WO2018035833A1 - 分布式光纤传感系统及其振动检测定位方法 - Google Patents

分布式光纤传感系统及其振动检测定位方法 Download PDF

Info

Publication number
WO2018035833A1
WO2018035833A1 PCT/CN2016/096807 CN2016096807W WO2018035833A1 WO 2018035833 A1 WO2018035833 A1 WO 2018035833A1 CN 2016096807 W CN2016096807 W CN 2016096807W WO 2018035833 A1 WO2018035833 A1 WO 2018035833A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
frequency
vibration
phase
signal
Prior art date
Application number
PCT/CN2016/096807
Other languages
English (en)
French (fr)
Inventor
何祖源
刘庆文
陈典
樊昕昱
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to JP2019506366A priority Critical patent/JP6695001B2/ja
Priority to EP16913855.9A priority patent/EP3483572B1/en
Priority to US16/322,259 priority patent/US10989587B2/en
Publication of WO2018035833A1 publication Critical patent/WO2018035833A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity

Definitions

  • the invention relates to a technology in the field of optical fiber sensing, in particular to a distributed optical fiber sensing system and a vibration detecting and positioning method thereof.
  • fiber-optic sensing technology has also flourished.
  • fiber optics In addition to being used for long-distance high-rate communications, fiber optics also have the ability to sense external physical parameters. Using this sensitive feature, the researchers invented a series of fiber optic sensor components. Among them, distributed fiber vibration sensors are the research hotspots in recent years. It has many advantages over traditional vibration sensors, such as: waterproof and moisture-proof; anti-electromagnetic interference; safe to use; most importantly, the ability to have distributed sensing and remote sensing.
  • the most widely used and most studied are distributed optical fiber sensing systems based on optical time domain reflectometry, because such systems have the advantages of compact structure, simple demodulation algorithm, high positioning accuracy, and high signal-to-noise ratio.
  • the system's vibration frequency response bandwidth and sensing distance are contradictory. Because the frequency response bandwidth of the traditional optical fiber vibration sensing system based on the optical time domain reflectometer is half of the frequency of the detection pulse of the system, and the reciprocal of the frequency of the detection pulse, that is, the detection pulse transmission time interval, must be greater than the light. The time during which the segment senses the transmission back and forth, so the longer the length of the sensing fiber, the smaller the vibration response bandwidth, and vice versa.
  • distributed optical fiber vibration sensing system based on optical frequency domain reflectometer, although it can obtain frequency information of high frequency vibration, but can not obtain vibration. Time domain information; distributed optical fiber sensing system based on interferometer, although it can obtain a large range of vibration frequency response, but this type of system has the disadvantages of complex demodulation algorithm and poor positioning accuracy; based on interferometer and optical time domain reflectometer
  • the distributed optical fiber sensing system has the advantages of two types of systems, but the system becomes complicated, and the sensing fiber needs to be a ring structure, which cannot be single-ended measurement; based on frequency division multiplexing technology and optical time domain reflectometer
  • the distributed sensing system comprehensive performance (spatial resolution, measurable range, signal to noise ratio) still needs to be improved.
  • the present invention is directed to the prior art.
  • the detection pulse transmission frequency is limited by the sensing distance, and the intrusion position algorithm used is based on intensity demodulation, and the signal-to-noise ratio is low, and the polarization fading and interference fading noise cannot be eliminated.
  • Phase demodulated Defects such as vibration waveform information error, a distributed optical fiber sensing system and its vibration detection and positioning method are proposed.
  • the extremely weak reflection point on the rate curve improves the signal-to-noise ratio and positioning accuracy; the frequency-division multiplexing technique multiplies the vibration frequency response bandwidth, and the transmitted frequency-swept optical pulse solves the contradiction between spatial resolution and detection distance.
  • the invention relates to a distributed optical fiber sensing system, comprising: a signal generating module, a light source module, an optical frequency comb generating module, a sweeping and stringing module, an optical circulator, a sensing optical fiber, a beat frequency module, a photoelectric conversion module and a detection and positioning a module, wherein: the signal generating module respectively inputs the amplified frequency sweeping RF pulse sequence and the amplified single frequency sine wave signal to the frequency sweeping string module and the optical frequency comb generating module, and the signal generating module sends a trigger signal to the detecting and positioning module; the light source module generates The ultra-narrow linewidth laser is divided into a detection optical path and a reference optical path, and is respectively output to the optical frequency comb generating module and the beat frequency module; the optical frequency comb generating module inputs the optical frequency comb signal to the sweeping serial string module, and the sweep frequency tangent module output amplification
  • the frequency sweeping probe pulse train passes through the circulator input sensing fiber
  • the signal generating module comprises: an arbitrary signal generator and two radio frequency signal amplifiers, wherein: two radio frequency signal amplifiers are respectively connected to two output channels of any signal generator.
  • One channel of any of the signal generators repeatedly outputs a frequency sweeping RF pulse sequence, and the other channel outputs a single frequency sine wave signal.
  • the swept RF pulse sequence includes: a plurality of swept RF pulse signals having equal time intervals, the same pulse width, and different overlapping frequency ranges.
  • the product of the time interval and the number of swept RF pulse signals is equal to the back and forth transmission time of the light in the sensing fiber.
  • the light source module comprises: a narrow linewidth fiber laser, a fiber coupler and a polarization controller connected in sequence.
  • the fiber coupler has a split ratio of 90:10.
  • the optical frequency comb generating module comprises: a direct current voltage source and a light modulator, wherein: the direct current voltage source adjusts a direct current bias voltage of the input light modulator, and generates an optical frequency comb signal.
  • the light modulator is a light intensity modulator or an optical phase modulator.
  • the frequency sweeping and stringing module comprises: a connected acousto-optic modulator/single sideband modulator and a doped fiber amplifier.
  • the sensing fiber is a single mode communication fiber.
  • the beat frequency module is a 50:50 fiber coupler.
  • the photoelectric conversion module is a balance detector.
  • the detecting and positioning module comprises: a connected data acquisition card and a positioning unit, wherein: the data acquisition card samples the input electrical signal, and inputs the original data into the positioning unit for phase demodulation.
  • the invention relates to a vibration detecting and positioning method based on the above system, which digitally filters original data segments from a plurality of frequency-swept probe light pulses by using a plurality of frequency band-plus and non-overlapping digital band-pass filters to obtain a sensing fiber.
  • a plurality of reflectance curves then, by performing a fading process on the reflectance curve, obtaining multiple integrated reflectance curves without interference fading and polarization fading, and obtaining a phase variance curve by phase processing the integrated reflectance curve;
  • the variance in the variance curve is used to determine the vibration point and finally obtain the position and vibration waveform of the vibration point.
  • the reflectance curve is obtained by the following method: the positioning unit generates a plurality of digital band pass filters with different frequency bands and no overlap, and divides the original data segments from the plurality of swept probe light pulses into the same number as the digital band pass filters. The sub-data segment is then cross-correlated with the corresponding digital matched filter to obtain a set of reflectance curves of the sensing fiber.
  • the de-fading process refers to: taking a conjugate of a reflectance curve as a reference, multiplying with other reflectance curves to obtain a set of reflectance curves of phase-returned zero, and a reflectance curve of zeroing the phase
  • the averaging operation results in a comprehensive reflectance curve without interference fading and polarization fading.
  • the phase processing refers to: taking the phase term of each integrated reflectance curve as a phase curve, delaying the phase curve, and taking a phase curve before and after the time shift to obtain a differential phase curve, and calculating a variance of the differential phase curve. , get its phase variance curve.
  • the determination of the vibration point means that if the variance of a point in the phase variance curve is greater than 0.02, the point is a vibration point.
  • the position of the vibration point on the sensing fiber is: Where: c' is the propagation speed of light in the fiber, t s is the sampling rate of the data acquisition card, and k 0 is the index value corresponding to the vibration point.
  • the vibration waveform of the vibration point is a new sequence composed of differential phases at the vibration point in the differential phase curve.
  • the invention can simultaneously obtain high spatial resolution and long detection distance, multiply the response bandwidth of the vibration frequency, and can effectively eliminate the extremely weak point on the reflectance curve, thereby eliminating phase demodulation errors. Achieve the purpose of improving signal-to-noise ratio, accurately detecting and locating vibration points.
  • FIG. 1 is a schematic diagram of a distributed optical fiber sensing system
  • 2 is a time-frequency curve of a frequency-swept probe optical pulse signal
  • Embodiment 3 is a vibration waveform diagram of a vibration point detected in Embodiment 1;
  • 1 is an arbitrary signal generator
  • 2 are RF signal amplifiers
  • 4 is a narrow linewidth fiber laser
  • 5 is a fiber coupler
  • 6 is a polarization controller
  • 7 is a DC voltage source
  • 8 is a light modulator
  • 9 is an acousto-optic modulator
  • 10 is a bait light
  • the fiber amplifier 11 is an optical circulator
  • 12 is a sensing fiber
  • 13 is a 50:50 fiber coupler
  • 14 is a balanced detector
  • 15 is a data acquisition card
  • 16 is a positioning unit.
  • the embodiment includes: a signal generation module, a light source module, an optical frequency comb generation module, a frequency sweeping and stringing module, an optical circulator 11 , a sensing optical fiber 12 , a beat frequency module , a photoelectric conversion module , and a detection and positioning module .
  • the signal generating module respectively inputs the amplified frequency-swept RF pulse sequence and the amplified single-frequency sine wave signal to the frequency sweeping string module and the optical frequency comb generating module, and the signal generating module sends a trigger signal to the detecting and positioning module;
  • the light source module generates
  • the ultra-narrow linewidth laser is divided into a detection optical path and a reference optical path, and is respectively output to the optical frequency comb generating module and the beat frequency module;
  • the optical frequency comb generating module inputs the optical frequency comb signal to the sweeping serial string module, and the sweep frequency tangent module output is amplified.
  • the frequency-swept probe optical pulse train is input through the a port of the optical circulator 11 and output to the sensing fiber 12 through the b port; the Rayleigh backscattered light generated by the sensing fiber 12 is input to the optical ring through the b port of the optical circulator 11
  • the device 11 inputs the beat frequency module through the c port, and the reference light is beaten in the beat frequency module, and the generated beat frequency optical signal is input into the photoelectric conversion module;
  • the electrical conversion module converts the beat frequency optical signal into an electrical signal, and inputs the detection positioning module to detect and locate the vibration point.
  • the signal generating module comprises: an arbitrary signal generator 1 and two radio frequency signal amplifiers 2, 3, wherein: the two radio frequency signal amplifiers 2, 3 are respectively connected to two output channels of any signal generator 1.
  • One channel of any of the signal generators 1 repeatedly outputs a frequency sweeping RF pulse sequence, and the other channel outputs a single frequency sine wave signal.
  • the product of the time interval T and the number N of swept RF pulse signals, NT, is equal to the back and forth transmission time of the light in the sensing fiber 12, i.e., 100 ⁇ s.
  • the single-frequency sine wave signal has a frequency of 100 MHz.
  • the light source module comprises: a narrow linewidth fiber laser 4, a fiber coupler 5 and a polarization controller 6 connected in sequence.
  • the fiber coupler 5 has a split ratio of 90:10.
  • the narrow linewidth fiber laser 4 has a line width of 1 kHz.
  • the optical frequency comb generating module comprises: a DC voltage source 7 and a light modulator 8, wherein: the DC voltage source 7 adjusts the DC bias voltage of the input light modulator 8 and generates an optical frequency comb signal.
  • the light modulator 8 is a light intensity modulator.
  • the swept cut string module includes: a connected acousto-optic modulator 9 and a doped fiber amplifier 10.
  • the pulse width ⁇ P 2 ⁇ s
  • the sweep frequency range F1 is 50-70 MHz, 70-90 MHz, 90- 110MHz, 110-130MHz, 130-150MHz
  • F2 is 150-170MHz, 170-190MHz, 190-210MHz, 210-230MHz, 230-250MHz
  • F3 is 250-270MHz, 270-290MHz, 290-310MHz, 310-330MHz, 330 to 350 MHz.
  • the sensing fiber 12 is a single mode communication fiber and has a total length of 10 km.
  • the beat frequency module is a 50:50 fiber coupler 13.
  • the photoelectric conversion module is a balance detector 14.
  • the balanced detector 14 has a bandwidth of 400 MHz.
  • the detection and positioning module comprises: a connected data acquisition card 15 and a positioning unit 16, wherein: the data acquisition card 15 samples the input electrical signal, and inputs the original data into the positioning unit 16 for phase demodulation.
  • the data acquisition card 15 has a sampling rate t s of 1 GSa/s and a resolution of 8 bits.
  • the embodiment relates to a detection and positioning method based on the above system, comprising the following steps:
  • the time interval T between two adjacent probe light pulses is much smaller than NT, that is, less than the maximum back and forth transmission time of the light in the sensing fiber 12, Rayleigh backscattering of two adjacent probe light pulses There is a coincidence in time. of.
  • the band-pass filter and the matched filter can be used to suppress the back-reflected signals of the probe light pulses that do not match, thereby achieving separation. The purpose of backscattering light signals.
  • Step 4 Perform an averaging operation on the reflectance curve of the phase-returned zero obtained in the previous step to obtain a comprehensive reflectance curve of the NL non-interference fading and polarization fading:
  • Step 7 Find the variance of the NL differential phase curves obtained in the previous step to obtain the phase variance curve:
  • the spatial resolution ⁇ z of this embodiment is determined by the sweep frequency range of the swept probe light pulse, that is, Where: ⁇ is the sweep speed.
  • the vibration frequency response bandwidth of this embodiment is determined by the transmission time interval of the frequency-swept probe light pulse, which is 1/2T. In theory, the vibration frequency response bandwidth is theoretically increased by N times compared to the conventional scheme.
  • a vibration point is set, and a single-frequency vibration having a frequency of 21 kHz occurs at 9.93 km of the sensing fiber 12, and the vibration coverage of the vibration point is 10 m.
  • the bandwidth of the frequency band of the three digital band pass filters is 50-150 MHz, 150-250 MHz, and 250 to 350 MHz;
  • the reflectance curve obtained in this embodiment is:
  • the reflectance curve of the phase return to zero is
  • the comprehensive reflectance curve is
  • This embodiment breaks through the limitation of the length of the sensing fiber 12 to the vibration frequency response range: since the sensing fiber 12 has a total length of 10 km, the maximum measurable in the conventional distributed optical fiber sensing system based on the optical time domain reflectometer The vibration frequency is only 5 kHz, and this embodiment successfully measures the vibration frequency of 21 kHz and has a high signal to noise ratio.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Optical Transform (AREA)

Abstract

一种分布式光纤传感系统及其振动检测定位方法,包括:信号发生模块、光源模块、光频率梳生成模块、扫频切串模块、光环形器、传感光纤、拍频模块、光电转换模块和检测定位模块;检测定位模块中的定位单元通过生成多个频段不同且无重叠的数字带通滤波器,对来自多个扫频探测光脉冲的原始数据段进行数字滤波,得到传感光纤的多条反射率曲线;对反射率曲线进行消衰落处理,得到无干涉衰落和偏振衰落的多条综合反射率曲线;对综合反射率曲线作相位处理,得到其相位方差曲线;根据相位方差曲线中的方差进行振动点的判定并最终得到振动点的位置和振动波形;本发明定位精度高,振动频率响应范围大,振动波形的信噪比高。

Description

分布式光纤传感系统及其振动检测定位方法 技术领域
本发明涉及的是一种光纤传感领域的技术,具体是一种分布式光纤传感系统及其振动检测定位方法。
背景技术
自从20世纪70年代光纤被发明以来,光纤传感技术也随之蓬勃发展。除了可以用于远距离高速率通信,光纤也具备感知外部物理参数的能力。利用这种敏感的特性,研究人员发明了一系列的光纤传感器件。其中分布式光纤振动传感器是最近几年来的研究热点。它相比于传统的振动传感器具有很多优势,比如:防水防潮;抗电磁干扰;使用安全;最重要的是,具有分布式传感和远距离传感的能力。
目前使用最广泛、研究最多的是基于光时域反射仪的分布式光纤传感系统,因为此类系统拥有结构紧凑、解调算法简单、定位精度高、信噪比高等优点。但是有两个重大缺陷:一、系统的振动频率响应带宽和传感距离是矛盾的。因为传统的基于光时域反射仪的分布式光纤振动传感系统的频率响应带宽是系统发射探测脉冲频率的一半,而发射探测脉冲频率的倒数,即探测脉冲发射时间间隔,必须大于光在整段传感光纤中来回传输的时间,所以传感光纤长度越长,振动响应带宽越小,反之亦然。这个缺陷严重地限制了该类分布式光纤振动传感系统在高频率振动传感领域的应用。二、系统的空间分辨率和最大探测距离是矛盾的。要想获得高的空间分辨率,探测光脉冲的持续时间必须很短,这导致探测光脉冲的功率很低,进而限制了探测距离。
针对振动频率响应带宽和传感距离的矛盾,目前有如下几种解决方案:基于光频域反射仪的分布式光纤振动传感系统,虽然能获取高频率振动的频率信息,但是无法获得振动的时域信息;基于干涉仪的分布式光纤传感系统,虽然能获得很大的振动频率响应范围,但是该类系统有解调算法复杂、定位精度差等缺点;基于干涉仪和光时域反射仪融合结构的分布式光纤传感系统,虽然获得了两类系统的优点,但是系统变得复杂,而且传感光纤需要为环形结构,不能单端测量;基于频分复用技术和光时域反射仪的分布式传感系统,综合性能(空间分辨率、可测量范围、信噪比)仍然有待提高。
发明内容
本发明针对现有技术较多探测脉冲发射频率受限于传感距离,且采用的入侵位置算法基于基于强度解调,其信噪比较低的同时无法消除偏振衰落和干涉衰落噪声,易使相位解调出的 振动波形信息出错等缺陷,提出一种分布式光纤传感系统及其振动检测定位方法,通过产生光频率梳信号,结合可消干涉衰落和偏振衰落的相位解调算法,消除传感光纤的反射率曲线上的极弱反射点,提高信噪比和定位精度;通过频分复用技术成倍扩大了振动频率响应带宽,发射的扫频光脉冲解决了空间分辨率和探测距离的矛盾。
本发明是通过以下技术方案实现的:
本发明涉及一种分布式光纤传感系统,包括:信号发生模块、光源模块、光频率梳生成模块、扫频切串模块、光环形器、传感光纤、拍频模块、光电转换模块和检测定位模块,其中:信号发生模块分别向扫频切串模块和光频率梳生成模块输入放大的扫频射频脉冲序列和放大的单频正弦波信号,同时信号发生模块向检测定位模块发送触发信号;光源模块产生的超窄线宽激光分为探测光路和参考光路,并分别输出至光频率梳生成模块和拍频模块;光频率梳生成模块向扫频切串模块输入光频率梳信号,扫频切串模块输出放大的扫频探测光脉冲串,经过环形器输入传感光纤;传感光纤产生的瑞利背向散射光经环形器输入拍频模块,与参考光在拍频模块中拍频,产生的拍频光信号输入光电转换模块;光电转换模块将拍频光信号转换为电信号,并输入检测定位模块进行振动点的检测和定位。
所述的信号发生模块包括:任意信号发生器和两个射频信号放大器,其中:两个射频信号放大器分别与任意信号发生器的两个输出通道相连。
所述的任意信号发生器的一个通道重复输出扫频射频脉冲序列,另一个通道输出单频正弦波信号。
所述的扫频射频脉冲序列包括:多个等时间间距、相同脉冲宽度、不同且无重叠的扫频范围的扫频射频脉冲信号。
所述的时间间距与扫频射频脉冲信号的个数的乘积等于光在传感光纤中的来回传输时间。
所述的光源模块包括:依次相连的窄线宽光纤激光器、光纤耦合器和偏振控制器。
优选地,所述的光纤耦合器的分光比为90:10。
所述的光频率梳生成模块包括:直流电压源和光调制器,其中:直流电压源调整输入光调制器的直流偏置电压,并产生光频率梳信号。
所述的光调制器为光强度调制器或光相位调制器。
所述的扫频切串模块包括:相连的声光调制器/单边带调制器和掺饵光纤放大器。
所述的传感光纤为单模通信光纤。
所述的拍频模块为50:50光纤耦合器。
所述的光电转换模块为平衡探测器。
所述的检测定位模块包括:相连的数据采集卡和定位单元,其中:数据采集卡对输入的电信号进行采样,将原始数据输入定位单元进行相位解调。
本发明涉及一种基于上述系统的振动检测定位方法,通过多个频段不同且无重叠的数字带通滤波器对来自多个扫频探测光脉冲的原始数据段进行数字滤波,得到传感光纤的多条反射率曲线;然后通过对反射率曲线进行消衰落处理,得到无干涉衰落和偏振衰落的多条综合反射率曲线、通过对综合反射率曲线作相位处理,得到其相位方差曲线;根据相位方差曲线中的方差进行振动点的判定并最终得到振动点的位置和振动波形。
所述的反射率曲线通过以下方法得到:定位单元生成多个频段不同且无重叠的数字带通滤波器,将来自多个扫频探测光脉冲的原始数据段分成与数字带通滤波器相同数量的子数据段,再将子数据段与对应的数字匹配滤波器作互相关运算,得到传感光纤的反射率曲线集合。
所述的消衰落处理是指:以一条反射率曲线的共轭作为参考,与其他的反射率曲线作相乘运算,得到相位归零的反射率曲线集合,并对相位归零的反射率曲线作平均运算,得到无干涉衰落和偏振衰落的综合反射率曲线。
所述的相位处理是指:取各条综合反射率曲线的相位项为相位曲线,对相位曲线进行时延,将时移前后的相位曲线作差分得到差分相位曲线,并对差分相位曲线求方差,得到其相位方差曲线。
所述的振动点的判定是指:如果相位方差曲线中的某点的方差大于0.02,则该点为振动点。
所述的振动点在传感光纤上的位置为:
Figure PCTCN2016096807-appb-000001
其中:c'为光在光纤中的传播速度,ts为数据采集卡的采样率,k0为振动点对应的索引值。
所述的振动点的振动波形为差分相位曲线中振动点处的差分相位组成的新序列。
技术效果
与现有技术相比,本发明可同时获得高空间分辨率和长探测距离,成倍扩大了振动频率的响应带宽,并且可有效消除反射率曲线上的极弱点,进而消除相位解调错误,达到提高信噪比、精确检测和定位振动点的目的。
附图说明
图1为分布式光纤传感系统示意图;
图2为扫频探测光脉冲信号的时频曲线;
图3为实施例1中探测到的振动点的振动波形图;
图中:1为任意信号发生器、2、3为射频信号放大器、4为窄线宽光纤激光器、5为光纤耦合器、6为偏振控制器、7为直流电压源、8为光调制器、9为声光调制器、10为掺饵光 纤放大器、11为光环形器、12为传感光纤、13为50:50光纤耦合器、14为平衡探测器、15为数据采集卡、16为定位单元。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1所示,本实施例包括:信号发生模块、光源模块、光频率梳生成模块、扫频切串模块、光环形器11、传感光纤12、拍频模块、光电转换模块和检测定位模块,其中:信号发生模块分别向扫频切串模块和光频率梳生成模块输入放大的扫频射频脉冲序列和放大的单频正弦波信号,同时信号发生模块向检测定位模块发送触发信号;光源模块产生的超窄线宽激光分为探测光路和参考光路,并分别输出至光频率梳生成模块和拍频模块;光频率梳生成模块向扫频切串模块输入光频率梳信号,扫频切串模块输出放大的扫频探测光脉冲串,经过光环形器11的a端口输入并通过b端口输出至传感光纤12;传感光纤12产生的瑞利背向散射光经光环形器11的b端口输入光环形器11并通过c端口输入拍频模块,与参考光在拍频模块中拍频,产生的拍频光信号输入光电转换模块;光电转换模块将拍频光信号转换为电信号,并输入检测定位模块进行振动点的检测和定位。
所述的信号发生模块包括:任意信号发生器1和两个射频信号放大器2、3,其中:两个射频信号放大器2、3分别与任意信号发生器1的两个输出通道相连。
所述的任意信号发生器1的一个通道重复输出扫频射频脉冲序列,另一个通道输出单频正弦波信号。
所述的重复输出的扫频射频脉冲序列的重复次数L=16,包括:N=5个等时间间距T(20μs)、相同脉冲宽度τP(2μs)、不同且无重叠的扫频范围:150~170MHz、170~190MHz、190~210MHz、210~230MHz和230~250MHz的扫频射频脉冲信号。
所述的时间间距T与扫频射频脉冲信号的个数N的乘积NT等于光在传感光纤12中的来回传输时间,即100μs。
所述的单频正弦波信号的频率为100MHz。
所述的光源模块包括:依次相连的窄线宽光纤激光器4、光纤耦合器5和偏振控制器6。
所述的光纤耦合器5的分光比为90:10。
所述的窄线宽光纤激光器4的线宽为1kHz。
所述的光频率梳生成模块包括:直流电压源7和光调制器8,其中:直流电压源7调整输入光调制器8的直流偏置电压,并产生光频率梳信号。
所述的光频率梳信号为输入光调制器8的探测光和单频正弦波信号产生的2M+1=3个光频率成分的光频率梳信号,其中:M为光调制器8产生的边带阶数。
所述的光调制器8为光强度调制器。
所述的扫频切串模块包括:相连的声光调制器9和掺饵光纤放大器10。
如图2所示,所述的扫频切串模块输出的扫频探测光脉冲串的时间间距T=20μs,脉冲宽度τP=2μs,扫频范围F1为50~70MHz、70~90MHz、90~110MHz、110~130MHz、130~150MHz,F2为150~170MHz、170~190MHz、190~210MHz、210~230MHz、230~250MHz,F3为250~270MHz、270~290MHz、290~310MHz、310~330MHz、330~350MHz。
所述的传感光纤12为单模通信光纤,全长为10km。
所述的拍频模块为50:50光纤耦合器13。
所述的光电转换模块为平衡探测器14。
所述的平衡探测器14的带宽为400MHz。
所述的检测定位模块包括:相连的数据采集卡15和定位单元16,其中:数据采集卡15对输入的电信号进行采样,将原始数据输入定位单元16进行相位解调。
所述的数据采集卡15的采样率ts为1GSa/s,分辨率为8bit。
本实施例涉及基于上述系统的检测定位方法,包括以下步骤:
步骤1、定位单元16将数据采集卡15采样的来自NL个扫频探测光脉冲的原始数据段按时间顺序标记,即:{xn(k);k=1,…,K};n=1,…,NL,其中:K为来自1个扫频探测光脉冲的原始数据的数据量;并产生2M+1个频段不同且无重叠的数字带通滤波器{hn,m(k);k=1,…,K};n=1,...,NL;m=1,…,2M+1,将标记后的原始数据段分成2M+1个子数据段再行标记,即:{xn,m(k);k=1,…,K};n=1,…,NL;l=1,…,2M+1。
步骤2、将上一步骤得到的NL(2M+1)个子数据段与各自对应的数字匹配滤波器{hn,m(k);k=1,…,K};n=1,...,NL;m=1,…,2M+1作互相关运算,得到传感光纤12的NL(2M+1)条反射率曲线。
所述的反射率曲线的表达式为
Figure PCTCN2016096807-appb-000002
其中:κ为索引符号,*表示共轭,得到的反射率均为复数。
所述的反射率曲线上存在干涉衰落和偏振衰落。
由于两个相邻的探测光脉冲之间的时间间距T,远小于NT,即小于光在传感光纤12中最大的来回传输时间,所以两个相邻的探测光脉冲的瑞利背向散射光是在时间上是有一段重合 的。但是因为两个相邻的探测光脉冲的频率不同,对应的匹配滤波器也不同,所以可以用带通滤波器和匹配滤波器抑制与之不匹配的探测光脉冲的背向反射信号,达到分离背向散射光信号的目的。
步骤3、取来自标记为1的扫频探测光脉冲的反射率曲线{R1,m(k);k=1,…,K};m=1,…,2M+1的共轭
Figure PCTCN2016096807-appb-000003
作为参考,与其他反射率曲线相乘,得到NL(2M+1)条相位归零的反射率曲线:
Figure PCTCN2016096807-appb-000004
步骤4、对上一步骤得到的相位归零的反射率曲线作平均运算,得到NL条无干涉衰落和偏振衰落的综合反射率曲线:
Figure PCTCN2016096807-appb-000005
步骤5、取上一步骤得到的NL条综合反射率曲线的相位项,得到NL条相位曲线:{φn(k)=angle[rn(k)];k=1,…,K};n=1,…,NL。
对步骤3~5解释如下:以n=1时为例,2M+1条反射率曲线{R1,m(k);k=1,…,K};m=1,…,2M+1解调自同一个扫频探测光脉冲的瑞利背向散射光的2M+1个部分,这2M+1条反射率曲线上都存在着严重的干涉衰落和偏振衰落点,这些衰落点的反射率的模值很小,受噪声影响,这些点的相位解调会出错。但因为这2M+1个部分的频率各不相同,所以这2M+1条反射率曲线也各不相同,即干涉衰落和偏振衰落导致的极弱点在这2M+1条反射率曲线上的位置也各不相同。对这2M+1条反射率曲线做平均运算便能够消除这些极弱点,从而消除这些点上出现的相位解调错误。但是由于反射率是复数,由复数加法的知识可知,复数相加的结果的模值不一定变大,有时会变小。为了使反射率相加后的模值最大化,需要先旋转反射率,使它们的夹角归零,然后再相加。
步骤6、对上一步骤得到的NL条相位曲线时延D个单位,再将时移前后的相位曲线作差分,得到NL条差分相位曲线:{Δφn(k)=φn(k)-φn(k-D);k=1,…,K};n=1,…,NL。
步骤7、对上一步骤得到的NL条差分相位曲线求方差,得到其相位方差曲线:
Figure PCTCN2016096807-appb-000006
步骤8、如果上一步骤得到的相位方差曲线中k=k0处的方差大于0.02,则该点为振动点,它在传感光纤12上的位置为:
Figure PCTCN2016096807-appb-000007
其中:c'为光在光纤中的传播速度,ts为数据采集卡15的采样率,k0为振动点对应的索引值;振动点的振动波形为步骤6得到的NL条差分 相位曲线中k=k0处的差分相位组成的新序列:
Figure PCTCN2016096807-appb-000008
本实施例的空间分辨率Δz由扫频探测光脉冲的扫频范围决定,即
Figure PCTCN2016096807-appb-000009
其中:γ为扫频速度。
本实施例的振动频率响应带宽由扫频探测光脉冲的发射时间间隔决定,为1/2T。相比于传统方案,理论上振动频率响应带宽增加N倍。
本实施例设置一个振动点,在传感光纤12的9.93km处发生频率为21kHz的单频振动,振动点的振动覆盖范围为10m。
本实施例中,K=100000,N=5,L=16,NL=80,M=1,D=100;三个数字带通滤波器的频段的带宽分别为50~150MHz、150~250MHz和250~350MHz;则80个扫频探测光脉冲的原始数据段按时间顺序标记为{xn(k);k=1,…,K};n=1,…,80,分成的80×3=240个子数据段标记为{xn,m(k);k=1,…,K};n=1,…,80;m=1,2,3。
本实施例得到的反射率曲线为:
Figure PCTCN2016096807-appb-000010
相位归零的反射率曲线为
Figure PCTCN2016096807-appb-000011
综合反射率曲线为
Figure PCTCN2016096807-appb-000012
相位曲线为{φn(k)=angle[rn(k)];k=1,…,100000};n=1,…,80,差分相位曲线为{Δφn(k)=φn(k)-φn(k-100);k=1,…,100000};n=1,…,80,相位方差曲线为
Figure PCTCN2016096807-appb-000013
在相位方差曲线中,k0=99300处的方差大于0.02,可判定该点为振动点,振动点在传感光纤12上的位置即为
Figure PCTCN2016096807-appb-000014
这与设定的振动位置相吻合。振动点的振动波形为{Δφ98300(n);n=1,…,80},如图3所示,获取的振动波形的信噪比达到25dB。
本实施例突破了传感光纤12的长度对振动频率响应范围的限制:由于传感光纤12全长为10km,在传统的基于光时域反射仪的分布式光纤传感系统中,最大可测量的振动频率只有5kHz,而本实施例成功测量到21kHz的振动频率,且具有高信噪比。

Claims (12)

  1. 一种分布式光纤传感系统,其特征在于,包括:信号发生模块、光源模块、光频率梳生成模块、扫频切串模块、光环形器、传感光纤、拍频模块、光电转换模块和检测定位模块,其中:信号发生模块分别向扫频切串模块和光频率梳生成模块输入放大的扫频射频脉冲序列和放大的单频正弦波信号,同时信号发生模块向检测定位模块发送触发信号;光源模块产生的超窄线宽激光分为探测光路和参考光路,并分别输出至光频率梳生成模块和拍频模块;光频率梳生成模块向扫频切串模块输入光频率梳信号,扫频切串模块输出放大的扫频探测光脉冲串,经过环形器输入传感光纤;传感光纤产生的瑞利背向散射光经环形器输入拍频模块,与参考光在拍频模块中拍频,产生的拍频光信号输入光电转换模块;光电转换模块将拍频光信号转换为电信号,并输入检测定位模块进行振动点的检测和定位。
  2. 根据权利要求1所述的分布式光纤传感系统,其特征是,所述的信号发生模块包括:任意信号发生器和两个射频信号放大器,其中:两个射频信号放大器分别与任意信号发生器的两个输出通道相连;
    所述的任意信号发生器的一个通道重复输出扫频射频脉冲序列,另一个通道输出单频正弦波信号,其中:扫频射频脉冲序列包括:多个等时间间距、相同脉冲宽度、不同且无重叠的扫频范围的扫频射频脉冲信号。
  3. 根据权利要求2所述的分布式光纤传感系统,其特征是,所述的时间间距与扫频射频脉冲信号的个数的乘积等于光在传感光纤中的来回传输时间。
  4. 根据权利要求1所述的分布式光纤传感系统,其特征是,所述的光源模块包括:依次相连的窄线宽光纤激光器、光纤耦合器和偏振控制器,其中:光纤耦合器的分光比为90:10。
  5. 根据权利要求1所述的分布式光纤传感系统,其特征是,所述的光频率梳生成模块包括:直流电压源和光调制器,其中:直流电压源调整输入光调制器的直流偏置电压,并产生光频率梳信号。
  6. 根据权利要求1所述的分布式光纤传感系统,其特征是,所述的扫频切串模块包括:相连的声光调制器/单边带调制器和掺饵光纤放大器。
  7. 根据权利要求1所述的分布式光纤传感系统,其特征是,所述的检测定位模块包括:相连的数据采集卡和定位单元,其中:数据采集卡对输入的电信号进行采样,将原始数据输入定位单元进行相位解调。
  8. 一种基于上述任一权利要求所述系统的振动检测定位方法,其特征在于,定位单元通过生成多个频段不同且无重叠的数字带通滤波器,对来自多个扫频探测光脉冲的原始数据段进行数字滤波,得到传感光纤的多条反射率曲线;对反射率曲线进行消衰落处理,得到无干涉衰落和偏振衰落的多条综合反射率曲线;对综合反射率曲线作相位处理,得到其相位方差曲线;根据相位方差曲线中的方差进行振动点的判定并最终得到振动点的位置和振动波形。
  9. 根据权利要求8所述的振动检测定位方法,其特征是,所述的反射率曲线通过以下方法得到:定位单元生成多个频段不同且无重叠的数字带通滤波器,将来自多个扫频探测光脉冲的原始数据段分成与数字带通滤波器相同数量的子数据段,再将子数据段与对应的数字匹配滤波器作互相关运算,得到传感光纤的反射率曲线集合。
  10. 根据权利要求8所述的振动检测定位方法,其特征是,所述的消衰落处理是指:以一条反射率曲线的共轭作为参考,与其他的反射率曲线作相乘运算,得到相位归零的反射率曲线集合,并对相位归零的反射率曲线作平均运算,得到无干涉衰落和偏振衰落的综合反射率曲线。
  11. 根据权利要求8所述的振动检测定位方法,其特征是,所述的相位处理是指:取各条综合反射率曲线的相位项为相位曲线,对相位曲线进行时延,将时移前后的相位曲线作差分得到差分相位曲线,并对差分相位曲线求方差,得到其相位方差曲线。
  12. 根据权利要求8所述的振动检测定位方法,其特征是,所述的振动点的判定是指:当相位方差曲线中的某点的方差大于0.02,则该点为振动点;
    所述的振动点在传感光纤上的位置为:
    Figure PCTCN2016096807-appb-100001
    其中:c'为光在光纤中的传播速度,ts为数据采集卡的采样率,k0为振动点对应的索引值;
    所述的振动点的振动波形为差分相位曲线中振动点处的差分相位组成的新序列。
PCT/CN2016/096807 2016-08-25 2016-08-26 分布式光纤传感系统及其振动检测定位方法 WO2018035833A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019506366A JP6695001B2 (ja) 2016-08-25 2016-08-26 分散型光ファイバセンシングシステム及びその振動検知位置決め方法
EP16913855.9A EP3483572B1 (en) 2016-08-25 2016-08-26 Distributed fibre sensing system and vibration detection and positioning method therefor
US16/322,259 US10989587B2 (en) 2016-08-25 2016-08-26 Distributed fibre sensing system and vibration detection and positioning method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610719172.3A CN106092305B (zh) 2016-08-25 2016-08-25 分布式光纤传感系统及其振动检测定位方法
CN201610719172.3 2016-08-25

Publications (1)

Publication Number Publication Date
WO2018035833A1 true WO2018035833A1 (zh) 2018-03-01

Family

ID=57224977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096807 WO2018035833A1 (zh) 2016-08-25 2016-08-26 分布式光纤传感系统及其振动检测定位方法

Country Status (5)

Country Link
US (1) US10989587B2 (zh)
EP (1) EP3483572B1 (zh)
JP (1) JP6695001B2 (zh)
CN (1) CN106092305B (zh)
WO (1) WO2018035833A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111157102A (zh) * 2020-01-02 2020-05-15 河海大学常州校区 一种分布式光纤传感系统中消除频率干扰的定位方法
CN113984182A (zh) * 2021-11-04 2022-01-28 国家石油天然气管网集团有限公司 一种油气管线分布式横向振源距离定位方法
CN114993448A (zh) * 2022-06-09 2022-09-02 西北大学 一种长距离分布式振动监测装置及监测方法
CN116186642A (zh) * 2023-04-27 2023-05-30 山东汇英信息科技有限公司 一种基于多维特征融合的分布式光纤传感事件预警方法
CN117350226A (zh) * 2023-09-26 2024-01-05 菏泽嘉诺网络科技有限公司 一种igbt器件的状态参数采集方法
CN118013401A (zh) * 2024-04-10 2024-05-10 宁波联河光子技术有限公司 一种基于das的带式输送机振动误报抑制方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107990970B (zh) * 2017-11-03 2019-10-15 上海交通大学 消除分布式光纤声波系统中衰落噪声的方法
CN108415067B (zh) * 2017-12-28 2020-02-14 华中科技大学 一种基于微结构光纤分布式声波传感的地震波测量系统
US10816368B2 (en) * 2018-01-24 2020-10-27 Prisma Photonics Ltd. Method and system for high sensitivity in distributed fiber sensing applications
CN110118594B (zh) * 2019-04-22 2020-07-10 华中科技大学 一种基于偏振分极接收的光学相位解调方法和系统
US10979140B2 (en) * 2019-07-09 2021-04-13 Huawei Technologies Co., Ltd. Method and apparatus for detecting operational conditions of an optical link in an optical network
CN110285333A (zh) * 2019-07-12 2019-09-27 上海交通大学 基于光纤的油气管道泄漏监测系统
JP7435160B2 (ja) * 2020-03-30 2024-02-21 沖電気工業株式会社 光ファイバ振動検知装置及び振動検知方法
CN111609919B (zh) * 2020-06-09 2021-06-01 重庆大学 光纤分布式振动和损耗同时检测系统
CL2020001869A1 (es) * 2020-07-14 2020-09-11 Mario Francisco Rendic Munoz Sistema de monitoreo continuo de condición (mcc) para correas transportadoras basado en un sensor distribuido de fibra óptica
CN112129243B (zh) * 2020-09-04 2022-02-15 电子科技大学 基于光电振荡器的准分布式光纤扭转角度测量装置和方法
CN112067113B (zh) * 2020-09-08 2022-03-25 武汉理工光科股份有限公司 一种瑞利波在土壤中传播速度的确定方法及装置
CN112082498A (zh) * 2020-09-14 2020-12-15 安徽大学 基于相位测量法ofdr应变和温度的抑噪传感方法
CN112097813B (zh) * 2020-09-14 2022-05-17 中国人民解放军国防科技大学 一种基于光频调制的3×3耦合器光电检测方法与装置
CN112504629B (zh) * 2020-11-24 2021-08-24 北京大学 一种光散射参量测量系统及其测量方法
CN112697181B (zh) * 2020-12-02 2022-07-26 广东工业大学 一种基于频率调制的相位敏感光时域反射装置及方法
US11733089B2 (en) * 2020-12-22 2023-08-22 Nec Corporation Context encoder-based fiber sensing anomaly detection
CN112611444B (zh) * 2020-12-30 2023-04-28 西安和其光电科技股份有限公司 一种可精确定位的分布式光纤振动监测系统及方法
CN112747815B (zh) * 2021-01-06 2024-02-02 苏州光格科技股份有限公司 一种分布式光纤声波传感系统中的相干衰落噪声抑制方法
KR102392287B1 (ko) * 2021-05-04 2022-05-02 에피텍(주) 지중 광케이블을 이용하여 진동원의 위치를 추정하기 위한 시스템 및 그 응용 방법
CN113432702B (zh) * 2021-05-25 2023-01-31 天津大学 一种基于光学外差的海洋跨空泡层声信号探测系统及方法
CN113639848B (zh) * 2021-08-10 2022-10-21 福州大学 具有多点同步测振的高性能扫频光学相干测振仪及方法
CN113483880A (zh) * 2021-08-17 2021-10-08 广东电网有限责任公司 基于少模光纤的振动传感系统
CN114235135B (zh) * 2021-12-22 2023-05-26 桂林电子科技大学 一种基于双差分步长的幅值解调振动定位检测方法
CN116350174A (zh) * 2021-12-27 2023-06-30 华为技术有限公司 一种脑机接口装置和信息获取方法
CN116772908A (zh) * 2021-12-28 2023-09-19 西安和其光电科技股份有限公司 一种应用于分布式光纤声波传感系统的信号数据处理方法
CN114482988B (zh) * 2021-12-28 2024-05-31 中煤科工集团西安研究院有限公司 采用分布式声学传感设备的含水层出水段定位系统及方法
CN114485900B (zh) * 2021-12-31 2023-10-03 武汉光谷互连科技有限公司 直接探测分布式声波传感系统的无衰落解调方法
CN114838240A (zh) * 2022-04-26 2022-08-02 天津市誉航润铭科技发展有限公司 一种管道内检测器运行监测系统及检测定位方法
CN116155373B (zh) * 2022-11-14 2024-06-18 中铁第四勘察设计院集团有限公司 一种单纤双向融合定位型铁路光缆监测系统与方法
CN117708506B (zh) * 2024-02-05 2024-04-26 山东省科学院激光研究所 分布式声波传感相干衰落引起的恶化效应消除方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628698A (zh) * 2012-04-06 2012-08-08 中国科学院上海光学精密机械研究所 分布式光纤传感器及信息解调方法
CN105067103A (zh) * 2015-08-31 2015-11-18 上海交通大学 基于光频域反射计的振动检测装置及其方法
CN105490738A (zh) * 2016-01-05 2016-04-13 上海交通大学 基于频率合成的光频域反射方法及系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2136113B (en) * 1983-03-05 1986-08-06 Plessey Co Plc Improvements relating to optical sensing systems
JPS61105438A (ja) * 1984-10-29 1986-05-23 Nippon Denso Co Ltd 振動試験装置
DE69019289T2 (de) * 1989-10-27 1996-02-01 Storz Instr Co Verfahren zum Antreiben eines Ultraschallwandlers.
US8004686B2 (en) * 2004-12-14 2011-08-23 Luna Innovations Inc. Compensating for time varying phase changes in interferometric measurements
CA2640462C (en) * 2008-10-03 2016-06-28 Zetec, Inc. System and method for ultrasonic testing
CA2809660C (en) * 2010-09-01 2016-11-15 Schlumberger Canada Limited Distributed fiber optic sensor system with improved linearity
CN102322880B (zh) * 2011-08-18 2013-06-05 天津大学 偏振敏感的分布式光频域反射扰动传感装置和解调方法
CN103759750B (zh) * 2014-01-23 2016-05-25 中国科学院半导体研究所 基于相位生成载波技术的分布式光纤传感系统
WO2016021689A1 (ja) * 2014-08-07 2016-02-11 古河電気工業株式会社 光ファイバセンサ、地震探査方法、石油、天然ガス貯留層分布の計測方法、歪み検知方法および地層の割れ目位置特定方法
JP6240585B2 (ja) * 2014-10-27 2017-11-29 日本電信電話株式会社 光ファイバ振動センサおよび振動測定方法
US9500562B2 (en) * 2015-02-05 2016-11-22 University Of Ottawa Kerr phase-interrogator for sensing and signal processing applications
CN104700624B (zh) * 2015-03-16 2017-07-07 电子科技大学 基于相敏光时域反射仪的车流量在线监测系统的监测方法
CN104677396B (zh) * 2015-03-19 2017-05-10 广西师范大学 动态分布式布里渊光纤传感装置及方法
CN104990620B (zh) * 2015-07-03 2018-06-08 南京大学 基于布拉格光纤光栅阵列的相敏光时域反射装置及方法
CN105466548B (zh) * 2015-12-16 2019-06-04 上海大学 相位敏感光时域反射光纤传感系统定位方法
CN105403257A (zh) * 2015-12-24 2016-03-16 四川师范大学 一种分布式布里渊光时域分析系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628698A (zh) * 2012-04-06 2012-08-08 中国科学院上海光学精密机械研究所 分布式光纤传感器及信息解调方法
CN105067103A (zh) * 2015-08-31 2015-11-18 上海交通大学 基于光频域反射计的振动检测装置及其方法
CN105490738A (zh) * 2016-01-05 2016-04-13 上海交通大学 基于频率合成的光频域反射方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3483572A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111157102A (zh) * 2020-01-02 2020-05-15 河海大学常州校区 一种分布式光纤传感系统中消除频率干扰的定位方法
CN113984182A (zh) * 2021-11-04 2022-01-28 国家石油天然气管网集团有限公司 一种油气管线分布式横向振源距离定位方法
CN114993448A (zh) * 2022-06-09 2022-09-02 西北大学 一种长距离分布式振动监测装置及监测方法
CN114993448B (zh) * 2022-06-09 2023-04-07 西北大学 一种长距离分布式振动监测装置及监测方法
CN116186642A (zh) * 2023-04-27 2023-05-30 山东汇英信息科技有限公司 一种基于多维特征融合的分布式光纤传感事件预警方法
CN116186642B (zh) * 2023-04-27 2023-09-08 山东汇英光电科技有限公司 一种基于多维特征融合的分布式光纤传感事件预警方法
CN117350226A (zh) * 2023-09-26 2024-01-05 菏泽嘉诺网络科技有限公司 一种igbt器件的状态参数采集方法
CN118013401A (zh) * 2024-04-10 2024-05-10 宁波联河光子技术有限公司 一种基于das的带式输送机振动误报抑制方法

Also Published As

Publication number Publication date
CN106092305A (zh) 2016-11-09
JP6695001B2 (ja) 2020-05-20
EP3483572B1 (en) 2021-06-23
US10989587B2 (en) 2021-04-27
CN106092305B (zh) 2022-02-18
US20200182685A1 (en) 2020-06-11
JP2019525181A (ja) 2019-09-05
EP3483572A1 (en) 2019-05-15
EP3483572A4 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2018035833A1 (zh) 分布式光纤传感系统及其振动检测定位方法
CN106052842B (zh) 可消衰落噪声的分布式光纤振动传感系统及其解调方法
JP6698164B2 (ja) 周波数合成に基づいた光周波数領域反射方法及びシステム
CN107505041B (zh) 一种基于相位敏感光时域反射计的相位解调装置和方法
CN106679790B (zh) 一种提高分布式光纤振动传感灵敏度的互相关解调方法
CN112097813B (zh) 一种基于光频调制的3×3耦合器光电检测方法与装置
CN107990970B (zh) 消除分布式光纤声波系统中衰落噪声的方法
CN102384799B (zh) 基于布里渊分布式光纤传感系统相干检测方案的扫频及数据处理方法
CN109540280B (zh) 一种相位敏感型光时域反射系统提高效率的信号处理方法
CN106768277B (zh) 一种分布式光纤振动传感装置的解调方法
CN110470327A (zh) 一种光时域分析仪和分析方法
CN205981438U (zh) 分布式光纤传感系统
CN109596205A (zh) 一种基于延时光纤的双脉冲光纤振动传感方法
CN113328797B (zh) 基于脉冲光调制的光时延测量方法及装置
CN109450531B (zh) 一种基于单边带调频的光纤干涉仪传感器扰动信号解调装置
CN109297581A (zh) 一种用于补偿相位敏感光时域反射计中频率漂移的二次相位差分测量方法
CN102997945A (zh) 光纤分布式扰动传感器的多点扰动定位方法
CN112697181A (zh) 一种基于频率调制的相位敏感光时域反射装置及方法
CN205898286U (zh) 可消衰落噪声的分布式光纤振动传感系统
CN104931126A (zh) 一种基于超声波外调制的激光干涉振动检测装置
CN116295778A (zh) 分布式声波传感系统及其解调方法
CN112880711B (zh) 一种基于双脉冲调制的分布式光纤传感方法及系统
CN112798025B (zh) 提高ofdr测量空间分辨率的方法及ofdr系统
CN219714538U (zh) 温度应变可分离的动静态联合测量分布式光纤传感系统
CN213455339U (zh) 一种测量光纤长度的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506366

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016913855

Country of ref document: EP

Effective date: 20190207

NENP Non-entry into the national phase

Ref country code: DE