • a tunable optical filter based on the vernier principle has the advantages of low cost, small size, continuous adjustment, large channel spacing, flexible adjustment and fast.
  • the tunable optical filter is composed of an optical path portion and a control portion; the optical path portion includes:
  • the incident collimator 10 is a common optical component for optical communication, and its working frequency band is determined according to specific requirements.
  • the working distance and spot size are determined according to specific optical path requirements, and the incident collimator is used for optical signal input;
  • the FP cavity etalon 11 can adjust the transmission spectral bandwidth of the FP cavity etalon 11 to meet the requirements of the tunable receiver operating bandwidth; the number of FP cavity etalon 11 is consistent with the number of TEC12;
  • each FP cavity etalon 11 has only different thicknesses, different FSRs, and other characteristics such as material, coating characteristics, transmission and reflection characteristics, etc. are completely identical. Since a single FP cavity etalon has a filtering function, the filter FSR is greatly broadened when multiple FP cavity etalons of different thicknesses are used.
  • the single FP cavity etalon 11 has limited filtering capability, and two or more FP cavity etalon 11 are used, so that the transmission line is "superimposed" to meet the requirements of high spectral characteristics, such as TWDM- PON requires 3dB bandwidth ⁇ 0.35nm, 25dB bandwidth ⁇ 1.2nm, FSR>800GHZ, single FP cavity etalon 11 can not meet its relevant spectral characteristics no matter how to change its related parameters, but multiple FP cavity etalon 11 superimposed, then fulfil requirements.
  • each FP cavity etalon 11 has a different transmission spectrum and FSR, and its transmission spectrum changes with temperature, "shifts" along the frequency axis while the FSR remains unchanged.
  • the series of frequencies (wavelengths) can be filtered out.
  • the transmission spectrum FSR of the entire filter is greatly broadened.
  • the APD chip 13 can flexibly select its packaging mode according to specific needs, and can receive the optical signal filtered by the FP cavity etalon and convert it into a current of a certain intensity to facilitate subsequent signal transmission and processing;
  • the control part is TEC12, which can temperature control the FP cavity etalon 11; the temperature of each FP cavity etalon 11 can be accurately and quickly controlled respectively, and the transmission spectrum of the FP cavity etalon 11 can be continuously continuous along the frequency axis according to the thermo-optic effect. Translation. Based on the principle of the cursor, the required wavelength signal can be filtered out, and the transmission spectrum FSR of the entire device is greatly broadened. Since the translation of the transmission spectrum of the FP cavity etalon 11 is continuous, the tunable filter wavelength is also continuous.
  • the FP cavity etalon 11 is mounted between the incident collimator 10 and the APD chip 13, the FP cavity etalon 11 is tightly bonded to the upper portion of the TEC 12, and the incident collimator 10 and the APD chip 13 are concentrically arranged in the package.
  • the TEC 12 is fixed to the bottom of the package housing 14.
  • the incident collimator 10 the first FP cavity etalon 11-1, and the second FP cavity etalon 11-2 are used.
  • the incident collimator 10 is aligned with the packaged APD chip 13 and optical path coupling is achieved.
  • the first FP cavity etalon 11-1 and the second FP cavity etalon 11-2 are solid etalon, located between the incident collimator 10 and the packaged APD chip 13, the thickness of which is different, and the FSR is respectively 200GHz and 300GHz.
  • first FP cavity etalon 11-1 is tightly bonded to the first TEC 12-1 through the transition block to ensure better thermal conductivity.
  • second FP cavity etalon 11-2 and the second TEC 12-2 are Bonded and fixed in the same way.
  • the first TEC 12-1 and the second TEC 12-2 are fixed to the package casing 14 by a highly heat-insulating glue.
  • the first TEC 12-1 and the second TEC 12-2 can respectively control the temperatures of the first FP cavity etalon 11-1 and the second FP cavity etalon 11-2, due to the thermo-optic effect of the solid-state FP cavity etalon, As the temperature changes, the FP cavity etalon transmission spectrum shifts along the frequency direction, ie the peak frequency (wavelength) of the transmitted light will translate along the frequency axis like a cursor, as shown in Figure 2.
  • the translation of the transmission spectrum is like a cursor.
  • the entire transmission spectrum is the cursor, sliding back and forth, and the peak wavelength is its scale line.
  • the channel frequency interval FSR is the scale gap.
  • the FSR of the transmission spectrum is 600 GHz, and the FSR is greatly broadened compared to the single FP cavity etalon filter.
  • the FSRs of the two FP cavity etalons can be designed according to requirements. If they are respectively M and N, the transmission spectrum FSR is broadened to the least common multiple of M and N after superposition filtering based on the cursor principle.
  • the optical path diagram is as shown in FIG. 4, and the multi-wavelength optical signal incident from the incident collimator 10 is collimated light, and the collimated light is filtered by the first FP cavity etalon 11-1, and then passed through the second.
  • the FP cavity etalon 11-2 is filtered, and the filter frequency (wavelength) is selected based on the vernier principle by controlling the temperature of both.
  • the filtered optical signal output from the second FP cavity etalon 11-2 is received by the APD chip 13 after the single wavelength signal is packaged, and converted into a current signal for subsequent processing.
  • the downlink service signal input from the OLT is composed of 8 wavelengths.
  • the composition of the service signal has a wavelength of 1596.34 nm, 1597.19 nm, and 1598.04 nm, respectively. 1598.89 nm, 1591.75 nm, 1600.60 nm, 1601.46 nm, 1602.31 nm.
  • the OLT downlink service signal is divided into 64 signals of equal light intensity by the ODN, and then respectively incident on 64 adjustable ONU modules, as shown in FIG. 5.
  • the tunable filter element described in Embodiment 1 will be integrated into the tunable received ONU module.
  • the temperature of the FP cavity etalon 11 is switched by the TEC 12, and the filter wavelength of the filter is switched to individually select any of the eight wavelengths for communication.
  • Embodiments of the present invention provide a method for using a tunable optical filter based on a cursor principle, and the method includes the following steps:
  • the multi-wavelength optical signal incident from the incident collimator is collimated light, and the collimated light is filtered by at least two FP cavity etalons;
  • the APD chip converts the received optical signal of the transmitted light into a current signal for subsequent processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computing Systems (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Filters (AREA)

Abstract

一种基于游标原理的可调谐光滤波器,该可调谐光滤波器由光路部分和控制部分组成,所述光路部分包括:入射准直器(10),用于光信号输入;FP腔标准具(11),能够实现对FP腔标准具(11)透射光谱带宽的调整,以满足可调接收机工作带宽的要求;APD芯片(13),能够将经FP腔标准具(11)滤波后的光信号接收,并将其转换成一定强度的电流,便于后续的信号传输及处理;所述控制部分为TEC(12),能够对FP腔标准具(11)进行温控;所采用的FP腔标准具(11),入射准直器(10),APD芯片(13)、TEC(12)等光器件均为小体积器件,易于实现集成封装,满足光接入网对ONU模块体积的严格要求。

Description

一种基于游标原理的可调谐光滤波器 技术领域
本发明属于光通信领域,尤其涉及一种基于游标原理的可调谐光滤波器。
背景技术
随着信息传输带宽的需求一直在以爆炸的速度增长。为满足网络流量的飞速发展,在骨干层网络,40Gbps、100Gbps光网络已经开始商用部署,400Gbps或1Tbps光通信系统也开始研究。在接入网络层面,也必然对网络流量和多业务支持提出了更高要求。目前接入网主要以树形结构的PON(无源光纤网络)技术为主,基于时分复用的无源光网络TDM-PON(time division multiplexing-pass ive optical network)应用较广泛。目前,PON技术正在向波分复用发展,如WDM-PON(wavelength division multiplexing-passive optical network),TWDM-PON(time wavelength division multiplexing-passive optical netw ork)等。对于采用波分复用技术的PON网络,即ONU(optical network unit)模块必需具有波长可调的接收功能,换言之就是需要在ONU模块内部集成一个低成本的可调滤波器。
波长可调谐的滤波器作为光通信常用器件,已被广泛研究。目前市场上有很多种可调谐滤波器,如采用滤光片滤波、介质膜滤波、FP(Fabry-Perot)腔标准具滤波等。其中采用FP腔标准具滤波的方法,具有体积小、便于集成,加工制作简单、工艺成熟、加工精度高、成本低、便于批量生产,波长调谐简单、便于多通道扩展,滤波质量好等优点,受到人们的关注。FP腔标准具滤波时,其通道频率间隔FSR=c/2nL,其中c为真空中光速,n为FP腔材料折射率,L为FP腔腔长,即FP腔标准具厚度。由公式可得,要想获得较大的FSR(通道频率间隔),FP腔标准具厚度要尽可能薄。但受限于标准具加工能力限制,其厚度无法做到很薄。而且标准具厚度过小,影响使用,不便于粘接等操作,影响产品工艺性,应用困难。
如中国专利“一种FP腔结构TWDM-PON可调接收机”,采用FP腔标准具叠加滤波,将两个或以上同样规格的FP腔标准具层叠起来滤波,能够提升滤波质量。该专利产品能够高质量滤波,波长调谐便捷,但其FSR受标准具加工工艺能力限制,无法满足通道间隔要求高的应用场所。
发明内容
有鉴于此,为了克服现有技术的不足,本发明提出一种基于游标原理的可调谐光滤波器,在保证信号质量前提下,将其中一个波长的光信号滤出,并将其进行光电转换或不做光电转换直接输出,既能展宽FSR,又能可调谐滤波波长。
本发明的技术方案是:
一种基于游标原理的可调谐光滤波器,该可调谐光滤波器由光路部分和控制部分组成,
所述光路部分包括:入射准直器,用于光信号输入;
FP腔标准具,能够实现对FP腔标准具透射光谱带宽的调整,以满足可调接收机工作带宽的要求;
APD芯片,能够将经FP腔标准具滤波后的光信号接收,并将其转换成一定强度的电流,便于后续的信号传输及处理;
所述控制部分为TEC,能够对FP腔标准具进行温控;
其中,所述FP腔标准具安装在所述入射准直器和所述APD芯片之间,所述FP腔标准具紧密粘接在所述TEC的上部,所述入射准直器和所述APD芯片同心轴向排列固定于封装壳体的两侧,所述TEC固定于所述封装壳体的底部。
进一步,所述FP腔标准具至少为两个。
进一步,每个所述FP腔标准具仅厚度不同。
进一步,所述FP腔标准具的个数与所述TEC的个数相一致。
本发明还提供一种基于游标原理的可调谐光滤波器的使用方法,该方法包括如下步骤:
1)从入射准直器入射的多波长光信号为准直光,该准直光经过至少两个FP腔标准具滤波;
2)TEC对每个FP腔标准具进行温控,每个FP腔标准具的透射光谱因热光效应,而沿频率轴连续地平移,每个FP腔标准具的透射光相对滑动,当有至少两个FP腔标准具的透射光出现峰值频率重合时,即此峰值频率的FP腔标准具的透射光能够被滤出;
3)被FP腔标准具所滤出的透射光被APD芯片所接收;
4)APD芯片将所接收的透射光的光信号转换为电流信号,用于后续处理。
本发明还提供一种基于游标原理的可调谐光滤波器,包括入射准直器、第一FP腔标准具、第二FP腔标准具,第一TEC,第二TEC,封装后的APD芯片,封装壳体;其中,入射准直器,与封装后的APD芯片对准,并实现光路耦合。
进一步,第一FP腔标准具与第二FP腔标准具为固体系标准具,位于入射准直器与封装后的APD芯片之间,其FSR分别为200GHz和300GHz。
进一步,第一FP腔标准具的一边通过过渡块与第一TEC紧密粘接;第二FP腔标准具与第二TEC以相同的方式粘接固定。
进一步,第一TEC和第二TEC由绝热性较高的胶粘接固定于封装壳体上。
本发明的有益效果:1)本发明专利所采用的FP腔标准具,准直器,APD、TEC等光器件均为小体积器件,易于实现集成封装,满足光接入网对ONU模块体积的严格要求。
2)本发明专利所采用两个或多个FP腔标准具,能实现对单一FP腔标准具透射光谱带宽的调整。相对于单一FP腔标准具,多个FP腔标准具下带宽更窄,可以满足对可调接收器件隔离度的要求。
3)本发明专利采用厚度不一样的FP腔标准具作为滤波器件,即每个FP腔标准具的透射光谱不同、FSR不同,可通过对每个FP腔标准具分别控制,基于游标原理实现波长的连续调节,同时相比较于采用同样厚度FP腔标准具和采用单片FP腔标准具滤波,滤波器FSR大大展宽。
4)本发明专利通过采用不同厚度FP腔标准具叠加滤波,基于游标原理调节波长,能够在不过度减薄FP腔标准具的情况下,获得较大的FSR,FP腔标准具厚度适度,便于加工和保证精度,利于大规模生产和降低成本。
5)FP腔标准具厚度可灵活选择,滤波通道间隔可灵活控制。
6)本发明专利采用TEC调节FP腔标准具的温度来调节滤波波长,切换滤波通道,原理简单,便于实现,波长调节快。
附图说明
图1为本发明一种基于游标原理的可调谐光滤波器的结构示意图;
图2为FP腔标准具透射光谱平移示意图;
图3为游标原理滤波示意图;
图4为本发明实施例2的光路示意图;
图5为本发明一种基于游标原理的可调谐光滤波器在TWDM-PON系统中应用示意图;
其中,10、入射准直器;11、FP腔标准具;11-1、第一FP腔标准具;11-2、第二腔标准具;12-1、第一TEC;12-2、第二TEC;13、APD芯片;14、封装壳体。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种基于游标原理的可调谐光滤波器,具有成本低、体积小、可连续调节、通道间隔大、调节灵活快速等技术优点。该可调谐光滤波器由光路部分和控制部分组成;光路部分包括:
入射准直器10,为光通信常用光学元件,其工作波段视具体需求而定,其工作距离及光斑大小视具体光路要求而定,入射准直器用于光信号输入;
FP腔标准具11,能够实现对FP腔标准具11透射光谱带宽的调整,以满足可调接收机工作带宽的要求;FP腔标准具11的个数与TEC12的个数相一致;
FP腔标准具11至少为两个,每个FP腔标准具11仅厚度不同,FSR不同,而其他特性如材料、镀膜特性、透射反射特性等完全一致。由于单个FP腔标准具具有滤波的功能,当使用多个厚度不一样的FP腔标准具时,滤波器FSR大大展宽。并且在具体使用中单个FP腔标准具11滤波能力有限,采用两个或多个FP腔标准具11,使其透射谱线进行“叠加”则可以满足对光谱特性较高的要求,如TWDM-PON要求3dB带宽≥0.35nm,25dB带宽≤1.2nm,FSR>800GHZ,单个FP腔标准具11无论怎样改变其相关参量都无法满足其相关光谱特性,但多个FP腔标准具11叠加,则可以满足要求。
两个或多个FP腔标准具11仅厚度不同的标准具,每个FP腔标准具11有不同的透射光谱和FSR,其透射光谱随温度变化,沿频率轴“平移”而FSR保持不变。基于游标原理,当两个或多个FP腔标准具透射光谱中的某一系列峰值频率(波长)相重合时,即可滤出该系列频率(波长)的波。整个滤波器的透射光谱FSR大大展宽。
APD芯片13,可视具体需要灵活选择其封装方式,能够将经FP腔标准具滤波后的光信号接收,并将其转换成一定强度的电流,便于后续的信号传输及处理;
控制部分为TEC12,能够对FP腔标准具11进行温控;可以分别准确快速控制每个FP腔标准具11的温度,根据热光效应,可以使FP腔标准具11的透射谱沿频率轴连续地平移。基于游标原理,可滤出要求的波长信号,整个器件的透射谱FSR大大展宽。因FP腔标准具11透射谱的平移是连续的,故可调谐滤波波长也是连续的。
其中,FP腔标准具11安装在入射准直器10和APD芯片13之间,FP腔标准具11紧密粘接在TEC12的上部,入射准直器10和APD芯片13同心轴向排列固定于封装壳体的两侧,TEC12固定于封装壳体14的底部。
实施例2
以2个FP腔标准具的可调谐光滤波器为例,如图1所示,包括入射准直器10、第一FP腔标准具11-1、第二FP腔标准具11-2,第一TEC 12-1,第二TEC 12-2,封装后的APD芯片13,封装壳体14。其中入射准直器10,与封装后的APD芯片13对准,并实现光路耦合。第一FP腔标准具11-1与第二FP腔标准具11-2为固体系标准具,位于入射准直器10与封装后的APD芯片13之间,其厚度不同,设其FSR分别为200GHz和300GHz。第一FP腔标准具11-1的一边通过过渡块与第一TEC12-1紧密粘接,保证较好的导热性,同样地,第二FP腔标准具11-2与第二TEC12-2以相同的方式粘接固定。第一TEC 12-1和第二TEC 12-2由绝热性较高的胶粘接固定于封装壳体14上。第一TEC 12-1和第二TEC 12-2可以分别控制第一FP腔标准具11-1和第二FP腔标准具11-2的温度,由于固体系FP腔标准具的热光效应,随着温度的变化,FP腔标准具透射光谱会沿着频率方向平移,即透射光峰值频率(波长)会如同游标一样沿着频率轴平移,如图2所示。透射谱的平移如同游标一样,整个透射光谱即是游标,前后滑动,而峰值波长为其刻度线,通道频率间隔FSR为刻度间隙。两个游标(透射光谱)相对滑动时,当两个游标有刻度线(峰值频率)重合时,此刻度线(峰值频率)即可透过,即此频率光波被滤出。如图3所示。第一FP腔标准具11-1和第二FP腔标准具11-2的FSR分别为200GHz和300GHz,即游标刻度间隙分别为Δν1=200G,Δν2=300G。当通过温度控制使游标刻度线对准时,相对应的峰值频率(波长)光波即可滤出,如图3所示。可以看出,2个FP腔标准具叠加滤波后,透射光谱的FSR为600GHz,相比较单个FP腔标准具滤波,FSR大大展宽。本实施例中,两个FP腔标准具的FSR可以根据需求设计,假设其分别为M和N,则基于游标原理叠加滤波后,透射谱FSR展宽为M和N的最小公倍数。
本实施例中,光路示意图如图4所示,自入射准直器10入射的多波长光信号为准直光,该准直光经过第一FP腔标准具11-1滤波,而后经过第二FP腔标准具11-2滤波,通过控制两者温度,基于游标原理选择滤波频率(波长)。自第二FP腔标准具11-2输出的滤波后的光信号为该单波长信号被封装后的APD芯片13所接收,并转换为电流信号,用于后续处理。
以在TWDM-PON中的应用为例,本发明实施例1实现功能的具体过程如图5:在TWDM-PON的应用中,自OLT(Optical Line Terminal)输入的下行业务信号由8个波长的业务信号组成,其波长分别为1596.34nm,1597.19nm,1598.04nm, 1598.89nm,1599.75nm,1600.60nm,1601.46nm,1602.31nm。该OLT下行业务信号经ODN分为64个光强相等的信号,然后分别入射至64个可调接收的ONU模块,如图5所示。可调接收的ONU模块内将集成实施例1所描述的可调滤波器件。通过TEC12切换FP腔标准具11的温度,切换该滤波器的滤波波长单独选择8个波长中任意波长信号用于通信。
实施例3
本发明实施例提供了一种基于游标原理的可调谐光滤波器的使用方法,该方法包括如下步骤:
1)从入射准直器入射的多波长光信号为准直光,该准直光经过至少两个FP腔标准具滤波;
2)TEC对每个FP腔标准具进行温控,每个FP腔标准具的透射光谱因热光效应,而沿频率轴连续地平移,每个FP腔标准具的透射光相对滑动,当有至少两个FP腔标准具的透射光出现峰值频率重合时,即此峰值频率的FP腔标准具的透射光能够被滤出;
3)被FP腔标准具所滤出的透射光被APD芯片所接收;
4)APD芯片将所接收的透射光的光信号转换为电流信号,用于后续处理。
以上所举实施例为本发明的较佳实施方式,仅用来方便说明本发明,并非对本发明作任何形式上的限制,任何所属技术领域中具有通常知识者,若在不脱离本发明所提技术特征的范围内,利用本发明所揭示技术内容所作出局部更动或修饰的等效实施例,并且未脱离本发明的技术特征内容,均仍属于本发明技术特征的范围内。

Claims (9)

  1. 一种基于游标原理的可调谐光滤波器,其特征在于:该可调谐光滤波器由光路部分和控制部分组成,
    所述光路部分包括:入射准直器,用于光信号输入;
    FP腔标准具,能够实现对FP腔标准具透射光谱带宽的调整,以满足可调接收机工作带宽的要求;
    APD芯片,能够将经FP腔标准具滤波后的光信号接收,并将其转换成一定强度的电流,便于后续的信号传输及处理;
    所述控制部分为TEC,能够对FP腔标准具进行温控;
    其中,所述FP腔标准具安装在所述入射准直器和所述APD芯片之间,所述FP腔标准具紧密粘接在所述TEC的上部,所述入射准直器和所述APD芯片同心轴向排列固定于封装壳体的两侧,所述TEC固定于所述封装壳体的底部。
  2. 根据权利要求1所述的一种基于游标原理的可调谐光滤波器,其特征在于:所述FP腔标准具至少为两个。
  3. 根据权利要求2所述的一种基于游标原理的可调谐光滤波器,其特征在于:每个所述FP腔标准具仅厚度不同。
  4. 根据权利要去1所述的一种基于游标原理的可调谐光滤波器,其特征在于:所述FP腔标准具的个数与所述TEC的个数相一致。
  5. 一种基于游标原理的可调谐光滤波器的使用方法,其特征在于,该方法包括如下步骤:
    1)从入射准直器入射的多波长光信号为准直光,该准直光经过至少两个FP腔标准具滤波;
    2)TEC对每个FP腔标准具进行温控,每个FP腔标准具的透射光谱因热光效应,而沿频率轴连续地平移,每个FP腔标准具的透射光相对滑动,当有至少两个FP腔标准具的透射光出现峰值频率重合时,即此峰值频率的FP腔标准具的透射光能够被滤出;
    3)被FP腔标准具所滤出的透射光被APD芯片所接收;
    4)APD芯片将所接收的透射光的光信号转换为电流信号,用于后续处理。
  6. 一种基于游标原理的可调谐光滤波器,其特征在于:包括入射准直器、第一FP腔标准具、第二FP腔标准具,第一TEC,第二TEC,封装后的APD芯片,封装壳体;其中,入射准直器,与封装后的APD芯片对准,并实现光路耦合。
  7. 根据权利要求6所述的基于游标原理的可调谐光滤波器,其特征在于,第一FP腔标准具与第二FP腔标准具为固体系标准具,位于入射准直器与封装后的APD芯片之间,其FSR分别为200GHz和300GHz。
  8. 根据权利要求6或7所述的基于游标原理的可调谐光滤波器,其特征在于,第一FP腔标准具的一边通过过渡块与第一TEC紧密粘接;第二FP腔标准具与第二TEC以相同的方式粘接固定。
  9. 根据权利要求6-8任一所述的基于游标原理的可调谐光滤波器,其特征在于,第一TEC和第二TEC由绝热性较高的胶粘接固定于封装壳体上。
PCT/CN2016/110349 2016-08-22 2016-12-16 一种基于游标原理的可调谐光滤波器 WO2018036032A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610701192.8A CN106324825A (zh) 2016-08-22 2016-08-22 一种基于游标原理的可调谐光滤波器
CN201610701192.8 2016-08-22

Publications (1)

Publication Number Publication Date
WO2018036032A1 true WO2018036032A1 (zh) 2018-03-01

Family

ID=57742907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110349 WO2018036032A1 (zh) 2016-08-22 2016-12-16 一种基于游标原理的可调谐光滤波器

Country Status (2)

Country Link
CN (1) CN106324825A (zh)
WO (1) WO2018036032A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600760B1 (en) * 1999-07-27 2003-07-29 Intel Corporation Method and apparatus for tuning a laser
CN102411245A (zh) * 2010-09-23 2012-04-11 奥兰若(北美)有限公司 利用级联标准具的可调谐滤光器
CN203745680U (zh) * 2014-03-31 2014-07-30 武汉光迅科技股份有限公司 一种应用于twdm-pon可调接收的光滤波器
CN104618029A (zh) * 2014-12-18 2015-05-13 武汉光迅科技股份有限公司 一种应用于twdm-pon系统的可调光接收机及其可调滤波器
CN105301712A (zh) * 2015-11-26 2016-02-03 武汉光迅科技股份有限公司 一种具备功率控制功能的bosa器件
CN105739029A (zh) * 2014-12-12 2016-07-06 福州高意通讯有限公司 一种to封装的可调谐光滤波器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639576A (zh) * 2008-07-31 2010-02-03 中国科学院半导体研究所 硅基级联谐振腔结构的低功耗电光调制器
CN103542925B (zh) * 2013-09-23 2015-05-20 华中科技大学 一种准分布式光纤振动传感装置
CN103869419B (zh) * 2014-03-31 2016-08-31 武汉光迅科技股份有限公司 一种应用于twdm-pon可调接收的光滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600760B1 (en) * 1999-07-27 2003-07-29 Intel Corporation Method and apparatus for tuning a laser
CN102411245A (zh) * 2010-09-23 2012-04-11 奥兰若(北美)有限公司 利用级联标准具的可调谐滤光器
CN203745680U (zh) * 2014-03-31 2014-07-30 武汉光迅科技股份有限公司 一种应用于twdm-pon可调接收的光滤波器
CN105739029A (zh) * 2014-12-12 2016-07-06 福州高意通讯有限公司 一种to封装的可调谐光滤波器
CN104618029A (zh) * 2014-12-18 2015-05-13 武汉光迅科技股份有限公司 一种应用于twdm-pon系统的可调光接收机及其可调滤波器
CN105301712A (zh) * 2015-11-26 2016-02-03 武汉光迅科技股份有限公司 一种具备功率控制功能的bosa器件

Also Published As

Publication number Publication date
CN106324825A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
US8494366B2 (en) Wavelength division multiplexing-passive optical network using external seed light source
CN106405755B (zh) 一种高速多通道的收发器件
CN109100838B (zh) 一种可控温的集成单纤双向器件
US10418386B2 (en) Optical receiver using wavelength tunable filter
US20100226649A1 (en) Multi-Fiber Ten Gigabit Passive Optical network Optical Line Terminal for Optical Distribution Network Coexistence with Gigabit Passive Optical Network
US9991969B2 (en) Tunable receiver including microelectromechanical (MEMS) mirrors, a transceiver or module comprising the same, and methods of making and using the same
JP2022508145A (ja) マルチチャネル双方向光通信モジュール
CN104618029B (zh) 一种应用于twdm‑pon系统的可调光接收机及其可调滤波器
CN109061814B (zh) 一种基于环形器的单纤双向收发器
US20100129077A1 (en) Techniques for implementing a dual array waveguide filter for a wavelength division multiplexed passive optical network
CN102545007B (zh) 可调谐激光器及其波长锁定和监控方法
CN105607191A (zh) 时分波分复用无源光网络终端收发集成芯片的制作方法
US20090148160A1 (en) Optical diplexer module using mixed-signal multiplexer
EP2424140A1 (en) A wavelength division multiplexer compatible with two types of passive optical networks
Murano et al. Low cost tunable receivers for wavelength agile PONs
CN112038879B (zh) 一种交叉锁定的波长可调高速激光器及方法
US8559817B2 (en) Communication system comprising a tunable laser
WO2018036032A1 (zh) 一种基于游标原理的可调谐光滤波器
WO2022262799A1 (zh) 光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质
CN109188614A (zh) 双载波集成光器件及光电模块
CN112383358B (zh) 一种集成光收发器
CN207396790U (zh) 一种波形可调的宽带梳状滤波器
WO2016160898A1 (en) Improved coupling of photodetector array to optical demultiplexer outputs with index matched material
CN115327711B (zh) 一种基于cob封装的ont光模块
CN110266395A (zh) 利用波长可调滤波器的光接收器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914052

Country of ref document: EP

Kind code of ref document: A1