WO2018032934A1 - 无线通信系统中的电子设备和方法以及无线通信系统 - Google Patents

无线通信系统中的电子设备和方法以及无线通信系统 Download PDF

Info

Publication number
WO2018032934A1
WO2018032934A1 PCT/CN2017/093807 CN2017093807W WO2018032934A1 WO 2018032934 A1 WO2018032934 A1 WO 2018032934A1 CN 2017093807 W CN2017093807 W CN 2017093807W WO 2018032934 A1 WO2018032934 A1 WO 2018032934A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user equipment
electronic device
reference signal
precoding
Prior art date
Application number
PCT/CN2017/093807
Other languages
English (en)
French (fr)
Inventor
徐瑨
高程
刘思綦
何超男
曹建飞
Original Assignee
索尼公司
徐瑨
高程
刘思綦
何超男
曹建飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 徐瑨, 高程, 刘思綦, 何超男, 曹建飞 filed Critical 索尼公司
Priority to US16/314,661 priority Critical patent/US10630354B2/en
Priority to CN201780033458.9A priority patent/CN109314553B/zh
Priority to JP2018567747A priority patent/JP2019531613A/ja
Priority to KR1020197007492A priority patent/KR20190040978A/ko
Priority to EP17840909.0A priority patent/EP3503423A4/en
Publication of WO2018032934A1 publication Critical patent/WO2018032934A1/zh
Priority to US16/809,560 priority patent/US10804986B2/en
Priority to US17/023,392 priority patent/US10917151B2/en
Priority to US17/152,805 priority patent/US11290161B2/en
Priority to US17/674,840 priority patent/US11671152B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/0647Variable feedback rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to an electronic device and method and a wireless communication system in a wireless communication system that selectively adjusts a Precoding Matrix Indicator (PMI) fed back by a user equipment.
  • PMI Precoding Matrix Indicator
  • three-dimensional-multiple input multiple output (3D MIMO) enhancement mainly includes improving the robustness of the actual deployment scenario, at least including high-speed deployment scenarios.
  • the channel state information (CSI) fed back by the user may not accurately reflect the channel state, and the CSI usually includes a PMI, a channel quality indicator (CQI), a rank indication (RI), and the like. information. That is, the feedback PMI may be out of date, which will result in a mismatched precoding strategy. Therefore, it is desirable to be able to provide a solution that can adjust the feedback PMI to solve the PMI expiration problem in a high speed scenario.
  • CQI channel quality indicator
  • RI rank indication
  • the PMI fed back by the user equipment is selectively adjusted to solve the problem that the PMI may expire in a high speed scenario, thereby avoiding mismatched precoding strategies.
  • a base station-side electronic device in a wireless communication system comprising processing circuitry configured to: configure and configure a user equipment in response to request signaling from a user equipment a first beam group related aperiodic beamforming reference signal, wherein the first beam group is determined by the base station according to channel state information periodically fed back by the user equipment; and generating downlink control information to indicate that the user equipment is configured according to the aperiodic beam Shape reference signal feedback beam selection information; determining one or more candidate beams and one or more second precoding codebooks corresponding to one or more candidate beams according to beam selection information; and based on one or more second pre- The codebook is coded to determine a valid precoding codebook.
  • an electronic device at a user equipment end in a wireless communication system comprising processing circuitry configured to determine whether a communication quality with a base station is below a predetermined threshold Generating request signaling to be sent to the base station to determine that the base station configures the aperiodic beamforming reference signal associated with the first beam group for the user equipment, wherein the first beam is configured to determine that the communication quality is below a predetermined threshold
  • the group is determined by the base station according to channel state information periodically fed back by the user equipment; and in response to the downlink control information from the base station, generating beam selection information to be transmitted to the base station according to the aperiodic beamforming reference signal, to be used by the base station
  • An effective precoding codebook is determined based on the beam selection information.
  • a wireless communication system comprising: a user equipment comprising a first processing circuit, the first processing circuit configured to: determine whether a quality of communication with a base station is below a predetermined threshold, Generating request signaling to be transmitted to the base station, and determining beamforming information to be transmitted to the base station according to the aperiodic beamforming reference signal in response to the downlink control information from the base station, in the case where it is determined that the communication quality is below a predetermined threshold And a base station comprising a second processing circuit, the second processing circuit configured to: configure, in response to the request signaling, a non-periodic beamforming reference signal associated with the first beam set for the user equipment, wherein the first beam set is And determining, by the base station, the downlink control information to indicate that the user equipment feeds back the beam selection information, and determining one or more candidate beams and corresponding to one or more candidate beams according to the beam selection information, where the base station determines, according to the channel state
  • a method of a base station in a wireless communication system comprising: configuring, in response to request signaling from a user equipment, a non-periodic beam associated with a first beam set for a user equipment a shaped reference signal, wherein the first beam group is determined by the base station according to channel state information periodically fed back by the user equipment; generating downlink control information to instruct the user equipment to feed back beam selection information according to the aperiodic beamforming reference signal; Beam selection information, determining one or more candidate beams and one or more second precoding codebooks corresponding to the one or more candidate beams; and determining the effective precoding code based on the one or more second precoding codebooks this.
  • a method of user equipment side in a wireless communication system comprising: determining whether a communication quality with a base station is below a predetermined threshold; and determining that a communication quality is below a predetermined threshold And generating request signaling to be sent to the base station, to request the base station to configure the aperiodic beamforming reference signal related to the first beam group for the user equipment, where the first beam group is periodically fed back by the base station according to the user equipment.
  • a base station-side electronic device in a wireless communication system comprising processing circuitry configured to: responsive to request signaling from a user equipment, to a user equipment Configuring a non-periodic beamforming reference signal associated with the first beam group, wherein the first beam group is determined by the base station according to channel state information periodically fed back by the user equipment; and generating downlink control information to indicate that the user equipment is not The periodic beamforming reference signal feeds back a non-periodic precoding matrix indication.
  • an electronic device at a user equipment end in a wireless communication system comprising processing circuitry configured to: determine whether a communication quality with a base station is below a predetermined threshold; And generating, in the case of determining that the communication quality is lower than a predetermined threshold, request signaling to be sent to the base station, to request the base station to configure, for the user equipment, an aperiodic beamforming reference signal related to the first beam group, where the first beam The group is determined by the base station based on channel state information periodically fed back by the user equipment.
  • the PMI may be prevented from being expired, thereby causing the precoding strategy to be incorrect.
  • the problem with the optimization optimizes system performance.
  • FIG. 1 is a schematic diagram showing a high speed deployment scenario
  • FIG. 2 is an overall flow diagram showing an example process of a PMI adjustment scheme in accordance with an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing an example format of beam selection information according to an embodiment of the present disclosure
  • FIG. 4 is a timing diagram showing a PMI adjustment scheme in accordance with an embodiment of the present disclosure
  • FIG. 5 is a flowchart illustrating an example of signaling interaction of a PMI adjustment scheme, according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart showing another example of signaling interaction of a PMI adjustment scheme according to an embodiment of the present disclosure
  • FIG. 7 is a general flow diagram showing an example process of a PMI adjustment scheme in accordance with another embodiment of the present disclosure.
  • FIG. 8 is a block diagram showing a functional configuration example of an electronic device at a base station side in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 9 is a block diagram showing a functional configuration example of an electronic device at a base station side in a wireless communication system according to another embodiment of the present disclosure.
  • FIG. 10 is a block diagram showing a functional configuration example of an electronic device of a user equipment side in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 11 is a block diagram showing a functional configuration example of an electronic device of a user equipment side in a wireless communication system according to another embodiment of the present disclosure
  • FIG. 12 is a block diagram showing a configuration example of a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 13 is a flowchart illustrating a process example of a method of a base station side in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 14 is a flowchart illustrating a process example of a method of a base station side in a wireless communication system according to another embodiment of the present disclosure.
  • 15 is a flowchart illustrating a process example of a method of a user equipment side in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 16 is a flowchart illustrating a process example of a method of a user equipment side in a wireless communication system according to another embodiment of the present disclosure
  • FIG. 17 is a block diagram showing an example structure of a personal computer which is an information processing device which can be employed in an embodiment of the present disclosure
  • FIG. 18 is a block diagram showing a first example of a schematic configuration of an evolved node (eNB) to which the technology of the present disclosure may be applied;
  • eNB evolved node
  • 19 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 20 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • 21 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 1 is a schematic diagram showing an example of a high speed deployment scenario.
  • the user equipment for example, an in-vehicle device in the example shown in FIG. 1
  • V the speed of the user equipment
  • a large measurement and reporting period is usually configured.
  • such a vehicle and feedback delay may cause the PMI fed back by the user equipment to be out of date, that is, the PMI fed back by the user equipment at the current moment may reflect the channel state of the previous moment, and at this time, the user equipment has moved to The next position, so the feedback PMI does not accurately reflect the channel state at the current time. This will result in a mismatched precoding strategy.
  • FIG. 2 is an overall flow diagram showing an example process of a PMI adjustment scheme in accordance with an embodiment of the present disclosure.
  • step S201 the user equipment determines whether the communication quality with the base station is lower than a predetermined threshold.
  • the user equipment periodically evaluates its own communication quality, and the communication quality may be, for example, one of QoS (Quality of Service), CQI (Channel Quality Information), RSRP (Reference Signal Received Power), and RSRQ (Reference Signal Received Quality). Multiple to evaluate. If the user equipment determines that the communication quality at this time is below a predetermined threshold, it indicates that the precoding strategy at this time may be inappropriate, that is, indicating that a PMI expiration problem may occur.
  • QoS Quality of Service
  • CQI Channel Quality Information
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • step S201 If it is determined in step S201 that the communication quality is lower than the threshold, the scheme proceeds to step S202.
  • step S202 the user equipment generates request signaling to trigger the base station to configure the aperiodic beamforming reference signal related to the first beam group for the user equipment.
  • the first beam group is determined by the base station according to channel state information periodically fed back by the user equipment.
  • the reference signal is, for example, a CSI-RS (Channel State Information - Reference signal).
  • the base station periodically configures a reference signal for the user equipment, and the reference signal may be unprecoded or may be beamformed.
  • the user equipment periodically feeds back channel state information (CSI) to the base station, where the channel state information generally includes CQI, PMI, and RI, so that the base station can determine the precoding codebook according to the PMI therein.
  • CSI channel state information
  • the long-term/wideband feedback precoding codebook W 1 represents long-term/wideband feedback information and thus does not expire
  • the short-term/subband feedback precoding codebook W 2 represents short-term/sub-band feedback information and is very high at high speeds. It is possible to expire.
  • the base station may precoding codebook W 1 determines a first beam set (assuming it comprises beams L) The long-term feedback / broadband.
  • the request signaling generated by the user equipment may be sent to the base station via a PUSCH (Physical Uplink Shared Channel) by, for example, RRC (Radio Resource Control) signaling.
  • PUSCH Physical Uplink Shared Channel
  • RRC Radio Resource Control
  • step S203 the base station configures the aperiodic beamforming reference signal for the user equipment based on the determined first beam group according to the received request signaling.
  • the base station In step S204, the base station generates downlink control information to instruct the user equipment to feed back beam selection information according to the configured aperiodic beamforming reference signal.
  • the base station can indicate the user equipment feedback beam selection information by modifying the existing DCI format 0, by using redundant bits or new bits therein.
  • the user equipment may also be used to feedback beam selection information by modifying existing signaling such as DCI format 1, DCI format 1A, and the like.
  • step S205 the user equipment generates feedback to be sent back in response to the received downlink control information. Beam selection information of the base station.
  • the user equipment may perform downlink channel quality (eg, one or more of CQI, RSRP, and RSRQ) measurement based on the aperiodic beamforming reference signal configured by the base station, and then based on the downlink.
  • the channel quality measurement results to determine the beam selection information.
  • the beam selection information may be represented in a bitmap format. For example, a bit corresponding to a predetermined number of amplitudes (here, for example, assumed to be two) among the L measurement results corresponding to the L beams in the first beam group may be set to 1 And the remaining bits are set to 0, thereby generating bitmap X as beam selection information.
  • FIG. 3 is a schematic diagram showing an example format of a bitmap X as an example of beam selection information, according to an embodiment of the present disclosure.
  • bitmap X includes a total of L bits, which are in one-to-one correspondence with L beams in the first beam group, which reflect downlink channel quality measurement results for L beams. In this way, when receiving the bitmap X, the base station can directly determine the beam corresponding to the bit of 1 as the candidate beam.
  • the signaling overhead can be reduced by using the bitmap form shown in FIG. 3 to feed back the beam selection information.
  • the user equipment may directly generate downlink channel quality measurement results about the L beams in one-to-one correspondence with the L beams, so that the base station may receive the information according to the received information.
  • the beam corresponding to the predetermined number of downlink channel quality measurement results with the highest priority is determined as the candidate beam.
  • the user equipment may also use, as a beam selection, a predetermined number of downlink channel quality measurement results with the highest order of magnitude and its corresponding beam sequence number.
  • the information is reported to the base station so that the base station can directly determine the candidate beam based on the received beam selection information.
  • the base station determines one or more candidate beams and one or more of the candidate beams according to the received beam selection information according to, for example, a bit of 1 in the bitmap X or according to the fed back downlink channel quality measurement result.
  • Precoding codebook corresponding to the candidate beams it is assumed that the candidate beam includes beam A and beam B, so that the base station can determine the short-term/sub-band feedback precoding codebooks W 2A and W 2B for beam A and beam B, and further determine the long-term/wideband feedback precoding code according to the above determination.
  • the base station determines a valid precoding codebook according to the one or more precoding codebooks corresponding to the candidate beam determined above (for example, the precoding codebooks W A and W B described above). For example, the base station can determine the combination of the precoding codebooks W A and W B as valid precoding codebooks. For example, in a case where the beam selection information includes the downlink channel quality measurement result of the relevant beam, the base station may also determine the codebook corresponding to the beam with the largest downlink channel quality measurement result (for example, the RSRP value) as the effective precoding codebook. .
  • the base station determines the valid precoding codebook based on the precoding codebook W determined according to the PMI of the periodic feedback.
  • the base station may determine whether a difference between a precoding codebook (eg, W A and W B ) corresponding to the candidate beam and the precoding codebook W determined by the feedback-based PMI is less than Or equal to a predetermined threshold. If it is judged that the difference between any one of the precoding codebooks W A and W B and the precoding codebook W is less than or equal to a predetermined threshold, it indicates that the fed back PMI has not expired, so that the base station can determine the precoding codebook W. For effective precoding codebooks.
  • a precoding codebook eg, W A and W B
  • the base station can determine the combination of the precoding codebooks W A , W B , and W as the effective precoding codebook.
  • the combination can be a linear combination.
  • the base station may determine the weights respectively assigned to the precoding codebooks W A , W B , and W when linear combining is performed, based on, for example, the moving speed of the user equipment.
  • the weight of each precoding codebook may also be determined according to channel quality measurement results corresponding to the precoding codebooks W A and W B , respectively.
  • weights assigned to the respective pre-encoded codebooks when performing linear combination according to actual needs, and the disclosure does not specifically limit this.
  • the weights can also be preset.
  • the weights assigned to the respective pre-encoded codebooks may also be the same.
  • FIG. 4 is a timing diagram showing an example process of a PMI adjustment scheme in accordance with an embodiment of the present disclosure.
  • the base station configures the non-periodic beamforming reference signal for the user equipment at time T2, and the user equipment receives the signal.
  • the base station After the downlink control information from the base station, its beam selection information is fed back at time T3.
  • the timing relationship between times T1, T2 and T3 is: T2 ⁇ T3 ⁇ T1. That is to say, the beam selection information fed back by the user equipment according to the aperiodic beamforming reference signal can be used as a reference for whether to adjust the PMI of the next feedback.
  • FIG. 5 is a flowchart illustrating an example of a signaling interaction process of a PMI adjustment scheme according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart illustrating another example of a signaling interaction procedure of a PMI adjustment scheme according to an embodiment of the present disclosure.
  • step S505 the base station and CSI-RS beamforming configured for a user equipment in accordance with a first aperiodic long beam set / wideband feedback precoding codebook W 1 is determined, and in step S506, the transmission by the user equipment
  • step S507 the user equipment feeds back beam selection information to the base station, for example, in the form of a bitmap X.
  • step S508 the base station determines that the fed back PMI has not expired, for example, by comparing the precoding codebooks W A and W B corresponding to the candidate beams with the precoding codebook W determined according to the periodically fed back PMI, thereby
  • the precoding codebook W is sent to the user equipment as a valid precoding codebook.
  • steps S501 and S502 of periodically configuring the CSI-RS and the feedback CSI and the subsequent steps S503 to S509 of the selective adjustment PMI are performed independently without a temporal relationship.
  • the scheme of selectively adjusting the PMI according to the present disclosure ie, steps S503 to S509 is event-triggered, for example, when the communication quality of the user equipment is degraded so that the predetermined requirement is not satisfied.
  • the signaling interaction flowchart shown in FIG. 5 is merely an example for convenience of description and understanding, and is not intended to limit the scope of the disclosure.
  • the base station may not perform the above step S508, but directly determine the candidate beam and the corresponding precoding codebook according to the beam selection information in step S509, and according to the precoding corresponding to the candidate beam.
  • the codebook determines the valid precoding codebook and sends it to the user equipment.
  • the feedback form for the beam selection information is not necessarily the bitmap X, but may be the specific channel quality measurement result described above.
  • the signaling interaction flow shown in FIG. 6 is basically the same as the signaling interaction flow shown in FIG. 5, except that in step S608, the base station determines that the PMI is expired, so that the codebook W A is in step S609.
  • a combination of W B and W (preferably, a linear combination) is transmitted to the user equipment as an effective precoding codebook.
  • the determination operation in step S608 is not performed, but the effective precoding codebook is determined directly based on the combination of W A and W B or the combination of W A , W B and W.
  • the user equipment may also feed back the aperiodic according to the configured aperiodic beamforming reference signal.
  • PMI whereby the base station can determine the effective precoding codebook based directly on the aperiodic PMI.
  • the PMI adjustment scheme according to this embodiment will be described in detail below with reference to FIG.
  • FIG. 7 is a diagram showing an overall process of a PMI adjustment scheme according to another embodiment of the present disclosure. flow chart.
  • steps S701 to S703 shown in FIG. 7 is the same as the processing in steps S201 to S203 shown in FIG. 2, and will not be repeated here.
  • the base station generates downlink control information to instruct the user equipment to feed back the aperiodic PMI.
  • the base station can also modify the existing DCI format 0, for example, by using the redundant bits or the newly added bits to indicate that the user equipment feeds back the aperiodic PMI.
  • the user equipment may be triggered to feed back the aperiodic CSI (including the PMI, the CQI, and the RI based on the aperiodic reference signal (CSI-RS) from the base station by modifying the existing RRC signaling. ).
  • aperiodic CSI including the PMI, the CQI, and the RI based on the aperiodic reference signal (CSI-RS) from the base station by modifying the existing RRC signaling.
  • step S705 the user equipment generates an aperiodic PMI based on the configured aperiodic beamforming reference signal and feeds back the generated PMI to the base station.
  • the base station may determine a corresponding precoding codebook W' based on the received aperiodic PMI, and then determine an effective precoding codebook based on the precoding codebook W' in step S707.
  • the base station can directly determine the precoding codebook W' as a valid precoding codebook.
  • the base station may also determine the combination of the precoding codebook W' and the precoding codebook W determined according to the periodically fed back PMI as the effective precoding codebook. This combination can for example be a linear combination.
  • the base station may perform the indication by using the two-bit redundant bit or the newly added bit in the existing DCI format 0.
  • two-bit identification information PMI_Adjsut_Flag may be set.
  • the base station in addition to periodically configuring the reference signal as in the prior art, is selectively triggered to configure the aperiodic beamforming reference signal for the user equipment according to the communication quality of the user equipment, Determining whether the periodically fed PMI needs to be adjusted according to the beam selection information or the aperiodic PMI fed back by the user equipment based on the non-periodic beamforming reference signal, thereby avoiding the precoding mismatch caused by the PMI expiration in the high speed scenario.
  • FIG. 8 is a block diagram showing a functional configuration example of an electronic device at a base station side in a wireless communication system according to an embodiment of the present disclosure.
  • the electronic device 800 may include a reference signal configuration unit 802, a downlink control information generating unit 804, an adjustment codebook determining unit 806, and an effective codebook determining unit 808.
  • each of the above functional units may be implemented as a separate physical entity, or may be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the reference signal configuration unit 802 can be configured to configure a non-periodic beamforming reference signal associated with the first beam set for the user in response to request signaling from the user equipment.
  • the first beam group is determined by the base station according to channel state information periodically fed back by the user equipment.
  • the reference signal configuration unit 802 is further configured to configure the periodic reference signal by the user equipment, and determine the first beam group according to the channel state information fed back by the user equipment in response to the periodic reference signal.
  • the periodic reference signal can be non-precoded or beamformed.
  • the reference signal configuration unit 802 determines the long-term/wideband feedback pre-encoding codebook W 1 according to the PMI in the CSI periodically fed back by the user equipment, and determines the first beam group based on the pre-coding codebook W 1 .
  • the non-periodic beamforming reference signal is thus configured for the user equipment based on the first beam set.
  • the above reference signals include, for example, CSI-RS.
  • the downlink control information generating unit 804 may be configured to generate downlink control information to instruct the user equipment to feed back beam selection information according to the aperiodic beamforming reference signal.
  • the downlink control information generating unit 804 may indicate that the user equipment feeds back the beam selection information by modifying the existing DCI format0 and using the redundant bit or the newly added bit as the PMI_Adjust_Flag.
  • the adjustment codebook determining unit 806 can be configured to determine one or more candidate beams and one or more precoding codebooks corresponding to the one or more selected beams based on beam selection information fed back by the user.
  • the adjustment codebook determining unit 806 may determine one or more candidate beams according to bit information indicating a downlink channel quality measurement result based on the aperiodic beamforming reference signal in the beam selection information in the bitmap form. For example, a beam corresponding to a bit of 1 in bitmap X may be determined as one or more candidate beams.
  • the adjustment codebook determining unit 806 may further sequence the amplitude corresponding to the predetermined number of downlink channel quality measurement results according to the downlink channel quality measurement result of the aperiodic beamforming reference signal fed back by the user equipment. Determined as one or more candidate beams.
  • the adjustment codebook determining unit 806 can then determine one or more second precoding codebooks corresponding to the one or more candidate beams, eg, the precoding codebooks W A and W B described above.
  • the specific process of determining the second pre-encoded codebook can be referred to the above description, and will not be repeated here.
  • the valid codebook determining unit 808 can be configured to determine the valid precoding codebook based on the determined one or more second precoding codebooks (eg, the precoding codebooks W A and W B described above). For example, the effective codebook determining unit 808 can determine the combination of W A and W B as a valid precoding codebook. Alternatively, for example, the effective codebook determining unit 808 may determine one of W A and W B as a valid precoding codebook based on the channel quality measurement result.
  • the effective codebook determining unit 808 may determine one of W A and W B as a valid precoding codebook based on the channel quality measurement result.
  • the effective codebook determining unit 808 is further based on the first precoding codebook determined according to the periodically fed back channel state information (eg The precoding codebook W) above determines the effective precoding codebook.
  • the weight values a, b, and c may be predetermined, or may be determined by the effective codebook determining unit 808 according to the moving speed and/or beam selection information of the user equipment (specifically, the non-periodic beamforming reference fed back by the user equipment) The magnitude of the downlink channel quality measurement of the signal is determined.
  • FIG. 9 is a block diagram showing a functional configuration example of an electronic device at a base station side in a wireless communication system according to another embodiment of the present disclosure.
  • the electronic device 900 may include a reference signal configuration unit 902 and a downlink control information generating unit 904.
  • each of the above functional units may be implemented as a separate physical entity, or may be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the reference signal configuration unit 902 can be configured to configure a non-periodic beamforming reference signal associated with the first beam set for the user equipment in response to request signaling from the user equipment, wherein the first beam group is a base station according to a user equipment period Deterministically determined channel state information is determined.
  • the downlink control information generating unit 904 may be configured to generate downlink control information to instruct the user equipment to feed back the aperiodic PMI according to the aperiodic beamforming reference signal.
  • the electronic device 900 may further include a codebook determining unit, the codebook determining unit may be configured to determine a corresponding second precoding codebook according to the received aperiodic PMI, and further based on the second precoding The codebook determines the valid precoding codebook.
  • the codebook determining unit may directly determine the second precoding codebook as a valid precoding codebook.
  • the codebook determining unit further determines the valid precoding codebook based on the first precoding codebook determined according to the periodically fed back PMI. For example, a combination (eg, a linear combination) of the second precoding codebook and the first precoding codebook may be determined as a valid precoding codebook.
  • the electronic devices 800 and 900 described above may be implemented at the chip level or may be implemented at the device level by including other external components.
  • electronic devices 800 and 900 can be used as a complete machine
  • the operation is a base station, which may include a communication interface for performing a transceiving operation, for example, receiving request signaling from a user equipment, transmitting an aperiodic beamforming reference signal and downlink control information to the user equipment, and receiving a beam from the user equipment.
  • the information or aperiodic PMI is selected, and the determined valid precoding codebook is transmitted to the user equipment or the like.
  • FIG. 10 is a block diagram showing a functional configuration example of an electronic device of a user equipment side in a wireless communication system according to an embodiment of the present disclosure.
  • the electronic device 1000 may include an evaluation unit 1002, a request unit 1004, and a generation unit 1006.
  • each of the above functional units may be implemented as a separate physical entity, or may be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the evaluation unit 1002 can be configured to evaluate the quality of communication with the base station to determine if the communication quality is below a predetermined threshold. This operation can be performed, for example, periodically.
  • the requesting unit 1004 can be configured to generate request signaling to request the base station to configure the aperiodic beamforming reference signal associated with the first beam set for the user equipment if the evaluation unit 1002 determines that the communication quality is below a predetermined threshold.
  • the first beam group is determined by the base station according to the channel state information that is periodically fed back. The specific determination process can be referred to the above description, and is not repeated here.
  • the generating unit 1006 may be configured to generate beam selection information according to the aperiodic beamforming reference signal in response to the downlink control information from the base station, for the base station to determine the effective precoding codebook based on the beam selection information.
  • the form generates beam selection information.
  • the bit corresponding to the predetermined number of downlink channel quality measurement results in which the amplitude is ranked first in the measurement result is set to 1 and the remaining bits are set to 0, thereby generating the above-mentioned bitmap X as beam selection information.
  • the information generating unit 1006 may directly generate the downlink channel quality measurement result based on the aperiodic beamforming reference signal as beam selection information.
  • the beam selection information is in one-to-one correspondence with the beams in the first beam group.
  • the information generating unit 1006 is further configurable to generate channel state information to be periodically fed back in response to a periodic reference signal (non-precoded or beamformed) from the base station.
  • a periodic reference signal non-precoded or beamformed
  • FIG. 11 is a block diagram showing a functional configuration example of an electronic device of a user equipment side in a wireless communication system according to another embodiment of the present disclosure.
  • the electronic device 1100 may include an evaluation unit 1102 and a request unit 1104.
  • each of the above functional units may be implemented as a separate physical entity, or may be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the functional configuration examples of the evaluation unit 1102 and the request unit 1104 herein are the same as the functional configuration examples of the evaluation unit 1002 and the request unit 1004 described above with reference to FIG. 10, and the description thereof will not be repeated here.
  • the electronic device 1100 may further include a generating unit, the generating unit may be configured to generate, according to the downlink control information from the base station, an aperiodic precoding matrix indication to be sent to the base station according to the aperiodic beamforming reference signal,
  • the effective precoding codebook is determined by the base station based on the aperiodic precoding matrix indication.
  • the electronic devices 1000 and 1100 described above may be implemented at the chip level, or may also be implemented at the device level by including other external components.
  • the electronic devices 1000 and 1100 can operate as a whole device as a user device, which can include a communication interface for performing transceiving operations, for example, transmitting request signaling to a base station, receiving periodic reference signals and non-periodic beams from the base station.
  • the shaped reference signal and the downlink control information are used to transmit channel state information and beam selection information or an aperiodic PMI to the base station, receive a valid precoding codebook from the base station, and the like.
  • the configuration of the base station-side electronic devices 800 and 900 and the user equipment-side electronic devices 1000 and 1100 described herein corresponds to the PMI adjustment scheme described above with reference to FIGS. 2 to 7, and thus, not described in detail herein.
  • the content please refer to the description of the corresponding position above, which will not be repeated here.
  • FIG. 12 is a block diagram showing a configuration example of a wireless communication system according to an embodiment of the present disclosure.
  • the wireless communication system 1200 may include a base station 1210 and a user equipment 1220.
  • Base station 1210 can include processing circuitry 1211 and communication interface 1212.
  • the processing circuit 1211 can be configured to perform the functions of the various units of the electronic devices 800 and 900 at the base station side described above with reference to FIGS. 8 and 9.
  • the specific implementation form may include a CPU, a DSP, an application specific integrated circuit, and the like.
  • Communication interface 1212 can be configured to perform transceiving operations with user equipment.
  • User equipment 1220 can include processing circuitry 1221 and communication interface 1222.
  • the processing circuit 1221 may be configured to perform the functions of the respective units of the electronic devices 1000 and 1100 at the user equipment side described above with reference to FIGS. 10 and 11.
  • the specific implementation form may include a CPU, a DSP, an application specific integrated circuit, and the like.
  • Communication interface 1222 can be configured to perform transceiving operations with a base station.
  • the present disclosure also provides the following method embodiments.
  • FIG. 13 is a flowchart illustrating a process example of a method of a base station side in a wireless communication system according to an embodiment of the present disclosure.
  • the method 1300 begins in step S1301.
  • step S1301 in response to the request signaling from the user equipment, the aperiodic beamforming reference signal related to the first beam group is configured for the user equipment, wherein the first beam group is periodically fed back by the base station according to the user equipment. Determined by channel state information.
  • step S1302. downlink control information is generated to instruct the user equipment to feed back beam selection information according to the aperiodic beamforming reference signal.
  • step S1303 one or more candidate beams and one or more second precoding codebooks corresponding to one or more candidate beams are determined according to the beam selection information.
  • step S1304 an effective pre-programming is determined based on one or more second pre-encoded codebooks. Codebook.
  • the valid precoding codebook is further determined based on the first precoding codebook determined according to the periodically fed back channel state information.
  • FIG. 14 is a flowchart illustrating a process example of a method of a base station side in a wireless communication system according to another embodiment of the present disclosure.
  • the method 1400 begins in step S1401.
  • step S1401 in response to the request signaling from the user equipment, the aperiodic beamforming reference signal related to the first beam group is configured for the user equipment, wherein the first beam group is periodically fed back by the base station according to the user equipment. Determined by channel state information.
  • step S1402 downlink control information is generated to instruct the user equipment to feed back the aperiodic PMI according to the aperiodic beamforming reference signal.
  • the method may further comprise the steps of: determining a corresponding second precoding codebook according to the aperiodic PMI fed back by the user equipment, and further determining the effective precoding codebook based on the second precoding codebook.
  • the valid precoding codebook may also be determined according to a combination of the second precoding codebook and the first precoding codebook determined based on the periodic feedback PMI.
  • FIGS. 13 and 14 correspond to the embodiment of the electronic device at the base station end described above with reference to FIGS. 8 and 9, and therefore, the contents not described in detail herein can be referred to the corresponding positions above. Description, no longer repeated here.
  • FIG. 15 is a flowchart illustrating a process example of a method of a user equipment side in a wireless communication system according to an embodiment of the present disclosure.
  • step S1501 it is determined whether the communication quality with the base station is lower than a predetermined threshold.
  • step S1502 in a case where it is determined that the communication quality is lower than a predetermined threshold, request signaling to be transmitted to the base station is generated to request the base station to configure the aperiodic beamforming reference signal related to the first beam group for the user equipment, where The first beam group is determined by the base station according to channel state information periodically fed back by the user equipment.
  • step S1503 in response to the downlink control information from the base station, beam selection information to be transmitted to the base station is generated according to the aperiodic beamforming reference signal to determine, by the base station, the effective precoding codebook based on the beam selection information.
  • FIG. 16 is a flowchart illustrating a process example of a method of a user equipment side in a wireless communication system according to another embodiment of the present disclosure.
  • step S1601 it is determined whether the communication quality with the base station is lower than a predetermined threshold.
  • step S1602 if it is determined that the communication quality is lower than a predetermined threshold, request signaling to be sent to the base station is generated to request the base station to configure the aperiodic beamforming reference signal related to the first beam group for the user equipment, where The first beam group is determined by the base station according to channel state information periodically fed back by the user equipment.
  • the method may further comprise the step of: generating an aperiodic PMI to be transmitted to the base station according to the non-periodic beamforming reference signal in response to the downlink control information from the base station, to determine that the base station is valid based on the aperiodic PMI Precoded codebook.
  • FIG. 15 and FIG. 16 are corresponding to the embodiment of the electronic device at the user equipment end described above with reference to FIGS. 10 and 11, and therefore, the contents not described in detail herein can be referred to the corresponding above. The description of the location is not repeated here.
  • machine-executable instructions in the storage medium and the program product according to the embodiments of the present disclosure may also be configured to perform the method corresponding to the apparatus embodiment described above, and thus the content not described in detail herein may refer to the previous corresponding The description of the location will not be repeated here.
  • a storage medium for carrying the above-described program product including machine-executable instructions is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure, such as the general-purpose personal computer 1700 shown in FIG. 17, which is installed with various programs.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure, such as the general-purpose personal computer 1700 shown in FIG. 17, which is installed with various programs.
  • 17 is a block diagram showing an example structure of a personal computer which is an information processing device which can be employed in an embodiment of the present disclosure.
  • a central processing unit (CPU) 1701 executes various processes in accordance with a program stored in a read only memory (ROM) 1702 or a program loaded from a storage portion 1708 to a random access memory (RAM) 1703.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1701 executes various processes and the like is also stored as needed.
  • the CPU 1701, the ROM 1702, and the RAM 1703 are connected to each other via a bus 1704.
  • Input/output interface 1705 is also coupled to bus 1704.
  • the following components are connected to the input/output interface 1705: an input portion 1706 including a keyboard, a mouse, etc.; an output portion 1707 including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage portion 1708 , including a hard disk, etc.; and a communication portion 1709, including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1709 performs communication processing via a network such as the Internet.
  • the driver 1710 is also connected to the input/output interface 1705 as needed.
  • a removable medium 1711 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1710 as needed, so that the computer program read therefrom is installed into the storage portion 1708 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the detachable medium 1711.
  • such a storage medium is not limited to the detachable medium 1711 shown in FIG. 17 in which a program is stored and distributed separately from the device to provide a program to the user.
  • Examples of the detachable medium 1711 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be a ROM 1702, a hard disk included in the storage portion 1708, or the like, in which programs are stored, and distributed to the user together with the device containing them.
  • the base station can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • eNB evolved Node B
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • the base station may include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRHs) disposed at a different location from the body.
  • a body also referred to as a base station device
  • RRHs remote radio heads
  • various types of terminals which will be described below, can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the user equipment can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), A notebook PC, a portable game terminal, a portable/encrypted dog type mobile router and a digital camera device) or an in-vehicle terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • the eNB 1800 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1800 includes one or more antennas 1810 and base station devices 1820.
  • the base station device 1820 and each antenna 1810 may be connected to each other via an RF cable.
  • Each of the antennas 1810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1820 to transmit and receive wireless signals.
  • eNB 1800 can include multiple antennas 1810.
  • multiple antennas 1810 can be compatible with multiple frequency bands used by eNB 1800.
  • FIG. 18 illustrates an example in which the eNB 1800 includes multiple antennas 1810, the eNB 1800 may also include a single antenna 1810.
  • Base station device 1820 includes a controller 1821, a memory 1822, a network interface 1823, and a wireless communication interface 1825.
  • the controller 1821 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1820. For example, controller 1821 generates data packets based on data in signals processed by wireless communication interface 1825 and communicates the generated packets via network interface 1823. The controller 1821 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1821 may have a logical function of performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1822 includes a RAM and a ROM, and stores programs executed by the controller 1821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1823 is a communication interface for connecting base station device 1820 to core network 1824. Controller 1821 can communicate with a core network node or another eNB via network interface 1823. In this case, the eNB 1800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 1823 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 1823 is a wireless communication interface, network interface 1823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 1825.
  • the wireless communication interface 1825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the eNB 1800 via the antenna 1810.
  • Wireless communication interface 1825 may typically include, for example, a baseband (BB) processor 1826 and RF circuitry 1827.
  • the BB processor 1826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 1826 may have some or all of the above described logic functions.
  • the BB processor 1826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 1826 to change.
  • the module can be a card or blade that is inserted into a slot of base station device 1820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1810.
  • the wireless communication interface 1825 can include a plurality of BB processors 1826.
  • multiple BB processors 1826 can be compatible with multiple frequency bands used by eNB 1800.
  • the wireless communication interface 1825 can include a plurality of RF circuits 1827.
  • multiple RF circuits 1827 can be compatible with multiple antenna elements.
  • FIG. 18 illustrates an example in which the wireless communication interface 1825 includes a plurality of BB processors 1826 and a plurality of RF circuits 1827, the wireless communication interface 1825 may also include a single BB processor 1826 or a single RF circuit 1827.
  • the eNB 1930 includes one or more antennas 1940, a base station device 1950, and an RRH 1960.
  • the RRH 1960 and each antenna 1940 may be connected to each other via an RF cable.
  • the base station device 1950 and the RRH 1960 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 1940 includes a single or multiple antenna elements (such as included in MIMO days) Multiple antenna elements in the line) and for the RRH 1960 to transmit and receive wireless signals.
  • the eNB 1930 can include multiple antennas 1940.
  • multiple antennas 1940 can be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 19 illustrates an example in which eNB 1930 includes multiple antennas 1940, eNB 1930 may also include a single antenna 1940.
  • the base station device 1950 includes a controller 1951, a memory 1952, a network interface 1953, a wireless communication interface 1955, and a connection interface 1957.
  • the controller 1951, the memory 1952, and the network interface 1953 are the same as the controller 1821, the memory 1822, and the network interface 1823 described with reference to FIG.
  • the wireless communication interface 1955 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 1960 via the RRH 1960 and the antenna 1940.
  • Wireless communication interface 1955 can generally include, for example, BB processor 1956.
  • the BB processor 1956 is identical to the BB processor 1826 described with reference to FIG. 18 except that the BB processor 1956 is connected to the RF circuit 1964 of the RRH 1960 via the connection interface 1957.
  • the wireless communication interface 1955 can include a plurality of BB processors 1956.
  • multiple BB processors 1956 can be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 19 illustrates an example in which the wireless communication interface 1955 includes a plurality of BB processors 1956, the wireless communication interface 1955 may also include a single BB processor 1956.
  • connection interface 1957 is an interface for connecting the base station device 1950 (wireless communication interface 1955) to the RRH 1960.
  • the connection interface 1957 may also be a communication module for communicating the base station device 1950 (wireless communication interface 1955) to the above-described high speed line of the RRH 1960.
  • the RRH 1960 includes a connection interface 1961 and a wireless communication interface 1963.
  • connection interface 1961 is an interface for connecting the RRH 1960 (wireless communication interface 1963) to the base station device 1950.
  • the connection interface 1961 can also be a communication module for communication in the above high speed line.
  • Wireless communication interface 1963 transmits and receives wireless signals via antenna 1940.
  • Wireless communication interface 1963 may generally include, for example, RF circuitry 1964.
  • the RF circuit 1964 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1940.
  • the wireless communication interface 1963 can include a plurality of RF circuits 1964.
  • multiple RF circuits 1964 can support multiple antenna elements.
  • FIG. 19 illustrates an example in which the wireless communication interface 1963 includes a plurality of RF circuits 1964, the wireless communication interface 1963 may also include a single RF circuit 1964.
  • the communication interfaces in the above-described electronic devices 800 and 900 can be implemented by the wireless communication interface 1825 and the wireless communication interface 1955 and/or the wireless communication interface 1963. At least a part of the functions of the reference signal configuration unit, the downlink control information generating unit, the codebook determining unit, and the like may also be implemented by the controller 1821 and the controller 1951.
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a smartphone 2000 to which the technology of the present disclosure can be applied.
  • the smart phone 2000 includes a processor 2001, a memory 2002, a storage device 2003, an external connection interface 2004, an imaging device 2006, a sensor 2007, a microphone 2008, an input device 2009, a display device 2010, a speaker 2011, a wireless communication interface 2012, one or more Antenna switch 2015, one or more antennas 2016, bus 2017, battery 2018, and auxiliary controller 2019.
  • the processor 2001 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 2000.
  • the memory 2002 includes a RAM and a ROM, and stores data and programs executed by the processor 2001.
  • the storage device 2003 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2004 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 2000.
  • the image pickup device 2006 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 2007 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 2008 converts the sound input to the smartphone 2000 into an audio signal.
  • the input device 2009 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2010, and receives an operation or information input from a user.
  • the display device 2010 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2000.
  • the speaker 2011 converts the audio signal output from the smartphone 2000 into sound.
  • the wireless communication interface 2012 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • the wireless communication interface 2012 may generally include, for example, a BB processor 2013 and an RF circuit 2014.
  • the BB processor 2013 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuit 2014 It may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2016.
  • the wireless communication interface 2012 can be a chip module on which the BB processor 2013 and the RF circuit 2014 are integrated. As shown in FIG.
  • the wireless communication interface 2012 may include a plurality of BB processors 2013 and a plurality of RF circuits 2014.
  • FIG. 20 illustrates an example in which the wireless communication interface 2012 includes a plurality of BB processors 2013 and a plurality of RF circuits 2014, the wireless communication interface 2012 may also include a single BB processor 2013 or a single RF circuit 2014.
  • the wireless communication interface 2012 can also support another type of wireless communication scheme, such as a device-to-device (D2D) communication scheme, a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • D2D device-to-device
  • LAN wireless local area network
  • the wireless communication interface 2012 can include the BB processor 2013 and the RF circuit 2014 for each wireless communication scheme.
  • Each of the antenna switches 2015 switches the connection destination of the antenna 2016 between a plurality of circuits included in the wireless communication interface 2012, such as circuits for different wireless communication schemes.
  • Each of the antennas 2016 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2012 to transmit and receive wireless signals.
  • the smartphone 2000 may include a plurality of antennas 2016.
  • FIG. 20 shows an example in which the smartphone 2000 includes a plurality of antennas 2016, the smartphone 2000 may also include a single antenna 2016.
  • smart phone 2000 can include an antenna 2016 for each wireless communication scheme.
  • the antenna switch 2015 can be omitted from the configuration of the smartphone 2000.
  • Bus 2017 will processor 2001, memory 2002, storage device 2003, external connection interface 2004, camera device 2006, sensor 2007, microphone 2008, input device 2009, display device 2010, speaker 2011, wireless communication interface 2012 and auxiliary controller 2019 connection.
  • Battery 2018 provides power to various blocks of smart phone 2000 shown in FIG. 20 via feeders, which are partially shown as dashed lines in the figure.
  • the secondary controller 2019 operates the minimum required function of the smartphone 2000, for example, in a sleep mode.
  • the communication interfaces in the above-described electronic devices 1000 and 1100 can be implemented by the wireless communication interface 2012. At least a portion of the functions of the evaluation unit, the request unit, and the generating unit may also be implemented by the processor 2001 or the auxiliary controller 2019.
  • the car navigation device 2120 includes a processor 2121, a memory 2122, a global positioning system (GPS) module 2124, a sensor 2125, a data interface 2126, a content player 2127, a storage medium interface 2128, an input device 2129, a display device 2130, a speaker 2131, and a wireless device.
  • the processor 2121 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 2120.
  • the memory 2122 includes a RAM and a ROM, and stores data and programs executed by the processor 2121.
  • the GPS module 2124 uses the GPS signals received from the GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 2120.
  • Sensor 2125 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 2126 is connected to, for example, the in-vehicle network 2141 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 2127 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 2128.
  • the input device 2129 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 2130, and receives an operation or information input from a user.
  • the display device 2130 includes a screen such as an LCD or an OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 2131 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2133 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 2133 may typically include, for example, BB processor 2134 and RF circuitry 2135.
  • the BB processor 2134 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2135 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2137.
  • the wireless communication interface 2133 can also be a chip module on which the BB processor 2134 and the RF circuit 2135 are integrated. As shown in FIG.
  • the wireless communication interface 2133 may include a plurality of BB processors 2134 and a plurality of RF circuits 2135.
  • FIG. 21 illustrates an example in which the wireless communication interface 2133 includes a plurality of BB processors 2134 and a plurality of RF circuits 2135, the wireless communication interface 2133 may also include a single BB processor 2134 or a single RF circuit 2135.
  • the wireless communication interface 2133 can support another type in addition to the cellular communication scheme.
  • Wireless communication schemes such as device-to-device (D2D) communication schemes, short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 2133 may include a BB processor 2134 and an RF circuit 2135 for each wireless communication scheme.
  • Each of the antenna switches 2136 switches the connection destination of the antenna 2137 between a plurality of circuits included in the wireless communication interface 2133, such as circuits for different wireless communication schemes.
  • Each of the antennas 2137 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2133 to transmit and receive wireless signals.
  • the car navigation device 2120 can include a plurality of antennas 2137.
  • FIG. 21 shows an example in which the car navigation device 2120 includes a plurality of antennas 2137, the car navigation device 2120 may also include a single antenna 2137.
  • car navigation device 2120 can include an antenna 2137 for each wireless communication scheme.
  • the antenna switch 2136 can be omitted from the configuration of the car navigation device 2120.
  • Battery 2138 provides power to various blocks of car navigation device 2120 shown in FIG. 21 via a feeder, which is partially shown as a dashed line in the figure. Battery 2138 accumulates power supplied from the vehicle.
  • the communication interfaces in the above-described electronic devices 1000 and 1100 can be implemented by the wireless communication interface 2133. At least a portion of the functions of the evaluation unit, the determining unit, and the generating unit may also be implemented by the processor 2121.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 2140 that includes one or more of the car navigation device 2120, the in-vehicle network 2141, and the vehicle module 2142.
  • vehicle module 2142 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 2141.
  • a plurality of functions included in one unit in the above embodiment may be implemented by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts not only include performing the time series in the stated order
  • the processing of rows includes processing that is performed in parallel or individually rather than in time series. Further, even in the step of processing in time series, it is needless to say that the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种无线通信系统中的电子设备和方法以及无线通信系统。基站端的电子设备包括处理电路,该处理电路被配置成:响应于来自用户设备的请求信令,为用户设备配置与第一波束组相关的非周期波束赋形参考信号,第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的;生成下行控制信息以指示用户设备根据非周期波束赋形参考信号反馈波束选择信息;根据波束选择信息,确定一个或多个候选波束以及对应的一个或多个第二预编码码本;以及基于一个或多个第二预编码码本,确定有效预编码码本。根据至少一个实施例,可以避免PMI过期导致的预编码策略错配的问题,优化了系统性能。

Description

无线通信系统中的电子设备和方法以及无线通信系统
本申请要求于2016年8月19日提交中国专利局、申请号为201610694565.3、发明名称为“无线通信系统中的电子设备和方法以及无线通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信技术领域,具体地,涉及一种选择性地对用户设备反馈的预编码矩阵指示(Precoding Matrix Indicator,PMI)进行调整的无线通信系统中的电子设备和方法以及无线通信系统。
背景技术
作为R14的主要目标,三维-多输入多输出(3D MIMO)增强主要包括提高实际部署场景的鲁棒性,其中至少应该包括高速部署场景。
在高速场景下,由于信道变化很快,报告周期很短的PMI将会导致性能损失,因此一般推荐使用较大的测量和报告周期。然而,在该情况下,考虑到测量和反馈时延,用户反馈的信道状态信息(CSI)可能没有精确地反映信道状态,CSI通常包括PMI、信道质量指示(CQI)、秩指示(RI)等信息。也就是说,反馈的PMI可能是过期的,这将会导致错配的预编码策略。因此,期望能够提供一种能够对反馈的PMI进行调整以解决高速场景下的PMI过期问题的方案。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
鉴于以上问题,本公开的至少一个实施例的目的是提供一种无线通信系统中的电子设备和方法以及无线通信系统,其能够根据用户设备的通信质量触发 选择性地对用户设备反馈的PMI进行调整,以解决高速场景下PMI可能过期的问题,从而避免错配的预编码策略。
根据本公开的一方面,提供了一种无线通信系统中的基站端的电子设备,该电子设备包括处理电路,该处理电路被配置成:响应于来自用户设备的请求信令,为用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的;生成下行控制信息以指示用户设备根据非周期波束赋形参考信号反馈波束选择信息;根据波束选择信息,确定一个或多个候选波束以及与一个或多个候选波束对应的一个或多个第二预编码码本;以及基于一个或多个第二预编码码本,确定有效预编码码本。
根据本公开的另一方面,还提供了一种无线通信系统中的用户设备端的电子设备,该电子设备包括处理电路,该处理电路被配置成:确定与基站间的通信质量是否低于预定阈值;在确定通信质量低于预定阈值的情况下,生成要发送至基站的请求信令,以请求基站为用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的;以及响应于来自基站的下行控制信息,根据非周期波束赋形参考信号,生成要发送至基站的波束选择信息,以由基站基于波束选择信息确定有效预编码码本。
根据本公开的另一方面,还提供了一种无线通信系统,其包括:用户设备,包括第一处理电路,第一处理电路被配置成:确定与基站间的通信质量是否低于预定阈值,在确定通信质量低于预定阈值的情况下,生成要发送至基站的请求信令,以及响应于来自基站的下行控制信息,根据非周期波束赋形参考信号,生成要发送至基站的波束选择信息;以及基站,包括第二处理电路,第二处理电路被配置成:响应于请求信令,为用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的,生成下行控制信息以指示用户设备反馈波束选择信息,根据波束选择信息,确定一个或多个候选波束以及与一个或多个候选波束对应的一个或多个第二预编码码本,以及基于一个或多个第二预编码码本,确定有效预编码码本。
根据本公开的另一方面,还提供了一种无线通信系统中的基站端的方法,该方法包括:响应于来自用户设备的请求信令,为用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的;生成下行控制信息以指示用户设备根据非周期波束赋形参考信号反馈波束选择信息;根据波束选择信息,确定一个或多个候选波束以及与一个或多个候选波束对应的一个或多个第二预编码码本;以及基于一个或多个第二预编码码本,确定有效预编码码本。
根据本公开的另一方面,还提供了一种无线通信系统中的用户设备端的方法,该方法包括:确定与基站间的通信质量是否低于预定阈值;在确定通信质量低于预定阈值的情况下,生成要发送至基站的请求信令,以请求基站为用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的;以及响应于来自基站的下行控制信息,根据非周期波束赋形参考信号,生成要发送至基站的波束选择信息,以由基站基于波束选择信息确定有效预编码码本。
根据本公开的另一方面,还提供了一种无线通信系统中的基站端的电子设备,该电子设备包括处理电路,该处理电路被配置成:响应于来自用户设备的请求信令,为用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的;以及生成下行控制信息以指示用户设备根据非周期波束赋形参考信号反馈非周期预编码矩阵指示。
根据本公开的另一方面,还提供了一种无线通信系统中的用户设备端的电子设备,该电子设备包括处理电路,处理电路被配置成:确定与基站间的通信质量是否低于预定阈值;以及在确定通信质量低于预定阈值的情况下,生成要发送至基站的请求信令,以请求基站为用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的。
根据本公开的其它方面,还提供了用于实现上述根据本公开的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述根据本公开的方法的计算机程序代码的计算机可读存储介质。
根据本公开的实施例,通过根据用户设备的通信质量选择性地触发基站发送非周期波束赋形参考信号以选择性地对用户设备反馈的PMI进行调整,可以避免PMI过期从而导致预编码策略错配的问题,优化了系统性能。
在下面的说明书部分中给出本公开实施例的其它方面,其中,详细说明用于充分地公开本公开实施例的优选实施例,而不对其施加限定。
附图说明
本公开可以通过参考下文中结合附图所给出的详细描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并形成说明书的一部分,用来进一步举例说明本公开的优选实施例和解释本公开的原理和优点。其中:
图1是示出高速部署场景的示意图;
图2是示出根据本公开的实施例的PMI调整方案的示例过程的整体流程图;
图3是示出根据本公开的实施例的波束选择信息的示例格式的示意图;
图4是示出根据本公开的实施例的PMI调整方案的时序图;
图5是示出根据本公开的实施例的PMI调整方案的信令交互的示例的流程图;
图6是示出根据本公开的实施例的PMI调整方案的信令交互的另一示例的流程图;
图7是示出根据本公开的另一实施例的PMI调整方案的示例过程的总体流程图;
图8是示出根据本公开的实施例的无线通信系统中的基站端的电子设备的功能配置示例的框图;
图9是示出根据本公开的另一实施例的无线通信系统中的基站端的电子设备的功能配置示例的框图;
图10是示出根据本公开的实施例的无线通信系统中的用户设备端的电子设备的功能配置示例的框图;
图11是示出根据本公开的另一实施例的无线通信系统中的用户设备端的电子设备的功能配置示例的框图;
图12是示出根据本公开的实施例的无线通信系统的配置示例的框图;
图13是示出根据本公开的实施例的无线通信系统中的基站端的方法的过程示例的流程图;
图14是示出根据本公开的另一实施例的无线通信系统中的基站端的方法的过程示例的流程图;
图15是示出根据本公开的实施例的无线通信系统中的用户设备端的方法的过程示例的流程图;
图16是示出根据本公开的另一实施例的无线通信系统中的用户设备端的方法的过程示例的流程图;
图17是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图;
图18是示出可以应用本公开的技术的演进型节点(eNB)的示意性配置的第一示例的框图;
图19是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图;
图20是示出可以应用本公开的技术的智能电话的示意性配置的示例的框图;以及
图21是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术 人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的设备结构和/或处理步骤,而省略了与本公开关系不大的其它细节。
下面,将参照图1至图21详细描述根据本公开的实施例。
图1是示出高速部署场景的示例的示意图。如图1所示,在该高速部署场景中,用户设备(在图1所示的示例中例如为车载设备)以速度V处于移动中。如上所述,在高速场景中由于信道变化很快,因此通常配置较大的测量和报告周期。然而,这样的车辆和反馈时延会导致用户设备反馈的PMI有可能是过期的,即,用户设备在当前时刻反馈的PMI可能反映的是先前时刻的信道状态,而此时用户设备已移动到下一位置,因此所反馈的PMI并不能准确反映当前时刻的信道状态。这样,会导致错配的预编码策略。
本发明目的之一正是为了解决这样的问题而提出的。下面,将作为示例详细描述根据本公开的实施例的技术方案。
首先,将参照图2描述根据本公开的实施例的PMI调整方案的总体构思。图2是示出根据本公开的实施例的PMI调整方案的示例过程的整体流程图。
如图2所示,首先,在步骤S201中,用户设备确定与基站间的通信质量是否低于预定阈值。
用户设备会周期性地评估自身的通信质量,通信质量例如可以以QoS(服务质量)、CQI(信道质量信息)、RSRP(参考信号接收功率)和RSRQ(参考信号接收质量)等中的一个或多个来评价。如果用户设备判断此时的通信质量低于预定阈值,则表明此时的预编码策略可能是不适当的,即,表明可能出现了PMI过期的问题。
如果在步骤S201中确定通信质量低于阈值,则该方案进行到步骤S202。在步骤S202中,用户设备生成请求信令,以触发基站为用户设备配置与第一波束组相关的非周期波束赋形参考信号。该第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的。另一方面,如果在步骤S201中确定通信质量等于或高于预定阈值,则不需要触发基站为用户设备配置非周期波束赋形参考信号。在本公开的实施例中,参考信号例如为CSI-RS(信道状态信息- 参考信号)。
通常,基站会周期性地为用户设备配置参考信号,该参考信号可以是未经预编码的或者也可以是经波束赋形的。响应于该周期性的参考信号,用户设备会周期性地向基站反馈信道状态信息(CSI),该信道状态信息通常包括CQI、PMI和RI,从而基站可以根据其中的PMI而确定预编码码本,这里记为W。预编码码本W通常可以表示为长期/宽带反馈预编码码本W1与短期/子带反馈预编码码本W2的乘积,即,W=W1×W2。一般认为,长期/宽带反馈预编码码本W1表示长期/宽带反馈信息因而是不过期的,而短期/子带反馈预编码码本W2表示短期/子带反馈信息且在高速情况下很有可能过期。基站可以根据长期/宽带反馈预编码码本W1而确定第一波束组(假设其包括L个波束)。具体的如何根据用户设备周期性地反馈的信道状态信息来确定相应的预编码码本以及确定第一波束组的过程可以参见现有技术的相关描述,在此不再详细描述。
某一实施例中,用户设备生成的请求信令可以通过例如RRC(无线资源控制)信令、经由PUSCH(物理上行共享信道)发送至基站。作为一种示例实现,该请求信令例如表示为R1,如果R1=1,则表明用户设备此时需要基站为其配置与第一波束组相关的非周期波束赋形参考信号。
在步骤S203中,基站根据所接收到的请求信令,基于所确定的第一波束组,为用户设备配置非周期波束赋形参考信号。
在步骤S204中,基站生成下行控制信息以指示用户设备根据所配置的非周期波束赋形参考信号而反馈波束选择信息。作为示例,基站例如可以通过修改现有的DCI format 0,利用其中的冗余位或新增位来指示用户设备反馈波束选择信息。例如,可以设置一比特的标识信息PMI_Adjust_Flag,如果PMI_Adjust_Flag=1,则表示基站需要用户设备反馈波束选择信息,反之,如果PMI_Adjust_Flag=0,则表示基站不需要用户设备反馈波束选择信息。
可以看出,通过利用现有的DCI format 0中的冗余位或新增位来指示用户设备反馈波束选择信息,可以易于实现与现有通信协议的兼容性。替选地,也可以通过修改现有的例如DCI format 1、DCI format 1A等信令来指示用户设备反馈波束选择信息。
在步骤S205中,用户设备响应于接收到的下行控制信息,生成要反馈给 基站的波束选择信息。
具体地,作为一种示例实现方式,用户设备可以基于基站所配置的非周期波束赋形参考信号而进行下行信道质量(例如,CQI、RSRP和RSRQ中的一个或多个)测量,然后基于下行信道质量测量结果来确定所述波束选择信息。某一实施例中,可以以位图形式表示所述波束选择信息。例如,可以将与第一波束组中的L个波束对应的L个测量结果当中的、幅值排序靠前的预定数量(这里例如假设为两个)的测量结果所对应的比特位设置为1,并且将其余比特位设置为0,从而生成位图X作为波束选择信息。
图3是示出根据本公开的实施例的作为波束选择信息的示例的位图X的示例格式的示意图。如图3所示,位图X共包括L比特,这L比特与第一波束组中的L个波束是一一对应的,其反映了对于L个波束的下行信道质量测量结果。这样,基站在接收到位图X时,可以直接将其中为1的比特位所对应的波束确定为候选波束。
可以理解,通过采用例如图3所示的位图形式来反馈波束选择信息,可以减少信令开销。
替选地,作为另一种示例方式,用户设备还可以将关于L个波束的下行信道质量测量结果按照与L个波束一一对应的方式直接生成为波束选择信息,从而基站可以根据所接收到的关于L个波束的下行信道质量测量结果,将幅值排序靠前的预定数量的下行信道质量测量结果对应的波束确定为候选波束。
此外,作为另一示例,取代报告L个波束的下行信道质量测量结果,用户设备还可以将幅值排序靠前的预定数量的下行信道质量测量结果与其对应的波束的序号相关联地作为波束选择信息报告给基站,从而基站可以根据所接收到的波束选择信息而直接确定候选波束。
在步骤S206中,基站根据所接收到的波束选择信息,根据例如位图X中为1的比特位或者根据所反馈的下行信道质量测量结果而确定一个或多个候选波束以及与这一个或多个候选波束对应的预编码码本。这里,假设候选波束包括波束A和波束B,从而基站能够确定对于波束A和波束B的短期/子带反馈预编码码本W2A和W2B,进而根据上述确定的长期/宽带反馈预编码码本W1而确定波束A和波束B的预编码码本WA和WB,即,WA=W1×W2A,WB=W1 ×W2B
在步骤S207中,基站根据以上确定的对应于候选波束的一个或多个预编码码本(例如,上述预编码码本WA和WB),确定有效的预编码码本。例如,基站可以将预编码码本WA和WB的组合确定为有效预编码码本。又例如,在波束选择信息中包括相关波束的下行信道质量测量结果的情况下,基站也可以将下行信道质量测量结果(例如,RSRP值)最大的波束对应的码本确定为有效预编码码本。
优选地,在步骤S207中,除了对应于候选波束的一个或多个预编码码本之外,基站还基于根据周期性反馈的PMI而确定的预编码码本W,确定有效预编码码本。
具体地,作为一种示例实现方式,基站可以判断与候选波束对应的预编码码本(例如,WA和WB)与上述基于反馈的PMI确定的预编码码本W之间的差别是否小于或等于预定阈值。如果判断预编码码本WA和WB中的任一个与预编码码本W之间的差别小于或等于预定阈值,则表明所反馈的PMI没有过期,从而基站可将预编码码本W确定为有效预编码码本。
另一方面,如果判断预编码码本WA和WB与预编码码本W的差别均大于预定阈值,则表明反馈的PMI过期,需要对其进行调整。此时,基站可以将预编码码本WA、WB和W的组合确定为有效预编码码本。优选地,该组合可以是线性组合。
作为示例,基站可以根据例如用户设备的移动速度来确定在进行线性组合时分别分配给预编码码本WA、WB和W的权重。替选地,在波束选择信息反馈的是具体的信道质量测量结果的情况下,还可以根据分别与预编码码本WA和WB对应的信道质量测量结果来确定各个预编码码本的权重。当然,也可以综合考虑移动速度和信道质量测量结果两者来确定权重。
本领域技术人员可以根据实际需要而设置进行线性组合时分配给各个预编码码本的权重,本公开对此不做具体限制。例如,权重也可以是预先设置好的。此外,作为一种简单实现方式,例如,分配给各个预编码码本的权重也可以是相同的。
应指出,尽管以上参照图2描述了根据本公开的PMI调整方案的总体流 程的示例,但是该示例流程并不应解释为对本公开的范围的限制,本领域技术人员可以根据本公开的原理而对该示例流程进行修改,并且这些修改都认为应落入本公开的范围内。例如,上述各个步骤的执行顺序并不限于此,而是也可以并行地或者独立地执行。又例如,候选波束的数量也不限于是两个,而是可以根据实际情况而进行调整。
图4是示出根据本公开的实施例的PMI调整方案的示例过程的时序图。
如图4所示,假设用户设备进行下一次PMI反馈的时刻为T1,基站接收到来自用户设备的请求信令后在时刻T2为用户设备配置非周期波束赋形参考信号,用户设备在接收到来自基站的下行控制信息之后,在时刻T3反馈其波束选择信息。时刻T1、T2和T3之间的时序关系为:T2<T3<T1。也就是说,用户设备根据非周期波束赋形参考信号反馈的波束选择信息可以作为是否对下一次反馈的PMI进行调整的参考。通常来说,用户设备在接收到非周期波束赋形参考信号之后的下一个子帧就可以报告其下行信道质量测量结果,因此可以例如设置为T3=T2+1,T1与T3之间的时间差应小于预定阈值,该预定阈值可以是根据实际应用场景和/或用户设备的移动速度等因素而预先设置的。
类似地,在下一个反馈周期,在时刻T1’、T2’和T3’分别执行与上述时刻T1、T2和T3类似的操作,并且时刻T1’、T2’和T3’之间的关系和设置同样满足以上针对时刻T1、T2和T3的描述,在此不再重复进行描述。
为了进一步有利于理解根据本公开的实施例的PMI调整方案,下面将参照图5和图6所示的信令交互流程图进行进一步描述。图5是示出根据本公开的实施例的PMI调整方案的信令交互过程的示例的流程图。图6是示出根据本公开的实施例的PMI调整方案的信令交互过程的另一示例的流程图。
如图5所示,在步骤S501中,基站周期性地为用户设备配置例如CSI-RS,并且在步骤S502中,用户设备周期性地反馈CSI。然后,在步骤S503中,用户设备评估当前通信质量低于预定阈值,于是在步骤S504中向基站发出请求信令,即,R1=1,以请求基站为其配置非周期波束赋形CSI-RS。然后,在步骤S505中,基站基于根据长期/宽带反馈预编码码本W1确定的第一波束组而为用户设备配置非周期波束赋形CSI-RS,并且在步骤S506中,向用户设备发送下行控制信息DCI format 0(其中,PMI_Adjust_Flag=1)以指示用户设备反 馈波束选择信息。在步骤S507中,用户设备例如以位图X的形式向基站反馈波束选择信息。在步骤S508中,基站例如通过比较与候选波束对应的预编码码本WA和WB与根据周期性地反馈的PMI确定的预编码码本W而确定所反馈的PMI没有过期,从而在步骤S509中将预编码码本W作为有效的预编码码本发送给用户设备。
应指出,图5所示的流程图中的各个步骤的执行顺序并不限于以上描述,所示的执行顺序仅是为了便于描述。实际上,周期性地配置CSI-RS以及反馈CSI的步骤S501和S502与后续的选择性调整PMI的步骤S503至S509是独立地执行的,而不存在时间上的先后关系。根据本公开的选择性调整PMI的方案(即,步骤S503至S509)是基于事件触发的,例如,当用户设备的通信质量下降从而不满足预定要求时被触发。
此外,还应指出,图5所示的信令交互流程图仅是为了便于描述和理解而给出的示例,并不是旨在限制本公开的范围。例如,基站在接收到波束选择信息之后,也可以不执行上述步骤S508,而是在步骤S509中直接根据波束选择信息确定候选波束和对应的预编码码本,并且根据对应于候选波束的预编码码本来确定有效预编码码本并发送给用户设备。又例如,又例如,对于波束选择信息的反馈形式也不一定是位图X,而是可以是上述的具体信道质量测量结果。本领域技术人员可以根据本公开的原理而对该信令交互流程进行适当的修改,并且所有这样的修改应认为落入本公开的范围内。
图6所示的信令交互流程与图5所示的信令交互流程基本上相同,不同之处仅在于,在步骤S608中,基站判定PMI过期,从而在步骤S609中将码本WA、WB和W的组合(优选地,线性组合)作为有效预编码码本发送给用户设备。同样地,可以理解,也可不进行步骤S608中的判定操作,而是直接基于WA和WB的组合或者WA、WB和W三者的组合来确定有效预编码码本。
替选地,作为另一实施例,取代上述基于用户设备反馈的波束选择信息来对周期性地反馈的PMI进行调整,用户设备还可以根据所配置的非周期波束赋形参考信号而反馈非周期PMI,从而基站可以直接基于该非周期PMI来确定有效预编码码本。下面将参照图7详细描述根据该实施例的PMI调整方案。
图7是示出根据本公开的另一实施例的PMI调整方案的示例过程的总体 流程图。
图7所示的步骤S701至步骤S703中的处理与图2所示的步骤S201至步骤S203中的处理相同,在此不再重复。
接下来,在步骤S704中,基站生成下行控制信息以指示用户设备反馈非周期PMI。具体地,与步骤S204类似,基站同样可以例如过修改现有的DCI format 0,利用其中的冗余位或新增位来指示用户设备反馈非周期PMI。例如,可以设置一比特的标识信息PMI_Adjust_Flag,如果PMI_Adjust_Flag=1,则表示基站需要用户设备反馈非周期PMI,反之,如果PMI_Adjust_Flag=0,则表示基站不需要用户设备反馈非周期PMI。替选地,作为另一示例实现方式,也可通过修改现有的RRC信令,触发用户设备基于来自基站的非周期参考信号(CSI-RS)而反馈非周期CSI(包括PMI、CQI和RI)。
然后,该方案进行到步骤S705。在步骤S705中,用户设备基于所配置的非周期波束赋形参考信号而生成非周期PMI并且将所生成的PMI反馈给基站。
接着,在步骤S706中,基站可以根据所接收到的非周期PMI而确定对应的预编码码本W’,然后在步骤S707中基于该预编码码本W’而确定有效预编码码本。作为一种示例方式,基站可以直接将预编码码本W’确定为有效预编码码本。替选地,基站还可以将预编码码本W’和根据周期性地反馈的PMI而确定的预编码码本W的组合确定为有效预编码码本。该组合例如可以是线性组合。
在该实施例中主要描述了与上述基于波束选择信息的PMI调整方案的不同之处,对于其它类似的内容可以参见以上相应位置的描述,在此不再重复。
应指出,尽管以上分开描述了基于用户设备反馈的波束选择信息进行PMI调整以及基于用户设备反馈的非周期PMI进行PMI调整的两个实施例,但是在实际实现时,本领域技术人员也可以根据本公开的原理将上述两个实施例进行结合。例如,基站在生成下行控制信息指示用户设备反馈信息时,可以通过利用现有的DCI format 0中的两比特的冗余位或新增位来进行指示。例如,作为一种示例方式,可以设置两比特的标识信息PMI_Adjsut_Flag,如果PMI_Adjsut_Flag=00,则表示用户设备无需进行反馈;如果PMI_Adjust_Flag=10,则表示需要用户设备反馈波束选择信息;而如果 PMI_Adjust_Flag=11,则表示需要用户设备反馈非周期PMI。这样,用户设备可以根据所接收到的下行控制信息而进行适当的信息反馈,从而基站可根据所接收到反馈信息而采用适当的PMI调整策略。
根据上述本公开的实施例,除了如现有技术中一样周期性地配置参考信号之外,还根据用户设备的通信质量而选择性地触发基站为用户设备配置非周期波束赋形参考信号,以根据用户设备基于非周期波束赋形参考信号反馈的波束选择信息或非周期PMI而判断是否需要对周期性地反馈的PMI进行调整,从而避免了高速场景下由于PMI过期而引起的预编码错配和用户设备的通信质量劣化的问题。
与以上描述的根据本公开的实施例的PMI调整方案相对应的,下面将参照图8至图10来描述根据本公开的实施例的无线通信系统中的基站端和用户设备端的配置。
图8是示出根据本公开的实施例的无线通信系统中的基站端的电子设备的功能配置示例的框图。
如图8所示,根据该实施例的电子设备800可包括参考信号配置单元802、下行控制信息生成单元804、调整码本确定单元806和有效码本确定单元808。
应指出,这里描述的各个单元仅是根据其所实现的具体功能划分的逻辑功能模块,而不是用于限制具体的实现方式。在实际实现时,上述各个功能单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
参考信号配置单元802可被配置成响应于来自用户设备的请求信令而为用户配置与第一波束组相关的非周期波束赋形参考信号。该第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的。
优选地,该参考信号配置单元802还可被配置成为用户设备配置周期性参考信号,并且根据用户设备响应于该周期性参考信号反馈的信道状态信息而确定第一波束组。该周期性参考信号可以是非预编码的或波束赋形的。
具体地,如上所述,参考信号配置单元802根据用户设备周期性地反馈的CSI中的PMI而确定长期/宽带反馈预编码码本W1,基于预编码码本W1确定第一波束组,从而基于第一波束组为用户设备配置非周期波束赋形参考信号。 上述参考信号包括例如CSI-RS。
下行控制信息生成单元804可被配置成生成下行控制信息以指示用户设备根据非周期波束赋形参考信号而反馈波束选择信息。
优选地,下行控制信息生成单元804可通过修改现有的DCI format0,利用其中的冗余位或新增位作为PMI_Adjust_Flag来指示用户设备反馈波束选择信息。
调整码本确定单元806可被配置成根据用户反馈的波束选择信息,确定一个或多个候选波束以及与这一个或多个选择波束对应的一个或多个预编码码本。
具体地,调整码本确定单元806可根据位图形式的波束选择信息中的、指示基于非周期波束赋形参考信号的下行信道质量测量结果的比特信息来确定一个或多个候选波束。例如,可将与位图X中为1的比特位对应的波束确定为一个或多个候选波束。替选地,调整码本确定单元806还可根据用户设备反馈的基于非周期波束赋形参考信号的下行信道质量测量结果,将幅值排序靠前的预定数量的下行信道质量测量结果对应的波束确定为一个或多个候选波束。然后,调整码本确定单元806可确定与这一个或多个候选波束对应的一个或多个第二预编码码本,例如,上述预编码码本WA和WB。确定第二预编码码本的具体过程可参见以上描述,在此不再重复。
有效码本确定单元808可被配置成基于所确定的一个或多个第二预编码码本(例如,上述预编码码本WA和WB),确定有效预编码码本。例如,有效码本确定单元808可将WA和WB的组合确定为有效预编码码本。替选地,例如,有效码本确定单元808可根据信道质量测量结果而将WA和WB之一确定为有效预编码码本。
优选地,除了与候选波束对应的一个或多个第二预编码码本之外,有效码本确定单元808还基于根据周期性地反馈的信道状态信息而确定的第一预编码码本(例如,上述预编码码本W)来确定有效预编码码本。
具体地,作为一种示例实现,有效码本确定单元808可被配置成如果一个或多个第二预编码码本中的任意一个与第一预编码码本之间的差别小于或等于预定阈值,则将第一预编码码本确定为有效预编码码本WE,即,WE=W。 另一方面,如果一个或多个第二预编码码本中的每个与第一预编码码本之间的差别都大于预定阈值,则有效预编码码本确定单元808可以将第一预编码码本与一个或多个第二预编码码本的组合(优选地,线性组合)确定为有效预编码码本,例如,WE=aW+bWA+cWB。权重值a、b和c可以是预先确定的,或者也可以由有效码本确定单元808根据用户设备的移动速度和/或波束选择信息(具体地,用户设备反馈的基于非周期波束赋形参考信号的下行信道质量测量结果的幅值)来确定。
图9是示出根据本公开的另一实施例的无线通信系统中的基站端的电子设备的功能配置示例的框图。
如图9所示,根据该实施例的电子设备900可包括参考信号配置单元902和下行控制信息生成单元904。
应指出,这里描述的各个单元仅是根据其所实现的具体功能划分的逻辑功能模块,而不是用于限制具体的实现方式。在实际实现时,上述各个功能单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
参考信号配置单元902可被配置成响应于来自用户设备的请求信令,为用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的。
下行控制信息生成单元904可被配置成生成下行控制信息,以指示用户设备根据非周期波束赋形参考信号而反馈非周期PMI。
优选地,电子设备900还可包括码本确定单元,该码本确定单元可被配置成根据所接收到的非周期PMI而确定对应的第二预编码码本,并且进一步基于该第二预编码码本而确定有效预编码码本。例如,码本确定单元可直接将第二预编码码本确定为有效预编码码本。
优选地,除了第二预编码码本之外,码本确定单元还基于根据周期性地反馈的PMI确定的第一预编码码本来确定有效预编码码本。例如,可将第二预编码码本与第一预编码码本的组合(例如,线性组合)确定为有效预编码码本。
应指出,上述电子设备800和900可以以芯片级来实现,或者也可通过包括其它外部部件而以设备级来实现。例如,电子设备800和900可以作为整机 而工作为基站,其可包括通信接口以用于执行收发操作,例如,接收来自用户设备的请求信令,向用户设备发送非周期波束赋形参考信号和下行控制信息,接收来自用户设备的波束选择信息或非周期PMI,将所确定的有效预编码码本发送给用户设备等等。
图10是示出根据本公开的实施例的无线通信系统中的用户设备端的电子设备的功能配置示例的框图。
如图10所示,根据本实施例的电子设备1000可包括评估单元1002、请求单元1004和生成单元1006。
应指出,这里描述的各个单元仅是根据其所实现的具体功能划分的逻辑功能模块,而不是用于限制具体的实现方式。在实际实现时,上述各个功能单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
评估单元1002可被配置成对与基站间的通信质量进行评估,以确定通信质量是否低于预定阈值。该操作例如可以周期性地执行。
请求单元1004可被配置成在评估单元1002确定通信质量低于预定阈值的情况下,生成请求信令以请求基站为用户设备配置与第一波束组相关的非周期波束赋形参考信号。第一波束组是基站根据周期性地反馈的信道状态信息而确定的,其具体确定过程可参见以上描述,在此不再重复。
生成单元1006可被配置成响应于来自基站的下行控制信息,根据非周期波束赋形参考信号而生成波束选择信息,以供基站基于波束选择信息而确定有效预编码码本。
具体地,信息生成单元1006可被配置成响应于DCI format 0中的冗余位或新增位(PMI_Adjust_Flag=1),根据基于非周期波束赋形参考信号的下行信道质量测量结果,以位图形式生成波束选择信息。例如,将测量结果中幅值排序靠前的、预定数量的下行信道质量测量结果所对应的比特位设置为1并且将其余比特位设置为0,从而生成上述位图X作为波束选择信息。替选地,信息生成单元1006也可以直接将基于非周期波束赋形参考信号的下行信道质量测量结果生成为波束选择信息。波束选择信息是与第一波束组中的波束一一对应的。
优选地,信息生成单元1006还可被配置成响应于来自基站的周期性参考信号(非预编码的或波束赋形的),生成要周期性地反馈的信道状态信息。
图11是示出根据本公开的另一实施例的无线通信系统中的用户设备端的电子设备的功能配置示例的框图。
如图11所示,根据该实施例的电子设备1100可包括评估单元1102和请求单元1104。
应指出,这里描述的各个单元仅是根据其所实现的具体功能划分的逻辑功能模块,而不是用于限制具体的实现方式。在实际实现时,上述各个功能单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
这里的评估单元1102和请求单元1104的功能配置示例与以上参照图10描述的评估单元1002和请求单元1004的功能配置示例相同,在此不再重复描述。
优选地,电子设备1100还可包括生成单元,该生成单元可被配置成响应于来自基站的下行控制信息,根据非周期波束赋形参考信号,生成要发送至基站的非周期预编码矩阵指示,以由基站基于非周期预编码矩阵指示确定有效预编码码本。
应理解,上述电子设备1000和1100可以以芯片级来实现,或者也可通过包括其它外部部件而以设备级来实现。例如,电子设备1000和1100可以作为整机而工作为用户设备,其可包括通信接口以用于执行收发操作,例如,向基站发送请求信令,接收来自基站的周期性参考信号和非周期波束赋形参考信号以及下行控制信息,向基站发送信道状态信息以及波束选择信息或者非周期PMI,接收来自基站的有效预编码码本等等。
应指出,这里描述的基站端的电子设备800和900以及用户设备端的电子设备1000和1100的配置是与以上参照图2至图7描述的PMI调整方案相对应的,因此,在此未详细描述的内容可参见以上相应位置的描述,在此不再重复。
此外,还应指出,尽管以上参照图8至图11描述了电子设备800至1100的功能配置,但是这仅是示例而非限制,并且本领域技术人员可以根据本公开 的原理和实际情况而对上述功能配置进行修改,例如,对上述功能模块进行添加、删除、组合、子组合和变更等,并且所有这样的变型应认为均落入本公开的范围内。
图12是示出根据本公开的实施例的无线通信系统的配置示例的框图。
如图12所示,根据该实施例的无线通信系统1200可包括基站1210和用户设备1220。
基站1210可包括处理电路1211和通信接口1212。
处理电路1211可被配置成执行以上参照图8和图9所描述的基站端的电子设备800和900的各个单元的功能。其具体实现形式可以包括CPU、DSP、专用集成电路等。
通信接口1212可被配置成执行与用户设备间的收发操作。
用户设备1220可包括处理电路1221和通信接口1222。
处理电路1221可被配置成执行与以上参照图10和图11描述的用户设备端的电子设备1000和1100的各个单元的功能。其具体实现形式可以包括CPU、DSP、专用集成电路等。
通信接口1222可被配置成执行与基站间的收发操作。
与上述设备实施例相对应的,本公开还提供了以下方法实施例。
图13是示出根据本公开的实施例的无线通信系统中的基站端的方法的过程示例的流程图。
如图13所示,根据该实施例的方法1300开始于步骤S1301。在步骤S1301中,响应于来自用户设备的请求信令,为用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的。
然后,该方法进行到步骤S1302。在步骤S1302中,生成下行控制信息以指示用户设备根据非周期波束赋形参考信号反馈波束选择信息。
接下来,该方法进行到步骤S1303。在步骤S1303中,根据波束选择信息,确定一个或多个候选波束以及与一个或多个候选波束对应的一个或多个第二预编码码本。
最后,在步骤S1304中,基于一个或多个第二预编码码本,确定有效预编 码码本。
优选地,在步骤S1304中,还基于根据周期性地反馈的信道状态信息而确定的第一预编码码本,确定有效预编码码本。
图14是示出根据本公开的另一实施例的无线通信系统中的基站端的方法的过程示例的流程图。
如图14所示,根据该实施例的方法1400开始于步骤S1401。在步骤S1401中,响应于来自用户设备的请求信令,为用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的。
然后,该方法进行到步骤S1402。在步骤S1402中,生成下行控制信息,以指示用户设备根据非周期波束赋形参考信号反馈非周期PMI。
优选地,该方法还可包括如下步骤:根据用户设备反馈的非周期PMI而确定对应的第二预编码码本,并且进一步基于该第二预编码码本而确定有效预编码码本。优选地,还可根据第二预编码码本和基于周期性反馈的PMI而确定的第一预编码码本的组合来确定有效预编码码本。
应指出,图13和14所示的方法实施例是与以上参照图8和图9描述的基站端的电子设备的实施例相对应的,因此,在此未详细描述的内容可参见以上相应位置的描述,在此不再重复。
图15是示出根据本公开的实施例的无线通信系统中的用户设备端的方法的过程示例的流程图。
如图15所示,该方法开始于步骤S1501。在步骤S1501中,确定与基站间的通信质量是否低于预定阈值。
然后,该方法进行到步骤S1502。在步骤S1502中,在确定通信质量低于预定阈值的情况下,生成要发送至基站的请求信令,以请求基站为用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的。
接着,该方法进行到步骤S1503。在步骤S1503中,响应于来自基站的下行控制信息,根据非周期波束赋形参考信号,生成要发送至基站的波束选择信息,以由基站基于波束选择信息确定有效预编码码本。
图16是示出根据本公开的另一实施例的无线通信系统中的用户设备端的方法的过程示例的流程图。
如图16所示,该方法开始于步骤S1601。在步骤S1601中,确定与基站间的通信质量是否低于预定阈值。
然后,该方法进行到步骤S1602。在步骤S1602中,在确定通信质量低于预定阈值的情况下,生成要发送至基站的请求信令,以请求基站为用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,第一波束组是基站根据用户设备周期性地反馈的信道状态信息而确定的。
优选地,该方法还可包括如下步骤:响应于来自基站的下行控制信息,根据非周期波束赋形参考信号,生成要发送至基站的非周期PMI,以由基站基于该非周期PMI而确定有效预编码码本。
应指出,图15和图16所示的方法实施例是与以上参照图10和图11描述的用户设备端的电子设备的实施例相对应的,因此,在此未详细描述的内容可参见以上相应位置的描述,在此不再重复。
应理解,根据本公开的实施例的存储介质和程序产品中的机器可执行的指令还可以被配置成执行与上述装置实施例相对应的方法,因此在此未详细描述的内容可参考先前相应位置的描述,在此不再重复进行描述。
相应地,用于承载上述包括机器可执行的指令的程序产品的存储介质也包括在本发明的公开中。该存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,还应该指出的是,上述系列处理和装置也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图17所示的通用个人计算机1700安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图17是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。
在图17中,中央处理单元(CPU)1701根据只读存储器(ROM)1702中存储的程序或从存储部分1708加载到随机存取存储器(RAM)1703的程序执行各种处理。在RAM 1703中,也根据需要存储当CPU 1701执行各种处理等时所需的数据。
CPU 1701、ROM 1702和RAM 1703经由总线1704彼此连接。输入/输出接口1705也连接到总线1704。
下述部件连接到输入/输出接口1705:输入部分1706,包括键盘、鼠标等;输出部分1707,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1708,包括硬盘等;和通信部分1709,包括网络接口卡比如LAN卡、调制解调器等。通信部分1709经由网络比如因特网执行通信处理。
根据需要,驱动器1710也连接到输入/输出接口1705。可拆卸介质1711比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1710上,使得从中读出的计算机程序根据需要被安装到存储部分1708中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1711安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图17所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1711。可拆卸介质1711的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1702、存储部分1708中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
应用示例
本公开的技术能够应用于各种产品,包括基站和用户设备。具体地,基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、 笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照图18至图21描述根据本公开的应用示例。
[关于基站的应用示例]
(第一应用示例)
图18是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1800包括一个或多个天线1810以及基站设备1820。基站设备1820和每个天线1810可以经由RF线缆彼此连接。
天线1810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1820发送和接收无线信号。如图18所示,eNB 1800可以包括多个天线1810。例如,多个天线1810可以与eNB 1800使用的多个频段兼容。虽然图18示出其中eNB 1800包括多个天线1810的示例,但是eNB 1800也可以包括单个天线1810。
基站设备1820包括控制器1821、存储器1822、网络接口1823以及无线通信接口1825。
控制器1821可以为例如CPU或DSP,并且操作基站设备1820的较高层的各种功能。例如,控制器1821根据由无线通信接口1825处理的信号中的数据来生成数据分组,并经由网络接口1823来传递所生成的分组。控制器1821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1822包括RAM和ROM,并且存储由控制器1821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1823为用于将基站设备1820连接至核心网1824的通信接口。控制器1821可以经由网络接口1823而与核心网节点或另外的eNB进行通信。 在此情况下,eNB 1800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1823为无线通信接口,则与由无线通信接口1825使用的频段相比,网络接口1823可以使用较高频段用于无线通信。
无线通信接口1825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1810来提供到位于eNB 1800的小区中的终端的无线连接。无线通信接口1825通常可以包括例如基带(BB)处理器1826和RF电路1827。BB处理器1826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1821,BB处理器1826可以具有上述逻辑功能的一部分或全部。BB处理器1826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1826的功能改变。该模块可以为插入到基站设备1820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1827可以包括例如混频器、滤波器和放大器,并且经由天线1810来传送和接收无线信号。
如图18所示,无线通信接口1825可以包括多个BB处理器1826。例如,多个BB处理器1826可以与eNB 1800使用的多个频段兼容。如图18所示,无线通信接口1825可以包括多个RF电路1827。例如,多个RF电路1827可以与多个天线元件兼容。虽然图18示出其中无线通信接口1825包括多个BB处理器1826和多个RF电路1827的示例,但是无线通信接口1825也可以包括单个BB处理器1826或单个RF电路1827。
(第二应用示例)
图19是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1930包括一个或多个天线1940、基站设备1950和RRH 1960。RRH 1960和每个天线1940可以经由RF线缆而彼此连接。基站设备1950和RRH 1960可以经由诸如光纤线缆的高速线路而彼此连接。
天线1940中的每一个均包括单个或多个天线元件(诸如包括在MIMO天 线中的多个天线元件)并且用于RRH 1960发送和接收无线信号。如图19所示,eNB 1930可以包括多个天线1940。例如,多个天线1940可以与eNB1930使用的多个频段兼容。虽然图19示出其中eNB 1930包括多个天线1940的示例,但是eNB 1930也可以包括单个天线1940。
基站设备1950包括控制器1951、存储器1952、网络接口1953、无线通信接口1955以及连接接口1957。控制器1951、存储器1952和网络接口1953与参照图18描述的控制器1821、存储器1822和网络接口1823相同。
无线通信接口1955支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1960和天线1940来提供到位于与RRH 1960对应的扇区中的终端的无线通信。无线通信接口1955通常可以包括例如BB处理器1956。除了BB处理器1956经由连接接口1957连接到RRH 1960的RF电路1964之外,BB处理器1956与参照图18描述的BB处理器1826相同。如图19所示,无线通信接口1955可以包括多个BB处理器1956。例如,多个BB处理器1956可以与eNB 1930使用的多个频段兼容。虽然图19示出其中无线通信接口1955包括多个BB处理器1956的示例,但是无线通信接口1955也可以包括单个BB处理器1956。
连接接口1957为用于将基站设备1950(无线通信接口1955)连接至RRH1960的接口。连接接口1957还可以为用于将基站设备1950(无线通信接口1955)连接至RRH 1960的上述高速线路中的通信的通信模块。
RRH 1960包括连接接口1961和无线通信接口1963。
连接接口1961为用于将RRH 1960(无线通信接口1963)连接至基站设备1950的接口。连接接口1961还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1963经由天线1940来传送和接收无线信号。无线通信接口1963通常可以包括例如RF电路1964。RF电路1964可以包括例如混频器、滤波器和放大器,并且经由天线1940来传送和接收无线信号。如图19所示,无线通信接口1963可以包括多个RF电路1964。例如,多个RF电路1964可以支持多个天线元件。虽然图19示出其中无线通信接口1963包括多个RF电路1964的示例,但是无线通信接口1963也可以包括单个RF电路1964。
在图18和图19所示的eNB 1800和eNB 1930中,上述电子设备800和900中的通信接口可以由无线通信接口1825以及无线通信接口1955和/或无线通信接口1963实现。参考信号配置单元、下行控制信息生成单元、码本确定单元等的功能的至少一部分也可以由控制器1821和控制器1951实现。
[关于用户设备的应用示例]
(第一应用示例)
图20是示出可以应用本公开内容的技术的智能电话2000的示意性配置的示例的框图。智能电话2000包括处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012、一个或多个天线开关2015、一个或多个天线2016、总线2017、电池2018以及辅助控制器2019。
处理器2001可以为例如CPU或片上系统(SoC),并且控制智能电话2000的应用层和另外层的功能。存储器2002包括RAM和ROM,并且存储数据和由处理器2001执行的程序。存储装置2003可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2004为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2000的接口。
摄像装置2006包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2007可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2008将输入到智能电话2000的声音转换为音频信号。输入装置2009包括例如被配置为检测显示装置2010的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2010包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2000的输出图像。扬声器2011将从智能电话2000输出的音频信号转换为声音。
无线通信接口2012支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2012通常可以包括例如BB处理器2013和RF电路2014。BB处理器2013可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2014 可以包括例如混频器、滤波器和放大器,并且经由天线2016来传送和接收无线信号。无线通信接口2012可以为其上集成有BB处理器2013和RF电路2014的一个芯片模块。如图20所示,无线通信接口2012可以包括多个BB处理器2013和多个RF电路2014。虽然图20示出其中无线通信接口2012包括多个BB处理器2013和多个RF电路2014的示例,但是无线通信接口2012也可以包括单个BB处理器2013或单个RF电路2014。
此外,除了蜂窝通信方案之外,无线通信接口2012还可以支持另外类型的无线通信方案,诸如设备到设备(D2D)通信方案、短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2012可以包括针对每种无线通信方案的BB处理器2013和RF电路2014。
天线开关2015中的每一个在包括在无线通信接口2012中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2016的连接目的地。
天线2016中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2012传送和接收无线信号。如图20所示,智能电话2000可以包括多个天线2016。虽然图20示出其中智能电话2000包括多个天线2016的示例,但是智能电话2000也可以包括单个天线2016。
此外,智能电话2000可以包括针对每种无线通信方案的天线2016。在此情况下,天线开关2015可以从智能电话2000的配置中省略。
总线2017将处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012以及辅助控制器2019彼此连接。电池2018经由馈线向图20所示的智能电话2000的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2019例如在睡眠模式下操作智能电话2000的最小必需功能。
在图20所示的智能电话2000中,上述电子设备1000和1100中的通信接口可以由无线通信接口2012实现。评估单元、请求单元和生成单元的功能的至少一部分也可以由处理器2001或辅助控制器2019实现。
(第二应用示例)
图21是示出可以应用本公开内容的技术的汽车导航设备2120的示意性配置的示例的框图。汽车导航设备2120包括处理器2121、存储器2122、全球定位系统(GPS)模块2124、传感器2125、数据接口2126、内容播放器2127、存储介质接口2128、输入装置2129、显示装置2130、扬声器2131、无线通信接口2133、一个或多个天线开关2136、一个或多个天线2137以及电池2138。
处理器2121可以为例如CPU或SoC,并且控制汽车导航设备2120的导航功能和另外的功能。存储器2122包括RAM和ROM,并且存储数据和由处理器2121执行的程序。
GPS模块2124使用从GPS卫星接收的GPS信号来测量汽车导航设备2120的位置(诸如纬度、经度和高度)。传感器2125可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2126经由未示出的终端而连接到例如车载网络2141,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2127再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2128中。输入装置2129包括例如被配置为检测显示装置2130的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2130包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2131输出导航功能的声音或再现的内容。
无线通信接口2133支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2133通常可以包括例如BB处理器2134和RF电路2135。BB处理器2134可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2135可以包括例如混频器、滤波器和放大器,并且经由天线2137来传送和接收无线信号。无线通信接口2133还可以为其上集成有BB处理器2134和RF电路2135的一个芯片模块。如图21所示,无线通信接口2133可以包括多个BB处理器2134和多个RF电路2135。虽然图21示出其中无线通信接口2133包括多个BB处理器2134和多个RF电路2135的示例,但是无线通信接口2133也可以包括单个BB处理器2134或单个RF电路2135。
此外,除了蜂窝通信方案之外,无线通信接口2133还可以支持另外类型 的无线通信方案,诸如设备到设备(D2D)通信方案、短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2133可以包括BB处理器2134和RF电路2135。
天线开关2136中的每一个在包括在无线通信接口2133中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2137的连接目的地。
天线2137中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2133传送和接收无线信号。如图21所示,汽车导航设备2120可以包括多个天线2137。虽然图21示出其中汽车导航设备2120包括多个天线2137的示例,但是汽车导航设备2120也可以包括单个天线2137。
此外,汽车导航设备2120可以包括针对每种无线通信方案的天线2137。在此情况下,天线开关2136可以从汽车导航设备2120的配置中省略。
电池2138经由馈线向图21所示的汽车导航设备2120的各个块提供电力,馈线在图中被部分地示为虚线。电池2138累积从车辆提供的电力。
在图21示出的汽车导航设备2120中,上述电子设备1000和1100中的通信接口可以由无线通信接口2133实现。评估单元、确定单元和生成单元的功能的至少一部分也可以由处理器2121实现。
本公开内容的技术也可以被实现为包括汽车导航设备2120、车载网络2141以及车辆模块2142中的一个或多个块的车载系统(或车辆)2140。车辆模块2142生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2141。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执 行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (28)

  1. 一种无线通信系统中的基站端的电子设备,所述电子设备包括处理电路,所述处理电路被配置成:
    响应于来自用户设备的请求信令,为所述用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,所述第一波束组是所述基站根据所述用户设备周期性地反馈的信道状态信息而确定的;
    生成下行控制信息以指示所述用户设备根据所述非周期波束赋形参考信号反馈波束选择信息;
    根据所述波束选择信息,确定一个或多个候选波束以及与所述一个或多个候选波束对应的一个或多个第二预编码码本;以及
    基于所述一个或多个第二预编码码本,确定有效预编码码本。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路进一步被配置成:还基于根据所述用户设备周期性地反馈的信道状态信息确定的第一预编码码本,确定所述有效预编码码本。
  3. 根据权利要求1所述的电子设备,其中,所述下行控制信息包括DCI format 0,并且所述处理电路进一步被配置成利用DCI format 0中的冗余位或新增位对所述用户设备进行指示。
  4. 根据权利要求1所述的电子设备,其中,所述处理电路进一步被配置成:根据位图形式的所述波束选择信息中的、指示基于所述非周期波束赋形参考信号的下行信道质量测量结果的比特信息来确定所述一个或多个候选波束。
  5. 根据权利要求1所述的电子设备,其中,所述处理电路进一步被配置成:将与所述波束选择信息中的、幅值排序靠前的预定数量的下行信道质量测量结果对应的波束确定为所述一个或多个候选波束。
  6. 根据权利要求2所述的电子设备,其中,所述处理电路进一步被配置成:
    如果所述一个或多个第二预编码码本中的任意一个与所述第一预编码码本之间的差别小于或等于预定阈值,则将所述第一预编码码本确定为所述有效预编码码本;以及
    如果所述一个或多个第二预编码码本中的每个与所述第一预编码码本之 间的差别都大于预定阈值,则将所述第一预编码码本与所述一个或多个第二预编码码本的组合确定为所述有效预编码码本。
  7. 根据权利要求6所述的电子设备,其中,所述组合是线性组合。
  8. 根据权利要求7所述的电子设备,其中,所述处理电路进一步被配置成:根据所述用户设备的移动速度和/或所述波束选择信息,对所述第一预编码码本与所述一个或多个第二预编码码本进行线性组合以确定所述有效预编码码本。
  9. 根据权利要求1所述的电子设备,其中,所述处理电路进一步被配置成:为所述用户设备配置周期性参考信号,并且根据所述用户设备响应于所述周期性参考信号反馈的所述信道状态信息而确定所述第一波束组,所述周期性参考信号是非预编码的或波束赋形的。
  10. 根据权利要求9所述的电子设备,其中,所述处理电路进一步被配置成:基于所述信道状态信息而确定长期/宽带反馈预编码码本,并且基于所述长期/宽带反馈预编码码本而确定所述第一波束组。
  11. 根据权利要求1至10中任一项所述的电子设备,其中,所述参考信号包括信道状态信息-参考信号CSI-RS。
  12. 根据权利要求1至10中任一项所述的电子设备,其中,所述电子设备还工作为所述基站,并且所述电子设备还包括:
    通信接口,被配置成执行收发操作。
  13. 一种无线通信系统中的用户设备端的电子设备,所述电子设备包括处理电路,所述处理电路被配置成:
    确定与基站间的通信质量是否低于预定阈值;
    在确定所述通信质量低于所述预定阈值的情况下,生成要发送至所述基站的请求信令,以请求所述基站为所述用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,所述第一波束组是所述基站根据所述用户设备周期性地反馈的信道状态信息而确定的;以及
    响应于来自所述基站的下行控制信息,根据所述非周期波束赋形参考信号,生成要发送至所述基站的波束选择信息,以由所述基站基于所述波束选择信息确定有效预编码码本。
  14. 根据权利要求13所述的电子设备,其中,所述下行控制信息包括DCI format 0,并且所述处理电路进一步被配置成响应于DCI format 0中的冗余位或新增位而生成所述波束选择信息。
  15. 根据权利要求13所述的电子设备,其中,所述处理电路进一步被配置成:根据基于所述非周期波束赋形参考信号的下行信道质量测量结果,以位图形式生成所述波束选择信息。
  16. 根据权利要求13所述的电子设备,其中,所述处理电路进一步被配置成将基于所述非周期波束赋形参考信号的下行信道质量测量结果生成为所述波束选择信息。
  17. 根据权利要求13所述的电子设备,其中,所述波束选择信息是与所述第一波束组对应的。
  18. 根据权利要求13所述的电子设备,其中,所述处理电路进一步被配置成响应于来自所述基站的周期性参考信号,生成要周期性地反馈给所述基站的所述信道状态信息。
  19. 根据权利要求根据权利要求13至18中任一项所述的电子设备,其中,所述参考信号包括信道状态信息-参考信号CSI-RS。
  20. 根据权利要求13至18中任一项所述的电子设备,其中,所述电子设备还工作为所述用户设备,并且所述电子设备还包括:
    通信接口,被配置成执行收发操作。
  21. 一种无线通信系统,包括:
    用户设备,所述用户设备包括第一处理电路,所述第一处理电路被配置成:
    确定与基站间的通信质量是否低于预定阈值,
    在确定所述通信质量低于所述预定阈值的情况下,生成要发送至所述基站的请求信令,以及
    响应于来自所述基站的下行控制信息,根据所述非周期波束赋形参考信号,生成要发送至所述基站的波束选择信息;以及
    所述基站,所述基站包括第二处理电路,所述第二处理电路被配置成:
    响应于所述请求信令,为所述用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,所述第一波束组是所述基站根据所述用户设备周 期性地反馈的信道状态信息而确定的,
    生成所述下行控制信息以指示所述用户设备反馈所述波束选择信息,
    根据所述波束选择信息,确定一个或多个候选波束以及与所述一个或多个候选波束对应的一个或多个第二预编码码本,以及
    基于所述一个或多个第二预编码码本,确定有效预编码码本。
  22. 一种无线通信系统中的基站端的方法,所述方法包括:
    响应于来自用户设备的请求信令,为所述用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,所述第一波束组是所述基站根据所述用户设备周期性地反馈的信道状态信息而确定的;
    生成下行控制信息以指示所述用户设备根据所述非周期波束赋形参考信号反馈波束选择信息;
    根据所述波束选择信息,确定一个或多个候选波束以及与所述一个或多个候选波束对应的一个或多个第二预编码码本;以及
    基于所述一个或多个第二预编码码本,确定有效预编码码本。
  23. 一种无线通信系统中的用户设备端的方法,所述方法包括:
    确定与基站间的通信质量是否低于预定阈值;
    在确定所述通信质量低于所述预定阈值的情况下,生成要发送至所述基站的请求信令,以请求所述基站为所述用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,所述第一波束组是所述基站根据所述用户设备周期性地反馈的信道状态信息而确定的;以及
    响应于来自所述基站的下行控制信息,根据所述非周期波束赋形参考信号,生成要发送至所述基站的波束选择信息,以由所述基站基于所述波束选择信息确定有效预编码码本。
  24. 一种无线通信系统中的基站端的电子设备,所述电子设备包括处理电路,所述处理电路被配置成:
    响应于来自用户设备的请求信令,为所述用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,所述第一波束组是所述基站根据所述用户设备周期性地反馈的信道状态信息而确定的;以及
    生成下行控制信息以指示所述用户设备根据所述非周期波束赋形参考信 号反馈非周期预编码矩阵指示。
  25. 根据权利要求24所述的电子设备,其中,所述处理电路进一步被配置成:根据所述非周期预编码矩阵指示确定第二预编码码本,并且根据所述第二预编码码本确定有效预编码码本。
  26. 根据权利要求25所述的电子设备,所述处理电路进一步被配置成:还基于根据周期性地反馈的信道状态信息而确定的第一预编码码本,确定所述有效预编码码本。
  27. 一种无线通信系统中的用户设备端的电子设备,所述电子设备包括处理电路,所述处理电路被配置成:
    确定与基站间的通信质量是否低于预定阈值;以及
    在确定所述通信质量低于所述预定阈值的情况下,生成要发送至所述基站的请求信令,以请求所述基站为所述用户设备配置与第一波束组相关的非周期波束赋形参考信号,其中,所述第一波束组是所述基站根据所述用户设备周期性地反馈的信道状态信息而确定的。
  28. 根据权利要求27所述的电子设备,其中,所述处理电路进一步被配置成:响应于来自所述基站的下行控制信息,根据所述非周期波束赋形参考信号,生成要发送至所述基站的非周期预编码矩阵指示,以由所述基站基于所述非周期预编码矩阵指示确定有效预编码码本。
PCT/CN2017/093807 2016-08-19 2017-07-21 无线通信系统中的电子设备和方法以及无线通信系统 WO2018032934A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US16/314,661 US10630354B2 (en) 2016-08-19 2017-07-21 Electronic device and method in wireless communication system, and wireless communication system
CN201780033458.9A CN109314553B (zh) 2016-08-19 2017-07-21 无线通信系统中的电子设备和方法以及无线通信系统
JP2018567747A JP2019531613A (ja) 2016-08-19 2017-07-21 無線通信システムにおける電子機器、方法及び無線通信システム
KR1020197007492A KR20190040978A (ko) 2016-08-19 2017-07-21 무선 통신 시스템에서의 전자 디바이스 및 방법, 및 무선 통신 시스템
EP17840909.0A EP3503423A4 (en) 2016-08-19 2017-07-21 ELECTRONIC DEVICE AND METHOD IN WIRELESS COMMUNICATION SYSTEM AND WIRELESS COMMUNICATION METHOD
US16/809,560 US10804986B2 (en) 2016-08-19 2020-03-05 Electronic device and method in wireless communication system, and wireless communication system
US17/023,392 US10917151B2 (en) 2016-08-19 2020-09-17 Electronic device and method in wireless communication system, and wireless communication system
US17/152,805 US11290161B2 (en) 2016-08-19 2021-01-20 Electronic device and method in wireless communication system, and wireless communication system
US17/674,840 US11671152B2 (en) 2016-08-19 2022-02-18 Electronic device and method in wireless communication system, and wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610694565.3A CN107769826A (zh) 2016-08-19 2016-08-19 无线通信系统中的电子设备和方法以及无线通信系统
CN201610694565.3 2016-08-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/314,661 A-371-Of-International US10630354B2 (en) 2016-08-19 2017-07-21 Electronic device and method in wireless communication system, and wireless communication system
US16/809,560 Division US10804986B2 (en) 2016-08-19 2020-03-05 Electronic device and method in wireless communication system, and wireless communication system

Publications (1)

Publication Number Publication Date
WO2018032934A1 true WO2018032934A1 (zh) 2018-02-22

Family

ID=61196299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093807 WO2018032934A1 (zh) 2016-08-19 2017-07-21 无线通信系统中的电子设备和方法以及无线通信系统

Country Status (6)

Country Link
US (5) US10630354B2 (zh)
EP (1) EP3503423A4 (zh)
JP (1) JP2019531613A (zh)
KR (1) KR20190040978A (zh)
CN (2) CN107769826A (zh)
WO (1) WO2018032934A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769826A (zh) 2016-08-19 2018-03-06 索尼公司 无线通信系统中的电子设备和方法以及无线通信系统
US10868599B2 (en) * 2016-08-22 2020-12-15 Telefonaktiebolaget Lm Ericsson (Publ) Radio node and method therein for determining precoders
CN109890079B (zh) * 2017-03-23 2020-03-10 华为技术有限公司 一种资源配置方法及其装置
US11102776B2 (en) * 2017-10-19 2021-08-24 Apple Inc. Apparatuses for selecting communication beams based on normalized time of arrival (ToA) of reference signals
CN110289896A (zh) * 2018-03-15 2019-09-27 索尼公司 电子装置、无线通信方法以及计算机可读介质
CN110290551B (zh) * 2018-03-19 2023-02-28 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US10840986B2 (en) * 2018-09-28 2020-11-17 Mediatek Inc. Enhanced type II channel state information in mobile communications
US11121751B2 (en) * 2018-11-05 2021-09-14 Qualcomm Incorporated Techniques for multilayer beamforming in wireless communications
DE102020107921A1 (de) * 2019-04-12 2020-10-15 Samsung Electronics Co., Ltd. Elektronische vorrichtung mit mehreren plattenantennen und betriebsverfahren dafür
CN113906687B (zh) * 2019-05-09 2024-03-01 华为技术有限公司 自适应波束控制系统和方法
US11190252B2 (en) * 2019-06-28 2021-11-30 Qualcomm Incorporated Antenna element selection system
CN112399430A (zh) * 2019-08-15 2021-02-23 索尼公司 无线通信系统中的用户设备、电子设备、方法及存储介质
US11979852B2 (en) * 2019-11-07 2024-05-07 Qualcomm Incorporated Paging indication for communicating a paging control channel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599814A (zh) * 2009-07-08 2009-12-09 北京邮电大学 协作通信中的下行传输预处理方法及系统
CN101998327A (zh) * 2009-08-21 2011-03-30 大唐移动通信设备有限公司 传输方案和/或反馈模式的配置方法和设备
CN102710388A (zh) * 2011-03-28 2012-10-03 中兴通讯股份有限公司 一种多基站多用户下行传输的分布式预处理方法和系统
US8750358B2 (en) * 2011-04-06 2014-06-10 Nec Laboratories America, Inc. Method for improving multiuser MIMO downlink transmissions
CN105322995A (zh) * 2014-07-30 2016-02-10 电信科学技术研究院 Mimo系统中的导频发送方法、信道测量方法及装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052519A1 (en) * 2008-11-04 2010-05-14 Nokia Corporation Asymmetric beam steering protocol
CN101867447B (zh) * 2010-04-30 2015-09-16 中兴通讯股份有限公司 信道状态信息的反馈方法及终端
CN102237955B (zh) * 2010-05-07 2013-11-06 电信科学技术研究院 一种信道状态信息上报方法及其装置
US20130201912A1 (en) * 2010-05-19 2013-08-08 Interdigital Patent Holdings, Inc. Method and apparatus for compressing channel state information based on path location information
CN102281133B (zh) * 2010-06-13 2014-02-19 华为技术有限公司 一种在物理上行控制信道上传输信息的方法及装置
US8639198B2 (en) * 2010-06-30 2014-01-28 Samsung Electronics Co., Ltd. Systems and methods for 8-TX codebook and feedback signaling in 3GPP wireless networks
CN102835054B (zh) * 2010-08-26 2015-03-25 华为技术有限公司 预编码方法和系统
US8711723B2 (en) * 2010-12-28 2014-04-29 Motorola Mobility Llc Subband SNR correction in a frequency selective scheduler
WO2012157994A2 (ko) * 2011-05-18 2012-11-22 엘지전자 주식회사 무선통신 시스템에서의 제어정보의 전송 방법 및 장치
JP6007179B2 (ja) * 2011-08-05 2016-10-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 端末、基地局、送信方法および受信方法
CN103733676B (zh) * 2011-08-12 2018-01-05 交互数字专利控股公司 无线网络中的干扰测量
CN102957467B (zh) * 2011-08-24 2018-01-30 中兴通讯股份有限公司 一种下行系统中多天线的信号处理方法及系统
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
US9318805B2 (en) * 2012-08-21 2016-04-19 Qualcomm Incorporated Updating a beam pattern table
US9918240B2 (en) * 2012-09-28 2018-03-13 Interdigital Patent Holdings, Inc. Wireless communication using multi-dimensional antenna configuration
EP2949055A1 (en) * 2013-01-25 2015-12-02 Interdigital Patent Holdings, Inc. Methods and apparatus for vertical beamforming
WO2014126396A1 (ko) * 2013-02-13 2014-08-21 엘지전자 주식회사 무선 통신 시스템에서 하향링크제어정보 수신 방법 및 장치
WO2014205376A1 (en) * 2013-06-21 2014-12-24 Marvell World Trade Ltd. Methods and systems for determining indicators used in channel state information (csi) feedback in wireless systems
CN104253674B (zh) * 2013-06-27 2017-12-29 华为技术有限公司 反馈csi的方法、调度ue的方法、ue及基站
CN105450272B (zh) * 2014-09-15 2021-07-20 中兴通讯股份有限公司 一种导频信息的反馈方法、装置及终端
US20160127936A1 (en) * 2014-11-05 2016-05-05 Debdeep CHATTERJEE User equipment and methods for csi measurements with reduced bandwidth support
US10225054B2 (en) * 2014-11-07 2019-03-05 Electronics And Telecommunications Research Institute Method and apparatus for transmitting reference signal, method and apparatus for measuring and reporting channel state information, and method for configuring the same
EP3048853B1 (en) * 2015-01-26 2021-05-26 ASUSTek Computer Inc. Method and apparatus for handling transmission in a wireless communication system
US10966194B2 (en) * 2015-04-15 2021-03-30 Qualcomm Incorporated Coordinated wireless communications using multiple transmission time intervals
US10057027B2 (en) * 2015-05-07 2018-08-21 Electronics And Telecommunications Research Institute Method and apparatus for receiving reference signal
US10182467B2 (en) * 2015-08-06 2019-01-15 Innovative Technology Lab Co., Ltd. Apparatus and method for transmitting uplink control information through a physical uplink control channel
CN105553524B (zh) * 2015-12-09 2018-11-30 中国联合网络通信集团有限公司 一种获取fdd系统下行信道矩阵的方法及装置
KR20170112897A (ko) * 2016-03-31 2017-10-12 삼성전자주식회사 이동 통신 시스템에서의 채널 상태 정보 보고 모드 설정 방법 및 장치
WO2017222353A1 (ko) * 2016-06-24 2017-12-28 엘지전자(주) 무선 통신 시스템에서 비주기적 csi-rs에 기반한 비주기적 csi 보고 방법 및 이를 위한 장치
CN107734678B (zh) * 2016-08-12 2023-05-23 中兴通讯股份有限公司 一种信息传输方法、装置和系统
CN107769826A (zh) 2016-08-19 2018-03-06 索尼公司 无线通信系统中的电子设备和方法以及无线通信系统
JP2019216295A (ja) * 2016-10-18 2019-12-19 シャープ株式会社 基地局装置、端末装置および通信方法
KR102189161B1 (ko) * 2017-03-07 2020-12-09 삼성전자주식회사 다중 안테나 시스템에서의 피드백 장치 및 방법
US11082105B2 (en) * 2017-03-17 2021-08-03 Qualcomm Incorporated RLM monitoring using signaled dynamic parameter
US11005549B2 (en) * 2017-07-26 2021-05-11 Qualcomm Incorporated Dedicated channel state information reporting for a control channel
US10820323B2 (en) * 2017-08-04 2020-10-27 Industrial Technology Research Institute Beam indication method for multibeam wireless communication system and electronic device using the same
US10491275B2 (en) * 2017-08-07 2019-11-26 Lg Electronics Inc. Codebook based signal transmission/reception method in multi-antenna wireless communication system and apparatus therefor
US11140673B2 (en) * 2017-08-09 2021-10-05 Lg Electronics Inc. Method for reporting channel state information in wireless communication system, and apparatus therefor
US10951290B2 (en) * 2017-10-26 2021-03-16 Apple Inc. Channel state information report for phase tracking reference signal port selection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599814A (zh) * 2009-07-08 2009-12-09 北京邮电大学 协作通信中的下行传输预处理方法及系统
CN101998327A (zh) * 2009-08-21 2011-03-30 大唐移动通信设备有限公司 传输方案和/或反馈模式的配置方法和设备
CN102710388A (zh) * 2011-03-28 2012-10-03 中兴通讯股份有限公司 一种多基站多用户下行传输的分布式预处理方法和系统
US8750358B2 (en) * 2011-04-06 2014-06-10 Nec Laboratories America, Inc. Method for improving multiuser MIMO downlink transmissions
CN105322995A (zh) * 2014-07-30 2016-02-10 电信科学技术研究院 Mimo系统中的导频发送方法、信道测量方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3503423A4 *

Also Published As

Publication number Publication date
JP2019531613A (ja) 2019-10-31
US11290161B2 (en) 2022-03-29
CN107769826A (zh) 2018-03-06
US20210143877A1 (en) 2021-05-13
CN109314553A (zh) 2019-02-05
EP3503423A1 (en) 2019-06-26
EP3503423A4 (en) 2019-07-03
US10917151B2 (en) 2021-02-09
US20200204228A1 (en) 2020-06-25
US20190245595A1 (en) 2019-08-08
CN109314553B (zh) 2021-11-16
US20210006307A1 (en) 2021-01-07
US20220173776A1 (en) 2022-06-02
US10630354B2 (en) 2020-04-21
US11671152B2 (en) 2023-06-06
KR20190040978A (ko) 2019-04-19
US10804986B2 (en) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2018032934A1 (zh) 无线通信系统中的电子设备和方法以及无线通信系统
US11991542B2 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US11277762B2 (en) Base station side device and method for wireless communication, and user side device and method for wireless communication
WO2018223794A1 (zh) 无线通信系统中的电子设备、通信方法和存储介质
WO2020063564A1 (zh) 电子设备和通信方法
US20230096215A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US20210159959A1 (en) Wireless communication device and method
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
US11101850B2 (en) Electronic device and communication method
WO2021204074A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
JP7342869B2 (ja) 電子機器、無線通信方法及びコンピュータ読み取り可能な記録媒体
WO2020140836A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20240188128A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2023056922A1 (zh) 电子设备、通信方法和计算机程序产品
US20220337364A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197007492

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017840909

Country of ref document: EP

Effective date: 20190319