WO2018034174A1 - Flame-retardant resin composition, insulated electric wire using same, metal cable, optical fiber cable, and molded article - Google Patents
Flame-retardant resin composition, insulated electric wire using same, metal cable, optical fiber cable, and molded article Download PDFInfo
- Publication number
- WO2018034174A1 WO2018034174A1 PCT/JP2017/028387 JP2017028387W WO2018034174A1 WO 2018034174 A1 WO2018034174 A1 WO 2018034174A1 JP 2017028387 W JP2017028387 W JP 2017028387W WO 2018034174 A1 WO2018034174 A1 WO 2018034174A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- parts
- resin composition
- retardant resin
- flame retardant
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/02—Disposition of insulation
Definitions
- the present invention relates to a flame retardant resin composition, an insulated wire using the same, a metal cable, an optical fiber cable, and a molded product.
- eco-materials are widely used for cable coverings, cable jackets, tubes, tapes, packaging materials, building materials, and the like.
- a flame retardant resin composition in which calcium carbonate and aluminum hydroxide are added as a flame retardant to a polyolefin resin, and a silicone compound and a fatty acid-containing compound are added as a flame retardant aid is known. (See Patent Document 1 below).
- the flame retardant resin composition described in Patent Document 1 has excellent flame retardancy, it has high hardness, excellent flame resistance, trauma resistance, mechanical properties, and chemical resistance at the same time. There was room for improvement in terms of satisfaction.
- the present inventors have repeatedly studied to solve the above problems. As a result, the present inventors blended calcium carbonate, aluminum hydroxide, a silicone compound, and a fatty acid-containing compound at a predetermined ratio with respect to the base resin composed of polyethylene and acid-modified polyolefin, respectively. It has been found that the above-mentioned problems can be solved by setting the polyethylene and acid-modified polyolefin content ratios to predetermined ratios and the polyethylene density in the base resin within a specific range.
- the content of the polyethylene in the base resin is 75% by mass or more and 99% by mass or less, and the content of the acid-modified polyolefin in the base resin is 1% by mass It is 25 mass% or less, the said calcium carbonate is mix
- the said aluminum hydroxide is 5 with respect to 100 mass parts of said base resins.
- the silicone compound is blended at a ratio of not less than 150 parts by mass and not more than 150 parts by mass.
- the base resin It is blended at a ratio of 1.5 parts by mass or more and 10 parts by mass or less with respect to parts by mass, and the fatty acid-containing compound is blended at a ratio of 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the base resin. It is a flame retardant resin composition.
- the present inventors infer the reason why the above effect is obtained in the flame retardant resin composition of the present invention as follows.
- the density of the said polyethylene is 922.0 kg / m ⁇ 3 > or more.
- the acid-modified polyolefin is selected from the group consisting of maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, ethylene-ethyl acrylate copolymer, and ethylene-vinyl acetate copolymer. At least one kind is preferred.
- the insulated wire of the present invention high hardness, excellent flame retardancy, trauma resistance, mechanical properties and chemical resistance can be satisfied at the same time.
- the present invention includes an optical fiber and a covering portion that covers the optical fiber, and the covering portion includes an insulator that directly covers the optical fiber, and the insulator includes the above-described flame-retardant resin.
- this invention is a molded article comprised with the said flame-retardant resin composition.
- FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is sectional drawing which shows one Embodiment of the optical fiber cable of this invention.
- the content of polyethylene in the base resin is 75% by mass or more and 99% by mass or less.
- the flame retardant resin composition has higher hardness than the case where the polyethylene content in the base resin is less than 75% by mass.
- the adhesion between polyethylene and aluminum hydroxide is further improved, and in the flame-retardant resin composition, the chemical resistance is improved over the long term. can get.
- the flame retardant resin composition has more excellent mechanical properties as compared with the case where the acid-modified polyolefin is an acid-modified polyolefin other than maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, EEA, and EVA.
- Aluminum hydroxide is mix
- the mixing ratio of aluminum hydroxide with respect to 100 parts by mass of the base resin is less than 5 parts by mass
- the endothermic reaction of aluminum hydroxide can suppress the spread of fire, so that the flame retardant resin composition is more excellent. Flame resistance is obtained.
- the mixture ratio of the aluminum hydroxide with respect to 100 mass parts of base resins is larger than 150 mass parts, more excellent flame retardancy is obtained in the flame retardant resin composition, and more in the flame retardant resin composition. Excellent mechanical properties (tensile properties) and scratch resistance are obtained.
- the silicone compound may be attached in advance to at least one surface of calcium carbonate and aluminum hydroxide. In this case, segregation of the silicone compound is less likely to occur in the flame retardant resin composition, and the uniformity of characteristics in the flame retardant resin composition is further improved.
- the silicone compound is added to and mixed with at least one of calcium carbonate and aluminum hydroxide to obtain a mixture.
- examples include a method of drying at 40 to 75 ° C. for 10 to 40 minutes, and pulverizing the dried mixture with a Henschel mixer, an atomizer or the like.
- the fatty acid-containing compound is preferably a fatty acid metal salt.
- the metal constituting the fatty acid metal salt include magnesium, calcium, zinc and lead.
- magnesium stearate is preferred. In this case, compared with the case where a fatty acid metal salt other than magnesium stearate is used, more excellent flame retardancy can be obtained with a smaller addition amount in the flame retardant resin composition.
- the fatty acid-containing compound is blended at a ratio of 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the base resin.
- more excellent flame retardancy can be obtained as compared with the case where the ratio of the fatty acid-containing compound to 100 parts by mass of the base resin is less than 5 parts by mass.
- the blending ratio of the fatty acid-containing compound with respect to 100 parts by mass of the base resin is larger than 20 parts by mass, bleeding of the fatty acid-containing compound can be more sufficiently suppressed, and more excellent mechanical properties (tensile properties) and damage resistance Sex is obtained.
- the silicone compound and the fatty acid-containing compound are added to and mixed with at least one surface of calcium carbonate and aluminum hydroxide. After obtaining the mixture, the mixture is dried at 40 to 75 ° C. for 10 to 40 minutes, and the dried mixture is pulverized with a Henschel mixer, an atomizer or the like.
- the flame retardant resin composition may further contain a filler such as an antioxidant, an ultraviolet degradation inhibitor, a processing aid, a color pigment, a lubricant, as necessary.
- a filler such as an antioxidant, an ultraviolet degradation inhibitor, a processing aid, a color pigment, a lubricant, as necessary.
- the flame retardant resin composition can be obtained by kneading a base resin composed of polyethylene and acid-modified polyolefin, calcium carbonate, aluminum hydroxide, a silicone compound, a fatty acid-containing compound, and the like.
- the kneading can be performed with a kneading machine such as a Banbury mixer, a tumbler, a pressure kneader, a kneading extruder, a twin screw extruder, a mixing roll, and the like.
- the inner conductor 1 is covered with the flame retardant resin composition.
- the flame retardant resin composition is melt kneaded using an extruder to form a tubular extrudate. Then, the tubular extrudate is continuously coated on the inner conductor 1. Thus, the insulated wire 4 is obtained.
- ⁇ Coating layer> Finally, one insulated wire 4 obtained as described above is prepared, and this insulated wire 4 is covered with a coating layer 3 as an insulator produced using the above-mentioned flame-retardant resin composition.
- the covering layer 3 is a so-called sheath and protects the insulating layer 2 from physical or chemical damage.
- This invention is a molded article comprised with the flame-retardant resin composition mentioned above.
- the present invention is not limited to the above embodiment.
- the round cable 10 having one insulated wire 4 is used as the metal cable.
- the metal cable of the present invention is not limited to the round cable, A cable having two or more insulated wires 4 may be used.
- a resin portion made of polypropylene or the like may be provided between the covering layer 3 and the insulated wire 4.
- coated part 25 is comprised with the insulator which coat
- polyethylene in the base resin is a mixture of polyethylene A and polyethylene B in silicone MB. If the blending amount of polyethylene A and the blending amount of polyethylene B in silicone MB are summed, the sum is 100 parts by mass.
- Ethylene-vinyl acetate copolymer manufactured by Mitsubishi Chemical Corporation : Mitsui / DuPont Polychemical Co., Ltd. (3) Silicone MB: Shin-Etsu Chemical Co., Ltd. (containing 50% by mass silicone gum and 50% by mass polyethylene B (density 915 kg / m 3 )) (4) Calcium carbonate: manufactured by Nitto Flour Chemical Co., Ltd. (5) Aluminum hydroxide: manufactured by Nippon Light Metal Co., Ltd. (6) Fatty acid-containing compound Magnesium stearate: ADEKA manufactured by zinc stearate: manufactured by NOF Corporation Stearic acid: manufactured by NOF Corporation Behenic acid manufactured by NOF Corporation
- the hardness was evaluated by preparing sheets having a thickness of 2 mm using the flame-retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12. Specifically, five sheets of the above-mentioned sheets were prepared, and the Shore D hardness (instantaneous value) of these sheets was measured using a durometer (type D: Shore D hardness) based on JIS K7215. An average value of Shore D hardness was calculated for five sheets, and this average value was used as an index of hardness. The results are shown in Tables 1-7.
- the acceptance criteria for hardness were as follows. (Acceptance criteria) The average value of Shore D hardness is 50 or more
- the damage resistance was evaluated for the optical fiber cable obtained as described above. Specifically, first, four optical fiber cables described above were prepared, and a scrape test based on JASOD618 was performed on these four optical fiber cables. In the scrape test, a needle having a diameter of 0.45 mm was reciprocated on the surface of the optical fiber cable while pressing it against the surface of the optical fiber cable with a load of 12N. At that time, the number of times the needle was reciprocated in the insulator of the optical fiber cable (that is, the number of reciprocations until contact with the optical fiber core wire) was measured. The minimum value of the number of needle reciprocations in the four optical fiber cables was taken as the number of scrapes, and this was used as an index of the resistance to trauma. The results are shown in Tables 1-7. In addition, the acceptance criteria for trauma resistance were as follows. (Acceptance criteria) The number of scrapes is 150 or more.
- ⁇ Chemical resistance> The chemical resistance was evaluated by preparing sheets having dimensions of 13 mm ⁇ 40 mm ⁇ 3 mm (thickness) using the flame retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12. Specifically, first, ten sheets of the above-mentioned sheet were prepared, and an environmental stress crack resistance test based on ASTM D1693 was performed on these ten sheets. Specifically, a 10% by mass aqueous solution of a surfactant (trade name “Antarok CO-650”, manufactured by Gokyo Sangyo Co., Ltd.) is prepared and adjusted to 50 ° C., and the sheet is immersed in this aqueous solution for 50 days. I left it alone.
- a surfactant trade name “Antarok CO-650”, manufactured by Gokyo Sangyo Co., Ltd.
- the flame retardant resin compositions of Examples 1 to 20 reached the acceptance standards for flame retardancy, hardness, trauma resistance, mechanical properties, and chemical resistance.
- the flame retardant resin compositions of Comparative Examples 1 to 12 did not reach the acceptance criteria for at least one of flame retardancy, hardness, trauma resistance, mechanical properties, and chemical resistance.
- the flame retardant resin composition of the present invention can simultaneously satisfy high hardness, excellent flame resistance, trauma resistance, mechanical properties and chemical resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Insulated Conductors (AREA)
Abstract
Disclosed is a flame-retardant resin composition which contains: a base resin configured from polyethylene and an acid-modified polyolefin; calcium carbonate; aluminum hydroxide; a silicone compound; and a fatty acid-containing compound. Therein: the polyethylene density is more than 912.4 kg/m3 and less than 940.0 kg/m3; the polyethylene content in the base resin constitutes 75-99 mass%, inclusive; the acid-modified polyolefin content in the base resin constitutes 1-25 mass%, inclusive; the calcium carbonate is formulated in a proportion constituting 5-130 parts by mass, inclusive, relative to 100 parts by mass of the base resin; the aluminum hydroxide is formulated in a proportion constituting 5-150 parts by mass, inclusive, relative to 100 parts by mass of the base resin; the silicone compound is formulated in a proportion constituting 1.5-10 parts by mass, inclusive, relative to 100 parts by mass of the base resin; and the fatty acid-containing compound is formulated in a proportion constituting 5-20 parts by mass, inclusive, relative to 100 parts by mass of the base resin.
Description
本発明は、難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品に関する。
The present invention relates to a flame retardant resin composition, an insulated wire using the same, a metal cable, an optical fiber cable, and a molded product.
ケーブルの被覆、ケーブルの外被、チューブ、テープ、包装材、建材等にはいわゆるエコマテリアルが広く使用されるようになっている。
So-called eco-materials are widely used for cable coverings, cable jackets, tubes, tapes, packaging materials, building materials, and the like.
このようなエコマテリアルとして、例えばポリオレフィン樹脂に、難燃剤として炭酸カルシウム及び水酸化アルミニウムを添加するとともに、難燃助剤としてシリコーン化合物及び脂肪酸含有化合物を添加した難燃性樹脂組成物が知られている(下記特許文献1参照)。
As such an ecomaterial, for example, a flame retardant resin composition in which calcium carbonate and aluminum hydroxide are added as a flame retardant to a polyolefin resin, and a silicone compound and a fatty acid-containing compound are added as a flame retardant aid is known. (See Patent Document 1 below).
ところで、近年、難燃性樹脂組成物には、ケーブルをはじめとする種々の用途に適用できるようにするため、難燃性のみならず、高い硬度を有しながら、機械的特性及び耐薬品性にも優れることが要求されるようになってきている。
By the way, in recent years, in order to be applicable to various uses such as cables, the flame retardant resin composition has not only flame retardancy but also high hardness, mechanical properties and chemical resistance. There is a growing demand for excellence.
しかし、上記特許文献1に記載の難燃性樹脂組成物は優れた難燃性を有しているものの、高い硬度、優れた難燃性、耐外傷性、機械的特性及び耐薬品性を同時に満足させるという点では改善の余地を有していた。
However, although the flame retardant resin composition described in Patent Document 1 has excellent flame retardancy, it has high hardness, excellent flame resistance, trauma resistance, mechanical properties, and chemical resistance at the same time. There was room for improvement in terms of satisfaction.
このため、高い硬度、優れた難燃性、耐外傷性、機械的特性及び耐薬品性を同時に満足させることができる難燃性樹脂組成物が求められていた。
For this reason, there has been a demand for a flame retardant resin composition that can simultaneously satisfy high hardness, excellent flame retardancy, trauma resistance, mechanical properties, and chemical resistance.
本発明は、上記事情に鑑みてなされたものであり、高い硬度、優れた難燃性、耐外傷性、機械的特性及び耐薬品性を同時に満足させることができる難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品を提供することを目的とする。
The present invention has been made in view of the above circumstances, a flame retardant resin composition capable of simultaneously satisfying high hardness, excellent flame retardancy, trauma resistance, mechanical properties and chemical resistance, It is an object to provide an insulated wire, a metal cable, an optical fiber cable, and a molded product using the cable.
本発明者らは上記課題を解決するため検討を重ねた。その結果、本発明者らは、ポリエチレン及び酸変性ポリオレフィンで構成されるベース樹脂に対し、炭酸カルシウム、水酸化アルミニウム、シリコーン化合物、及び脂肪酸含有化合物をそれぞれ所定の割合で配合するとともに、ベース樹脂中のポリエチレン及び酸変性ポリオレフィンの含有率をそれぞれ所定の割合とし、さらにベース樹脂中のポリエチレンの密度を特定の範囲とすることで、上記課題を解決し得ることを見出した。
The present inventors have repeatedly studied to solve the above problems. As a result, the present inventors blended calcium carbonate, aluminum hydroxide, a silicone compound, and a fatty acid-containing compound at a predetermined ratio with respect to the base resin composed of polyethylene and acid-modified polyolefin, respectively. It has been found that the above-mentioned problems can be solved by setting the polyethylene and acid-modified polyolefin content ratios to predetermined ratios and the polyethylene density in the base resin within a specific range.
すなわち本発明は、ポリエチレン及び酸変性ポリオレフィンで構成されるベース樹脂と、炭酸カルシウムと、水酸化アルミニウムと、シリコーン化合物と、脂肪酸含有化合物とを含み、前記ポリエチレンの密度が912.4kg/m3より大きく、940.0kg/m3未満であり、前記ベース樹脂中の前記ポリエチレンの含有率が75質量%以上99質量%以下であり、前記ベース樹脂中の前記酸変性ポリオレフィンの含有率が1質量%以上25質量%以下であり、前記炭酸カルシウムが前記ベース樹脂100質量部に対して5質量部以上130質量部以下の割合で配合され、前記水酸化アルミニウムが前記ベース樹脂100質量部に対して5質量部以上150質量部以下の割合で配合され、前記シリコーン化合物が前記ベース樹脂100質量部に対して1.5質量部以上10質量部以下の割合で配合され、前記脂肪酸含有化合物が前記ベース樹脂100質量部に対して5質量部以上20質量部以下の割合で配合される、難燃性樹脂組成物である。
That is, the present invention includes a base resin composed of polyethylene and acid-modified polyolefin, calcium carbonate, aluminum hydroxide, a silicone compound, and a fatty acid-containing compound, and the density of the polyethylene is from 912.4 kg / m 3 . Large, less than 940.0 kg / m 3 , the content of the polyethylene in the base resin is 75% by mass or more and 99% by mass or less, and the content of the acid-modified polyolefin in the base resin is 1% by mass It is 25 mass% or less, the said calcium carbonate is mix | blended in the ratio of 5 mass parts or more and 130 mass parts or less with respect to 100 mass parts of said base resins, The said aluminum hydroxide is 5 with respect to 100 mass parts of said base resins. The silicone compound is blended at a ratio of not less than 150 parts by mass and not more than 150 parts by mass. It is blended at a ratio of 1.5 parts by mass or more and 10 parts by mass or less with respect to parts by mass, and the fatty acid-containing compound is blended at a ratio of 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the base resin. It is a flame retardant resin composition.
本発明の難燃性樹脂組成物によれば、高い硬度、優れた難燃性、耐外傷性、機械的特性及び耐薬品性を同時に満足させることができる。
According to the flame retardant resin composition of the present invention, high hardness, excellent flame retardancy, trauma resistance, mechanical properties and chemical resistance can be satisfied at the same time.
なお、本発明者らは、本発明の難燃性樹脂組成物において、上記の効果が得られる理由については以下のように推察している。
In addition, the present inventors infer the reason why the above effect is obtained in the flame retardant resin composition of the present invention as follows.
すなわち、難燃性樹脂組成物中に水酸化アルミニウムが含まれていると、水酸化アルミニウムは、難燃性樹脂組成物の燃焼初期の比較的低温で脱水吸熱を生じる。これにより、難燃性樹脂組成物中のベース樹脂の温度上昇及び着火が抑制され、あるいは燃焼の継続が阻害される。また難燃性樹脂組成物中に炭酸カルシウム、水酸化アルミニウム、シリコーン化合物及び脂肪酸含有化合物が含まれていると、難燃性樹脂組成物の燃焼時に、ベース樹脂の表面に、主として炭酸カルシウム、水酸化アルミニウム、シリコーン化合物、脂肪酸含有化合物及びこれらの分解物からなるバリア層が形成され、ベース樹脂の燃焼が抑制される。そのため、燃焼時の脱水吸熱とバリア層の形成の2種類の難燃作用の相乗効果により、優れた難燃性が確保されるものと考えられる。さらに、ベース樹脂に含まれるポリエチレンの密度を912.4kg/m3より大きくすることで、高い硬度と優れた耐外傷性とを確保することができる。また、ベース樹脂に含まれるポリエチレンの密度を940.0kg/m3未満とすることで、難燃性樹脂組成物の難燃性を向上させることができるものと考えられる。さらに、ベース樹脂に酸変性ポリオレフィンが含まれることで、ポリエチレンと炭酸カルシウム及び水酸化アルミニウムとの密着性が向上し、優れた耐薬品性が確保されるものと考えられる。
That is, when aluminum hydroxide is contained in the flame retardant resin composition, the aluminum hydroxide generates dehydration endotherm at a relatively low temperature in the early stage of combustion of the flame retardant resin composition. Thereby, the temperature rise and ignition of the base resin in the flame retardant resin composition are suppressed, or the continuation of combustion is inhibited. Further, when the flame retardant resin composition contains calcium carbonate, aluminum hydroxide, a silicone compound and a fatty acid-containing compound, when the flame retardant resin composition is burned, the surface of the base resin mainly contains calcium carbonate, water. A barrier layer composed of aluminum oxide, a silicone compound, a fatty acid-containing compound, and a decomposition product thereof is formed, and combustion of the base resin is suppressed. Therefore, it is considered that excellent flame retardancy is ensured by a synergistic effect of two types of flame retardant actions, dehydration endotherm during combustion and formation of a barrier layer. Furthermore, by setting the density of the polyethylene contained in the base resin to be greater than 912.4 kg / m 3 , it is possible to ensure high hardness and excellent damage resistance. Moreover, it is thought that the flame retardance of a flame-retardant resin composition can be improved by making the density of polyethylene contained in the base resin less than 940.0 kg / m 3 . Furthermore, it is considered that the acid-modified polyolefin is contained in the base resin, whereby adhesion between polyethylene, calcium carbonate and aluminum hydroxide is improved, and excellent chemical resistance is ensured.
上記難燃性樹脂組成物においては、前記ポリエチレンの密度が922.0kg/m3以上であることが好ましい。
In the said flame-retardant resin composition, it is preferable that the density of the said polyethylene is 922.0 kg / m < 3 > or more.
この場合、ポリエチレンの密度が922.0kg/m3未満である場合に比べて、難燃性樹脂組成物がより高い硬度及びより優れた耐外傷性を有する。
In this case, compared with the case where the density of polyethylene is less than 922.0 kg / m < 3 >, a flame retardant resin composition has higher hardness and more excellent trauma resistance.
上記難燃性樹脂組成物においては、前記水酸化アルミニウムが前記ベース樹脂100質量部に対して20質量部以上100質量部以下の割合で配合されることが好ましい。
In the flame retardant resin composition, the aluminum hydroxide is preferably blended at a ratio of 20 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the base resin.
この場合、ベース樹脂100質量部に対する水酸化アルミニウムの配合割合が20質量部未満である場合に比べて、難燃性樹脂組成物においてより優れた難燃性が得られる。また、ベース樹脂100質量部に対する水酸化アルミニウムの配合割合が100質量部を超える場合と比べて、難燃性樹脂組成物がより優れた機械的特性を有する。
In this case, more excellent flame retardancy is obtained in the flame retardant resin composition than in the case where the blending ratio of aluminum hydroxide to 100 parts by mass of the base resin is less than 20 parts by mass. Moreover, compared with the case where the mixture ratio of the aluminum hydroxide with respect to 100 mass parts of base resins exceeds 100 mass parts, the flame-retardant resin composition has more excellent mechanical characteristics.
上記難燃性樹脂組成物においては、前記炭酸カルシウムが前記ベース樹脂100質量部に対して20質量部以上80質量部以下の割合で配合されることが好ましい。
In the flame retardant resin composition, the calcium carbonate is preferably blended at a ratio of 20 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the base resin.
この場合、ベース樹脂100質量部に対する炭酸カルシウムの配合割合が上記範囲を外れる場合に比べて、難燃性樹脂組成物においてより優れた難燃性が得られる。
In this case, more excellent flame retardancy is obtained in the flame retardant resin composition as compared with the case where the blending ratio of calcium carbonate with respect to 100 parts by mass of the base resin is out of the above range.
上記難燃性樹脂組成物においては、前記酸変性ポリオレフィンが、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、エチレン-アクリル酸エチル共重合体及びエチレン-酢酸ビニル共重合体からなる群より選ばれる少なくとも一種であることが好ましい。
In the flame retardant resin composition, the acid-modified polyolefin is selected from the group consisting of maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, ethylene-ethyl acrylate copolymer, and ethylene-vinyl acetate copolymer. At least one kind is preferred.
この場合、酸変性ポリオレフィンが無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、エチレン-アクリル酸エチル共重合体及びエチレン-酢酸ビニル共重合体以外の酸変性ポリオレフィンである場合に比べて、難燃性樹脂組成物がより優れた機械的特性を有する。
In this case, compared with the case where the acid-modified polyolefin is an acid-modified polyolefin other than maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, ethylene-ethyl acrylate copolymer and ethylene-vinyl acetate copolymer, flame retardancy The resin composition has better mechanical properties.
上記難燃性樹脂組成物においては、前記シリコーン化合物がシリコーンガムであることが好ましい。
In the flame retardant resin composition, the silicone compound is preferably a silicone gum.
この場合、シリコーン化合物がシリコーンガム以外のシリコーン化合物である場合に比べて、難燃性樹脂組成物においてブルームが起こりにくくなる。
In this case, compared to the case where the silicone compound is a silicone compound other than silicone gum, blooming is less likely to occur in the flame retardant resin composition.
上記難燃性樹脂組成物においては、前記脂肪酸含有化合物が脂肪酸の金属塩であることが好ましい。
In the flame retardant resin composition, the fatty acid-containing compound is preferably a fatty acid metal salt.
この場合、脂肪酸含有化合物が脂肪酸である場合に比べて、難燃性樹脂組成物において、より優れた難燃性が得られる。
In this case, more excellent flame retardancy is obtained in the flame retardant resin composition as compared with the case where the fatty acid-containing compound is a fatty acid.
上記難燃性樹脂組成物においては、前記脂肪酸の金属塩がステアリン酸マグネシウムであることが好ましい。
In the flame retardant resin composition, the metal salt of the fatty acid is preferably magnesium stearate.
この場合、脂肪族含有化合物がステアリン酸マグネシウム以外の脂肪酸含有化合物である場合と比べて、難燃性樹脂組成物において少ない添加量でより優れた難燃性を得ることができる。
In this case, compared with the case where the aliphatic compound is a fatty acid-containing compound other than magnesium stearate, more excellent flame retardancy can be obtained with a small addition amount in the flame-retardant resin composition.
また本発明は、金属導体と、前記金属導体を被覆する絶縁層とを備え、前記絶縁層が、上述した難燃性樹脂組成物で構成される絶縁電線である。
Moreover, this invention is an insulated wire provided with the metal conductor and the insulating layer which coat | covers the said metal conductor, and the said insulating layer is comprised with the flame-retardant resin composition mentioned above.
本発明の絶縁電線によれば、高い硬度、優れた難燃性、耐外傷性、機械的特性及び耐薬品性を同時に満足させることができる。
According to the insulated wire of the present invention, high hardness, excellent flame retardancy, trauma resistance, mechanical properties and chemical resistance can be satisfied at the same time.
また、本発明は、金属導体、及び、前記金属導体を被覆する絶縁層を有する絶縁電線と、前記絶縁電線を被覆する被覆層とを備え、前記絶縁層及び前記被覆層の少なくとも一方が、上記難燃性樹脂組成物で構成されるメタルケーブルである。
Further, the present invention comprises a metal conductor, an insulated wire having an insulating layer covering the metal conductor, and a coating layer covering the insulated wire, and at least one of the insulating layer and the coating layer is the above A metal cable composed of a flame retardant resin composition.
本発明のメタルケーブルによれば、高い硬度、優れた難燃性、耐外傷性、機械的特性及び耐薬品性を同時に満足させることができる。
According to the metal cable of the present invention, high hardness, excellent flame retardancy, trauma resistance, mechanical properties and chemical resistance can be satisfied at the same time.
さらに本発明は、光ファイバと、前記光ファイバを被覆する被覆部とを備え、前記被覆部が、前記光ファイバを直接被覆する絶縁体を有し、前記絶縁体が、上述した難燃性樹脂組成物で構成される光ファイバケーブルである。
Furthermore, the present invention includes an optical fiber and a covering portion that covers the optical fiber, and the covering portion includes an insulator that directly covers the optical fiber, and the insulator includes the above-described flame-retardant resin. An optical fiber cable composed of the composition.
本発明の光ファイバケーブルによれば、高い硬度、優れた難燃性、耐外傷性、機械的特性及び耐薬品性を同時に満足させることができる。
According to the optical fiber cable of the present invention, high hardness, excellent flame retardancy, damage resistance, mechanical properties and chemical resistance can be satisfied at the same time.
また本発明は、上記難燃性樹脂組成物で構成される成形品である。
Moreover, this invention is a molded article comprised with the said flame-retardant resin composition.
本発明の成形品によれば、高い硬度、優れた難燃性、耐外傷性、機械的特性及び耐薬品性を同時に満足させることができる。
According to the molded article of the present invention, high hardness, excellent flame retardancy, trauma resistance, mechanical properties and chemical resistance can be satisfied at the same time.
なお、本発明において、ポリエチレンが、密度の異なる複数種類のポリエチレンの混合物で構成される場合、その密度は、各ポリエチレンごとに以下の式で算出される値Xを合計した値を言うものとする。
X=ポリエチレンの密度(単位:kg/m3)×混合物中のポリエチレンの含有率(単位:質量%)
In addition, in this invention, when polyethylene is comprised with the mixture of multiple types of polyethylene from which a density differs, the density shall say the value which totaled the value X calculated by the following formula | equation for every polyethylene. .
X = polyethylene density (unit: kg / m 3 ) × polyethylene content in the mixture (unit: mass%)
X=ポリエチレンの密度(単位:kg/m3)×混合物中のポリエチレンの含有率(単位:質量%)
In addition, in this invention, when polyethylene is comprised with the mixture of multiple types of polyethylene from which a density differs, the density shall say the value which totaled the value X calculated by the following formula | equation for every polyethylene. .
X = polyethylene density (unit: kg / m 3 ) × polyethylene content in the mixture (unit: mass%)
本発明によれば、高い硬度、優れた難燃性、耐外傷性、機械的特性及び耐薬品性を同時に満足させることができる難燃性樹脂組成物、これを用いた絶縁電線、メタルケーブル、光ファイバケーブル及び成形品が提供される。
According to the present invention, a flame retardant resin composition capable of simultaneously satisfying high hardness, excellent flame retardancy, scratch resistance, mechanical properties and chemical resistance, an insulated wire using the same, a metal cable, Optical fiber cables and molded articles are provided.
以下、本発明の実施形態について図1及び図2を用いて詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2.
[メタルケーブル]
図1は、本発明に係るメタルケーブルの一実施形態を示す部分側面図である。図2は、図1のII-II線に沿った断面図である。図1及び図2に示すように、メタルケーブルとしての丸型ケーブル10は、絶縁電線4と、絶縁電線4を被覆するチューブ状の被覆層3とを備えている。そして、絶縁電線4は、金属導体としての内部導体1と、内部導体1を被覆するチューブ状の絶縁層2とを有している。 [Metal cable]
FIG. 1 is a partial side view showing an embodiment of a metal cable according to the present invention. FIG. 2 is a sectional view taken along line II-II in FIG. As shown in FIGS. 1 and 2, around cable 10 as a metal cable includes an insulated wire 4 and a tubular covering layer 3 that covers the insulated wire 4. The insulated wire 4 includes an inner conductor 1 as a metal conductor and a tubular insulating layer 2 that covers the inner conductor 1.
図1は、本発明に係るメタルケーブルの一実施形態を示す部分側面図である。図2は、図1のII-II線に沿った断面図である。図1及び図2に示すように、メタルケーブルとしての丸型ケーブル10は、絶縁電線4と、絶縁電線4を被覆するチューブ状の被覆層3とを備えている。そして、絶縁電線4は、金属導体としての内部導体1と、内部導体1を被覆するチューブ状の絶縁層2とを有している。 [Metal cable]
FIG. 1 is a partial side view showing an embodiment of a metal cable according to the present invention. FIG. 2 is a sectional view taken along line II-II in FIG. As shown in FIGS. 1 and 2, a
ここで、チューブ状の絶縁層2及び被覆層3は難燃性樹脂組成物で構成されており、この難燃性樹脂組成物は、ポリエチレン及び酸変性ポリオレフィンで構成されるベース樹脂と、炭酸カルシウムと、水酸化アルミニウムと、シリコーン化合物と、脂肪酸含有化合物とを含んでいる。この難燃性樹脂組成物においては、ポリエチレンの密度が912.4kg/m3より大きく、940.0kg/m3未満であり、ベース樹脂中のポリエチレンの含有率が75質量%以上99質量%以下であり、ベース樹脂中の酸変性ポリオレフィンの含有率が1質量%以上25質量%以下である。また炭酸カルシウムはベース樹脂100質量部に対して5質量部以上130質量部以下の割合で配合され、水酸化アルミニウムはベース樹脂100質量部に対して5質量部以上150質量部以下の割合で配合され、シリコーン化合物はベース樹脂100質量部に対して1.5質量部以上10質量部以下の割合で配合され、脂肪酸含有化合物はベース樹脂100質量部に対して5質量部以上20質量部以下の割合で配合されている。
Here, the tubular insulating layer 2 and the coating layer 3 are composed of a flame retardant resin composition, and the flame retardant resin composition includes a base resin composed of polyethylene and acid-modified polyolefin, and calcium carbonate. And an aluminum hydroxide, a silicone compound, and a fatty acid-containing compound. In the flame retardant resin composition, greater than the density is 912.4kg / m 3 polyethylene, less than 940.0kg / m 3, the content of the polyethylene in the base resin is more than 75 wt% 99 wt% or less The content of the acid-modified polyolefin in the base resin is 1% by mass or more and 25% by mass or less. Calcium carbonate is blended at a ratio of 5 to 130 parts by weight with respect to 100 parts by weight of the base resin, and aluminum hydroxide is blended at a ratio of 5 to 150 parts by weight with respect to 100 parts by weight of the base resin. The silicone compound is blended at a ratio of 1.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the base resin, and the fatty acid-containing compound is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the base resin. It is blended in proportions.
上記難燃性樹脂組成物で構成される絶縁層2及び被覆層3は、高い硬度、優れた難燃性、耐外傷性、機械的特性及び耐薬品性を同時に満足させることができる。従って、丸型ケーブル10は、高い硬度、優れた難燃性、耐外傷性、機械的特性及び耐薬品性を同時に満足させることができる。
The insulating layer 2 and the coating layer 3 composed of the flame retardant resin composition can simultaneously satisfy high hardness, excellent flame retardancy, trauma resistance, mechanical properties, and chemical resistance. Therefore, the round cable 10 can simultaneously satisfy high hardness, excellent flame retardancy, damage resistance, mechanical properties, and chemical resistance.
[メタルケーブルの製造方法]
次に、上述したメタルケーブルである丸型ケーブル10の製造方法について説明する。 [Metal cable manufacturing method]
Next, the manufacturing method of theround cable 10 which is the metal cable mentioned above is demonstrated.
次に、上述したメタルケーブルである丸型ケーブル10の製造方法について説明する。 [Metal cable manufacturing method]
Next, the manufacturing method of the
<金属導体>
まず金属導体としての内部導体1を準備する。内部導体1は、1本の素線のみで構成されてもよく、複数本の素線を束ねて構成されたものであってもよい。また、内部導体1は、導体径や導体の材質などについて特に限定されるものではなく、用途に応じて適宜定めることができる。 <Metal conductor>
First, theinner conductor 1 as a metal conductor is prepared. The inner conductor 1 may be composed of only one strand, or may be configured by bundling a plurality of strands. Further, the inner conductor 1 is not particularly limited with respect to the conductor diameter, the material of the conductor, and the like, and can be appropriately determined according to the application.
まず金属導体としての内部導体1を準備する。内部導体1は、1本の素線のみで構成されてもよく、複数本の素線を束ねて構成されたものであってもよい。また、内部導体1は、導体径や導体の材質などについて特に限定されるものではなく、用途に応じて適宜定めることができる。 <Metal conductor>
First, the
<難燃性樹脂組成物>
一方、上記難燃性樹脂組成物を準備する。難燃性樹脂組成物は、上述したように、ポリエチレン及び酸変性ポリオレフィンで構成されるベース樹脂と、炭酸カルシウムと、水酸化アルミニウムと、シリコーン化合物と、脂肪酸含有化合物とを含む。 <Flame-retardant resin composition>
On the other hand, the flame retardant resin composition is prepared. As described above, the flame retardant resin composition includes a base resin composed of polyethylene and acid-modified polyolefin, calcium carbonate, aluminum hydroxide, a silicone compound, and a fatty acid-containing compound.
一方、上記難燃性樹脂組成物を準備する。難燃性樹脂組成物は、上述したように、ポリエチレン及び酸変性ポリオレフィンで構成されるベース樹脂と、炭酸カルシウムと、水酸化アルミニウムと、シリコーン化合物と、脂肪酸含有化合物とを含む。 <Flame-retardant resin composition>
On the other hand, the flame retardant resin composition is prepared. As described above, the flame retardant resin composition includes a base resin composed of polyethylene and acid-modified polyolefin, calcium carbonate, aluminum hydroxide, a silicone compound, and a fatty acid-containing compound.
(1)ベース樹脂
上述したようにベース樹脂は、ポリエチレン及び酸変性ポリオレフィンで構成されている。すなわち、ベース樹脂中のポリエチレンの含有率及び酸変性ポリオレフィンの含有率の合計は100質量%である。 (1) Base resin As described above, the base resin is composed of polyethylene and acid-modified polyolefin. That is, the total of the polyethylene content and the acid-modified polyolefin content in the base resin is 100% by mass.
上述したようにベース樹脂は、ポリエチレン及び酸変性ポリオレフィンで構成されている。すなわち、ベース樹脂中のポリエチレンの含有率及び酸変性ポリオレフィンの含有率の合計は100質量%である。 (1) Base resin As described above, the base resin is composed of polyethylene and acid-modified polyolefin. That is, the total of the polyethylene content and the acid-modified polyolefin content in the base resin is 100% by mass.
ポリエチレンの密度は912.4kg/m3より大きく、940.0kg/m3未満である。ここで、ポリエチレンの密度を940.0kg/m3未満としたのは、密度が940.0kg/m3以上である場合に比べて、難燃性樹脂組成物の機械的特性(引張特性)及び難燃性を向上させることができるためである。ポリエチレンの密度は937.0kg/m3以下であることが好ましい。この場合、ポリエチレンの密度が937.0kg/m3を超える場合と比べて、難燃性樹脂組成物がより優れた機械的特性を有する。
The density of the polyethylene is greater than 912.4kg / m 3, it is less than 940.0kg / m 3. Here, the density of the polyethylene less than 940.0kg / m 3, compared to when the density is 940.0kg / m 3 or more, the mechanical properties (tensile properties) of the flame-retardant resin composition and This is because flame retardancy can be improved. The density of polyethylene is preferably 937.0 kg / m 3 or less. In this case, compared with the case where the density of polyethylene exceeds 937.0 kg / m 3 , the flame retardant resin composition has more excellent mechanical properties.
また、ポリエチレンの密度を912.4kg/m3より大きくしたのは、密度が912.4kg/m3以下である場合に比べて、難燃性樹脂組成物において高い硬度及び優れた耐外傷性が得られるためである。ポリエチレンの密度は922.0kg/m3以上であることが好ましい。この場合、ポリエチレンの密度が922.0kg/m3未満である場合に比べて、難燃性樹脂組成物がより高い硬度及びより優れた耐外傷性を有する。ポリエチレンの密度は925.0kg/m3以上であることがより好ましい。この場合、ポリエチレンの密度が925.0kg/m3未満である場合に比べて、難燃性樹脂組成物がより一層高い硬度及びより一層優れた耐外傷性を有する。
Furthermore, it had to increase the density polyethylene than 912.4kg / m 3, compared to when the density is 912.4kg / m 3 or less, a high hardness and excellent external damage resistance in the flame retardant resin composition It is because it is obtained. The density of polyethylene is preferably 922.0 kg / m 3 or more. In this case, compared with the case where the density of polyethylene is less than 922.0 kg / m < 3 >, a flame retardant resin composition has higher hardness and more excellent trauma resistance. The density of polyethylene is more preferably 925.0 kg / m 3 or more. In this case, compared with the case where the density of polyethylene is less than 925.0 kg / m < 3 >, a flame-retardant resin composition has much higher hardness and much more excellent damage resistance.
ポリエチレンは、直鎖状ポリエチレン、分岐状ポリエチレン又はこれらの混合物であってもよい。但し、成形加工が容易となることから、ポリエチレンは、直鎖状ポリエチレンを含むことが好ましい。
The polyethylene may be linear polyethylene, branched polyethylene, or a mixture thereof. However, since the molding process is easy, the polyethylene preferably contains linear polyethylene.
ポリエチレンは、1種類のポリエチレンのみで構成されていてもよく、密度の異なる複数種類のポリエチレンの混合物で構成されていてもよい。ポリエチレンが、密度の異なるポリエチレンの混合物で構成される場合、混合物中の一部のポリエチレンの密度が、912.4kg/m3以下であったり940.0kg/m3以上であったりしても、混合物全体としての密度が912.4kg/m3より大きく、940.0kg/m3未満であればよい。
The polyethylene may be composed of only one type of polyethylene, or may be composed of a mixture of a plurality of types of polyethylene having different densities. When the polyethylene is composed of a mixture of polyethylenes having different densities, even if the density of a part of the polyethylene in the mixture is 912.4 kg / m 3 or less or 940.0 kg / m 3 or more, the density of the overall mixture is greater than 912.4kg / m 3, it may be less than 940.0kg / m 3.
ベース樹脂中のポリエチレンの含有率は75質量%以上99質量%以下である。この場合、ベース樹脂中のポリエチレンの含有率が75質量%未満である場合と比べて、難燃性樹脂組成物がより高い硬度を有する。またベース樹脂中のポリエチレンの含有率が99質量%より大きい場合と比べて、ポリエチレンと水酸化アルミニウムとの密着性がより向上し、難燃性樹脂組成物において長期的により優れた耐薬品性が得られる。
The content of polyethylene in the base resin is 75% by mass or more and 99% by mass or less. In this case, the flame retardant resin composition has higher hardness than the case where the polyethylene content in the base resin is less than 75% by mass. Moreover, compared with the case where the polyethylene content in the base resin is greater than 99% by mass, the adhesion between polyethylene and aluminum hydroxide is further improved, and in the flame-retardant resin composition, the chemical resistance is improved over the long term. can get.
なお、ベース樹脂中のポリエチレンの含有率は80質量%以上99質量%以下であることが好ましい。この場合、内部導体1又は絶縁電線4に難燃性樹脂組成物を押出被覆した時に難燃性樹脂組成物の外観がより向上する。
In addition, it is preferable that the content rate of the polyethylene in a base resin is 80 to 99 mass%. In this case, when the flame retardant resin composition is extrusion coated on the inner conductor 1 or the insulated wire 4, the appearance of the flame retardant resin composition is further improved.
ベース樹脂中の酸変性ポリオレフィンの含有率は1質量%以上25質量%以下である。この場合、ベース樹脂中の酸変性ポリオレフィンの含有率が1質量%未満である場合と比べて、ポリエチレンと炭酸カリシウム及び水酸化アルミニウムとの密着性がより向上し、難燃性樹脂組成物において長期的により優れた耐薬品性が得られる。またベース樹脂中の酸変性ポリオレフィンの含有率が25質量%より大きい場合と比べて、難燃性樹脂組成物がより高い硬度を有する。
The content of the acid-modified polyolefin in the base resin is 1% by mass or more and 25% by mass or less. In this case, compared with the case where the content of the acid-modified polyolefin in the base resin is less than 1% by mass, the adhesion between polyethylene, calcium carbonate and aluminum hydroxide is further improved, and the flame retardant resin composition has a long period of time. Better chemical resistance. Moreover, compared with the case where the content rate of acid-modified polyolefin in base resin is larger than 25 mass%, a flame-retardant resin composition has higher hardness.
なお、ベース樹脂中の酸変性ポリオレフィンの含有率は1質量%以上20質量%以下であることが好ましい。この場合、内部導体1又は絶縁電線4に難燃性樹脂組成物を押出被覆した時に難燃性樹脂組成物の外観がより向上する。ベース樹脂中の酸変性ポリオレフィンの含有率は10質量%以上20質量%以下であることがより好ましい。
In addition, it is preferable that the content rate of acid-modified polyolefin in base resin is 1 to 20 mass%. In this case, when the flame retardant resin composition is extrusion coated on the inner conductor 1 or the insulated wire 4, the appearance of the flame retardant resin composition is further improved. The content of the acid-modified polyolefin in the base resin is more preferably 10% by mass or more and 20% by mass or less.
酸変性ポリオレフィンは、ポリオレフィンを酸又は酸無水物で変性したものである。ポリオレフィンとしては、例えばポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などのエチレン-α-オレフィン共重合体などが挙げられる。酸としては、例えば酢酸、アクリル酸及びメタクリル酸などのカルボン酸が挙げられ、酸無水物としては、例えば無水マレイン酸などの無水カルボン酸などが挙げられる。酸変性ポリオレフィンとしては、例えば、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレンなどの無水カルボン酸変性ポリオレフィン、エチレン-アクリル酸エチル共重合体(EEA)、エチレン-酢酸ビニル共重合体(EVA)などのカルボン酸変性ポリオレフィンなどが挙げられる。これらの中でも、酸変性ポリオレフィンとしては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、EEA及びEVA又はこれらの2種以上の混合物が好ましい。この場合、酸変性ポリオレフィンが無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、EEA及びEVA以外の酸変性ポリオレフィンである場合と比べて、難燃性樹脂組成物がより優れた機械的特性を有する。
The acid-modified polyolefin is obtained by modifying a polyolefin with an acid or an acid anhydride. Examples of the polyolefin include ethylene-α-olefin copolymers such as polyethylene, polypropylene, and ethylene-propylene copolymers. Examples of the acid include carboxylic acids such as acetic acid, acrylic acid, and methacrylic acid, and examples of the acid anhydride include carboxylic anhydrides such as maleic anhydride. Examples of the acid-modified polyolefin include carboxylic acid-modified polyolefin such as maleic anhydride-modified polyethylene and maleic anhydride-modified polypropylene, ethylene-ethyl acrylate copolymer (EEA), and ethylene-vinyl acetate copolymer (EVA). And carboxylic acid-modified polyolefin. Among these, as the acid-modified polyolefin, maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, EEA and EVA, or a mixture of two or more thereof are preferable. In this case, the flame retardant resin composition has more excellent mechanical properties as compared with the case where the acid-modified polyolefin is an acid-modified polyolefin other than maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, EEA, and EVA.
(2)炭酸カルシウム
炭酸カルシウムは重質炭酸カルシウム又は軽質炭酸カルシウムのいずれでもよい。 (2) Calcium carbonate The calcium carbonate may be either heavy calcium carbonate or light calcium carbonate.
炭酸カルシウムは重質炭酸カルシウム又は軽質炭酸カルシウムのいずれでもよい。 (2) Calcium carbonate The calcium carbonate may be either heavy calcium carbonate or light calcium carbonate.
炭酸カルシウムは、ベース樹脂100質量部に対して5質量部以上130質量部以下の割合で配合される。この場合、ベース樹脂100質量部に対する炭酸カルシウムの配合割合が5質量部未満である場合に比べて、難燃性樹脂組成物の燃焼時のシリコーン化合物のチャー(殻)をより強固にすることが可能となり、より優れた難燃性が得られるとともに、シリコーン化合物及び脂肪酸含有化合物のブリードをより十分に抑制することも可能となる。またベース樹脂100質量部に対する炭酸カルシウムの配合割合が130質量部より大きい場合に比べて、難燃性樹脂組成物においてより優れた難燃性が得られるとともに、より優れた機械的特性(引張特性)及び耐外傷性が得られる。
Calcium carbonate is blended at a ratio of 5 parts by mass or more and 130 parts by mass or less with respect to 100 parts by mass of the base resin. In this case, the char (shell) of the silicone compound at the time of combustion of the flame retardant resin composition can be made stronger than when the blending ratio of calcium carbonate with respect to 100 parts by mass of the base resin is less than 5 parts by mass. This makes it possible to obtain more excellent flame retardancy, and to sufficiently suppress bleeding of the silicone compound and the fatty acid-containing compound. In addition, compared with the case where the blending ratio of calcium carbonate with respect to 100 parts by mass of the base resin is larger than 130 parts by mass, the flame retardant resin composition has superior flame retardancy and more excellent mechanical properties (tensile properties). ) And trauma resistance.
またベース樹脂100質量部に対する炭酸カルシウムの配合割合は20~80質量部であることが好ましい。この場合、ベース樹脂100質量部に対する炭酸カルシウムの配合割合が上記範囲を外れる場合に比べて、難燃性樹脂組成物においてより一層優れた難燃性が得られる。ベース樹脂100質量部に対する炭酸カルシウムの配合割合は30~60質量部であることがより好ましい。
The blending ratio of calcium carbonate with respect to 100 parts by mass of the base resin is preferably 20 to 80 parts by mass. In this case, more excellent flame retardancy is obtained in the flame retardant resin composition as compared with the case where the blending ratio of calcium carbonate with respect to 100 parts by mass of the base resin is out of the above range. The blending ratio of calcium carbonate with respect to 100 parts by mass of the base resin is more preferably 30 to 60 parts by mass.
(3)水酸化アルミニウム
水酸化アルミニウムは、ベース樹脂100質量部に対して5質量部以上150質量部以下の割合で配合される。この場合、ベース樹脂100質量部に対する水酸化アルミニウムの配合割合が5質量部未満である場合に比べて、水酸化アルミニウムの吸熱反応により延焼を抑制できるので、難燃性樹脂組成物においてより優れた難燃性が得られる。またベース樹脂100質量部に対する水酸化アルミニウムの配合割合が150質量部より大きい場合に比べて、難燃性樹脂組成物においてより優れた難燃性が得られるとともに、難燃性樹脂組成物においてより優れた機械的特性(引張特性)及び耐外傷性が得られる。 (3) Aluminum hydroxide Aluminum hydroxide is mix | blended in the ratio of 5 to 150 mass parts with respect to 100 mass parts of base resins. In this case, compared with the case where the mixing ratio of aluminum hydroxide with respect to 100 parts by mass of the base resin is less than 5 parts by mass, the endothermic reaction of aluminum hydroxide can suppress the spread of fire, so that the flame retardant resin composition is more excellent. Flame resistance is obtained. Moreover, compared with the case where the mixture ratio of the aluminum hydroxide with respect to 100 mass parts of base resins is larger than 150 mass parts, more excellent flame retardancy is obtained in the flame retardant resin composition, and more in the flame retardant resin composition. Excellent mechanical properties (tensile properties) and scratch resistance are obtained.
水酸化アルミニウムは、ベース樹脂100質量部に対して5質量部以上150質量部以下の割合で配合される。この場合、ベース樹脂100質量部に対する水酸化アルミニウムの配合割合が5質量部未満である場合に比べて、水酸化アルミニウムの吸熱反応により延焼を抑制できるので、難燃性樹脂組成物においてより優れた難燃性が得られる。またベース樹脂100質量部に対する水酸化アルミニウムの配合割合が150質量部より大きい場合に比べて、難燃性樹脂組成物においてより優れた難燃性が得られるとともに、難燃性樹脂組成物においてより優れた機械的特性(引張特性)及び耐外傷性が得られる。 (3) Aluminum hydroxide Aluminum hydroxide is mix | blended in the ratio of 5 to 150 mass parts with respect to 100 mass parts of base resins. In this case, compared with the case where the mixing ratio of aluminum hydroxide with respect to 100 parts by mass of the base resin is less than 5 parts by mass, the endothermic reaction of aluminum hydroxide can suppress the spread of fire, so that the flame retardant resin composition is more excellent. Flame resistance is obtained. Moreover, compared with the case where the mixture ratio of the aluminum hydroxide with respect to 100 mass parts of base resins is larger than 150 mass parts, more excellent flame retardancy is obtained in the flame retardant resin composition, and more in the flame retardant resin composition. Excellent mechanical properties (tensile properties) and scratch resistance are obtained.
ベース樹脂100質量部に対する水酸化アルミニウムの配合割合は20質量部以上であることが好ましい。この場合、ベース樹脂100質量部に対する水酸化アルミニウムの配合割合が20質量部未満である場合に比べて、難燃性樹脂組成物においてより優れた難燃性が得られる。ベース樹脂100質量部に対する水酸化アルミニウムの配合割合は30質量部以上であることがより好ましく、50質量部以上であることが特に好ましい。
The mixing ratio of aluminum hydroxide to 100 parts by mass of the base resin is preferably 20 parts by mass or more. In this case, more excellent flame retardancy is obtained in the flame retardant resin composition than in the case where the blending ratio of aluminum hydroxide to 100 parts by mass of the base resin is less than 20 parts by mass. The mixing ratio of aluminum hydroxide to 100 parts by mass of the base resin is more preferably 30 parts by mass or more, and particularly preferably 50 parts by mass or more.
また、ベース樹脂100質量部に対する水酸化アルミニウムの配合割合は100質量部以下であることが好ましい。この場合、ベース樹脂100質量部に対する水酸化アルミニウムの配合割合が100質量部を超える場合と比べて、難燃性樹脂組成物がより優れた機械的特性を有する。ベース樹脂100質量部に対する水酸化アルミニウムの配合割合は80質量部以下であることがより好ましい。
Further, the mixing ratio of aluminum hydroxide to 100 parts by mass of the base resin is preferably 100 parts by mass or less. In this case, the flame-retardant resin composition has more excellent mechanical properties than the case where the compounding ratio of aluminum hydroxide with respect to 100 parts by mass of the base resin exceeds 100 parts by mass. The mixing ratio of aluminum hydroxide to 100 parts by mass of the base resin is more preferably 80 parts by mass or less.
(4)シリコーン化合物
シリコーン化合物は、難燃助剤として機能するものであり、シリコーン化合物としては、ポリオルガノシロキサンなどが挙げられる。ここで、ポリオルガノシロキサンは、シロキサン結合を主鎖とし側鎖に有機基を有するものであり、有機基としては、例えばメチル基、エチル基、プロピル基などのアルキル基;ビニル基;及びフェニル基などのアリール基などが挙げられる。具体的にはポリオルガノシロキサンとしては、例えばジメチルポリシロキサン、メチルエチルポリシロキサン、メチルオクチルポリシロキサン、メチルビニルポリシロキサン、メチルフェニルポリシロキサン及びメチル(3,3,3-トリフルオロプロピル)ポリシロキサンなどが挙げられる。ポリオルガノシロキサンは、シリコーンオイル、シリコーンパウダー、シリコーンガム又はシリコーンレジンの形態で用いられる。中でも、ポリオルガノシロキサンは、シリコーンガムの形態で用いられることが好ましい。この場合、シリコーン化合物がシリコーンガム以外のシリコーン化合物である場合に比べて、難燃性樹脂組成物においてブルームが起こりにくくなる。 (4) Silicone Compound The silicone compound functions as a flame retardant aid, and examples of the silicone compound include polyorganosiloxane. Here, the polyorganosiloxane has a siloxane bond as a main chain and an organic group in a side chain. Examples of the organic group include alkyl groups such as a methyl group, an ethyl group, and a propyl group; a vinyl group; and a phenyl group. Aryl groups and the like. Specifically, examples of the polyorganosiloxane include dimethylpolysiloxane, methylethylpolysiloxane, methyloctylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, and methyl (3,3,3-trifluoropropyl) polysiloxane. Is mentioned. The polyorganosiloxane is used in the form of silicone oil, silicone powder, silicone gum or silicone resin. Among these, the polyorganosiloxane is preferably used in the form of silicone gum. In this case, compared to the case where the silicone compound is a silicone compound other than silicone gum, bloom is less likely to occur in the flame retardant resin composition.
シリコーン化合物は、難燃助剤として機能するものであり、シリコーン化合物としては、ポリオルガノシロキサンなどが挙げられる。ここで、ポリオルガノシロキサンは、シロキサン結合を主鎖とし側鎖に有機基を有するものであり、有機基としては、例えばメチル基、エチル基、プロピル基などのアルキル基;ビニル基;及びフェニル基などのアリール基などが挙げられる。具体的にはポリオルガノシロキサンとしては、例えばジメチルポリシロキサン、メチルエチルポリシロキサン、メチルオクチルポリシロキサン、メチルビニルポリシロキサン、メチルフェニルポリシロキサン及びメチル(3,3,3-トリフルオロプロピル)ポリシロキサンなどが挙げられる。ポリオルガノシロキサンは、シリコーンオイル、シリコーンパウダー、シリコーンガム又はシリコーンレジンの形態で用いられる。中でも、ポリオルガノシロキサンは、シリコーンガムの形態で用いられることが好ましい。この場合、シリコーン化合物がシリコーンガム以外のシリコーン化合物である場合に比べて、難燃性樹脂組成物においてブルームが起こりにくくなる。 (4) Silicone Compound The silicone compound functions as a flame retardant aid, and examples of the silicone compound include polyorganosiloxane. Here, the polyorganosiloxane has a siloxane bond as a main chain and an organic group in a side chain. Examples of the organic group include alkyl groups such as a methyl group, an ethyl group, and a propyl group; a vinyl group; and a phenyl group. Aryl groups and the like. Specifically, examples of the polyorganosiloxane include dimethylpolysiloxane, methylethylpolysiloxane, methyloctylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, and methyl (3,3,3-trifluoropropyl) polysiloxane. Is mentioned. The polyorganosiloxane is used in the form of silicone oil, silicone powder, silicone gum or silicone resin. Among these, the polyorganosiloxane is preferably used in the form of silicone gum. In this case, compared to the case where the silicone compound is a silicone compound other than silicone gum, bloom is less likely to occur in the flame retardant resin composition.
シリコーン化合物は、上述したようにベース樹脂100質量部に対して1.5質量部以上10質量部以下の割合で配合される。この場合、ベース樹脂100質量部に対するシリコーン化合物の配合割合が1.5質量部未満である場合に比べて、難燃性樹脂組成物においてより優れた難燃性が得られる。またベース樹脂100質量部に対するシリコーン化合物の配合割合が10質量部より大きい場合に比べて、シリコーン化合物がベース樹脂に均等に混ざりやすくなり、部分的に塊が発生するということが起こりにくくなるため、難燃性樹脂組成物においてシリコーン化合物のブリードをより十分に抑制できるとともに、より優れた機械的特性(引張特性)及び耐外傷性が得られる。
As described above, the silicone compound is blended at a ratio of 1.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the base resin. In this case, the flame retardance more excellent in the flame-retardant resin composition is obtained compared with the case where the blending ratio of the silicone compound to 100 parts by mass of the base resin is less than 1.5 parts by mass. In addition, compared with the case where the blending ratio of the silicone compound with respect to 100 parts by mass of the base resin is larger than 10 parts by mass, the silicone compound is easily mixed into the base resin, and it is difficult for partial lump generation to occur. In the flame-retardant resin composition, bleeding of the silicone compound can be more sufficiently suppressed, and more excellent mechanical properties (tensile properties) and trauma resistance can be obtained.
ベース樹脂100質量部に対するシリコーン化合物の配合割合は5質量部以上であることが好ましい。この場合、シリコーン化合物の配合割合が5質量部未満である場合に比べて、難燃性樹脂組成物においてさらに優れた難燃性が得られる。但し、シリコーン化合物の配合割合は7質量部以下であることが好ましい。
The blending ratio of the silicone compound with respect to 100 parts by mass of the base resin is preferably 5 parts by mass or more. In this case, more excellent flame retardancy is obtained in the flame retardant resin composition as compared with the case where the blending ratio of the silicone compound is less than 5 parts by mass. However, the blending ratio of the silicone compound is preferably 7 parts by mass or less.
シリコーン化合物は、炭酸カルシウム及び水酸化アルミニウムの少なくとも一方の表面に予め付着させておいてもよい。この場合、難燃性樹脂組成物中においてシリコーン化合物の偏析が起こりにくくなり、難燃性樹脂組成物における特性の均一性がより向上する。
The silicone compound may be attached in advance to at least one surface of calcium carbonate and aluminum hydroxide. In this case, segregation of the silicone compound is less likely to occur in the flame retardant resin composition, and the uniformity of characteristics in the flame retardant resin composition is further improved.
炭酸カルシウム及び水酸化アルミニウムの少なくとも一方の表面にシリコーン化合物を付着させる方法としては、例えば炭酸カルシウム及び水酸化アルミニウムの少なくとも一方にシリコーン化合物を添加して混合し、混合物を得た後、この混合物を40~75℃にて10~40分乾燥し、乾燥した混合物をヘンシェルミキサ、アトマイザなどにより粉砕する方法が挙げられる。
As a method for adhering the silicone compound to at least one surface of calcium carbonate and aluminum hydroxide, for example, the silicone compound is added to and mixed with at least one of calcium carbonate and aluminum hydroxide to obtain a mixture. Examples include a method of drying at 40 to 75 ° C. for 10 to 40 minutes, and pulverizing the dried mixture with a Henschel mixer, an atomizer or the like.
(5)脂肪酸含有化合物
脂肪酸含有化合物は難燃助剤として機能するものである。脂肪酸含有化合物とは、脂肪酸又はその金属塩を含有するものを言う。ここで、脂肪酸としては、例えば炭素原子数が12~28である脂肪酸が用いられる。このような脂肪酸としては、例えばラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ツベルクロステアリン酸、オレイン酸、リノール酸、アラキドン酸、ベヘン酸及びモンタン酸が挙げられる。中でも、脂肪酸としては、ステアリン酸又はツベルクロステアリン酸が好ましく、ステアリン酸が特に好ましい。この場合、ステアリン酸又はツベルクロステアリン酸以外の脂肪酸を用いる場合に比べて、より優れた難燃性が得られる。 (5) Fatty acid-containing compound The fatty acid-containing compound functions as a flame retardant aid. The fatty acid-containing compound refers to a compound containing a fatty acid or a metal salt thereof. Here, as the fatty acid, for example, a fatty acid having 12 to 28 carbon atoms is used. Examples of such fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, tuberculostearic acid, oleic acid, linoleic acid, arachidonic acid, behenic acid and montanic acid. Among these, as the fatty acid, stearic acid or tuberculostearic acid is preferable, and stearic acid is particularly preferable. In this case, more excellent flame retardancy can be obtained as compared with the case of using a fatty acid other than stearic acid or tuberculostearic acid.
脂肪酸含有化合物は難燃助剤として機能するものである。脂肪酸含有化合物とは、脂肪酸又はその金属塩を含有するものを言う。ここで、脂肪酸としては、例えば炭素原子数が12~28である脂肪酸が用いられる。このような脂肪酸としては、例えばラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ツベルクロステアリン酸、オレイン酸、リノール酸、アラキドン酸、ベヘン酸及びモンタン酸が挙げられる。中でも、脂肪酸としては、ステアリン酸又はツベルクロステアリン酸が好ましく、ステアリン酸が特に好ましい。この場合、ステアリン酸又はツベルクロステアリン酸以外の脂肪酸を用いる場合に比べて、より優れた難燃性が得られる。 (5) Fatty acid-containing compound The fatty acid-containing compound functions as a flame retardant aid. The fatty acid-containing compound refers to a compound containing a fatty acid or a metal salt thereof. Here, as the fatty acid, for example, a fatty acid having 12 to 28 carbon atoms is used. Examples of such fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, tuberculostearic acid, oleic acid, linoleic acid, arachidonic acid, behenic acid and montanic acid. Among these, as the fatty acid, stearic acid or tuberculostearic acid is preferable, and stearic acid is particularly preferable. In this case, more excellent flame retardancy can be obtained as compared with the case of using a fatty acid other than stearic acid or tuberculostearic acid.
脂肪酸含有化合物は脂肪酸の金属塩であることが好ましい。この場合、脂肪酸含有化合物が脂肪酸である場合に比べて、難燃性樹脂組成物において、より優れた難燃性が得られる。脂肪酸の金属塩を構成する金属としては、マグネシウム、カルシウム、亜鉛及び鉛などが挙げられる。脂肪酸の金属塩としては、ステアリン酸マグネシウムが好ましい。この場合、ステアリン酸マグネシウム以外の脂肪酸金属塩を用いる場合に比べて、難燃性樹脂組成物においてより少ない添加量でより優れた難燃性が得られる。
The fatty acid-containing compound is preferably a fatty acid metal salt. In this case, more excellent flame retardancy is obtained in the flame retardant resin composition as compared with the case where the fatty acid-containing compound is a fatty acid. Examples of the metal constituting the fatty acid metal salt include magnesium, calcium, zinc and lead. As the fatty acid metal salt, magnesium stearate is preferred. In this case, compared with the case where a fatty acid metal salt other than magnesium stearate is used, more excellent flame retardancy can be obtained with a smaller addition amount in the flame retardant resin composition.
脂肪酸含有化合物は、上述したようにベース樹脂100質量部に対して5質量部以上20質量部以下の割合で配合される。この場合、ベース樹脂100質量部に対する脂肪酸含有化合物の割合が5質量部未満である場合に比べて、より優れた難燃性が得られる。またベース樹脂100質量部に対する脂肪酸含有化合物の配合割合が20質量部より大きい場合に比べて、脂肪酸含有化合物のブリードをより十分に抑制できるとともに、より優れた機械的特性(引張特性)及び耐外傷性が得られる。
As described above, the fatty acid-containing compound is blended at a ratio of 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the base resin. In this case, more excellent flame retardancy can be obtained as compared with the case where the ratio of the fatty acid-containing compound to 100 parts by mass of the base resin is less than 5 parts by mass. Moreover, compared with the case where the blending ratio of the fatty acid-containing compound with respect to 100 parts by mass of the base resin is larger than 20 parts by mass, bleeding of the fatty acid-containing compound can be more sufficiently suppressed, and more excellent mechanical properties (tensile properties) and damage resistance Sex is obtained.
ベース樹脂100質量部に対する脂肪酸含有化合物の配合割合は7量部以上で配合されることが好ましい。この場合、ベース樹脂100質量部に対する脂肪酸含有化合物の配合割合が7質量部未満である場合と比べて、より優れた難燃性が得られる。但し、ベース樹脂100質量部に対する脂肪酸含有化合物の配合割合は15質量部以下であることが好ましく、10質量部以下であることがより好ましい。
The blending ratio of the fatty acid-containing compound to 100 parts by weight of the base resin is preferably 7 parts by weight or more. In this case, more excellent flame retardancy is obtained as compared with the case where the blending ratio of the fatty acid-containing compound to 100 parts by mass of the base resin is less than 7 parts by mass. However, the blending ratio of the fatty acid-containing compound with respect to 100 parts by mass of the base resin is preferably 15 parts by mass or less, and more preferably 10 parts by mass or less.
脂肪酸含有化合物は炭酸カルシウム及び水酸化アルミニウムの少なくとも一方の表面に予め付着させておいてもよい。この場合、難燃性樹脂組成物中において脂肪酸含有化合物の偏析がより起こりにくくなり、難燃性樹脂組成物における特性の均一性がより向上する。さらに脂肪酸含有化合物とシリコーン化合物とを、炭酸カルシウム及び水酸化アルミニウムの少なくとも一方の表面に予め付着させておいてもよい。この場合、難燃性樹脂組成物中においてシリコーン化合物及び脂肪酸含有化合物の偏析がより起こりにくくなり、難燃性樹脂組成物における特性の均一性がさらに向上する。
The fatty acid-containing compound may be previously attached to at least one surface of calcium carbonate and aluminum hydroxide. In this case, segregation of the fatty acid-containing compound is less likely to occur in the flame retardant resin composition, and the uniformity of characteristics in the flame retardant resin composition is further improved. Further, the fatty acid-containing compound and the silicone compound may be attached in advance to at least one surface of calcium carbonate and aluminum hydroxide. In this case, segregation of the silicone compound and the fatty acid-containing compound is less likely to occur in the flame retardant resin composition, and the uniformity of characteristics in the flame retardant resin composition is further improved.
炭酸カルシウム及び水酸化アルミニウムの少なくとも一方の表面にシリコーン化合物及び脂肪酸含有化合物を付着させる方法としては、例え炭酸カルシウム及び水酸化アルミニウムの少なくとも一方の表面にシリコーン化合物及び脂肪酸含有化合物を添加して混合し、混合物を得た後、この混合物を40~75℃にて10~40分乾燥し、乾燥した混合物をヘンシェルミキサ、アトマイザなどにより粉砕する方法が挙げられる。
As a method of attaching the silicone compound and the fatty acid-containing compound to at least one surface of calcium carbonate and aluminum hydroxide, for example, the silicone compound and the fatty acid-containing compound are added to and mixed with at least one surface of calcium carbonate and aluminum hydroxide. After obtaining the mixture, the mixture is dried at 40 to 75 ° C. for 10 to 40 minutes, and the dried mixture is pulverized with a Henschel mixer, an atomizer or the like.
上記難燃性樹脂組成物は、酸化防止剤、紫外線劣化防止剤、加工助剤、着色顔料、滑剤などの充填剤を必要に応じてさらに含んでもよい。
The flame retardant resin composition may further contain a filler such as an antioxidant, an ultraviolet degradation inhibitor, a processing aid, a color pigment, a lubricant, as necessary.
上記難燃性樹脂組成物は、ポリエチレン及び酸変性ポリオレフィンで構成されるベース樹脂、炭酸カルシウム、水酸化アルミニウム、シリコーン化合物及び脂肪酸含有化合物等を混練することにより得ることができる。混練は、例えばバンバリーミキサ、タンブラ、加圧ニーダ、混練押出機、二軸押出機、ミキシングロール等の混練機で行うことができる。このとき、シリコーン化合物の分散性を向上させる観点からは、ポリエチレンの一部とシリコーン化合物とを混練し、得られたマスターバッチ(MB)を、残りのベース樹脂、脂肪酸含有化合物、水酸化アルミニウム及び炭酸カルシウム等と混練してもよい。
The flame retardant resin composition can be obtained by kneading a base resin composed of polyethylene and acid-modified polyolefin, calcium carbonate, aluminum hydroxide, a silicone compound, a fatty acid-containing compound, and the like. The kneading can be performed with a kneading machine such as a Banbury mixer, a tumbler, a pressure kneader, a kneading extruder, a twin screw extruder, a mixing roll, and the like. At this time, from the viewpoint of improving the dispersibility of the silicone compound, a part of polyethylene and the silicone compound are kneaded, and the obtained master batch (MB) is mixed with the remaining base resin, fatty acid-containing compound, aluminum hydroxide and You may knead | mix with calcium carbonate etc.
次に、上記難燃性樹脂組成物で内部導体1を被覆する。具体的には、上記の難燃性樹脂組成物を、押出機を用いて溶融混練し、チューブ状の押出物を形成する。そして、このチューブ状押出物を内部導体1上に連続的に被覆する。こうして絶縁電線4が得られる。
Next, the inner conductor 1 is covered with the flame retardant resin composition. Specifically, the flame retardant resin composition is melt kneaded using an extruder to form a tubular extrudate. Then, the tubular extrudate is continuously coated on the inner conductor 1. Thus, the insulated wire 4 is obtained.
<被覆層>
最後に、上記のようにして得られた絶縁電線4を1本用意し、この絶縁電線4を、上述した難燃性樹脂組成物を用いて作製した絶縁体としての被覆層3で被覆する。被覆層3は、いわゆるシースであり、絶縁層2を物理的又は化学的な損傷から保護するものである。 <Coating layer>
Finally, oneinsulated wire 4 obtained as described above is prepared, and this insulated wire 4 is covered with a coating layer 3 as an insulator produced using the above-mentioned flame-retardant resin composition. The covering layer 3 is a so-called sheath and protects the insulating layer 2 from physical or chemical damage.
最後に、上記のようにして得られた絶縁電線4を1本用意し、この絶縁電線4を、上述した難燃性樹脂組成物を用いて作製した絶縁体としての被覆層3で被覆する。被覆層3は、いわゆるシースであり、絶縁層2を物理的又は化学的な損傷から保護するものである。 <Coating layer>
Finally, one
以上のようにして丸型ケーブル10が得られる。
Thus, the round cable 10 is obtained.
[成形品]
本発明は、上述した難燃性樹脂組成物で構成される成形品である。 [Molding]
This invention is a molded article comprised with the flame-retardant resin composition mentioned above.
本発明は、上述した難燃性樹脂組成物で構成される成形品である。 [Molding]
This invention is a molded article comprised with the flame-retardant resin composition mentioned above.
この成形品は、高い硬度、優れた難燃性、耐外傷性、機械的特性及び耐薬品性を同時に満足させることができる。
This molded product can simultaneously satisfy high hardness, excellent flame retardancy, damage resistance, mechanical properties and chemical resistance.
上記成形品は、射出成形法、押出成形法などの一般的な成形法によって得ることができる。
The molded product can be obtained by a general molding method such as an injection molding method or an extrusion molding method.
本発明は、上記実施形態に限定されるものではない。例えば上記実施形態ではメタルケーブルとして、1本の絶縁電線4を有する丸型ケーブル10が用いられているが、本発明のメタルケーブルは丸形ケーブルに限定されるものではなく、被覆層3の内側に絶縁電線4を2本以上有するケーブルであってもよい。また被覆層3と絶縁電線4との間には、ポリプロピレン等からなる樹脂部が設けられていてもよい。
The present invention is not limited to the above embodiment. For example, in the above embodiment, the round cable 10 having one insulated wire 4 is used as the metal cable. However, the metal cable of the present invention is not limited to the round cable, A cable having two or more insulated wires 4 may be used. A resin portion made of polypropylene or the like may be provided between the covering layer 3 and the insulated wire 4.
また上記実施形態では、絶縁電線4の絶縁層2及び被覆層3が上記の難燃性樹脂組成物で構成されているが、絶縁層2が通常の絶縁樹脂で構成され、被覆層3のみが、上記の難燃性樹脂組成物で構成されてもよい。さらに絶縁層2は必ずしも必要なものではなく、省略が可能である。
Moreover, in the said embodiment, although the insulating layer 2 and the coating layer 3 of the insulated wire 4 are comprised with said flame-retardant resin composition, the insulating layer 2 is comprised with normal insulation resin, and only the coating layer 3 is comprised. The flame retardant resin composition may be used. Furthermore, the insulating layer 2 is not necessarily required and can be omitted.
さらに、上記実施形態において絶縁電線4の絶縁層2及び被覆層3を構成する難燃性樹脂組成物は、光ファイバと、光ファイバを直接被覆する絶縁体を有する被覆部とを備える光ファイバケーブルの被覆部又は絶縁体としても適用可能である。例えば図3は、本発明の光ファイバケーブルの一実施形態としてのインドア型光ファイバケーブルを示す断面図である。図3に示すように、インドア型光ファイバケーブル20は、2本のテンションメンバ22,23と、光ファイバ24と、これらを被覆する被覆部25とを備えている。ここで、光ファイバ24は、被覆部25を貫通するように設けられている。ここで、被覆部25は、光ファイバ24を直接被覆する絶縁体で構成され、絶縁体は、上記実施形態において絶縁電線4の絶縁層2及び被覆層3を構成する難燃性樹脂組成物で構成される。
Furthermore, in the said embodiment, the flame-retardant resin composition which comprises the insulating layer 2 and the coating layer 3 of the insulated wire 4 is an optical fiber cable provided with an optical fiber and the coating | coated part which has the insulator which coat | covers an optical fiber directly. It can also be applied as a covering portion or an insulator. For example, FIG. 3 is a sectional view showing an indoor type optical fiber cable as an embodiment of the optical fiber cable of the present invention. As shown in FIG. 3, the indoor optical fiber cable 20 includes two tension members 22 and 23, an optical fiber 24, and a covering portion 25 that covers these members. Here, the optical fiber 24 is provided so as to penetrate the coating portion 25. Here, the coating | coated part 25 is comprised with the insulator which coat | covers the optical fiber 24 directly, and an insulator is the flame-retardant resin composition which comprises the insulating layer 2 and the coating layer 3 of the insulated wire 4 in the said embodiment. Composed.
なお、光ファイバケーブル20においては、被覆部25が絶縁体で構成されているが、被覆部25は、絶縁体を被覆する被覆体をさらに有していてもよい。ここで、被覆体は、上記実施形態において絶縁電線4の絶縁層2及び被覆層3を構成する難燃性樹脂組成物で構成されてもよいし、構成されていなくてもよいが、上記実施形態において絶縁電線4の絶縁層2及び被覆層3を構成する難燃性樹脂組成物で構成されていることが好ましい。
In the optical fiber cable 20, the covering portion 25 is made of an insulator, but the covering portion 25 may further include a covering body that covers the insulator. Here, a covering may be comprised with the flame-retardant resin composition which comprises the insulating layer 2 and the coating layer 3 of the insulated wire 4 in the said embodiment, It is not necessary to be comprised, However, The said implementation It is preferable that it is comprised with the flame retardant resin composition which comprises the insulating layer 2 and the coating layer 3 of the insulated wire 4 in a form.
以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
(実施例1~20及び比較例1~12)
ポリエチレン(以下、「ポリエチレンA」と呼ぶ)、酸変性ポリオレフィン、シリコーンマスターバッチ(シリコーンMB)、脂肪酸含有化合物、炭酸カルシウム及び水酸化アルミニウムを、表1~7に示す配合量で配合し、バンバリーミキサによって160℃にて15分間混練し、難燃性樹脂組成物を得た。ここで、シリコーンMBはポリエチレン(以下、「ポリエチレンB」と呼ぶ)とシリコーンガムとの混合物である。なお、表1~7において、各配合成分の配合量の単位は質量部である。また表1~7において、ポリエチレンAの配合量及び酸変性ポリオレフィンの配合量の合計が100質量部となっていないが、ベース樹脂中のポリエチレンは、ポリエチレンAとシリコーンMB中のポリエチレンBとの混合物で構成されており、ポリエチレンAの配合量とシリコーンMB中のポリエチレンBの配合量とを合計すれば、その合計は100質量部となる。 (Examples 1 to 20 and Comparative Examples 1 to 12)
Polyethylene (hereinafter referred to as “polyethylene A”), acid-modified polyolefin, silicone masterbatch (silicone MB), fatty acid-containing compound, calcium carbonate and aluminum hydroxide were blended in the blending amounts shown in Tables 1 to 7, and Banbury mixer Were kneaded at 160 ° C. for 15 minutes to obtain a flame retardant resin composition. Here, the silicone MB is a mixture of polyethylene (hereinafter referred to as “polyethylene B”) and silicone gum. In Tables 1 to 7, the unit of the blending amount of each blending component is part by mass. In Tables 1 to 7, although the total amount of polyethylene A and acid-modified polyolefin is not 100 parts by mass, polyethylene in the base resin is a mixture of polyethylene A and polyethylene B in silicone MB. If the blending amount of polyethylene A and the blending amount of polyethylene B in silicone MB are summed, the sum is 100 parts by mass.
ポリエチレン(以下、「ポリエチレンA」と呼ぶ)、酸変性ポリオレフィン、シリコーンマスターバッチ(シリコーンMB)、脂肪酸含有化合物、炭酸カルシウム及び水酸化アルミニウムを、表1~7に示す配合量で配合し、バンバリーミキサによって160℃にて15分間混練し、難燃性樹脂組成物を得た。ここで、シリコーンMBはポリエチレン(以下、「ポリエチレンB」と呼ぶ)とシリコーンガムとの混合物である。なお、表1~7において、各配合成分の配合量の単位は質量部である。また表1~7において、ポリエチレンAの配合量及び酸変性ポリオレフィンの配合量の合計が100質量部となっていないが、ベース樹脂中のポリエチレンは、ポリエチレンAとシリコーンMB中のポリエチレンBとの混合物で構成されており、ポリエチレンAの配合量とシリコーンMB中のポリエチレンBの配合量とを合計すれば、その合計は100質量部となる。 (Examples 1 to 20 and Comparative Examples 1 to 12)
Polyethylene (hereinafter referred to as “polyethylene A”), acid-modified polyolefin, silicone masterbatch (silicone MB), fatty acid-containing compound, calcium carbonate and aluminum hydroxide were blended in the blending amounts shown in Tables 1 to 7, and Banbury mixer Were kneaded at 160 ° C. for 15 minutes to obtain a flame retardant resin composition. Here, the silicone MB is a mixture of polyethylene (hereinafter referred to as “polyethylene B”) and silicone gum. In Tables 1 to 7, the unit of the blending amount of each blending component is part by mass. In Tables 1 to 7, although the total amount of polyethylene A and acid-modified polyolefin is not 100 parts by mass, polyethylene in the base resin is a mixture of polyethylene A and polyethylene B in silicone MB. If the blending amount of polyethylene A and the blending amount of polyethylene B in silicone MB are summed, the sum is 100 parts by mass.
<密度>
実施例1~20及び比較例1~12の難燃性樹脂組成物において、ベース樹脂中のポリエチレンの密度は下記式によって求めた。結果を表1~7に示す。
ベース樹脂中のポリエチレンの密度(kg/m3)=
ポリエチレンAの密度(kg/m3)×混合物中のポリエチレンAの含有率(質量%)+ポリエチレンBの密度(kg/m3)×混合物中のポリエチレンBの含有率(質量%)
<Density>
In the flame retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12, the density of polyethylene in the base resin was determined by the following formula. The results are shown in Tables 1-7.
Density of polyethylene in base resin (kg / m 3 ) =
Density of polyethylene A (kg / m 3 ) × polyethylene A content (% by mass) in the mixture + polyethylene B density (kg / m 3 ) × polyethylene B content (% by mass) in the mixture
実施例1~20及び比較例1~12の難燃性樹脂組成物において、ベース樹脂中のポリエチレンの密度は下記式によって求めた。結果を表1~7に示す。
ベース樹脂中のポリエチレンの密度(kg/m3)=
ポリエチレンAの密度(kg/m3)×混合物中のポリエチレンAの含有率(質量%)+ポリエチレンBの密度(kg/m3)×混合物中のポリエチレンBの含有率(質量%)
<Density>
In the flame retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12, the density of polyethylene in the base resin was determined by the following formula. The results are shown in Tables 1-7.
Density of polyethylene in base resin (kg / m 3 ) =
Density of polyethylene A (kg / m 3 ) × polyethylene A content (% by mass) in the mixture + polyethylene B density (kg / m 3 ) × polyethylene B content (% by mass) in the mixture
上記ポリエチレンA、酸変性ポリオレフィン、シリコーンMB、脂肪酸含有化合物、炭酸カルシウム及び水酸化アルミニウムとしては具体的には下記のものを用いた。
(1)ポリエチレンA
LDPE1:直鎖状ポリエチレン:住友化学社製、密度912kg/m3
LDPE2:直鎖状ポリエチレン:住友化学社製、密度920kg/m3
LDPE3:直鎖状ポリエチレン:宇部興産社製、密度925kg/m3
LDPE4:直鎖状ポリエチレン:宇部興産社製、密度937kg/m3
HDPE:高密度ポリエチレン:日本ポリエチレン社製、密度951kg/m3
(2)酸変性ポリオレフィン
無水マレイン酸変性ポリエチレン:三井化学社製
酸変性ポリプロピレン:三井化学社製
エチレン-アクリル酸エチル共重合体(EEA):三菱化学社製
エチレン-酢酸ビニル共重合体(EVA):三井・デュポン ポリケミカル社製
(3)シリコーンMB:信越化学工業社製
(50質量%シリコーンガムと50質量%ポリエチレンB(密度915kg/m3)とを含有)
(4)炭酸カルシウム:日東粉化工業社製
(5)水酸化アルミニウム:日本軽金属社製
(6)脂肪酸含有化合物
ステアリン酸マグネシウム:ADEKA社製
ステアリン酸亜鉛:日油社製
ステアリン酸:日油社製
ベヘン酸:日油社製 Specific examples of the polyethylene A, acid-modified polyolefin, silicone MB, fatty acid-containing compound, calcium carbonate, and aluminum hydroxide are as follows.
(1) Polyethylene A
LDPE1: linear polyethylene: manufactured by Sumitomo Chemical Co., Ltd., density 912 kg / m 3
LDPE2: Linear polyethylene: manufactured by Sumitomo Chemical Co., Ltd., density 920 kg / m 3
LDPE3: linear polyethylene: manufactured by Ube Industries, Ltd., density 925 kg / m 3
LDPE4: linear polyethylene: manufactured by Ube Industries, Ltd., density 937 kg / m 3
HDPE: high density polyethylene: manufactured by Nippon Polyethylene Co., Ltd., density 951 kg / m 3
(2) Acid-modified polyolefin Maleic anhydride-modified polyethylene: Acid-modified polypropylene manufactured by Mitsui Chemicals Co., Ltd .: Ethylene-ethyl acrylate copolymer (EEA) manufactured by Mitsui Chemicals Co., Ltd. Ethylene-vinyl acetate copolymer (EVA) manufactured by Mitsubishi Chemical Corporation : Mitsui / DuPont Polychemical Co., Ltd. (3) Silicone MB: Shin-Etsu Chemical Co., Ltd. (containing 50% by mass silicone gum and 50% by mass polyethylene B (density 915 kg / m 3 ))
(4) Calcium carbonate: manufactured by Nitto Flour Chemical Co., Ltd. (5) Aluminum hydroxide: manufactured by Nippon Light Metal Co., Ltd. (6) Fatty acid-containing compound Magnesium stearate: ADEKA manufactured by zinc stearate: manufactured by NOF Corporation Stearic acid: manufactured by NOF Corporation Behenic acid manufactured by NOF Corporation
(1)ポリエチレンA
LDPE1:直鎖状ポリエチレン:住友化学社製、密度912kg/m3
LDPE2:直鎖状ポリエチレン:住友化学社製、密度920kg/m3
LDPE3:直鎖状ポリエチレン:宇部興産社製、密度925kg/m3
LDPE4:直鎖状ポリエチレン:宇部興産社製、密度937kg/m3
HDPE:高密度ポリエチレン:日本ポリエチレン社製、密度951kg/m3
(2)酸変性ポリオレフィン
無水マレイン酸変性ポリエチレン:三井化学社製
酸変性ポリプロピレン:三井化学社製
エチレン-アクリル酸エチル共重合体(EEA):三菱化学社製
エチレン-酢酸ビニル共重合体(EVA):三井・デュポン ポリケミカル社製
(3)シリコーンMB:信越化学工業社製
(50質量%シリコーンガムと50質量%ポリエチレンB(密度915kg/m3)とを含有)
(4)炭酸カルシウム:日東粉化工業社製
(5)水酸化アルミニウム:日本軽金属社製
(6)脂肪酸含有化合物
ステアリン酸マグネシウム:ADEKA社製
ステアリン酸亜鉛:日油社製
ステアリン酸:日油社製
ベヘン酸:日油社製 Specific examples of the polyethylene A, acid-modified polyolefin, silicone MB, fatty acid-containing compound, calcium carbonate, and aluminum hydroxide are as follows.
(1) Polyethylene A
LDPE1: linear polyethylene: manufactured by Sumitomo Chemical Co., Ltd., density 912 kg / m 3
LDPE2: Linear polyethylene: manufactured by Sumitomo Chemical Co., Ltd., density 920 kg / m 3
LDPE3: linear polyethylene: manufactured by Ube Industries, Ltd., density 925 kg / m 3
LDPE4: linear polyethylene: manufactured by Ube Industries, Ltd., density 937 kg / m 3
HDPE: high density polyethylene: manufactured by Nippon Polyethylene Co., Ltd., density 951 kg / m 3
(2) Acid-modified polyolefin Maleic anhydride-modified polyethylene: Acid-modified polypropylene manufactured by Mitsui Chemicals Co., Ltd .: Ethylene-ethyl acrylate copolymer (EEA) manufactured by Mitsui Chemicals Co., Ltd. Ethylene-vinyl acetate copolymer (EVA) manufactured by Mitsubishi Chemical Corporation : Mitsui / DuPont Polychemical Co., Ltd. (3) Silicone MB: Shin-Etsu Chemical Co., Ltd. (containing 50% by mass silicone gum and 50% by mass polyethylene B (density 915 kg / m 3 ))
(4) Calcium carbonate: manufactured by Nitto Flour Chemical Co., Ltd. (5) Aluminum hydroxide: manufactured by Nippon Light Metal Co., Ltd. (6) Fatty acid-containing compound Magnesium stearate: ADEKA manufactured by zinc stearate: manufactured by NOF Corporation Stearic acid: manufactured by NOF Corporation Behenic acid manufactured by NOF Corporation
[特性評価]
上記のようにして得られた実施例1~20及び比較例1~12の難燃性樹脂組成物について、硬度、難燃性、耐外傷性、機械的特性及び耐薬品性の評価を行った。 [Characteristic evaluation]
The flame retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12 obtained as described above were evaluated for hardness, flame resistance, trauma resistance, mechanical properties, and chemical resistance. .
上記のようにして得られた実施例1~20及び比較例1~12の難燃性樹脂組成物について、硬度、難燃性、耐外傷性、機械的特性及び耐薬品性の評価を行った。 [Characteristic evaluation]
The flame retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12 obtained as described above were evaluated for hardness, flame resistance, trauma resistance, mechanical properties, and chemical resistance. .
なお、難燃性及び耐外傷性は、実施例1~20及び比較例1~12の難燃性樹脂組成物を用いて以下のようにして光ファイバケーブルを作製し、この光ファイバケーブルについて評価した。
In addition, the flame resistance and the damage resistance were evaluated by preparing an optical fiber cable as follows using the flame retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12. did.
(光ファイバケーブルの作製)
実施例1~20及び比較例1~12の難燃性樹脂組成物を、単軸押出機(25mmφ押出機、マース精機社製)に投入して混練し、その押出機からチューブ状の押出物を押し出し、光ファイバ心線1心上に、光ファイバ心線の長手方向に直交する断面形状が短径1.8mm、長径2.6mmの楕円形となるように被覆した。こうして光ファイバ心線及び光ファイバ心線を直接被覆する絶縁体とで構成される光ファイバケーブルを作製した。 (Fabrication of optical fiber cable)
The flame-retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12 were put into a single-screw extruder (25 mmφ extruder, manufactured by Mars Seiki Co., Ltd.) and kneaded, and a tubular extrudate from the extruder. Was coated on one optical fiber core so that the cross-sectional shape perpendicular to the longitudinal direction of the optical fiber core was an ellipse having a minor axis of 1.8 mm and a major axis of 2.6 mm. Thus, an optical fiber cable composed of the optical fiber core and the insulator directly covering the optical fiber core wire was manufactured.
実施例1~20及び比較例1~12の難燃性樹脂組成物を、単軸押出機(25mmφ押出機、マース精機社製)に投入して混練し、その押出機からチューブ状の押出物を押し出し、光ファイバ心線1心上に、光ファイバ心線の長手方向に直交する断面形状が短径1.8mm、長径2.6mmの楕円形となるように被覆した。こうして光ファイバ心線及び光ファイバ心線を直接被覆する絶縁体とで構成される光ファイバケーブルを作製した。 (Fabrication of optical fiber cable)
The flame-retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12 were put into a single-screw extruder (25 mmφ extruder, manufactured by Mars Seiki Co., Ltd.) and kneaded, and a tubular extrudate from the extruder. Was coated on one optical fiber core so that the cross-sectional shape perpendicular to the longitudinal direction of the optical fiber core was an ellipse having a minor axis of 1.8 mm and a major axis of 2.6 mm. Thus, an optical fiber cable composed of the optical fiber core and the insulator directly covering the optical fiber core wire was manufactured.
<硬度>
硬度は、実施例1~20及び比較例1~12の難燃性樹脂組成物を用いて厚さ2mmのシートを作製し、このシートについて評価した。具体的には上記のシートを5枚用意し、これらのシートについてJIS K7215に基づいてデュロメータ(タイプD:ショアD硬度)を用いてショアD硬度(瞬時値)を測定した。5枚のシートについてショアD硬度の平均値を算出し、この平均値を硬度の指標とした。結果を表1~7に示す。なお、硬度の合格基準は下記の通りとした。
(合格基準)ショアD硬度の平均値が50以上であること
<Hardness>
The hardness was evaluated by preparing sheets having a thickness of 2 mm using the flame-retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12. Specifically, five sheets of the above-mentioned sheets were prepared, and the Shore D hardness (instantaneous value) of these sheets was measured using a durometer (type D: Shore D hardness) based on JIS K7215. An average value of Shore D hardness was calculated for five sheets, and this average value was used as an index of hardness. The results are shown in Tables 1-7. The acceptance criteria for hardness were as follows.
(Acceptance criteria) The average value of Shore D hardness is 50 or more
硬度は、実施例1~20及び比較例1~12の難燃性樹脂組成物を用いて厚さ2mmのシートを作製し、このシートについて評価した。具体的には上記のシートを5枚用意し、これらのシートについてJIS K7215に基づいてデュロメータ(タイプD:ショアD硬度)を用いてショアD硬度(瞬時値)を測定した。5枚のシートについてショアD硬度の平均値を算出し、この平均値を硬度の指標とした。結果を表1~7に示す。なお、硬度の合格基準は下記の通りとした。
(合格基準)ショアD硬度の平均値が50以上であること
<Hardness>
The hardness was evaluated by preparing sheets having a thickness of 2 mm using the flame-retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12. Specifically, five sheets of the above-mentioned sheets were prepared, and the Shore D hardness (instantaneous value) of these sheets was measured using a durometer (type D: Shore D hardness) based on JIS K7215. An average value of Shore D hardness was calculated for five sheets, and this average value was used as an index of hardness. The results are shown in Tables 1-7. The acceptance criteria for hardness were as follows.
(Acceptance criteria) The average value of Shore D hardness is 50 or more
<難燃性>
上記のようにして得られた10本の光ファイバケーブルについて、IEC 60332-1に準拠した一条垂直燃焼試験を行った。そして、10本の光ファイバケーブルのうち自己消火した光ファイバケーブルの割合を合格率(単位:%)として下記式に基づいて算出した。
合格率(%)=100×自己消火した光ファイバケーブルの本数/試験を行った光ファイバケーブルの総数(10本)
また、10本の光ファイバケーブルにおいて、自己消火までにかかった時間の平均値を燃焼時間とした。但し、光ファイバケーブルが全焼した場合には燃焼時間の代わりに「全焼」と記載した。上記の合格率と燃焼時間とを難燃性の評価指標とした。結果を表1~7に示す。また難燃性の合格基準は以下の通りとした。
(合格基準)合格率が100%で且つ燃焼時間が60秒以内であること
<Flame retardance>
The 10 optical fiber cables obtained as described above were subjected to a single vertical combustion test in accordance with IEC 60332-1. And the ratio of the optical fiber cable which self-extinguished out of 10 optical fiber cables was calculated based on the following formula as a pass rate (unit:%).
Pass rate (%) = 100 × number of self-extinguishing optical fiber cables / total number of optical fiber cables tested (10)
In addition, in the 10 optical fiber cables, the average value of the time taken for self-extinguishing was defined as the burning time. However, when the optical fiber cable was completely burned, “burnt” was described instead of the burning time. The above pass rate and burning time were used as evaluation indexes for flame retardancy. The results are shown in Tables 1-7. The acceptance criteria for flame retardancy were as follows.
(Acceptance criteria) The acceptance rate is 100% and the combustion time is within 60 seconds.
上記のようにして得られた10本の光ファイバケーブルについて、IEC 60332-1に準拠した一条垂直燃焼試験を行った。そして、10本の光ファイバケーブルのうち自己消火した光ファイバケーブルの割合を合格率(単位:%)として下記式に基づいて算出した。
合格率(%)=100×自己消火した光ファイバケーブルの本数/試験を行った光ファイバケーブルの総数(10本)
また、10本の光ファイバケーブルにおいて、自己消火までにかかった時間の平均値を燃焼時間とした。但し、光ファイバケーブルが全焼した場合には燃焼時間の代わりに「全焼」と記載した。上記の合格率と燃焼時間とを難燃性の評価指標とした。結果を表1~7に示す。また難燃性の合格基準は以下の通りとした。
(合格基準)合格率が100%で且つ燃焼時間が60秒以内であること
<Flame retardance>
The 10 optical fiber cables obtained as described above were subjected to a single vertical combustion test in accordance with IEC 60332-1. And the ratio of the optical fiber cable which self-extinguished out of 10 optical fiber cables was calculated based on the following formula as a pass rate (unit:%).
Pass rate (%) = 100 × number of self-extinguishing optical fiber cables / total number of optical fiber cables tested (10)
In addition, in the 10 optical fiber cables, the average value of the time taken for self-extinguishing was defined as the burning time. However, when the optical fiber cable was completely burned, “burnt” was described instead of the burning time. The above pass rate and burning time were used as evaluation indexes for flame retardancy. The results are shown in Tables 1-7. The acceptance criteria for flame retardancy were as follows.
(Acceptance criteria) The acceptance rate is 100% and the combustion time is within 60 seconds.
<耐外傷性>
耐外傷性は、上記のようにして得られた光ファイバケーブルについて評価した。具体的には、まず上記の光ファイバケーブルを4本用意し、これら4本の光ファイバケーブルについて、JASOD618に準拠したスクレープ試験を行った。スクレープ試験はφ0.45mmのニードルを荷重12Nで上記光ファイバケーブルの表面に押し当てながら、その光ファイバケーブルの表面上を往復させた。そのときニードルが光ファイバケーブルの絶縁体に穴があくまでの往復回数(すなわち光ファイバ心線に接触するまでの往復回数)を測定した。そして4本の光ファイバケーブルにおける、ニードルの往復回数のうち最小値をスクレープ回数とし、これを耐外傷性の指標とした。結果を表1~7に示す。なお、耐外傷性の合格基準は以下の通りとした。
(合格基準)スクレープ回数が150回以上であること
<Trauma resistance>
The damage resistance was evaluated for the optical fiber cable obtained as described above. Specifically, first, four optical fiber cables described above were prepared, and a scrape test based on JASOD618 was performed on these four optical fiber cables. In the scrape test, a needle having a diameter of 0.45 mm was reciprocated on the surface of the optical fiber cable while pressing it against the surface of the optical fiber cable with a load of 12N. At that time, the number of times the needle was reciprocated in the insulator of the optical fiber cable (that is, the number of reciprocations until contact with the optical fiber core wire) was measured. The minimum value of the number of needle reciprocations in the four optical fiber cables was taken as the number of scrapes, and this was used as an index of the resistance to trauma. The results are shown in Tables 1-7. In addition, the acceptance criteria for trauma resistance were as follows.
(Acceptance criteria) The number of scrapes is 150 or more.
耐外傷性は、上記のようにして得られた光ファイバケーブルについて評価した。具体的には、まず上記の光ファイバケーブルを4本用意し、これら4本の光ファイバケーブルについて、JASOD618に準拠したスクレープ試験を行った。スクレープ試験はφ0.45mmのニードルを荷重12Nで上記光ファイバケーブルの表面に押し当てながら、その光ファイバケーブルの表面上を往復させた。そのときニードルが光ファイバケーブルの絶縁体に穴があくまでの往復回数(すなわち光ファイバ心線に接触するまでの往復回数)を測定した。そして4本の光ファイバケーブルにおける、ニードルの往復回数のうち最小値をスクレープ回数とし、これを耐外傷性の指標とした。結果を表1~7に示す。なお、耐外傷性の合格基準は以下の通りとした。
(合格基準)スクレープ回数が150回以上であること
<Trauma resistance>
The damage resistance was evaluated for the optical fiber cable obtained as described above. Specifically, first, four optical fiber cables described above were prepared, and a scrape test based on JASOD618 was performed on these four optical fiber cables. In the scrape test, a needle having a diameter of 0.45 mm was reciprocated on the surface of the optical fiber cable while pressing it against the surface of the optical fiber cable with a load of 12N. At that time, the number of times the needle was reciprocated in the insulator of the optical fiber cable (that is, the number of reciprocations until contact with the optical fiber core wire) was measured. The minimum value of the number of needle reciprocations in the four optical fiber cables was taken as the number of scrapes, and this was used as an index of the resistance to trauma. The results are shown in Tables 1-7. In addition, the acceptance criteria for trauma resistance were as follows.
(Acceptance criteria) The number of scrapes is 150 or more.
<機械的特性>
機械的特性は、実施例1~20及び比較例1~12の難燃性樹脂組成物を用いてJIS K6251に準拠した3号ダンベル試験片を作製し、この3号ダンベル試験片について評価した。具体的には、上記の3号ダンベル試験片を5つ用意し、これら5つの3号ダンベル試験片について、JIS C3005により引張試験を行い、測定された破断強度及び伸び率を機械的特性の指標とした。結果を表1~7に示す。なお、機械的特性の合格基準は下記の通りとした。また引張試験は、引張速度200mm/min、標線間距離20mmの条件で行った。
(合格基準)破断強度が7MPa以上で且つ伸び率が500%以上であること
<Mechanical properties>
For the mechanical properties, No. 3 dumbbell test pieces according to JIS K6251 were prepared using the flame retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12, and the No. 3 dumbbell test pieces were evaluated. Specifically, five of the above No. 3 dumbbell test pieces are prepared, a tensile test is conducted on these five No. 3 dumbbell test pieces according to JIS C3005, and the measured breaking strength and elongation are measured as an index of mechanical properties. It was. The results are shown in Tables 1-7. The acceptance criteria for mechanical properties were as follows. The tensile test was performed under the conditions of a tensile speed of 200 mm / min and a distance between marked lines of 20 mm.
(Acceptance criteria) The breaking strength is 7 MPa or more and the elongation is 500% or more.
機械的特性は、実施例1~20及び比較例1~12の難燃性樹脂組成物を用いてJIS K6251に準拠した3号ダンベル試験片を作製し、この3号ダンベル試験片について評価した。具体的には、上記の3号ダンベル試験片を5つ用意し、これら5つの3号ダンベル試験片について、JIS C3005により引張試験を行い、測定された破断強度及び伸び率を機械的特性の指標とした。結果を表1~7に示す。なお、機械的特性の合格基準は下記の通りとした。また引張試験は、引張速度200mm/min、標線間距離20mmの条件で行った。
(合格基準)破断強度が7MPa以上で且つ伸び率が500%以上であること
<Mechanical properties>
For the mechanical properties, No. 3 dumbbell test pieces according to JIS K6251 were prepared using the flame retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12, and the No. 3 dumbbell test pieces were evaluated. Specifically, five of the above No. 3 dumbbell test pieces are prepared, a tensile test is conducted on these five No. 3 dumbbell test pieces according to JIS C3005, and the measured breaking strength and elongation are measured as an index of mechanical properties. It was. The results are shown in Tables 1-7. The acceptance criteria for mechanical properties were as follows. The tensile test was performed under the conditions of a tensile speed of 200 mm / min and a distance between marked lines of 20 mm.
(Acceptance criteria) The breaking strength is 7 MPa or more and the elongation is 500% or more.
<耐薬品性>
耐薬品性は、実施例1~20及び比較例1~12の難燃性樹脂組成物を用いて13mm×40mm×3mm(厚さ)の寸法を有するシートを作製し、このシートについて評価した。具体的には、まず上記のシートを10枚用意し、これらの10枚のシートについて、ASTM D1693に準拠した耐環境応力亀裂試験を行った。具体的には、界面活性剤(商品名「アンタロック CO-650」、五協産業社製)の10質量%水溶液を用意して50℃に調整し、この水溶液にシートを浸漬させ、50日放置した。そして、試験後のシートにおける亀裂の有無を目視にて確認した。そして、このシートにおける亀裂の有無に基づいて耐薬品性を評価した。結果を表1~7に示す。耐薬品性の合格基準は下記の通りとした。
(合格基準) 10枚のシート全てにおいて亀裂が確認されていないこと
なお、表1~7において、合格の場合は「○」と表記し、不合格の場合、すなわち10枚のシートの一部に亀裂が確認された場合は「×」と表記した。
<Chemical resistance>
The chemical resistance was evaluated by preparing sheets having dimensions of 13 mm × 40 mm × 3 mm (thickness) using the flame retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12. Specifically, first, ten sheets of the above-mentioned sheet were prepared, and an environmental stress crack resistance test based on ASTM D1693 was performed on these ten sheets. Specifically, a 10% by mass aqueous solution of a surfactant (trade name “Antarok CO-650”, manufactured by Gokyo Sangyo Co., Ltd.) is prepared and adjusted to 50 ° C., and the sheet is immersed in this aqueous solution for 50 days. I left it alone. And the presence or absence of the crack in the sheet | seat after a test was confirmed visually. And chemical resistance was evaluated based on the presence or absence of the crack in this sheet | seat. The results are shown in Tables 1-7. The acceptance criteria for chemical resistance were as follows.
(Acceptance criteria) No cracks have been confirmed in all 10 sheets.
In Tables 1 to 7, “O” is indicated when the product is acceptable, and “X” is indicated when the material is not accepted, that is, when a crack is confirmed in a part of the 10 sheets.
耐薬品性は、実施例1~20及び比較例1~12の難燃性樹脂組成物を用いて13mm×40mm×3mm(厚さ)の寸法を有するシートを作製し、このシートについて評価した。具体的には、まず上記のシートを10枚用意し、これらの10枚のシートについて、ASTM D1693に準拠した耐環境応力亀裂試験を行った。具体的には、界面活性剤(商品名「アンタロック CO-650」、五協産業社製)の10質量%水溶液を用意して50℃に調整し、この水溶液にシートを浸漬させ、50日放置した。そして、試験後のシートにおける亀裂の有無を目視にて確認した。そして、このシートにおける亀裂の有無に基づいて耐薬品性を評価した。結果を表1~7に示す。耐薬品性の合格基準は下記の通りとした。
(合格基準) 10枚のシート全てにおいて亀裂が確認されていないこと
なお、表1~7において、合格の場合は「○」と表記し、不合格の場合、すなわち10枚のシートの一部に亀裂が確認された場合は「×」と表記した。
The chemical resistance was evaluated by preparing sheets having dimensions of 13 mm × 40 mm × 3 mm (thickness) using the flame retardant resin compositions of Examples 1 to 20 and Comparative Examples 1 to 12. Specifically, first, ten sheets of the above-mentioned sheet were prepared, and an environmental stress crack resistance test based on ASTM D1693 was performed on these ten sheets. Specifically, a 10% by mass aqueous solution of a surfactant (trade name “Antarok CO-650”, manufactured by Gokyo Sangyo Co., Ltd.) is prepared and adjusted to 50 ° C., and the sheet is immersed in this aqueous solution for 50 days. I left it alone. And the presence or absence of the crack in the sheet | seat after a test was confirmed visually. And chemical resistance was evaluated based on the presence or absence of the crack in this sheet | seat. The results are shown in Tables 1-7. The acceptance criteria for chemical resistance were as follows.
(Acceptance criteria) No cracks have been confirmed in all 10 sheets.
In Tables 1 to 7, “O” is indicated when the product is acceptable, and “X” is indicated when the material is not accepted, that is, when a crack is confirmed in a part of the 10 sheets.
表1~7に示す結果より、実施例1~20の難燃性樹脂組成物は、難燃性、硬度、耐外傷性、機械的特性及び耐薬品性について合格基準に達していた。これに対し、比較例1~12の難燃性樹脂組成物は、難燃性、硬度、耐外傷性、機械的特性及び耐薬品性のうち少なくとも1つについて合格基準に達していなかった。
From the results shown in Tables 1 to 7, the flame retardant resin compositions of Examples 1 to 20 reached the acceptance standards for flame retardancy, hardness, trauma resistance, mechanical properties, and chemical resistance. On the other hand, the flame retardant resin compositions of Comparative Examples 1 to 12 did not reach the acceptance criteria for at least one of flame retardancy, hardness, trauma resistance, mechanical properties, and chemical resistance.
このことから、本発明の難燃性樹脂組成物が、高い硬度、優れた難燃性、耐外傷性、機械的特性及び耐薬品性を同時に満足させることができることが確認された。
From this, it was confirmed that the flame retardant resin composition of the present invention can simultaneously satisfy high hardness, excellent flame resistance, trauma resistance, mechanical properties and chemical resistance.
1…内部導体(金属導体)
2…絶縁層
3…被覆層
4…絶縁電線
10…丸型ケーブル(メタルケーブル)
20…インドア型光ファイバケーブル
24…光ファイバ
25…被覆部(絶縁体) 1 ... Internal conductor (metal conductor)
2 ... Insulatinglayer 3 ... Coating layer 4 ... Insulated wire 10 ... Round cable (metal cable)
20 ... Indoor typeoptical fiber cable 24 ... Optical fiber 25 ... Covering part (insulator)
2…絶縁層
3…被覆層
4…絶縁電線
10…丸型ケーブル(メタルケーブル)
20…インドア型光ファイバケーブル
24…光ファイバ
25…被覆部(絶縁体) 1 ... Internal conductor (metal conductor)
2 ... Insulating
20 ... Indoor type
Claims (12)
- ポリエチレン及び酸変性ポリオレフィンで構成されるベース樹脂と、
炭酸カルシウムと、
水酸化アルミニウムと、
シリコーン化合物と、
脂肪酸含有化合物とを含み、
前記ポリエチレンの密度が912.4kg/m3より大きく、940.0kg/m3未満であり、
前記ベース樹脂中の前記ポリエチレンの含有率が75質量%以上99質量%以下であり、
前記ベース樹脂中の前記酸変性ポリオレフィンの含有率が1質量%以上25質量%以下であり、
前記炭酸カルシウムが前記ベース樹脂100質量部に対して5質量部以上130質量部以下の割合で配合され、
前記水酸化アルミニウムが前記ベース樹脂100質量部に対して5質量部以上150質量部以下の割合で配合され、
前記シリコーン化合物が前記ベース樹脂100質量部に対して1.5質量部以上10質量部以下の割合で配合され、
前記脂肪酸含有化合物が前記ベース樹脂100質量部に対して5質量部以上20質量部以下の割合で配合される、難燃性樹脂組成物。 A base resin composed of polyethylene and acid-modified polyolefin;
With calcium carbonate,
Aluminum hydroxide,
A silicone compound;
A fatty acid-containing compound,
Density of the polyethylene is greater than 912.4kg / m 3, less than 940.0kg / m 3,
The polyethylene content in the base resin is 75% by mass or more and 99% by mass or less,
The content of the acid-modified polyolefin in the base resin is 1% by mass or more and 25% by mass or less,
The calcium carbonate is blended at a ratio of 5 parts by weight to 130 parts by weight with respect to 100 parts by weight of the base resin,
The aluminum hydroxide is blended at a ratio of 5 parts by weight or more and 150 parts by weight or less with respect to 100 parts by weight of the base resin,
The silicone compound is blended at a ratio of 1.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the base resin,
The flame retardant resin composition in which the fatty acid-containing compound is blended at a ratio of 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the base resin. - 前記ポリエチレンの密度が922.0kg/m3以上である、請求項1に記載の難燃性樹脂組成物。 The flame-retardant resin composition according to claim 1, wherein the polyethylene has a density of 922.0 kg / m 3 or more.
- 前記水酸化アルミニウムが前記ベース樹脂100質量部に対して20質量部以上100質量部以下の割合で配合される、請求項1又は2に記載の難燃性樹脂組成物。 The flame retardant resin composition according to claim 1 or 2, wherein the aluminum hydroxide is blended at a ratio of 20 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the base resin.
- 前記炭酸カルシウムが前記ベース樹脂100質量部に対して20質量部以上80質量部以下の割合で配合される、請求項1~3のいずれか一項に記載の難燃性樹脂組成物。 The flame retardant resin composition according to any one of claims 1 to 3, wherein the calcium carbonate is blended at a ratio of 20 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the base resin.
- 前記酸変性ポリオレフィンが、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、エチレン-アクリル酸エチル共重合体及びエチレン-酢酸ビニル共重合体からなる群より選ばれる少なくとも一種である請求項1~4のいずれか一項に記載の難燃性樹脂組成物。 5. The acid-modified polyolefin is at least one selected from the group consisting of maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, ethylene-ethyl acrylate copolymer, and ethylene-vinyl acetate copolymer. The flame-retardant resin composition according to any one of the above.
- 前記シリコーン化合物がシリコーンガムである請求項1~5のいずれか一項に記載の難燃性樹脂組成物。 The flame retardant resin composition according to any one of claims 1 to 5, wherein the silicone compound is a silicone gum.
- 前記脂肪酸含有化合物が脂肪酸の金属塩である、請求項1~6のいずれか一項に記載の難燃性樹脂組成物。 The flame retardant resin composition according to any one of claims 1 to 6, wherein the fatty acid-containing compound is a metal salt of a fatty acid.
- 前記脂肪酸の金属塩がステアリン酸マグネシウムである請求項7に記載の難燃性樹脂組成物。 The flame retardant resin composition according to claim 7, wherein the fatty acid metal salt is magnesium stearate.
- 金属導体と、
前記金属導体を被覆する絶縁層とを備え、
前記絶縁層が、請求項1~8のいずれか一項に記載の難燃性樹脂組成物で構成される絶縁電線。 A metal conductor;
An insulating layer covering the metal conductor,
An insulated wire, wherein the insulating layer is composed of the flame retardant resin composition according to any one of claims 1 to 8. - 金属導体、及び、前記金属導体を被覆する絶縁層を有する絶縁電線と、
前記絶縁電線を被覆する被覆層とを備え、
前記絶縁層及び前記被覆層の少なくとも一方が、請求項1~8のいずれか一項に記載の難燃性樹脂組成物で構成されるメタルケーブル。 An insulated wire having a metal conductor and an insulating layer covering the metal conductor;
A coating layer covering the insulated wire,
A metal cable in which at least one of the insulating layer and the covering layer is composed of the flame-retardant resin composition according to any one of claims 1 to 8. - 光ファイバと、
前記光ファイバを被覆する被覆部とを備え、
前記被覆部が、前記光ファイバを直接被覆する絶縁体を有し、
前記絶縁体が、請求項1~8のいずれか一項に記載の難燃性樹脂組成物で構成される光ファイバケーブル。 Optical fiber,
A coating portion for coating the optical fiber,
The covering portion has an insulator directly covering the optical fiber;
An optical fiber cable, wherein the insulator is composed of the flame retardant resin composition according to any one of claims 1 to 8. - 請求項1~8のいずれか一項に記載の難燃性樹脂組成物で構成される成形品。 A molded article comprising the flame retardant resin composition according to any one of claims 1 to 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018534346A JPWO2018034174A1 (en) | 2016-08-16 | 2017-08-04 | Flame retardant resin composition, insulated wire, metal cable, optical fiber cable and molded product using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016159459 | 2016-08-16 | ||
JP2016-159459 | 2016-08-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018034174A1 true WO2018034174A1 (en) | 2018-02-22 |
Family
ID=61196526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/028387 WO2018034174A1 (en) | 2016-08-16 | 2017-08-04 | Flame-retardant resin composition, insulated electric wire using same, metal cable, optical fiber cable, and molded article |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2018034174A1 (en) |
TW (1) | TW201811896A (en) |
WO (1) | WO2018034174A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110982162A (en) * | 2019-11-15 | 2020-04-10 | 西安思后网络科技有限公司 | Ethylene flame-retardant silicone rubber cable material and preparation method thereof |
WO2020189533A1 (en) * | 2019-03-18 | 2020-09-24 | 株式会社フジクラ | Flame-retardant resin composition, and cable and wire harness using same |
WO2021014858A1 (en) * | 2019-07-20 | 2021-01-28 | 株式会社フジクラ | Flame retardant resin composition, and cable using same |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH107913A (en) * | 1996-03-19 | 1998-01-13 | Alcatel Alsthom Co General Electricite | Flame-retardant and halogen-free composition |
WO2013062077A1 (en) * | 2011-10-28 | 2013-05-02 | 株式会社フジクラ | Flame-retardant resin composition and cable using same |
JP2014084437A (en) * | 2012-10-26 | 2014-05-12 | Fujikura Ltd | Flame retardant resin composition and cable using the same |
WO2014103904A1 (en) * | 2012-12-27 | 2014-07-03 | 株式会社フジクラ | Flame-retardant resin composition and cable using same |
WO2015111309A1 (en) * | 2014-01-21 | 2015-07-30 | 株式会社フジクラ | Flame-retardant resin composition and cable using same |
JP2015183157A (en) * | 2014-03-26 | 2015-10-22 | 株式会社フジクラ | Flame retardant resin composition and cable using the same |
WO2015178151A1 (en) * | 2014-05-23 | 2015-11-26 | 株式会社フジクラ | Flame-retardant resin composition, and cable produced using same |
WO2016031789A1 (en) * | 2014-08-25 | 2016-03-03 | 株式会社フジクラ | Flame-retardant resin composition, cable using same, and optical fiber cable |
WO2016080511A1 (en) * | 2014-11-21 | 2016-05-26 | 株式会社フジクラ | Flame-retardant resin composition, and cable and optical fiber cable using same |
JP2016098310A (en) * | 2014-11-21 | 2016-05-30 | 株式会社フジクラ | Flame retardant resin composition, cable and optical fiber cable using the same |
JP6069574B1 (en) * | 2015-12-14 | 2017-02-01 | 株式会社フジクラ | Flame retardant resin composition, metal cable, optical fiber cable and molded product using the same |
JP6069573B1 (en) * | 2015-12-14 | 2017-02-01 | 株式会社フジクラ | Flame retardant resin composition, metal cable, optical fiber cable and molded product using the same |
-
2017
- 2017-08-04 WO PCT/JP2017/028387 patent/WO2018034174A1/en active Application Filing
- 2017-08-04 JP JP2018534346A patent/JPWO2018034174A1/en active Pending
- 2017-08-10 TW TW106127059A patent/TW201811896A/en unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH107913A (en) * | 1996-03-19 | 1998-01-13 | Alcatel Alsthom Co General Electricite | Flame-retardant and halogen-free composition |
WO2013062077A1 (en) * | 2011-10-28 | 2013-05-02 | 株式会社フジクラ | Flame-retardant resin composition and cable using same |
JP2014084437A (en) * | 2012-10-26 | 2014-05-12 | Fujikura Ltd | Flame retardant resin composition and cable using the same |
WO2014103904A1 (en) * | 2012-12-27 | 2014-07-03 | 株式会社フジクラ | Flame-retardant resin composition and cable using same |
WO2015111309A1 (en) * | 2014-01-21 | 2015-07-30 | 株式会社フジクラ | Flame-retardant resin composition and cable using same |
JP2015183157A (en) * | 2014-03-26 | 2015-10-22 | 株式会社フジクラ | Flame retardant resin composition and cable using the same |
WO2015178151A1 (en) * | 2014-05-23 | 2015-11-26 | 株式会社フジクラ | Flame-retardant resin composition, and cable produced using same |
WO2016031789A1 (en) * | 2014-08-25 | 2016-03-03 | 株式会社フジクラ | Flame-retardant resin composition, cable using same, and optical fiber cable |
WO2016080511A1 (en) * | 2014-11-21 | 2016-05-26 | 株式会社フジクラ | Flame-retardant resin composition, and cable and optical fiber cable using same |
JP2016098310A (en) * | 2014-11-21 | 2016-05-30 | 株式会社フジクラ | Flame retardant resin composition, cable and optical fiber cable using the same |
JP6069574B1 (en) * | 2015-12-14 | 2017-02-01 | 株式会社フジクラ | Flame retardant resin composition, metal cable, optical fiber cable and molded product using the same |
JP6069573B1 (en) * | 2015-12-14 | 2017-02-01 | 株式会社フジクラ | Flame retardant resin composition, metal cable, optical fiber cable and molded product using the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020189533A1 (en) * | 2019-03-18 | 2020-09-24 | 株式会社フジクラ | Flame-retardant resin composition, and cable and wire harness using same |
WO2021014858A1 (en) * | 2019-07-20 | 2021-01-28 | 株式会社フジクラ | Flame retardant resin composition, and cable using same |
CN113544208A (en) * | 2019-07-20 | 2021-10-22 | 株式会社藤仓 | Flame-retardant resin composition and cable using the same |
JPWO2021014858A1 (en) * | 2019-07-20 | 2021-12-09 | 株式会社フジクラ | Flame-retardant resin composition and cables using it |
CN110982162A (en) * | 2019-11-15 | 2020-04-10 | 西安思后网络科技有限公司 | Ethylene flame-retardant silicone rubber cable material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018034174A1 (en) | 2019-03-28 |
TW201811896A (en) | 2018-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6069574B1 (en) | Flame retardant resin composition, metal cable, optical fiber cable and molded product using the same | |
JP5167428B1 (en) | Flame-retardant resin composition and cable using the same | |
JP6069573B1 (en) | Flame retardant resin composition, metal cable, optical fiber cable and molded product using the same | |
JP5167425B1 (en) | Flame-retardant resin composition and cable using the same | |
JP5282163B1 (en) | Flame-retardant resin composition and cable using the same | |
WO2018034174A1 (en) | Flame-retardant resin composition, insulated electric wire using same, metal cable, optical fiber cable, and molded article | |
JP6456722B2 (en) | Flame retardant resin composition, and cable and optical fiber cable using the same | |
JP6563016B2 (en) | Flame retardant resin composition, and cable and optical fiber cable using the same | |
JP6178934B1 (en) | Flame retardant resin composition, metal cable and optical fiber cable using the same, and molded product | |
JP6542058B2 (en) | Flame retardant resin composition, cable using the same, and optical fiber cable | |
JP5993264B2 (en) | Method for producing flame retardant resin composition, flame retardant resin composition and cable using the same | |
WO2018034173A1 (en) | Flame-retardant resin composition, insulated electric wire using same, metal cable, optical fiber cable, and molded article | |
JP2019052244A (en) | Flame-retardant resin composition, and insulated wire, metal cable, optical fiber cable and molding using the same | |
JP6239081B1 (en) | Flame retardant resin composition, insulated wire, metal cable, optical fiber cable and molded product using the same | |
JP2019089983A (en) | Flame-retardant resin composition, and insulated electric wire, metal cable, optical fiber cable and molding using the same | |
JP2013133411A (en) | Flame-retardant resin composition and cable using the same | |
WO2021014858A1 (en) | Flame retardant resin composition, and cable using same | |
WO2020170891A1 (en) | Flame-retardant resin composition, insulated electrical wire obtained using same, cable, optical fiber cable, and molded object | |
JP2019089982A (en) | Flame-retardant resin composition, and insulated electric wire, metal cable, optical fiber cable and molding using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018534346 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17841399 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17841399 Country of ref document: EP Kind code of ref document: A1 |