WO2018035942A1 - 一种柔性穿刺针针尖自动跟踪装置及方法 - Google Patents

一种柔性穿刺针针尖自动跟踪装置及方法 Download PDF

Info

Publication number
WO2018035942A1
WO2018035942A1 PCT/CN2016/101848 CN2016101848W WO2018035942A1 WO 2018035942 A1 WO2018035942 A1 WO 2018035942A1 CN 2016101848 W CN2016101848 W CN 2016101848W WO 2018035942 A1 WO2018035942 A1 WO 2018035942A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle tip
image
coordinate system
needle
tip
Prior art date
Application number
PCT/CN2016/101848
Other languages
English (en)
French (fr)
Inventor
熊璟
甘志坚
夏泽洋
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2018035942A1 publication Critical patent/WO2018035942A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis

Definitions

  • the invention relates to the field of medical auxiliary equipment, in particular to an automatic tracking device and method for a flexible needle tip.
  • the application potential of the flexible needle puncture is getting more and more, the doctor has very high requirements on the positioning accuracy of the needle tip in the flexible needle puncture operation, and the position of the needle tip needs to be tracked in real time.
  • Fast tracking of the tip position requires the positioning and tracking device to be able to quickly and accurately locate itself, and has a good tracking and adapting to the complex shape of the puncture object, which requires higher requirements for the flexibility and position tracking accuracy of the automatic tracking device.
  • the flexible needle puncture tracking device used in clinical minimally invasive surgery is mainly obtained by combining computer tomography and MRI scanning means and positioning equipment.
  • Positioning at a conventional needle tip position is to identify the position of the needle tip by mounting a sensor at the tip of the needle, and the matrix is converted into a medical image coordinate system, and the doctor further controls the trajectory of the needle by understanding the relationship between the position of the needle tip and the relative position between the tumor target regions.
  • the patent document of Chinese Patent No.: 201510173724.0 discloses an interventional needle positioning method for positioning an interventional treatment needle relative to a device coordinate system during an interventional procedure, in which the sensor is fixed on the needle bar. The position of the needle tip is determined by tracking the position of the sensor.
  • an object of the present invention is to provide an automatic tracking device and method for a flexible puncture needle tip.
  • the invention relates to a flexible puncture needle tip automatic tracking device and method, comprising: a positioning robot arm, an ultrasonic probe, an optical tracking device and a data processing device;
  • the ultrasonic probe is mounted on the front end of the positioning robot for collecting ultrasonic image data in the object to be pierced;
  • the positioning robot arm is used to control the movement of the ultrasonic probe
  • the optical tracking device includes: an optical measuring instrument, and a first positioning mark and a second positioning mark cooperated with the optical measuring instrument;
  • the first positioning mark is fixedly mounted on the object to be pierced
  • the second positioning mark is fixedly mounted on the ultrasonic probe
  • the optical measuring instrument measures the positions of the first positioning mark and the second positioning mark to obtain optical measurement data
  • the data processing device is respectively connected to the ultrasonic probe and the optical measuring instrument, and receives ultrasonic image data and optical measurement data, and establishes a base coordinate system based on the first positioning mark according to the optical measurement data, and obtains a The position coordinate of the two positioning marks in the base coordinate system; and the ultrasonic image coordinate system is established according to the reference of the ultrasonic image data, and the position coordinates of the needle tip image in the ultrasonic image data are acquired; the base coordinate system and the ultrasonic image coordinate system are superimposed and converted, The coordinates of the tip position of the needle tip in the base coordinate system are obtained; the coordinates of all the needle tip positions are recorded to obtain the needle tip motion trajectory data at the current time.
  • the positioning robot is a robot arm having six degrees of freedom.
  • optical measuring instrument is an optical binocular measuring instrument.
  • first and second positioning marks are provided with four spheres, and the four body spheres are all on the same plane.
  • the data processing device is provided with a display screen for displaying the ultrasound image data and the optical measurement data.
  • the invention relates to a flexible puncture needle tip automatic tracking device, which is characterized in that it comprises:
  • a first positioning mark and a second positioning mark are fixedly mounted on the object to be pierced and the ultrasonic probe respectively;
  • the ultrasound probe acquires an ultrasound image in the object to be punctured, and establishes an ultrasound image coordinate system according to the ultrasound image;
  • the ultrasonic probe searches for the tip of the needle in the object to be punctured to obtain an image of the needle tip;
  • the needle tip position coordinates of the current time are recorded, and the needle tip motion track data of the current time is obtained and recorded in combination with the needle tip position coordinates of the previous time that has been recorded.
  • the ultrasonic probe searches for a needle tip in the object to be punctured, and acquiring the image of the needle tip includes:
  • the ultrasonic probe moves along the tip estimation motion trajectory at a second speed, and simultaneously acquires an ultrasound image in the punctured object, and determines whether there is a puncturing needle image in the ultrasound image;
  • the ultrasonic probe continues to move along the tip estimation motion trajectory until there is no puncture needle image in the acquired ultrasound image;
  • the ultrasonic probe moves along the opposite direction of the estimated motion trajectory of the needle tip until the puncture needle image appears again in the acquired ultrasonic image;
  • the ultrasonic probe continues to move along the tip estimation motion trajectory including:
  • the ultrasonic probe continues to move along the needle tip estimation motion trajectory at a second speed that is greater than the first speed; the first speed is a movement speed at which the needle tip is punctured into the needle in the object to be punctured.
  • the moving of the ultrasonic probe along the opposite direction of the estimated motion trajectory of the needle tip comprises:
  • the ultrasonic probe moves at a third speed in a direction opposite to the estimated motion trajectory of the needle tip, the third speed being less than the first speed.
  • the invention utilizes the method of combining ultrasonic imaging and optical positioning to perform positioning and tracking, which has the advantages of no radiation damage and high positioning accuracy; and the positioning and tracking device of the invention does not need to use a sensor to fix the needle bar, thereby eliminating the need for the needle Bending, resulting in insufficient needle stiffness, prone to needle breakage, or easy to fall off the sensor, using ultrasonic imaging technology, no radiation damage, high positioning accuracy, automatic real-time monitoring and tracking of the needle tip position, bringing convenience to clinical surgery .
  • FIG. 1 is a schematic view showing the overall structure of an automatic tracking device of the present invention
  • FIG. 2 is a schematic view showing the overall structure of an optical measuring instrument in the automatic tracking device of the present invention
  • FIG. 3 is a schematic view showing an assembly relationship between an ultrasonic probe and a positioning mark in the automatic tracking device of the present invention
  • FIG. 4 is a schematic diagram of a workflow of an embodiment of an automatic tracking method according to the present invention.
  • FIG. 5 is a schematic diagram showing the workflow of a needle tip image acquired in the automatic tracking method of the present invention.
  • FIG. 6 is a schematic diagram of a workflow of another embodiment of the automatic tracking method of the present invention.
  • the present invention is an automatic tracking device for a flexible needle tip, comprising: a positioning robot 1, an ultrasonic probe 2, an optical tracking device 3, and a data processing device (not shown);
  • the ultrasonic probe 2 is mounted on the front end of the positioning robot 1 for collecting ultrasonic image data in the object to be pierced 4;
  • the positioning robot arm 1 is used to control the movement of the ultrasonic probe 2;
  • the optical tracking device 3 includes: an optical measuring instrument 31, and a positioning mark 32 cooperated with the optical measuring instrument 31, the positioning mark 32 comprising: a first positioning mark and a second positioning mark;
  • the first positioning mark is fixedly mounted on the object to be pierced; the first positioning mark is fixed and used to identify the orientation of the object to be pierced 4, and thereby establish a base coordinate system;
  • the second positioning mark is fixedly mounted on the ultrasonic probe 2, and the second positioning mark is fixed on the ultrasonic probe 2 and moves as the probe moves to identify the orientation of the ultrasonic probe 2;
  • the optical measuring instrument 31 measures the positions of the first positioning mark and the second positioning mark to obtain optical measurement data
  • the data processing device (not shown) is respectively connected to the ultrasonic probe 2 and the optical measuring instrument 31, receives ultrasonic image data and optical measurement data, and uses the first positioning mark as a reference according to the optical measurement data.
  • the base coordinate system is established, and the position coordinates of the second positioning mark in the base coordinate system are obtained; and the ultrasonic image coordinate system is established according to the ultrasonic image data reference, and the position coordinates of the needle tip image in the ultrasonic image data are acquired; the base coordinate system and the ultrasound are obtained.
  • the image coordinate system is superimposed and converted, and the coordinates of the needle tip position in the base coordinate system are obtained; the coordinates of all the needle tip positions are recorded, and the needle tip motion track data at the current time is obtained.
  • the optical binocular instrument 31 acquires the transformation matrix relationship between the first positioning mark coordinate system and the second positioning mark coordinate system by acquiring the orientation information of the first positioning mark and the second positioning mark, that is, the ultrasonic probe coordinate system and the base coordinate
  • the relationship between the transformation matrix between the lines; the ultrasound probe 2 and the ultrasound image are fixed together, and the relative positions between them are unchanged.
  • the coordinates between the ultrasound probe 2 and the ultrasound image are determined by the relationship between the ultrasound probe coordinate system and the base coordinate system. The relationship is determined, as well as the position of the needle within the ultrasound image, thereby determining the coordinate orientation of the needle tip on the base coordinate system.
  • the ultrasonic probe 2 is positioned at the needle tip according to the needle control input, and the ultrasonic probe 2 moves along the puncture direction to find the tracking tip along the puncture direction, and the position of the needle tip is determined by the ultrasonic image, and the tracking tip is automatically monitored in real time. position.
  • the positioning robot arm 1 is a robot arm having six degrees of freedom.
  • the optical measuring instrument 31 is an optical binocular measuring instrument, and the optical binocular measuring instrument 31 is mounted on the positioning bracket 33, and the positioning bracket 33 can realize the lifting and rotating adjustment optical binocular instrument to obtain a suitable position and fix it.
  • the first and second positioning marks are provided with four spheres, and the four body spheres are all on the same plane. Since the positioning mark 32 has four balls on one surface, the optical measuring instrument 31 can collect the coordinates of the four balls, and by using the coordinates of a certain ball as the origin, the four spherical coordinate values can establish a coordinate system. The four spheres form the plane normal to the Z axis.
  • a display screen is provided in the data processing device (not shown) for displaying the ultrasound image data and the optical measurement data.
  • the invention grasps the ultrasonic probe 2 by the positioning robot arm 1 and sticks to the surface of the object to be pierced, and tracks the position of the needle tip in real time; the ultrasonic probe 2 collects the ultrasonic image; the optical tracking device tracks the position of the ultrasonic probe 2 and the position of the piercing object and establishes both
  • the coordinate transformation relationship with the base coordinate system is combined with the ultrasound image phase to obtain the position of the needle tip in the base coordinate system in real time.
  • the probe-to-needle tracking method is an estimated position of the needle tip obtained by the ultrasonic probe 2 according to the needle input control input, and the probe is attached to the surface of the piercing object to go back and forth along the needle insertion direction to find the needle tip, and the needle tip is determined by whether the ultrasonic image has a needle tip. Position to achieve tracking of the tip.
  • the present invention is an automatic tracking method for a flexible needle tip, comprising:
  • a first positioning mark and a second positioning mark are fixedly mounted on the object to be pierced and the ultrasonic probe respectively;
  • the ultrasound probe acquires an ultrasound image in the object to be punctured, and establishes an ultrasound image coordinate system according to the ultrasound image;
  • the ultrasonic probe searches for a needle tip in the object to be punctured, acquires a needle tip image, and calculates a needle tip image position coordinate of the needle tip in the ultrasonic image coordinate system of the ultrasound image according to the tip image; the ultrasound probe estimates the tip trajectory data according to the previous moment. Judging whether the ultrasonic image of the current position has a trajectory of the needle, and when the ultrasonic probe detects the position of the needle, a white dot appears in the ultrasonic image, and the position of the dot is the position of the needle; the image can be obtained by image recognition on the ultrasonic image. Coordinate orientation. If it appears, the probe continues to advance until the needle moves back after the ultrasound image disappears.
  • the ultrasound image finds the needle position
  • the current needle position is recorded and recorded;
  • the ultrasonic probe is at the estimated position of the needle tip according to the needle input control input,
  • the current position of the ultrasound image does not show the trajectory of the needle, and the probe is retracted until the needle position of the ultrasound image occurs, and the position of the stylus is collected.
  • the needle tip is continuously searched by the probe to find the tip of the needle, so that the needle tip can be tracked in real time.
  • the current needle position is recorded and recorded to determine whether to enter the next loop tracking needle trajectory. Continue to calculate the speed v of the current ultrasonic needle in the forward direction of the probe according to the trajectory of the known needle, enter the next loop tracking, and end without continuing tracking;
  • v 2 bv retreat until the needle tip position is found. If it occurs, the current needle position is recorded and recorded to determine whether to enter the next loop tracking needle trajectory. If it continues, the current needle position and probe head direction are calculated according to the known needle tip history coordinates. The consistent speed v goes to the next loop and ends without tracking.
  • the needle tip is continuously searched by the probe to find the tip of the needle, so that the needle tip can be tracked in real time.
  • the base coordinate system and the ultrasonic image coordinate system are superimposed and converted, so that the needle tip image position coordinates are superimposed on the probe position coordinates in the base coordinate system, and the needle tip position coordinates of the needle tip in the base coordinate system are obtained; the needle tip is in the ultrasonic image coordinate
  • the coordinate in system ⁇ i is P a
  • the homogeneous transformation matrix of ultrasonic image coordinate system ⁇ i to ultrasonic probe coordinate system ⁇ P is T pa
  • the homogeneous transformation matrix of ultrasonic probe coordinate system ⁇ P to base coordinate system ⁇ 0 is T OP .
  • the coordinate P a is obtained by image recognition to obtain the position of the needle tip on the ultrasonic image.
  • the homogeneous transformation matrix T pa between the ultrasound image coordinate system ⁇ i and the ultrasound probe coordinate system ⁇ P is constant during the measurement tracking process, and the second positioning marker on the ultrasound probe Determined by the installation position;
  • the homogeneous transformation matrix T pa is obtained by the N-line model, the N-shaped marker line is determined by the position in the standard model, the corresponding marker point is cut in the ultrasound imaging, and the model and the ultrasound probe are
  • the relative position of the two positioning marks can form a closed-loop spatial transformation relationship, that is, the homogeneous transformation matrix T pa can be solved to be the required transformation relationship;
  • the homogeneous transformation matrix T OP is the first object of the puncture through the optical binocular instrument.
  • a positioning mark and a second positioning mark on the ultrasonic probe are collected in real time to obtain a transformation matrix between the first positioning mark and the second positioning mark, that is, a transformation matrix of the second positioning mark and the base coordinate system;
  • the homogeneous transformation matrix is 4 ⁇ 4 structure [RP; 0 1], R represents a rotation transformation, and P represents a translation transformation.
  • the needle tip coordinates P 0 ⁇ 0 the base coordinate system may be calculated using the following formula:
  • the needle tip position coordinates of the current time are recorded, and the needle tip motion track data of the current time is obtained and recorded in combination with the needle tip position coordinates of the previous time that has been recorded.
  • the present invention is an automatic tracking method for a flexible needle tip, comprising:
  • First and second positioning marks are installed respectively
  • a first positioning mark and a second positioning mark are fixedly mounted on the object to be pierced and the ultrasonic probe respectively;
  • the ultrasound probe acquires an ultrasound image in the object to be punctured, and establishes an ultrasound image coordinate system according to the ultrasound image;
  • the coordinates of the tip position of the current moment are estimated, and the movement trajectory of the needle tip is obtained;
  • the needle tip performs the needle insertion at the first speed, and the ultrasonic probe moves at the second speed to estimate the motion trajectory along the needle tip, and simultaneously acquires the ultrasonic image in the object to be punctured, wherein the second speed is greater than the first speed;
  • Determining the ultrasound image in the object to be punctured determining whether there is a puncture needle image in the ultrasound image; if there is no puncture needle image, proceeding to step 509.
  • the ultrasound probe is retracted at the third speed;
  • the ultrasound probe advances at a second speed
  • the ultrasonic probe continues to move along the tip estimation motion trajectory at the second speed;
  • the ultrasonic probe While the ultrasonic probe continues to move along the tip estimation motion trajectory at the second speed, it is determined whether the ultrasound image is out of the needle image; if the ultrasound image does not leave the needle diagram, proceeding to step 507.
  • the ultrasound probe is performed at the second speed go ahead;
  • the ultrasound probe is retracted at a third speed
  • the ultrasound probe moves along the opposite direction of the needle tip estimation motion trajectory, wherein the third velocity is less than the first velocity
  • the ultrasonic probe moves in the opposite direction, it is determined whether the image of the puncture needle appears again in the ultrasonic image. If the puncture needle image does not appear again, the process returns to step 509. The ultrasonic probe retreats at the third speed;
  • the ultrasonic probe stops moving, and at the same time, the needle tip image is acquired, and the needle tip image position coordinate of the needle tip in the ultrasonic image coordinate system of the ultrasonic image is calculated according to the needle tip image measurement, and after the needle tip image is acquired, the steps are simultaneously performed. 512. Obtaining the position coordinates of the ultrasonic probe in the base coordinate system and step 504. Estimating the tip estimation motion trajectory;
  • the needle tip position coordinates of the current time are recorded, and the needle tip motion track data of the current time is obtained and recorded in combination with the needle tip position coordinates of the previous time that has been recorded.
  • the object of the present invention is to provide a tracking device and a tracking method thereof that have high positioning accuracy, no radiation damage, and can automatically track the position of the needle tip in real time.
  • the invention utilizes the combination method of ultrasonic imaging and optical positioning, has the advantages of no radiation damage and high positioning precision, and the positioning and tracking device of the invention does not need to use the sensor to fix the needle bar, thereby eliminating the needle stiffness shortage due to the needle bending, and the invention is easy. Broken needle phenomenon, or the sensor is easy to fall off, using ultrasonic imaging technology, no radiation damage, high positioning accuracy, automatic real-time monitoring and tracking of the needle tip position, bringing convenience to clinical surgery.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Robotics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种柔性穿刺针针尖自动跟踪装置及方法,包括:定位机械臂(1)、超声探头(2)、数据处理设备、光学测量仪(31)和定位标志(32);该定位标志(32)分别固定安装于被穿刺对象(4)上和超声探头(2)上;光学测量仪(31)对定位标志(32)进行测量,得到光学测量数据;该数据处理设备通过光学测量数据与超声图像数据相结合得到针尖在基坐标系中的针尖位置坐标;对所有针尖位置坐标进行记录,得到当前时刻的针尖运动轨迹数据。该自动跟踪装置及方法利用超声成像与光学定位相结合的方法进行定位跟踪,具有定位精度高的优点,对针尖位置实现自动实时监控跟踪,给临床手术带来了方便。

Description

一种柔性穿刺针针尖自动跟踪装置及方法 技术领域
本发明涉及医疗辅助设备领域,具体涉及一种柔性穿刺针针尖自动跟踪装置及方法。
背景技术
在现有的微创手术中,柔性针穿刺的应用潜力越来越大,医生在进行柔性针穿刺手术中对针尖定位精度的要求非常高,并且需要实时跟踪针尖的位置。快速跟踪针尖位置需要定位追踪装置能自主快速准确定位,并且对外形复杂的穿刺对象有很好的追踪适应,这需要自动跟踪装置的运动灵活性和位置跟踪精确性提出了更高的要求。
目前临床微创手术所使用的柔性针穿刺跟踪设备主要是由计算机断层摄影和核磁共振成像扫描手段和定位设备相结合来获得。在传统针尖位置定位是通过在针尖安装传感器来识别针尖位置,通过矩阵转换到医学影像坐标系中,医生通过了解针尖位置和肿瘤靶区之间的相对位置的关系来进一步控制针的轨迹。中国发明专利号为:201510173724.0的专利文件中公开了一种在介入手术过程中相对于装置坐标系定位介入治疗针的介入治疗针定位方法,在该技术方案中其将传感器固定在针杆上,通过跟踪传感器位置来推算确定针尖位置,然而这种方法在固定传感器上带来很大的难度,在针杆上固定传感器会对针的刚度造成一定的影响,容易导致针尖断落或者传感器脱落,给手术带来再次的困难;传感器位置和针尖位置之间是通过坐标系计算,介入针在穿刺过程会发生弯曲,在计算坐标系过程会存在误差,造成定位不准确给治疗带来了困难。由此可见,针尖定位跟踪设计的不足是给临床使用带来困难,限制介入针治疗手 术发展重要因素。若采取放射成像相结合跟踪针尖位置的方案,由于其具有辐射危害,且成像时间较长,不易频繁使用,不能对针尖的位置进行实时的跟踪。
发明内容
为克服上述缺陷,本发明的目的即在于提供一种柔性穿刺针针尖自动跟踪装置及方法。
本发明的目的是通过以下技术方案来实现的:
本发明是一种柔性穿刺针针尖自动跟踪装置及方法,包括:定位机械臂,超声探头、光学跟踪设备和数据处理设备;
所述超声探头安装于所述定位机械臂的前端上,用于对被穿刺对象中的超声图像数据进行采集;
所述定位机械臂用于控制超声探头的移动;
所述光学跟踪设备包括:光学测量仪,以及与该光学测量仪配合的第一定位标志和第二定位标志;
所述第一定位标志固定安装于被穿刺对象上;
所述第二定位标志固定安装于超声探头上;
所述光学测量仪对第一定位标志和第二定位标志的位置进行测量,得到光学测量数据;
所述数据处理设备分别与所述超声探头和所述光学测量仪进行连接,对超声图像数据和光学测量数据进行接收,并根据光学测量数据以第一定位标志为基准建立基坐标系,得到第二定位标志在基坐标系中的位置坐标;又根据超声图像数据基准建立超声图像坐标系,获取针尖在超声图像数据中的针尖图像位置坐标;将基坐标系和超声图像坐标系进行叠加转换,得到针尖在基坐标系中的针尖位置坐标;对所有针尖位置坐标进行记录,得到当前时刻的针尖运动轨迹数据。
进一步,所述定位机械臂为具有六自由度的机械臂。
进一步,所述光学测量仪为光学双目测量仪器。
进一步,所述第一、第二定位标志上均设有四个球体,且该四个体球均处在同一个平面上。
进一步,所述数据处理设备中设有显示屏,其用于对超声图像数据和光学测量数据进行显示。
本发明一种柔性穿刺针针尖自动跟踪装置,其特征在于,包括:
在被穿刺对象上和超声探头上分别固定安装有第一定位标志和第二定位标志;
以该第一定位标志为基准建立基坐标系,使得第一定位标志的平面法向为该基坐标系的纵轴;
超声探头获取被穿刺对象中的超声图像,并根据超声图像建立超声图像坐标系;
超声探头搜寻被穿刺对象中的针尖,获取针尖图像;
在获取针尖图像后根据该针尖图像测量计算该针尖在超声图像的超声图像坐标系中的针尖图像位置坐标;
通过光学仪器观测当前第一定位标志和第二定位标志之间的位置关系,测量计算并记录所述第二定位标志在基坐标系中的探头位置坐标;
将基坐标系和超声图像坐标系进行叠加转换,使所述针尖图像位置坐标叠加至基坐标系中的探头位置坐标中,得到该针尖在基坐标系中的针尖位置坐标;
对当前时刻的针尖位置坐标进行记录,并结合已被记录的之前时刻的针尖位置坐标,得到并记录当前时刻的针尖运动轨迹数据。
进一步,所述超声探头搜寻被穿刺对象中的针尖,获取针尖图像包括:
根据之前时刻的针尖运动轨迹数据,对当前时刻的针尖位置坐 标进行估算,得到针尖估算运动轨迹;
将超声探头以第二速度沿针尖估算运动轨迹进行移动,同时获取被穿刺对象中的超声图像,并判断该超声图像中,是否存在穿刺针图像;
若存在穿刺针图像,则超声探头继续沿针尖估算运动轨迹进行移动,直到其获取的超声图像中,不存在穿刺针图像为止;
当该超声探头取的超声图像中不存在穿刺针图像时,超声探头沿针尖估算运动轨迹的反方向进行移动,直到其获取的超声图像中,再次出现穿刺针图像为止;
当超声图像中再次出现穿刺针图像时,寻找到针尖位置,并获取并保存针尖图像,在保存针尖图像后,再次根据之前时刻的针尖运动轨迹数据,对当前时刻的针尖位置坐标进行估算。进一步,所述超声探头继续沿针尖估算运动轨迹进行移动包括:
超声探头以第二速度继续沿针尖估算运动轨迹进行移动,所述第二速度大于第一速度;所述第一速度为针尖在被穿刺对象中进行穿刺进针的移动速度。
进一步,所述超声探头沿针尖估算运动轨迹的反方向进行移动包括:
超声探头以第三速度沿针尖估算运动轨迹的反方向进行移动,所述第三速度小于第一速度。
本发明利用超声波成像与光学定位相结合的方法进行定位跟踪,其具有没有放射伤害,且定位精度高的优点;并且本发明的定位跟踪装置不需要使用传感器固定针杆上,免去了由于针弯曲而造成针刚度不足,容易发生断针现象,或者传感器容易脱落等问题,使用超声波成像技术,没有放射造成伤害,定位精度高,对针尖位置实现自动实时监控跟踪,给临床手术带来了方便。
附图说明
为了易于说明,本发明由下述的较佳实施例及附图作详细描述。
图1为本发明自动跟踪装置的整体结构示意图;
图2为本发明自动跟踪装置中的光学测量仪整体结构示意图;
图3为本发明自动跟踪装置中的超声探头与定位标志之间的装配关系示意图;
图4为本发明自动跟踪方法中的一个实施例的工作流程示意图;
图5为本发明自动跟踪方法中获取的针尖图像的工作流程示意图;
图6为本发明自动跟踪方法中的另一个实施例的工作流程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1至图3,本发明是一种柔性穿刺针针尖自动跟踪装置,包括:定位机械臂1,超声探头2、光学跟踪设备3和数据处理设备(未图示);
所述超声探头2安装于所述定位机械臂1的前端上,用于对被穿刺对象4中的超声图像数据进行采集;
所述定位机械臂1用于控制超声探头2的移动;
所述光学跟踪设备3包括:光学测量仪31,以及与该光学测量仪31配合的定位标志32,所述定位标志32包括:第一定位标志和第二定位标志;
所述第一定位标志固定安装于被穿刺对象4上;第一定位标志是固定不动的,用于识别被穿刺对象4的方位,并以此建立基坐标系;
所述第二定位标志固定安装于超声探头2上,第二定位标志固定在超声探头2上,随着探头移动而移动,用于识别超声探头2的方位;
所述光学测量仪31对第一定位标志和第二定位标志的位置进行测量,得到光学测量数据;
所述数据处理设备(未图示)分别与所述超声探头2和所述光学测量仪31进行连接,对超声图像数据和光学测量数据进行接收,并根据光学测量数据以第一定位标志为基准建立基坐标系,得到第二定位标志在基坐标系中的位置坐标;又根据超声图像数据基准建立超声图像坐标系,获取针尖在超声图像数据中的针尖图像位置坐标;将基坐标系和超声图像坐标系进行叠加转换,得到针尖在基坐标系中的针尖位置坐标;对所有针尖位置坐标进行记录,得到当前时刻的针尖运动轨迹数据。
光学双目仪器31通过采集第一定位标志和第二定位标志的方位信息从而获取得到第一定位标志坐标系和第二定位标志坐标系之间的变换矩阵关系,即超声探头坐标系和基坐标系之间变换矩阵的关系;超声探头2和超声图像固连在一起,它们之间相对位置不变,通过对超声探头坐标系和基坐标系关系确定,超声探头2和超声图像之间的坐标关系确定,以及针在超声图像内的位置确定,从而确定了针尖在基坐标系上的坐标方位。超声探头2在根据进针控制输入得出的针尖估计位置,超声探头2在针尖附近的穿刺对象表面沿着穿刺方向移动寻找跟踪针尖,通过超声图像判断针尖的位置,自动实时地监控跟踪针尖的位置。
进一步,所述定位机械臂1为具有六自由度的机械臂。
进一步,所述光学测量仪31为光学双目测量仪器,所述光学双目测量仪器31安装于定位支架33上,定位支架33可以实现升降旋转调节光学双目仪器得到合适位置后固定。
进一步,所述第一、第二定位标志上均设有四个球体,且该四个体球均处在同一个平面上。由于定位标志32有四个球处在一个面上,光学测量仪31可以采集定为标志四个球的坐标,通过以某个球的坐标作为原点,四个球坐标值可以建立一个坐标系,四个球组成平面法向为Z轴。
进一步,所述数据处理设备(未图示)中设有显示屏,其用于对超声图像数据和光学测量数据进行显示。
本发明通过定位机械臂1抓取超声探头2贴合在被穿刺对象4表面,实时地跟踪针尖位置;超声探头2采集超声图像;光学跟踪装置跟踪超声探头2位置和穿刺对象位置并建立二者与基坐标系之间的坐标变换关系,结合超声图像相实时获取针尖在基坐标系中的位置。探头对针尖跟踪方法是由超声探头2在根据进针控制输入得出的针尖估计位置,探头贴合在穿刺对象表面沿着进针方向来回往返寻找针尖,通过超声图像是否出现针尖来判断针尖的位置,从而实现对针尖的跟踪。
请参阅图4至图5,本发明是一种柔性穿刺针针尖自动跟踪方法,包括:
401.分别安装有第一、第二定位标志
在被穿刺对象上和超声探头上分别固定安装有第一定位标志和第二定位标志;
402.建立基坐标系
以该第一定位标志为基准建立基坐标系,使得第一定位标志的平面法向为该基坐标系的纵轴;
403.建立超声图像坐标系
超声探头获取被穿刺对象中的超声图像,并根据超声图像建立超声图像坐标系;
404.在超声图像中获取的针尖图像
超声探头搜寻被穿刺对象中的针尖,获取针尖图像,并根据该针尖图像测算该针尖在超声图像的超声图像坐标系中的针尖图像位置坐标;超声探头在根据之前时刻的针尖运动轨迹数据进行估算,判断当前位置超声图像是否出现针的轨迹,超声探头探测到针位置时,在超声图像中会出现白色圆点,该圆点位置为针位置;通过图像识别可以得到该点在超声图像上的坐标方位。如果出现则探头继续前进,直到针在超声图像消失后再使探头往回走,超声图像寻找到针位置则采集记录当前针位置;当超声探头在根据进针控制输入得出的针尖估计位置,当前位置超声图像没有出现针的轨迹,探头则往后退,直到超声图像出现针位置,采集记录针位置。通过探头对针尖不断执行周期寻找针尖,从而实现对针尖的实时跟踪。
通过已知针的轨迹计算当前超声针与探头前进方向上一致的的速度v,判断当前位置超声图像是否出现针的轨迹,如果出现,则探头以v1=av前进(其中a>1),前进时间t1后,判断针是否脱离超声图像,如果没脱离探头继续以v1速度前进直到超声图像脱离针轨迹,若脱离则探头以v2=bv后退(其中0<b<1),后退时间t2后,判断超声图像是否出现针轨迹,若没出现则探头继续以v2=bv后退直到找到针尖位置,若出现则采集记录当前针尖位置,判断是否进入下一循环跟踪针轨迹,如果继续则根据已知针的轨迹计算当前超声针与探头前进方向上一致的的速度v,进入下一循环跟踪,不继续跟踪则结束;
如果在当前位置超声图像没有针的轨迹时,则探头以v2=bv后退(其中0<b<1),后退时间t2后,判断超声图像是否出现针轨迹,若没出现探头则继续以v2=bv后退直到找到针尖位置,若出现则采集记录当前针尖位置,判断是否进入下一循环跟踪针轨迹,如果继续则根据已知针尖历史坐标拟合针轨迹计算当前超声针与探头前进方向上一致的的速度v,进入下一循环跟踪,不继续跟踪则结束。
通过探头对针尖不断执行周期寻找针尖,从而实现对针尖的实时跟踪。
405.得到超声探头在基坐标系中的位置坐标
通过光学仪器观测当前第一定位标志和第二定位标志之间的位置关系,测算并记录所述第二定位标志在基坐标系中的探头位置坐标;
406.得到针尖在基坐标系中的位置坐标
将基坐标系和超声图像坐标系进行叠加转换,使所述针尖图像位置坐标叠加至基坐标系中的探头位置坐标中,得到该针尖在基坐标系中的针尖位置坐标;针尖在超声图像坐标系Ψi中的坐标为Pa,超声图像坐标系Ψi到超声探头坐标系ΨP的齐次变换矩阵为Tpa,超声探头坐标系ΨP到基坐标系Ψ0的齐次变换矩阵为TOP。坐标Pa是通过图像识别获取得到针尖在超声图像上的位置。由于超声探头和超声图像是固连在一起,超声图像坐标系Ψi和超声探头坐标系ΨP之间的齐次变换矩阵Tpa在测量跟踪过程是不变,由超声探头上第二定位标志安装位置所决定;采用N线模型等方法得到齐次变换矩阵Tpa,通过标准模型中的位置确定N形标记线,在超声成像中切割出对应的标志点,以及在模型与超声探头上第二定位标志的相对位置,可以形成闭环的空间变换关系,即可解算出齐次变换矩阵Tpa就是所需要标定的变换关系;齐次变换矩阵TOP是通过光学双目仪器对穿刺对象上第一定位标志和超声探头上的第二定位标志实时采集而得到第一定位标志与第二定位标志之间的变换矩阵,即第二定位标志与基坐标系的变换矩阵;齐次变换矩阵为4×4结构[R P;0 1],R代表旋转变换,P代表平移变换。从而针尖在基坐标系Ψ0中的坐标P0可以用以下公式计算得到:
Figure PCTCN2016101848-appb-000001
407.记录针尖运动轨迹数据
对当前时刻的针尖位置坐标进行记录,并结合已被记录的之前时刻的针尖位置坐标,得到并记录当前时刻的针尖运动轨迹数据。
请参阅图6,本发明是一种柔性穿刺针针尖自动跟踪方法,包括:
501.分别安装有第一、第二定位标志
在被穿刺对象上和超声探头上分别固定安装有第一定位标志和第二定位标志;
502.建立基坐标系
以该第一定位标志为基准建立基坐标系,使得第一定位标志的平面法向为该基坐标系的纵轴;
503.建立超声图像坐标系
超声探头获取被穿刺对象中的超声图像,并根据超声图像建立超声图像坐标系;
504.估计针尖估算运动轨迹
根据之前时刻的针尖运动轨迹数据,对当前时刻的针尖位置坐标进行估算,得到针尖估算运动轨迹;
505.针尖与超声探头进行前进
针尖以第一速度进行进针,同时超声探头以第二速度为沿针尖估算运动轨迹进行移动,同时获取被穿刺对象中的超声图像,其中,所述第二速度大于第一速度;
506.判断是否存在穿刺针图像
对被穿刺对象中的超声图像进行判断,判断该超声图像中是否存在穿刺针图像;若不存在穿刺针图像,则进入步骤509.超声探头以第三速度进行后退;
507.超声探头以第二速度进行前进
若存在穿刺针图像,则超声探头以第二速度继续沿针尖估算运动轨迹进行移动;
508.判断是否脱离穿刺针图像
在超声探头以第二速度继续沿针尖估算运动轨迹进行移动的同时,判断超声图像是否脱离穿刺针图像;若该超声图像没脱离穿刺针图,则继续进行步骤507.超声探头以第二速度进行前进;
509.超声探头以第三速度进行后退
若该超声图像脱离穿刺针图时,超声探头沿针尖估算运动轨迹的反方向进行移动,其中,所述第三速度小于第一速度;
510.判断是否再次存在穿刺针图像
在超声探头反方向进行移动时,判断超声图像中是否再次出现穿刺针图像,若没有再次出现穿刺针图像,则返回步骤509.超声探头以第三速度进行后退;
511.获取针尖图像
若再次出现穿刺针图像,超声探头停止移动,同时获取针尖图像,并根据该针尖图像测量计算该针尖在超声图像的超声图像坐标系中的针尖图像位置坐标,在获取针尖图像后,同时进行步骤512.得到超声探头在基坐标系中的位置坐标和步骤504.估计针尖估算运动轨迹;
512.得到超声探头在基坐标系中的位置坐标
通过光学仪器观测当前第一定位标志和第二定位标志之间的位置关系,测算并记录所述第二定位标志在基坐标系中的探头位置坐标;
513.得到针尖在基坐标系中的位置坐标
将基坐标系和超声图像坐标系进行叠加转换,使所述针尖图像位置坐标叠加至基坐标系中的探头位置坐标中,得到该针尖在基坐标系中的针尖位置坐标;
514.记录针尖运动轨迹数据
对当前时刻的针尖位置坐标进行记录,并结合已被记录的之前时刻的针尖位置坐标,得到并记录当前时刻的针尖运动轨迹数据。
本发明的目的是提出一种定位精度高,无放射伤害,可以自动实时地跟踪针尖的位置的跟踪装置及其跟踪方法。本发明利用超声波成像与光学定位相结合方法,没有放射伤害,定位精度高的优点,本发明的定位跟踪装置不需要使用传感器固定针杆上,免去了由于针弯曲而造成针刚度不足,容易发生断针现象,或者传感器容易脱落等问题,使用超声波成像技术,没有放射造成伤害,定位精度高,对针尖位置实现自动实时监控跟踪,给临床手术带来了方便。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种柔性穿刺针针尖自动跟踪装置,其中,包括:定位机械臂,超声探头、光学跟踪设备和数据处理设备;
    所述超声探头安装于所述定位机械臂的前端上,用于对被穿刺对象中的超声图像数据进行采集;
    所述定位机械臂用于控制超声探头的移动;
    所述光学跟踪设备包括:光学测量仪,以及与该光学测量仪配合的第一定位标志和第二定位标志;
    所述第一定位标志固定安装于被穿刺对象上;
    所述第二定位标志固定安装于超声探头上;
    所述光学测量仪对第一定位标志和第二定位标志的位置进行测量,得到光学测量数据;
    所述数据处理设备分别与所述超声探头和所述光学测量仪进行连接,对超声图像数据和光学测量数据进行接收,并根据光学测量数据以第一定位标志为基准建立基坐标系,得到第二定位标志在基坐标系中的位置坐标;又根据超声图像数据基准建立超声图像坐标系,获取针尖在超声图像数据中的针尖图像位置坐标;将基坐标系和超声图像坐标系进行叠加转换,得到针尖在基坐标系中的针尖位置坐标;对所有针尖位置坐标进行记录,得到当前时刻的针尖运动轨迹数据。
  2. 根据权利要求1所述的柔性穿刺针针尖自动跟踪装置,其中,所述定位机械臂为具有六自由度的机械臂。
  3. 根据权利要求2所述的柔性穿刺针针尖自动跟踪装置,其中,所述光学测量仪为光学双目测量仪器。
  4. 根据权利要求3所述的柔性穿刺针针尖自动跟踪装置,其中,所述第一、第二定位标志上均设有四个球体,且该四个体球均处在同一个平面上。
  5. 根据权利要求4所述的柔性穿刺针针尖自动跟踪装置,其中,所述 数据处理设备中设有显示屏,其用于对超声图像数据和光学测量数据进行显示。
  6. 一种柔性穿刺针针尖自动跟踪装置,其中,包括:
    在被穿刺对象上和超声探头上分别固定安装有第一定位标志和第二定位标志;
    以该第一定位标志为基准建立基坐标系,使得第一定位标志的平面法向为该基坐标系的纵轴;
    超声探头获取被穿刺对象中的超声图像,并根据超声图像建立超声图像坐标系;
    超声探头搜寻被穿刺对象中的针尖,获取针尖图像;
    在获取针尖图像后根据该针尖图像测量计算该针尖在超声图像的超声图像坐标系中的针尖图像位置坐标;
    通过光学仪器观测当前第一定位标志和第二定位标志之间的位置关系,测量计算并记录所述第二定位标志在基坐标系中的探头位置坐标;
    将基坐标系和超声图像坐标系进行叠加转换,使所述针尖图像位置坐标叠加至基坐标系中的探头位置坐标中,得到该针尖在基坐标系中的针尖位置坐标;
    对当前时刻的针尖位置坐标进行记录,并结合已被记录的之前时刻的针尖位置坐标,得到并记录当前时刻的针尖运动轨迹数据。
  7. 根据权利要求6所述的柔性穿刺针针尖自动跟踪装置,其中,所述超声探头搜寻被穿刺对象中的针尖,获取针尖图像包括:
    根据之前时刻的针尖运动轨迹数据,对当前时刻的针尖位置坐标进行估算,得到针尖估算运动轨迹;
    将超声探头以第二速度沿针尖估算运动轨迹进行移动,同时获取被穿刺对象中的超声图像,并判断该超声图像中,是否存在穿刺针图像;
    若存在穿刺针图像,则超声探头继续沿针尖估算运动轨迹进行移动,直到其获取的超声图像中,不存在穿刺针图像为止;
    当该超声探头取的超声图像中不存在穿刺针图像时,超声探头沿针尖估算运动轨迹的反方向进行移动,直到其获取的超声图像中,再次出现穿刺针图像为止;
    当超声图像中再次出现穿刺针图像时,寻找到针尖位置,并获取与保存针尖图像,在保存针尖图像后,再次根据之前时刻的针尖运动轨迹数据,对当前时刻的针尖位置坐标进行估算。
  8. 根据权利要求7所述的柔性穿刺针针尖自动跟踪装置,其中,所述超声探头继续沿针尖估算运动轨迹进行移动包括:
    超声探头以第二速度继续沿针尖估算运动轨迹进行移动,所述第二速度大于第一速度;所述第一速度为针尖在被穿刺对象中进行穿刺进针的移动速度。
  9. 根据权利要求8所述的柔性穿刺针针尖自动跟踪装置,其中,所述超声探头沿针尖估算运动轨迹的反方向进行移动包括:
    超声探头以第三速度沿针尖估算运动轨迹的反方向进行移动,所述第三速度小于第一速度。
PCT/CN2016/101848 2016-08-23 2016-10-12 一种柔性穿刺针针尖自动跟踪装置及方法 WO2018035942A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610710312.0 2016-08-23
CN201610710312.0A CN106344153B (zh) 2016-08-23 2016-08-23 一种柔性穿刺针针尖自动跟踪装置及方法

Publications (1)

Publication Number Publication Date
WO2018035942A1 true WO2018035942A1 (zh) 2018-03-01

Family

ID=57844552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101848 WO2018035942A1 (zh) 2016-08-23 2016-10-12 一种柔性穿刺针针尖自动跟踪装置及方法

Country Status (2)

Country Link
CN (1) CN106344153B (zh)
WO (1) WO2018035942A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112472294A (zh) * 2020-12-15 2021-03-12 山东威高医疗科技有限公司 不同超声波设备探头在电磁导航系统中空间位置获取方法
CN113425590A (zh) * 2021-07-14 2021-09-24 浙江伽奈维医疗科技有限公司 一种用于手术中影像导航光学装置
CN113768589A (zh) * 2021-08-11 2021-12-10 郑州郅隆智能科技有限公司 穿刺手术系统及穿刺手术方法
CN113907884A (zh) * 2020-07-10 2022-01-11 南京智云医疗器械研究院有限公司 一种基于红外双目相机及机器人机械臂持置针套引导和实现精准穿刺的设备及方法
CN115153782A (zh) * 2022-08-12 2022-10-11 哈尔滨理工大学 一种超声引导下的穿刺机器人空间注册方法
CN117224208A (zh) * 2023-09-11 2023-12-15 北京索诺普科技有限公司 超声引导下的介入磁导航系统及导航方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110300549A (zh) * 2017-02-14 2019-10-01 皇家飞利浦有限公司 超声系统中用于设备跟踪的路径跟踪
CN107080570A (zh) * 2017-06-16 2017-08-22 北京索迪医疗器械开发有限责任公司 一种新型的体外冲击波碎石机
EP3648674A1 (en) * 2017-07-07 2020-05-13 Koninklijke Philips N.V. Robotic instrument guide integration with an acoustic probe
CN108008015A (zh) * 2017-11-24 2018-05-08 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种便携式超声检测设备、系统及方法
WO2019119194A1 (zh) * 2017-12-18 2019-06-27 中国科学院深圳先进技术研究院 柔性手术器械跟踪方法、装置、设备及存储介质
CN109480898B (zh) 2018-09-13 2021-07-02 深圳达闼科技控股有限公司 一种超声检测方法、超声检测系统及相关装置
CN109363677A (zh) * 2018-10-09 2019-02-22 中国人民解放军第四军医大学 乳腺电阻抗扫描成像手持式检测探头体表定位系统及方法
CN109754408B (zh) * 2019-01-07 2020-12-01 合肥泰禾光电科技股份有限公司 轨迹跟踪方法及装置
CN109998682B (zh) * 2019-04-28 2020-08-18 北京天智航医疗科技股份有限公司 探针装置、精度检测方法、精度检测系统及定位系统
WO2020242491A1 (en) * 2019-05-31 2020-12-03 Tva Medical, Inc. Systems, methods, and catheters for endovascular treatment of a blood vessel
CN110464304A (zh) * 2019-08-20 2019-11-19 吉林大学第一医院 一种采血方法及设备
CN111437011B (zh) * 2020-03-30 2021-04-13 中国科学院深圳先进技术研究院 一种穿刺手术机器人系统
CN112773508A (zh) * 2021-02-04 2021-05-11 清华大学 一种机器人手术定位方法及装置
WO2022198615A1 (zh) * 2021-03-26 2022-09-29 中国科学院深圳先进技术研究院 一种双臂机器人穿刺系统标定方法及系统
CN113317874B (zh) * 2021-04-30 2022-11-29 上海友脉科技有限责任公司 一种医学图像处理装置及介质
CN116079744A (zh) * 2023-03-27 2023-05-09 超音速人工智能科技股份有限公司 一种机械手插针定位方法、自动化插针机构、存储介质
CN116919595B (zh) * 2023-08-17 2024-06-07 哈尔滨工业大学 基于光学和电磁定位及卡尔曼滤波的骨针位置跟踪装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861526A (zh) * 2007-11-14 2010-10-13 皇家飞利浦电子股份有限公司 用于跟踪超声自动校准的系统和方法
CN102266250A (zh) * 2011-07-19 2011-12-07 中国科学院深圳先进技术研究院 超声手术导航系统及超声手术导航方法
CN103230283A (zh) * 2013-04-16 2013-08-07 清华大学 一种超声探头成像平面空间位置标定的优化方法
WO2013140315A1 (en) * 2012-03-23 2013-09-26 Koninklijke Philips N.V. Calibration of tracked interventional ultrasound
CN103584885A (zh) * 2013-11-20 2014-02-19 哈尔滨工程大学 一种基于定位导航穿刺针的自由臂超声标定方法
CN103705307A (zh) * 2013-12-10 2014-04-09 中国科学院深圳先进技术研究院 手术导航系统及医疗机器人
CN103908345A (zh) * 2012-12-31 2014-07-09 复旦大学 一种基于平板电脑的手术导航用的体数据可视化方法
CN104161546A (zh) * 2014-09-05 2014-11-26 深圳先进技术研究院 基于可定位穿刺针的超声探头标定系统及方法
CN104248454A (zh) * 2014-10-09 2014-12-31 哈尔滨工程大学 一种二维超声图像与穿刺针共面判断方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462175B2 (en) * 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
CN103110429B (zh) * 2012-06-11 2015-12-16 大连理工大学 超声波探头的光学标定方法
CN204293264U (zh) * 2014-12-15 2015-04-29 柏云云 一种超声介入穿刺针引导监控系统
CN105596030A (zh) * 2015-12-22 2016-05-25 汕头市超声仪器研究所有限公司 一种基于模式识别的全自动穿刺针显影增强方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861526A (zh) * 2007-11-14 2010-10-13 皇家飞利浦电子股份有限公司 用于跟踪超声自动校准的系统和方法
CN102266250A (zh) * 2011-07-19 2011-12-07 中国科学院深圳先进技术研究院 超声手术导航系统及超声手术导航方法
WO2013140315A1 (en) * 2012-03-23 2013-09-26 Koninklijke Philips N.V. Calibration of tracked interventional ultrasound
CN103908345A (zh) * 2012-12-31 2014-07-09 复旦大学 一种基于平板电脑的手术导航用的体数据可视化方法
CN103230283A (zh) * 2013-04-16 2013-08-07 清华大学 一种超声探头成像平面空间位置标定的优化方法
CN103584885A (zh) * 2013-11-20 2014-02-19 哈尔滨工程大学 一种基于定位导航穿刺针的自由臂超声标定方法
CN103705307A (zh) * 2013-12-10 2014-04-09 中国科学院深圳先进技术研究院 手术导航系统及医疗机器人
CN104161546A (zh) * 2014-09-05 2014-11-26 深圳先进技术研究院 基于可定位穿刺针的超声探头标定系统及方法
CN104248454A (zh) * 2014-10-09 2014-12-31 哈尔滨工程大学 一种二维超声图像与穿刺针共面判断方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113907884A (zh) * 2020-07-10 2022-01-11 南京智云医疗器械研究院有限公司 一种基于红外双目相机及机器人机械臂持置针套引导和实现精准穿刺的设备及方法
CN112472294A (zh) * 2020-12-15 2021-03-12 山东威高医疗科技有限公司 不同超声波设备探头在电磁导航系统中空间位置获取方法
CN112472294B (zh) * 2020-12-15 2023-01-20 山东威高医疗科技有限公司 不同超声波设备探头在电磁导航系统中空间位置获取方法
CN113425590A (zh) * 2021-07-14 2021-09-24 浙江伽奈维医疗科技有限公司 一种用于手术中影像导航光学装置
CN113768589A (zh) * 2021-08-11 2021-12-10 郑州郅隆智能科技有限公司 穿刺手术系统及穿刺手术方法
CN115153782A (zh) * 2022-08-12 2022-10-11 哈尔滨理工大学 一种超声引导下的穿刺机器人空间注册方法
CN117224208A (zh) * 2023-09-11 2023-12-15 北京索诺普科技有限公司 超声引导下的介入磁导航系统及导航方法
CN117224208B (zh) * 2023-09-11 2024-03-12 北京索诺普科技有限公司 超声引导下的介入磁导航系统及导航方法

Also Published As

Publication number Publication date
CN106344153B (zh) 2019-04-02
CN106344153A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2018035942A1 (zh) 一种柔性穿刺针针尖自动跟踪装置及方法
US20050085718A1 (en) Systems and methods for intraoperative targetting
US20050085717A1 (en) Systems and methods for intraoperative targetting
US20070225553A1 (en) Systems and Methods for Intraoperative Targeting
US20090082784A1 (en) Interventional medical system
CN104000654A (zh) 用于计算外科手术设备位置的计算机实现技术
US20080123910A1 (en) Method and system for providing accuracy evaluation of image guided surgery
WO2019127449A1 (zh) 手术导航方法及系统
CN106108951B (zh) 一种医用实时三维定位追踪系统及方法
US20120289836A1 (en) Automatic real-time display system for the orientation and location of an ultrasound tomogram in a three-dimensional organ model
EP1545365A1 (en) Medical device positioning system and method
CN107106240A (zh) 显示线性仪器相对于3d医学图像导航后的位置和取向的方法和系统
AU2014203596B2 (en) Radiation-free position calibration of a fluoroscope
EP3968861B1 (en) Ultrasound system and method for tracking movement of an object
Mathiassen et al. Real-time biopsy needle tip estimation in 2D ultrasound images
CN115177340B (zh) 一种基于三维坐标颅脑定位穿刺方法
EP3738515A1 (en) Ultrasound system and method for tracking movement of an object
WO2018214807A1 (zh) 一种前列腺穿刺术活检取出方法及装置
CN113288370B (zh) 一种术中穿刺针弯曲检测系统及其检测方法
WO2023019479A1 (zh) 一种面向胆道穿刺的机器人穿刺定位方法及装置
JP5485853B2 (ja) 医用画像表示装置及び医用画像誘導方法
CN112057139B (zh) 基于混合现实技术的手术定位系统
CN106725770A (zh) 一种快速注册经皮介入设备几何结构的方法
CN219048814U (zh) 手术导航系统
CN117100397A (zh) 一种手术导航定位系统的配准方法及其系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16913962

Country of ref document: EP

Kind code of ref document: A1