WO2018032894A1 - 励磁涌流识别方法及识别装置、设备、存储介质 - Google Patents

励磁涌流识别方法及识别装置、设备、存储介质 Download PDF

Info

Publication number
WO2018032894A1
WO2018032894A1 PCT/CN2017/091546 CN2017091546W WO2018032894A1 WO 2018032894 A1 WO2018032894 A1 WO 2018032894A1 CN 2017091546 W CN2017091546 W CN 2017091546W WO 2018032894 A1 WO2018032894 A1 WO 2018032894A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
component
magnetizing inrush
inrush current
transformer
Prior art date
Application number
PCT/CN2017/091546
Other languages
English (en)
French (fr)
Inventor
郑彬
滕文涛
班连庚
项祖涛
周佩朋
李岩军
Original Assignee
中国电力科学研究院
国家电网公司
国网宁夏电力公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院, 国家电网公司, 国网宁夏电力公司 filed Critical 中国电力科学研究院
Publication of WO2018032894A1 publication Critical patent/WO2018032894A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing

Definitions

  • the invention relates to the field of excitation inrush current identification, in particular to a method for identifying excitation inrush current, an identification device, a device and a storage medium.
  • the transformer differential protection in the field mainly uses the second harmonic braking principle and the discontinuous angle principle to identify the magnetizing inrush current.
  • the most widely used second harmonic braking has great limitations in principle.
  • the core saturation point is advanced, and when the residual magnetism is more, the characteristics of the second harmonic in the magnetizing inrush current become less obvious;
  • the transient current generated by the internal fault will also contain a large second harmonic; in addition, the current transformer saturation will also generate a large second harmonic component; The effect makes the second harmonic no longer a unique feature of the magnetizing inrush current.
  • the limitation of the principle of the discontinuity angle is: First, the principle of the discontinuity angle requires a higher sampling rate to The high sampling accuracy puts higher requirements on the processing speed of the CPU. Secondly, the current transformer sometimes has transient saturation. In order to prevent the secondary side of the transformer from being distorted or disappeared, corresponding measures must be taken to restore the discontinuity angle. The protection performance of the hardware puts forward higher requirements; and the current of the inrush current at the discontinuous angle is very small, close to zero. If the resolution of the A/D conversion chip is low, a large error will occur during signal conversion. To reduce the accuracy of the data.
  • Embodiments of the present invention provide a method and device for identifying a magnetizing inrush current, a device, and a storage medium, which can accurately distinguish a fault current and a magnetizing inrush current of a transformer, and ensure a correct rate of a differential protection action of the transformer.
  • Embodiments of the present invention provide a method for identifying a magnetizing inrush current, the method comprising:
  • the DC component and the fundamental component amplitude ratio are compared according to the established identification criterion to identify whether the transformer outlet breaker current is a magnetizing inrush current.
  • the embodiment of the invention further provides a magnetizing inrush current identifying device, the device comprising a determining part, a calculating part and an identifying part, wherein:
  • the determining portion is configured to determine a time interval reference
  • the calculating portion is configured to calculate a ratio of a direct current component to a fundamental component of the transformer outlet breaker current based on the time interval reference;
  • the identifying portion is configured to compare the DC component to the fundamental component amplitude ratio according to the established identification criterion to identify whether the transformer outlet breaker current is a magnetizing inrush current.
  • the embodiment of the invention further provides a computer device, including a memory, a processor and a storage A computer program on a memory and operable on the processor, the processor implementing the above described magnetizing inrush current identification method when the program is executed.
  • the embodiment of the invention further provides a computer readable storage medium, on which a computer program is stored, which is implemented by the processor to implement the above-described excitation inrush current identification method.
  • the technical solution provided by the embodiment of the invention adopts the attenuation ratio of the current direct current component and the fundamental component of the transformer outlet circuit breaker as the discrimination basis for identifying the magnetizing inrush current, and compensates for the second harmonic braking “three-phase or door braking”.
  • the defect of the fault-phase protection delay action in the scheme significantly improves the accuracy of the magnetizing inrush current identification, effectively avoids the occurrence of transformer protection misoperation and refusal, and effectively improves the correctness of the transformer differential protection action. Reliability, with good engineering application prospects.
  • the technical solution provided by the embodiment of the invention can accurately distinguish the transformer fault current and the magnetizing inrush current, has the advantages of less measurement data, simple and easy realization, and three-phase independent discrimination, phase-by-phase braking, and is not saturated by the current transformer. The influence can ensure the correct operation of the transformer differential protection, and it is reliable and effective in the application scenario where the transformer outlet circuit breaker is not equipped with a closing resistor.
  • 1-1 is a flowchart of an implementation of a method for identifying a magnetizing inrush current according to an embodiment of the present invention
  • 1-2 is a flow chart showing the structure of a magnetizing inrush current identification device according to an embodiment of the present invention
  • 1-3 are flowcharts showing an implementation of a method for identifying a magnetizing inrush current according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of simplified wiring of a dual-ended network for researching a technical solution according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a typical waveform of a magnetizing inrush current when a no-load main transformer is closed according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing a typical waveform of a short-circuit current when a transformer outlet is faulted according to an embodiment of the present invention
  • FIG. 5 is a diagram showing attenuation of harmonic distortion rate of three-phase short-circuit current of transformer under different conditions according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing attenuation of harmonic distortion of a transformer inrush current under different conditions according to an embodiment of the present invention.
  • Intermittent angle The waveform of the magnetizing inrush current completely deviates from one side of the time axis and is discontinuous.
  • the width of the discontinuous waveform is called the discontinuous angle of the magnetizing inrush current;
  • Remanence Residual magnetization.
  • the core has two important characteristics: one is magnetization; the other is the hysteresis effect of the core.
  • the so-called hysteresis is that when the external magnetic field stops, the ferromagnetic material is still in a magnetized state, and the magnetic induction intensity decreases as the magnetic field strength decreases, but the change lags behind the change of the magnetic field strength. This phenomenon is called magnetic
  • DC component and fundamental component In an actual electrical signal, it generally consists of two parts: a DC component and an AC component.
  • the fundamental wave and harmonics are included in the AC component.
  • the sine wave component equal to the oscillation period is called the fundamental component, and the frequency corresponding to this period is called the fundamental frequency.
  • Amplitude The maximum absolute value of the instantaneous occurrence of alternating current in one cycle, called the amplitude, also called the maximum value, amplitude, and peak value.
  • the ratio of the amplitude of the direct current component to the fundamental component the amplitude ratio of the direct current component to the fundamental component of the transformer current, ie Where I 0m is the amplitude of the DC component, and I 1m is the amplitude of the fundamental component.
  • the transformer differential protection in the field mainly uses the second harmonic braking principle and the discontinuous angle principle to identify the magnetizing inrush current.
  • the most widely used second harmonic braking has great limitations in principle.
  • the second harmonic characteristics of the transformer inrush current are not obvious when the saturation curve of the transformer is low, and the second is the end of the transformer.
  • the transient current generated by the internal fault will also contain a large second harmonic.
  • the principle of the discontinuity angle also has certain limitations in terms of high sampling accuracy, saturation of the current transformer, loss of the discontinuity of the inrush current, and increase of the discontinuity of the short-circuit current, which makes the accuracy of the transformer differential protection action decrease.
  • the method provided by the embodiment of the invention uses the attenuation rate of the DC component of the transformer outlet circuit breaker and the amplitude ratio of the fundamental component as the basis for determining the excitation inrush current, and can accurately distinguish the transformer fault current and the magnetizing inrush current. It is reliable and effective in the application scenario of adding a closing resistor. Compared with the commonly used second harmonic braking principle and the discontinuous angle principle, it has the advantages of less required measurement data, simple and easy to implement, and three-phase independent discrimination, phase-by-phase braking, and is not saturated by the current transformer.
  • the characteristic influence also compensates for the defect of the fault-phase protection delay action in the "three-phase or door-braking" scheme of the second harmonic braking, which can significantly improve the accuracy of the magnetizing inrush current identification and effectively avoid the transformer protection misoperation and The occurrence of the refusal situation effectively improves the correctness and reliability of the transformer differential protection action.
  • FIG. 1-1 is a schematic flowchart of an implementation of a method for identifying a magnetizing inrush current according to an embodiment of the present invention. As shown in FIG. 1-1, the method includes:
  • Step S111 determining a time interval reference
  • the determining the time interval reference comprises: calculating a data sampling time interval T by the established digital simulation system, and determining the data sampling time interval T as the time interval reference.
  • Step S112 calculating a ratio of a direct current component of the transformer outlet circuit breaker current to a fundamental component based on the time interval reference;
  • Step S113 comparing the DC component to the fundamental component amplitude ratio according to the established identification criterion, and identifying whether the transformer outlet breaker current is a magnetizing inrush current.
  • the selection principle of the criterion is whether the electrical characteristics of the transformer fault current meet the criterion requirement, and whether the electrical characteristics of the magnetizing inrush current meet the criterion requirement.
  • the DC component and the fundamental component are separately calculated by a Fourier algorithm.
  • the criterion for identifying the magnetizing inrush current is an attenuation rate of a ratio of a direct current component to a fundamental component of the transformer outlet circuit breaker current; correspondingly, step S102 includes: calculating based on the time interval reference The rate of decay of the DC component of the transformer outlet circuit breaker current to the amplitude of the fundamental component.
  • the calculating, according to the time interval reference, an attenuation rate of a ratio of a direct current component to a fundamental component of the transformer outlet circuit breaker including: calculating a short-circuit current and a direct current component and a fundamental wave in the magnetizing inrush current for each interval time T
  • the component amplitude ratio A n ; the attenuation rate K n is calculated from the calculated DC component and fundamental component amplitude ratio.
  • the calculating the ratio of the DC component to the fundamental component of the transformer outlet breaker current based on the time interval reference comprises:
  • the current waveform of the transformer outlet circuit breaker is measured. If the current amplitude of the current waveform is greater than the operating current setting value, the amplitude ratio of the direct current component to the fundamental component of the different time interval T is calculated as follows:
  • I 0m is the DC component amplitude
  • I 1m is the amplitude of the fundamental component.
  • the determining the time interval reference comprises:
  • the simulation simulates the magnetizing inrush current flowing through the transformer outlet circuit breaker when the transformer is closed, and calculates the DC component of the magnetizing inrush current and the fundamental component of the magnetizing inrush current.
  • the minimum data sampling time interval T is selected based on the DC component of the short-circuit current, the fundamental component of the short-circuit current, the DC component of the magnetizing inrush current, and the fundamental component of the magnetizing inrush current.
  • comparing the DC component to the fundamental component amplitude ratio according to the established identification criterion, and identifying whether the transformer outlet breaker current is a magnetizing inrush current including:
  • K 1 >0 and K 2 >K set it is the fault current, otherwise it is the magnetizing inrush current.
  • the method further includes: correcting the simulated data sampling time interval T and the attenuation rate threshold K set according to the measured values of the magnetizing inrush current and the fault short-circuit current when the actual engineering is closed. .
  • comparing the DC component to the fundamental component amplitude ratio according to the established identification criterion, and identifying whether the transformer outlet breaker current is a magnetizing inrush current including:
  • K n (A 0 -A n )/A 0
  • n 1, 2;
  • a 0 and A n represent the amplitude ratio of the DC component to the fundamental component in the 0th and nth sampling time intervals T, respectively;
  • K 1 >0 and K 2 >K set it is the fault current, otherwise it is the magnetizing inrush current.
  • FIG. 1-2 is a schematic structural diagram of a magnetizing inrush current identifying device according to an embodiment of the present invention. As shown in FIG. 1-2, the device 10 includes a determining portion 11 and a calculating portion 12. And identifying part 13, wherein:
  • the determining portion 11 is configured to determine a time interval reference
  • the calculating portion 12 is configured to calculate a ratio of a direct current component to a fundamental component of the transformer outlet breaker current based on the time interval reference;
  • the identifying portion 13 is configured to pair the DC component with the base according to the established identification criterion
  • the wave component amplitude ratio is compared to identify whether the transformer outlet breaker current is a magnetizing inrush current.
  • the identification device further includes a digital simulation portion configured to calculate an action current setting value and a sampling time interval T according to a grid condition of the project, and perform an action current setting value and a sampling time interval T according to the field debugging operation result. Corrected.
  • the identification device in other embodiments further includes: a data discriminating portion configured to determine a magnitude of a current value of the transformer outlet circuit breaker and an operating current setting value, if the current amplitude of the current waveform is greater than an operating current setting At the time of the value, the transformer outlet circuit breaker current amplitude is transmitted to the determining portion.
  • a data discriminating portion configured to determine a magnitude of a current value of the transformer outlet circuit breaker and an operating current setting value, if the current amplitude of the current waveform is greater than an operating current setting At the time of the value, the transformer outlet circuit breaker current amplitude is transmitted to the determining portion.
  • the calculation portion is configured to calculate the amplitude ratio of the DC component to the fundamental component in different time intervals using Fourier.
  • the computing section configured to set the attenuation rate threshold value K set, and the decay rate is calculated as the fundamental component and the DC component of the amplitude ratio K n:
  • K n (A 0 -A n )/A 0
  • the identifying portion is configured to: determine a decay rate threshold value K set according to a calculated attenuation rate K n of the DC component and the fundamental wave component amplitude ratio, and if the K 1 ⁇ 0, the excitation inrush current; If K 1 >0 and K 2 >K set , it is the fault current, otherwise it is the magnetizing inrush current.
  • a direct current component In an actual electrical signal, there are generally two parts: a direct current component and an alternating current component.
  • the fundamental wave and harmonics are included in the AC component.
  • the sine wave component equal to the oscillation period is called the fundamental component, and the frequency corresponding to this period is called the fundamental frequency.
  • the amplitude ratio A of the DC component to the fundamental component in the transformer current is as shown in the following equation (1):
  • I 0m is a DC component amplitude
  • I 1m is a fundamental component magnitude
  • the amplitude of the fundamental component of the magnetizing inrush current of the transformer is attenuated and the attenuation of the DC component is slow.
  • the amplitude of the fundamental component of the fault current is not attenuated and the DC component is attenuated rapidly.
  • the high voltage side and the medium voltage of the transformer are used.
  • the side outlet circuit breaker current is used as a detection signal for identifying the inrush current and the fault current.
  • the three-phase current of the transformer outlet circuit breaker is respectively connected to the control protection device, and the attenuation rate of the amplitude ratio of the direct current component to the fundamental component is used as a criterion.
  • the logic data of the transformer outlet circuit breaker is logically determined to determine the excitation inrush current or the fault current, thereby ensuring the correct rate of the transformer differential protection action.
  • K n (A 0 -A n )/A 0 (2);
  • n 1,2; set the attenuation rate threshold K set, if the determined rate of decay K 1 ⁇ 0, then direct that the magnetizing inrush current, to meet fast; then ascertained
  • the attenuation rate K 2 is compared with the attenuation rate threshold K set . If K 1 >0 and K 2 >K set , the current is determined to be a fault current, otherwise the magnetizing inrush current is ensured, and the reliability of the identification result is ensured. To identify the magnetizing inrush current and the fault current, the correct rate of the transformer differential protection action can be ensured.
  • the method for formulating the excitation inrush current identification criterion based on the current DC component attenuation characteristic of the transformer outlet circuit breaker proposed by the present invention is as follows:
  • Step S101 measuring the current of the transformer outlet circuit breaker
  • Step S102 determining whether the transformer outlet circuit breaker current amplitude is greater than the operating current setting value, that is, the transformer outlet circuit breaker current amplitude> operating current setting value, if yes, proceed to step S103; otherwise, proceed to step S102;
  • the method further includes: performing simulation calculation on the power grid where the project is located, obtaining a preliminary action current setting value, and correcting the preliminary action current setting value by the field debugging operation test, and setting the preliminary action current setting value or the correction.
  • the initial action current setting value is used as the operating current setting value.
  • step S103 the first zero-crossing point before the time of the waveform is taken as the time 0 point, and the data component of the DC component and the fundamental component ratio in one cycle with T interval is obtained by Fourier calculation, and is defined as A 0 , A 1 , A 2 ;
  • a digital simulation model is established, and the short-circuit current flowing through the transformer outlet circuit breaker when the single-phase or multi-phase short-circuit fault occurs in the transformer is simulated and considered by different fault time factors, and calculated by Fourier transform. Its DC component and fundamental component.
  • a digital simulation model is established based on the system conditions of the project, considering the different closing times and different remanence conditions, the simulation of the magnetizing inrush current flowing through the transformer outlet circuit breaker when the transformer is closed and the main transformer is changed, and adopts Fu Li.
  • the leaf transform calculates its DC component and fundamental component.
  • the simulation calculation is performed on the power grid where the project is located, and the data sampling start time T is obtained, and the test T is corrected by the on-site commissioning operation.
  • the minimum data sampling time interval T is analyzed and selected to meet the rapidity requirement.
  • the transformer magnetizing inrush current at intervals of 0, T, 2T, and the amplitude ratio A 0 , A 1 , A 2 of the DC component and the fundamental component in the short circuit current are analyzed;
  • the data sampling time interval T and the attenuation rate threshold K set proposed by the simulation calculation are corrected according to the test results of the magnetizing inrush current and the main transformer outlet fault short circuit current when the actual engineering site is closed. .
  • Step S105 it is determined whether K 1 is less than 0, is YES, that is, if K 1 ⁇ 0, proceeds to step S107; otherwise, if K 1 is greater than 0, proceeds to step S106;
  • Step S106 it is determined whether K 2 is greater than K set , if yes, proceed to step S108; otherwise, proceed to step S107;
  • K 1 if K 1 ⁇ 0, it is directly determined that the current is a magnetizing inrush current; K 2 is compared with K set , and if K 2 >K set , the current is determined to be a fault current, otherwise it is a magnetizing inrush current;
  • Step S107 identifying the transformer outlet breaker current as a magnetizing inrush current
  • step S108 the transformer outlet breaker current is identified as a short circuit current.
  • the minimum data sampling time interval T is analyzed and selected to meet the rapidity requirement
  • K 1 ⁇ 0 directly determine that the current is a magnetizing inrush current; then compare K 2 with K set , if K 2 >K set , then determine that the current is a fault current, otherwise it is a magnetizing inrush current;
  • An identification device for an application identification method provided by the present invention, the device comprising a digital simulation part, a current measurement part, a data processing part, a criterion formulation part and an identification part;
  • the digital simulation portion and the current measurement portion are configured to transmit data to the data processing portion;
  • the data processing portion is configured to transmit the processing result to the criterion formulation portion and the identification portion;
  • the criterion formulation portion is configured to invoke the digital simulation portion and the data processing portion to formulate a criterion and transmit the criterion to the identification portion;
  • the identification portion is configured to transmit the determination result to the criterion formulation portion.
  • the digital simulation part is configured to simulate a data sampling time interval by using a set digital simulation system to obtain a time interval reference value.
  • the current measuring part is configured to measure a current waveform of the medium voltage side of the measuring transformer when the current amplitude of the transformer outlet circuit breaker is greater than the operating current setting value
  • a data processing portion configured to calculate, by using a Fourier transform, a ratio of a direct current component to a fundamental component and a decay rate in different time intervals T;
  • the criterion formulation part is configured to establish a criterion that the electrical characteristics of the transformer fault current meet the criterion requirements, and the electrical characteristics of the magnetizing inrush current do not satisfy the criterion requirement;
  • the criterion formulation part is configured as:
  • the identifying portion is configured to determine, according to the attenuation rate and the attenuation rate threshold, a magnetizing inrush current or a fault current output by the transformer outlet circuit breaker: if K 1 ⁇ 0, the magnetizing inrush current;
  • K 1 >0 and K 2 >K set it is the fault current, otherwise it is the magnetizing inrush current.
  • the data processing portion is configured to calculate a ratio of a direct current component to a fundamental wave component amplitude according to a current waveform recorded by the current measuring portion;
  • the identifying portion is configured to identify a current of the transformer outlet circuit breaker according to a criterion formulated by the criterion formulation portion;
  • the criterion formulation section is configured to formulate a criterion and correct the data according to the data of the digital simulation part, the current measurement part, and the data processing part, and the determination result of the identification part
  • the simplified wiring diagram of the double-ended network shown in Figure 2 is for the rated voltage.
  • the UHV three-winding transformer simulates the characteristic difference between the short-circuit current when the three-phase short-circuit fault occurs on the 500kV side and the magnetizing inrush current when the 500kV side-closed no-load main transformer changes, and analyzes the transformer-based proposed by the present invention.
  • the application effect of the excitation inrush current identification method of the current DC component attenuation characteristic is not installed with the closing resistor on the 1000kV side and 500kV side circuit breakers of the transformer.
  • the typical waveforms of the short-circuit currents during the closing of the no-load main transformer and the short-circuit current at the transformer outlet are simulated by the digital simulation part as shown in Fig. 4 and Fig. 5.
  • Table 1 lists the three phases of the transformer under different conditions calculated by the data processing section. The calculation result of the attenuation of the short-circuit current and the amplitude ratio of the DC component of the magnetizing inrush current to the fundamental component.
  • Table 1 The amplitude ratio of the three-phase short-circuit current and the DC component to the fundamental component of the transformer under different conditions (A phase)
  • the current identification portion can accurately distinguish the fault current and the magnetizing inrush current of the transformer, thereby ensuring reliable and effective operation of the transformer differential protection.
  • the excitation inrush current identification method based on the DC component attenuation characteristic of the transformer current proposed by the embodiment of the present invention has a difference compared with the current technical solution that relies on the current second harmonic content or the discontinuity angle characteristic.
  • the accuracy of the magnetizing inrush current identification can be significantly improved, the occurrence of the transformer protection misoperation and the refusal condition can be effectively avoided, and the reliability of the transformer protection can be ensured, and the circuit breaker is not installed and closed.
  • Application field of resistance Reliable and effective under the scene.
  • the attenuation rate of the DC component of the transformer outlet circuit breaker current to the amplitude of the fundamental component is used as a criterion for identifying the magnetizing inrush current, and the transformer fault current and the magnetizing inrush current can be accurately distinguished, and the measurement data is small.
  • the above-described magnetizing inrush current identification method is implemented in the form of a software function module and sold or used as a stand-alone product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • Embodiments of the present invention provide a computer device including a memory, a processor, and a computer program stored on the memory and operable on the processor, and the processor implements the above-described magnetizing inrush current identification method when the program is executed.
  • Embodiments of the present invention provide a computer readable storage medium having stored thereon a computer program that implements the above-described magnetizing inrush current identification method when executed by a processor.
  • Embodiments of the subject matter described in the specification can be implemented in digital electronic circuits or in computer software, firmware or hardware, including the structures disclosed in the specification and their structural equivalents, or A combination of one or more of its structural equivalents.
  • Embodiments of the subject matter described in the specification can be implemented as one or more computer programs, ie, one or more computer program instructions modules, encoded onto one or more computer storage media for execution or control of data by a data processing device The operation of the processing device.
  • computer instructions can be encoded onto an artificially generated propagating signal (eg, a machine-generated electrical, optical, or electromagnetic signal) that is generated for encoding the information for transmission to a suitable receiver device for processing by the data. The device is executed.
  • an artificially generated propagating signal eg, a machine-generated electrical, optical, or electromagnetic signal
  • the computer storage medium can be, or be included in, a computer readable storage device, a computer readable storage medium, a random or sequential access memory array or device, or a combination of one or more of the above.
  • the computer storage medium is not a propagated signal, the computer storage medium can be a source or a target of computer program instructions that are encoded in a manually generated propagated signal.
  • the computer storage medium can also be or be included in one or more separate components or media (eg, multiple CDs, disks, or other storage devices).
  • computer storage media can be tangible.
  • the operations described in the specification can be implemented as operations by data processing apparatus on data stored on or received from one or more computer readable storage devices.
  • client or “server” includes all types of devices, devices, and machines for processing data, including, for example, a programmable processor, a computer, a system on a chip, or a plurality or combination of the foregoing.
  • the device can include dedicated logic circuitry, such as a Field Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC).
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the apparatus can also include code to create an execution environment for the computer program of interest, for example, to constitute processor firmware, a protocol stack, a database management system, an operating system, a cross-platform operating environment, a virtual machine, or one or Multiple combinations.
  • the device and execution environment enables a variety of different computing model infrastructures, such as network services, distributed computing, and grid computing infrastructure.
  • a computer program (also referred to as a program, software, software application, script, or code) can be written in any programming language, including assembly or interpreted language, descriptive language, or procedural language, and can be in any form (including as an independent A program, or as a module, component, subroutine, object, or other unit suitable for use in a computing environment.
  • a computer program can, but does not necessarily, correspond to a file in a file system.
  • the program can be stored in a portion of the file that holds other programs or data (eg, one or more scripts stored in the markup language document), in a single file dedicated to the program of interest, or in multiple collaborative files ( For example, store one One or more modules, submodules, or files in the code section).
  • the computer program can be deployed to be executed on one or more computers located at one site or distributed across multiple sites and interconnected by a communication network.
  • the processes and logic flows described in the specification can be performed by one or more programmable processors executing one or more computer programs to perform actions by operating input data and generating output.
  • the above described processes and logic flows can also be performed by dedicated logic circuitry, and the apparatus can also be implemented as dedicated logic circuitry, such as an FPGA or ASIC.
  • processors suitable for the execution of a computer program include, for example, a general purpose microprocessor and a special purpose microprocessor, and any one or more processors of any type of digital computer.
  • a processor will receive instructions and data from a read only memory or a random access memory or both. The main elements of the calculation are the processor for performing the actions in accordance with the instructions and one or more memories for storing the instructions and data.
  • a computer also includes one or more mass storage devices (eg, magnetic disks, magneto-optical disks, or optical disks) for storing data, or is operatively coupled to receive data from or send data thereto, or Both are. However, the computer does not need to have such a device.
  • the computer can be embedded in another device, such as a mobile phone, a personal digital assistant (PDA), a mobile audio player or mobile video player, a game console, a global positioning system (GPS) receiver, or a mobile storage device.
  • PDA personal digital assistant
  • GPS global positioning system
  • Suitable devices for storing computer program instructions and data include all forms of non-volatile memory, media and storage devices, including, for example, semiconductor storage devices (eg, EPROM, EEPROM, and flash memory devices), magnetic disks (eg, internal hard drives or removable hard drives). ), magneto-optical disks, and CD-ROM and DVD-ROM discs.
  • the processor and memory can be supplemented by or included in dedicated logic circuitry.
  • a computer including a display device, a keyboard, a pointing device (eg, a mouse, trackball, etc., or a touch screen, touch pad, etc.).
  • the display device is, for example, a cathode ray tube (CRT), a liquid crystal display (LCD), an organic light emitting diode (OLED), a thin film transistor (TFT), a plasma, Other flexible configurations, or any other monitor used to display information to the user. Users can provide input to the computer through the keyboard and pointing device.
  • feedback provided to the user can be any form of sensory feedback, such as visual feedback, audible feedback, or haptic feedback; and input from the user can be in any form Received, including acoustic input, voice input, or touch input.
  • the computer can interact with the user by transmitting and receiving documents from the device used by the user; for example, transmitting the web page to a web browser on the user's client in response to a request received from the web browser.
  • Embodiments of the subject matter described in the specification can be implemented in a computing system.
  • the computing system includes a backend component (eg, a data server), or includes a middleware component (eg, an application server), or includes a front end component (eg, a client computer with a graphical user interface or web browser through which the user passes)
  • the end computer can interact with an embodiment of the subject matter described herein, or any combination of one or more of the above described backend components, middleware components, or front end components.
  • the components of the system can be interconnected by any form of digital data communication or medium (e.g., a communication network). Examples of communication networks include local area networks (LANs) and wide area networks (WANs), interconnected networks (e.g., the Internet), and end-to-end networks (e.g., ad hoc end-to-end networks).
  • LANs local area networks
  • WANs wide area networks
  • interconnected networks e.g., the Internet
  • end-to-end networks
  • a time interval reference is set; a ratio of a direct current component of the transformer high-voltage side and a medium-voltage side outlet circuit breaker to a fundamental component is calculated; and a logic judgment is made on the current data of the transformer outlet circuit breaker to identify the magnetizing inrush current And the fault current, ensuring the correct rate of the differential protection action of the transformer; thus, the technical solution provided by the embodiment of the invention requires less measurement data, is simple and easy to implement, and is independent of three phases, is phase-braking, and is not affected by current mutual inductance.
  • the saturation effect of the device ensures that the transformer differential protection action is efficient and reliable, and is reliable and effective in the application scenario where the transformer outlet circuit breaker is not equipped with a closing resistor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Protection Of Transformers (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种励磁涌流识别方法及识别装置、设备、存储介质,其方法包括:确定时间间隔基准(S111);基于时间间隔基准计算变压器出口断路器电流的直流分量与基波分量幅值比(S112);按照制定的识别判据对直流分量与基波分量幅值比进行比较,识别变压器出口断路器电流是否为励磁涌流(S113)。

Description

励磁涌流识别方法及识别装置、设备、存储介质
相关申请的交叉引用
本申请基于申请号为201610693333.6、申请日为2016年08月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本申请。
技术领域
本发明涉及励磁涌流识别领域,具体讲涉及一种励磁涌流识别方法及识别装置、设备、存储介质。
背景技术
作为超高压以及特高压输电系统的核心元件之一的变压器,对其主保护的可靠性和速动性都提出了很高的要求。长期以来,变压器保护的正确动作率一直偏低,对于目前普遍应用的变压器差动保护,励磁涌流是其不正确动作的重要原因,如何防止励磁涌流造成误动是变压器保护的重要研究课题之一。
目前,现场运行的变压器差动保护主要采用二次谐波制动原理和间断角原理来识别励磁涌流,其中应用最广泛的二次谐波制动在原理上存在着较大的局限性。随着现代变压器的发展,铁磁材料传电性能的充分利用,铁芯饱和点提前,在剩磁较多时,励磁涌流中二次谐波的特征变得不再明显;此外,若变压器的端部接入静补电容或者长线,其内部故障所产生的暂态电流也会含有较大的二次谐波;另外电流互感器饱和也会产生很大的二次谐波分量;因此受以上因素影响使得二次谐波不再是励磁涌流独有的特征。
间断角原理的局限性在于:首先,间断角原理需要较高的采样率以提 高采样精度,对CPU的处理速度提出了更高要求;其次,电流互感器有时会出现暂态饱和,为了防止变压器二次侧涌流发生畸变或者消失,必须采取相应措施来恢复间断角,因此对硬件的保护性能提出了更高的要求;且在间断角处励磁涌流的电流非常小,接近于零,如果A/D转换芯片的分辨率较低,则在信号转换时会产生较大的误差,使数据准确度下降。
现有技术方案中励磁涌流识别准确性不足,为提高对变压器励磁涌流识别的准确性,需要一种新的励磁涌流识别方法,保障变压器的安全运行。
发明内容
本发明实施例提供一种励磁涌流识别方法及装置、设备、存储介质,能够准确区分变压器的故障电流和励磁涌流,确保变压器差动保护动作的正确率。
本发明实施例提供一种励磁涌流识别方法,该方法包括:
确定时间间隔基准;
基于所述时间间隔基准计算变压器出口断路器电流的直流分量与基波分量幅值比;
按照制定的识别判据对所述直流分量与基波分量幅值比进行比较,识别所述变压器出口断路器电流是否为励磁涌流。
本发明实施例又提供一种励磁涌流识别装置,所述装置包括确定部分、计算部分和识别部分,其中:
所述确定部分,配置为确定时间间隔基准;
所述计算部分,配置为基于所述时间间隔基准计算变压器出口断路器电流的直流分量与基波分量幅值比;
所述识别部分,配置为按照制定的识别判据对所述直流分量与基波分量幅值比进行比较,识别所述变压器出口断路器电流是否为励磁涌流。
本发明实施例还提供一种计算机设备,包括存储器、处理器及存储 在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的励磁涌流识别方法。
本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的励磁涌流识别方法。
本发明实施例提供的技术方案具有以下优异效果:
1、本发明实施例提供的技术方案采用变压器出口断路器电流直流分量与基波分量幅值比衰减速率作为识别励磁涌流的判别依据,弥补了二次谐波制动“三相或门制动”方案中合闸于故障相保护延迟动作的缺陷,显著提高了励磁涌流识别的准确性,有效避免了变压器保护误动与拒动情况的发生,有效提升了变压器差动保护动作的正确性和可靠性,具有良好的工程应用前景。
2、本发明实施例提供的技术方案能准确地区分变压器故障电流与励磁涌流,具有测量数据少、简单易实现的优点,并且三相独立判别、按相制动,且不受电流互感器饱和影响,可以确保变压器差动保护正确动作,在变压器出口断路器未加装合闸电阻的应用场景下可靠有效。
附图说明
图1-1为本发明实施例励磁涌流识别方法的实现流程图;
图1-2为本发明实施例励磁涌流识别装置的组成结构流程图;
图1-3为本发明实施例励磁涌流识别方法的实现流程图;
图2为本发明实施例技术方案研究用双端网络简化接线示意图;
图3为本发明实施例仿真得到的合闸空载主变时励磁涌流典型波形示意图;
图4为本发明实施例仿真得到的变压器出口故障时的短路电流典型波形示意图;
图5为本发明实施例不同情况下变压器三相短路电流谐波畸变率衰减 示意图;
图6为本发明实施例不同情况下变压器励磁涌流谐波畸变率衰减示意图。
具体实施方式
为了更好地理解本发明的各实施例,现介绍相关的技术名词如下:
间断角:励磁涌流的波形完全偏离时间轴的一侧,且是间断的,波形间断的宽度称为励磁涌流的间断角;
剩磁:即剩余磁化强度。作为变压器内部重要的组成部分,铁芯具有两个十分重要的特征:一个是磁化;另一个是铁芯的磁滞效应。所谓磁滞,就是在外部磁场停止作用时,铁磁材料依然处于磁化状态,磁感应强度随着磁场强度的减小而减小,但是其变化滞后于磁场强度的变化,这种现象称之为磁滞,而磁场强度H=0时的磁感应强度Br称为铁芯的剩磁。
直流分量与基波分量:在实际的电信号中,一般包含两部分:直流分量与交流分量。在交流分量中,又包含基波和谐波。和该振荡周期相等的正弦波分量称为基波分量,相应于这个周期的频率称为基波频率。
幅值:在一个周期内,交流电瞬时出现的最大绝对值,称为幅值,也叫最大值、振幅、峰值。
直流分量与基波分量幅值比:变压器电流中直流分量与基波分量的幅值比,即
Figure PCTCN2017091546-appb-000001
其中,I0m为直流分量幅值,I1m为基波分量幅值。
目前,现场运行的变压器差动保护主要采用二次谐波制动原理和间断角原理来识别励磁涌流。其中应用最广泛的二次谐波制动在原理上存在较大的局限性,一是变压器饱和曲线低、剩磁大时励磁涌流中的二次谐波特征不明显,二是变压器端部接入静补电容或者长线时,其内部故障所产生的暂态电流也会含有较大的二次谐波,三是电流互感器饱和时,也可能在 接入保护装置的电流中产生显著的二次谐波,使得二次谐波不再是励磁涌流独有的特征,影响区分变压器短路电流和励磁涌流差别的准确性。而间断角原理也在采样精度要求高、电流互感器饱和造成励磁涌流间断角消失和短路电流间断角增大等方面具有一定的局限性,使得变压器差动保护动作的准确度下降。
本发明实施例提供的方法,以变压器出口断路器电流的直流分量与基波分量幅值比的衰减速率作为识别励磁涌流的判断依据,能够准确地区分变压器故障电流与励磁涌流,在断路器未加装合闸电阻的应用场景下可靠有效。与目前普遍采取的二次谐波制动原理与间断角原理相比,具有所需测量数据少、简单易实现的优点,并且三相独立判别、按相制动,且不受电流互感器饱和特性影响,还弥补了二次谐波制动“三相或门制动”方案中合闸于故障相保护延迟动作的缺陷,能够显著提高励磁涌流识别的准确性,有效避免变压器保护误动与拒动情况的发生,有效提升了变压器差动保护动作的正确性和可靠性。
下面结合说明书附图,以具体实施例的方式对本发明提供的技术方案作详细说明。
本发明实施例提供一种励磁涌流识别方法,图1-1为本发明实施例励磁涌流识别方法的实现流程示意图,如图1-1所示,该方法包括:
步骤S111,确定时间间隔基准;
这里,所述确定时间间隔基准,包括:由设立的数字仿真系统仿真计算数据取样时间间隔T,将数据取样时间间隔T确定为所述时间间隔基准。
步骤S112,基于所述时间间隔基准计算变压器出口断路器电流的直流分量与基波分量幅值比;
步骤S113,按照制定的识别判据对所述直流分量与基波分量幅值比进行比较,识别所述变压器出口断路器电流是否为励磁涌流。
这里,所述判据的选取原则是:变压器故障电流电气特征是否满足判据要求,励磁涌流电气特征是否满足判据要求。
这里,在实现的过程中,用傅里叶算法分别计算所述直流分量和所述基波分量。
在其他的实施例中,所述识别励磁涌流的判据为变压器出口断路器电流的直流分量与基波分量幅值比的衰减速率;对应地,步骤S102,包括:基于所述时间间隔基准计算变压器出口断路器电流的直流分量与基波分量幅值比的衰减速率。其中,所述基于所述时间间隔基准计算变压器出口断路器电流的直流分量与基波分量幅值比的衰减速率,包括:计算每一间隔时间T的短路电流和励磁涌流中直流分量和基波分量幅值比An;根据计算的直流分量和基波分量幅值比计算衰减速率Kn
在其他的实施例中,所述基于所述时间间隔基准计算变压器出口断路器电流的直流分量与基波分量幅值比包括:
测量变压器出口断路器的电流波形,如果所述电流波形的电流幅值大于动作电流整定值时,按下式计算不同时间间隔T内直流分量与基波分量幅值比A:
Figure PCTCN2017091546-appb-000002
其中,I0m为直流分量幅值;I1m为基波分量幅值。
在其他的实施例中,所述确定时间间隔基准包括:
仿真计算短路故障时流经变压器出口断路器的短路电流,并计算短路电流的直流分量和短路电流的基波分量;
仿真计算变压器合闸空载主变时流经变压器出口断路器的励磁涌流,并计算励磁涌流的直流分量和励磁涌流的基波分量;
基于所述短路电流的直流分量、短路电流的基波分量、励磁涌流的直流分量、励磁涌流的基波分量选择最小的数据取样时间间隔T。
在其他的实施例中,所述按照制定的识别判据对所述直流分量与基波分量幅值比进行比较,识别所述变压器出口断路器电流是否为励磁涌流,包括:
根据计算的直流分量和基波分量幅值比的衰减速率Kn确定衰减速率阈值Kset,若K1<0,则为励磁涌流;
若K1>0且K2>Kset,则为故障电流,否则为励磁涌流。
在其他的实施例中,所述方法还包括:根据实际工程合闸空载主变时的励磁涌流与故障时短路电流的测量值,修正仿真计算的数据取样时间间隔T和衰减速率阈值Kset
在其他的实施例中,所述按照制定的识别判据对所述直流分量与基波分量幅值比进行比较,识别所述变压器出口断路器电流是否为励磁涌流,包括:
按照下式计算电流直流分量与基波分量幅值比的衰减速率Kn
Kn=(A0-An)/A0
其中,n=1、2;A0和An:分别表示第0个和第n个取样时间间隔T内的直流分量与基波分量幅值比;
设置衰减速率阈值Kset,若K1<0,则为励磁涌流;
若K1>0且K2>Kset,则为故障电流,否则为励磁涌流。
本发明实施例提供一种励磁涌流识别装置,图1-2为本发明实施例励磁涌流识别装置的组成结构示意图,如图1-2所示,所述装置10包括确定部分11、计算部分12和识别部分13,其中:
所述确定部分11,配置为确定时间间隔基准;
所述计算部分12,配置为基于所述时间间隔基准计算变压器出口断路器电流的直流分量与基波分量幅值比;
所述识别部分13,配置为按照制定的识别判据对所述直流分量与基 波分量幅值比进行比较,识别所述变压器出口断路器电流是否为励磁涌流。
在其他的实施例中识别装置,还包括数字仿真部分,配置为根据工程所在电网条件计算动作电流整定值和取样时间间隔T,并根据现场调试运行结果对动作电流整定值和取样时间间隔T进行修正。
在其他的实施例中的识别装置,还包括:数据判别部分,配置为对变压器出口断路器电流幅值与动作电流整定值的大小作出判别,如果所述电流波形的电流幅值大于动作电流整定值时,将所述变压器出口断路器电流幅值传输至确定部分。
在其他的实施例中,所述计算部分,配置为用傅里叶计算不同时间间隔内的直流分量与基波分量的幅值比。
在其他的实施例中,所述计算部分,配置为设置衰减速率阈值Kset,并按下式计算直流分量与基波分量的幅值比的衰减速率Kn
Kn=(A0-An)/A0
其中,n=1、2。
在其他的实施例中,所述识别部分,配置为:根据计算的直流分量和基波分量幅值比的衰减速率Kn确定衰减速率阈值Kset,若K1<0,则为励磁涌流;若K1>0且K2>Kset,则为故障电流,否则为励磁涌流。
在实际的电信号中,一般包含两部分:直流分量与交流分量。在交流分量中,又包含基波和谐波。和该振荡周期相等的正弦波分量称为基波分量,与这个周期相应的频率称为基波频率。变压器电流中的直流分量与基波分量的幅值比A如下式(1)所示:
Figure PCTCN2017091546-appb-000003
式(1)中,I0m为直流分量幅值,I1m为基波分量幅值。
断路器未加装合闸电阻的情况下,变压器励磁涌流基波分量幅值衰减且直流分量衰减速度慢,故障电流基波分量幅值不衰减且直流分量衰减快,以变压器高压侧和中压侧出口断路器电流作为识别励磁涌流与故障电流的检测信号,据此将变压器出口断路器的三相电流分别接入控制保护装置,将直流分量与基波分量幅值比的衰减速率作为判据,对变压器出口断路器的电流数据进行逻辑判断,确定是励磁涌流或故障电流,进而确保变压器差动保护动作的正确率。
本发明提供的基于变压器电流直流分量衰减特性的励磁涌流识别方法流程如下:
(1)对应用场景建立数字仿真系统,通过数字仿真计算,得到数据取样时间间隔T,并以此作为分析时间的间隔基准值;
(2)当变压器出口断路器电流幅值大于动作电流整定值时,测量记录变压器的中压侧电流波形,利用傅里叶变换求得不同时间间隔T内3组直流分量与基波分量幅值比A0、A1、A2
(3)对3组数据进行逻辑判断:直流分量与基波分量幅值比的衰减速率Kn如下式(2)所示:
Kn=(A0-An)/A0     (2);
式(2)中,n=1、2;设置衰减速率阈值Kset,若所求得的衰减速率K1<0,则直接认定该电流为励磁涌流,尽量满足快速性;再将所求得的衰减速率K2与衰减速率阈值Kset进行比较,若K1>0且K2>Kset,则认定该电流为故障电流,否则为励磁涌流,确保了识别结果的可靠性,按该方法来辨识励磁涌流与故障电流,可以确保变压器差动保护动作的正确率。
如图1-3所示,本发明提出的基于变压器出口断路器电流直流分量衰减特性的励磁涌流识别判据的制定步骤如下:
步骤S101,测量记录变压器出口断路器电流;
步骤S102,判断变压器出口断路器电流幅值是否大于动作电流整定值,即变压器出口断路器电流幅值>动作电流整定值,是时,进入步骤S103;反之,进入步骤S102;
在其他的实施例中,所述方法还包括:对工程所在电网进行仿真计算,得到初步动作电流整定值,并经现场调试运行检验修正初步的动作电流整定值,将初步动作电流整定值或修正后的初步动作电流整定值作为动作电流整定值。
步骤S103,以波形该时刻之前的第一个过零点作为时间0点,通过傅里叶计算,分别得到以T为时间间隔一个周波内的直流分量与基波分量幅值比数据组,定义为A0、A1、A2
这里,基于工程所处系统条件建立数字仿真模型,考虑不同故障时刻因素,对变压器发生单相或多相短路故障时流经变压器出口断路器的短路电流进行仿真计算,并采用傅里叶变换计算其直流分量和基波分量。
这里,基于工程所处系统条件建立数字仿真模型,考虑不同合闸时刻、不同剩磁情况,对变压器合闸空载主变时流经变压器出口断路器的励磁涌流进行仿真计算,并采用傅里叶变换计算其直流分量和基波分量。
这里,对工程所在电网进行仿真计算,得到数据取样起始时间T,并经现场调试运行检验修正T。在其他的实施例中,根据仿真计算得到的短路电流、励磁涌流数据特征,在保证可靠性的前提下,分析筛选出最小的数据取样时间间隔T,以满足快速性要求。
这里,针对选定的数据取样时间间隔T,分析间隔0、T、2T时间的变压器励磁涌流、短路电流中直流分量与基波分量幅值比A0、A1、A2
步骤S104,定义直流分量与基波分量幅值比的衰减速率为Kn=(A0-An)/A0,并设置阈值K0
这里,计算直流分量与基波分量幅值比的衰减速率Kn=(A0-An)/A0,n=1、 2,在留取足够裕度的前提下,确定衰减速率阈值Kset。在其他实施例中,根据实际工程现场合闸空载主变时的励磁涌流和主变出口故障时短路电流的测试结果,对仿真计算提出的数据取样时间间隔T和衰减速率阈值Kset进行修正。
步骤S105,判断K1是否小于0,是时,即如果K1<0,进入步骤S107;否时,即如果K1大于0,进入步骤S106;
步骤S106,判断K2是否大于Kset,是时,进入步骤S108;否时,进入步骤S107;
这里,若K1<0,则直接认定该电流为励磁涌流;再将K2与Kset进行比较,若K2>Kset,则认定该电流为故障电流,否则为励磁涌流;
步骤S107,将变压器出口断路器电流识别为励磁涌流;
步骤S108,将变压器出口断路器电流识别为短路电流。
从以上图1-3所示的实施例可以看出:
(1)提出制定动作判据的原则,其中,上述的K1<0和K2>Kset可以看作是提出的制定动作判据,即:确保变压器故障电流电气特征是否满足判据要求,而励磁涌流的电气特征是否满足判据要求;
(2)基于工程所处系统条件建立数字仿真模型,考虑不同故障时刻因素,对变压器发生单相或多相短路故障时流经变压器出口断路器的短路电流进行仿真计算,并采用傅里叶变换计算其直流分量和基波分量;
(3)基于工程所处系统条件建立数字仿真模型,考虑不同合闸时刻、不同剩磁情况,对变压器合闸空载主变时流经变压器出口断路器的励磁涌流进行仿真计算,并采用傅里叶变换计算其直流分量和基波分量;
(4)根据仿真计算得到的短路电流、励磁涌流数据特征,在保证可靠性的前提下,分析筛选出最小的数据取样时间间隔T,以满足快速性要求;
(5)针对选定的数据取样时间间隔T,分析间隔0、T、2T时间的变压器励磁涌流、短路电流中直流分量与基波分量幅值比A0、A1、A2
(6)计算直流分量与基波分量幅值比的衰减速率Kn=(A0-An)/A0(n=1,2),在留取足够裕度的前提下,确定衰减速率阈值Kset
(7)若K1<0,则直接认定该电流为励磁涌流;再将K2与Kset进行比较,若K2>Kset,则认定该电流为故障电流,否则为励磁涌流;
(8)根据实际工程现场合闸空载主变时的励磁涌流和主变出口故障时短路电流的测试结果,对仿真计算提出的数据取样时间间隔T和衰减速率阈值Kset进行修正。
依据仿真及实测数据的验证,考虑动作速度的问题,取2个数据即可。
本发明提供的应用识别方法的识别装置,该装置包括数字仿真部分、电流测量部分、数据处理部分、判据制定部分和识别部分;
所述数字仿真部分和所述电流测量部分,配置为将数据传输至所述数据处理部分;
所述数据处理部分,配置为将处理结果传输至所述判据制定部分和所述识别部分;
所述判据制定部分,配置为调用所述数字仿真部分和所述数据处理部分制定判据并传输至所述识别部分;
所述识别部分,配置为将判别结果传输至所述判据制定部分。
所述数字仿真部分,配置为用设立的数字仿真系统仿真计算数据取样时间间隔,获取时间间隔基准值。
所述电流测量部分,配置为测量到变压器出口断路器电流幅值大于动作电流整定值时,测量记录变压器中压侧电流波形
数据处理部分,,配置为用傅里叶变换计算不同时间间隔T内的直流分量与基波分量幅值比和衰减速率;
所述判据制定部分,配置为制定判据的原则是变压器故障电流电气特征满足判据要求,且励磁涌流电气特征不满足判据要求;
所述判据制定部分,配置为:
(1)用数字仿真系统仿真计算变压器短路故障时流经变压器出口断路器的短路电流,并计算不同时间间隔内直流分量和基波分量的比值;
(2)用数字仿真系统仿真计算变压器合闸空载主变时流经变压器出口断路器的励磁涌流,并计算不同时间间隔内直流分量和基波分量的比值;
(3)根据不同时间间隔内直流分量和基波分量的比值,计算电流直流分量和基波分量比值的衰减速率,并设定衰减速率阈值Kset
(4)根据实际工程现场合闸空载主变时的励磁涌流和主变出口故障时的短路电流的测试结果,修正仿真计算提出的数据取样时间间隔T和衰减速率阈值Kset
所述识别部分,配置为根据衰减速率和衰减速率阈值判别变压器出口断路器输出的励磁涌流或故障电流:若K1<0,则为励磁涌流;
若K1>0且K2>Kset,则为故障电流,否则为励磁涌流。
所述数据处理部分,配置为根据电流测量部分记录的电流波形计算直流分量与基波分量幅值比;
所述识别部分,配置为根据判据制定部分制定的判据识别变压器出口断路器的电流;
所述判据制定部分,配置为根据数字仿真部分、电流测量部分和数据处理部分的数据以及识别部分的判定结果制定判据并修正数据
如图2所示的双端网络简化接线示意图,针对额定电压为
Figure PCTCN2017091546-appb-000004
Figure PCTCN2017091546-appb-000005
的特高压三绕组变压器,对其500kV侧发生三相短路故障时的短路电流与500kV侧合闸空载主变时的励磁涌流之间的特征差异进行仿真计算,并分析本发明提出的基于变压器电流直流分量衰减特性的励磁涌流识别方法的应用效果,变压器1000kV侧、500kV侧断路器均未加装合闸电阻。
经数字仿真部分仿真得到的合闸空载主变时励磁涌流及变压器出口故障时的短路电流典型波形如附图4和图5所示。
以A相为例,以数据判别部分判别出的变压器电流幅值大于动作电流整定值时波形前一个过零点为0时刻,表1列出了数据处理部分计算出的不同情况下,变压器三相短路电流与励磁涌流直流分量与基波分量幅值比的衰减情况的计算结果。
表1不同情况下的变压器三相短路电流与直流分量与基波分量的幅值比(A相)
Figure PCTCN2017091546-appb-000006
如表1所示,三相短路故障时,电流中直流分量与基波分量幅值比呈衰减趋势,而励磁涌流中直流分量与基波分量幅值比则呈增加或者缓慢衰减趋势,但衰减速度明显慢于短路电流。按此表数据绘成的折线图如图5和图6所示,从折线图中可以明显得出,三相短路电流直流分量与基波分量幅值比的衰减幅度较大,而励磁涌流直流分量与基波分量幅值比的衰减幅度较小,或者有所增长。
为了便于量化与分析,现定义Kn=(A0-An)/A0(n=1,2)为直流分量与基波分量幅值比衰减率,统计结果列于表2。
表2不同情况下变压器三相短路电流与直流分量与基波分量幅值比的衰减比率
Figure PCTCN2017091546-appb-000007
由表2中可知,以变压器出口断路器电流幅值大于动作电流整定值时波形前一个过零点为0时刻,5ms时三相短路电流直流分量与基波分量幅值比的衰减比率均在10%以上,而励磁涌流直流分量与基波分量幅值比的衰减比率则在10%以下或有所增长;到10ms时,衰减比率间的差值则更加明显。对于该示例中,数字仿真部分可取时间间隔T=5ms,判据制定部分设置的衰减速率阈值Kset值取10%-15%。
因此本发明提供的技术方案,在断路器未加装合闸电阻的应用场景下,电流识别部分能够准确地区分变压器的故障电流与励磁涌流,从而确保变压器差动保护动作的可靠有效。
从以上实施例可以看出,本发明实施例提出的基于变压器电流直流分量衰减特性的励磁涌流识别方法,与目前采取的单一依靠电流二次谐波含量或间断角特征的技术方案相比存在差别,与现有技术方案相比,可以显著提高励磁涌流识别的准确性,有效避免变压器保护误动与拒动情况的发生,有助于确保变压器保护的可靠性,在断路器未加装合闸电阻的应用场 景下可靠有效。在其他的实施例中,将变压器出口断路器电流的直流分量与基波分量幅值比的衰减速率作为识别励磁涌流的判据,能准确地区分变压器故障电流与励磁涌流,具有测量数据少、简单易实现的优点,并且三相独立判别、按相制动,且不受电流互感器饱和影响,可以确保变压器差动保护正确动作。
本发明实施例中,如果以软件功能模块的形式实现上述的励磁涌流识别方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
本发明实施例提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的励磁涌流识别方法。
本发明实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的励磁涌流识别方法。
需要说明的是,说明书中描述的主题的实施方式和操作能够以数字电子电路或者以计算机软件、固件或硬件实现,其中包括本说明书中所公开的结构及其结构等效,或者采用这些结构及其结构等效中的一个或多个的结合。说明书中所描述的主题的实施方式能够被实现为一个或多个计算机程序,即一个或多个计算机程序指令模块,其编码到一个或多个计算机存储介质上以由数据处理装置执行或者控制数据处理装置的操作。替选地或 附加地,计算机指令能够被编码到人工生成的传播信号(例如机器生成的电信号、光信号或电磁信号)上,该信号被生成用于对信息编码以发送到合适的接收机装置由数据处理装置执行。计算机存储介质能够是或包含在计算机可读存储设备、计算机可读存储载体,随机或顺序访问存储阵列或设备、或者以上各项中的一个或多个的结合之中。而且,虽然计算机存储介质不是传播信号,但是计算机存储介质能够是被编码在人工生成的传播信号中的计算机程序指令的源或目标。计算机存储介质还能够是或者包含在一个或多个独立的组件或媒体(例如,多个CD、磁盘或其它存储设备)中。因此,计算机存储介质可以是有形的。
说明书中描述的操作能够被实现为由数据处理装置对存储在一个或多个计算机可读存储设备上或从其它源接收的数据进行的操作。
术语“客户端”或“服务器”包括用于处理数据的所有类型的装置、设备和机器,例如包括可编程处理器、计算机、片上系统或前述各项中的多个或结合。装置能够包括专用逻辑电路,例如,现场可编程门阵列(FPGA)或专用集成电路(ASIC)。除硬件之外,装置还能够包括创建用于所关注计算机程序的执行环境的代码,例如,构成处理器固件、协议栈、数据库管理系统、操作系统、跨平台运行环境、虚拟机或其一个或多个的结合。装置和执行环境能够实现各种不同的计算模型基础架构,诸如网络服务、分布式计算和网格计算基础架构。
计算机程序(也被称为程序、软件、软件应用、脚本或代码)能够以任何编程语言形式(包括汇编语言或解释语言、说明性语言或程序语言)书写,并且能够以任何形式(包括作为独立程序,或者作为模块、组件、子程序、对象或其它适用于计算环境中的单元)部署。计算机程序可以但非必要地对应于文件系统中的文件。程序能够被存储在文件的保存其它程序或数据(例如,存储在标记语言文档中的一个或多个脚本)的部分中,在专用于所关注程序的单个文件中,或者在多个协同文件(例如,存储一 个或多个模块、子模块或代码部分的文件)中。计算机程序能够被部署为在一个或多个计算机上执行,该一个或多个计算机位于一个站点处,或者分布在多个站点中且通过通信网络互连。
说明书中描述的过程和逻辑流能够由一个或多个可编程处理器执行,该一个或多个可编程处理器执行一个或多个计算机程序以通过操作输入数据和生成输出来执行动作。上述过程和逻辑流还能够由专用逻辑电路执行,并且装置还能够被实现为专用逻辑电路,例如,FPGA或ASIC。
适用于执行计算机程序的处理器例如包括通用微处理器和专用微处理器,以及任何数字计算机类型的任何一个或多个处理器。通常来说,处理器会从只读存储器或随机访问存储器或以上两者接收指令和数据。计算的主要元件是用于按照指令执行动作的处理器以及一个或多个用于存储指令和数据的存储器。通常来说,计算机还会包括一个或多个用于存储数据的大容量存储设备(例如,磁盘、磁光盘、或光盘),或者操作地耦接以从其接收数据或向其发送数据,或者两者均是。然而,计算机不需要具有这样的设备。而且,计算机能够被嵌入在另一设备中,例如,移动电话、个人数字助手(PDA)、移动音频播放器或移动视频播放器、游戏控制台、全球定位系统(GPS)接收机或移动存储设备(例如,通用串行总线(USB)闪盘),以上仅为举例。适用于存储计算机程序指令和数据的设备包括所有形式的非易失性存储器、媒体和存储设备,例如包括半导体存储设备(例如,EPROM、EEPROM和闪存设备)、磁盘(例如,内部硬盘或移动硬盘)、磁光盘、以及CD-ROM和DVD-ROM盘。处理器和存储器能够由专用逻辑电路补充或者包含到专用逻辑电路中。
为了提供与用户的交互,说明书中描述的主题的实施方式能够在计算机上实现,该计算机包括显示设备、键盘、指向设备(例如,鼠标、轨迹球等,或触摸屏、触摸板等)。显示设备例如为阴极射线管(CRT)、液晶显示器(LCD)、有机发光二极管(OLED)、薄膜晶体管(TFT)、等离子、 其它柔性配置、或者用于向用户显示信息的任何其它监视器。用户能够通过键盘和指向设备向计算机提供输入。其它类型的设备也能够用于提供与用户的交互;例如,提供给用户的反馈能够是任何形式的感官反馈,例如,视觉反馈、听觉反馈、或触觉反馈;并且来自用户的输入能够以任何形式被接收,包括声学输入、语音输入或触摸输入。此外,计算机能够通过向用户使用的设备发送文档以及从该设备接收文档来与用户交互;例如,响应于从网页浏览器接收的请求将网页发送到用户的客户端上的网页浏览器。
说明书中描述的主题的实施方式能够以计算系统来实现。该计算系统包括后端组件(例如,数据服务器),或者包括中间件组件(例如,应用服务器),或者包括前端组件(例如,具有图形用户接口或网页浏览器的客户端计算机,用户通过该客户端计算机能够与本申请描述的主题的实施方式交互),或者包括上述后端组件、中间件组件或前端组件中的一个或多个的任何结合。系统的组件能够通过任何数字数据通信形式或介质(例如,通信网络)来互连。通信网络的示例包括局域网(LAN)和广域网(WAN)、互连网络(例如,互联网)以及端对端网络(例如,自组织端对端网络)。
虽然说明书包含许多具体的实施细节,但是这些实施细节不应当被解释为对任何权利要求的范围的限定,而是对专用于特定实施方式的特征的描述。说明书中在独立实施方式前后文中描述的特定的特征同样能够以单个实施方式的结合中实现。相反地,单个实施方式的上下文中描述的各个特征同样能够在多个实施方式中单独实现或者以任何合适的子结合中实现。而且,尽管特征可以在上文中描述为在特定结合中甚至如最初所要求的作用,但是在一些情况下所要求的结合中的一个或多个特征能够从该结合中去除,并且所要求的结合可以为子结合或者子结合的变型。
类似地,虽然在附图中以特定次序描绘操作,但是这不应当被理解为要求该操作以所示的特定次序或者以相继次序来执行,或者所示的全部操作都被执行以达到期望的结果。在特定环境下,多任务处理和并行处理可 以是有利的。此外,上述实施方式中各个系统组件的分离不应当被理解为要求在全部实施方式中实现该分离,并且应当理解的是所描述的程序组件和系统通常能够被共同集成在单个软件产品中或被封装为多个软件产品。
因此,已经对主题的特定实施方式进行了描述。其它实施方式在以下权利要求的范围内。在一些情况下,权利要求中所限定的动作能够以不同的次序执行并且仍能够达到期望的结果。此外,附图中描绘的过程并不必须采用所示出的特定次序、或相继次序来达到期望的结果。在特定实施方式中,可以使用多任务处理或并行处理。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。
工业实用性
本发明实施例中,设定时间间隔基准;计算变压器高压侧和中压侧出口断路器电流的直流分量与基波分量幅值比;对变压器出口断路器电流数据进行逻辑判断,辨识出励磁涌流与故障电流,确保变压器差动保护动作的正确率;如此,本发明实施例提供的技术方案所需测量数据少、简单易实现,并且三相独立判别、按相制动,且不受电流互感器饱和影响,确保变压器差动保护动作高效可靠,在变压器出口断路器未加装合闸电阻的应用场景下可靠有效。

Claims (19)

  1. 一种励磁涌流识别方法,其方法包括:
    确定时间间隔基准;
    基于所述时间间隔基准计算变压器出口断路器电流的直流分量与基波分量幅值比;
    按照制定的识别判据对所述直流分量与基波分量幅值比进行比较,识别所述变压器出口断路器电流是否为励磁涌流。
  2. 如权利要求1所述的识别方法,由设立的数字仿真系统仿真计算数据取样时间间隔T,将数据取样时间间隔T确定为所述时间间隔基准。
  3. 如权利要求1所述的识别方法,所述基于所述时间间隔基准计算变压器出口断路器电流的直流分量与基波分量幅值比包括:
    测量变压器出口断路器的电流波形,如果所述电流波形的电流幅值大于动作电流整定值时,按下式计算不同时间间隔T内直流分量与基波分量幅值比A:
    Figure PCTCN2017091546-appb-100001
    其中,I0m为直流分量幅值;I1m为基波分量幅值。
  4. 如权利要求1所述的识别方法,所述识别励磁涌流的判据为变压器出口断路器电流的直流分量与基波分量幅值比的衰减速率;
    基于所述时间间隔基准计算变压器出口断路器电流的直流分量与基波分量幅值比的衰减速率。
  5. 如权利要求4所述的识别方法,所述确定时间间隔基准包括:
    仿真计算短路故障时流经变压器出口断路器的短路电流,并计算短路电流的直流分量和短路电流的基波分量;
    仿真计算变压器合闸空载主变时流经变压器出口断路器的励磁涌流, 并计算励磁涌流的直流分量和励磁涌流的基波分量;
    基于所述短路电流的直流分量、短路电流的基波分量、励磁涌流的直流分量、励磁涌流的基波分量选择最小的数据取样时间间隔T。
  6. 如权利要求4所述的识别方法,所述基于所述时间间隔基准计算变压器出口断路器电流的直流分量与基波分量幅值比的衰减速率,包括:计算每一间隔时间T的短路电流和励磁涌流中直流分量和基波分量幅值比An
    根据计算的直流分量和基波分量幅值比计算衰减速率Kn
  7. 如权利要求4所述的识别方法,所述按照制定的识别判据对所述直流分量与基波分量幅值比进行比较,识别所述变压器出口断路器电流是否为励磁涌流,包括:
    根据计算的直流分量和基波分量幅值比的衰减速率Kn确定衰减速率阈值Kset,若K1<0,则为励磁涌流;
    若K1>0且K2>Kset,则为故障电流,否则为励磁涌流。
  8. 如权利要求6所述的识别方法,还包括:
    根据实际工程合闸空载主变时的励磁涌流与故障时短路电流的测量值,修正仿真计算的数据取样时间间隔T和衰减速率阈值Kset
  9. 如权利要求1至7任一项所述的识别方法,所述判据的选取原则是:变压器故障电流电气特征是否满足判据要求,励磁涌流电气特征是否满足判据要求。
  10. 如权利要求1至7任一项所述的识别方法,其中,用傅里叶算法分别计算所述直流分量和所述基波分量。
  11. 如权利要求11至7任一项所述的识别方法,所述按照制定的识别判据对所述直流分量与基波分量幅值比进行比较,识别所述变压器出口断路器电流是否为励磁涌流,包括:
    按照下式计算电流直流分量与基波分量幅值比的衰减速率Kn
    Kn=(A0-An)/A0
    其中,n=1、2;A0和An:分别表示第0个和第n个取样时间间隔T内的直流分量与基波分量幅值比;
    设置衰减速率阈值Kset,若K1<0,则为励磁涌流;
    若K1>0且K2>Kset,则为故障电流,否则为励磁涌流。
  12. 一种励磁涌流识别装置,所述装置包括确定部分、计算部分和识别部分,其中:
    所述确定部分,配置为确定时间间隔基准;
    所述计算部分,配置为基于所述时间间隔基准计算变压器出口断路器电流的直流分量与基波分量幅值比;
    所述识别部分,配置为按照制定的识别判据对所述直流分量与基波分量幅值比进行比较,识别所述变压器出口断路器电流是否为励磁涌流。
  13. 如权利要求12所述的识别装置,还包括数字仿真部分,配置为根据工程所在电网条件计算动作电流整定值和取样时间间隔T,并根据现场调试运行结果对动作电流整定值和取样时间间隔T进行修正。
  14. 如权利要求12所述的识别装置,还包括:数据判别部分,配置为对变压器出口断路器电流幅值与动作电流整定值的大小作出判别,如果所述电流波形的电流幅值大于动作电流整定值时,将所述变压器出口断路器电流幅值传输至确定部分。
  15. 如权利要求12所述的识别装置,所述计算部分,配置为用傅里叶计算不同时间间隔内的直流分量与基波分量的幅值比。
  16. 如权利要求12所述的识别装置,所述计算部分,配置为设置衰减速率阈值Kset,并按下式计算直流分量与基波分量的幅值比的衰减速率Kn
    Kn=(A0-An)/A0
    其中,n=1、2。
  17. 如权利要求12所述的识别装置,所述识别部分,配置为:
    根据计算的直流分量和基波分量幅值比的衰减速率Kn确定衰减速率阈值Kset,若K1<0,则为励磁涌流;
    若K1>0且K2>Kset,则为故障电流,否则为励磁涌流。
  18. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至11任项所述的励磁涌流识别方法。
  19. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至11任项所述的励磁涌流识别方法。
PCT/CN2017/091546 2016-08-19 2017-07-03 励磁涌流识别方法及识别装置、设备、存储介质 WO2018032894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610693333.6A CN107765077B (zh) 2016-08-19 2016-08-19 一种励磁涌流识别方法及识别装置
CN201610693333.6 2016-08-19

Publications (1)

Publication Number Publication Date
WO2018032894A1 true WO2018032894A1 (zh) 2018-02-22

Family

ID=61196319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091546 WO2018032894A1 (zh) 2016-08-19 2017-07-03 励磁涌流识别方法及识别装置、设备、存储介质

Country Status (2)

Country Link
CN (1) CN107765077B (zh)
WO (1) WO2018032894A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463751A (zh) * 2020-04-27 2020-07-28 国网陕西省电力公司西安供电公司 一种基于等效励磁阻抗特征的变压器保护方法
CN111525508A (zh) * 2020-04-03 2020-08-11 中国电力科学研究院有限公司 一种高压并联电抗器匝间保护防饱和误动方法及装置
CN111668819A (zh) * 2020-06-22 2020-09-15 广东韶钢松山股份有限公司 线路保护控制方法和微机保护装置
CN111969556A (zh) * 2020-08-13 2020-11-20 广东电网有限责任公司 一种励磁涌流判别方法及判别装置
CN112147396A (zh) * 2020-09-09 2020-12-29 中国电力科学研究院有限公司 一种短路电流直流分量百分数的计算方法及系统
CN113176439A (zh) * 2021-04-29 2021-07-27 四川虹美智能科技有限公司 单相交流电压检测电路及其检测方法
CN113268942A (zh) * 2020-02-17 2021-08-17 全球能源互联网研究院有限公司 一种适合于fpga的混合直流断路器实时仿真方法及系统
CN116404612A (zh) * 2023-06-06 2023-07-07 三峡智能工程有限公司 防止和应涌流导致发电机差动保护误动作的方法及系统
CN117200138A (zh) * 2023-09-07 2023-12-08 三一重能股份有限公司 变压器的继电保护方法、装置、风力发电机组及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109522615B (zh) * 2018-10-26 2022-08-19 国网河南省电力公司电力科学研究院 电力系统继电保护的零序涌流耐受能力评估方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666840A (zh) * 2009-09-23 2010-03-10 南京南电继保自动化有限公司 变压器涌流的畸变度检测方法
CN101820166A (zh) * 2010-02-10 2010-09-01 江苏金智科技股份有限公司 基于变压器等效励磁阻抗频域特征的励磁涌流判别方法
CN103675415A (zh) * 2012-08-31 2014-03-26 西门子公司 励磁涌流检测方法、励磁涌流制动方法及其装置
US20160141972A1 (en) * 2014-11-13 2016-05-19 Panasonic Intellectual Property Management Co., Ltd. Power conversion apparatus
EP3026803A1 (en) * 2014-11-25 2016-06-01 Alstom Technology Ltd Start-up of HVDC converters
CN105653882A (zh) * 2016-03-09 2016-06-08 西安工程大学 一种利用电流波形特征识别励磁涌流的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488660B (zh) * 2008-01-17 2011-03-02 浙江省电力公司 一种区分变压器励磁涌流与故障电流的自适应判断方法
TWI393910B (zh) * 2010-03-08 2013-04-21 Univ Nat Formosa Transformer fault analysis and measurement system
CN103149470B (zh) * 2013-01-29 2015-04-22 北京信息科技大学 利用变压器绕组振动识别变压器励磁涌流的方法
CN105116251A (zh) * 2015-08-12 2015-12-02 国网上海市电力公司 变压器故障鉴别保护方法
CN105552839B (zh) * 2016-03-07 2018-01-12 国家电网公司 一种基于电压在线积分的变压器和应涌流识别方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101666840A (zh) * 2009-09-23 2010-03-10 南京南电继保自动化有限公司 变压器涌流的畸变度检测方法
CN101820166A (zh) * 2010-02-10 2010-09-01 江苏金智科技股份有限公司 基于变压器等效励磁阻抗频域特征的励磁涌流判别方法
CN103675415A (zh) * 2012-08-31 2014-03-26 西门子公司 励磁涌流检测方法、励磁涌流制动方法及其装置
US20160141972A1 (en) * 2014-11-13 2016-05-19 Panasonic Intellectual Property Management Co., Ltd. Power conversion apparatus
EP3026803A1 (en) * 2014-11-25 2016-06-01 Alstom Technology Ltd Start-up of HVDC converters
CN105653882A (zh) * 2016-03-09 2016-06-08 西安工程大学 一种利用电流波形特征识别励磁涌流的方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113268942A (zh) * 2020-02-17 2021-08-17 全球能源互联网研究院有限公司 一种适合于fpga的混合直流断路器实时仿真方法及系统
CN111525508A (zh) * 2020-04-03 2020-08-11 中国电力科学研究院有限公司 一种高压并联电抗器匝间保护防饱和误动方法及装置
CN111525508B (zh) * 2020-04-03 2022-08-30 中国电力科学研究院有限公司 一种高压并联电抗器匝间保护防饱和误动方法及装置
CN111463751A (zh) * 2020-04-27 2020-07-28 国网陕西省电力公司西安供电公司 一种基于等效励磁阻抗特征的变压器保护方法
CN111668819A (zh) * 2020-06-22 2020-09-15 广东韶钢松山股份有限公司 线路保护控制方法和微机保护装置
CN111668819B (zh) * 2020-06-22 2022-07-29 广东韶钢松山股份有限公司 线路保护控制方法和微机保护装置
CN111969556A (zh) * 2020-08-13 2020-11-20 广东电网有限责任公司 一种励磁涌流判别方法及判别装置
CN111969556B (zh) * 2020-08-13 2022-07-26 广东电网有限责任公司 一种励磁涌流判别方法及判别装置
CN112147396A (zh) * 2020-09-09 2020-12-29 中国电力科学研究院有限公司 一种短路电流直流分量百分数的计算方法及系统
CN112147396B (zh) * 2020-09-09 2023-01-31 中国电力科学研究院有限公司 一种短路电流直流分量百分数的计算方法及系统
CN113176439A (zh) * 2021-04-29 2021-07-27 四川虹美智能科技有限公司 单相交流电压检测电路及其检测方法
CN113176439B (zh) * 2021-04-29 2022-08-16 四川虹美智能科技有限公司 单相交流电压检测电路及其检测方法
CN116404612A (zh) * 2023-06-06 2023-07-07 三峡智能工程有限公司 防止和应涌流导致发电机差动保护误动作的方法及系统
CN116404612B (zh) * 2023-06-06 2023-09-15 三峡智能工程有限公司 防止和应涌流导致发电机差动保护误动作的方法及系统
CN117200138A (zh) * 2023-09-07 2023-12-08 三一重能股份有限公司 变压器的继电保护方法、装置、风力发电机组及存储介质

Also Published As

Publication number Publication date
CN107765077B (zh) 2021-01-15
CN107765077A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
WO2018032894A1 (zh) 励磁涌流识别方法及识别装置、设备、存储介质
US20160139212A1 (en) Methods and systems for power restoration planning employing simulation and transient test analysis
CN107103163B (zh) 一种基于物理实验确定电流互感器j-a仿真模型的方法
CN107765076B (zh) 一种励磁涌流识别方法及识别装置
CN104466903A (zh) 一种差动保护的电流互感器饱和识别方法
Sun et al. Unbalanced source identification at the point of evaluation in the distribution power systems
CN105353333A (zh) 一种电磁式电流互感器的传变特性检测方法
CN105067906A (zh) 一种基于三阶中心矩的电流互感器饱和检测方法
Yahiou et al. Modified method for transformer magnetizing characteristic computation and point‐on‐wave control switching for inrush current mitigation
Rahmati et al. A fast WT‐based algorithm to distinguish between transformer internal faults and inrush currents
Zhan et al. Fault‐tolerant grid frequency measurement algorithm during transients
CN104483639A (zh) YNd11型三相组式变压器非故障跳闸的剩磁估计方法
Liu et al. Modified quasi‐steady state model of DC system for transient stability simulation under asymmetric faults
Liang et al. Transmission line frequency-domain fault location method based on the phasor-time space curve characteristics that considers decaying DC deviation
Wang et al. Analysis on the influencing factors of transformer sympathetic inrush current
Kader et al. A novel directional comparison pilot protection scheme based on neutral-point zero-sequence current of UHV auto-transformer
Zeimer The effect of DC current on power transformers
Cao et al. Analysis for DC transmission line harmonics originated from AC transformer inrush current and improved method for DC harmonic protection
Li et al. Novel remanence detection for power transformers based on modified JA model
Deng et al. Research on fault location scheme for inverter AC transmission line of AC–DC hybrid system
Vemprala Advancements in Time-Domain Modeling of Power System Disturbances
Wang et al. New method for calculating voltage dip/swell types based on six‐dimensional vectors and Euclidean distance
He et al. A novel transformer protection scheme based on equivalent excitation impedance characteristics
Avendano-Mora Monitor placement for estimation of voltage sags in power systems
Wang et al. New Method of Stator Ground Protection for Generators Connected as Expanding Unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17840870

Country of ref document: EP

Kind code of ref document: A1