WO2018035795A1 - 多点传动支撑系统和方法 - Google Patents

多点传动支撑系统和方法 Download PDF

Info

Publication number
WO2018035795A1
WO2018035795A1 PCT/CN2016/096664 CN2016096664W WO2018035795A1 WO 2018035795 A1 WO2018035795 A1 WO 2018035795A1 CN 2016096664 W CN2016096664 W CN 2016096664W WO 2018035795 A1 WO2018035795 A1 WO 2018035795A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
support
rod
support structure
point
Prior art date
Application number
PCT/CN2016/096664
Other languages
English (en)
French (fr)
Inventor
彭程
黄兴华
谭强
卢晓聪
卢丽忠
钱佳文
Original Assignee
苏州聚晟太阳能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州聚晟太阳能科技股份有限公司 filed Critical 苏州聚晟太阳能科技股份有限公司
Priority to PCT/CN2016/096664 priority Critical patent/WO2018035795A1/zh
Priority to CN201680027629.2A priority patent/CN107980196A/zh
Publication of WO2018035795A1 publication Critical patent/WO2018035795A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/06Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported by levers for vertical movement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to a stent system, and more particularly to a stent system and method that supports multi-point transmission and multi-point support.
  • the traditional solar tracking brackets are mostly single-point support transmissions, that is, one speed reducer or push rod drives a row of solar panels at the same time.
  • This structure is in the long row tracking system, away from the driving device without connecting the transmission fulcrum under the action of strong wind. It is easy to shake.
  • the use of a damper can reduce vibration, but at the same time increase the energy consumption of the drive mechanism.
  • the single-point support structure is difficult to adapt to the ground undulations and settlement, and the mountain adaptability is also poor.
  • the existing multi-point transmission bracket mostly uses a single-nut scissor jack structure, and the structure is not only easy to be unsynchronized in the movement of the left and right sides of the jack, but also the structure of the jack connector is complicated. At the same time, the waterproof and sand control effect of this structure is also poor.
  • the present application includes a multi-point support multi-point transmission bracket system based on a jack, a worm gear, a bevel gear, a planet gear, a hydraulic system, or a chain.
  • the bracket system Compared with the traditional single-point or multi-point transmission system, the bracket system has improved structural shock resistance, waterproof and sand control capacity, and can adapt to foundation settlement and uneven terrain.
  • an apparatus can include a The transmission structure, a first support structure and a motor.
  • the transmission structure can include a first lead screw.
  • the first support structure can include two connection points and at least one support point.
  • the two connection points can be connected to the first lead screw.
  • the support point can be connected to an external device.
  • the motor can drive the transmission structure to rotate.
  • the rotation of the transmission structure can drive the two connection points to reversely move relative to the first screw rod and drive the movement of the support point.
  • the apparatus can further include a second support structure and a second lead screw.
  • the second support structure can include two connection points and at least one support point. Two connection points of the second support structure may be connected to the second lead screw.
  • the support point of the second support structure can be connected to the external device. Wherein, the support point of the second support structure and the support point of the first support structure can move synchronously.
  • the transmission structure can further include a drive rod that can connect the first lead screw and the second lead screw.
  • the transmission rod can be coupled to the first or second screw shaft by a universal joint.
  • the two attachment points may each include two differently-rotating nuts.
  • the surface of the region of the first lead screw corresponding to the two nuts may be threaded, and the thread may be configured to correspond to the rotation of the two nuts.
  • the support structure can further include two links. Wherein, one end of each link may be connected to the support point, and the other end of each link may be respectively connected to the two connection points.
  • the apparatus can further include a sleeve structure, the sleeve The structure can be overlaid on at least a portion of the transmission structure.
  • the first lead screw may be composed of at least one of oil steel, ceramic, copper, copper alloy, high manganese steel, high manganese alloy, cast iron, chrome molybdenum steel, and graphite.
  • an apparatus can include a drive rod and a first lead rod coupled to the first lead rod by a first connection structure, the drive rod and the first lead rod being non-coaxial.
  • the apparatus may further include a first support structure, the first support structure may include a connection point and at least one support point, the connection point being connectable to the first lead screw, the support point being connectable to an external device.
  • the apparatus can further include a motor that drives the drive rod to rotate. The rotation of the transmission rod can drive the connection point to move relative to the first screw rod and drive the movement of the support point.
  • the apparatus may further include a second support structure and a second lead screw, the second support structure may include a connection point and at least one support point, the connection point of the second support structure may be The second screw is connected, and the support point of the second support structure can be connected to the external device, wherein the second screw can be connected to the transmission rod through a second connection structure, and the support point of the second support structure The movement can be synchronized with the support point of the first support structure.
  • first connection structure or the second connection structure may comprise a pair of bevel teeth or a set of worm gears.
  • the first connection structure or the second connection structure may comprise a chain or a rack.
  • the apparatus can further include a sleeve structure that can be overlaid on at least a portion of the transmission structure.
  • the first lead screw may be composed of at least one of oil steel, ceramic, copper, copper alloy, high manganese steel, high manganese alloy, cast iron, chrome molybdenum steel, and graphite.
  • an apparatus can include a transmission structure that can include a transmission rod, a first rotating member, and a second rotating member that can be coupled to the first rotating member.
  • the apparatus may further include a support structure, the support structure may include two link mechanisms, one end of the two link mechanisms may be respectively hinged to two parts of an external device, and the other end of the two link mechanisms may be They are respectively connected to the two parts of the second rotating member.
  • the apparatus may further include a motor that can drive the transmission rod to rotate, wherein the rotation of the transmission rod can drive the rotation of the first rotating member and the second rotating member and drive the rotation of the two linkage mechanisms.
  • the two linkages can each include one or more articulated links.
  • the first rotating member may be a sun gear of a planetary gear set and the second rotating member may be an outer ring gear of the planetary gear set.
  • an apparatus can include one or more hydraulic pushers.
  • the hydraulic pusher can include a reservoir chamber, one end of which can be hinged to a column.
  • the hydraulic pusher may further include a push rod, the push rod may include a first end and a second end, the first end of the push rod may be hinged to an external device, and the second end of the push rod may be movable Placed in the reservoir.
  • the device can go into one
  • the step includes a hydraulic station that can simultaneously supply liquid to a reservoir in the one or more hydraulic rams. Wherein, the change in the volume of the liquid in the liquid storage chamber can drive the second end of the push rod to move in the liquid storage chamber.
  • an apparatus can include a transmission structure that can include a drive rod and a rotating member that can be coupled to the rotating member.
  • the apparatus may further include a transmission member, the two ends of the transmission member being respectively connectable to two portions of an external device, the transmission member being partially coverable on the rotating member.
  • the apparatus can further include a motor that can drive the drive rod to rotate. Wherein, the rotation of the transmission rod can drive the rotation of the rotating member, and the rotation of the rotating member can further drive the two ends of the transmission member to move.
  • the rotating member can include a sprocket or a rotating wheel
  • the transmission member can include a chain or a pull cord
  • FIG. 1 is an illustration of an exemplary multi-point transmission support system shown in accordance with some embodiments of the present application. Use scene graphs;
  • FIG. 2 is a block diagram of an example control system shown in accordance with some embodiments of the present application.
  • FIG. 3 is an exemplary flow diagram of an example control system shown in accordance with some embodiments of the present application.
  • FIG. 4 is a block diagram of an example drive module shown in accordance with some embodiments of the present application.
  • FIG. 5 is a block diagram of an example control module shown in accordance with some embodiments of the present application.
  • FIG. 6 is an exemplary flow diagram of generating control instructions or drivers, in accordance with some embodiments of the present application.
  • FIG. 7 is a block diagram of an example bracket shown in accordance with some embodiments of the present application.
  • FIG. 8 is an exemplary flowchart of driving an external device according to some embodiments of the present application.
  • FIG. 9 is a schematic structural view of an example bracket shown in accordance with some embodiments of the present application.
  • FIG. 10 is a schematic structural view of an example jack support structure according to some embodiments of the present application.
  • FIG. 11 is a schematic axial structural view of an exemplary bevel support structure according to some embodiments of the present application.
  • FIG. 12 is a schematic illustration of an example chain drive structure shown in accordance with some embodiments of the present application.
  • FIG. 13 is a schematic axial view of an exemplary planetary gear support structure shown in accordance with some embodiments of the present application.
  • FIG. 14 is a diagram of an example hydraulic rod support structure shown in accordance with some embodiments of the present application. Schematic diagram
  • 15 is a schematic structural view of an exemplary chain structure according to some embodiments of the present application.
  • 16 is a schematic structural diagram of an example protection device according to some embodiments of the present application.
  • 17 is a schematic structural diagram of an example rack application scenario according to some embodiments of the present application.
  • FIG. 18 is a schematic structural diagram of an example rack application scenario shown in accordance with some embodiments of the present application.
  • FIG. 19 is a block diagram showing an example rack application scenario shown in accordance with some embodiments of the present application.
  • the present application relates to a multi-point transmission support method that includes controlling the motion of a carriage using a control engine.
  • the movement of the bracket drives an external device connected to the bracket for movement.
  • the method includes driving a motor to generate a rotational torque.
  • the rotational torque is transmitted to a support structure via a transmission structure.
  • the support structure is one or more of a jack, a worm gear, a bevel gear, a planetary gear set, and a hydraulic system.
  • the rotating torque drives the support structure to move and further drives an external device connected thereto to move or rotate.
  • 1 is an example multi-point transmission support system shown in accordance with some embodiments of the present application.
  • the multipoint transmission support system 100 can include a control engine 110, a cradle 120, an external device 130, a network 140, a sensor device 150, a server 160, a terminal device 170, and a database 180.
  • Control engine 110 can be coupled to one or more components of multi-point transmission support system 100.
  • the manner in which control engine 110 is coupled to various components may be wired or wireless.
  • the connection of control engine 110 to various components can be bidirectional.
  • control engine 110 can receive sensor data collected from sensor device 150.
  • the sensor data may include one of inclination data, magnetic field data, wind data, sound data, temperature data, humidity data, motion data, brightness data, energy consumption data of the bracket 120 (or the external device 130 connected thereto) or A variety.
  • control engine 110 can The received sensor data is analyzed and the abnormal data therein is detected. Further, the control engine 110 can control the sensor device 150 having abnormal data to perform multiple acquisitions or adjust the sensor device 150 in which the abnormal data exists. In some embodiments, control engine 110 may generate one or more control instructions that may be based on the collected sensor data. In some embodiments, the control commands can adjust the operating states of the cradle 120, the external device 130, and the sensor device 150. In some embodiments, control engine 110 can be an integrated chip or circuit, such as a processor or the like. In some embodiments, control engine 110 can be comprised of multiple sub-circuits.
  • the bracket 120 can be a mechanical structure.
  • the bracket 120 can be coupled to a control engine 110 that can drive a motor in the bracket 120 (such as the motor 710 shown in FIG. 7) to move to drive the bracket 120 to move.
  • the bracket 120 can be coupled to the external device 130. The movement of the bracket 120 can drive the movement of the external device 130.
  • the external device 130 can be a device that is coupled to the cradle 120.
  • the external device 130 can be a solar panel, an agricultural greenhouse plastic film, an industrial pipe valve, a solar mirror, or the like.
  • the movement of the bracket 120 can cause the external device 130 to move to achieve a corresponding function.
  • the bracket 120 can drive the solar panel to track the trajectory of the sun.
  • the bracket 120 can control the switching of the plastic film of the agricultural greenhouse.
  • the bracket 120 can control an industrial pipe valve to regulate the amount of flow.
  • Network 140 can be a single network, or a combination of multiple different networks.
  • the network 140 may include a local area network (LAN), a wide area network (WAN), a public network, a private network, a private network, a wireless local area network, a virtual network, a metropolitan area network, and a public switched telephone network (Public Switched Telephone Network). , PSTN) or a combination of one or more of the Internet, an industrial network, and the like.
  • Network 140 can include multiple network access points. These network access points can be wired or wireless. For example, routers, switch base stations, Internet exchange points, data buses, and the like. Through these access points, one or more components of the multipoint transmission support system 100 can access the network 140 and send and receive information from other components over the network 140.
  • the access mode of the network 140 can be wired or wireless. Wired access can be achieved by fiber optic or cable, RS-485 interface, and the like. Wireless access can be via Bluetooth, Wireless Local Area Network (WLAN), Wi-Fi, WiMax, Near Field Communication (NFC), ZigBee, mobile networks (2G, 3G, 4G, 5G networks, etc.) ), General Packet Radio Service (GPRS) or other connection methods.
  • WLAN Wireless Local Area Network
  • Wi-Fi WiMax
  • NFC Near Field Communication
  • ZigBee ZigBee
  • mobile networks (2G, 3G, 4G, 5G networks, etc.)
  • GPRS General Packet Radio Service
  • Sensor device 150 can be any device that collects data.
  • sensor device 150 may include, but is not limited to, one or more of a light intensity sensor, a magnetic field sensor, a wind sensor, a tilt sensor, a sound sensor, a temperature sensor, a humidity sensor, a motion sensor, a brightness sensor, and a power sensor.
  • sensor device 150 can communicate the acquired data to other devices in multi-point transmission support system 100.
  • the multi-point transmission support system 100 can control the acquisition of the sensor device 150.
  • the sensor device 150 can be at a fixed time The acquisition is performed and the collected data is sent to other devices in the multi-point transmission support system 100.
  • the sensor device 150 can include a cache module, and the cache module can store the collected data and send the stored data to the multi-point transmission if the time or conditions are met. Other devices in the support system 100. Further, the sensor device 150 may include a pre-processing module that can pre-process the collected data. In some embodiments, sensor device 150 may only transmit pre-processed data to other devices in multi-point transmission support system 100.
  • the sensor device 150 can be part of the cradle 120, part of the external device 130, or a device that is separate from the cradle 120 and the external device 130.
  • Server 160 can be a server hardware device, or a server group. Each server within a server group can be connected over a wired or wireless network.
  • a server group can be centralized, such as a data center.
  • a server group can also be distributed, such as a distributed system.
  • the server 160 may be one or a combination of a file server, a database server, an FTP server, an application server, a proxy server, a mail server, and the like.
  • a personal computer or other type of workstation or terminal device can also be used as a server after being properly programmed.
  • Server 160 can be a local server, a remote server, a distributed server, or the like.
  • Server 160 can be used to perform analysis and processing operations of data.
  • the analysis and processing operations may include analyzing the operational status of the bracket 120 in the multi-point support transmission system 100, and analyzing the fault condition of the bracket 120 (eg, whether there is a fault, the type of fault, the original fault) Because of the selection, the control mode of the multi-point support transmission system 100 is selected.
  • the methods used for data analysis and processing may include linear regression analysis, analysis of variance, principal component analysis, discriminant analysis, cluster analysis, Bayes statistical analysis, and the like.
  • the server 160 may generate an angle graph in conjunction with the tilt of the time and the bracket 120 (or the external device 150) to determine the fault condition of the bracket 120 by identifying an abnormal curve.
  • Server 160 may retrieve data from control engine 110, database 180, or terminal device 170 over network 140.
  • the server 160 can also have a storage module in which data used in data analysis and processing can be stored.
  • the data may be one or a combination of real-time operational data of the multi-point transmission support system 100, reference data (eg, historical operational data, operational status reference data, environmental data), and the like.
  • the real-time operational data may include one or more of the real-time tilt angle of the bracket 120, the real-time temperature of the bracket 120, the real-time height of the bracket 120, the real-time current of the motor, the real-time voltage of the motor, the real-time temperature of the motor, and the like.
  • the historical running data may include one or more of a historical inclination of the bracket 120, a historical temperature of the bracket 120, a historical height of the bracket 120, a history current of the motor, a history voltage of the motor, a real-time temperature of the motor, and the like.
  • the operating state reference data may include a motor current maximum value, an inverter power generation minimum value, and the like.
  • Environmental data may include one or more of wind speed, temperature, air humidity, solar radiation, rainfall, snowfall, soil moisture, geographic coordinates, time, solar azimuth or solar elevation angle.
  • the server 160 can transmit the data analysis and processed results to the control engine 110, the database 180 or the terminal device 170, etc. via the network 140.
  • the result of the data analysis and processing may be the running state of the bracket 120 in the multi-point transmission support system 100, and the bracket 120
  • the fault condition (for example, whether there is a fault, the type of fault, the cause of the fault, etc.), a command regarding the control mode of the bracket 120, and the like.
  • the server 160 determines through data analysis and processing that one or more of the racks 120 in the multi-point transmission support system are faulty, the number of the one or more racks 120 that have failed may be transmitted to the terminal device 170.
  • server 160 can be a cloud server.
  • the cloud server may receive an instruction issued by the terminal device 170 to perform a corresponding processing operation.
  • the instructions may include, but are not limited to, a combination of one or more of uploading data, downloading data, backing up data, deleting data, sharing data, and the like.
  • the user can issue an instruction to back up data through the terminal device 170, and the cloud server can back up the target data in the cloud storage space according to the backup instruction of the user.
  • the user can issue an instruction to download data through the terminal device 170, and the cloud server can download the designated data from the target site according to the download instruction of the user.
  • the user can issue an instruction to share data through the terminal device 170, and the cloud server can share the designated data to the designated object according to the sharing instruction of the user, for example, other multi-point transmission support systems.
  • the terminal device 170 can monitor the multi-point transmission support system 100.
  • the terminal device 170 may include one or a combination of a notebook computer, a mobile phone, a tablet computer, a monitoring station, a computer, a television, a projection device, a smart watch, a smart phone, and the like.
  • the terminal device 170 can display one or a combination of real-time operational data, reference data (eg, historical operational data, operational status reference data, environmental data), etc. of the multi-point transmission support system 100.
  • the terminal device 170 can display the intermediate data in the analysis and processing of the server 160, the results of the analysis and processing, and the like.
  • the form of display can be a list, a graphic (for example, A combination of one or more of a line chart, a graph, a column chart, a pie chart, a satellite cloud image, etc., a text, a special symbol, a voice, and the like.
  • a graphic for example, A combination of one or more of a line chart, a graph, a column chart, a pie chart, a satellite cloud image, etc., a text, a special symbol, a voice, and the like.
  • the number of distributed power stations in a certain place, the number of user power stations, and the like are displayed on a satellite cloud map.
  • the soil moisture information of the area is displayed on the map.
  • the displayed data can be single point data, or statistical data.
  • the current power generation value is displayed in real time.
  • the statistical method can be counted in terms of time, region or other freely defined methods. For example, the accumulated value of the amount of power generated per month is displayed in units of months.
  • historical operational data of the multi-point transmission support system 100 over the past day can be displayed.
  • the displayed data can be real-time data, or historical data.
  • the power generation amount data of the current time and the current time of the past 100 days is displayed.
  • the displayed data may be data for one or more racks 120 (or external devices 130), data for one or more multi-point drive support systems, data for one or more solar power plants, and the like.
  • the total power generation of a multi-point transmission support system is displayed while the amount of power generated by each of the racks 120 (or external devices 130) is displayed.
  • terminal device 170 can receive an alert signal and issue an alert prompt.
  • the alarm signal can be issued by the server 160 or the bracket 120.
  • the server 160 may transmit an alarm signal to the terminal device 170.
  • the alarm signal may be a combination of one or more of an image alarm prompt, a short message alert prompt, an email alert prompt, an audible alert alert, a vibrating alert alert, an indicator alert alert, and the like.
  • the terminal device 170 may issue an alert prompt after receiving the alarm signal.
  • the alert prompt sent by the terminal device 170 may include one or more of an image alert prompt, a short alert alert, an email alert alert, an audible alert alert, a vibrating alert alert, an indicator alert alert, and the like. Combination of species.
  • the terminal device 170 can also receive fault data.
  • the fault data can be issued by the server 160 or the rack 120.
  • the server 160 may transmit the fault data to the terminal device 170.
  • the fault data may include one or a combination of a faulty device, a fault time, a fault type, a failure mode, a failure cause, a suggested solution, a fault handling progress, and the like.
  • the type of failure may include one or a combination of a burst type fault, a fade type fault, and the like.
  • the fault processing progress may include one or a combination of ones to be processed, processed, processed, and the like. For example, the failure processing progress of one bracket 120 in the multi-point transmission support system 100 is processed, and the failure processing progress of the other brackets 120 is to be processed.
  • terminal device 170 can display fault data for multi-point transmission support system 100.
  • the fault data may be fault data for one or more racks 120.
  • the fault data may be a combination of one or a combination of a fault type, a fault time, a failure mode, a failure cause, a suggested solution, a fault handling progress, and the like. For example, different processing schedules, such as those in process, pending, or processed.
  • terminal device 170 can issue control signals to control multi-point transmission support system 100.
  • the control signal may be a control command issued by a user of the terminal device or a control command calculated by the terminal device.
  • the control signal may control the multi-point transmission support system 100 to set the inclination of the bracket 120, switch the control mode of the bracket 120, set the fault alarm threshold, set the authority, and the like.
  • the user can set the tilt angle of a certain bracket 120.
  • the user can set the tilt angle of a plurality of brackets 120.
  • the user can set the tilt angle of all of the brackets 120 of the multi-point transmission support system 100 together.
  • the terminal device 170 and the server 160 may be the same device, and the device may implement one or more functions of the terminal device 170 and the server 160 described in the embodiments of the present application.
  • the device can perform analysis and processing based on the received data, obtain fault data of the multi-point transmission support system, and display the fault data.
  • Database 180 can be used to store data.
  • the database 180 can store various data utilized, generated, and output during operation of the multi-point transmission support system 100.
  • the data includes one or a combination of real-time operational data of the multi-point transmission support system 100, reference data (eg, historical operational data, operational status reference data, environmental data), and the like.
  • Database 180 can be local or remote.
  • the database 180 may include one or a combination of a hierarchical database, a networked database, and a relational database.
  • the database 180 can be interconnected or communicated with the network 140, or directly connected or communicated with the server 160 or a portion thereof, or a combination of the two. In some embodiments, the database 180 can be placed in the background of the server 160 and directly connected to the server 160. The connection or communication of database 180 with server 160 may be wired or wireless. When the database 180 is directly connected to the server 160, other portions of the multipoint drive support system 100 (e.g., the terminal device 170) may access the database 180 through the server 160.
  • database 180 can be self-contained and directly coupled to network 140.
  • the connection or communication of database 180 with network 140 may be wired or wireless.
  • the server 160 or a multi-point transmission branch Other portions of system 100 (e.g., terminal device 170) may access database 180 via network 140.
  • the control system 110 can include an input and output module 210, a control module 220, a drive module 230, a communication module 240, and a storage module 250.
  • the manner of connection between the various modules of control system 110 can be wired, wireless, or a combination of both.
  • Each module can be local, remote, or a combination of both.
  • the correspondence between modules can be one-to-one or one-to-many.
  • control system 110 can include a plurality of input and output modules 210 and a control module 220.
  • the plurality of input and output modules 210 can respectively receive different data, such as data from a tilt sensor, a light intensity sensor, a wind sensor, a server, etc., and send the data to the control module 220 for processing.
  • control system 110 can include a plurality of input and output modules 210 and a plurality of control modules 220. Each control module 220 can correspond to one input and output module 210, respectively, to process the data of its input.
  • the input output module 210 can receive information from other components or external components in the multipoint transmission support system 100 or transmit information to other components or external devices in the multipoint transmission support system 100.
  • the input and output module 210 can receive sensor data from the sensor device 150.
  • the sensor data includes one or more of light intensity, temperature, humidity, brightness, wind strength, magnetic field strength, device tilt angle, energy consumption, and the like.
  • the input and output module 210 can transmit the received sensor data to the control module 220.
  • the input and output module 210 can include a user interface for receiving user input. The user's input may include settings of parameters, correction of results, and the like.
  • the input and output module 210 can receive input from the user through the terminal device 170.
  • the input and output module 210 can store the received data into the storage module 250. In some embodiments, the input and output module 210 can transmit the received data to the communication module 240 and further to the server 160. Server 160 may analyze and process the data and send the results back to input/output module 210 or communication module 240. Further, the input and output module 210 can send the results to the sensor device 150 or other components in the multi-point transmission support system 100.
  • the control module 220 can analyze and process the data, and generate corresponding analysis and processing results. In some embodiments, the control module 220 can generate a control command according to the analysis and the processing result. Further, the control module 220 can transmit the control commands to other components or external devices in the multi-point transmission support system 100. In some embodiments, control module 220 can send control commands to sensor device 150 via input and output module 210. For example, if the control module 220 determines that there is a problem with one or more sensor data, a feedback result may be generated that restarts the sensor device 150, reacquires data, or changes the acquisition mode. The feedback result can be sent to the sensor device 150 through the input and output module 210. In some embodiments, control module 220 transmits the control instructions to server 160, terminal device 170, or database 180 via communication module 240.
  • control module 220 can send control commands to drive module 230 to drive the motor accordingly. For example, if the control module 220 determines a certain weather condition based on the sensor data or a certain weather condition (such as a strong wind) is to be generated, it may generate A drive bracket 120 and an external device 130 reset (eg, parallel to the ground) control commands.
  • the cradle 120 can include an instruction receiving unit or other device that can receive control instructions. The control module 220 can send the control command directly to the instruction receiving unit of the cradle 120, and the instruction receiving unit can control the cradle 120.
  • control module 220 can include a processor.
  • the processor may include a central processing unit (CPU), a programmable logic device (PLD), a special integrated circuit (ASIC), a microprocessor, and an embedded One or more of a system on chip (SoC), a digital signal processor (DSP), and the like.
  • CPU central processing unit
  • PLD programmable logic device
  • ASIC special integrated circuit
  • microprocessor microprocessor
  • SoC system on chip
  • DSP digital signal processor
  • the two or more processors can be combined on one hardware device.
  • the processor can implement data processing in a variety of ways, including hardware, software, or a combination of hardware and software.
  • the drive module 230 can drive the motor.
  • the drive module 230 can provide an alternating or direct current to the motor coupled to the bracket 120 for rotation in a particular direction and speed. Further, the rotation of the bracket 120 can drive the external device 130 to perform corresponding movement or rotation.
  • the drive module 230 can be comprised of a relay, a transistor, and the like.
  • the drive module 230 can detect the drive state or the operating state of the motor. For example, electrical parameters such as current, voltage, power, impedance, etc. of the motor can be detected by corresponding detection elements. By detecting the electrical parameter driving module, abnormal phenomena such as short circuit, open circuit, high power, and temperature overheating can be found.
  • the communication module 240 can communicate bi-directionally with the server 160.
  • the server 160 can be a data analysis platform.
  • communication module 240 can receive control instructions or data from the control module and send to server 160. After the server 160 analyzes or processes the data, the communication module 240 can obtain the analysis or processing results from the server 160.
  • the storage module 250 can be used to store information.
  • the information may include data acquired by the input and output module 210, processing results or control instructions generated by the control module 220 or the server 160, parameters, configurations, and the like.
  • the storage module 240 can be various types of storage devices such as a solid state drive, a mechanical hard disk, a USB flash drive, an SD memory card, an optical disk, a random-access memory (RAM), and a read-only memory (read- Only memory, ROM), etc.
  • storage module 240 can be local storage, external storage, storage connected via network 140 (eg, cloud storage), and the like.
  • control system 110 can further include a feedback module (not shown) that can monitor the operational status of rack 120 and/or external device 130 and feed back monitoring results to control module 220.
  • a feedback module (not shown) that can monitor the operational status of rack 120 and/or external device 130 and feed back monitoring results to control module 220.
  • the feedback module can monitor the running status of the bracket 120 and/or the external device, such as the height, the angle, the displacement amount, the rotation amount, and the like, and feedback the monitoring result.
  • the control module 220 can perform the next processing or control according to the monitoring result.
  • Step 310 can include receiving data.
  • step 310 can be implemented by input and output module 210.
  • the data can include sensor data, Remote data, user input data, etc.
  • the sensor data may be received by the input and output module 210 from the sensor device 150, including but not limited to one or more of light intensity, temperature, humidity, brightness, wind strength, magnetic field strength, device tilt angle, energy consumption, and the like.
  • the data may include operational data for the external device 130, the motor, and/or the cradle 120.
  • the operation data of the external device can be obtained by monitoring the running status of the external device.
  • the data may be obtained from an internal storage device, such as storage module 250, or from an external storage device, such as a network storage device, a cloud disk, a mobile hard disk, or the like.
  • Step 320 can include processing the received data.
  • step 320 can be implemented by control module 220.
  • step 320 can include generating one or more control instructions based on the received data.
  • step 320 can include generating a control command to adjust the operational state of the external device 130 based on the received sensor data.
  • step 320 can include generating a control command to drive the cradle 120 based on the received remote data or user input data.
  • step 320 can include generating a control command to adjust or modify the operational state of sensor device 150 based on the received sensor data.
  • step 320 can include generating an expected operational state of the external device 130 based on the received data. Further, in accordance with the expected operational state, step 320 can include calculating the adjustments required for the stent 120. Wherein, the adjustment of the bracket 120 can drive the external device to adjust to an expected operating state. For example, an operational condition expected by an external device 130 may be "two meters off the ground, at an angle of 30 degrees from the horizontal.” Further, calculating that the expected operating state is achieved further requires rotating the external device 2 degrees clockwise, Step 320 can be used to calculate the magnitude of the drive required to perform the rotation of the 2 degree angle. In some embodiments, the magnitude of the drive is related to the magnitude of the drive current, for example, the drive size can be expressed as driving the motor for 2 seconds at a current of 30 mA.
  • Step 330 can include driving the device or outputting a control command based on the processed data.
  • step 330 can include driving the cradle 120 based on the result of the processing of the data to cause the external device 130 to adjust to the desired operational state.
  • step 330 can send the processing result to the driver module 230.
  • the driving module 230 can drive the motor accordingly according to the processing result.
  • step 330 can send a control command to the instruction receiving module in the cradle 120.
  • the instruction receiving module can adjust the bracket 120 according to the control instruction.
  • step 330 can include transmitting control instructions to server 160 or sensor device 150.
  • the drive module 230 may include a combined relay unit 410 and a current detecting unit 420.
  • the combined relay unit 410 can include a transistor and a relay.
  • the combined relay unit 410 can receive control commands from the control module 220 and drive the motors in the cradle 120 to move in accordance with the control commands to cause the external devices to move accordingly.
  • the relay when receiving the control command to start driving, the relay first picks up, and the transistor is turned on again; when receiving the control command to stop driving, the transistor first cuts off the power, and the relay is released again, thereby ensuring the relay.
  • the contacts At the moment of pick-up and release, the contacts have no electric action, which avoids the influence of the arc generated by the contacts on the relay when the power is turned off.
  • the current detecting unit 420 can detect the current value when the driving bracket 120 is in operation, and It is output to the control module 220 in real time.
  • the acquisition of the current data can be implemented by a Hall current sensor, a Rogowski coil, a fiber optic current sensor, an analog digital converter (ADC), or the like.
  • ADC analog digital converter
  • the control module 220 may output an instruction to cut off the power of the bracket 120, and notify the user of the overload through the input-output module 210 (or the terminal device 170).
  • the drive module 230 can include other electrical parameter detection units to detect other electrical parameters.
  • the other electrical parameters may include, but are not limited to, voltage, frequency, capacitance, electrical noise, impedance, bias voltage, and the like.
  • the driving module 230 can detect the working state of the driving motor during operation according to the other electrical parameters and can adjust accordingly.
  • FIG. 5 is a schematic diagram of an example control module shown in accordance with some embodiments of the present application.
  • the control module 220 can include a parameter setting unit 510, a computing unit 520, a control unit 530, and an instruction generating unit 540.
  • the parameter setting unit 510 can set one or more parameters.
  • the parameters may include the configuration of the external device 130, the magnitude of the force required to drive, the latitude and longitude, the wind, the date, the illumination time, and the like.
  • the parameters may be input by a user through the input and output module 210.
  • the parameters may be obtained from storage module 250.
  • the parameters may be obtained from server 160 or terminal device 170 via communication module 240.
  • the calculation unit 520 can generate a calculation result according to the set parameters and the received data. For example, based on parameters such as latitude and longitude and date, the calculation unit 520 can calculate the illumination period and illumination direction of the sun. For example, depending on the operating status of the received external device, The calculation unit 520 can calculate whether the external device 130 is facing the illumination direction of the sun, or the magnitude of the angle between the orientation of the external device 130 and the illumination direction of the sun, and the like. Further, based on other parameters or data, the calculation unit 520 can calculate the adjustment mode required by the external device 130, such as the adjustment amount of the height, the adjustment amount of the orientation, the adjustment amount of the inclination angle, and the like. In some embodiments, computing unit 520 can calculate the drive size and time required for rack 120 to cause the external device 130 to complete the desired adjustments.
  • Control unit 530 can make logical decisions and/or control decisions based on numerical parameters or instructions and generate corresponding control information.
  • the control unit 530 may process the calculation result obtained by the calculation by the calculation unit 520, generate the control information by the data obtained by the input/output module 210, or the condition preset by the parameter setting unit 510, and the like.
  • the control information can be converted into a system executable instruction by the instruction generation unit 540 to implement control of the system itself or an external power circuit.
  • the control unit 530 can be a programmed programmable logic device (PLD), an application specific integrated circuit (ASIC), a central processing unit (CPU), a system. System on chip (SoC), etc.
  • the instruction generation unit 540 can generate a system-executable control instruction based on the control information generated by the control unit 530.
  • the control instructions may include operational information, address information, and the like.
  • the operational information may indicate the method and function of the operation, and the address information may point to the object of the operation.
  • the instructions generated by the instruction generation unit 540 can be transmitted to the input and output module 210, controlling the collection of data and user input information.
  • the generated instructions may also be fed back to the control module 220 for further calculation or logical processing. Give birth to the next instruction.
  • the instructions can be provided to the terminal device 170 to control the content and manner of display.
  • the instructions may also be transmitted to the storage module 250 to control the storage and reading of data.
  • the instructions can be passed to the drive module 230 to control the movement of the motor and bracket 120 coupled to the drive module.
  • the instructions generated by the instruction generation unit 540 may include numerical operation instructions, logic determination instructions, hardware operation instructions, and the like.
  • the numerical operation instruction may control the calculation unit 520 to perform corresponding numerical operations, such as calculating a driving manner, a lighting direction, and the like.
  • the logic determination instruction utilizes the control unit to make logical decisions and make analytical decisions, such as generating a determination regarding starting or stopping the system based on the collected sensor data.
  • the hardware operation instruction may control switching of a switch or a function mode pointing to the hardware or the like through firmware. Such as changing the working mode of the drive module, changing the operating state of the sensor, and so on.
  • step 602 can include setting one or more parameters.
  • step 602 can be implemented by parameter setting unit 510.
  • the parameters may include the configuration of the external device, the magnitude of the force required for driving, the latitude and longitude, the wind, the date, the illumination time, the configuration of the motor, and the like.
  • the parameters may be input by the user through the input output module 210 or the terminal device 170 in some embodiments.
  • the parameters may be obtained from storage module 250.
  • the parameters may be obtained from server 160 via communication module 240.
  • step 602 can include setting the parameter to a default value.
  • Step 604 can include obtaining data.
  • the data may include external device 130 (and/or bracket 120) tilt, light intensity, real-time wind, humidity, temperature magnetic field strength, energy consumption, brightness, and the like.
  • the data may include operational data of the external device 130 obtained by monitoring the operational status of the external device 130.
  • the data may be obtained from sensor device 150 via input and output module 210.
  • the data may be obtained from an internal storage device, such as storage module 250, or from an external storage device, such as a network storage device, a cloud disk, a mobile hard disk, or the like.
  • Step 606 can include calculating the desired target parameters. For example, based on parameters such as latitude and longitude and date, step 606 can include calculating parameters such as the illumination period and illumination direction of the sun. For example, depending on the operational status of the received external device 130, step 606 may include calculating whether the external device 130 is facing the direction of illumination of the sun or the size of the angle between the orientation of the external device 130 and the direction of illumination of the sun, and the like. Further, based on other parameters or data, step 606 can include calculating the adjustments required by the external device 130, such as adjusting the height, adjusting the orientation, adjusting the tilt angle, and the like. In some embodiments, step 606 can calculate the drive size and time required to drive the cradle 120 in which the external device 130 is operating.
  • Step 608 can include generating a corresponding control instruction based on the result of the calculation.
  • the control commands can include control of the bracket 120 and the motor.
  • the control command may include controlling the motor to rotate clockwise at 5 rpm for 5 seconds to drive the bracket 120 and the external device 130 for corresponding movement.
  • the control instructions can include a control instruction to restart the sensor device 150, reacquire data, or change the acquisition mode.
  • the control instructions can include instructions that control the content and manner of display on the terminal device 170.
  • Step 610 can include outputting the generated control instructions.
  • step 610 can include transmitting the generated control instructions to a respective device, such as sensor device 150, server 160, terminal device 170, and the like.
  • the cradle 120 can include an instruction receiving module, and step 610 can include transmitting a control command to the instruction receiving module. Further, the instruction receiving module can control the bracket 120 according to the received control instruction.
  • Step 612 can include driving the respective device to move based on the result of the calculation.
  • step 612 can include driving the motor to rotate based on the result of the calculation.
  • step 612 can include driving the motor for a predetermined time by the drive module 230 at a set current.
  • step 612 can include controlling the opening or closing of the motor by the drive module 230 at a rated voltage or current.
  • step 612 can include generating a control instruction based on the calculation result and transmitting the control instruction to the driver module 230. Further, the driving module 230 can drive the motor and the bracket 120 according to the control command.
  • the bracket 120 can include a motor 710, a post 720, an command receiving module 730, a transmission structure 740, and a support structure 750.
  • Motor 710 can be a device that converts electrical energy into mechanical energy. Further, the motor can include a mechanical output. In some embodiments, the output can be a rotating shaft.
  • the motor 710 can be one or more of a servo motor, a stepper motor, a torque motor, a switched reluctance motor, a direct current motor, an alternating current motor, an asynchronous motor, a synchronous motor, and the like.
  • the input and output values of motor 710 are predetermined.
  • the output of the motor 710 The incoming current and voltage can be fixed values, and deviation from this value can result in damage to the motor 710.
  • the input value of motor 710 is a value that can vary within a reasonable range.
  • the motor 710 can be one other than the bracket 120.
  • the post 720 can be a cylindrical base. In some embodiments, the lower end of the post 720 can be placed on the ground, buried in the soil, buried in water, or floated on the surface of the water. In some embodiments, the upper end of the post 720 can be coupled to the transmission structure 740 and/or the support structure 750. In some embodiments, the post 720 can support an external device. In some embodiments, the post 720 can be attached to a wall or suspended from a ceiling.
  • the command receiving module 730 can receive a control command and control the operation of the motor 710 in accordance with the control command.
  • the control instructions may be generated from the instruction generation unit 540.
  • the command receiving module 730 can include a feedback adjustment module that can monitor the operating state of the motor 710 or the external device 130 and adjust accordingly. For example, when the command receiving module 730 correspondingly drives the motor 710 to a desired operating state according to the received control command, the feedback adjusting module can determine the real-time operating state of the motor 710 and adjust in real time until the motor 710 reaches The desired operating state.
  • Transmission structure 740 can transfer the torque generated by motor 710.
  • the transmission structure 740 can be a shaft-like structure.
  • the transmission structure 740 may be composed of a plurality of shaft-like structures, and each of the shaft-like structures may be connected by a plurality of couplings or the like to transmit torque.
  • the coupler can reduce the stress generated by the mutual movement between the shaft structures.
  • the coupler can be a universal joint.
  • the support structure 750 can support and drive the external device 130 to rotate.
  • the support structure 750 can be coupled to the transmission structure 740 and the external device 130.
  • the rotation of the transmission structure 740 can drive the movement of the support structure 750 and further drive the movement of the external device 130.
  • the support structure 750 can include one or more configurations of jacks, racks, pushers, sector gears, hydraulic rods, planet gears, and the like.
  • the command receiving module 730 is part of a motor that can accept control commands and automatically operate.
  • the bracket 120 may not include the command receiving module 730 but is directly driven by the drive module 230.
  • Step 8 is an exemplary flow diagram of driving an external device, shown in accordance with some embodiments of the present application.
  • the process 800 can be implemented by the bracket 120.
  • Step 802 can include receiving a control command.
  • the control instructions may be generated from the instruction generation unit 540.
  • step 802 can be implemented by instruction receiving module 730.
  • the control commands may include control and adjustment of the operating state of the motor 710 or the external device 130.
  • Step 804 can include driving motor 710 in accordance with the received control command.
  • Step 806 can include driving the operation of the external device 130.
  • the drive can pass A mechanical structure is implemented.
  • the mechanical structure can be the transmission structure 740 and the support structure 750 in the bracket 120.
  • Step 808 can include determining whether the operational status of the external device 130 meets a preset condition.
  • the preset condition may include an expected operating state of the external device 130 generated by the computing unit 520. For example, the height, angle, direction, latitude and longitude, etc. of the external device 130. If the preset condition is not met, the motor 710 can be further driven in step 804 until the preset condition is met, ie, the external device 130 reaches the desired operational state. If the preset condition is met, the drive motor 710 can be stopped in step 810.
  • the bracket 900 can include a motor 910, a transmission structure 990, one or more support structures 940 (such as the support structures 940a, 940b, 940c shown) and one or more posts 950 (eg, The columns 950a, 950b, 950c) are shown.
  • Motor 910 can be a device that converts electrical energy into mechanical energy.
  • the output of the motor 910 can output a rotational torque.
  • Transmission structure 990 can be a long axis shaped device. Further, the transmission structure 990 can be coupled to the motor 910 and rotated by the motor 910. In some embodiments, the transmission structure 990 can be comprised of one or more shaft members.
  • the transmission structure 990 can include one or more drive rods 920, one or more lead rods 930, one or more telescoping shaft sleeves 960, and one or more universal joints 970. As shown in Figure 9, the transmission structure 990 can include a lead screw 930a, a lead screw 930b, and a lead screw 930c.
  • the lead screw 930a, the lead screw 930b, and the lead screw 930c may be coupled to the support structure 940a, the support structure 940b, and the support structure 940c, respectively.
  • adjacent lead rods may be connected by a drive rod.
  • the lead screw 930a and the lead screw 930b can be connected by a transmission rod 920.
  • the transmission rod 920 and the screw rod 930a, the transmission rod 920 and the screw rod 930b can be respectively connected by a universal joint device.
  • the transmission rod 920 can be comprised of two sub-transmission rods that can be coupled by a telescoping sleeve.
  • the telescoping sleeve 960 can be a hollow connecting tube for connecting two shaft-like devices.
  • the universal joint 970 can be a device that connects two devices and transmits axial torque between the two devices without limiting the two devices from moving or rotating perpendicular to the axial direction.
  • the support structure 940a, the support structure 940b, and the support structure 940c can connect and drive the movement of the external device 980.
  • the support structure 940a, the support structure 940b, and the support structure 940c may be coupled to the transmission structure 990 and undergo a change in shape or displacement as the transmission structure 990 rotates, thereby driving the external device 980. mobile.
  • the support structure 940 can include one or more structures of a jack (or similar jack structure), a rack, a push rod, a sector gear, a hydraulic rod, a planet gear, a chain, and the like.
  • the support structure 940a, the support structure 940b, and the support structure 940c may all be jack or jack-like structures.
  • support structure 940a and support structure 940b can be a rack structure and support structure 940c can be a hydraulic rod structure.
  • a detailed description of the support structure 940 can be See the description of the example structure of Figures 10-13 in this application.
  • the post 950 can be a cylindrical base. In some embodiments, the lower portion of the post 950 can be placed on the ground, buried in the soil, buried in water, or floated on the surface of the water. In some embodiments, the upper portion of the post 950 can be coupled to the transmission structure 990 and/or the support structure 940. In some embodiments, the post 950 can support the external device 980. In some embodiments, the post 950 can be attached to a wall or suspended from a ceiling. As shown in FIG. 9, the pillar 950a, the pillar 950b, and the pillar 950c may be coupled to the support structure 940a, the support structure 940b, and the support structure 940c, respectively.
  • the support structure 940a, the support structure 940b, and a portion of the support structure 940c can be secured to the uprights 950.
  • the support structure 940a, the support structure 940b, and the support structure 940c may not be coupled to the post 950a, the post 950b, and the post 950c.
  • the support structure 940a, the support structure 940b, and a portion of the support structure 940c may be separately or together secured to a support member (not shown).
  • the transmission structure 990 can provide support for the support structure 940a, the support structure 940b, and the support structure 940c.
  • the lead screw 930a when the motor 910 produces a rotational torque, the lead screw 930a can be rotated.
  • the torque generated by the rotation of the lead screw 930a can be transmitted to the lead screw 930b through the transmission rod 920, thereby causing the screw rod 930b to rotate synchronously.
  • the rotation of the screw 930b can also drive the screw 930c to rotate synchronously.
  • the rotation of the lead screw 930a, the lead screw 930b and the lead screw 930c can further drive the support structure 940a, the support structure 940b and the support structure 940c and the external device 980 connected thereto to perform synchronous motion.
  • the external device 980 can be a solar panel device comprising a photovoltaic panel, A main shaft below the photovoltaic panel and located at the center and a stringer below the photovoltaic panel and away from the center.
  • the stringers can be coupled to the support structure 940a, the support structure 940b, and the support structure 940c.
  • the transmission structure 990 rotates, the support structure 940a, the support structure 940b, and the portion of the support structure 940c connected to the stringer can be synchronously moved up and down to drive the solar panel to rotate around the main shaft.
  • the support structure 940a, the support structure 940b, and the support structure 940c can each include at least one support point, which can be located on one or both sides of the main shaft.
  • the plurality of support points may be located on the same support structure (for example, both on the jack structure) or on different support structures (for example, one side of the support point is located on one planetary gear set structure, and the other side of the support point is located a chain structure).
  • the bracket 900 can be uneven
  • the use of the ground can also resist the uneven changes in the land caused by time.
  • Support structure 1000 can be a specific embodiment of support structure 940 that can be used in bracket 120 and/or bracket 900.
  • the support structure 1000 can include a lead screw 1010, a right-handed nut 1020, a left-handed nut 1030, one or more links 1040, an upper connector 1050, a lower connector 1060, and the like.
  • the four links 1040 can form a quadrilateral.
  • the quadrilateral may be a parallelogram, a vertically symmetrical quadrilateral or a bilaterally symmetrical quadrilateral or the like.
  • the adjacent two links 1040 are hinged by an upper connector 1050 or a lower connector 1060, respectively.
  • Two links 1040 respectively located on the upper and lower sides of the screw 1010 are coupled to the lead screw 1010 by a right-hand nut 1020 or a left-hand nut 1030.
  • the upper connector 1050 and the lower connector 1060 can be connected to an external device 130 and a post 950, respectively.
  • the support structure 1000 may not be coupled to the post 950.
  • a portion of the support structure 1000 can be secured to a support (not shown).
  • the lead screw 1010 can provide support for the support structure 1000.
  • the left-handed nut 1030 and the right-handed nut each have a pattern that matches the threads on the lead screw 1010.
  • the movement of the left-handed nut 1030 and the right-handed nut 1020 is determined by the direction of rotation of the lead screw 1010, the threads on the lead screw 1010, and the pattern of the left-handed nut 1030 and the right-handed nut 1020.
  • the position of the left-hand nut 1030 can be reversed with the right-hand nut 1020.
  • the lead screw 1010 can pass through the right-hand nut 1020 and the left-hand nut 1030. Further, the surface of the screw 1010 may have different threads in the direction of rotation. Since the direction of rotation of the thread can correspond to the direction of rotation of the nut, the left-hand nut 1030 and the right-hand nut 1020 also have different patterns accordingly.
  • the right-hand nut 1020 and the left-hand nut 1030 can be moved outward (ie, the right-hand nut 1020 is to the left and the left-hand nut 1030 is to the right) or inward (ie, the right-handed nut) 1020 is to the right, and the left-handed nut 1030 is moved to the left to move the upper connector 1050 and the lower connector 1060 upward or downward.
  • the movement of the upper connector can drive the movement of the external device.
  • the thread width of the screw portion that the left-hand nut 1030 contacts may be the same as the thread width of the screw portion that the right-hand nut 1020 contacts.
  • the left-hand nut 1030 and the right-hand nut 1020 The web 1010 is moved in equal width so that the motion of the upper connector 1050 and the lower connector 1060 is perpendicular to the screw.
  • the thread width of the screw portion that the left-hand nut 1030 contacts may be different from the thread width of the screw portion that the right-hand nut 1020 contacts.
  • the left-hand nut 1030 and the right-hand nut 1020 are along The movement amplitude of the threaded rod 1010 is different, causing the movement trajectory of the upper connecting member 1050 and the lower connecting member 1060 to be not perpendicular to the screw.
  • the connecting rod 1040 located on the upper side of the screw 1010 and the connecting rod 1040 located on the lower side of the screw 1010 may have the same length. Under the driving of the lead rod, the upper connecting member 1050 and the lower connecting member 1060 may be Have the same range of movement. In some embodiments, the connecting rod 1040 on the upper side of the screw 1010 and the connecting rod 1040 on the lower side of the screw 1010 may have different lengths. Under the driving of the lead rod, the upper connecting member 1050 and the lower connecting member 1060 may be Has a different range of movement. For example, the two links 1040 on the underside of the screw 1010 in the support structure 1000 can be omitted. The rotation of the screw 1010 can drive the two links 1040 located on the upper side of the screw 1010 to move in the opposite direction of the axial direction of the screw 1010, thereby driving the movement of the upper connecting member 1050.
  • the bevel support structure 1100 can be a specific embodiment of the support structure 940 that can be used in the bracket 120 and/or the bracket 900.
  • the bevel support structure 1100 can include a drive rod 1110 (a cross-sectional view of the drive rod 1110 shown), a lead screw 1120, one or more links 1130, a nut 1140, and the like.
  • the transmission rod 1110 can be at an angle to the plane of the link 1130 and the screw 1120.
  • the drive rod 1110 can be perpendicular to the lead screw 1120.
  • the drive rod 1110 can be coupled to the lead rod 1120 by a pair of bevel teeth or a set of worm gears. In some embodiments, the drive rod 1110 can also be coupled to the lead screw 1120 by a chain. In some embodiments, rotation of the transmission rod 1110 can cause the spindle nut 1140 to move or rotate by the bevel or worm gear. In some embodiments, one end of the lead screw 1120 can be coupled to a connector that can be attached to the post 1150 or the external device 1160. In some embodiments, the lead nut 1140 can only rotate about its own axis. In some embodiments, the spindle nut 1140 can be rotated about its own axis and can also be rotated about a point that is connected to the connector.
  • One end of the two links 1130 is hinged to each other and the other end is hinged to the external device 1160 and the column 1150, respectively.
  • One end of the two links 1130 hinged to each other is connected to the nut 1140.
  • the lead screw 1120 can pass through the nut 1140.
  • the screw nut 1140 can be synchronously rotated by the bevel or worm gear when the drive rod 1110 is rotated.
  • the movement of the nut can drive the movement of the connecting rod 1130, thereby driving the end of the connecting rod 1130 connected to the external device 1160 to move, thereby driving the movement and rotation of the external device 1160.
  • the chain drive structure 1200 can include a drive sprocket 1210, one or more driven sprocket wheels 1220, and a chain 1230. As shown in FIG. 12, the surface of the drive sprocket 1210 and/or the driven sprocket 1220 engages the chain 1230.
  • the chain 1230 when the drive sprocket 1210 is rotated, the chain 1230 can drive one or more driven sprockets 1220 to rotate synchronously.
  • the plurality of driven wheels 1220 can be further connected by a chain.
  • the chain may tightly cover the surface of a portion of the two driven sprockets 1220 in the intermediate position in Figure 12, and when one of the two driven sprockets 1220 is rotated, the chain may drive the other The rotation of the driven sprocket.
  • the drive sprocket 1210 can be rotated by a chain 1230 to drive a portion of the driven sprocket 1220, and the portion of the driven sprocket 1220 can be driven by a chain 1230 without the drive sprocket 1210.
  • the connected one or more driven sprockets 1220 are rotated.
  • the driven sprocket 1220 has a thread on its surface that mates with the lead screw 1120, or the driven sprocket 1220 has a coaxial screw nut 1140 through the driven sprocket 1220 or the spindle nut 1140. The rotation drives the screw 1120 to perform corresponding movement.
  • the chain drive structure 1200 can be combined with structures in other embodiments of the present application.
  • the chain drive structure 1200 can be combined with the support structure 1100 of FIG.
  • the driven sprocket 1220 can be coupled to the lead screw 1120
  • the drive sprocket 1210 can be coupled to the drive rod 1110.
  • the transmission rod 1110 can be connected to a screw 1120 is parallel.
  • the motor such as motor 910 drives the drive rod 1110 and the drive wheel 1210 to which it is coupled for rotation
  • the chain 1230 can drive the driven sprocket 1220 and the spindle nut 1140 to rotate.
  • the rotation of the spindle nut 1140 as shown in FIG. 11 and the description thereof, can further drive the link 1130 and the external device 1160 to perform corresponding movements.
  • the planet wheel support structure 1300 can be a specific embodiment of the support structure 940 that can be used in the bracket 120 and/or the bracket 900.
  • the motor 910 can drive the transmission mechanism 990 to rotate.
  • the transmission mechanism 990 can be coupled to a portion of the structure of the planetary gear support structure 1300 (eg, the transmission rod 1340) and drive a portion of the structure (eg, the linkage mechanism 1310) to move or deform.
  • the movement or deformation of a portion of the structure of the planet gear support structure 1300 can drive the motion of the external device 980 connected thereto.
  • the planet gear support structure 1300 can include one or more linkage mechanisms 1310, a planetary gear set 1320, a transmission rod 1340, and the like.
  • the planetary gear set 1320 can include a sun gear, one or more planet wheels, and an outer ring gear.
  • the planet wheels are limited to being rotatable only and not moving. Further, the rotation of the sun gear can drive the rotation of the outer ring gear through the planetary gear.
  • the planet gear support structure 1300 can include two linkage mechanisms 1310a and 1310b.
  • the linkage 1310a and the linkage 1310b can be symmetrical to one another.
  • the linkages 1310a and 1319b may include one or more links that are hinged to each other, and the links may be straight or curved.
  • the linkage mechanism 1310a and the linkage mechanism 1310b may include two linkages, respectively. Rod.
  • the two links are hinged at one end and the other ends are connected to the outer ring gear of the external device 1330 and the planetary gear set 1320, respectively.
  • the transmission rod 1340 can be coupled to the sun gear of the planetary gear set 1320.
  • the outer ring gear can rotate.
  • the rotation of the outer ring gear can drive two links (the two horizontal rods in FIG. 12) connected to the outer ring gear on both sides of the planetary gear set 1320 to rotate, thereby further driving the connection with the external device 1340.
  • the left and right two links (the two vertical links in Fig. 12) are rotated.
  • the rotation of the connecting rod connected to the external device can drive the movement of the external device 1340.
  • the hydraulic rod support structure 1400 can be a specific embodiment of the support structure 940 that can be used in the bracket 120 and/or the bracket 900.
  • the hydraulic rod support structure 1400 can include an oil delivery tube 1410, a reservoir chamber 1420, a push rod 1430, and a hydraulic station 1440.
  • One end of the reservoir chamber 1420 is hinged to the post 1460 and the other end includes an opening.
  • One end of the push rod 1430 is hinged to the external device 1450, and the other end is movable within the reservoir chamber 1420 by the opening.
  • the oil delivery pipe 1410 can be connected to the liquid storage chamber 1420 and Hydraulic station 1440, and hydraulic station 1440 can provide liquid (eg, oil) to reservoir 1420 through the oil delivery tube 1410.
  • liquid eg, oil
  • the volume of liquid provided by the hydraulic station 1440 to the reservoir 1420 can be varied by varying the pressure of the liquid in the hydraulic station.
  • the change in the volume of the liquid in the reservoir 1420 can drive the movement of the end of the push rod 1430 and the external device 1450 and drive the external device 1450 to move or rotate.
  • the hydraulic station 1440 can be coupled to a plurality of hydraulic rod support structures 1400 at the same time. By controlling the pressure of the liquid in the hydraulic station 1440, the volume of liquid supplied by the hydraulic station 1440 to the reservoir 1420 can be simultaneously changed, thereby simultaneously driving the movement of the push rod 1430 and the external device 1450.
  • the hydraulic station 1440 can be coupled to a control engine 110 or a control module or system other than the system 100 in the multi-point transmission support system 100, which can control the hydraulic station 1440 to provide support to each of the hydraulic rods.
  • the pressure and volume of the liquid of the structure 1400 thereby causes the push rods 1430 of the respective hydraulic rod support structures 1400 and the external devices 1450 connected thereto to move accordingly.
  • Chain structure 1500 can be a specific embodiment of support structure 940 that can be used in bracket 120 and/or bracket 900.
  • the motor 910 can drive a portion of the structure of the chain structure (eg, the reducer 1520 and the transmission rod 1540) to rotate and drive a portion of the structure of the chain structure (eg, the sprocket 1530 and the chain 1550) to move or deform. Movement or deformation of a portion of the structure of structure 1500 can drive the motion of external device 980 associated therewith.
  • the chain structure 1500 can include a drive rod 1540, a reducer 1520, a sprocket 1530, and a chain 1550.
  • the reducer 1520 can be a reduced speed and increased Torque equipment.
  • the speed reducer 1520 may be one or more of a worm gear reducer, a rotary reducer, a gear reducer, a planetary gear reducer, a single-stage reducer, a multi-stage reducer, and the like.
  • the input of the reducer 1520 can be coupled to a motor 1510, and the drive rod 1540 can be coupled to the output of the reducer 1520.
  • the sprocket 1530 can be coupled to the drive rod 1570.
  • the chain 1550 can be a chain-like device whose surface can be configured to correspond to the surface of the sprocket 1530.
  • both ends of the chain 1550 can be hinged to two portions of the external device 1560, respectively, and a portion of the middle of the chain 1550 can cover a portion of the surface of the sprocket 1530.
  • the chain 1550 can be replaced by a drawstring that can be replaced by a runner. Both ends of the drawstring may be respectively connected to two portions of the external device 1560 and a portion of the middle of the drawstring may cover a portion of the surface of the runner.
  • the area of the wheel that is in contact with the drawstring may be recessed or raised on its own surface.
  • the motor 1510 can drive the reducer 1520 to rotate, and the rotation of the reducer 1520 can further drive the transmission rod 1540 to rotate.
  • the rotation of the transmission rod 1540 can drive the sprocket 1530 to rotate.
  • the rotation of the sprocket 1530 can further drive the movement of the chain 1550 and the external device 1560.
  • the chain structure 1500 may not include the reducer 1520.
  • the motor 1510 can be directly coupled to the drive rod 1540. The rotation of the motor 1510 can directly drive the transmission rod 1540 to rotate.
  • the guard 1600 can include a telescoping sleeve 1610, a seal 1620, and the like.
  • the telescopic sliding sleeve 1610 can include a plurality of hollow sliding sleeves of different sizes. The sleeves are sleeved together in order of size. The hollow sleeves are connected by a seal 1620.
  • the seal 1620 can be constructed of a material such as silicone, rubber, foam, or the like.
  • the telescoping sleeve 1610 can be placed over the drive screw 1630 (or the lead screw 930a, 930b, 930c, 1010, 1120, etc.) to protect the drive screw 1630. In some embodiments, when the drive screw 1630 is moved axially, the telescoping sleeve 1610 can be correspondingly contracted or expanded.
  • the dual axis tracking system 1700 can include an upper shelf 1710, a horizontal support shelf 1720, and a multipoint drive support system 100.
  • the upper shelf 1710 can include a centrally located center of rotation and two rafters located at a bottom surface away from the center. In some embodiments, the two beams are not parallel.
  • the multi-point transmission support system 100 can include two support structures that respectively connect the two stringers of the upper grid 1710. When the motor drives the two support structures for movement, the support structure can drive the upper grid 1710 to rotate around the two non-parallel axes through the stringers.
  • Industrial piping control system 1800 can include a conduit 1810, a butterfly valve 1820, and a multi-point transmission support system 100.
  • the butterfly valve 1820 can be a flap valve, i.e., a reticle that is fixed to a diameter of the port 1810 and that is rotatable about the diameter.
  • a support structure in the multi-point transmission support system 100 can be coupled to the butterfly valve. When the motor drives the branch When the support structure (e.g., support structure 940) is moved, the support structure can drive the butterfly valve 1820 to flip to control the switch of the conduit 1810.
  • the degree of switching of the butterfly valve 1820 can be controlled and the flow of liquid or gas in the conduit 1810 can be further controlled by controlling the movement of the support structure.
  • the multi-point transmission support system 100 can synchronize the transmission of the plurality of support structures to synchronize the control of the conduit 1810 (eg, the conduit 1810a, conduit 1810b, conduit 1810c, conduit 1810d, and conduit 1810e shown in FIG. 18). And / or traffic.
  • the industrial conduit control system 1800 can also include a control system (not shown) that can control the degree of switching of the various butterfly valves to control the flow of liquid or gas in each conduit, respectively.
  • the agricultural greenhouse film control system 1900 can include a movable cross member 1910, a swing arm 1920, a greenhouse bracket 1930, and a multi-point transmission support system 100.
  • the movable cross member 1910 can be coupled to one end of a plastic film (not shown) that is overlaid on the greenhouse support 1930.
  • the movable cross member 1910 can be coupled to the swing arm 1920.
  • the motor of the multi-point transmission support system 100 can drive its support structure to move up and down and drive the swing arm 1920 to move up and down.
  • the movement of the swing arm 1920 can drive the movement of the plastic film.
  • the multi-point transmission support system 100 can control the plastic film to be simultaneously opened or closed by controlling the plurality of support structures to synchronize the transmission.
  • the present application uses specific words to describe embodiments of the present application.
  • a "one embodiment,” “an embodiment,” and/or “some embodiments” means a feature, structure, or feature associated with at least one embodiment of the present application. Therefore, it should be emphasized and noted that “an embodiment” or “an embodiment” or “an alternative embodiment” that is referred to in this specification two or more times in different positions does not necessarily refer to the same embodiment. . Furthermore, some of the features, structures, or characteristics of one or more embodiments of the present application can be combined as appropriate.
  • aspects of the present application can be illustrated and described by a number of patentable categories or conditions, including any new and useful process, machine, product, or combination of materials, or Any new and useful improvements. Accordingly, various aspects of the present application can be performed entirely by hardware, entirely by software (including firmware, resident software, microcode, etc.) or by a combination of hardware and software.
  • the above hardware or software may be referred to as a "data block,” “module,” “engine,” “unit,” “component,” or “system.”
  • aspects of the present application may be embodied in a computer product located in one or more computer readable medium(s) including a computer readable program code.
  • a computer readable signal medium may contain a propagated data signal containing a computer program code, for example, on a baseband or as part of a carrier. There may be more of this propagating signal Forms of expression, including electromagnetic forms, light forms, etc. or a suitable combination.
  • the computer readable signal medium may be any computer readable medium other than a computer readable storage medium that can be communicated, propagated, or transmitted for use by connection to an instruction execution system, apparatus, or device.
  • Program code located on a computer readable signal medium can be propagated through any suitable medium, including a radio, cable, fiber optic cable, radio frequency signal or similar medium or any combination of the above.
  • the computer program code required for the operation of various parts of the application can be written in any one or more programming languages, including object oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python. Etc., regular programming languages such as C, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code can run entirely on the user's computer or as a stand-alone software package running on the user's computer or partially on the user's computer running partially on the remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer via any network, such as a local area network (LAN) or wide area network (WAN), or connected to an external computer (eg via the Internet), or in a cloud computing environment, or as a service.
  • LAN local area network
  • WAN wide area network
  • an external computer eg via the Internet
  • SaaS software as a service

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Transmission Devices (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种支持多点传动和多点支撑的支架系统(900)。该系统(900)包括驱动一个电机(910)产生一个旋转的力矩。该旋转的力矩通过一个传动结构(990)被传递到一个或多个支撑结构(940)上。其中,该支撑结构(940)包括千斤顶(1000)、蜗轮蜗杆、伞齿轮(1100)、行星齿轮组(1300)、液压系统(1400)、链条结构(1500)、拉绳结构中的一种或多种。该旋转的力矩带动该一个或多个支撑结构(940)进行同步运动并进一步带动与其相连的一个设备(980)进行移动或旋转。

Description

多点传动支撑系统和方法 技术领域
本申请涉及一种支架系统,尤其是涉及一种支持多点传动和多点支撑的支架系统及方法。
背景技术
传统的太阳能跟踪支架多为单点支撑传动,即一个减速机或推杆同时驱动一排太阳能板,这种结构在长排跟踪系统中,远离驱动装置没有连接传动支点的地方在大风的作用下容易发生晃动。采用阻尼器的方式虽可以减小振动,但同时会增加驱动机构的耗能。另一方面,单点支撑结构难以适应地面起伏和沉降,山地适应性也较差。
现有的多点传动支架多使用单螺母的剪式千斤顶结构,这种结构不但千斤顶左右两侧运动容易出现不同步,而且千斤顶连接件结构复杂。同时,此结构的防水防砂效果也较差。
简述
本申请包括基于千斤顶、蜗轮蜗杆、伞齿轮、行星轮、液压系统、或链条的多点支撑多点传动支架系统。较传统单点或多点传动的支架系统在结构抗震能力、防水防砂能力上有提高,同时可适应地基沉降和高低不平的地形。
根据本申请的一个方面,提供了一种设备。该设备可以包括一个 传动结构、一个第一支撑结构和一个电机。该传动结构可以包括一个第一丝杆。该第一支撑结构可以包括两个连接点和至少一个支撑点。该两个连接点可以与该第一丝杆相连。该支撑点可以与一个外接设备相连。该电机可以驱动该传动结构旋转。其中,该传动结构的旋转可以带动该两个连接点相对于该第一丝杆进行反向的移动,并带动该支撑点的移动。
在一些实施例中,该设备可以进一步包括一个第二支撑结构和一个第二丝杆。该第二支撑结构可以包括两个连接点和至少一个支撑点。该第二支撑结构的两个连接点可以与该第二丝杆相连。该第二支撑结构的支撑点可以与该外接设备相连。其中,该第二支撑结构的支撑点和第一支撑结构的支撑点可以同步运动。
在一些实施例中,传动结构可以进一步包括一个传动杆,该传动杆可以连接第一丝杆和第二丝杆。
在一些实施例中,传动杆可以通过万向传动装置与第一丝杆或第二丝杆相连接。
在一些实施例中,两个连接点两端可以分别包括两个不同旋向的螺母。第一丝杆与该两个螺母相对应的区域表面可以带有螺纹,该螺纹可以被配置为与该两个螺母旋向相对应。
在一些实施例中,支撑结构可以进一步包括两个连杆。其中,每个连杆的一端可以连接在支撑点上,该每个连杆的另一端可以分别连接在两个连接点上。
在一些实施例中,该设备可以进一步包括一个套筒结构,该套筒 结构可以覆盖在至少一部分的传动结构上。
在一些实施例中,第一丝杆可以由油钢、陶瓷、铜、铜合金、高锰钢、高锰合金、铸铁、铬钼钢、石墨中至少一种材料构成。
根据本申请的一个方面,提供了一个设备。该设备可以包括一个传动杆和一个第一丝杆,该传动杆与该第一丝杆通过一个第一连接结构相连接,该传动杆和该第一丝杆不共轴。该设备可以进一步包括一个第一支撑结构,该第一支撑结构可以包括一个连接点和至少一个支撑点,该连接点可以与该第一丝杆相连,该支撑点可以与一个外界设备相连。该设备可以进一步包括一个电机,该电机驱动该传动杆旋转。其中,该传动杆的旋转可以带动该连接点相对于该第一丝杆进行移动,并带动该支撑点的移动。
在一些实施例中,该设备可以进一步包括一个第二支撑结构和一个第二丝杆,该第二支撑结构可以包括一个连接点和至少一个支撑点,该第二支撑结构的连接点可以与该第二丝杆相连,该第二支撑结构的支撑点可以与该外接设备相连,其中,该第二丝杆可以与该传动杆通过一个第二连接结构相连接,该第二支撑结构的支撑点可以和该第一支撑结构的支撑点同步运动。
在一些实施例中,第一连接结构或第二连接结构可以包括一对伞齿或一组蜗轮蜗杆。
在一些实施例中,第一连接结构或第二连接结构可以包括一个链条或一个齿条。
在一些实施例中,该设备可以进一步包括一个套筒结构,该套筒结构可以覆盖在至少一部分传动结构上。
在一些实施例中,第一丝杆可以由油钢、陶瓷、铜、铜合金、高锰钢、高锰合金、铸铁、铬钼钢、石墨中至少一种材料构成。
根据本申请的一个方面,提供了一个设备。该设备可以包括一个传动结构,该传动结构可以包括一个传动杆、一个第一转动件和一个第二转动件,该传动杆可以与该第一转动件相连。该设备可以进一步包括一个支撑结构,该支撑结构可以包括两个连杆机构,该两个连杆机构的一端可以分别铰接于一个外接设备的两个部分,该两个连杆机构的另一端可以分别与该第二转动件的两个部分相连。该设备可以进一步包括一个电机,该电机可以驱动该传动杆旋转,其中,该传动杆的旋转可以带动该第一转动件和该第二转动件的旋转并带动该两个连杆机构的转动。
在一些实施例中,两个连杆机构可以各自包括一个或多个相铰接的连杆。
在一些实施例中,第一转动件可以是一个行星齿轮组的太阳轮,第二转动件可以是该行星齿轮组的外圈齿轮。
根据本申请的一个方面,提供了一个设备。该设备可以包括一个或多个液压推杆。该液压推杆可以包括一个储液腔,该储液腔的一端可以铰接于一个立柱。该液压推杆可以进一步包括一个推杆,该推杆可以包括一个第一端和一个第二端,该推杆的第一端可以铰接于一个外接设备,该推杆的第二端可以可移动地放置在该储液腔内。该设备可以进一 步包括一个液压站,该液压站可以同步地向该一个或多个液压推杆中的储液腔提供液体。其中,该储液腔内液体的体积的变化可以带动该推杆第二端在该储液腔中移动。
根据本申请的一个方面,提供了一个设备。该设备可以包括一个传动结构,该传动结构可以包括一个传动杆和一个转动件,该传动杆可以与该转动件相连。该设备可以进一步包括一个传动件,该传动件的两端可以分别与一个外接设备的两个部分相连,该传动件可以部分地覆盖在该转动件上。该设备可以进一步包括一个电机,该电机可以驱动该传动杆旋转。其中,该传动杆的旋转可以带动该转动件的转动,该转动件的转动可以进一步带动该传动件两端进行运动。
在一些实施例中,转动件可以包括一个链轮或一个转轮,传动件可以包括一个链条或一个拉绳。
附图描述
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构和操作。
图1是根据本申请一些实施例所示的示例多点传动支撑系统的应 用场景图;
图2是根据本申请一些实施例所示的示例控制系统的模块示意图;
图3是根据本申请一些实施例所示的示例控制系统的示例性流程图;
图4是根据本申请一些实施例所示的示例驱动模块的模块示意图;
图5是根据本申请一些实施例所示的示例控制模块的模块示意图;
图6是根据本申请一些实施例所示的生成控制指令或驱动的示例性流程图;
图7是根据本申请一些实施例所示的示例支架的模块示意图;
图8是根据本申请一些实施例所示的驱动外接设备的示例性流程图;
图9是根据本申请一些实施例所示的示例支架的结构示意图;
图10是根据本申请一些实施例所示的示例千斤顶支撑结构的结构示意图;
图11是根据本申请一些实施例所示的示例伞齿支撑结构的轴向结构示意图;
图12是根据本申请一些实施例所示的示例链条传动结构的示意图;
图13是根据本申请一些实施例所示的示例行星轮支撑结构的轴向结构示意图;
图14是根据本申请一些实施例所示的示例液压杆支撑结构的结 构示意图;
图15是根据本申请一些实施例所示的示例链条结构的结构示意图;
图16是根据本申请一些实施例所示的示例保护装置的结构示意图;
图17是根据本申请一些实施例所示的示例支架应用场景的结构示意图;
图18是根据本申请一些实施例所示的示例支架应用场景的结构示意图;以及
图19是根据本申请一些实施例所示的示例支架应用场景的结构示意图。
具体描述
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
虽然本申请对根据本申请的实施例的系统中的某些模块做出了各种引用,然而,任何数量的不同模块可以被使用并运行在客户端和/或服务器上。所述模块仅是说明性的,并且所述系统和方法的不同方面可以使用不同模块。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各种步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本申请涉及一种多点传动支撑方法,该方法包括利用一个控制引擎控制一个支架的运动。该支架的运动带动一个与该支架相连的外接设备进行运动。在一些实施例中,该方法包括驱动一个电机产生一个旋转的力矩。该旋转的力矩通过一个传动结构被传递到一个支撑结构上。其中,该支撑结构是千斤顶、蜗轮蜗杆、伞齿轮、行星齿轮组、液压系统中的一种或多种。该旋转的力矩带动该支撑结构进行运动并进一步带动与其相连的外接设备进行移动或旋转。图1是根据本申请一些实施例所示的示例多点传动支撑系统。该多点传动支撑系统100可以包括一个控制引擎110、一个支架120、一个外接设备130、一个网络140、一个传感器设备150、一个服务器160、一个终端设备170和一个数据库180。控制引擎110可以与多点传动支撑系统100的一个或多个组件相连。在一些实施例中,控制引擎110与各组件的连接方式可以是有线或无线的。在一些实施例中,控制引擎110与各组件的连接可以是双向的。例如,控制引擎110可以接收来自传感器设备150采集的传感器数据。所述传感器数据可以包括支架120(或其连接的外部设备130)的倾角数据、磁场数据、风力数据、声音数据、温度数据、湿度数据、运动数据、亮度数据、能耗数据中的一种或多种。在一些实施例中,控制引擎110可以 对所接收到的传感器数据进行分析并检测其中的异常数据。进一步地,控制引擎110可以控制存在异常数据的传感器设备150进行多次采集或者调节所述存在异常数据的传感器设备150。在一些实施例中,控制引擎110可以生成一个或多个控制指令,所述控制指令可以基于采集到的传感器数据。在一些实施例中,所述控制指令可以对支架120、外接设备130以及传感器设备150的工作状态进行调节。在一些实施例中,控制引擎110可以是一个集成的芯片或电路,如处理器等。在一些实施例中,控制引擎110可以由多个子电路组成。
支架120可以是一个机械结构。在一些实施例中,支架120可以与控制引擎110相连,所述控制引擎110可以驱动支架120中的电机(例如图7中显示的电机710)进行运动,从而驱动支架120运动。在一些实施例中,支架120可以与外接设备130相连。其中,所述支架120的运动可以带动外接设备130的运动。
外接设备130可以是一个与支架120相连的设备。在一些实施例中,外接设备130可以是太阳能板、农业大棚塑料薄膜、工业管道阀门、太阳能反射镜等。在一些实施例中,支架120的运动可以带动外接设备130进行运动从而实现相应的功能。例如,所述支架120可以带动太阳能板追踪太阳的轨迹。例如,所述支架120可以控制农业大棚塑料薄膜的开关。例如,所述支架120可以控制工业管道阀门从而调节流量的大小。
网络140可以是单个网络,或多个不同网络的组合。例如,网络 140可以包括局域网(local area network,LAN)、广域网(Wide Area Network,WAN)、公用网络、私人网络、专用网络、无线局域网、虚拟网络、都市城域网、公用开关电话网络(Public Switched Telephone Network,PSTN)或互联网、工业网络等中的一种或几种的组合。网络140可以包括多个网络接入点。这些网络接入点可以是有线的,或无线的。例如,路由器、交换机基站、互联网交换点、数据总线等。通过这些接入点,多点传动支撑系统100的一个或多个组件可以接入网络140并通过网络140发送和接受来自其他组件的信息。
网络140的接入方式可以是有线或无线的。有线接入可以通过光纤或电缆、RS-485接口等形式而实现。无线接入可以通过蓝牙、无线局域网络(Wireless Local Area Network,WLAN)、Wi-Fi、WiMax、近场通信(Near Field Communication,NFC)、ZigBee、移动网络(2G、3G、4G、5G网络等)、通用分组无线服务技术(General Packet Radio Service,GPRS)或其他连接方式而实现。
传感器设备150可以是任何采集数据的设备。在一些实施例中,传感器设备150可以包括但不限于光强传感器、磁场传感器、风力传感器、倾角传感器、声音传感器、温度传感器、湿度传感器、运动传感器、亮度传感器和能耗传感器中的一个或多个。在一些实施例中,传感器设备150可以将采集到的数据传送给所述多点传动支撑系统100中的其他设备。在一些实施例中,多点传动支撑系统100可以控制所述传感器设备150的采集。在一些实施例中,传感器设备150可以在固定的时间间 隔进行采集并将采集到的数据发送给多点传动支撑系统100中的其他设备。在一些实施例中,所述传感器设备150可以包含一个缓存模块,所述缓存模块可以存储所述采集到的数据并在一定时间或一定条件满足的情况下将存储到的数据发送给多点传动支撑系统100中的其他设备。进一步地,所述传感器设备150可以包含一个预处理模块,所述预处理模块可以对采集到的数据进行预处理。在一些实施例中,传感器设备150可以只将预处理后的数据发送给多点传动支撑系统100中的其他设备。
在一些实施例中,传感器设备150可以是支架120的一部分、外接设备130的一部分或者是一个独立于所述支架120和所述外接设备130之外的设备。
服务器160可以是一个服务器硬件设备,或一个服务器群组。一个服务器群组内的各个服务器可以通过有线的或无线的网络进行连接。一个服务器群组可以是集中式的,例如数据中心。一个服务器群组也可以是分布式的,例如一个分布式系统。服务器160可以是文件服务器、数据库服务器、FTP服务器、应用程序服务器、代理服务器、邮件服务器等中的一种或几种的组合。在一些实施例中,一台个人计算机或者其他类型的工作站或终端设备,被适当程序化后也可以作为服务器使用。服务器160可以是本地服务器、远程服务器、分布式服务器等。
服务器160可以用于执行数据的分析与处理操作。所述分析与处理的操作可以包括分析多点支撑传动系统100中支架120的运行状态、分析支架120的故障情况(例如,是否有故障、故障的类型、故障的原 因等)、选择多点支撑传动系统100的控制模式等。数据分析与处理使用的方法可以包括线性回归分析法、方差分析法、主成分分析法、判别分析法、聚类分析法、Bayes统计分析法等。在一些实施例中,服务器160可以结合时间和支架120(或者外部设备150)的倾角生成角度曲线图,通过识别异常曲线确定支架120的故障情况。
服务器160可以通过网络140从控制引擎110、数据库180或终端设备170中获取数据。服务器160也可以具有一个存储模块,数据分析与处理中使用的数据可以存储于该存储模块中。所述数据可以是多点传动支撑系统100的实时运行数据、参考数据(例如,历史运行数据、运行状态参考数据、环境数据)等中的一种或几种的组合。实时运行数据可以包括支架120的实时倾角、支架120的实时温度、支架120的实时高度、电机的实时电流、电机的实时电压、电机的实时温度等中的一种或者几种。历史运行数据可以包括,支架120历史倾角、支架120历史温度、支架120历史高度、电机历史电流、电机历史电压、电机实时温度等中的一种或者几种。运行状态参考数据可以包括电机电流最大值、逆变器发电量最小值等。环境数据可以包括风速、温度、空气湿度、太阳辐射、降雨量、降雪量、土壤湿度、地理坐标、时间、太阳方位角或太阳高度角等中的一种或者几种。
服务器160可以通过网络140将数据分析与处理后的结果传输至控制引擎110、数据库180或终端设备170等。所述数据分析与处理后的结果可以是多点传动支撑系统100中支架120的运行状态、支架120 的故障情况(例如,是否有故障、故障的类型、故障的原因等)、关于支架120的控制模式的命令等。例如,服务器160通过数据分析与处理判断出多点传动支撑系统中一个或多个支架120故障后,可以将出现故障的一个或多个支架120的编号发送给终端设备170。
在一些实施例中,服务器160可以是一个云服务器。所述云服务器可以接收终端设备170发出的指令进行相应的处理操作。所述指令可以包括,但不限于上传数据、下载数据、备份数据、删除数据、共享数据等中的一种或几种的组合。例如,使用者可以通过终端设备170发出备份数据的指令,云服务器可以根据使用者的备份指令将目标数据在云存储空间进行备份。又例如,使用者可以通过终端设备170发出下载数据的指令,云服务器可以根据使用者的下载指令将指定数据从目标站点下载。再例如,使用者可以通过终端设备170发出共享数据的指令,云服务器可以根据使用者的共享指令将指定数据共享给指定对象,例如其他多点传动支撑系统。
终端设备170可以监控多点传动支撑系统100。终端设备170可以包括笔记本电脑、手机、平板电脑、监控台、计算机、电视、投影设备、智能手表、智能电话等中的一种或几种的组合。在一些实施例中,终端设备170可以显示多点传动支撑系统100的实时运行数据、参考数据(例如,历史运行数据、运行状态参考数据、环境数据)等中的一种或几种的组合。终端设备170可以显示服务器160分析与处理过程中的中间数据、分析与处理的结果等。显示的形式可以是列表、图形(例如, 折线图、曲线图、柱形图、饼图、卫星云图等)、文字、特殊符号、语音等中的一种或几种的组合。例如,在卫星云图上显示某地的分布式电站的数量、用户电站的数量等。又例如,在地图上显示区域的土壤湿度信息。显示的数据可以是单点的数据,或统计的数据。例如,实时显示当前的发电量值。统计的方式可以是以时间、地区或者其他自由定义的方式统计。例如,以月为统计单元显示每个月的发电量的累加值。又例如,可以显示多点传动支撑系统100在过去一天的历史运行数据。显示的数据可以是实时的数据,或历史的数据。例如,显示当前时刻和过去100天内的当前时刻的发电量数据。显示的数据可以是一个或者多个支架120(或外部设备130)的数据、一个或者多个多点传动支撑系统的数据、一个或者多个太阳能电站的数据等。例如,显示一个多点传动支撑系统的总发电量同时显示每一个支架120(或外部设备130)的发电量。
在一些实施例中,终端设备170可以接收警报信号并发出警报提示。所述报警信号可以由服务器160或支架120发出。例如,当服务器160基于接收到的数据进行分析与处理,确定多点传动支撑系统100的运行状态为故障状态时,服务器160可以发送警报信号给终端设备170。所述警报信号可以是,图像警报提示、短信警报提示、邮件警报提示、声音警报提示、震动警报提示、指示灯警报提示等中的一种或几种的组合。终端设备170在接收到警报信号后,可以发出警报提示。终端设备170发出的警报提示可以包括图像警报提示、短信警报提示、邮件警报提示、声音警报提示、震动警报提示、指示灯警报提示等中的一种或几 种的组合。
在一些实施例中,终端设备170还可以接收故障数据。所述故障数据可以由服务器160或支架120发出。例如,当服务器160基于接收到的数据进行分析与处理,确定多点传动支撑系统100的运行状态为故障状态时,服务器160可以将故障数据传送给终端设备170。所述故障数据可以包括故障设备、故障时间、故障类型、失效模式、失效原因、建议解决方案、故障处理进度等中的一种或几种的组合。所述故障类型可以包括突发型故障、渐变型故障等中的一种或几种的组合。所述故障处理进度可以包括待处理、处理中、已处理等中的一种或几种的组合。例如,多点传动支撑系统100中一个支架120的故障处理进度为已处理,其他支架120的故障处理进度为待处理。
在一些实施例中,终端设备170可以显示多点传动支撑系统100的故障数据。所述故障数据可以是一个或者多个支架120的故障数据。所述故障数据可以是故障类型、故障时间、失效模式、失效原因、建议解决方案、故障处理进度等中的一种或几种的组合。例如,不同处理进度,例如,处理中、待处理或已处理的故障有哪些。
在一些实施例中,终端设备170可以发出控制信号控制多点传动支撑系统100。所述控制信号可以是由终端设备的使用者下达的控制命令,或终端设备计算得到的控制命令。所述控制信号可以控制多点传动支撑系统100设定支架120的倾角、切换支架120的控制模式、设定故障报警阈值、设置权限等。例如,使用者可以设定某个支架120的倾角。 又例如,使用者可以设定若干个支架120的倾角。又例如,使用者可以一起设定多点传动支撑系统100所有支架120的倾角。
在一些实施例中,终端设备170和服务器160可以是同一个设备,该设备可以实现本申请实施例中描述的终端设备170和服务器160的一种或多种功能。例如,该设备既可以基于接收到的数据进行分析与处理,获得多点传动支撑系统的故障数据,又可以将所述故障数据进行显示。数据库180可以用于存储数据。数据库180可以存储多点传动支撑系统100运行过程中利用、产生和输出的各种数据。所述数据包括多点传动支撑系统100的实时运行数据、参考数据(例如,历史运行数据、运行状态参考数据、环境数据)等中的一种或几种的组合。数据库180可以是本地的,或远程的。数据库180可以包括层次式数据库、网络式数据库和关系式数据库等其中的一种或几种的组合。
数据库180可以与网络140相互连接或通信,或直接与服务器160或其一部分相互连接或通信,或是两种方式的结合。在一些实施例中,数据库180可以设置在服务器160的后台,与服务器160直接相连。数据库180与服务器160的连接或通信可以是有线的,或无线的。当数据库180与服务器160直接相连时,多点传动支撑系统100的其他部分(例如,终端设备170),可以通过服务器160访问数据库180。
在一些实施例中,数据库180可以是独立的,直接与网络140相连接。数据库180与网络140的连接或通信可以是有线的,或无线的。当数据库180与网络140相互连接或通信时,服务器160或多点传动支 撑系统100中其他部分(例如终端设备170),可以通过网络140访问数据库180。
图2是根据本申请一些实施例所示的示例控制系统的示意图。控制系统110可以包括一个输入输出模块210、一个控制模块220、一个驱动模块230、一个通信模块240和一个存储模块250。控制系统110的各模块之间的连接方式可以是有线的、无线的或两者的结合。各模块可以是本地的、远程的或两者的组合。模块间的对应关系可以是一对一或一对多。例如,控制系统110可以包括多个输入输出模块210和一个控制模块220。所述多个输入输出模块210可以分别接受不同的数据,如来自倾角传感器、光强传感器、风力传感器、服务器等的数据,并发送给控制模块220进行处理。例如,控制系统110可以包括多个输入输出模块210和多个控制模块220。每个控制模块220可以分别对应一个输入输出模块210,从而分别处理其输入的数据。
输入输出模块210可以从多点传动支撑系统100中其他组件或外部组件接收信息或将信息发送给多点传动支撑系统100中其他组件或外部设备。在一些实施例中,输入输出模块210可以从传感器设备150中接收传感器数据。所述传感器数据包括光强、温度、湿度、亮度、风力强度、磁场强度、设备倾斜角度、能耗量等一种或多种。在一些实施例中,输入输出模块210可以将接收到的传感器数据发送给控制模块220。在一些实施例中,输入输出模块210可以包括一个用户界面,用来接收用户的输入。所述用户的输入可以包括参数的设置、结果的修正等。在 一些实施例中,输入输出模块210可以通过终端设备170接收用户的输入。
在一些实施例中,输入输出模块210可以将接收到的数据存储到存储模块250中。在一些实施例中,输入输出模块210可以将接收到的数据发送给通信模块240并进一步地发送给服务器160。服务器160可以对数据进行分析和处理并将结果发送回输入输出模块210或通信模块240。进一步地,输入输出模块210可以将结果发送至传感器设备150或者多点传动支撑系统100中的其他组件。
控制模块220可以对数据进行分析、处理,并生成相应的分析、处理结果。在一些实施例中,控制模块220可以根据分析、处理结果生成一个控制指令。进一步地,控制模块220可以将所述控制指令发送至多点传动支撑系统100中其他组件或外部设备。在一些实施例中,控制模块220可以通过输入输出模块210将控制指令发送至传感器设备150。例如,如果控制模块220判断出某一个或多个传感器数据存在问题,可以生成一个重启传感器设备150、重新采集数据或改变采集模式的反馈结果。所述反馈结果可以通过输入输出模块210发送给传感器设备150。在一些实施例中,控制模块220通过通信模块240将所述控制指令发送至服务器160、终端设备170或数据库180。
在一些实施例中,控制模块220可以将控制指令发送至驱动模块230从而对电机进行相应的驱动。例如,如果控制模块220根据传感器数据判断出某一天气情况或将要出现某一天气情况(如大风),可以生成 一个驱动支架120及外接设备130复位(比如平行于地面)的控制指令。在一些实施例中,支架120可以包括一个指令接收单元或其他可以接收控制指令的器件。控制模块220可以将控制指令直接发送至支架120的所述指令接收单元中,所述指令接收单元可以对支架120进行控制。在一些实施例中,控制模块220可以包括一个处理器。所述处理器可以包括中央处理器(central processing unit,CPU)、可编程逻辑设备(programed programmable logic device,PLD)、专用集成电路(special integrated circuit,ASIC)、微处理器(microprocessor)、嵌入式芯片系统(system on chip,SoC)、通讯信号处理器(digital signal processor,DSP)等中的一种或多种。所述两个及以上的处理器可结合在一个硬件设备上。所述处理器可通过多种方式,包括硬件、软件或硬件软件结合等方式实现数据处理。
驱动模块230可以对电机进行驱动。在一些实施例中,驱动模块230可以提供一个交流或直流的电流给与支架120相连的电机从而使其以特定的方向和速度进行转动。进一步地,支架120的转动可以带动外接设备130进行相应的移动或转动。在一些实施例中,驱动模块230可以由继电器和晶体管等组成。
在一些实施例中,驱动模块230可以检测驱动状态或电机的运行状态。例如,可以通过相应的检测元件检测电机的电流、电压、功率、阻抗等电学参数。通过检测所述电学参数驱动模块可以发现电机的异常现象如短路、断路、功率过高、温度过热等。
通信模块240可以与服务器160进行双向通信。根据本申请其他 实施例的描述,所述服务器160可以是一个数据分析平台。在一些实施例中,通信模块240可以接收来自控制模块的控制指令或数据,并发送给所述服务器160。在服务器160分析或处理数据之后,通信模块240可以从服务器160中获得分析或处理结果。
存储模块250可以用于存储信息。所述信息可以包括输入输出模块210获取的数据、控制模块220或服务器160生成的处理结果或控制指令、参数、配置等。在一些实施例中,所述存储模块240可以是各类存储设备如固态硬盘、机械硬盘、USB闪存、SD存储卡、光盘、随机存储器(random-access memory,RAM)和只读存储器(read-only memory,ROM)等。在一些实施例中,存储模块240可以是本地的存储,外接的存储,通过网络140连接的存储(如云存储)等。
在一些实施例中,控制系统110可以进一步包括一个反馈模块(未在图中显示),所述反馈模块可以监测支架120和/或外接设备130的运行状态并将监测结果反馈给控制模块220。例如,当控制模块220发出控制指令并驱动支架120运动时,反馈模块可以对支架120和/或外接设备的运行状态,如高度、角度、位移量、旋转量等指标进行监测并将监测结果反馈给控制模块220。控制模块220可以根据监测结果进行下一步的处理或控制。
图3是根据本申请一些实施例所示的控制系统的示例性流程图。步骤310可以包括接收数据。在一些实施例中,步骤310可以通过输入输出模块210实现。在一些实施例中,所述数据可以包括传感器数据、 远程数据、用户输入数据等。所述传感器数据可以由输入输出模块210从传感器设备150接收,包括但不限于光强、温度、湿度、亮度、风力强度、磁场强度、设备倾斜角度、能耗量等一种或多种。在一些实施例中,所述数据可以包括外接设备130、电机和/或支架120的运行数据。所述外接设备的运行数据可以通过监测外接设备的运行状态获得。在一些实施例中,所述数据可以从内部存储设备,如存储模块250中获得,也可以从外部存储设备,如网络存储设备、云盘、移动硬盘等中获得。
步骤320可以包括对接收到的数据进行处理。在一些实施例中,步骤320可以通过控制模块220实现。在一些实施例中,步骤320可以包括根据接收到的数据生成一个或多个控制指令。例如,步骤320可以包括基于所接收到的传感器数据生成一个调节外接设备130工作状态的控制指令。例如,步骤320可以包括基于接收到的远程数据或用户输入数据生成一个对支架120进行驱动的控制指令。例如,步骤320可以包括基于所接收到的传感器数据生成一个调节或修正传感器设备150工作状态的控制指令。
在一些实施例中,步骤320可以包括根据接收到的数据生成一个期待的外接设备130的运行状态。进一步地,根据所述期待的运行状态,步骤320可以包括计算出对支架120所需的调节。其中,所述对支架120的调节可以带动外接设备调节到期待的运行状态。例如,一个外接设备130期待的运行状态可以是“离地两米,与水平线成30度角”。进一步地,计算出达到所述期待的运行状态还需要顺时针旋转外接设备2度角, 步骤320可以据此计算出实施所述2度角的旋转所需要对电机进行的驱动的大小。在一些实施例中,所述驱动的大小与驱动电流的大小有关,例如,驱动大小可以表示为以30mA的电流驱动电机运转2秒。
步骤330可以包括根据处理后的数据驱动设备或输出控制指令。在一些实施例中,步骤330可以包括根据数据的处理结果驱动支架120从而带动外接设备130调节到期待的运行状态。在一些实施例中,步骤330可以将所述处理结果发送至驱动模块230。所述驱动模块230可以根据处理结果对电机进行相应的驱动。在一些实施例中,步骤330可以将控制指令发送至支架120中的指令接收模块中。所述指令接收模块可以根据所述控制指令对支架120进行调节。在一些实施例中,步骤330可以包括将控制指令发送至服务器160或者传感器设备150中。
图4是根据本申请一些实施例所示的示例驱动模块的示意图。驱动模块230可以包括组合继电器单元410和电流检测单元420。组合继电器单元410可以包括晶体管和继电器。在一些实施例中,组合继电器单元410可以接收来自控制模块220的控制指令,并根据控制指令驱动支架120中的电机进行移动从而带动外接设备进行相应的移动。在一些实施例中,当接收到开始驱动的控制指令时,继电器先吸合,晶体管再接通电源;当接收到停止驱动的控制指令时,晶体管先切断电源,继电器再释放,从而确保在继电器吸合和释放瞬间,触点无电动作,避免了通断电时触点产生的电弧对继电器的影响。
电流检测单元420可以检测驱动支架120运转时的电流值,并将 其实时输出给控制模块220。在一些实施例中,所述电流数据的采集可以通过霍尔电流传感器、罗格夫斯基线圈、光纤电流传感器、模数转换器(analog digital converter,ADC)等实现。当实时电流值大于阈值时,控制模块220可以输出切断支架120电源的指令,并通过输入输出模块210(或终端设备170)向用户告知过载。
在一些实施例中,驱动模块230可以包括其他的电学参数检测单元以检测其他的电学参数。所述的其他的电学参数可以包括但不限于电压、频率、电容、电噪声、阻抗、偏置电压等。进一步地,驱动模块230可以根据所述其他电学参数检测驱动电机运转时的工作状态并可进行相应调整。
图5是根据本申请一些实施例所示的示例控制模块的示意图。控制模块220可以包括参数设置单元510、计算单元520、控制单元530和指令生成单元540。参数设置单元510可以设置一个或多个参数。所述参数可以包括外接设备130的配置、驱动需要的力的大小、经纬度、风力、日期、光照时间等。在一些实施例中,所述参数可以由用户通过输入输出模块210输入。在一些实施例中,所述参数可以从存储模块250中获得。在一些实施例中,所述参数可以通过通信模块240从服务器160或终端设备170获得。
计算单元520可以根据设置的参数以及接收到的数据生成一个计算结果。例如,根据经纬度和日期等参数,计算单元520可以计算出太阳的光照周期和光照方向。例如,根据接收到的外接设备的运行状态, 计算单元520可以计算出外接设备130是否朝向太阳的光照方向,或者外接设备130的朝向与太阳的光照方向之间角度的大小等。进一步地,根据其他参数或数据,计算单元520可以计算出外接设备130所需的调节方式,如高度的调节量、朝向的调节量、倾角的调节量等。在一些实施例中,计算单元520可以计算出支架120所需要的驱动大小和时间以带动所述外接设备130完成所需的调节。
控制单元530可以基于数值参数或指令做出逻辑判断和/或控制的决定,并产生相应的控制信息。在一些实施例中,控制单元530可以处理经过计算单元520计算获得的计算结果,通过输入输出模块210获得的数据,或者参数设置单元510预设的条件等产生控制信息。所述控制信息可以通过指令生成单元540转换为系统可执行的指令,实现对系统本身或外部用电电路的控制。在一些实施例中,控制单元530可以是一个经过编程的可编程逻辑器件(programmable logic device,PLD)、专用集成电路(application specific integrated circuits,ASIC)、处理器(central processing unit,CPU)、系统芯片(system on chip,SoC)等。
指令生成单元540可以基于控制单元530生成的控制信息,生成系统可执行的控制指令。所述控制指令可以包括操作信息、地址信息等。操作信息可以指示操作的方法和功能,而地址信息可以指向操作的对象。在一些实施例中,指令生成单元540生成的指令可以被传输至输入输出模块210,控制数据和用户输入信息的收集。在一些实施例中,所述生成的指令也可以反馈给控制模块220,进行进一步计算或逻辑处理并产 生下一步的指令。在一些实施例中,所述指令可以提供给终端设备170,从而控制显示的内容和方式。在一些实施例中,所述指令也可以传输至存储模块250,用以控制数据的存储和读取。在一些实施例中,所述指令可以传递到驱动模块230上,从而控制与驱动模块相连的电机和支架120的运动。在一些实施例中,指令生成单元540生成的指令可以包括数值运算指令、逻辑判断指令、硬件操作指令等。其中,所述数值运算指令可以控制计算单元520进行相应的数值运算,如计算驱动方式、光照方向等。所述逻辑判断指令利用控制单元进行逻辑判断并作出分析决策,如基于收集到的传感器数据,生成关于启动或停止本系统的判断。所述硬件操作指令则可以通过固件,控制指向硬件的开关或功能模式的切换等。如改变驱动模块的工作方式、改变传感器的运行状态等。
图6是根据本申请一些实施例所示的生成控制指令或驱动的示例性流程图。在一些实施例中,流程600可以通过控制模块220实现。步骤602可以包括设置一个或多个参数。在一些实施例中,步骤602可以通过参数设置单元510实现。所述参数可以包括外接设备的配置、驱动需要的力的大小、经纬度、风力、日期、光照时间、电机的配置等。在一些实施例中所述参数可以由用户通过输入输出模块210或终端设备170输入。在一些实施例中,所述参数可以从存储模块250中获得。在一些实施例中,所述参数可以通过通信模块240从服务器160中获得。在一些实施例中,如果无法获取与所述参数相关的数值,步骤602可以包括将所述参数设置为默认值。
步骤604可以包括获取数据。所述数据可以包括外接设备130(和/或支架120)倾角、光强、实时风力、湿度、温度磁场强度、能耗量、亮度等。在一些实施例中,所述数据可以包括通过监测外接设备130的运行状态而获得的外接设备130的运行数据。在一些实施例中,所述数据可以通过输入输出模块210从传感器设备150中获得。在一些实施例中,所述数据可以从内部存储设备,如存储模块250中获得,也可以从外部存储设备,如网络存储设备、云盘、移动硬盘等中获得。
步骤606可以包括计算出所需的目标参数。例如,根据经纬度和日期等参数,步骤606可以包括计算出太阳的光照周期和光照方向等参数。例如,根据接收到的外接设备130的运行状态,步骤606可以包括计算出外接设备130是否朝向太阳的光照方向或外接设备130的朝向与太阳的光照方向之间角度的大小等。进一步地,根据其他参数或数据,步骤606可以包括计算出外接设备130所需的调节方式,如调节高度、调节朝向、调节倾角等。在一些实施例中,步骤606可以计算出带动外接设备130运转的支架120所需要的驱动大小和时间。
步骤608可以包括根据计算结果生成相对应的控制指令。控制指令可以包括对支架120和电机进行控制。例如,控制指令可以包括控制电机以5转/秒的速度顺时针旋转5秒从而带动支架120和外接设备130进行相应运动。在一些实施例中,控制指令可以包括重启传感器设备150、重新采集数据或改变采集模式的控制指令。在一些实施例中,控制指令可以包括控制终端设备170上的显示内容和方式的指令。
步骤610可以包括输出生成的控制指令。在一些实施例中,步骤610可以包括将生成的控制指令发送到相应的设备中,如传感器设备150、服务器160、终端设备170等。在一些实施例中,支架120可以包括一个指令接收模块,步骤610可以包括将控制指令发送到所述指令接收模块中。进一步地,所述指令接收模块可以根据所接收到的控制指令对支架120进行控制。
步骤612可以包括根据计算结果驱动相应设备进行运动。在一些实施例中,步骤612可以包括根据计算结果驱动电机转动。例如,步骤612可以包括通过驱动模块230以设定的电流驱动电机转动一定时间。在一些实施例中,步骤612可以包括通过驱动模块230以额定的电压或电流控制电机的开启或关闭。在一些实施例中,步骤612可以包括根据计算结果生成一个控制指令并将所述控制指令发送到驱动模块230。进一步地,驱动模块230可以根据所述控制指令驱动电机及支架120。
图7是根据本申请一些实施例所示的示例支架的示意图。支架120可以包括一个电机710、一个立柱720、一个指令接收模块730、一个传动结构740和一个支撑结构750。电机710可以是一个将电能转化为机械能的设备。进一步地,电机可以包括一个机械输出端。在一些实施例中,所述输出端可以是一个转轴。在一些实施例中,电机710可以是伺服电动机、步进电动机、力矩电动机、开关磁阻电动机、直流电动机、交流电动机、异步电动机、同步电动机等中的一种或多种。在一些实施例中,电机710的输入值和输出值是预先设定的。例如,电机710的输 入电流和电压可以是固定的值,偏离这个值会导致电机710的损坏。在一些实施例中,电机710的输入值是一个可以在合理范围中变化的值。在一些实施例中,电机710的输入端的电功率越大,输出的机械能也越高,例如,对应的输出端的转轴转动越快。在一些实施例中,电机710可以是一个独立于所述支架120之外。
立柱720可以是一个柱形的底座。在一些实施例中,立柱720下端可以放在地上、埋在土里、埋在水中或浮在水面上。在一些实施例中,立柱720上端可以与传动结构740和/或支撑结构750相连。在一些实施例中,立柱720可以支撑外接设备。在一些实施例中,立柱720可以连接一个墙体或者吊在一个顶棚上。
指令接收模块730可以接收一个控制指令并根据控制指令控制电机710的运行。所述控制指令可以从指令生成单元540产生。在一些实施例中,所述指令接收模块730可以包括一个反馈调节模块,所述反馈调节模块可以对电机710或外接设备130的运行状态进行监测并进行相应调节。例如,当指令接收模块730根据所接收到的控制指令相应地驱动电机710到达期望的运行状态时,所述反馈调节模块可以对电机710的实时运行状态进行判断并实时调节直至所述电机710达到所述期望的运行状态。
传动结构740可以传递电机710产生的扭矩。在一些实施例中,传动结构740可以是一个轴状的结构。当电机710驱动传动结构740一端进行转动的时候,可以使传动结构740多个部分同步转动。在一些实 施例中,所述传动结构740可以由多个轴状结构组成,各轴状结构中间可以通过多个联结器等连接以传递扭矩。在一些实施例中,所述的联接器可以减少轴状结构之间相互运动产生的应力。在一些实施例中,所述的联接器可以是万向传动装置。
支撑结构750可以支撑并带动外接设备130转动。在一些实施例中,支撑结构750可以与传动结构740和外接设备130相连。在一些实施例中,传动结构740的转动可以带动所述支撑结构750的运动,并进一步带动外接设备130的运动。在一些实施例中,支撑结构750可以包括千斤顶、齿条、推杆、扇形齿轮、液压杆、行星齿轮等一种或多种结构。
在一些实施例中,指令接收模块730是电机的一部分,电机可以接受控制指令并自动实现运转。
在一些实施例中,支架120可以不包括指令接收模块730,而直接通过驱动模块230驱动。
图8是根据本申请一些实施例所示的驱动外接设备的示例性流程图。在一些实施例中,流程800可以通过支架120实现。步骤802可以包括接收一个控制指令。所述控制指令可以从指令生成单元540中产生。在一些实施例中,步骤802可以通过指令接收模块730实现。所述控制指令可以包括对电机710或外接设备130的运行状态的控制和调节。
步骤804可以包括根据接收到的控制指令驱动电机710。
步骤806可以包括驱动外接设备130的运转。所述驱动可以通过 一个机械结构实现。在一些实施例中,所述机械结构可以是支架120中的传动结构740和支撑结构750。
步骤808可以包括判断外接设备130的运作状态是否满足预设条件。所述预设条件可以包括由计算单元520生成的外接设备130期望的运行状态。例如,外接设备130的高度、角度、方向、经纬度等。如果没有满足所述预设条件,可以在步骤804中进一步地驱动电机710,直到预设条件满足,即外接设备130达到期望的运行状态。如果满足所述预设条件,可以在步骤810中停止驱动电机710。
图9是根据本申请一些实施例所示的示例支架的结构示意图。如图9所示,支架900可以包括一个电机910、一个传动结构990、一个或多个支撑结构940(例如图中所示的支撑结构940a,940b,940c)和一个或多个立柱950(例如图中所示的立柱950a,950b,950c)。
电机910可以是一种将电能转化为机械能的器件。在一些实施例中,电机910的输出端可以输出一个旋转的力矩。传动结构990可以是一个长轴状的器件。进一步地,传动结构990可以与电机910相连并在电机910的带动下进行旋转。在一些实施例中,所述传动结构990可以由一个或多个轴状器件组成。传动结构990可以包括一个或多个传动杆920、一个或多个丝杆930、一个或多个伸缩轴套960和一个或多个万向传动装置970。如图9所示,传动结构990可以包括一个丝杆930a、一个丝杆930b和一个丝杆930c。所述丝杆930a、丝杆930b和丝杆930c可以分别与所述支撑结构940a、支撑结构940b和支撑结构940c相连。 在一些实施例中,相邻的丝杆之间可以通过一个传动杆相连接。例如,丝杆930a与丝杆930b之间可以通过一个传动杆920相连接。进一步地,传动杆920与丝杆930a,传动杆920与丝杆930b之间可以分别通过一个万向传动装置相连。在一些实施例中,传动杆920可以由两个子传动杆组成,所述两个子传动杆可以通过一个伸缩轴套相连接。在一些实施例中,伸缩轴套960可以是一个空心的连接管,用以连接两个轴状的器件。万向传动装置970可以是一个连接两个器件并在所述两个器件之间传递轴向扭矩,而不限制所述两个器件进行与轴向相垂直的移动或旋转的器件。
支撑结构940a、支撑结构940b和支撑结构940c可以连接并带动外接设备980的移动。在一些实施例中,所述支撑结构940a、支撑结构940b和支撑结构940c可以与所述传动结构990相连并在所述传动结构990旋转时发生外形或位移上的改变,从而带动外接设备980的移动。
需要说明的是,以上对于支撑结构的描述,仅为描述方便,并不能把本申请限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,支撑结构可以是实现以上描述功能的其他结构。在一些实施例中,所述支撑结构940可以包括千斤顶(或类似千斤顶结构)、齿条、推杆、扇形齿轮、液压杆、行星齿轮、链条等一种或多种结构。例如,支撑结构940a、支撑结构940b和支撑结构940c可以均为千斤顶或类千斤顶结构。又例如,支撑结构940a和支撑结构940b可以是齿条结构而支撑结构940c可以是液压杆结构。关于支撑结构940的具体描述可以 参见本申请中对图10-13的示例结构的描述。
立柱950可以是一个柱形的底座。在一些实施例中,立柱950下部分可以放在地上、埋在土里、埋在水中或浮在水面上。在一些实施例中,立柱950上部分可以与传动结构990和/或支撑结构940相连。在一些实施例中,立柱950可以支撑外接设备980。在一些实施例中,立柱950可以连接一个墙体或者吊在一个顶棚上。如图9所示,立柱950a、立柱950b和立柱950c可以分别连接支撑结构940a、支撑结构940b和支撑结构940c。在一些实施例中,所述支撑结构940a、支撑结构940b和支撑结构940c的一部分可以固定在所述立柱950上。在一些实施例中,所述支撑结构940a、支撑结构940b和支撑结构940c可以不与立柱950a、立柱950b和立柱950c相连。例如,所述支撑结构940a、支撑结构940b和支撑结构940c的一部分可以分别或一同固定在一个支撑件(在图中未示出)上。在一些实施例中,传动结构990可以为所述支撑结构940a、支撑结构940b和支撑结构940c提供支撑。
在一些实施例中,当电机910产生一个旋转力矩时,可以带动丝杆930a进行旋转。所述丝杆930a的旋转所产生的力矩可以通过传动杆920传递到丝杆930b,从而带动丝杆930b进行同步旋转。同理,丝杆930b的旋转也可以带动丝杆930c进行同步旋转。所述丝杆930a、丝杆930b和丝杆930c的旋转可以进一步带动支撑结构940a、支撑结构940b和支撑结构940c以及与之相连的外接设备980进行同步运动。在一些实施例中,外接设备980可以是一个太阳能板器件,包含一个光伏板、 一个在所述光伏板下方且位于中心的主轴和一个在所述光伏板下方且远离中心的檩条。所述檩条可以与支撑结构940a、支撑结构940b和支撑结构940c相连。当传动结构990旋转时,可以带动支撑结构940a、支撑结构940b和支撑结构940c与檩条相连的部分进行同步地上下移动从而带动所述太阳能板绕所述主轴进行旋转。在一些实施例中,所述支撑结构940a、支撑结构940b和支撑结构940c可以分别包含至少一个支撑点,所述支撑点可以位于所述主轴的一侧或两侧。所述多个支撑点可以位于同种支撑结构(例如,均位于千斤顶结构)或不同种支撑结构上(例如,一侧的支撑点位于一个行星齿轮组结构上,而另一侧的支撑点位于一个链条结构上)。
在一些实施例中,由于万向传动装置970和伸缩轴套960可以在传递旋转力矩的同时容许其左右两端连接的传动件进行垂直于传动件的方向上下移动,所以支架900可以在高低不平的地面上使用,也可以抵抗随时间引起的土地高低不平的变化。
图10是根据本申请一些实施例所示的示例支撑结构的结构示意图。支撑结构1000可以是支撑结构940的具体实施例,可用于支架120和/或支架900中。如图所示,支撑结构1000可以包括一个丝杆1010、一个右旋螺母1020、一个左旋螺母1030、一个或多个连杆1040、一个上连接件1050、一个下连接件1060等。如图10所示,四个连杆1040可以构成一个四边形。所述四边形可以是平行四边形、上下对称的四边形或左右对称的四边形等。位于丝杆1010一侧,例如,上侧或下侧的相 邻的两个连杆1040分别通过上连接件1050或下连接件1060铰接。分别位于丝杆1010上下两侧的两个连杆1040通过一个右旋螺母1020或一个左旋螺母1030连接在丝杆1010上。上连接件1050和下连接件1060可以分别连接一个外接设备130和立柱950。在一些实施例中,所述支撑结构1000可以不与立柱950相连。例如,所述支撑结构1000的一部分可以固定在一个支撑件(在图中未示出)上。例如,丝杆1010可以为所述支撑结构1000提供支撑。在一些实施例中,左旋螺母1030和右旋螺母分别含有与丝杆1010上螺纹匹配的花纹。在一些实施例中,左旋螺母1030和右旋螺母1020的运动由丝杆1010的旋转方向、丝杆1010上的螺纹以及左旋螺母1030和右旋螺母1020的花纹决定。在一些实施例中,左旋螺母1030的位置可以与右旋螺母1020对调。
在一些实施例中,丝杆1010可以穿过所述右旋螺母1020和左旋螺母1030。进一步地,所述丝杆1010表面可以带有不同旋向的螺纹。由于螺纹的旋向可以与螺母的旋向相对应,左旋螺母1030和右旋螺母1020相应地也具有不同的花纹。
在一些实施例中,当丝杆1010旋转时,所述右旋螺母1020和左旋螺母1030可以向外(即右旋螺母1020向左,左旋螺母1030向右)移动或者向内(即右旋螺母1020向右,左旋螺母1030向左)移动从而带动所述上连接件1050和下连接件1060向上或者向下移动。在上连接件连接到外接设备时,所述上连接件的移动可以带动外接设备的运动。
需要说明的是,以上对于支架各部位结构的描述,仅为描述方便, 并不能把本申请限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对各个模块进行任意组合,或者构成子系统与其他模块连接,对实施上述方法和系统的应用领域形式和细节上的各种修正和改变。例如,在一些实施例中,左旋螺母1030接触的丝杆部位的螺纹宽度与右旋螺母1020接触的丝杆部位的螺纹宽度可以相同,在丝杆的带动下,左旋螺母1030与右旋螺母1020沿着丝杆1010等幅移动,从而上连接件1050和下连接件1060的运动轨迹垂直于丝杆。在一些实施例中,左旋螺母1030接触的丝杆部位的螺纹宽度与右旋螺母1020接触的丝杆部位的螺纹宽度可以不相同,在丝杆的带动下,左旋螺母1030与右旋螺母1020沿着丝杆1010的移动幅度不同,引起上连接件1050和下连接件1060的运动轨迹不垂直于丝杆。在一些实施例中,位于丝杆1010上侧的连杆1040与位于丝杆1010下侧的连杆1040可以具有相同的长度,在丝杆的带动下,上连接件1050与下连接件1060可以具有相同的移动幅度。在一些实施例中,位于丝杆1010上侧的连杆1040与位于丝杆1010下侧的连杆1040可以具有不同的长度,在丝杆的带动下,上连接件1050与下连接件1060可以具有不同的移动幅度。例如,所述支撑结构1000中所述位于丝杆1010下侧的两个连杆1040可以省去。丝杆1010的转动可以带动位于丝杆1010上侧的两个连杆1040沿丝杆1010的轴向进行反向的移动,从而带动所述上连接件1050的运动。
图11是根据本申请一些实施例所示的示例伞齿支撑结构的轴向 结构示意图。伞齿支撑结构1100可以是支撑结构940的具体实施例,可用于支架120和/或支架900中。如图所示,伞齿支撑结构1100可以包括一个传动杆1110(图中显示的传动杆1110的截面图)、一个丝杆1120、一个或多个连杆1130和一个螺母1140等。如图11所示,传动杆1110可以与所述连杆1130和所述丝杆1120所在平面成一定的角度。在一些实施例中,所述传动杆1110可以与所述丝杆1120相垂直。在一些实施例中,所述传动杆1110可以通过一对伞齿或一组蜗轮蜗杆与丝杆1120相连。在一些实施例中,所述传动杆1110也可以通过一个链条与丝杆1120相连。在一些实施例中,通过所述伞齿或蜗轮蜗杆,传动杆1110的旋转可以带动丝杆螺母1140进行移动或者旋转。在一些实施例中,所述丝杆1120的一端可以与一个连接件相连,所述连接件可以固定在立柱1150或外接设备1160上。在一些实施例中,所述丝杆螺母1140只能绕着自身的轴进行转动。在一些实施例中,所述丝杆螺母1140既可以绕自身的轴进行转动,还可以绕与所述连接件相连的点进行转动。
两个连杆1130一端相互铰接而另一端分别铰接于外接设备1160和立柱1150上。所述两个连杆1130相互铰接的一端与螺母1140连接。在一些实施例中,所述丝杆1120可以穿过螺母1140。
在一些实施例中,当传动杆1110进行旋转时,可以通过所述伞齿或蜗轮蜗杆使丝杆螺母1140进行同步旋转。所述螺母的移动可以带动连杆1130的移动,进而带动连杆1130与外接设备1160相连的一端进行移动,从而带动外接设备1160的移动和旋转。
图12是根据本申请一些实施例所示的示例链条传动结构的示意图。链条传动结构1200可以包括一个驱动链轮1210、一个或多个从动链轮1220和一个链条1230。如图12所示,驱动链轮1210和/或从动链轮1220的表面与所述链条1230相啮合。
在一些实施例中,当驱动链轮1210进行转动时,链条1230可以带动一个或多个从动链轮1220可以进行同步旋转。在一些实施例中,多个从动轮1220之间可以进一步通过链条进行连接。例如,链条可以紧紧地覆盖在图12中处于中间位置的两个从动链轮1220的一部分的表面上,当所述两个从动链轮1220其中一个进行转动时,链条可以带动另一个从动链轮的转动。
在一些实施例中,驱动链轮1210可以通过一个链条1230带动一部分的从动链轮1220进行转动,而所述一部分的从动链轮1220可以通过一个链条1230带动未与所述驱动链轮1210连接的一个或多个从动链轮1220进行转动。
在一些实施例中,从动链轮1220表面带有与丝杆1120配合的螺纹,或者从动链轮1220带有一个同轴的丝杆螺母1140,通过从动链轮1220或者丝杆螺母1140的旋转带动丝杆1120进行相应运动。
在一些实施例中,所述链条传动结构1200可以与本申请其他实施例中的结构相结合。例如,链条传动结构1200可以与图11中的支撑结构1100相结合。更详细地,从动链轮1220可以与丝杆1120相连,而驱动链轮1210可以与传动杆1110相连。所述传动杆1110可以与丝杆 1120相平行。在一些实施例中,当电机(比如电机910)驱动所述传动杆1110和其所连的驱动轮1210进行旋转时,链条1230可以带动从动链轮1220和丝杆螺母1140进行转动。所述丝杆螺母1140的转动,如图11及其描述,可以进一步带动连杆1130和外接设备1160进行相应的运动。
图13是根据本申请一些实施例所示的示例行星轮支撑结构的轴向结构示意图。行星轮支撑结构1300可以是支撑结构940的具体实施例,可用于支架120和/或支架900中。例如,电机910可以带动传动机构990进行转动,所述传动机构990可以与行星轮支撑结构1300的一部分结构(例如传动杆1340)相连并带动其一部分结构(例如连杆机构1310)进行运动或形变,所述行星轮支撑结构1300的一部分结构的运动或形变可以带动与之相连的外接设备980的运动。行星轮支撑结构1300可以包括一个或多个连杆机构1310、一个行星齿轮组1320、一个传动杆1340等。行星齿轮组1320可以包括一个太阳轮、一个或多个行星轮以及一个外圈齿轮。在一些实施例中,所述行星轮被限制在只能转动而不能移动。进一步地,太阳轮的转动可以通过所述行星轮带动外圈齿轮的转动。行星轮支撑结构1300可以包括两个连杆机构1310a和1310b。在一些实施例中,所述连杆机构1310a和连杆机构1310b可以是相互对称的。所述连杆机构1310a和1319b可以包括一个或多个相互铰接的连杆,所述连杆可以是直的,也可以是弯的。在一些实施例中,连杆机构1310a和连杆机构1310b,如图12所示,可以分别包括两个连 杆。所述两个连杆一端铰接,而另一端分别与外接设备1330和行星齿轮组1320的外圈齿轮相连。
在一些实施例中,传动杆1340可以与行星齿轮组1320的太阳轮相连。当连杆转动时,外圈齿轮可以转动。所述外圈齿轮的转动可以带动行星齿轮组1320两侧与所述外圈齿轮相连的两个连杆(图12中处于水平的两个连杆)进行旋转,从而进一步带动与外接设备1340相连的左右两个连杆(图12中处于竖直的两个连杆)进行转动。所述与外接设备相连的连杆的转动可以带动所述外接设备1340的运动。
以上的描述仅仅是本申请的具体实施例,不应被视为是唯一的实施例。显然,对于本领域的专业人员来说,在了解本申请内容和原理后,都可能在不背离本申请原理、结构的情况下,进行形式和细节上的各种修正和改变。例如,行星齿轮组1320可以由一般的齿轮组或单独的齿轮代替,连杆1310可以由齿条代替等。这些修正和改变仍在本申请的权利要求保护范围之内。
图14是根据本申请一些实施例所示的示例液压杆支撑结构的结构示意图。液压杆支撑结构1400可以是支撑结构940的具体实施例,可用于支架120和/或支架900中。如图所示,液压杆支撑结构1400可以包括一个输油管1410、一个储液腔1420、一个推杆1430和一个液压站1440。储液腔1420的一端铰接于立柱1460上,另一端包含一个开口。推杆1430的一端铰接于外接设备1450,另一端通过所述开头可移动的放置在所述储液腔1420内。输油管1410可以连接储液腔1420和 液压站1440,而液压站1440可以通过所述输油管1410向储液腔1420提供液体(例如油)。在一些实施例中,通过改变液压站中液体的压力,可以改变液压站1440向储液腔1420提供的液体的体积。储液腔1420内液体的体积的变化可以带动所述推杆1430与外接设备1450相铰接的一端的移动并带动外接设备1450移动或转动。
在一些实施例中,液压站1440可以同时与多个液压杆支撑结构1400相连。通过控制液压站1440中的液体的压力,可以同步改变液压站1440向储液腔1420提供的液体的体积,从而同步带动推杆1430和外接设备1450的移动。在一些实施例中,液压站1440可以与多点传动支撑系统100中的控制引擎110或系统100之外的控制模块或系统相连,所述控制引擎110可以控制液压站1440提供给各个液压杆支撑结构1400的液体的压力和体积从而带动各个液压杆支撑结构1400的推杆1430和与其相连的外接设备1450各自进行相应的移动。
图15是根据本申请一些实施例所示的示例链条结构的结构示意图。链条结构1500可以是支撑结构940的具体实施例,可用于支架120和/或支架900中。例如,电机910可以带动链条结构的一部分结构(例如减速机1520和传动杆1540)进行转动,并带动所述链条结构的一部分结构(例如链轮1530和链条1550)进行运动或形变,所述链条结构1500的一部分结构的运动或形变可以带动与之相连的外接设备980的运动。链条结构1500可以包括一个传动杆1540、一个减速机1520、一个链轮1530、一个链条1550。减速机1520可以是一个降低转速并加大 扭矩的设备。在一些实施例中,减速机1520可以是蜗轮蜗杆减速机、回旋式减速机、齿轮减速机、行星齿轮减速机、单级减速机、多级减速机等一种或多种。在一些实施例中,减速机1520的输入端可以与一个电机1510相连,而传动杆1540可以与减速机1520的输出端相连。在一些实施例中,链轮1530可以与传动杆1570相连。
链条1550可以是一个链状的器件,其表面可以被配置为与所述链轮1530表面相对应。在一些实施例中,链条1550的两端可以分别铰接于外接设备1560的两个部分,而链条1550中间的一部分可以覆盖在所述链轮1530表面的一部分区域。在一些实施例中,所述链条1550可以由拉绳代替,所述链轮可以由转轮代替。所述拉绳的两端可以分别与外接设备1560的两个部分相连而拉绳中间的一部分可以覆盖在所述转轮表面的一部分区域。在一些实施例中,所述转轮与所述拉绳所接触的区域可以是凹陷或凸起于其自身表面的。在一些实施例中,电机1510可以带动减速机1520进行转动,所述减速机1520的转动可以进一步带动传动杆1540进行旋转。所述传动杆1540的旋转可以带动链轮1530进行转动。所述链轮1530的转动可以进一步带动链条1550和外接设备1560的运动。
在一些实施例中,链条结构1500可以不包含减速机1520。例如,电机1510可以直接与传动杆1540相连。电机1510的转动可以直接带动传动杆1540进行旋转。
图16是根据本申请一些实施例所示的示例保护装置的结构示意 图。保护装置1600可以包括一个伸缩滑套1610、一个密封件1620等。如图16所示,伸缩滑套1610可以包括多个大小不同的空心滑套。滑套按照大小的次序依次套在一起。所述空心滑套之间通过密封件1620连接。在一些实施例中,密封件1620可以由硅胶、橡胶、泡沫等材料构成。在一些实施例中,伸缩滑套1610可以套在传动丝杆1630(或者丝杆930a、930b、930c、1010、1120等)上,从而对传动丝杆1630进行保护。在一些实施例中,当传动丝杆1630进行轴向运动的时候,伸缩滑套1610可以相应地收缩或扩张。
图17是根据本申请一些实施例所示的示例支架应用场景的结构示意图。双轴跟踪系统1700可以包括一个上层网架1710、一个水平支撑架1720和一个多点传动支撑系统100。上层网架1710可以包括一个位于中心的旋转中心和位于底面远离中心的两个檩条。在一些实施例中,两个檩条不平行。如图17所示,多点传动支撑系统100可以包括两个支撑结构,分别连接上层网架1710的所述两个檩条。当电机驱动所述两个支撑结构进行运动时,所述支撑结构可以通过所述檩条带动上层网架1710绕两个不平行的轴进行旋转。
图18是根据本申请一些实施例所示的示例支架应用场景的结构示意图。工业管道控制系统1800可以包括一个管道1810、一个蝶阀1820和一个多点传动支撑系统100。蝶阀1820可以是一个翻板阀,即一个固定在管道1810口的一条直径上并可以绕所述直径旋转的翻版。多点传动支撑系统100中的支撑结构可以与所述蝶阀相连。当电机驱动所述支 撑结构(例如支撑结构940)进行运动的时候,所述支撑结构可以带动蝶阀1820进行翻动从而控制管道1810的开关。
在一些实施例中,通过控制所述支撑结构的运动可以控制蝶阀1820的开关程度并进一步控制管道1810中液体或气体的流量。在一些实施例中,多点传动支撑系统100可以通过控制多个支撑结构同步传动同步控制管道1810(例如图18中所示的管道1810a、管道1810b、管道1810c、管道1810d和管道1810e)的开关和/或流量。在一些实施例中,工业管道控制系统1800还可以包括一个控制系统(未在图中显示),所述控制系统可以控制各个蝶阀的开关程度从而分别控制各个管道中液体或气体的流量。
图19是根据本申请一些实施例所示的示例支架应用场景的结构示意图。农业大棚薄膜控制系统1900可以包括一个活动横梁1910、一个摆臂1920、一个大棚支架1930和一个多点传动支撑系统100。在一些实施例中,活动横梁1910可以与塑料薄膜的一端(在图上未示出)相连,所述塑料薄膜覆盖在大棚支架1930上。在一些实施例中,活动横梁1910可以与摆臂1920相连。
在一些实施例中,多点传动支撑系统100的电机可以驱动其支撑结构进行上下移动并带动摆臂1920进行上下移动。所述摆臂1920的移动可以带动塑料薄膜的运动。在一些实施例中,多点传动支撑系统100可以通过控制多个支撑结构同步传动,从而控制塑料薄膜同步打开或关闭。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机可读信号介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多 种表现形式,包括电磁形式、光形式等等或合适的组合形式。计算机可读信号介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机可读信号介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、射频信号或类似介质或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行或作为独立的软件包在用户计算机上运行或部分在用户计算机上运行部分在远程计算机运行或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权 利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除 外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (20)

  1. 一种设备,包括:
    一个传动结构,所述传动结构包括一个第一丝杆;
    一个第一支撑结构,所述第一支撑结构包括两个连接点和至少一个支撑点,所述两个连接点与所述第一丝杆相连,所述支撑点与一个外接设备相连;
    一个电机,所述电机驱动所述传动结构旋转,其中,所述的传动结构的旋转带动所述两个连接点相对于所述第一丝杆进行反向的移动,并带动所述支撑点的移动。
  2. 权利要求1所述的设备,进一步包括一个第二支撑结构和一个第二丝杆,所述第二支撑结构包括两个连接点和至少一个支撑点,所述第二支撑结构的两个连接点与所述第二丝杆相连,所述第二支撑结构的支撑点与所述外接设备相连,其中,所述第二支撑结构的支撑点和第一支撑结构的支撑点同步运动。
  3. 权利要求2所述的设备,所述传动结构进一步包括一个传动杆,所述传动杆连接所述第一丝杆和第二丝杆。
  4. 权利要求3所述的设备,所述传动杆通过万向传动装置或铰接的连接方式与所述第一丝杆或第二丝杆相连接。
  5. 权利要求1所述的设备,所述两个连接点两端分别包括两个不同旋向的螺母,所述第一丝杆与所述两个螺母相对应的区域表面带有螺纹,所述螺纹被配置为与所述两个螺母旋向相对应。
  6. 权利要求1所述的设备,所述支撑结构进一步包括两个连杆,其中,每个连杆的一端连接在所述支撑点上,所述每个连杆的另一端分别连接在所述两个连接点上。
  7. 权利要求1所述的设备,进一步包括一个套筒结构,所述套筒结构覆盖在至少一部分的所述传动结构上。
  8. 权利要求1所述的设备,所述第一丝杆由油钢、陶瓷、铜、铜合金、高锰钢、高锰合金、铸铁、铬钼钢、石墨中至少一种材料构成。
  9. 一种设备,包括:
    一个传动结构,所述传动结构包括一个传动杆和一个第一丝杆,所述传动杆与所述第一丝杆通过一个第一连接结构相连接,其中,所述传动杆和所述第一丝杆不共轴;
    一个第一支撑结构,所述第一支撑结构包括一个连接点和至少一个支撑点,所述连接点与所述第一丝杆相连,所述支撑点与一个外接设备 相连;以及
    一个电机,所述电机驱动所述传动杆旋转,其中,所述传动杆的旋转带动所述连接点相对于所述第一丝杆进行移动,并带动所述支撑点的移动。
  10. 权利要求9所述的设备,进一步包括一个第二支撑结构和一个第二丝杆,所述第二支撑结构包括一个连接点和至少一个支撑点,所述第二支撑结构的连接点与所述第二丝杆相连,所述第二支撑结构的支撑点与所述外接设备相连,其中,所述第二丝杆与所述传动杆通过一个第二连接结构相连接,所述第二支撑结构的支撑点和第一支撑结构的支撑点同步运动。
  11. 权利要求10所述的设备,所述第一连接结构或所述第二连接结构包括一对伞齿或一组蜗轮蜗杆。
  12. 权利要求10所述的设备,所述第一连接结构或所述第二连接结构包括一个链条或一个齿条。
  13. 权利要求9所述的设备,进一步包括一个套筒结构,所述套筒结构覆盖在至少一部分的所述传动结构上。
  14. 权利要求9所述的设备,所述第一丝杆由油钢、陶瓷、铜、铜合金、高锰钢、高锰合金、铸铁、铬钼钢、石墨中至少一种材料构成。
  15. 一种设备,包括:
    一个传动结构,所述传动结构包括一个传动杆、一个第一转动件和一个第二转动件,所述传动杆与所述第一转动件相连;
    一个支撑结构,所述支撑结构包括两个连杆机构,所述两个连杆机构的一端分别铰接于一个外接设备的两个部分,所述两个连杆机构的另一端分别与所述第二转动件的两个部分相连;以及
    一个电机,所述电机驱动所述传动杆旋转,其中,所述传动杆的旋转带动所述第一转动件和所述第二转动件的旋转并带动所述两个连杆机构的转动。
  16. 权利要求15所述的设备,所述两个连杆机构各自包括一个或多个相铰接的连杆。
  17. 权利要求15所述的设备,所述第一转动件是一个行星齿轮组的太阳轮,所述第二转动件是所述行星齿轮组的外圈齿轮。
  18. 一种设备,包括:
    一个或多个液压推杆,所述液压推杆包括:
    一个储液腔,所述储液腔的一端铰接于一个立柱;
    一个推杆包括第一端和第二端,所述推杆第一端铰接于一个外接设备,所述第二端可移动地放置在所述储液腔内;
    一个液压站,所述液压站同步地向所述一个或多个液压推杆中的储液腔提供液体;
    其中,所述储液腔内液体的体积的变化带动所述推杆第二端在所述储液腔中移动。
  19. 一种设备,包括:
    一个传动结构,所述传动结构包括一个传动杆和一个转动件,所述传动杆与所述转动件相连;
    一个传动件,所述传动件的两端分别与一个外接设备的两个部分相连,所述传动件部分地覆盖在所述转动件;以及
    一个电机,所述电机驱动所述传动杆旋转,其中,所述传动杆的旋转带动转动件的转动,所述转动件的转动进一步带动所述传动件两端进行运动。
  20. 权利要求19所述的设备,所述转动件包括一个链轮或一个转轮,所述传动件包括一个链条或一个拉绳。
PCT/CN2016/096664 2016-08-25 2016-08-25 多点传动支撑系统和方法 WO2018035795A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/096664 WO2018035795A1 (zh) 2016-08-25 2016-08-25 多点传动支撑系统和方法
CN201680027629.2A CN107980196A (zh) 2016-08-25 2016-08-25 多点传动支撑系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/096664 WO2018035795A1 (zh) 2016-08-25 2016-08-25 多点传动支撑系统和方法

Publications (1)

Publication Number Publication Date
WO2018035795A1 true WO2018035795A1 (zh) 2018-03-01

Family

ID=61246562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096664 WO2018035795A1 (zh) 2016-08-25 2016-08-25 多点传动支撑系统和方法

Country Status (2)

Country Link
CN (1) CN107980196A (zh)
WO (1) WO2018035795A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872516A (zh) * 2021-09-20 2021-12-31 长沙市铮柔科技有限公司 光伏支架倾角传动系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252093A (ja) * 1994-03-16 1995-10-03 Mitsumasa Sato 低振動電動リフタ
EP1142825A1 (de) * 2000-04-05 2001-10-10 Rudolf Schraufstetter Vorrichtung zum vertikalen Bewegen und Stützen von Kraftfahrzeugen, insbesondere Personenkraftwagen
CN101858659A (zh) * 2008-12-04 2010-10-13 益科博能源科技(上海)有限公司 太阳能收集器的极轴跟踪装置
US20110265784A1 (en) * 2010-04-28 2011-11-03 Chang Kuei-Hsiang Solar tracker
EP2465810A1 (de) * 2010-12-16 2012-06-20 Heinz Buse Hubvorrichtung zum Anheben eines Fahrzeugs gegenüber einer Bodenfläche
CN102597653A (zh) * 2010-10-22 2012-07-18 三井造船株式会社 太阳光聚光用的定日镜及其控制方法
CN102812308A (zh) * 2010-01-04 2012-12-05 原子能及能源替代委员会 太阳能电池板装置的自动变向方法及按该方法运行的装置
US20140169922A1 (en) * 2012-12-18 2014-06-19 Frank Charles Cozza Cart with lifting system and omnidirectional wheels

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205407687U (zh) * 2016-01-18 2016-07-27 王艳 一种应用于坡度地形的光伏支撑结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252093A (ja) * 1994-03-16 1995-10-03 Mitsumasa Sato 低振動電動リフタ
EP1142825A1 (de) * 2000-04-05 2001-10-10 Rudolf Schraufstetter Vorrichtung zum vertikalen Bewegen und Stützen von Kraftfahrzeugen, insbesondere Personenkraftwagen
CN101858659A (zh) * 2008-12-04 2010-10-13 益科博能源科技(上海)有限公司 太阳能收集器的极轴跟踪装置
CN102812308A (zh) * 2010-01-04 2012-12-05 原子能及能源替代委员会 太阳能电池板装置的自动变向方法及按该方法运行的装置
US20110265784A1 (en) * 2010-04-28 2011-11-03 Chang Kuei-Hsiang Solar tracker
CN102597653A (zh) * 2010-10-22 2012-07-18 三井造船株式会社 太阳光聚光用的定日镜及其控制方法
EP2465810A1 (de) * 2010-12-16 2012-06-20 Heinz Buse Hubvorrichtung zum Anheben eines Fahrzeugs gegenüber einer Bodenfläche
US20140169922A1 (en) * 2012-12-18 2014-06-19 Frank Charles Cozza Cart with lifting system and omnidirectional wheels

Also Published As

Publication number Publication date
CN107980196A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
US10890645B2 (en) Dual axis tracking method
CN107455871A (zh) 一种智能遮阳避雨装置
CN204879909U (zh) 一种可自动调节太阳能板方向和角度的太阳能路灯
CN111464112B (zh) 基于物联网云平台控制的风光互补发电装置及监控方法
CN204491437U (zh) 双面显示市政工程道路警示装置
CN206074842U (zh) 一种灌区一体化水位雨量图像监测系统
CN206611370U (zh) 一种自动定位的太阳能电池装置
KR102061577B1 (ko) 사용자 편의성을 보유한 고효율 태양광 발전장치
CN204065840U (zh) 移动式太阳能光伏旋转支架装置
CN204347663U (zh) 智慧农业实训装置
WO2018035795A1 (zh) 多点传动支撑系统和方法
CN103268123B (zh) 一种可自动追踪太阳的太阳能收集传送器
CN206020992U (zh) 一种实现自动频率调节的光伏提灌控制系统
WO2018032472A1 (zh) 多重保护跟踪系统及方法
CN204477896U (zh) 多功能太阳能路灯
KR20150018658A (ko) 태양광과 풍력을 이용한 하이브리드 발전장치
CN203967614U (zh) 一种高压输电线路双地线行走巡线机器人
CN207162373U (zh) 太阳能路灯
CN203366128U (zh) 一种可自动追踪太阳的太阳能收集传送器
CN203404785U (zh) 一种无线遥控烟囱盖
CN109660190A (zh) 光伏防风复位调整装置
CN206658175U (zh) 一种沿海滩涂高架桥式太阳能电站供电装置
CN209251243U (zh) 一种果园自动化防雹网装置
CN104566017A (zh) 广角度自主转动照明装置
CN202997697U (zh) 一种变电站远程节电监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913818

Country of ref document: EP

Kind code of ref document: A1