WO2018034394A1 - 댐퍼를 포함하는 선형 진동 발생장치 및 댐퍼 - Google Patents
댐퍼를 포함하는 선형 진동 발생장치 및 댐퍼 Download PDFInfo
- Publication number
- WO2018034394A1 WO2018034394A1 PCT/KR2017/000298 KR2017000298W WO2018034394A1 WO 2018034394 A1 WO2018034394 A1 WO 2018034394A1 KR 2017000298 W KR2017000298 W KR 2017000298W WO 2018034394 A1 WO2018034394 A1 WO 2018034394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- damper
- viscous fluid
- linear vibration
- vibrating body
- generating device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K33/00—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K33/00—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
- H02K33/02—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/016—Input arrangements with force or tactile feedback as computer generated output to the user
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/44—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K33/00—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
- H02K33/16—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/24—Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
Definitions
- the present invention relates to a linear vibration generating device including a damper and a damper, and more particularly, to improve the shape of the damper included in the linear vibration generating device (linear vibration motor), so that the damper is the front of the viscous fluid or the magnetic fluid.
- the present invention relates to a linear vibration generating device and a damper applied thereto, which can effectively prevent unnecessary noise generation and performance deterioration by avoiding simultaneous treatment.
- a mobile terminal such as a smart phone is provided with a vibration function (haptic, Haptic) for not only interfacing the incoming call, but also feedback interfacing the user with key input, event generation, and app execution.
- a vibration function haptic, Haptic
- Vibration motor (vibration generating device) that implements such a vibration function is a device that converts the energy by electromagnetic action into mechanical vibration energy, largely linear (linear type) vibration motor and flat (coin type) according to the driving method and shape It is divided into vibration motor.
- the linear vibration generator without rotational inertia is mainly used in the specification requiring fast response speed because the inertia due to rotation remains.
- Such a conventional linear vibration generating device (linear vibration motor) 500 is provided with a magnet 521 and a weight 523 shaped to surround the magnet 521 in an outer portion as shown in FIG. 1.
- the vibrating body 520 and an elastic body (spring, etc.) 540 for physically supporting the vibrating body 520 in the vertical direction are provided.
- a fixture 530 is positioned at a central central axis of the linear vibration generator 500, and the fixture 530 is provided at the yoke 533 and the yoke 533.
- the magnet 521 includes a coil 531 for generating an electromagnetic force.
- the linear vibration generating device 500 is designed such that the electromagnetic force generated from the coil 531 and the physical elastic force provided by the elastic body 540 have mutual resonance characteristics. A power having a specific frequency having a time-variant characteristic is applied to the coil. When the electromagnetic force is applied to the 533, the generated electromagnetic force interacts with the elastic force of the elastic body 540, and the vibrating body 520 linearly moves in the vertical direction. As shown in FIG. 1, the linear vibration generator 500 may further include a connection part 570 and a circuit board 560 for interfacing with an external power supply or a control signal.
- the conventional linear vibration generating device 500 includes a damper 550 that absorbs or mitigates a physical shock in a case or a housing 510 that forms an inner space, and the damper 550 faces the magnet 521. It is provided at a position to mitigate or absorb the shock generated when the vibrating body 520 moves upward, thereby minimizing unnecessary noise.
- a viscous fluid-type damper may be used on the upper surface of the magnet 521 of the conventional linear vibration generating device 500.
- the magnetic fluid 70 may be a fluid-type damper having this viscosity to increase the position restraint force.
- MF Magnetic Fluid
- the magnetic fluid is obtained by dispersing metal powder such as iron oxide magnetized in a liquid base oil in a colloidal form, and depending on the embodiment, a surfactant may be added.
- the magnetic fluid 70 has a physical property as a fluid to more flexibly mitigate the physical impact between the components, and also has a magnetic to position the position provided by the magnetic force with the magnet 521 Maintain a fixed position without leaving.
- the damper 550 is made of a material such as rubber (rubber), silicon (silicon), porous rubber (foam rubber), Poron (Poron), foaming resin, etc. to absorb the shock, as shown in Figure 2 It is generally made in the shape of a disc so that the shape corresponding to the outer peripheral portion of the magnet 521 can be included.
- the conventional linear vibration generator 500 includes a damper 550 and a viscous fluid 70 (magnetic fluid). It has been found that an unexpected noise is generated in the linear vibration generator 500 in which a viscous fluid (magnetic fluid) 70 is used together.
- the vibrating body 520 is linearly moved up and down at high speed by the electromagnetic force generated by the coil 531 and the elastic force of the elastic body 540.
- the magnet 521 is moved.
- the viscous fluid 70 provided (coated) on the upper surface is brought into contact with the damper 550.
- the viscous fluid 70 is brought into close contact with the lower surface of the damper 550 at the same time as shown in the right drawing of FIG. do.
- a portion labeled A in the right drawing of FIG. 2 is a region in which the viscous fluid 70 enters the damper 550.
- the housing (case) may be made of a metal material for external shielding of magnetic force, so that when the magnetic fluid 70 having magnetic property is used as a viscous fluid, the housing (case) may form a magnetic force with the housing, and the magnetic fluid 70 may be a fluid. Since it has physical properties (viscosity, etc.), the magnetic fluid 70 in close contact with the damper 550 and immediately enters the vibrating body 520 (specifically a magnet) when the vibrating body 520 descends downward. It may be an extremely short time without moving downwards, but the state remains attached to the damper 550 for a predetermined time.
- the magnetic fluid 70 may form a pillar-like shape that narrows toward the center portion as shown in FIG. 3 while the vibrating body 520 descends downward, and the vibrating body 520. In the process of moving to the maximum displacement downward, the center part of the fluid column is ruptured, and unnecessary noise is generated in this process.
- the magnetic fluid 70 that is in contact with the damper 550 portion is in close contact with the damper 70 for a predetermined time, and then the pulling force gradually increases downward while the vibrating body 520 descends at the maximum downward displacement.
- the sealed interface may be detached for an instant and an unexpected noise may be generated.
- the present invention has been made to solve the above problems in the background as described above, the magnetic fluid (viscous fluid) is treated with the damper by inducing the viscous fluid or the magnetic fluid not to be treated with the damper in a manner that is sealed or tightly sealed in the whole It is an object of the present invention to provide a damper and a linear vibration generating device including the damper having improved shape structure to minimize the noise generated during the detachment process.
- Linear vibration generating device comprising a damper of the present invention for achieving the above object is a housing formed with an inner space; A fixture provided in the internal space and including a coil; A vibrating body including a magnet and a weight body disposed coaxially with the coil and moving in a vertical direction with respect to the fixed body; An elastic body elastically supporting the vibrating body; A viscous fluid which is a fluid having a viscosity provided on an upper surface of the magnet; And a damper installed in the housing so as to face the upper surface of the vibrating body, the damper having a shape in which the viscous fluid is not treated simultaneously with the viscous fluid when the vibrating body moves upward.
- the viscous fluid is preferably implemented as a magnetic fluid.
- the damper of the present invention may be formed in a region corresponding to the position of the viscous fluid and at least one space for welding the viscous fluid and at least one space not for the viscous fluid, preferably based on the center portion It may be made in a shape symmetrical to.
- the damper of the present invention is preferably configured such that the distance from the center to the outermost is greater than the distance from the central axis of the magnet to the outer circumference.
- the damper of the present invention may be formed in a shape in which two or more protrusions are formed radially or symmetrically about a central portion, and the damper of the present invention is one at a position corresponding to the viscous fluid. More than one groove may be provided.
- outer circumference of the damper of the present invention may be configured to include a shape in which the convex portion and the concave portion are repeated one or more times.
- the housing is formed in the inner space
- the fixing body including the coil is provided in the inner space
- a damper provided in a linear vibration generating device comprising a vibrating body moving in a direction, an elastic body elastically supporting the vibrating body, and a viscous fluid which is a fluid having a viscosity provided on an upper surface of the magnet, the damper being provided with a top surface of the vibrating body. It is installed in the housing so as to face, it is configured to be in contact with the viscous fluid when the vibrating body moves upward, the viscous fluid as a whole does not simultaneously have a shape.
- the damper and the linear vibration generating device including the damper according to the present invention reduces the generation of noise by mitigating the shock of the vibrating body through the damping means of the damper, further reducing the occurrence of noise, and the whole of the viscous fluid or magnetic fluid provided in the vibrating body By improving the shape of the damper so that it only partially treats it, it is possible to fundamentally prevent noise caused by repeated desorption or desorption of the magnetic fluid (viscous fluid) after it has stuck to the damper all over. .
- the outer peripheral portion of the vibrating body in the process of moving the vibrating body in the vertical direction high speed can provide an effect that can further reduce the collision with the.
- FIG. 1 is a view showing the configuration of a conventional linear vibration generating device
- FIG. 2 is a view showing a relationship between the damper and the magnetic fluid of the conventional linear vibration generating device
- FIG. 3 is a view illustrating a phenomenon in which a fluid column is formed by a magnetic fluid in a conventional linear vibration generating device
- FIG. 4 is a view showing a linear vibration generating device including a damper according to a preferred embodiment of the present invention
- FIG. 5 is a view showing a relationship between a damper and a magnetic fluid according to a preferred embodiment of the present invention
- FIG. 6 is a view showing the shape of the dampers in the form of a planar or perspective view and the relationship between the magnetic fluid and the magnetic damper according to another embodiment of the present invention
- FIG. 7 and 8 are diagrams comparing the noise-related data of the cross-shaped damper and the conventional disk-shaped damper of the embodiment of the present invention.
- FIG. 4 is a diagram illustrating a linear vibration generating device 100 (hereinafter referred to as a 'linear vibration generating device') including a damper according to an exemplary embodiment of the present invention.
- the linear vibration generating device 100 of the present invention includes a housing 101, a magnet 121, a weight body 123, a coil 111, a yoke 113, an elastic body 130, and a damper. 140 and the bracket 160 may be configured.
- the housing 101 of the present invention corresponds to a case of the linear vibration generating device 100 according to the present invention together with the bracket 160 as a configuration provided on the bracket 160. Form an interior space for another configuration.
- the fixed body 110 of the present invention which is also referred to as a stator, has a configuration corresponding to the vibrating body 120 to be described later, and interacts with the vibrating body 120, specifically, the magnet 121 provided in the vibrating body 120. And a coil for generating an electromagnetic force for linear movement of the vibrator 120.
- An object in which linear movement is made in terms of the stationary body 110 is referred to as a vibrating body 120 to a moving body, a vibrator, or the like.
- the fixture 110 includes a yoke 113 and a coil 111, which generates a magnetic force on the magnet 121 by an applied power source.
- the coil 111 is preferably located at the center of the inner space provided by the housing in order to increase the efficiency of the electromagnetic force interaction and linear vibration (movement).
- a hollow may be formed in a central portion of the coil 111, and a yoke 113 may be provided in the hollow. That is, the coil 111 may be provided to surround the yoke 113.
- the yoke 113 is detachably fixed to the bracket 160 by being pressed into or inserted into the bracket 160 and is located at the center of the central portion of the linear vibration generating device 100 of the present invention.
- the yoke 113 may be made of a metal material having magnetic properties to prevent magnetic force concentration or magnetic field leakage, and also serves as a guide for accurately positioning the coil 111 while protecting the upper end of the coil 111. .
- the coil 111 and the yoke 113 are positioned based on the same central axis (A of FIG. 4).
- the vibrating body 120 of the present invention may include a magnet 121, a weight body 123, and a plate 125.
- the magnet 121 implemented as a permanent magnet has a configuration corresponding to the coil 111 described above, and moves linearly in the vertical direction with respect to the fixture 110 by the electromagnetic force generated by the coil 111.
- the vibrating body 120 including the weight body 123 connected to the 121 moves in the vertical direction.
- the magnet 121 is preferably formed in a shape surrounding the outer periphery of the coil 111 by forming a hole in the center portion, such as a donut or track shape. Also in this case, the central axis of the magnet 121 is preferably configured to be coaxial with the central axis A of the coil 111 and the yoke 113 described above.
- the weight 123 (weight) is mounted on the upper surface of the plate 125 together with the magnet 121 corresponds to a component for increasing the vibration deflection by the vertical movement.
- the vibrator 120 is connected to the elastic body 130 to guide the up and down movement, and the elastic body 130 may have mutual resonance characteristics with the electromagnetic force provided to the vibrating body 120. So that the weight, modulus of elasticity, length and so on are designed.
- the upper or upper surface of the magnet 121 constituting the vibrating body 120 is provided with a viscous fluid that is a viscous fluid as a kind of fluid damper for effectively preventing interference or collision with other components.
- the viscous fluid is a magnetic fluid 50 (MF, Magnetic Fluid) in which the provided position can be maintained and maintained by the magnetic force with the magnet 121 so that the position of the viscous fluid is always maintained. It is preferable to be implemented as.
- MF Magnetic Fluid
- the magnetic fluid 50 may be applied to the upper surface of the magnet 121 in the form of a dot, but in the form of a ring along the donut or track shape of the magnet 121 in order to effectively absorb shocks.
- the magnet 121 is preferably applied to the entire upper surface.
- the damper 140 of the present invention is installed on the upper portion of the housing 101 to face the upper or upper surface of the vibrating body 120.
- the damper 140 is a cushion member that mitigates the physical shock of the vibrating body 120, so that rubber, silicon, and porous rubber can absorb shocks or collisions. It may be made of a material such as poron, foamed resin, and the like.
- the damper 140 of the present invention is provided with a magnetic fluid 50 provided on the upper surface of the magnet 121. You will be treated with.
- the damper 140 of the present invention effectively overcomes the problems caused when the conventional damper is treated with magnetic fluid in a closed manner by sealing it with the magnetic fluid in its entirety and the magnetic fluid is detached (separated, separated) again.
- the entire magnetic fluid 50 is configured to have a shape that does not entertain simultaneously. That is, as described below, the damper 140 of the present invention has a shape in which the damper 140 does not enter the entire magnetic fluid 50 at the same time but is treated at the same time only discontinuously or partially.
- FIG. 5 (A) shows the shape of the magnetic fluid 50 applied to the upper surface of the magnet 121
- Figure 5 (B) is based on the horizontal plane of the damper 140 according to an embodiment of the present invention
- the cross-sectional shape is shown. Since the magnetic fluid 50 is provided on the upper surface of the magnet 121, the shape of FIG. 5A substantially corresponds to the cross-sectional shape based on the horizontal plane of the magnet 121.
- the damper 140 of the present invention may be embodied in a symmetrical shape with respect to the central portion of the damper 140 so as to mitigate or absorb physical shocks with the vibrating body 120 in the overall direction.
- the damper 140 of the present invention preferably implements such that the distance from the outermost part to the outer circumference of the damper 140 extends to the outer part of the outer diameter of the magnet 121. That is, in the damper 140 of the present invention, the distance D1 from the center portion A to the outermost L1 is the distance between the outer circumference L2 of the magnet 121 at the center (A of FIG. 5) ( It is preferable to implement larger than D2).
- the damper 140 of the present invention is treated with the magnetic fluid 50, but the magnetic fluid 50 is not treated at the same time as the entire magnetic fluid 50 is not sealed with the damper 140. That is, the magnetic fluid 50 can be easily separated from the damper 140 because it is in a state of being partially treated, and a phenomenon in which the fluid column shown in FIG. 3 is generated when the vibrating body 120 moves downwards. Can be prevented or weakened.
- the damper 140 of the present invention has a magnetic fluid 50 because one or more spaces (a) which do not enter into a hospital part (b) to enter into contact with the magnetic fluid (50) are formed together. ) Can be induced so as not to be sealed even when the damper 140 is treated with the damper 140, thereby effectively eliminating the conventional problems caused by sealing.
- the damper 140 of the present invention physically supports the magnet 121 and the weight body 123 constituting the vibrating body 120 and is coated or provided on the upper surface of the magnet 121.
- Magnetic fluid 50 is implemented in a shape that does not simultaneously treat the entire surface.
- the damper 140 of the present invention may be implemented in a shape in which two or more protrusions 141 are radially or symmetrically shaped to extend outward with respect to the center portion (A of FIG. 6) as shown in FIG. 6. Can be.
- a region (b) that is not symmetrical but a region (a part) serving as the magnetic fluid 50 is provided together with a region (a) which is not to the magnetic fluid 50.
- the magnetic fluid 50 and the entire surface will not be treated at the same time.
- the damper of the present invention in the grooves 143. 140 does not directly treat the magnetic fluid 50 or simultaneously treat the other fluid part (b), thereby solving the above-described problems.
- the damper 140 of the present invention implements the outer periphery in a shape in which the convex portion 145 and the concave portion 147 are repeatedly formed as shown in FIGS. 6 (G) and (H).
- the portion 145 and the recessed portion 147 may be implemented such that the portion (b) to be treated with the magnetic fluid and the portion (a) not to be treated are alternately formed.
- the damper 140 shows a shape in which the convex portion 145 and the concave portion 147 are generally repeated to more effectively support the vibrating body 120 in the overall direction.
- the convex portion 145 and the concave portion 147 may be formed in a partially repeated shape, including a shape that is repeated once.
- the convex portion 145 of the damper 140 is located in an outer direction based on the position of the magnetic fluid 50, that is, in the direction in which the weight body 123 is provided, and the concave portion of the damper is disposed.
- the part 147 may correspond to the position of the magnetic fluid 50 or may be configured to be located further inward with respect to the position of the magnetic fluid 50.
- the damper 140 of the present invention is not treated at the same time as the front of the magnetic fluid 50, thereby inducing the damper 140 and the magnetic fluid 50 to be treated in a sealed form, thereby solving the conventional problems. Therefore, the shape shown in the drawings, of course, through the step, stepped structure, etc.
- the damper 140 may be implemented so as not to be treated simultaneously with the entire magnetic fluid 50, of course.
- FIG. 7 and 8 are diagrams comparing the noise-related data of the cross-shaped damper 140 and the conventional disk-shaped damper 550 in the embodiment of the present invention.
- the disk-shaped damper 550 shows a distribution of 21 db to 26 dB, and the average value is 23.71 dB.
- the distribution of 14.8 dB to 17.6 dB is used.
- the average value was found to be 16.24dB. That is, according to the embodiment of the present invention, the variation of the touch noise is also reduced, and it can be confirmed that the touch noise is generally reduced.
- the conventional disk-shaped damper 550 shows an average value of 4.49 dB, whereas in the embodiment of the present invention, a significantly lower average of 0.51 dB is obtained in this embodiment, and the noise component has a significant improvement effect. You can check it.
- the THD is lowered from 10.4% to 8.785% of the average value, and thus the cross-shaped damper 140 according to the present invention can be confirmed that the performance of the conventional disk-shaped damper 550 is improved.
- FIG. 8 is a view comparing waveforms of the cross-shaped damper 140 and the conventional disk-shaped damper 550, which is one of the embodiments of the present invention.
- the conventional disk-shaped damper 550 is shown.
- the noise component is included on the waveform
- the cross-shaped damper 140 according to the present invention is shown on the waveform as compared to the conventional disk-shaped damper 550 as shown in FIG. It can be seen that little noise is generated.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
- Fluid-Damping Devices (AREA)
- Vibration Prevention Devices (AREA)
Abstract
본 발명에 의한 댐퍼를 포함하는 선형 진동 발생장치는 내부공간이 형성된 하우징; 상기 내부 공간에 구비되며 코일을 포함하는 고정체; 상기 코일과 동축으로 배치되는 마그네트와 중량체를 포함하며 상기 고정체를 기준으로 상하 방향으로 이동하는 진동체; 상기 진동체를 탄성 지지하는 탄성체; 상기 마그네트의 상면에 구비되는 점성유체; 및 상기 진동체의 상면과 대향하도록 상기 하우징에 설치되며, 상기 진동체의 상방향 이동 시 상기 점성유체와 대접하되, 상기 점성유체 전체가 동시적으로 대접하지 않는 형상을 가지는 댐퍼를 포함하는 것을 특징으로 하는 댐퍼를 포함하는 것을 특징으로 한다.
Description
본 발명은 댐퍼 및 댐퍼를 포함하는 선형 진동 발생장치에 관한 것으로서, 더욱 구체적으로는 선형 진동 발생장치(선형 진동 모터)에 포함된 댐퍼의 형상적 구조를 개선하여 댐퍼가 점성유체 내지 자성유체의 전면과 동시적으로 대접하지 않도록 함으로써 불필요한 소음 발생 및 성능 저하를 효과적으로 방지할 수 있는 선형진동 발생장치 및 이에 적용되는 댐퍼에 관한 것이다.
스마트폰 등의 모바일 단말에는 통화 착신 등의 인터페이싱은 물론, 키 입력, 이벤트 발생, 앱 실행 등을 사용자에게 피드백 인터페이싱하기 위한 진동 기능(햅틱, Haptic)이 구현된다.
이러한 진동 기능을 구현하는 진동 모터(진동 발생장치)는 전자기 작용에 의한 에너지를 기계적 진동 에너지로 변환하는 장치로서 구동 방식과 형태에 따라 크게 선형(linear type) 진동모터와 편평형(flat/coin type) 진동모터로 구분된다.
편평형 진동모터의 경우 회전에 의한 관성이 잔존하는 거동 특성을 가지고 있으므로 빠른 응답 속도가 요구되는 사양에서는 회전 관성이 없는 선형 진동 발생장치가 주로 이용된다.
이러한 종래 선형 진동 발생장치(선형 진동 모터)(500)는 도 1에 도시된 바와 같이 마그네트(521)와 이 마그네트(521)를 외부 부분에서 둘러싸는 형태의 중량체(weight)(523)가 구비된 진동체(520)와 이 진동체(520)를 상하 방향으로 물리적으로 지지하는 탄성체(스프링 등)(540)가 구비된다.
또한, 도 1에 도시된 바와 같이 선형 진동 발생장치(500)의 가운데 중심 축 부분에는 고정체(530)가 위치하는데 이 고정체(530)는 요크(533) 및 이 요크(533)에 구비되어 마그네트(521)에 전자기력을 발생시키는 코일(531)을 포함한다.
선형 진동 발생장치(500)는 코일(531)에서 발생되는 전자기력과 탄성체(540)가 제공하는 물리적 탄성력이 상호 공진 특성을 가지도록 설계되는데 시변(time-variant) 특성을 가지는 특정 주파수의 전원이 코일(533)에 인가되어 전자기력이 발생되면 이 발생된 전자기력과 탄성체(540)의 탄성력이 상호 작용하여 진동체(520)가 상하 방향으로 선형 이동하게 된다. 도 1에 도시된 바와 같이 선형 진동 발생장치(500)는 외부 전원 또는 제어 신호와의 인터페이싱을 위한 접속부(570) 및 회로기판(560)이 더 포함될 수 있다.
이러한 종래 선형 진동 발생장치(500)는 내부 공간을 형성하는 케이스 내지 하우징(510)에 물리적 충격을 흡수 내지 완화하는 댐퍼(550)를 포함하는데, 이 댐퍼(550)는 마그네트(521)와 대향하는 위치에 구비되어 진동체(520)가 상방향으로 이동할 때 발생되는 충격을 완화 내지 흡수하여 불필요한 소음 발생 등을 최소화하는 기능을 수행한다.
이와 관련하여 종래 선형 진동 발생장치(500)의 마그네트(521) 상면에는 점성을 가지는 유체 형태의 댐퍼를 사용하기도 하는데, 이 경우 위치 구속력을 높이기 위하여 이 점성을 가지는 유체 형태의 댐퍼로 자성유체(70)(MF, Magnetic Fluid)가 주로 이용된다. 자성유체는 액상의 베이스 오일(base oil)에 자화된 산화철 등의 금속 분말이 콜로이드 형태로 분산되어 이루어지며 실시형태에 따라 계면 활성제가 첨가되기도 한다.
이 자성유체(70)는 유체로서의 물리적 특성을 보유하고 있어 구성요소간의 물리적 충격 등을 더욱 유연하게 완화하는 기능을 수행하며 또한, 자성을 보유하고 있어 마그네트(521)와의 자력에 의하여 구비된 위치를 이탈하지 않고 정해진 위치를 유지하게 된다.
상기 댐퍼(550)는 충격을 흡수할 수 있도록 고무(rubber), 실리콘(silicon), 다공성 고무(foam rubber), 포론(Poron), 발포 수지 등과 같은 재질로 이루어지는데, 도 2에 도시된 바와 같이 마그네트(521)의 외주 부분과 대응되는 형상이 포함될 수 있도록 일반적으로 원판의 형상으로 이루어진다.
이와 같이 충격 흡수, 불필요한 소음 발생 등을 최소화하기 위하여 종래 선형 진동 발생장치(500)에는 댐퍼(550)와 점성유체(70)(자성유체)가 함께 이용되는데, 실험 및 관찰 결과 댐퍼(550)와 점성유체(자성유체)(70)가 함께 이용되는 선형 진동 발생장치(500)에서 예측하지 못하였던 소음이 발생되는 것이 발견되었다.
진동체(520)는 코일(531)에서 발생된 전자기력과 탄성체(540)의 탄성력에 의하여 고속으로 상하 방향 선형 이동하게 되는데, 진동체(520)가 상방향 최대 변위로 이동하는 경우 마그네트(521) 상면에 구비(도포)된 점성유체(70)가 댐퍼(550)에 대접하게 되는데 이 때 점성유체(70)는 도 2의 오른쪽 도면과 같이 그 전체가 동시에 댐퍼(550)의 하면과 밀착하여 접하게 된다. 도 2의 오른쪽 도면에서 A로 표기된 부분이 댐퍼(550)에서 점성유체(70)가 대접하는 영역이다.
하우징(케이스)은 자력의 외부 차폐 등을 위하여 금속 재질로 이루어질 수 있으므로 점성유체로 자성을 가지는 자성유체(70)가 사용되는 경우 하우징과 자력을 형성할 수 있고 또한, 자성유체(70)는 유체로서의 물리적 특성(점성 등)을 가지고 있으므로 댐퍼(550)에 밀착되어 대접한 자성유체(70)는 진동체(520)가 아래 방향으로 내려오는 경우 진동체(520)(구체적으로 마그네트)와 함께 즉시 하방으로 이동하지 못하고 극히 짧은 시간일 수 있으나 일정 시간 댐퍼(550) 부위에 붙어 있는 상태를 유지하게 된다.
또한, 종래 댐퍼에 의하는 경우, 자성유체(70)와 댐퍼(550) 사이에 이격 공간이나 틈이 전혀 존재하지 않으므로 자성유체(70)는 댐퍼(550)와 전면적으로 대접하게 되므로 자성유체(70)와 댐퍼(550)의 계면(interface)은 완전히 밀폐되게 된다.
이와 같은 현상에 의하여 자성유체(70)는 진동체(520)가 아래 방향으로 내려오는 과정에서 도 3에 도시된 바와 같은 가운데 부분으로 갈수록 좁아지는 기둥과 같은 형상을 이루기도 하며 진동체(520)가 하향 최대 변위로 이동하는 과정에서 이 유체 기둥의 가운데 부분이 파열되는 현상 등이 일어나며 이 과정에서 불필요한 소음이 발생하게 된다.
또한, 댐퍼(550) 부분에 대접한 자성유체(70)는 일정 시간 댐퍼(70)에 밀착되어 붙어 있다가 진동체(520)가 하향 최대 변위로 내려오는 과정에서 점차적으로 하방으로 당기는 힘이 커짐에 따라 일순간 밀폐된 계면이 탈리되면서 의도하지 않았던 소음이 발생할 수도 있다.
본 발명은 상기와 같은 배경에서 상술된 문제점을 해결하기 위하여 창안된 것으로서, 점성유체 내지 자성유체가 전면적으로 밀폐 내지 밀착되는 방식으로 댐퍼와 대접하지 않도록 유도하여 자성유체(점성유체)가 댐퍼와 대접한 후 탈리되는 과정에서 발생되는 소음이 최소화될 수 있도록 하는 형상적 구조가 개선된 댐퍼 및 이 댐퍼를 포함하는 선형 진동 발생장치를 제공하는데 그 목적이 있다.
본 발명의 다른 목적 및 장점들은 아래의 설명에 의하여 이해될 수 있으며, 본 발명의 실시예에 의하여 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 구성과 그 구성의 조합에 의하여 실현될 수 있다.
상기 목적을 달성하기 위한 본 발명의 댐퍼를 포함하는 선형 진동 발생장치는 내부공간이 형성된 하우징; 상기 내부 공간에 구비되며 코일을 포함하는 고정체; 상기 코일과 동축으로 배치되는 마그네트와 중량체를 포함하며 상기 고정체를 기준으로 상하 방향으로 이동하는 진동체; 상기 진동체를 탄성 지지하는 탄성체; 상기 마그네트의 상면에 구비되는 점성을 가지는 유체인 점성유체; 및 상기 진동체의 상면과 대향하도록 상기 하우징에 설치되며, 상기 진동체의 상방향 이동 시 상기 점성유체와 대접하되, 상기 점성유체 전체가 동시적으로 대접하지 않는 형상을 가지는 댐퍼를 포함하여 구성될 수 있다. 이 경우 상기 점성유체는 자성유체로 구현되는 것이 바람직하다.
또한, 본 발명의 상기 댐퍼는 상기 점성유체의 위치와 대응되는 영역에 상기 점성유체와 대접하는 대접 파트와 상기 점성유체와 대접하지 않는 하나 이상의 공간이 함께 형성될 수 있으며, 바람직하게 중심 부분을 기준으로 대칭되는 형상으로 이루어질 수 있다.
나아가 본 발명의 상기 댐퍼는 가운데 부분에서 최외곽까지의 거리가 상기 마그네트의 중심축에서 바깥 외주까지의 거리보다 크도록 구성하는 것이 바람직하다.
바람직한 실시형태의 구현을 위하여 본 발명의 상기 댐퍼는 가운데 부분을 중심으로 둘 이상의 돌출부가 방사형 또는 대칭형을 이루는 형상으로 이루어질 수 있으며, 또한, 상기 본 발명의 댐퍼는 상기 점성유체와 대응되는 위치에 하나 이상의 홈부가 구비될 수 있다.
또한 본 발명의 상기 댐퍼의 외주는 볼록부와 오목부가 한 차례 이상 반복적으로 이루어지는 형상을 포함하도록 구성될 수 있다.
본 발명의 다른 측면에 의한 댐퍼는, 내부공간이 형성된 하우징, 상기 내부 공간에 구비되며 코일을 포함하는 고정체, 상기 코일과 동축으로 배치되는 마그네트와 중량체를 포함하며 상기 고정체를 기준으로 상하 방향으로 이동하는 진동체, 상기 진동체를 탄성 지지하는 탄성체와, 상기 마그네트의 상면에 구비되는 점성을 가지는 유체인 점성유체를 포함하는 선형 진동 발생장치에 구비되는 댐퍼로서, 상기 진동체의 상면과 대향하도록 상기 하우징에 설치되며, 상기 진동체의 상방향 이동 시 상기 점성유체와 대접하되, 상기 점성유체 전체가 동시적으로 대접하지 않는 형상을 가지도록 구성된다.
본 발명에 의한 댐퍼 및 이 댐퍼를 포함하는 선형 진동 발생장치는 댐퍼에 의한 완충 수단을 통하여 진동체의 충격을 완화하여 소음 발생을 감소시키며, 나아가 진동체에 구비되는 점성유체 내지 자성유체와 전면적으로 대접하지 않고 부분적으로만 대접하도록 댐퍼의 형상적 구조를 개선시킴으로써, 자성유체(점성유체)가 댐퍼에 전면적으로 들러붙은 후 떨어지는 반복적인 탈착 내지 탈리 현상에 의해 발생되는 소음을 원천적으로 방지할 수 있다.
또한, 본 발명의 다른 실시예에 의할 때, 수평 단면을 기준으로 한 댐퍼의 너비를 진동체의 중량체 범위까지 확장시킴으로써, 진동체가 상하 방향 고속으로 이동하는 과정에서 진동체의 외주 부분이 하우징에 충돌하는 현상을 더욱 감소시킬 수 있는 효과를 제공할 수 있다.
나아가 본 발명의 또 다른 실시예에 의할 때, 가운데 부분을 기준으로 대칭되는 형상으로 댐퍼의 구조를 개선시킴으로써, 진동체의 충격을 모든 방향에서 물리적으로 완충시켜 이에 따른 소음 발생을 최소화할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술 사상을 더욱 효과적으로 이해시키는 역할을 하는 것이므로, 본 발명은 이러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 종래 선형 진동 발생장치의 구성을 도시한 도면,
도 2는 종래 선형 진동 발생장치의 댐퍼와 자성유체가 대접하는 관계를 도시한 도면,
도 3은 종래 선형 진동 발생장치에서 자성유체에 의하여 유체 기둥이 형성되는 현상을 도시한 도면,
도 4는 본 발명의 바람직한 실시예에 의한 댐퍼를 포함하는 선형 진동 발생장치를 도시한 도면,
도 5는 본 발명의 바람직한 실시예에 의한 댐퍼와 자성유체의 관계를 도시한 도면,
도 6은 본 발명의 바람직한 다른 실시예에 의한 댐퍼들의 평면 또는 사시도 형태의 형상 및 이들과 자성유체가 대접하는 관계를 도시한 도면,
도 7 및 도 8은 본 발명의 실시예 중 십자형상 댐퍼와 종래 원판 형상 댐퍼의 노이즈 관련 데이터를 비교한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 4는 본 발명의 바람직한 일 실시예에 의한 댐퍼를 포함하는 선형 진동 발생장치(100)(이하 ‘선형진동 발생장치’라 지칭한다)를 도시한 도면이다.
도 4에 도시된 바와 같이 본 발명의 선형진동 발생장치(100)는 하우징(101), 마그네트(121), 중량체(123), 코일(111), 요크(113), 탄성체(130), 댐퍼(140) 및 브라켓(160)을 포함하여 구성될 수 있다.
본 발명의 하우징(101)은 브라켓(160) 상부에 구비되는 구성으로서 브라켓(160)과 함께 본 발명에 의한 선형진동 발생장치(100)의 케이스에 해당하며, 도면에 도시된 바와 같이 본 발명의 다른 구성을 위한 내부 공간을 형성한다.
고정자로 지칭되기도 하는 본 발명의 고정체(110)는 후술되는 진동체(120)에 상응하는 구성으로서 진동체(120), 구체적으로 진동체(120)에 구비된 마그네트(121)와의 상호 작용으로 상기 진동체(120)의 선형 이동을 위한 전자기력을 발생시키는 코일 등을 포함한다. 이 고정체(110)에 상응하는 관점에서 선형 이동이 이루어지는 객체(object)를 진동체(120) 내지 이동체, 진동자 등으로 지칭한다.
상기 고정체(110)는 요크(113)와 코일(111)을 포함하는데, 이 코일(111)은 인가된 전원에 의하여 마그네트(121)에 자기력을 발생시킨다. 코일(111)은 전자기력의 상호 작용 및 선형 진동(이동)의 효율성을 높이기 위하여 하우징이 제공하는 내부 공간의 가운데 부분에 위치하는 것이 바람직하다.
실시형태에 따라 상기 코일(111)은 가운데 부분에 중공이 형성될 수 있으며, 이 중공에 요크(113)가 구비될 수 있다. 즉, 상기 코일(111)은 요크(113)를 둘러싸는 형태로 구비될 수 있다.
요크(113)는 브라켓(160)에 압입 또는 삽입되는 구조로 브라켓(160)에 착탈 가능하게 고정되며, 본 발명의 선형진동 발생장치(100)의 중심부 가운데 부분에 위치한다.
상기 요크(113)는 자기력 집중 내지 자계 누설 방지 등을 위하여 자성을 가지는 금속 재질 등으로 이루어질 수 있으며, 코일(111) 상단을 보호하면서 코일(111)의 정확한 위치를 잡기 위한 가이드로서의 역할도 수행한다. 상기 코일(111) 및 요크(113)는 같은 중심 축(도 4의 A)을 기준으로 위치하는 것이 바람직하다.
본 발명의 진동체(120)는 마그네트(121), 중량체(123) 및 플레이트(125)를 포함하여 구성될 수 있다. 영구자석으로 구현되는 마그네트(121)는 상술된 코일(111)에 상응하는 구성으로서 코일(111)에 의해 발생된 전자기력에 의하여 고정체(110)를 기준으로 상하 방향으로 선형 이동하며 이에 따라 상기 마그네트(121)에 연결된 중량체(123) 등을 포함하는 진동체(120)가 상하 방향으로 이동하게 된다.
전자기력의 집중과 상하 방향 이동을 더욱 효과적으로 구현하기 위하여 상기 마그네트(121)는 도넛 또는 트랙 형상과 같이 가운데 부분에 홀이 형성되어 상기 코일(111) 외주를 둘러싸는 형상으로 이루어지는 것이 바람직하다. 이 경우에도 상기 마그네트(121)의 중심축은 앞서 상술된 코일(111) 및 요크(113)의 중심 축(A)과 동축을 이루도록 구성되는 것이 바람직하다.
중량체(123)(weight)는 상기 마그네트(121)와 함께 플레이트(125) 상면에 탑재되어 상하 이동에 의한 진동 편향을 높이기 위한 구성요소에 해당한다.
상술된 진동체(120)는 도면에 도시된 바와 같이 탄성체(130)와 연결되어 상하 방향 이동이 가이딩되며, 탄성체(130)는 진동체(120)에 제공되는 전자기력과 상호 공진 특성을 가질 수 있도록 무게, 탄성 계수, 길이 등이 설계된다.
상기 진동체(120)를 구성하는 마그네트(121)의 상부 내지 상면에는 다른 구성과의 간섭 내지 충돌을 효과적으로 방지하기 위한 일종의 유체 댐퍼로서 점성을 가진 유체인 점성 유체가 구비된다.
실시형태에 따라서 점성유체의 위치가 항시적으로 유지될 수 있도록 이 점성유체는 마그네트(121)와의 자력에 의하여 그 구비된 위치가 지속, 유지될 수 있는 자성유체(50)(MF, Magnetic Fluid)로 구현되는 것이 바람직하다. 이하에서는 설명의 효율성을 높이기 위하여 점성유체의 일 실시예인 자성유체를 기준으로 설명하다.
상기 자성유체(50)는 도트(dot) 형태로 마그네트(121) 상면에 도포될 수 있으나, 충격 흡수 등을 효과적으로 수행하기 위하여 마그네트(121)의 도넛 내지 트랙 형상을 따라 일종의 링(ring) 형상으로 마그네트(121) 상부 전면에 도포되는 것이 바람직하다.
본 발명의 댐퍼(140)는 상기 진동체(120)의 상부 내지 상면과 대향하도록 상기 하우징(101)의 상부에 설치된다. 이 댐퍼(140)는 앞서 설명된 바와 같이 진동체(120)의 물리적 충격을 완화시키는 쿠션 부재로서 충격 내지 충돌 등을 흡수할 수 있도록 고무(rubber), 실리콘(silicon), 다공성 고무(foam rubber), 포론(Poron), 발포 수지 등과 같은 재질로 이루어질 수 있다.
코일(111)과 마그네트(121) 상호간의 전자기력에 의하여 진동체(120)가 최대 변위를 향하여 상방향으로 이동하면 본 발명의 댐퍼(140)는 마그네트(121) 상면에 구비된 자성유체(50)와 대접하게 된다.
이 때, 본 발명의 댐퍼(140)는 종래 댐퍼가 자성유체와 전면적으로 대접하여 밀폐되는 방식으로 자성유체와 대접하고 다시 자성유체가 탈리(이탈, 이격)되는 경우 발생되는 문제점을 효과적으로 극복하기 위하여 도면에 도시된 바와 같이 자성유체(50) 전체가 동시적으로 대접하지 않는 형상을 가지도록 구성된다. 즉, 후술되는 바와 같이 본 발명의 댐퍼(140)는 자성유체(50) 전체와 동시에 대접하지 않고 비연속적 내지 부분적으로만 동시적으로 대접하는 형상을 가진다.
첨부된 도 5 등을 참조하여 본 발명의 댐퍼(140)에 대한 형상과 구조를 구체적으로 살펴보면 다음과 같다.
도 5(A)는 마그네트(121) 상면에 도포된 자성유체(50)의 형상을 도시하고 있으며, 도 5(B)는 본 발명의 일 실시예에 의한 댐퍼(140)의 수평면을 기준으로 한 단면 형상을 도시하고 있다. 자성유체(50)는 마그네트(121)의 상면에 구비되므로 도 5(A)의 형상은 마그네트(121)의 수평면을 기준으로 한 단면 형상과 거의 일치한다.
도 5에 도시된 바와 같이 본 발명의 댐퍼(140)는 진동체(120)와의 물리적 충격을 전체 방향에서 완화 내지 흡수할 수 있도록 가운데 중심 부분을 기준으로 대칭되는 형상으로 구현하는 것이 바람직하다.
또한, 종래와 같이 댐퍼의 크기를 마그네트와 대응되도록 구현하는 경우, 진동체의 마그네트와의 충돌 등은 완화할 수 있으나 마그네트의 바깥 부분에 위치하는 중량체가 하우징 상부에 충돌하는 것을 효과적으로 방지하기 어려울 수 있다.
그러므로 본 발명의 댐퍼(140)는 가운데 부분에서 최외곽 내지 외주까지의 거리가 상기 마그네트(121)의 외경 바깥 부분까지 확장되도록 구현하는 것이 바람직하다. 즉, 본 발명의 댐퍼(140)는 가운데 부분(A)에서 최외곽(L1)까지의 거리(D1)가 중심(도 5의 A)에서 마그네트(121)의 바깥 외주(L2) 사이의 거리(D2)보다 크도록 구현하는 것이 바람직하다.
이와 같이 구성하는 경우 본 발명의 댐퍼(140)는 자성유체(50)와 대접하되, 자성유체(50) 전체가 동시적으로 대접하지 않게 되므로 자성유체(50)는 댐퍼(140)와 밀폐되지 않는 상태 즉, 부분적으로만 대접한 상태가 되므로 자성유체(50)는 댐퍼(140)에서 쉽게 이탈될 수 있으며, 진동체(120)가 하방으로 이동하는 경우 도 3에 도시된 유체 기둥이 생성되는 현상을 방지하거나 약화시킬 수 있게 된다.
도 5 (C)에 도시된 바와 같이 본 발명의 댐퍼(140)는 자성유체(50)와 대접하는 대접파트(b)와 대접하지 않는 하나 이상의 공간(a)이 함께 형성되어 있으므로 자성유체(50)가 댐퍼(140)에 대접하더라도 밀폐되지 않도록 유도할 수 있어 밀폐되어 대접함으로써 발생되는 종래의 문제점을 효과적으로 해소할 수 있게 된다.
이하에서는 도 6을 참조하여 상술된 본 발명의 기술 사상이 구현되는 댐퍼(140)의 다양한 실시예를 설명하도록 한다. 이하 설명되는 본 발명의 실시예는 본 발명의 기술 사상을 설명하는 예시이므로 앞서 설명된 바와 같이 자성유체(50)가 댐퍼(140)에 전면적으로 동시에 대접하지 않도록 유도할 수 있는 형상이라면 도 6 등에 도시된 예시 이외에 다양한 실시형태가 가능함은 물론이다.
본 발명의 댐퍼(140)는 도 6에 도시된 바와 같이 진동체(120)를 구성하는 마그네트(121)와 중량체(123)를 물리적으로 지지함과 동시에 마그네트(121) 상면에 도포 내지 구비된 자성유체(50)와 전면적으로 동시에 대접하지 않는 형상으로 구현된다.
구체적으로 본 발명의 댐퍼(140)는 도 6에 도시된 바와 같이 가운데 부분(도 6의 A)을 중심으로 외곽으로 뻗어가는 형상인 둘 이상의 돌출부(141)가 방사형 또는 대칭을 이루는 형상으로 구현될 수 있다.
도 6의 (A)의 경우 대칭형은 아니나 자성유체(50)와 대접하는 영역인 (b) 영역(대접파트)과 자성유체(50)와 대접하지 않는 공간 영역인 (a)가 함께 구비되어 있으므로 자성유체(50)와 전면적으로 동시에 대접하지 않게 된다.
또한, 도 6의 (E)와 같이 댐퍼(140)의 안쪽 부분으로서 자성유체(50)와 대응되는 위치 부분에 하나 이상의 홈부(143)가 구비되는 경우, 이 홈부(143)에서 본 발명의 댐퍼(140)는 자성유체(50)와 직접적으로 대접하지 않거나 또는 다른 대접 파트(b)와 동시적으로 대접하지 않으므로 상술된 종래의 문제점을 해소할 수 있게 된다.
또한, 본 발명의 댐퍼(140)는 그 외주를 도 6의 (G)와 (H)에 도시된 바와 같이 볼록부(145)와 오목부(147)가 반복적으로 이루어지는 형상으로 구현하고, 이 볼록부(145)와 오목부(147)에 의하여 자성유체와의 대접하는 부분(b)과 대접하지 않는 부분(a)이 교대로 이루어지도록 구현할 수 있다.
도 6 (G), (H) 등에서는 댐퍼(140)가 진동체(120)를 전체 방향에서 물리적으로 더욱 효과적으로 지지하기 위하여 볼록부(145)와 오목부(147)가 전체적으로 반복되는 형상을 도시하고 있으나, 실시형태에 따라서 볼록부(145)와 오목부(147)는 한차례 반복되는 형상을 포함하여 부분적으로 반복되는 형상으로 이루어질 수도 있음은 물론이다.
이 경우 실시형태에 따라 댐퍼(140)의 볼록부(145)는 상기 자성유체(50)의 위치를 기준으로 더 바깥 방향 즉, 중량체(123)가 구비된 방향에 위치하며, 상기 댐퍼의 오목부(147)는 상기 자성유체(50)의 위치와 대응되거나 또는 상기 자성유체(50)의 위치를 기준으로 더 안쪽 방향에 위치하도록 구성할 수 있다.
또한, 본 발명의 댐퍼(140)는 자성유체(50) 전면과 동시에 대접하지 않도록 함으로써, 댐퍼(140)와 자성유체(50)가 밀폐된 형태로 대접하지 않도록 유도하고 이를 통하여 종래 문제점을 해소하기 위한 것이므로 도면에 도시된 형태는 물론, 단차, 단턱 구조 등을 통하여 댐퍼(140)가 자성유체(50) 전체와 동시적으로 대접하지 않도록 구현할 수도 있음은 물론이다.
도 7 및 도 8은 본 발명의 실시예 중 십자형상 댐퍼(140)와 종래 원판 형상 댐퍼(550)의 노이즈 관련 데이터를 비교한 도면이다.
이 비교 실험은 본 발명의 실시예 중 하나인 십자형상 댐퍼(140)와 종래 원판 형상 댐퍼(550) 모두 전체 외경 4.8Ø, 두께 0.2mm으로 동일한 스펙을 가지며 동일한 rubber 재질을 가지는 것을 대상으로 진행되었으며 기타 중량체, 코일 등 다른 구성은 동일하게 구성하였다. 또한, 소음 관련 수치의 분석은 BaKo Co.,Ltd.의 BK2120C을 이용하였다.
도 7에 도시된 바와 같이 본 발명의 십자형상 댐퍼(140)의 경우, Touch noise, Band noise, THD(Total Harmonic Distortion) 모두 종래 원판 형상의 댐퍼(550)보다 개선됨을 확인할 수 있다.
구체적으로 Touch noise의 경우 원판 형상의 댐퍼(550)는 21db~26dB의 분포를 보이며, 평균값은 23.71dB임에 반해, 본 발명에 의한 십자 형상 댐퍼(140)의 경우, 14.8dB~17.6dB의 분포를 보이며 평균값은 16.24dB로 확인되었다. 즉, 본 발명의 실시예에 의하는 경우 Touch noise의 편차도 줄어듦은 물론, Touch noise가 전반적으로 감소됨을 확인할 수 있다.
Band noise의 경우에도 종래 원판 형상의 댐퍼(550)의 경우 평균값이 4.49dB를 나타냄에 반해, 본 발명의 실시예의 경우 이 보다 현저히 낮은 평균 0.51dB를 Band noise를 가져 이 노이즈 요소에서도 현저한 개선 효과를 확인할 수 있다.
THD 또한, 평균값 대비 10.4%에서 8.785%로 낮아져 본 발명에 의한 십자 형상 댐퍼(140)가 종래 원판 형상의 댐퍼(550)보다 성능이 개선됨을 확인할 수 있다.
도 8은 본 발명의 실시예 중 하나인 십자 형상 댐퍼(140)와 종래 원판 형상 댐퍼(550)의 파형을 비교한 도면으로서, 도 8(a)에서 확인되는 바와 같이 종래 원판 형상의 댐퍼(550)의 경우 파형 상에 노이즈 성분이 상당 부분 포함되어 있음에 반해, 본 발명에 의한 십자 형상 댐퍼(140)의 경우 도 8(b)와 같이 종래 원판 형상의 댐퍼(550)와 대비하여 파형 상에 노이즈가 거의 발생되지 않음을 알 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
본 발명의 설명과 그에 대한 실시예의 도시를 위하여 첨부된 도면 등은 본 발명에 의한 기술 내용을 강조 내지 부각하기 위하여 다소 과장된 형태로 도시될 수 있으나, 앞서 기술된 내용과 도면에 도시된 사항 등을 고려하여 본 기술분야의 통상의 기술자 수준에서 다양한 형태의 변형 적용 예가 가능할 수 있음은 자명하다고 해석되어야 한다.
Claims (8)
- 내부공간이 형성된 하우징;상기 내부 공간에 구비되며 코일을 포함하는 고정체;상기 코일과 동축으로 배치되는 마그네트와 중량체를 포함하며 상기 고정체를 기준으로 상하 방향으로 이동하는 진동체;상기 진동체를 탄성 지지하는 탄성체;상기 마그네트의 상면에 구비되는 점성을 가진 유체인 점성유체; 및상기 진동체의 상면과 대향하도록 상기 하우징에 설치되는 댐퍼를 포함하고,상기 댐퍼는, 상기 점성유체와 대응되는 위치 영역인 대접영역에서 상기 점성유체와 대접하되, 상기 대접영역에서 상기 점성유체의 전체가 대접하지 않도록 상기 점성유체와 대접하는 대접 파트와 상기 점성유체와 대접하지 않는 하나 이상의 공간이 상기 대접영역에 함께 형성되는 것을 특징으로 하는 댐퍼를 포함하는 선형 진동 발생장치.
- 제 1항에 있어서, 상기 점성유체는,자성유체인 것을 특징으로 하는 댐퍼를 포함하는 선형 진동 발생장치.
- 제 1항에 있어서, 상기 댐퍼는,중심 부분을 기준으로 수평 방향으로 대칭되는 형상으로 이루어지는 것을 특징으로 하는 댐퍼를 포함하는 선형 진동 발생장치.
- 제 1항에 있어서, 상기 댐퍼는,수평 방향으로 돌출된 둘 이상의 돌출부가 가운데 부분을 중심으로 방사형 또는 대칭형을 이루는 형상인 것을 특징으로 하는 댐퍼를 포함하는 선형 진동 발생장치.
- 제 1항에 있어서, 상기 댐퍼는,상기 점성유체와 대응되는 위치에 하나 이상의 홈부가 구비되는 것을 특징으로 하는 댐퍼를 포함하는 선형 진동 발생장치.
- 제 1항에 있어서, 상기 댐퍼의 외주는,수평방향을 기준으로 한 볼록부와 오목부가 한 차례 이상 반복적으로 이루어지는 형상을 포함하는 것을 특징으로 하는 댐퍼를 포함하는 선형 진동 발생장치.
- 내부공간이 형성된 하우징, 상기 내부 공간에 구비되며 코일을 포함하는 고정체, 상기 코일과 동축으로 배치되는 마그네트와 중량체를 포함하며 상기 고정체를 기준으로 상하 방향으로 이동하는 진동체, 상기 진동체를 탄성 지지하는 탄성체와, 상기 마그네트의 상면에 구비되는 점성을 가지는 유체인 점성유체를 포함하는 선형 진동 발생장치에 구비되는 댐퍼로서,상기 진동체의 상면과 대향하도록 상기 하우징에 설치되며, 상기 진동체의 상방향 이동 시 상기 점성유체와 대응되는 위치 영역인 대접영역에서 상기 점성유체와 대접하되, 상기 대접영역에서 상기 점성유체의 전체가 대접하지 않도록 상기 점성유체와 대접하는 대접파트와 상기 점성유체와 대접하지 않는 하나 이상의 공간이 상기 대접영역에 함께 형성되는 것을 특징으로 하는 선형 진동 발생장치용 댐퍼.
- 제 7항에 있어서,수평 방향으로 돌출된 둘 이상의 돌출부가 가운데 부분을 중심으로 방사형 또는 대칭형을 이루는 형상인 것을 특징으로 하는 선형 진동 발생장치용 댐퍼.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0105078 | 2016-08-18 | ||
KR1020160105078A KR101695828B1 (ko) | 2016-08-18 | 2016-08-18 | 댐퍼를 포함하는 선형 진동 발생장치 및 댐퍼 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018034394A1 true WO2018034394A1 (ko) | 2018-02-22 |
Family
ID=57835390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/000298 WO2018034394A1 (ko) | 2016-08-18 | 2017-01-10 | 댐퍼를 포함하는 선형 진동 발생장치 및 댐퍼 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9742254B1 (ko) |
KR (1) | KR101695828B1 (ko) |
CN (1) | CN206237287U (ko) |
WO (1) | WO2018034394A1 (ko) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10389219B2 (en) * | 2016-07-01 | 2019-08-20 | Jahwa Electronics Co., Ltd. | Vibration actuator |
US10606355B1 (en) * | 2016-09-06 | 2020-03-31 | Apple Inc. | Haptic architecture in a portable electronic device |
CN107317454A (zh) * | 2017-08-11 | 2017-11-03 | 歌尔股份有限公司 | 线性振动马达 |
CN107257190B (zh) * | 2017-08-11 | 2020-06-02 | 歌尔股份有限公司 | 线性振动马达 |
CN107276361A (zh) * | 2017-08-11 | 2017-10-20 | 歌尔股份有限公司 | 一种线性振动马达 |
JP2021062412A (ja) * | 2018-02-20 | 2021-04-22 | ソニー株式会社 | 触覚提示装置、及び触覚提示システム |
US10819202B2 (en) | 2018-07-11 | 2020-10-27 | Mplus Co., Ltd. | Linear vibration motor |
US10831276B2 (en) | 2018-09-07 | 2020-11-10 | Apple Inc. | Tungsten frame of a haptic feedback module for a portable electronic device |
KR102142564B1 (ko) * | 2018-10-24 | 2020-08-10 | 주식회사 엠플러스 | 사운드 진동 액츄에이터 |
KR20210016792A (ko) * | 2019-08-05 | 2021-02-17 | 삼성전자주식회사 | 햅틱용 액츄에이터 및 이를 포함하는 전자 장치 |
KR102142560B1 (ko) * | 2019-08-09 | 2020-08-10 | 주식회사 엠플러스 | 진동 액츄에이터 |
KR102127526B1 (ko) * | 2019-12-09 | 2020-06-29 | 주식회사 엠플러스 | 선형 진동모터 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10117471A (ja) * | 1996-10-14 | 1998-05-06 | Ee C Ii Tec Kk | ペイジャー用振動アクチュエータ |
JP2000069736A (ja) * | 1998-08-21 | 2000-03-03 | Tokin Corp | 振動アクチュエータ |
JP2007275695A (ja) * | 2006-04-03 | 2007-10-25 | Citizen Electronics Co Ltd | 振動体 |
KR20150053106A (ko) * | 2013-11-07 | 2015-05-15 | 자화전자(주) | 선형 진동 발생장치 |
KR20150053104A (ko) * | 2013-11-07 | 2015-05-15 | 자화전자(주) | 선형 진동 발생장치 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2438255B (en) * | 2006-02-23 | 2009-10-21 | Citizen Electronics | Vibrator |
KR101009112B1 (ko) * | 2009-05-04 | 2011-01-18 | 삼성전기주식회사 | 선형 진동 장치 |
KR101113561B1 (ko) * | 2010-02-08 | 2012-02-24 | 삼성전기주식회사 | 수직진동자 |
-
2016
- 2016-08-18 KR KR1020160105078A patent/KR101695828B1/ko active IP Right Grant
- 2016-11-10 US US15/347,922 patent/US9742254B1/en active Active
- 2016-12-02 CN CN201621319792.XU patent/CN206237287U/zh not_active Expired - Fee Related
-
2017
- 2017-01-10 WO PCT/KR2017/000298 patent/WO2018034394A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10117471A (ja) * | 1996-10-14 | 1998-05-06 | Ee C Ii Tec Kk | ペイジャー用振動アクチュエータ |
JP2000069736A (ja) * | 1998-08-21 | 2000-03-03 | Tokin Corp | 振動アクチュエータ |
JP2007275695A (ja) * | 2006-04-03 | 2007-10-25 | Citizen Electronics Co Ltd | 振動体 |
KR20150053106A (ko) * | 2013-11-07 | 2015-05-15 | 자화전자(주) | 선형 진동 발생장치 |
KR20150053104A (ko) * | 2013-11-07 | 2015-05-15 | 자화전자(주) | 선형 진동 발생장치 |
Also Published As
Publication number | Publication date |
---|---|
CN206237287U (zh) | 2017-06-09 |
US9742254B1 (en) | 2017-08-22 |
KR101695828B1 (ko) | 2017-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018034394A1 (ko) | 댐퍼를 포함하는 선형 진동 발생장치 및 댐퍼 | |
WO2015069017A1 (ko) | 선형 진동 발생장치 | |
WO2015068930A1 (ko) | 햅틱 엑추에이터 | |
WO2016021834A1 (ko) | 햅틱 액추에이터 | |
WO2018131808A1 (ko) | 에어 갭의 정밀도를 향상시킨 고품질 전자기 스피커 | |
WO2016010180A1 (ko) | 햅틱 엑추에이터 | |
WO2015069014A1 (ko) | 선형 진동 발생장치 | |
WO2011102588A1 (en) | Linear vibration generating device | |
US8492938B2 (en) | Linear vibration device | |
WO2011010778A1 (ko) | 리니어 진동 모터 | |
WO2013137578A1 (ko) | 선형 진동자 | |
WO2010150942A1 (ko) | 다기능 마이크로 스피커 | |
KR101157396B1 (ko) | 선형 진동 장치 | |
KR20130021734A (ko) | 선형 진동모터 | |
WO2016153261A1 (ko) | 햅틱 액추에이터 | |
KR20190038068A (ko) | 선형 진동 발생장치 | |
WO2012008700A2 (en) | Linear vibrator | |
KR101171619B1 (ko) | 진동발생장치 | |
KR20120059131A (ko) | 진동발생장치 | |
KR101987068B1 (ko) | 리니어 진동 엑츄에이터 | |
WO2015115754A1 (ko) | 선형 진동모터 | |
KR101947642B1 (ko) | 세탁기의 진동저감용 연속적 댐핑장치 및 이를 이용한 세탁기 | |
CN117395575A (zh) | 扬声器 | |
KR20110047520A (ko) | 선형 진동 발생기 | |
CN218888701U (zh) | 扬声装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17841578 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17841578 Country of ref document: EP Kind code of ref document: A1 |