WO2018032877A1 - 通信系统中传输唤醒包的方法和设备 - Google Patents

通信系统中传输唤醒包的方法和设备 Download PDF

Info

Publication number
WO2018032877A1
WO2018032877A1 PCT/CN2017/089953 CN2017089953W WO2018032877A1 WO 2018032877 A1 WO2018032877 A1 WO 2018032877A1 CN 2017089953 W CN2017089953 W CN 2017089953W WO 2018032877 A1 WO2018032877 A1 WO 2018032877A1
Authority
WO
WIPO (PCT)
Prior art keywords
end device
data rate
receiving
wake
wup
Prior art date
Application number
PCT/CN2017/089953
Other languages
English (en)
French (fr)
Inventor
林梅露
淦明
郭宇宸
杨讯
刘云
于健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US16/475,628 priority Critical patent/US11452042B2/en
Priority to EP17840853.0A priority patent/EP3528557A4/en
Publication of WO2018032877A1 publication Critical patent/WO2018032877A1/zh
Priority to US17/896,976 priority patent/US20230067562A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present application relate to the field of communications, and more particularly, to a method and apparatus for transmitting wake-up packets in a communication system.
  • Devices deployed in communication systems typically require a long life, which requires the device to have very low power consumption.
  • the intuitive way to reduce power consumption is to keep the device's transceiver link active.
  • the device can control itself and wake up to be active when there is data to send.
  • the usual method is that the device is always in the sleep state. When there is data to be received, the device wakes up. Since the device cannot decide when there is data to be received, it is necessary to consider the sleep at the same time when designing the sleep-wake mode. Efficiency and latency of data transmission.
  • a sleep-wake mode is to introduce a low-power wake-up link (Wake Up Radio, referred to as "WUR").
  • WUR wake Up Radio
  • the WUR can continue to listen for links at very low power and wake up the primary link for normal data interaction after detecting the wake-up packet.
  • WUR Wake Up Radio
  • the present application provides a method and device for transmitting a wake-up packet in a communication system, which can improve the transmission efficiency of a wake-up packet in a communication system.
  • a method for transmitting a wake-up packet in a communication system comprising a sender device and a receiver device, the receiver device comprising a wake-up receiver and a master transceiver, the method comprising: the sender device Transmitting, by the first data rate, the first wake-up packet WUP to the wake-up receiver; the transmitting end device determines a second data rate; and the transmitting end device sends the second WUP to the wake-up receiver by using the second data rate.
  • the transmitting device can transmit the wake-up packet to the receiving device at different data rates, whereby the transmitting device can determine an appropriate according to specific transmission conditions in the communication process. Send the data rate of the wake-up packet to improve the transmission efficiency of the wake-up packet.
  • the sending end device sends the first wake-up packet to the wake-up receiver by using the first data rate, including: the sending end device adopting the first symbol rate Transmitting the first WUP to the wake-up receiver; wherein the sending end device determines a second data rate, and the sending end device sends the second WUP to the wake-up receiver by using the second data rate, including: the sending end device Determining a second symbol rate; the transmitting device transmits the second WUP to the wake-up receiver by using the second symbol rate.
  • the sending end device sends the first wake to the wakeup receiver by using the first data rate
  • the packet WUP includes: the sending end device sends the first WUP to the wakeup receiver by using a first modulation and coding manner; wherein the sending end device determines a second data rate, and the sending end device uses the second data rate to Wake up the receiver to send the first
  • the second WUP includes: the sending end device determines a second modulation and coding mode; and the sending end device sends the second WUP to the wake-up receiver by using the second modulation and coding mode.
  • the specific data rate used by the transmitting device to transmit the wake-up packet twice may be: the symbol rate used when transmitting the wake-up packet twice is different, and/or the two transmissions wake up.
  • the modulation coding method used in the packet is different.
  • the sending end device determines the second The data rate includes: the transmitting device determines the second data rate according to a data rate used when transmitting data to the primary transceiver.
  • the sending end device determines the second The data rate includes: the transmitting device determines the second data rate according to a working frequency band in which the primary transceiver is located and/or a working frequency band in which the wake-up receiver is located.
  • the sending end device determines the second The data rate includes: the sending end device determines, according to the multipath delay extension, a symbol length corresponding to the second data rate.
  • the multipath delay is extended to a multipath delay extension of a close distance (indoor environment), or the multipath delay is extended to a multipath delay extension of a long distance (outdoor environment), or a multipath delay Expanded to multipath delay spread in the current communication environment.
  • the sending end device determines the second data rate, including: sending The end device receives the feedback information sent by the receiving end device through the main transceiver; the sending end device determines the second data rate according to the feedback information.
  • the feedback information sent by the receiving end device to the sending end device by using the primary transceiver includes information indicating a data rate expected by the receiving end device.
  • the feedback information is used to indicate the working frequency of the primary transceiver and/or the wake-up receiver Determining the first information of the signal-to-noise ratio; wherein the transmitting end device determines the second data rate according to the feedback information, comprising: determining, by the sending end device, the correspondence between the first information and the signal-to-noise ratio and the data rate The second data rate.
  • the feedback mechanism in 802.11 can be reused to simplify the implementation of the receiving device.
  • the feedback information includes second information used to indicate power when the first WUP arrives at the wake-up receiver
  • the feedback information includes third information for indicating a signal to noise ratio of the first WUP at the wakeup receiver, where the sending end device determines the second data rate according to the feedback information, including: the sending end The device determines the second data rate according to the third information and a preset signal to noise ratio threshold; or
  • the feedback information includes fourth information for indicating a packet error rate of the first WUP at the wakeup receiver, where the sending end device determines the second data rate according to the feedback information, including: the sending end device according to the The fourth information and a preset error rate threshold determine the second data rate.
  • the sending end device receives the feedback information sent by the receiving end device by using the main transceiver, and the method includes: the sending end device receiving the medium access that the receiving end device sends through the main transceiver
  • the MAC frame is controlled, and the MAC frame carries the feedback information.
  • the information frame (Information Element, IE) is included in the MAC frame, and the IE includes an information field, where the information field carries the feedback information.
  • Information Element Information Element
  • the sending end device receives the media access control MAC frame that is sent by the receiving end device by using the primary transceiver, and includes: Receiving, by the sending end device, a quality of service QoS data frame sent by the receiving end device by using the primary transceiver, where the QoS data frame includes a high throughput control field, where the high throughput control field carries the feedback information; or, the sending end device Receiving, by the receiving end device, a QoS blank frame sent by the primary transceiver, where the QoS blank frame includes a high-efficiency aggregation control field, where the high-efficiency aggregation control field carries the feedback information; or, the sending end device receives the receiving end device by using the primary device A beamforming report sent by the transceiver, the beamforming report including a feedback field, the feedback field carrying the feedback information.
  • the sending end device adopts a Transmitting, by the second data rate, the second WUP to the wake-up receiver, comprising: the transmitting end device modulating the information bits in the second WUP into a plurality of modulation symbols according to the second data rate, where the multiple modulation symbols include symbol energy a first modulation symbol of 0 and a second modulation symbol whose symbol energy is not 0; the transmitting device transmits the plurality of modulation symbols to the wake-up receiver.
  • the sending end device sends the multiple modulation symbols to the wake-up receiver, including: the sending end The device sends a plurality of modulation symbols to the wake-up receiver by transmitting a first preset number of the modulation symbols to the wake-up receiver, and transmitting the plurality of modulation symbols to the wake-up receiver, where the place-of-sense symbol Not carrying information bits, and the symbol energy of the placeholder symbol is not 0; or, the transmitting end device sends a second preset number of the first modulation symbols to the wake-up receiver, and sends a first modulation symbol to the wake-up receiver.
  • the plurality of modulation symbols are transmitted to the wake-up receiver, wherein the placeholder symbol does not carry information bits, and the symbol energy of the placeholder symbol is not zero.
  • the second WUP includes The signaling field and the data field arranged according to the transmission timing, the signaling field carrying indication information indicating the second data rate.
  • the second WUP further includes a redundancy field, where the transmission time of the redundant field is in the signaling After the send time of the field, and before the send time of the data field.
  • the receiving end device can adjust the data rate in the time that the sending end device sends the redundant field, so as to successfully receive and parse the data field sent by the sending end device.
  • the second WUP includes a preamble according to a transmission timing a field and a data field, so that the receiving device determines the second data rate according to the preamble pattern corresponding to the preamble field and the preset correspondence, where the preset correspondence includes the correspondence between the preamble mode and the data rate. relationship.
  • the second WUP includes a MAC header field, where the MAC header field includes an identifier information field, where the identifier information field is used to carry the identifier information of the receiving device, and the method further includes: the sending end The device determines, according to the second data rate, the number of information bits included in the identifier information field, where the number of information bits included in the identifier information field is positively correlated with the size of the second data rate.
  • a field for indicating the number of information bits included in the identification information field is included in the MAC header field. So that the receiving end device determines the number of information bits in the identification information field according to the information carried by the field.
  • a method for transmitting a wake-up packet in a communication system comprising a sender device and a receiver device, the receiver device comprising a wake-up receiver and a master transceiver, the method comprising: the receiver device Receiving, by the wake-up receiver, the first wake-up packet WUP sent by the sending end device by using the first data rate; the receiving end device receiving, by the wake-up receiver, the second WUP sent by the sending end device by using the second data rate; the receiving The end device determines the second data rate; the receiving device parses the second WUP according to the second data rate.
  • the receiving device receives the wake-up packet sent by the transmitting device at different data transmission rates, and the transmitting device can determine the appropriate sending wake-up according to the specific transmission condition in the communication process.
  • the data rate of the packet improves the transmission efficiency of the wake-up packet.
  • the receiving end device receives, by the wake-up receiver, the first wake-up WUP sent by the sending end device by using the first data rate, including: the receiving end Receiving, by the wake-up receiver, the first WUP sent by the sending end device by using the first symbol rate; the receiving end device receiving, by the wake-up receiver, the second WUP sent by the sending end device by using the second data rate, including: Receiving, by the receiving device, the second WUP sent by the sending end device by using the second symbol rate; the receiving end device determining the second data rate, comprising: the receiving end device determining the second symbol rate
  • the receiving end device parses the second WUP according to the second data rate, and the method includes: the receiving end device parses the second WUP according to the second symbol rate.
  • the receiving end device receives, by using the wake-up receiver, the sending end device adopting the first data
  • the first wake-up WUP sent by the rate includes: the receiving end device receives, by the wake-up receiver, the first WUP sent by the sending end device by using a first modulation and coding manner; and the receiving end device receives the sending end by using the wake-up receiver And the second WUP sent by the device by using the second data rate, where the receiving device receives the second WUP sent by the sending device by using the second modulation and encoding manner; the receiving device determines the second
  • the data rate includes: the receiving end device determines the second modulation and coding mode; the receiving end device parses the second WUP according to the second data rate, and the method includes: the receiving end device parses the second modulation and coding mode according to the second modulation rate Second WUP.
  • the method further includes: receiving The end device sends feedback information to the sending end device through the primary transceiver, so that the sending end device determines the second data rate according to the feedback information.
  • the feedback information includes a working frequency point for indicating the primary transceiver and/or the wake-up receiver First information of the signal to noise ratio, so that the sending end device determines the second data rate according to the correspondence between the first information and the signal to noise ratio and the data rate.
  • the feedback information includes second information for indicating the power of the first WUP when the wake-up receiver arrives, so that the sending end device determines the second data rate according to the second information and the preset power threshold; or
  • the feedback information includes third information for indicating a signal to noise ratio of the first WUP at the wakeup receiver, so that the sending end device determines the second data according to the third information and a preset signal to noise ratio threshold.
  • a rate information or the feedback information includes fourth information indicating a packet error rate of the first WUP at the wake-up receiver, so that the sending end device determines, according to the fourth information and a preset error packet rate threshold, Second data rate.
  • the receiving end device sends the And sending, by the terminal device, the media information, by using the primary transceiver, a media access control MAC frame, where the MAC frame carries the feedback information.
  • the receiving device sends the media access control MAC frame to the sending device by using the primary transceiver, including: The receiving end device sends a quality of service QoS data frame to the transmitting end device by using the primary transceiver, where the QoS data frame includes a high throughput control field, where the high throughput control field carries the feedback information; or, the receiving device passes The primary transceiver sends a QoS blank frame to the sending end device, where the QoS blank frame includes a high-efficiency aggregation control field, and the high-efficiency aggregation control field carries the feedback information; or, the receiving end device sends the sending end device to the sending end device A beamforming report is sent, the beamforming report including a feedback field that carries the feedback information.
  • the receiving device Receiving, by the receiver, the second WUP sent by the sending end device by using the second data rate, where the receiving end device receives, by the wake-up receiver, a plurality of modulation symbols sent by the sending end device, where the multiple modulation symbols are Transmitting, by the transmitting device, the information bits in the second WUP according to the second data rate, where the plurality of modulation symbols include a first modulation symbol with a symbol energy of 0 and a second modulation with a symbol energy other than 0. symbol.
  • the multiple modulation symbols are sent by the sending end device to send the first preset to the wake receiver
  • the quantity of the modulation symbol is sent to the wake-up receiver by sending a placeholder symbol, where the placeholder symbol does not carry the information bit, and the symbol energy of the placeholder symbol is not 0; wherein the receiving end device Receiving, by the wake-up receiver, the plurality of modulation symbols sent by the sending end device, comprising: the receiving end device adopting, by using the wake-up receiver, a manner of ignoring one of the placeholder symbols every time the first preset number of the modulation symbols are received Receiving the plurality of modulation symbols.
  • the plurality of modulation symbols is that the sending end device sends a second preset quantity to the wake receiver
  • the second modulation symbol is sent to the wake-up receiver by sending a placeholder symbol, wherein the placeholder symbol does not carry the information bit, and the symbol energy of the placeholder symbol is not 0;
  • the receiving end device receives the plurality of modulation symbols sent by the sending end device by using the wake-up receiver, and the receiving end device uses the second preset number of the second modulation symbols by using the wake-up receiver.
  • the plurality of modulation symbols are received in a manner that ignores one of the placeholder symbols.
  • the second WUP further includes a redundancy field, where the transmission time of the redundant field is in the signaling field After the send time, and before the send time of the data field.
  • the second Transmitting a preamble field and a data field of the sequence; wherein the receiving end device determines the second data rate, the method includes: determining, by the receiving end device, the second data according to a preamble pattern corresponding to the preamble field and a preset correspondence relationship Rate, where the preset correspondence includes a correspondence between a preamble mode and a data rate.
  • the second WUP includes A MAC header field
  • the MAC header field includes an identifier field, where the identifier information field is used to carry identifier information of the receiving device, and the number of information bits included in the identifier information field is positively correlated with the size of the second data rate.
  • a method for transmitting a wake-up packet in a communication system comprising a sender device and a receiver device, the receiver device comprising a wake-up receiver and a master transceiver, the method comprising: generating, by the sender device M wake-up packets WUP; the transmitting end device sends an i-th WUP to the wake-up receiver of the i-th receiving end device of the M receiving end devices, wherein the transmitting end device wakes up to any two receiving end devices
  • the transmitting end device simultaneously sends the wake-up packet to the plurality of receiving end devices, which can improve the transmission efficiency of the wake-up packet.
  • the method further includes: the sending end device generating, by the sending end device, a plurality of symbols corresponding to information bits in the i-th WUP, where the multiple symbols are The first symbol including the symbol energy is not 0 and the second symbol whose symbol energy is 0, wherein the first symbol is generated by: determining an i-th frequency-domain filling sequence; and filling the i-th frequency-domain filling sequence into Obtaining an i-th frequency domain signal on the plurality of subcarriers at a working frequency of the wake-up receiver of the i-th receiving device; performing inverse Fourier transform IFFT on the i-th frequency domain signal to obtain the carrying information The sign of bit 1.
  • the determining the i-th frequency domain filling sequence includes: pre-filling the frequency domain sequence according to the M twiddle factors The i-th rotation factor in the rotation is rotated to obtain the i-th frequency domain filling sequence, wherein at least two of the M twirl factors are different.
  • the determining the i-th frequency domain filling sequence includes: generating a full bandwidth sequence; according to the full bandwidth sequence, Determine the i-th padding sequence.
  • the quantity of 0 between two adjacent non-zero values in the i-th frequency-domain padding sequence is Set the quantity.
  • the determining the i-th frequency domain padding sequence includes: generating an ith time domain padding sequence, where The values in the i time domain padding sequences have the same amplitude; the i-th time domain padding sequence is subjected to Fourier transform FFT to obtain the i-th frequency domain padding sequence.
  • a transmitting device for performing the method in any of the above first aspect or any possible implementation of the first aspect.
  • the transmitting end device includes a first aspect or a first aspect for performing the above A functional module of a method in any of the possible implementations.
  • a receiving end device for performing the method in any of the above possible aspects of the second aspect or the second aspect.
  • the source device includes functional modules for performing the method in any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a transmitting device for performing the method in any of the foregoing possible implementations of the third aspect or the third aspect.
  • the source device includes functional modules for performing the method in any of the possible implementations of the third aspect or the third aspect described above.
  • a seventh aspect provides a transmitting device, including a processor, a memory, and a transceiver, the processor, the memory and the transceiver being connected by a bus system, the memory is configured to store an instruction, and the processor is configured to call the memory The instructions stored in the control to receive or transmit information to the transceiver, such that the source device performs the method of any of the first aspect or the first aspect of the first aspect.
  • a receiving end device includes a processor, a memory, a wakeup receiver, and a main transceiver, and the processor, the memory, the wakeup receiver, and the main transceiver are connected by a bus system, and the memory is used by the memory And storing, by the processor, instructions stored in the memory to control the wake-up receiver to receive information, and controlling the main transceiver to receive or transmit information, so that the receiving device performs the second aspect or the second aspect The method in any possible implementation.
  • a transmitting end device includes a processor, a memory, and a transceiver, the processor, the memory and the transceiver are connected by a bus system, the memory is configured to store an instruction, and the processor is configured to call the memory The instructions stored in the control to receive or transmit information to the transceiver, such that the source device performs the method of any of the third aspect or the third aspect of the third aspect.
  • a tenth aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of any of the third aspect or any of the possible implementations of the third aspect.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a schematic diagram of one possible cooperative working mode of a wake-up receiver and a main transceiver according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a structure of a wake-up packet according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for transmitting a wake-up packet in a communication system according to an embodiment of the present application
  • FIG. 5 is a schematic illustration of two different symbol lengths in accordance with an embodiment of the present application.
  • FIG. 6 is another schematic flowchart of a method for transmitting a wake-up packet in a communication system according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of a structure of a QoS data frame according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a structure of an efficient aggregation control field according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a structure of a beamforming report according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram showing the structure of an information element according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a structure of an M-BA frame according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a structure of a trigger frame according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a structure of a wake-up packet according to another embodiment of the present application.
  • FIG. 14 is a schematic diagram of a structure of a wake-up packet according to still another embodiment of the present application.
  • FIG. 15 is a schematic diagram of a method for distinguishing a receiving end device according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a method for a sending end device to simultaneously send a wake-up packet to multiple receiving ends according to an embodiment of the present application
  • FIG. 17 is a schematic block diagram of a source device according to an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a receiving end device according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of a source device according to another embodiment of the present application.
  • FIG. 20 is a schematic block diagram of a sink device according to another embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the wireless local area network (WLAN) shown in FIG. 1 includes a transmitting end device (such as an access point (AP) and a receiving end device shown in FIG. 1 (for example, the site shown in FIG. 1). (Station, STA).
  • the AP is responsible for two-way communication with a plurality of STAs, for example, the AP shown in FIG. 1 transmits downlink data to STAs (for example, STA1 and STA2 in FIG. 1), or the AP receives from the STA (for example, FIG. 1 Uplink data of STA3)
  • STAs for example, STA1 and STA2 in FIG. 1
  • FIG. 1 Uplink data of STA3
  • the receiving end device includes a main transceiver 2 and a wake-up receiver
  • the transmitting end device includes a main transceiver 1, wherein, in order to achieve low power consumption, the circuit configuration of the wake-up receiver is relatively simple, and only Includes Energy Detect and Radio Frequency (RF) sections.
  • RF Radio Frequency
  • the transmitting device If the transmitting device needs to communicate with the receiving device, the transmitting device first sends a Wake Up Packet (WUP) to the wake-up receiver of the receiving device. After the wake-up receiver correctly receives the WUP sent to itself, it wakes up the main transceiver 2 of the receiving device and then goes into the sleep state by itself, and the transmitting device communicates with the main transceiver 2 through the main transceiver 1. When the main transceiver 2 completes communication with the transmitting device, it will go to sleep, and wake up the receiver to wake up and start to listen to whether there is a WUP sent to itself, so as to wake up the main transceiver 2 when the WUP is received.
  • WUP Wake Up Packet
  • the primary transceiver of a receiving device can only be woken up by the wake-up receiver corresponding to the receiving device.
  • both the primary transceiver and the wake-up receiver refer to the primary transceiver and wake-up receiver of the same receiving device.
  • FIG. 3 illustrates a possible structure of the WUP according to an embodiment of the present application, where the WUP includes 802.11.
  • Traditional pilot Legacy 802.11 Preamble
  • WUP payload Payload
  • the WUP Payload includes a Wake Up Preamble, a Medium Access Control Header (MAC Header), a Frame Body, and a Frame Check Sequence (FCS).
  • MAC Header Medium Access Control Header
  • FCS Frame Check Sequence
  • the WUP payload can also be a data part.
  • Legacy 802.11 Preamble is used to protect the subsequent part of the WUP from being interfered by the traditional 802.11 device.
  • the function of the Wake Up Preamble is for the receiving device to recognize the WUP signal, and the MAC Header part can
  • the frame body is used to carry some other information, and the FCS part is used to ensure that the data received by the receiving end device is the same as the data sent by the sending end device.
  • the data rate refers to the amount of information (bits) transmitted on the channel per unit time
  • the symbol rate refers to the number of symbols transmitted on the channel per unit time
  • FIG. 4 is a schematic flowchart of a method for transmitting a wake-up packet in a communication system according to an embodiment of the present application.
  • the communication system includes a sender device and a receiver device, and the receiver device includes a wakeup receiver and a master transceiver.
  • the method 100 includes:
  • the sending end device sends the first wake-up packet WUP to the wake-up receiver by using the first data rate
  • the sending end device determines a second data rate.
  • the sending end device sends the second WUP to the wakeup receiver by using the second data rate.
  • a possible implementation manner that the sending end device sends the first WUP to the wakeup receiver by using the first data rate is: the sending end device sends the first symbol rate to the wakeup receiver.
  • the first WUP correspondingly, in S120, the transmitting device determines a second symbol rate, and in S130, the transmitting device sends the second WUP to the wakeup receiver by using the second symbol rate.
  • a specific implementation manner in which the transmitting end device sends the WUP to the wake-up receiver of the receiving end device by using the variable data rate is: the transmitting end device sends the WUP to the wake-up receiver of the receiving end device by using a variable symbol rate.
  • variable symbol rate may be embodied as a variable symbol length, for example, t1, t2, t3....
  • Figure 5 shows a schematic diagram of two different symbol lengths in accordance with an embodiment of the present application.
  • the value of t can be specified as one of the following values: 1.6us, 2us, 2.4us, 3.2us, and 4us.
  • the minimum symbol length is defined as t us, and different spreading codes are used to generate symbols of various lengths. Specifically, a plurality of spreading codes of length 1, 2, 4, 8..., different symbols may be defined. The length corresponds to different spreading codes.
  • the symbol for carrying information bit 1 includes a symbol of length t us. If the length of the spreading code is 4, it is used for The symbol carrying information bit 1 contains 4 symbols of length t us.
  • the sending end device needs to determine the symbol length before sending the WUP, and the symbol length determined by the sending end device needs to make the power of the WUP reaching the receiving end device not less than a preset power threshold (or WUP).
  • the average power of the symbol in the receiving device is not less than the preset power threshold, or the packet error rate (PER) of the WUP demodulated at the receiving device is less than the preset packet error rate threshold (or WUP).
  • the average symbol error rate of the symbol at the receiving end device is less than the preset error symbol rate threshold), or the signal to noise ratio of the WUP at the receiving end device is not less than the preset signal to noise ratio threshold (or the symbol in the WUP is at the receiving end)
  • the average signal-to-noise ratio at the device is not less than the preset SNR threshold. It is assumed that the symbol length of the above condition is T1, and the transmitting device determines that the symbol length T used when transmitting the WUP is greater than or equal to T1.
  • the transmitting end device determines the symbol length according to the multipath delay extension, so that the symbol length determined by the transmitting end is not less than the multipath delay extension of the short distance (indoor environment), or the multipath of not less than the long distance (outdoor environment) The delay spreads, or is not less than the multipath delay spread in the current communication environment. It is assumed that the symbol length satisfying the above constraint is T2.
  • the transmitting device can determine the value of the maximum value greater than or equal to T1 and T2 as the symbol length T used when transmitting the WUP.
  • the transmitting apparatus determines the symbol length T satisfies: T 1 + T 2 ⁇ T ⁇ T 1 or T 1 + T 2 ⁇ T ⁇ max (T 1, T 2).
  • the corresponding receiving end device discards the previous x us or T2us after each symbol at the receiving end to avoid interference between symbols.
  • the transmitting end device may multiplex the OFDM transmitter, and may output the Inverse Fourier Transform (IFFT) module for the case where the symbol length is smaller than the symbol length in the existing standard.
  • IFFT Inverse Fourier Transform
  • the symbol is truncated by the existing Truncate module in the OFDM transmitter; alternatively, the downsampling module can be used to extract the symbols output by the IFFT module; or the IFFT can be directly used to generate shorter symbols, but This application is not limited to this.
  • a possible implementation manner that the sending end device sends the first WUP to the wakeup receiver by using the first data rate is: the sending end device receives the wakeup by using the first modulation and coding mode. The device sends the first WUP.
  • the transmitting device determines the second modulation and coding mode.
  • the transmitting device sends the second WUP to the wakeup receiver by using the second modulation and coding mode.
  • a specific implementation manner in which the transmitting end device sends the WUP to the wake-up receiver of the receiving end device by using the variable data rate is: the transmitting end device sends the wake-up receiver to the receiving end device by using a variable coding and modulation mode. WUP.
  • variable code modulation may be embodied as a variable frequency modulation order and/or a variable phase modulation order and/or a variable amplitude modulation order and/or a variable coding rate
  • a variable frequency modulation order and/or a variable phase modulation order and/or a variable amplitude modulation order are respectively Amplitude-shift-keying (ASK), 4ASK, ... or 2 Frequency-shift-keying (FSK) FSK, 4FSK, ... or Phase-shift-keying (PSK), 4PSK, ... or 4 Quadrature Amplitude Modulation (Quadrature Amplitude Modulation, QAM), 16QAM, ...; for example variable coding rates are 1/2 BCC coding, 3/4 BCC coding, no coding, ....
  • the transmitting end device needs to determine a modulation and coding mode before sending the WUP, and the modulation and coding mode determined by the transmitting device needs to make the power of the WUP reaching the receiving end device not less than a preset power threshold ( Or the average power of the symbol in the WUP reaching the receiving end device is not less than the preset power threshold), or the packet error rate (PER) of the WUP demodulated at the receiving end device is less than the preset error packet rate threshold (or The average symbol error rate of the symbol in the WUP at the receiving end device is less than the preset error symbol rate threshold), or the signal to noise ratio of the WUP at the receiving end device is not less than the preset signal to noise ratio threshold (or the symbol in the WUP is The average signal to noise ratio at the receiving end device is not less than the preset signal to noise ratio threshold).
  • a preset power threshold Or the average power of the symbol in the WUP reaching the receiving end device is not less than the preset power threshold
  • a possible implementation manner that the sending end device sends the first WUP to the wake-up receiver by using the first data rate is: the transmitting end device adopts the first symbol rate and the first modulation.
  • the encoding mode sends the first WUP to the wake-up receiver.
  • the transmitting device determines the second symbol rate and the second modulation and coding mode.
  • the transmitting device uses the second symbol rate and the second.
  • the modulation coding mode transmits a second WUP to the wakeup receiver.
  • a specific implementation manner in which the transmitting end device sends the WUP to the wake-up receiver of the receiving end device by using the variable data rate is: the transmitting end device adopts a variable symbol rate and a variable modulation and coding manner to the receiving end.
  • the wakeup receiver of the device sends a WUP.
  • variable symbol rate and the variable modulation coding scheme may be embodied as a variable symbol length + a variable frequency modulation order and/or a variable phase modulation order and/or a variable amplitude modulation order and / or coding rate, for example T1+2ASK, t2+2ASK, t2+4ASK....
  • 4us + amplitude 0 means 0, 4us + amplitude A means 1; 4us + amplitude 0 means 00, 4us + amplitude A means 01, 4us + amplitude 2A means 10, 4us + amplitude 3A means 11; 2.4us + amplitude 0 means 0, 2.4us+ The amplitude A represents 1; 2.4us + amplitude 0 represents 00, 2.4us + amplitude A represents 01, 2.4us + amplitude 2A represents 10, 2.4us + amplitude 3A represents 11.
  • the sending end device needs to determine the symbol length and the modulation and coding mode, and the symbol length and modulation coding determined by the sending end device are required to make the power of the WUP reaching the receiving end device not less than
  • the preset power threshold or the average power of the symbol in the WUP reaching the receiving end device is not less than the preset power threshold
  • the packet error rate (PER) of the WUP demodulated at the receiving end device is less than the preset error.
  • the packet rate threshold (or the average symbol error rate of the symbol in the WUP at the receiving end device is less than the preset symbol rate threshold), or the signal-to-noise ratio of the WUP at the receiving end device is not less than the preset signal-to-noise ratio threshold (or The average signal to noise ratio of the symbols in the WUP at the receiving end device is not less than the preset signal to noise ratio threshold).
  • the transmitting end device may multiplex the OFDM transmitter, and may output the Inverse Fourier Transform (IFFT) module for the case where the symbol length is smaller than the symbol length in the existing standard.
  • IFFT Inverse Fourier Transform
  • the symbol is truncated by the existing Truncate module in the OFDM transmitter; alternatively, the downsampling module can be used to extract the symbols output by the IFFT module; or the IFFT can be directly used to generate shorter symbols, but This application is not limited to this.
  • the sending end device determines the second data rate
  • determining the second data rate according to a data rate used by the sending end device to send data to the primary transceiver. For example, the transmitting device sends data to the primary transceiver at the first data rate. If the transmitting device determines that the receiving device can correctly receive data, the transmitting device considers that the current channel quality is good, and can further improve the data transmission. The data rate, whereby the transmitting device can transmit the wake-up packet to the wake-up receiver by using a second data rate greater than the first data rate when transmitting the second WUP. Alternatively, the transmitting device sends data to the primary transceiver at the first data rate.
  • the transmitting device determines that the receiving device cannot receive the data correctly, the transmitting device considers that the current channel quality is poor, and further reduces the data used when transmitting the data.
  • the rate whereby the transmitting device can transmit the WUP to the wake-up receiver by using a second data rate that is smaller than the first data rate when transmitting the second WUP.
  • the sending end device determines the second data rate, determining the second data according to the working frequency band in which the primary transceiver is located and/or the working frequency band in which the wake-up receiver is located. rate. For example, if the primary transceiver operates in the 2.4 GHz band and the wake-up receiver operates in the 5 GHz band, the transmitting device transmits the wake-up packet to the wake-up receiver at the first data rate. The main transceiver operates in the 5 GHz band, and the wake-up receiver operates in the 2.4 GHz band, and the transmitting device transmits the wake-up packet to the wake-up receiver at the second data rate.
  • the primary transceiver operates in the same frequency band as the wake-up receiver, and the transmitting device transmits the wake-up packet to the wake-up receiver at the first data rate.
  • the primary transceiver and the wake-up receiver operate in different frequency bands, and the transmitting device transmits the wake-up packet to the wake-up receiver at the second data rate.
  • S120 specifically includes:
  • the feedback information sent by the receiving end device by the primary transceiver is sent by the primary transceiver.
  • the sending end device determines the second data rate according to the feedback information.
  • the feedback information includes a data rate that the receiving device expects the transmitting device to use, and the sending device directly determines the data rate in the feedback information as the second data rate.
  • the feedback information includes first information indicating a signal to noise ratio (SNR) at a working frequency of the main transceiver and/or the wake-up receiver, correspondingly, in S122, the transmitting end
  • SNR signal to noise ratio
  • the correspondence between the signal-to-noise ratio and the data rate may be stored in the form of a table in the transmitting device, for example, if all the capabilities of the waking receiver are considered to be the same, for example, all have channel coding capability, or none of the channel coding Capability, a possible SNR vs. data rate can be as shown in Table 1.
  • the receiving device needs to report whether its wake-up receiver supports channel coding when performing energy reporting.
  • the receiving device can report whether the wake-up receiver supports channel coding when it is associated with the transmitting device, and can inform the transmitting device of whether the wake-up receiver supports the transmitting device in the process of communicating with the transmitting device through the primary transceiver.
  • Channel coding A possible correspondence between SNR and data rate is shown in Table 2.
  • a correspondence table between SNR and data rate may be separately set for a wake-up receiver having channel coding capability and a wake-up receiver not having channel coding capability.
  • the correspondence between the SNR and the data rate corresponding to the wake-up device having the channel coding capability is as shown in Table 1.
  • the correspondence between the SNR and the data rate corresponding to the wake-up device that does not have the channel coding capability is as shown in Table 3.
  • MCS modulation coding scheme
  • the wake-up receiver with no channel coding capability considers the current MCS to correspond to rate 1 to rate 4, and for the wake-up receiver with channel coding capability, the current MCS corresponds to rate 1+ channel coding. ⁇ Rate 4 + channel coding.
  • the rates in Tables 1 to 3 can be replaced with the MCS mode.
  • the data rate in the above table may in particular be in the form of a variable symbol length, or variable symbol length + variable frequency modulation order and / or variable phase modulation order and / or variable The form of the amplitude modulation order.
  • the feedback information includes second information used to indicate the power when the first WUP arrives at the wake-up receiver.
  • S122 is specifically: the sending end device is configured according to the second information and Presetting a power threshold to determine the second data rate; or,
  • the feedback information includes third information for indicating a signal to noise ratio of the first WUP at the wakeup receiver.
  • S122 is specifically: the sending end device according to the third information and the preset a signal to noise ratio threshold to determine the second data rate; or,
  • the feedback information includes fourth information for indicating a packet error rate of the first WUP at the wake-up receiver.
  • S122 is specifically: the sending end device is configured according to the fourth information and the preset information.
  • the packet error rate threshold determines the second data rate.
  • the receiving device sends the feedback information to the sending device through the primary transceiver.
  • the receiving device sends the medium access control (MAC) to the sending device through the primary transceiver. a frame in which the feedback information is carried.
  • MAC medium access control
  • the MAC frame is a Quality of Service (QoS) data (Data) frame.
  • QoS Quality of Service
  • Data Data
  • FIG. 7 shows a frame structure of a QoS data frame according to an embodiment of the present application.
  • the QoS data frame includes a Frame Control field, a Duration/ID field, and an Address. 1 field, address 1 field, address 3 field, sequence control field (Sequence Control) field, address 4 field, quality of service QoS Control field, High Throughput Control (HT Control) field, Frame Body field, and Frame Check Sequence FCS field.
  • the HT Control field carries the feedback information.
  • the MAC frame is a QoS blank (Null) frame
  • the QoS Null frame includes a High Efficient Aggregated Control (HE-A-Control) field.
  • FIG. 8 illustrates the structure of an efficient aggregation control field in accordance with an embodiment of the present application.
  • the HE-A-Control field includes a very high throughput rate field, an efficient field, and an Aggregated Control field, where.
  • the aggregation control field includes a plurality of control (Control 1 - Control N) fields and a Padding field, each control field includes a control identification field and a Control Info field, and the Control Info field includes a number of spatial streams (Number of Separate) Stream, NSS) field, HE-MCS field, wake-up receiver field, channel information field, and reserved field.
  • the wake-up receiver field carries feedback information.
  • the function of each control field is determined by changing the value indicated by the control identifier field. For example, when the control identifier field indicates 2, the information representing the control field is used for link adaptation, and the channel quality indication is performed. Feedback from Quality Indication, CQI), MCS, etc. And determining whether the feedback information is applied to the rate adjustment of the wake-up receiver or the link adaptation of the primary link according to the indication of the wake-up receiver field. For example, the wake-up receiver field indication of "1" indicates that the application is on the rate adjustment of the wake-up receiver, and the wake-up receiver field indication of "0" indicates that the application is on the link adaptation of the primary link.
  • control information field may further carry a Channel Info indicating that the feedback information is information on which channel/resource block, and further, the rate information on the plurality of channels/resource blocks may be fed back.
  • a new control identity field can also be added, which carries feedback information.
  • the MAC frame is a Beamforming Report
  • FIG. 9 shows a structural diagram of a beamforming report according to an embodiment of the present application.
  • the beamforming report includes a frame control field, a multiple input multiple output (MIMO) control field, a wakeup receiver rate feedback field, and a frame check sequence field, where the wakeup receiver rate
  • MIMO multiple input multiple output
  • the feedback field is used to carry feedback information
  • the reserved bit of the efficient MIMO control field is used to indicate that the purpose of the beamforming report is to carry feedback information.
  • MAC frames in the embodiments of the present application are not limited to the types of MAC frames given above, and may also be other types of MAC frames, for example, newly defined MAC frames in the standard, or newly defined.
  • Action No ACK frame action frame without confirmation frame, etc.
  • the sending end device uses the information element to carry feedback information
  • FIG. 10 shows a structural diagram of the information element according to the embodiment of the present application.
  • the information element includes an element identifier (Element Identifier) field, a length (Length) field, an element identifier extension (Element Identifier Extension), and an information (Information) field
  • the information field includes a wake-up receiver rate feedback field.
  • the wake-up receiver rate feedback field carries feedback information.
  • different Element Identifier fields may be used to identify that the Information field carries different management information.
  • the Information Element may be carried in a management frame, where the management frame may be an Action No ACK frame, an ACK frame, or a Beacon frame, but the application is not limited thereto.
  • the feedback form of the feedback information to the data rate may perform a separate indication of each channel/resource block, or may also advance the indication of some common information, and then perform information indication of each resource block.
  • the rate of the AP and multiple STAs on multiple channels may be fed back.
  • the data rate can be carried by a Multiple Block Acknowledgement (M-BA) frame or a Trigger frame.
  • M-BA Multiple Block Acknowledgement
  • FIG. 11 shows a structure of an M-BA frame according to an embodiment of the present application.
  • an M-BA frame includes a Frame Control field, a Duration field, and a Receive Address (referred to as “Receive Address”. RA") field, Transmit Address (TA) field, BA control field, BA information field, and FCS field.
  • the BA information field includes a repeated STA information (Pre STA Info) field, a Block ACK Starting Sequence Control field, and a Block ACK Bitmap field.
  • the Per STA Info field includes an Association Identifier (AID) field, an ACK/BA field, and a Traffic Identifier (TID) Value field.
  • the special TID/AID value can be used to identify the Block ACK Starting Sequence Control field and the Block ACK Bitmap field used to carry the data rate of the wake-up receiver.
  • FIG. 12 shows the structure of a trigger frame according to an embodiment of the present application.
  • the trigger frame includes a frame control field, a trigger frame type field, a common field related to the trigger frame type, a common information field, a site-by-site information field, and an FCS field, where the public field related to the trigger frame type is used.
  • the data rate is carried.
  • the station-by-site information field includes a wake-up receiver rate field for carrying the data rate.
  • the method for the AP to feed back data rates to multiple STAs is also applicable to the STA feeding back the data rate to the AP. It is applicable not only to the STA to feed back data rates of the wake-up packets on multiple channels/resource blocks to one AP, but also to the STA to feed back data rates of the wake-up packets on multiple channels/resource blocks to multiple APs or STAs.
  • the sending end device may indicate to the receiving end device a data rate used when transmitting the wake-up packet, so that the receiving end device receives and parses the received wake-up packet according to the data rate.
  • FIG. 13 is a schematic diagram of a structure of a wake-up packet according to another embodiment of the present application. As shown in FIG. 13, the wake-up packet includes a preamble field, a signaling (SIG) field, and a data (load) field.
  • SIG signaling
  • load data
  • the preamble field is used by the receiving end device for automatic gain control (ACG) and time synchronization
  • the signaling field includes a rate indication field, where the rate indication field is used to indicate the second data rate, and the signaling field is further Fields for carrying other information for parsing data may be included, which is not limited in this application.
  • the redundant field may include N symbols, and N is a positive integer greater than or equal to 1 in order to wake up the receiver to adjust the data rate.
  • M fixed data rate (symbol length and/or MCS) symbols may be placed after the SIG field, and the value of M may be 1, 2, ..., so that the receiving end device according to the M A fixed data rate symbol is used for channel estimation.
  • the receiving end device may determine the second data rate based on a correspondence between the preamble mode and the data rate.
  • the correspondence between the preamble mode and the data rate may be preset.
  • the current data rate may be determined according to the determined preamble mode and the corresponding relationship. For example, if the mode of the preamble is 1011010, the data rate of the subsequent data portion is considered to be rate 1; if the mode of the preamble is 110011001100, the data rate of the subsequent data portion is considered to be rate 2.
  • the receiving device may determine the data rate according to the additional sequence, for example, if the preamble field For the "time synchronization / AGC" codeword + sequence 1, the receiving end device determines that the data rate is rate 1; if the preamble field is "time synchronization / AGC + sequence 2", the receiving device determines that the data rate is rate 2.
  • the receiving device can determine wakeup by using a data rate used by the primary transceiver.
  • the data rate of the packet specifically, the data rate of the wake-up packet has a corresponding relationship with the data rate of the primary transceiver. For example, if the primary transceiver uses MCS0 ⁇ 2, the wake-up packet usage rate is 1, and the primary transceiver uses MCS3 ⁇ 5, then the wake-up packet usage rate is 2.
  • the receiving end device may determine the data rate of the wake-up packet by using a working frequency band in which the primary transceiver is located and/or a working frequency band in which the wake-up link is located. For example, when the primary transceiver and the wake-up transceiver are in the same operating band (both at 2.4 GHz or at 5 GHz at the same time), the wake-up packet uses rate 1 when the primary transceiver and the wake-up receiver are in different operating bands (the primary transceiver is at 2.4) At GHz, the wake-up link is at 5 GHz), then the wake-up packet uses rate 2. When the primary transceiver and the wake-up receiver are in different operating bands (the primary transceiver is at 5 GHz and the wake-up link is at 2.4 GHz), the wake-up packet uses rate 3.
  • the receiving end device may determine a data rate by using a result that the primary transceiver negotiates with the sending end device, for example, the receiving end device may send the foregoing QoS data frame or QoS to the sending end device.
  • the blank frame or the beamforming report and the like inform the transmitting device of the desired data rate. If the transmitting device confirms that the data transmission rate expected by the receiving device can be adopted, the transmitting device sends an acknowledgement frame to the receiving device, and the receiving device receives the transmission. After the acknowledgement frame sent by the end device, it is considered that the data rate of the subsequent wake-up packet transmitted by the transmitting device is the data rate expected by the previous feedback.
  • the receiving device is an STA and the sending device is an AP
  • the AP directly specifies, according to the distance from the STA, the transmission of the wake-up packet to the STA.
  • Data rate The sender device can update the data rate through the primary link between the primary transceiver during the data interaction, for example, through an interaction of Operation Mode Notification.
  • the transmitting device sends the preamble field in the wake-up packet to the receiving device
  • the data rate used in the SIG field and the data field may be different, and the transmit preamble field and the SIG field may adopt a more robust rate.
  • the receiving end may parse the preamble and the SIG field by using a specific data rate, and parsing the data according to the data rate calculated or agreed upon by the foregoing scheme.
  • the transmitting device can use different data rates when transmitting the preamble field and the data field, and adopt a more robust data rate when transmitting the preamble field; or, the receiving device can use the protocol according to the foregoing scheme or negotiate.
  • the good data rate resolves the entire wake-up packet.
  • the transmitting device transmits the preamble field and the data field at the same data rate.
  • the transmitting end device needs to inform the receiving end device whether the wake-up packet currently sent by the receiving end device is sent to the wake-up receiver of the receiving end device.
  • the data field portion in the structure of the wake-up packet shown in FIG. 13 or 14 includes a MAC header field, and the MAC header field includes an identification information field for carrying the identification information of the receiving end device.
  • the identifier information may be a MAC Address, an AID, or a Partial AID.
  • the number of information bits included in the identifier information field may be made to be the second data rate. The size is positively correlated.
  • the user group with the third highest rate, 11 indicates the user group with the lowest data rate, and the subsequent bit combination performs the differentiation of each user group, as shown in FIG. And if the data rate indication method described above is combined, when the wakeup packet carries the AID shown in FIG. 15, the first 2 Bit may not be transmitted.
  • the MAC header field may further include a bit number indication field, where the bit number indication field is used to carry information indicating the number of information bits included in the identification information field.
  • the bit number indication field may indicate a specific number of information bits, or the number of bit indication fields may indicate a correspondence relationship between the number of information bits and the data rate.
  • the transmitting device when the transmitting device sends the second WUP to the wakeup receiver of the receiving device by using the second data rate, the transmitting device modulates the information bits in the second WUP according to the second data rate. a plurality of modulation symbols, the first modulation symbol having a symbol energy of 0 and the second modulation symbol having a symbol energy other than 0, and then transmitting the plurality of modulation symbols to a wake-up receiver of the receiving device.
  • a placeholder (ON) symbol may be inserted every N modulation symbols to occupy the channel to avoid the channel.
  • N can be a fixed value, for example, N can be 4.
  • N may also be a value determined according to the symbol length of the modulation symbol.
  • the wake-up receiver of the receiving device ignores the next symbol every N modulation symbols received during the receiving process. If N is a function of the length of the symbol, the receiving device can learn the current symbol length according to the display or implicit indication of the transmitting device, and then according to the calculation method of N mentioned above or the one-to-one correspondence between N and the symbol length. , determine N values.
  • a placeholder symbol may be inserted in the first modulation symbol with N symbol energys being 0.
  • N the choice of N is the same as the method above, and will not be described here.
  • the receiving device ignores the next symbol every time it receives N first modulation symbols with a symbol energy of zero.
  • the transmitting end device may generate, by using the OFDM transmitter, a plurality of time domain symbols corresponding to the information bits in the second WUP, where the time domain symbol with the symbol energy not being 0 is generated by: the sending end device Generating a time domain sequence s_pre, the values in the s_pre having the same amplitude; performing a Fast Fourier Transform (FFT) on the s_pre to obtain a frequency domain sequence s, and filling s into the operating band of the wake-up receiver On the subcarriers, an IFFT transform is then performed to form a time domain symbol on the time domain.
  • the length of the time domain sequence s_pre may be determined according to the ratio of the working bandwidth of the wakeup receiver to the subcarrier width.
  • the length of the s_pre is 13 If the working band of the receiver is woken up The width is 4M, the subcarrier width is 78.125 kHz, and the length of s_pre is 52. Alternatively, for the operability of the FFT transform, it may be specified that the length of s_pre is an even number.
  • the transmitting device directly determines the frequency domain sequence s.
  • the two adjacent non-zero values in the s sequence are separated by n 0s, and n may be 1, 2, 3, 4.
  • n may be 1, 2, 3, 4.
  • the transmitting end device may send the wake-up packet to different receiving end devices through different frequency points in one transmission.
  • the transmitting device When the transmitting device generates the time domain symbol corresponding to the information bit in the wake-up packet of each receiving device, the s of the wake-up packet for each receiving device may be multiplied by a different twiddle factor, such as a twiddle factor. It can be selected from [1-1j-j], 1 means no rotation, -1 means rotation 180°, j means rotation 90°, -j means rotation -90°.
  • the s-sequence corresponding to the s sequence of the wake-up packets 1 to 4 is [1-1-1-1], that is, the sub-carrier s corresponding to the wake-up packet 1 is woken up, and the wake-up packet 2 ⁇
  • the subcarrier corresponding to wakeup packet 4 is filled with -s.
  • the transmitting device may generate a full-bandfill sequence s.
  • the corresponding sub-carrier is filled with the value of the corresponding position of s.
  • s adopts the l-stf sequence:
  • the corresponding sub-carrier is filled with the value at the corresponding position of the full-bandwidth padding sequence s.
  • the 13 sub-carriers corresponding to 4M are filled with “0 0 1+j 0 0 0-1-j”. 0 0 0 1+j 0 0" sequence.
  • the method for transmitting the wake-up packet in the communication system according to the embodiment of the present application is described in detail above with reference to FIG. 4 to FIG. 16.
  • the transmitting device according to the embodiment of the present application will be described in detail below with reference to FIG.
  • the transmitting device 10 includes:
  • the transceiver module 11 is configured to send the first wake-up packet WUP to the wake-up receiving module by using a first data rate;
  • a determining module 12 configured to determine a second data rate
  • the transceiver module 11 is further configured to send the second WUP to the wake receiving module by using the second data rate.
  • the transmitting device can send the wake-up packet to the receiving device by using different data rates, thereby, the transmitting device can determine the data rate of the appropriate sending wake-up packet according to the specific transmission condition in the communication process. Improve the transmission efficiency of wake-up packets.
  • the transceiver module 11 is specifically configured to: send the first wake-up packet to the wake-up receiving module by using the first symbol rate, and send the first wake-up packet to the wake-up receiving module.
  • First WUP
  • the determining module 12 is specifically configured to determine a second symbol rate in determining the second data rate.
  • the transceiver module 11 is configured to: send the second WUP to the wake-up receiving module by using the second symbol rate, by using the second data rate to send the second WUP to the wake-up receiving module.
  • the sending, by the first data rate, the first wake-up packet WUP is sent to the wake-up receiving module, where the transceiver module 11 is configured to send the wake-up receiving module to the wake-up receiving module by using a first modulation and coding mode.
  • the determining module 12 is specifically configured to: determine a second modulation and coding mode, in determining a second data rate;
  • the transceiver module 11 is configured to: send the second WUP to the wake-up receiving module by using the second modulation and coding mode, by using the second data rate to send the second WUP to the wake-up receiving module.
  • the determining module 12 is specifically configured to: determine the second data rate according to a data rate used when sending data to the main transceiver module.
  • the determining module 12 is specifically configured to: determine the second data rate according to the working frequency band in which the primary transceiver module and/or the wake-up receiving module is located .
  • the determining module 12 is specifically configured to: determine, according to the multipath delay extension, a symbol length corresponding to the second data rate.
  • the transceiver module 11 is configured to: receive feedback information sent by the receiving device by using the primary transceiver module;
  • the determining module 12 is configured to determine the second data rate according to the feedback information.
  • the feedback information includes first information for indicating a signal to noise ratio at a working frequency point of the main transceiver module and/or the wake receiving module;
  • the determining module 12 is specifically configured to: determine the second data rate according to the first information and the correspondence between the signal to noise ratio and the data rate, in determining the second data rate according to the feedback information.
  • the feedback information includes second information for indicating power when the first WUP reaches the awake receiving module, where, in determining the second data rate according to the feedback information,
  • the determining module 12 is configured to: determine the second data rate according to the second information and a preset power threshold; or
  • the feedback information includes third information for indicating a signal to noise ratio of the first WUP at the wakeup receiving module, wherein the determining module 12 is configured to: according to the determining the second data rate according to the feedback information a third information and a preset signal to noise ratio threshold to determine the second data rate; or
  • the feedback information includes fourth information for indicating a packet error rate of the first WUP at the wake-up receiving module, wherein the determining module 12 is configured to: according to the determining the second data rate according to the feedback information, The fourth information and the preset error rate threshold determine the second data rate.
  • the transceiver module 11 in receiving the feedback information sent by the receiving end device through the main transceiver module, is specifically configured to: receive media access sent by the receiving device through the primary transceiver module
  • the MAC frame is controlled, and the MAC frame carries the feedback information.
  • the receiving and receiving module 11 is configured to: receive, by the receiving end device, the medium transceiver module by using the media access control MAC frame sent by the receiving device.
  • a quality of service QoS data frame the QoS data frame includes a high throughput control field, the high throughput control field carrying the feedback information; or receiving a QoS blank frame sent by the receiving device through the primary transceiver module, the QoS blank frame And including a high-efficiency aggregation control field, where the high-efficiency aggregation control field carries the feedback information; or receiving a beamforming report sent by the receiving end device by using the primary transceiver module, where the beamforming report includes a feedback field, and the feedback field carries the feedback information.
  • the transceiver module 11 is specifically configured to send the second WUP to the wake-up receiving module by using the second data rate, according to the second data rate, in the second WUP.
  • the information bits are modulated into a plurality of modulation symbols, the first modulation symbols having a symbol energy of 0 and a second modulation symbol having a symbol energy other than 0; and the plurality of modulation symbols are transmitted to the wake-up receiving module.
  • the transceiver module 11 is specifically configured to: send, by using the wake-up receiving module, a first preset number of the modulation symbols, in the sending the multiple modulation symbols to the wake-up receiving module.
  • the awake receiving module sends a placeholder symbol, and sends the plurality of modulation symbols to the awake receiving module, where the placeholder symbol does not carry the information bit, and the symbol energy of the placeholder symbol is not 0; Transmitting, by the wake-up receiving module, a second preset number of the first modulation symbols, and sending, by the wake-up receiving module, a placeholder symbol, and sending the multiple modulation symbols to the wake-up receiving module, where the placeholder symbol is not The information bit is carried, and the symbol energy of the placeholder symbol is not zero.
  • the second WUP includes a signaling field and a data field that are arranged according to a sending sequence, and the signaling field carries indication information for indicating the second data rate.
  • the second WUP further includes a redundancy field, where the transmission time of the redundant field is after the sending time of the signaling field, and before the sending time of the data field.
  • the second WUP includes a preamble field and a data field according to a sending sequence, so that the receiving end device determines according to the preamble pattern corresponding to the preamble field and the preset correspondence relationship.
  • the second data rate where the preset correspondence includes a correspondence between a preamble mode and a data rate.
  • the second WUP includes a MAC header field, where the MAC header field includes an identifier information field, where the identifier information field is used to carry identifier information of the receiver device, and the determining module 12 further uses And determining, according to the second data rate, the number of information bits included in the identifier information field, wherein the number of information bits included in the identifier information field is positively correlated with the size of the second data rate.
  • the transmitting device 10 may correspond to the method 100 for transmitting a wake-up packet in the communication system in the embodiment of the present application, and the foregoing and other operations of the respective modules in the transmitting device 10 and/or The functions are respectively performed in order to implement the corresponding processes performed by the sender device in the method 100. For brevity, details are not described herein again.
  • FIG. 18 shows a sink device in a communication system including a sender device and the sink device in accordance with an embodiment of the present application.
  • the receiving device 20 includes a wake-up receiving module 21, a main receiving module 22, and a determining module 23, where:
  • the wake-up receiving module 21 is configured to receive a first wake-up packet WUP sent by the sending end device by using a first data rate;
  • the awake receiving module 21 is further configured to receive a second WUP sent by the sending end device by using a second data rate;
  • the determining module 23 is configured to determine the second data rate
  • the determining module 23 is further configured to parse the second WUP according to the second data rate.
  • the receiving end device in the communication system receives the wake-up packet sent by the transmitting end device by using different data transmission rates, and the transmitting end device can determine the data of the appropriate sending wake-up packet according to the specific transmission condition in the communication process. Rate, improve the transmission efficiency of the wake-up packet.
  • the wake-up receiving module 21 is specifically configured to: receive, send, by the sending end device, the first symbol rate.
  • the first WUP is specifically configured to: receive, send, by the sending end device, the first symbol rate.
  • the waking receiving module 21 is configured to: receive the second WUP sent by the sending end device by using the second symbol rate, and receive the second data in the second data rate.
  • the determining module 23 is specifically configured to: determine the second symbol rate; and in determining the second WUP according to the second data rate, the determining module 23 is specifically configured to: parse the second symbol rate according to the second symbol rate Second WUP.
  • the awake receiving module 21 is specifically configured to: receive, by using the first modulation and coding mode, the sending end device, in receiving the first waking WUP sent by the sending end device by using the first data rate. Transmitting the first WUP; in receiving the second WUP sent by the sending end device by using the second data rate, The awake receiving module 21 is specifically configured to: receive the second WUP sent by the sending end device by using the second modulation and coding mode; and in determining the second data rate, the determining module 23 is specifically configured to: determine the second modulation code The determining module 23 is configured to: parse the second WUP according to the second modulation and coding manner, according to the second data rate, and the second WUP is parsed.
  • the primary receiving module 22 is specifically configured to: send feedback information to the sending end device, so that the sending end device determines the second data rate according to the feedback information.
  • the feedback information includes first information for indicating a signal to noise ratio of the working frequency of the primary transceiver module and/or the wakeup receiving module, so that the sending device can The first information and the correspondence between the signal to noise ratio and the data rate determine the second data rate.
  • the feedback information includes second information for indicating power when the first WUP reaches the awake receiving module, so that the sending end device is configured according to the second information and the preset power. Threshold, determining the second data rate; or, the feedback information includes third information indicating a signal to noise ratio of the first WUP at the wake receiving module, so that the sending device is configured according to the third information and the pre Setting a SNR threshold to determine the second data rate; or the feedback information includes fourth information indicating a packet error rate of the first WUP at the awake receiving module, so that the sending device is configured according to the fourth The information and the preset error rate threshold determine the second data rate.
  • the main transceiver module in sending the feedback information to the sending end device, is configured to: send a media access control MAC frame to the sending end device, where the MAC frame carries the feedback information.
  • the primary transceiver module 22 is configured to: send a quality of service QoS data frame to the sender device, where the QoS data frame is sent to the sender device.
  • the high throughput control field is configured to carry the feedback information; or the QoS blank frame is sent to the sending device, where the QoS blank frame includes a high efficiency aggregation control field, and the high efficiency aggregation control field carries the feedback information; Or sending a beamforming report to the transmitting device, where the beamforming report includes a feedback field, and the feedback field carries the feedback information.
  • the awake receiving module 21 is specifically configured to: receive the multiple modulation symbols sent by the sending end device, in the receiving the second WUP sent by the sending end device by using the second data rate,
  • the plurality of modulation symbols are obtained by the transmitting end device modulating information bits in the second WUP according to the second data rate, where the plurality of modulation symbols include a first modulation symbol with a symbol energy of 0 and A second modulation symbol whose symbol energy is not zero.
  • the multiple modulation symbols are sent by the sending end device to the wake receiving module 21 for a first preset number of the modulation symbols, and the wake receiving module 21 is sent to the wake receiving module 21 Transmitted by means of a bit symbol, wherein the placeholder symbol does not carry information bits, and the symbol energy of the placeholder symbol is not 0;
  • the awake receiving module 21 is configured to: receive the first preset number of the modulation symbols, and ignore the one of the placeholder symbols by receiving the multiple modulation symbols sent by the sending end device. Modulation symbols.
  • the multiple modulation symbols are that the sending end device sends a second preset number of the second modulation symbols to the wake receiving module 21, and sends a second modulation symbol to the wake receiving module 21. Transmitted by a placeholder symbol, wherein the placeholder symbol does not carry information bits, and the symbol energy of the placeholder symbol is not 0;
  • the awake receiving module 21 is configured to receive, by using the second preset number of the second modulation symbols, one of the placeholder symbols is received by receiving the second preset number of the modulation symbols.
  • the plurality of modulation symbols are configured to be used to generate the first preset number of the second modulation symbols.
  • the second WUP includes a signaling field and a data field that are arranged according to a sending sequence, where the signaling field carries indication information for indicating the second data rate; wherein, determining the In the second data rate aspect, the determining module 23 is specifically configured to: determine the second data rate according to the indication information.
  • the second WUP further includes a redundancy field, where the transmission time of the redundant field is after the sending time of the signaling field, and before the sending time of the data field.
  • the second WUP includes a preamble field and a data field according to a sending sequence
  • the determining module 23 is configured to determine the second data rate according to the preamble pattern corresponding to the preamble field and the preset correspondence, where the preset correspondence includes: The correspondence between the preamble pattern and the data rate.
  • the second WUP includes a MAC header field, where the MAC header field includes an identifier information field, where the identifier information field is used to carry identifier information of the receiver device, where the identifier information field includes The number of information bits is positively correlated with the magnitude of the second data rate.
  • the receiving device 20 may correspond to the method 100 for transmitting a wake-up packet in the communication system in the embodiment of the present application, and the above and other operations of the respective modules in the receiving device 20 and/or The functions are respectively implemented in order to implement the corresponding processes performed by the receiving device in the method 100. For brevity, details are not described herein again.
  • FIG. 19 is a schematic structural diagram of a transmitting end device in a communication system according to another embodiment of the present application.
  • the communication system includes the source device and the receiver device, and the receiver device includes a wake-up receiver and a master transceiver.
  • the sender device of FIG. 19 can perform the process performed by the sender device in each process in the method 100.
  • the transmitting device 100 of FIG. 19 includes a transceiver 110, a processor 120, and a memory 130.
  • the processor 120 controls the operation of the transmitting device 100 and can be used to process signals.
  • Memory 130 can include read only memory and random access memory and provides instructions and data to processor 120.
  • bus system 140 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 140 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 140 various buses are labeled as bus system 140 in the figure.
  • the transceiver 110 is configured to: send, by using a first data rate, a first wake-up packet WUP to the wake-up receiving module; the processor 120 is configured to determine a second data rate; the transceiver 110 is further configured to: The second WUP is sent to the wake-up receiving module by using the second data rate.
  • the processor 120 may be a central processing unit (CPU), and the processor 120 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 130 can include read only memory and random access memory and provides instructions and data to the processor 120. A portion of the memory 130 may also include a non-volatile random access memory. For example, the memory 130 can also store information of the device type.
  • the bus system 140 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 140 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 120 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • Software modules can be located with Machine memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers, etc. are well-known storage media in the field.
  • the storage medium is located in the memory 130, and the processor 120 reads the information in the memory 130 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the transceiver 110 in transmitting the first wake-up packet to the wake-up receiver by using the first data rate, is specifically configured to: send the first to the wake-up receiver by using a first symbol rate. WUP;
  • the processor 120 is specifically configured to determine a second symbol rate in determining a second data rate.
  • the transceiver 110 is specifically configured to: send the second WUP to the wake-up receiver by using the second symbol rate.
  • the transceiver 110 is configured to: send the first wake-up packet to the wake-up receiver by using a first data rate to send the first wake-up packet to the wake-up receiver.
  • a WUP a WUP
  • the processor 120 is specifically configured to determine a second modulation and coding mode in determining a second data rate.
  • the transceiver 110 is specifically configured to: send the second WUP to the wake-up receiver by using the second modulation and coding mode, by using the second data rate to send the second WUP to the wake-up receiver.
  • the processor 120 in determining the second data rate, is specifically configured to determine the second data rate according to a data rate used when transmitting data to the primary transceiver.
  • the processor 120 in determining the second data rate, is specifically configured to: determine the second data rate according to a working frequency band in which the primary transceiver and/or the wake-up receiver is located.
  • the processor 120 in determining the second data rate, is specifically configured to: determine, according to the multipath delay extension, a symbol length corresponding to the second data rate.
  • the transceiver 110 in determining the second data rate, is configured to: receive feedback information sent by the receiving end device by using the primary transceiver;
  • the processor 120 is configured to determine the second data rate according to the feedback information.
  • the feedback information includes first information indicating a signal to noise ratio at a working frequency point of the primary transceiver and/or the wakeup receiver;
  • the processor 120 is specifically configured to: determine the second data rate according to the first information and the correspondence between the signal to noise ratio and the data rate, in determining the second data rate according to the feedback information.
  • the feedback information includes second information indicating a power when the first WUP reaches the wake-up receiver, where the processing is determined according to the feedback information, where the second data rate is determined.
  • the device 120 is configured to: determine the second data rate according to the second information and a preset power threshold; or
  • the feedback information includes third information for indicating a signal to noise ratio of the first WUP at the wakeup receiver, wherein the processor 120 is configured to: according to the feedback information, determine the second data rate a third information and a preset signal to noise ratio threshold to determine the second data rate; or
  • the feedback information includes fourth information for indicating a packet error rate of the first WUP at the wakeup receiver, wherein the processor 120 is configured to: according to the feedback information, determine the second data rate The fourth information and the preset error rate threshold determine the second data rate.
  • the transceiver 110 in receiving the feedback information sent by the receiving end device by using the primary transceiver, is specifically configured to: receive a medium access control MAC sent by the receiving end device by using the primary transceiver.
  • Frame the MAC frame carries the feedback information.
  • the transceiver 110 is specifically configured to: receive a quality of service QoS data frame sent by the receiving end device by using the primary transceiver, where the QoS data frame includes a high throughput control field, and the high throughput control field carries the feedback Or receiving a QoS blank frame sent by the receiving device through the primary transceiver, where the QoS blank frame includes a high-efficiency aggregation control field, where the high-efficiency aggregation control field carries the feedback information; or, receiving the receiving device through the primary device A beamforming report sent by the transceiver, the beamforming report including a feedback field, the feedback field carrying the feedback information.
  • the transceiver 110 is configured to: according to the second data rate, the information bits in the second WUP, according to the second data rate, sending the second WUP to the wakeup receiver. Modulating into a plurality of modulation symbols, the first modulation symbol having a symbol energy of 0 and a second modulation symbol having a symbol energy other than 0; transmitting the plurality of modulation symbols to the wake-up receiving module.
  • the transceiver 110 in transmitting the multiple modulation symbols to the wake-up receiver, is specifically configured to: send a first preset number of the modulation symbols to the wake-up receiver, to The wake-up receiver sends a plurality of modulation symbols to the wake-up receiver, where the wake-up receiver does not carry the information bits, and the symbol energy of the place-holder symbol is not 0; Transmitting, by the wake-up receiver, a second preset number of the first modulation symbols, and transmitting, by the wake-up receiver, a placeholder symbol, and transmitting the plurality of modulation symbols to the wake-up receiver, where the place-of-sense symbol The information bit is not carried, and the symbol energy of the placeholder symbol is not zero.
  • the second WUP includes a signaling field and a data field that are arranged according to a sending sequence, where the signaling field carries indication information for indicating the second data rate.
  • the second WUP further includes a redundancy field, where the transmission time of the redundant field is after the sending time of the signaling field, and before the sending time of the data field.
  • the second WUP includes a preamble field and a data field according to a sending sequence, so that the receiving device determines the first according to a preamble pattern corresponding to the preamble field and a preset correspondence relationship.
  • the second WUP includes a MAC header field, where the MAC header field includes an identifier information field, where the identifier information field is used to carry the identifier information of the receiver device, and the processor 120 is further configured to: And determining, according to the second data rate, the number of information bits included in the identifier information field, wherein the number of information bits included in the identifier information field is positively correlated with the size of the second data rate.
  • the source device 100 may correspond to the sender device 10 according to an embodiment of the present application, and may correspond to a corresponding body in a method for transmitting a wakeup packet in a communication system according to an embodiment of the present application.
  • the foregoing and other operations and/or functions of the respective modules in the transmitting device 100 are respectively omitted in order to implement the corresponding processes in the method 100, and are not described herein again for brevity.
  • the transmitting device can send the wake-up packet to the receiving device by using different data rates, thereby, the transmitting device can determine the data rate of the appropriate sending wake-up packet according to the specific transmission condition in the communication process. Improve the transmission efficiency of wake-up packets.
  • FIG. 20 is a schematic structural diagram of a receiving end device in a communication system according to another embodiment of the present application.
  • the communication system includes a transmitting device and the receiving device.
  • the receiving device of FIG. 20 can perform the process performed by the receiving device in each process in the method 100.
  • the receiving device 200 of FIG. 20 includes a wake-up receiver 210, a main transceiver 220, a processor 230, and a memory 240.
  • the processor 230 controls the operation of the sink device 200 and can be used to process signals.
  • Memory 240 can include read only memory and random access memory and provides instructions and data to processor 230.
  • bus system 250 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 250 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 250 various buses are labeled as bus system 250 in the figure.
  • the wake-up receiver 210 is configured to receive a first wake-up packet WUP that is sent by the sending end device by using a first data rate, and the wake-up receiver 210 is further configured to receive, by the sending end device, the second data rate. a second WUP; the processor 230 is configured to determine the second data rate; the processor 230 is further configured to parse the second WUP according to the second data rate.
  • the processor 230 may be a central processing unit (CPU), and the processor 230 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 240 can include read only memory and random access memory and provides instructions and data to the processor 230. A portion of the memory 240 may also include a non-volatile random access memory. For example, the memory 240 can also store information of the device type.
  • the bus system 250 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 250 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 230 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 240, and the processor 230 reads the information in the memory 240 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the wake-up receiver 210 is configured to: receive the first wake-up WUP sent by the sending end device by using the first data rate, and receive the First WUP;
  • the waking receiver 210 is configured to: receive the second WUP sent by the sending end device by using the second symbol rate, and receive the second data in the second data rate;
  • the processor 230 is specifically configured to: determine the second symbol rate; and in analyzing the second WUP according to the second data rate, the processor 230 is specifically configured to: parse the second symbol rate according to the second symbol rate Second WUP.
  • the wake-up receiver 210 is configured to: receive, by using the first modulation and coding mode, the sending end device, in the first wake-up WUP sent by the sending end device by using the first data rate.
  • the first WUP is configured to: receive the second WUP sent by the sending end device by using the second modulation and coding mode, by using the second WUP sent by the sending end device to use the second data rate.
  • the processor 230 is specifically configured to: determine the second modulation and coding mode; and in analyzing the second WUP according to the second data rate, the processor 230 is specifically configured to:
  • the second modulation coding method analyzes the second WUP.
  • the primary transceiver 220 is specifically configured to: send feedback information to the sending end device, so that the sending end device determines the second data rate according to the feedback information.
  • the feedback information is used to indicate the primary transceiver 220 and/or the wakeup interface.
  • the first information of the signal to noise ratio of the working frequency of the receiver 210 is received, so that the sending end device determines the second data rate according to the first information and the correspondence between the signal to noise ratio and the data rate.
  • the feedback information includes second information indicating a power when the first WUP reaches the wake-up receiver, so that the sending end device is configured according to the second information and a preset power threshold. Determining the second data rate; or the feedback information includes third information indicating a signal to noise ratio of the first WUP at the wakeup receiver, so that the sending end device according to the third information and the preset information And determining, by the noise ratio threshold, the second data rate; or the feedback information includes fourth information indicating a packet error rate of the first WUP at the wakeup receiver, so that the sending device is configured according to the fourth information and The second data rate is determined by a preset error rate threshold.
  • the primary transceiver 220 in sending the feedback information to the sending end device, is configured to: send a media access control MAC frame to the sending end device, where the MAC frame carries the feedback information.
  • the primary transceiver 220 is configured to send a quality of service QoS data frame to the sending end device, where the QoS data frame includes a high a throughput control field, the high throughput control field carrying the feedback information; or sending a QoS blank frame to the sending device, where the QoS blank frame includes a high efficiency aggregation control field, and the high efficiency aggregation control field carries the feedback information; or Sending a beamforming report to the sender device, the beamforming report including a feedback field, the feedback field carrying the feedback information.
  • the waking receiver 210 is configured to: receive the multiple modulation symbols sent by the sending end device, in the receiving the second WUP sent by the sending end device by using the second data rate, where The plurality of modulation symbols are obtained by the transmitting end device modulating information bits in the second WUP according to the second data rate, where the plurality of modulation symbols include a first modulation symbol and a symbol energy with a symbol energy of 0 A second modulation symbol that is not zero.
  • the multiple modulation symbols are sent by the sending end device to send the first preset number of the modulation symbols to the wakeup receiver 210, and send a placeholder symbol to the wakeup receiver 210. Transmitted, wherein the placeholder does not carry information bits, and the symbol energy of the placeholder is not 0;
  • the waking receiver 210 is configured to: receive the first preset number of the modulation symbols, and ignore the one of the placeholder symbols by receiving the multiple modulation symbols sent by the sending end device. Modulation symbols.
  • the multiple modulation symbols are that the sending end device sends a second preset number of the second modulation symbols to the wake-up receiver 210, and sends a placeholder to the wake-up receiver 210. Transmitted by means of a symbol, wherein the placeholder does not carry information bits, and the symbol energy of the placeholder is not 0;
  • the waking receiver 210 is specifically configured to: receive, by using the second preset number of the second modulation symbols, one of the placeholder symbols, in a manner of receiving the plurality of modulation symbols sent by the sending end device.
  • the plurality of modulation symbols are specifically configured to: receive, by using the second preset number of the second modulation symbols, one of the placeholder symbols, in a manner of receiving the plurality of modulation symbols sent by the sending end device. The plurality of modulation symbols.
  • the second WUP includes a signaling field and a data field that are arranged according to a sending sequence, where the signaling field carries indication information for indicating the second data rate; wherein, determining the second In terms of data rate, the processor 230 is specifically configured to: determine the second data rate according to the indication information.
  • the second WUP further includes a redundancy field, where the transmission time of the redundant field is after the sending time of the signaling field, and before the sending time of the data field.
  • the second WUP includes a preamble field and a data field according to a sending sequence
  • the processor 230 is specifically configured to: according to the preamble field pair, in determining the second data rate
  • the second data rate is determined by the corresponding preamble pattern and the preset correspondence, wherein the preset correspondence includes a correspondence between the preamble mode and the data rate.
  • the second WUP includes a MAC header field, where the MAC header field includes an identifier information field, where the identifier information field is used to carry identifier information of the receiver device, where the identifier information field includes information bits.
  • the number is positively correlated with the magnitude of the second data rate.
  • the receiving end device 200 may correspond to the receiving end device 20 according to an embodiment of the present application, and may correspond to a corresponding body in a method for transmitting a wakeup packet in a communication system according to an embodiment of the present application.
  • the foregoing and other operations and/or functions of the respective modules in the receiving device 200 are respectively omitted in order to implement the corresponding processes in the method 100, and are not described herein again for brevity.
  • the receiving end device in the communication system receives the wake-up packet sent by the transmitting end device by using different data transmission rates, and the transmitting end device can determine the data of the appropriate sending wake-up packet according to the specific transmission condition in the communication process. Rate, improve the transmission efficiency of the wake-up packet.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • RAM random access memory
  • ROM read-only memory
  • EPROM electrically programmable read-only memory
  • EEPROM electrically erasable Electrically Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the unit described as a separate component may or may not be physically separated as a unit display
  • the components may or may not be physical units, ie may be located in one place or may be distributed over multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信系统中传输唤醒包的方法和设备,该通信系统包括发送端设备和接收端设备,该接收端设备包括唤醒接收机和主收发机,该方法包括:该发送端设备采用第一数据速率向该唤醒接收机发送第一唤醒包WUP;该发送端设备确定第二数据速率;该发送端设备采用该第二数据速率向该唤醒接收机发送第二WUP。发送端设备能够根据通信过程中具体的传输条件确定合适的发送唤醒包的数据速率,提高唤醒包的传输效率。

Description

通信系统中传输唤醒包的方法和设备
本申请要求于2016年8月15日提交中国专利局、申请号为201610674267.8、发明名称为“通信系统中传输唤醒包的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及通信系统中传输唤醒包的方法和设备。
背景技术
部署在通信系统中的设备通常需要具有较长的寿命,这要求设备具有极低的功率消耗。直观的降低功耗的方法是避免设备的收发链路一直处于活跃状态。对于发送链路,设备可以自主控制,在有数据需要发送的时候再醒来处于活跃状态。对于接收链路,通常采用的方法是设备一直处于休眠状态,当有数据需要接收时再进行唤醒,由于设备无法决定何时会有数据需要接收,因此在设计休眠-唤醒方式时需要同时考虑休眠的效率以及数据传输的时延问题。
一种休眠-唤醒方式是引入一个低功耗的唤醒链路(Wake Up Radio,简称为“WUR”)。WUR可以持续以极低的功率进行链路侦听,并在检测到唤醒包后,唤醒主链路进行正常数据的交互。在这种休眠-唤醒方式下,如何提高唤醒包的传输效率是亟需解决的问题。
发明内容
本申请提供一种通信系统中传输唤醒包的方法和设备,能够提高通信系统中唤醒包的传输效率。
第一方面,提供了一种通信系统中传输唤醒包的方法,该通信系统包括发送端设备和接收端设备,该接收端设备包括唤醒接收机和主收发机,该方法包括:该发送端设备采用第一数据速率向该唤醒接收机发送第一唤醒包WUP;该发送端设备确定第二数据速率;该发送端设备采用该第二数据速率向该唤醒接收机发送第二WUP。
因此,根据本申请的通信系统中传输唤醒包的方法,发送端设备能够采用不同的数据速率向接收端设备发送唤醒包,由此,发送端设备能够根据通信过程中具体的传输条件确定合适的发送唤醒包的数据速率,提高唤醒包的传输效率。
结合第一方面,在第一方面的第一种可能的实现方式中,该发送端设备采用第一数据速率向该唤醒接收机发送第一唤醒包,包括:该发送端设备采用第一符号速率,向该唤醒接收机发送该第一WUP;其中,该发送端设备确定第二数据速率,该发送端设备采用该第二数据速率向该唤醒接收机发送第二WUP,包括:该发送端设备确定第二符号速率;该发送端设备采用该第二符号速率向该唤醒接收机发送该第二WUP。
结合第一方面,或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,该发送端设备采用第一数据速率向该唤醒接收机发送第一唤醒包WUP,包括:该发送端设备采用第一调制编码方式向该唤醒接收机发送该第一WUP;其中,该发送端设备确定第二数据速率,该发送端设备采用该第二数据速率向该唤醒接收机发送第 二WUP,包括:该发送端设备确定第二调制编码方式;该发送端设备采用该第二调制编码方式向该唤醒接收机发送该第二WUP。
可以理解的是,在本申请中发送端设备在两次传输唤醒包时采用的数据速率不同的具体体现可以是:两次传输唤醒包时采用的符号速率不同,和/或,两次传输唤醒包时采用的调制编码方式不同。
结合第一方面,或第一方面的第一种或第二种可能的实现方式中任一可能的实现方式,在第一方面的第三种可能的实现方式中,该发送端设备确定第二数据速率,包括:该发送端设备根据向该主收发机发送数据时采用的数据速率,确定该第二数据速率。
结合第一方面,或第一方面的第一种或第二种可能的实现方式中任一可能的实现方式,在第一方面的第四种可能的实现方式中,该发送端设备确定第二数据速率,包括:该发送端设备根据该主收发机所处的工作频段和/或该唤醒接收机所处的工作频段确定该第二数据速率。
结合第一方面,或第一方面的第一种或第二种可能的实现方式中任一可能的实现方式,在第一方面的第五种可能的实现方式中,该发送端设备确定第二数据速率,包括:该发送端设备根据多径时延扩展,确定该第二数据速率对应的符号长度。
可选地,多径时延扩展为近距离(室内环境)的多径时延扩展,或,多径时延扩展为远距离(室外环境)的多径时延扩展,或,多径时延扩展为当前通信环境下的多径时延扩展。
结合第一方面,或第一方面的第一种或第二种可能的实现方式,在第一方面的第六种可能的实现方式中,该发送端设备确定第二数据速率,包括:该发送端设备接收该接收端设备通过该主收发机发送的反馈信息;该发送端设备根据该反馈信息,确定该第二数据速率。
可选地,接收端设备通过主收发机向发送端设备发送的反馈信息包括用于指示接收端设备期望的数据速率的信息。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,该反馈信息包括用于指示该主收发机和/或该唤醒接收机的工作频点上的信噪比的第一信息;其中,该发送端设备根据该反馈信息,确定该第二数据速率,包括:该发送端设备根据该第一信息和信噪比与数据速率的对应关系,确定该第二数据速率。
由此,可以复用802.11中的反馈机制,简化接收端设备的实现。
结合第一方面的第六种可能的实现方式,在第一方面的第八种可能的实现方式中,该反馈信息包括用于指示该第一WUP到达该唤醒接收机时的功率的第二信息,其中,该发送端设备根据该反馈信息,确定第二数据速率,包括:该发送端设备根据该第二信息和预设功率门限,确定该第二数据速率;
或,该反馈信息包括用于指示该第一WUP在该唤醒接收机处的信噪比的第三信息,其中,该发送端设备根据该反馈信息,确定第二数据速率,包括:该发送端设备根据该第三信息和预设信噪比门限,确定该第二数据速率;或,
该反馈信息包括用于指示该第一WUP在该唤醒接收机处的误包率的第四信息,其中,该发送端设备根据该反馈信息,确定第二数据速率,包括:该发送端设备根据该第四信息和预设误包率门限,确定该第二数据速率。
结合第一方面的第六种至第八种可能的实现方式中任一可能的实现方式,在第一方 面的第九种可能的实现方式中,该发送端设备接收该接收端设备通过该主收发机发送的反馈信息,包括:该发送端设备接收该接收端设备通过该主收发机发送的介质访问控制MAC帧,该MAC帧承载该反馈信息。
可选地,MAC帧中包括信息元素(Information Element,IE),IE中包括信息字段,该信息字段承载该反馈信息。
结合第一方面的第九种可能的实现方式,在第一方面的第十种可能的实现方式中,该发送端设备接收该接收端设备通过主收发机发送的介质访问控制MAC帧,包括:该发送端设备接收该接收端设备通过该主收发机发送的服务质量QoS数据帧,该QoS数据帧包括高吞吐率控制字段,该高吞吐率控制字段承载该反馈信息;或,该发送端设备接收该接收端设备通过该主收发机发送的QoS空白帧,该QoS空白帧包括高效聚合控制字段,该高效聚合控制字段承载该反馈信息;或,该发送端设备接收该接收端设备通过该主收发机发送的波束成型报告,该波束成型报告包括反馈字段,该反馈字段承载该反馈信息。
结合第一方面,或第一方面的第一种至第十种可能的实现方式中任一可能的实现方式,在第一方面的第十一种可能的实现方式中,该发送端设备采用第二数据速率向该唤醒接收机发送第二WUP,包括:该发送端设备根据该第二数据速率,将该第二WUP中的信息比特调制为多个调制符号,该多个调制符号包括符号能量为0的第一调制符号和符号能量不为0的第二调制符号;该发送端设备向该唤醒接收机发送该多个调制符号。
结合第一方面的第十一种可能的实现方式,在第一方面的第十二种可能的实现方式中,该发送端设备向该唤醒接收机发送该多个调制符号,包括:该发送端设备采用每向该唤醒接收机发送第一预设数量的该调制符号,向该唤醒接收机发送一个占位符号的方式,向该唤醒接收机发送该多个调制符号,其中,该占位符号不携带信息比特,且该占位符号的符号能量不为0;或,该发送端设备采用每向该唤醒接收机发送第二预设数量的该第一调制符号,向该唤醒接收机发送一个占位符号的方式,向该唤醒接收机发送该多个调制符号,其中,该占位符号不携带信息比特,且该占位符号的符号能量不为0。
由此,可以避免信道空闲时间过长导致的其他接收端设备抢占信道,影响唤醒包的传输的情况发生,提高唤醒包的传输效率。
结合第一方面,或第一方面的第一种至第十二种可能的实现方式中任一可能的实现方式,在第一方面的第十三种可能的实现方式中,该第二WUP包括按照发送时序排列的信令字段和数据字段,该信令字段承载用于指示该第二数据速率的指示信息。
结合第一方面的第十三种可能的实现方式,在第一方面的第十四种可能的实现方式中,该第二WUP还包括冗余字段,该冗余字段的发送时间在该信令字段的发送时间之后,且在该数据字段的发送时间之前。
由此,接收端设备可以在发送端设备发送冗余字段的时间内,进行数据速率的调整,以便成功接收和解析发送端设备发送的数据字段。
结合第一方面,或第一方面的第一种至第十二种可能的实现方式中,在第一方面的第十五种可能的实现方式中,该第二WUP包括按照发送时序的前导码字段和数据字段,以便于该接收端设备根据该前导码字段对应的前导码模式与预设对应关系,确定该第二数据速率,其中,该预设对应关系包括前导码模式与数据速率的对应关系。
结合第一方面,或第一方面的第一种至第十五种可能的实现方式,在第一方面的第 十六种可能的实现方式中,该第二WUP包括MAC头字段,该MAC头字段包括标识信息字段,该标识信息字段用于承载该接收端设备的标识信息,该方法还包括:该发送端设备根据该第二数据速率,确定该标识信息字段包括的信息比特数,其中,该标识信息字段包括的信息比特数与该第二数据速率的大小正相关。
由此,能够避免标识信息字段包括过多的信息比特数,带来的传输开销。
可选地,MAC头字段中包括用于指示标识信息字段包括的信息比特数的字段。以便于接收端设备根据该字段承载的信息确定标识信息字段中的信息比特数。
第二方面,提供了一种通信系统中传输唤醒包的方法,该通信系统包括发送端设备和接收端设备,该接收端设备包括唤醒接收机和主收发机,该方法包括:该接收端设备通过该唤醒接收机接收该发送端设备采用第一数据速率发送的第一唤醒包WUP;该接收端设备通过该唤醒接收机接收该发送端设备采用第二数据速率发送的第二WUP;该接收端设备确定该第二数据速率;该接收端设备根据该第二数据速率,解析该第二WUP。
因此,根据本申请的通信系统中传输唤醒包的方法,接收端设备接收发送端设备采用不同的数据传输速率发送的唤醒包,发送端设备能够根据通信过程中具体的传输条件确定合适的发送唤醒包的数据速率,提高唤醒包的传输效率。
结合第二方面,在第二方面的第一种可能的实现方式中,该接收端设备通过该唤醒接收机接收该发送端设备采用第一数据速率发送的第一唤醒WUP,包括:该接收端设备通过该唤醒接收机接收该发送端设备采用第一符号速率发送的该第一WUP;该接收端设备通过该唤醒接收机接收该发送端设备采用第二数据速率发送的第二WUP,包括:该接收端设备通过该唤醒接收机接收该发送端设备采用该第二符号速率发送的该第二WUP;该接收端设备确定该第二数据速率,包括:该接收端设备确定该第二符号速率;该接收端设备根据该第二数据速率,解析该第二WUP,包括:该接收端设备根据该第二符号速率,解析该第二WUP。
结合第二方面,或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,该接收端设备通过该唤醒接收机接收该发送端设备采用第一数据速率发送的第一唤醒WUP,包括:该接收端设备通过该唤醒接收机接收该发送端设备采用第一调制编码方式发送的该第一WUP;该接收端设备通过该唤醒接收机接收该发送端设备采用第二数据速率发送的第二WUP,包括:该接收端设备通过该唤醒接收机接收该发送端设备采用该第二调制编码方式发送的该第二WUP;该接收端设备确定该第二数据速率,包括:该接收端设备确定该第二调制编码方式;该接收端设备根据该第二数据速率,解析该第二WUP,包括:该接收端设备根据该第二调制编码方式,解析该第二WUP。
结合第二方面,或第二方面的第一种或第二种可能的实现方式中任一可能的实现方式,在第二方面的第三种可能的实现方式中,该方法还包括:该接收端设备通过该主收发机向该发送端设备发送反馈信息,以便于该发送端设备根据该反馈信息确定该第二数据速率。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,该反馈信息包括用于指示该主收发机和/或该唤醒接收机的工作频点的信噪比的第一信息,以便于该发送端设备根据该第一信息和信噪比与数据速率的对应关系,确定该第二数据速率。
结合第二方面的第三种可能的实现方式,在第二方面的第五种可能的实现方式中, 该反馈信息包括用于指示该第一WUP到达该唤醒接收机时的功率的第二信息,以便于该发送端设备根据该第二信息和预设功率门限,确定该第二数据速率;或,该反馈信息包括用于指示该第一WUP在该唤醒接收机处的信噪比的第三信息,以便于该发送端设备根据该第三信息和预设信噪比门限,确定该第二数据速率;或,该反馈信息包括用于指示该第一WUP在该唤醒接收机处误包率的第四信息,以便于该发送端设备根据该第四信息和预设误包率门限,确定该第二数据速率。
结合第二方面的第三种至第五种可能的实现方式中任一可能的实现方式,在第二方面的第六种可能的实现方式中,该接收端设备通过该主收发机向该发送端设备发送反馈信息,包括:该接收端设备通过该主收发机向该发送端设备发送介质访问控制MAC帧,该MAC帧承载该反馈信息。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,该接收端设备通过该主收发机向该发送端设备发送介质访问控制MAC帧,包括:该接收端设备通过该主收发机向该发送端设备发送服务质量QoS数据帧,该QoS数据帧包括高吞吐率控制字段,该高吞吐率控制字段承载该反馈信息;或,该接收端设备通过该主收发机向该发送端设备发送QoS空白帧,该QoS空白帧包括高效聚合控制字段,该高效聚合控制字段承载该反馈信息;或,该接收端设备通过该主收发机向该发送端设备发送波束成型报告,该波束成型报告包括反馈字段,该反馈字段承载该反馈信息。
结合第二方面,或第二方面的第一种至第七种可能的实现方式中任一可能的实现方式,在第二方面的第八种可能的实现方式中,该接收端设备通过该唤醒接收机接收该发送端设备采用第二数据速率发送的第二WUP,包括:该接收端设备通过该唤醒接收机接收该发送端设备发送的多个调制符号,其中,该多个调制符号是该发送端设备根据该第二数据速率,将该第二WUP中的信息比特进行调制得到的,所多个调制符号中包括符号能量为0的第一调制符号和符号能量不为0的第二调制符号。
结合第二方面的第八种可能的实现方式,在第二方面的第九种可能的实现方式中,该多个调制符号是由该发送端设备采用每向该唤醒接收机发送第一预设数量的该调制符号,向该唤醒接收机发送一个占位符号的方式发送的,其中,该占位符号不携带信息比特,且该占位符号的符号能量不为0;其中,该接收端设备通过该唤醒接收机接收该发送端设备发送的多个调制符号,包括:该接收端设备通过该唤醒接收机采用每接收该第一预设数量的该调制符号,忽略一个该占位符号的方式接收该多个调制符号。
结合第二方面的第八种可能的实现方式,在第二方面的第九种可能的实现方式中,该多个调制符号是该发送端设备采用每向该唤醒接收机发送第二预设数量的该第二调制符号,向该唤醒接收机发送一个占位符号的方式发送的,其中,该占位符号不携带信息比特,且该占位符号的符号能量不为0;
其中,该接收端设备通过该唤醒接收机接收该发送端设备发送的多个调制符号,包括:该接收端设备通过该唤醒接收机采用每接收该第二预设数量的该第二调制符号,忽略一个该占位符号的方式接收该多个调制符号。
结合第二方面,第二方面的第一种至第九种可能的实现方式中任一可能的实现方式,在第二方面的第十种可能的实现方式中,该第二WUP包括按照发送时序排列的信令字段和数据字段,该信令字段承载用于指示该第二数据速率的指示信息;其中,该接收端设备确定该第二数据速率,包括:该接收端设备根据该指示信息,确定该第二数据速率。
结合第二方面的第十种可能的实现方式,在第二方面的第十一种可能的实现方式中,该第二WUP还包括冗余字段,该冗余字段的发送时间在该信令字段的发送时间之后,且在该数据字段的发送时间之前。
结合第二方面,或第二方面的第一种至第九种可能的实现方式中任一可能的实现方式,在第二方面的第十二种可能的实现方式中,该第二WUP包括按照发送时序的前导码字段和数据字段;其中,该接收端设备确定该第二数据速率,包括:该接收端设备根据该前导码字段对应的前导码模式与预设对应关系,确定该第二数据速率,其中,该预设对应关系包括前导码模式与数据速率的对应关系。
结合第二方面,或第二方面的第一种至第十二种可能的实现方式中任一可能的实现方式,在第二方面的第十三种可能的实现方式中,该第二WUP包括MAC头字段,该MAC头字段包括标识字段,该标识信息字段用于承载该接收端设备的标识信息,该标识信息字段包括的信息比特数与该第二数据速率的大小正相关。
第三方面,提供了一种通信系统中传输唤醒包的方法,该通信系统包括发送端设备和接收端设备,该接收端设备包括唤醒接收机和主收发机,该方法包括:发送端设备生成M个唤醒包WUP;该发送端设备向M个接收端设备中的第i个接收端设备的唤醒接收机发送第i个WUP,其中,该发送端设备向任意两个接收端设备的唤醒接收机发送WUP时占用的传输资源对应的时间相同、频率不同,i=1,2,…M,M位大于1的正整数。
因此,根据本申请实施例的通信系统中传输唤醒包的方法,发送端设备同时向多个接收端设备发送唤醒包,能够提升唤醒包的传输效率。
结合第三方面,在第三方面的第一种可能的实现方式中,该方法还包括:该发送端设备生成与第i个WUP中的信息比特相对应的多个符号,该多个符号中包括符号能量不为0的第一符号和符号能量为0的第二符号,其中该第一符号的生成方法为:确定第i个频域填充序列;将该第i个频域填充序列填充到该第i个接收端设备的唤醒接收机的工作频点处的多个子载波上,得到第i个频域信号;将该第i个频域信号进行傅里叶逆变换IFFT,得到该携带信息比特1的符号。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,该确定第i个频域填充序列,包括:将预填充频域序列根据M个旋转因子中的第i个旋转因子进行旋转,得到该第i个频域填充序列,其中,该M个旋转因子中至少两个旋转因子不同。
结合第三方面的第一种可能的实现方式,在第三方面的第三种可能的实现方式中,该确定第i个频域填充序列,包括:生成全带宽序列;根据该全带宽序列,确定该第i个填充序列。
结合第三方面的第一种可能的实现方式,在第三方面的第四种可能的实现方式中,该第i个频域填充序列中相邻两个非零值之间0的数量为预设数量。
结合第三方面的第一种可能的实现方式,在第三方面的第五种可能的实现方式中,该确定第i个频域填充序列,包括:生成第i个时域填充序列,该第i个时域填充序列中的值具有相同的幅度;将该第i个时域填充序列进行傅里叶变换FFT得到该第i个频域填充序列。
第四方面,提供了一种发送端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该发送端设备包括用于执行上述第一方面或第一方面的 任意可能的实现方式中的方法的功能模块。
第五方面,提供了一种接收端设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该发送端设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的功能模块。
第六方面,提供了一种发送端设备,用于执行上述第三方面或第三方面的任意可能的实现方式中的方法。具体地,该发送端设备包括用于执行上述第三方面或第三方面的任意可能的实现方式中的方法的功能模块。
第七方面,提供了一种发送端设备,包括处理器、存储器和收发机,该处理器、该存储器和该收发机通过总线系统相连,该存储器用于存储指令,该处理器用于调用该存储器中存储的指令以控制该收发机接收或发送信息,使得该发送端设备执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种接收端设备,包括处理器、存储器、唤醒接收机和主收发机,该处理器、该存储器、该唤醒接收机和该主收发机通过总线系统相连,该存储器用于存储指令,该处理器用于调用该存储器中存储的指令以控制该唤醒接收机接收信息,以及控制该主收发机接收或发送信息,使得该接收端设备执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种发送端设备,包括处理器、存储器和收发器,该处理器、该存储器和该收发器通过总线系统相连,该存储器用于存储指令,该处理器用于调用该存储器中存储的指令以控制该收发器接收或发送信息,使得该发送端设备执行上述第三方面或第三方面的任意可能的实现方式中的方法。
第十方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第十一方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第十二方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第三方面或第三方面的任意可能的实现方式中的方法的指令。
附图说明
图1是本申请实施例的应用场景的示意图;
图2是根据本申请实施例的唤醒接收机与主收发机的一种可能的协同工作方式的示意图;
图3是根据本申请实施例的唤醒包的结构的示意图;
图4是根据本申请实施例的通信系统中传输唤醒包的方法的示意性流程图;
图5是根据本申请实施例的两种不同符号长度的示意图;
图6是根据本申请实施例的通信系统中传输唤醒包的方法的另一示意性流程图;
图7是根据本申请实施例的QoS数据帧的结构的示意图;
图8是根据本申请实施例的高效聚合控制字段的结构的示意图;
图9是根据本申请实施例的波束成型报告的结构的示意图;
图10是根据本申请实施例的信息元素的结构的示意图;
图11是根据本申请实施例的M-BA帧的结构的示意图;
图12是根据本申请实施例的触发帧的结构的示意图;
图13是根据本申请另一实施例的唤醒包的结构的示意图;
图14是根据本申请再一实施例的唤醒包的结构的示意图;
图15是根据本申请实施例的区分接收端设备的方法的示意图;
图16是根据本申请实施例的发送端设备同时向多个接收端发送唤醒包的方法的示意图;
图17是根据本申请实施例的发送端设备的示意性框图;
图18是根据本申请实施例的接收端设备的示意性框图;
图19是根据本申请另一实施例的发送端设备的示意性框图;
图20是根据本申请另一实施例的接收端设备的示意性框图。
具体实施方式
图1是本申请实施例的应用场景的示意图。图1所示的无线局域网(Wireless Local Area Network,WLAN)中包括发送端设备(例如图1中所示的接入点(Access Point,AP)和接收端设备(例如图1中所示的站点(Station,STA)。AP负责与多个STA进行双向通信,例如图1中示出的AP向STA(例如图1中的STA1和STA2)发送下行数据,或者AP接收来自STA(例如图1中的STA3)的上行数据。应理解,图1中示出的AP和STA的个数仅是示意性的,WLAN中可以包括任意数量的AP和STA。
图2是根据本申请实施例的唤醒接收机和主收发机的一种可能的协同工作方式的示意图。如图2中所示出的,接收端设备包括主收发机2和唤醒接收机,发送端设备包括主收发机1,其中,为了实现低功耗,唤醒接收机的电路构造比较简单,可以仅包括能量检测(Energy Detect)和射频(Radio Frequency,RF)部分。当接收端设备的主收发机2进入深度休眠后,低功耗的唤醒接收机苏醒开始工作。如果发送端设备需要与接收端设备通信,发送端设备首先向接收端设备的唤醒接收机发送唤醒包(Wake Up Packet,WUP)。唤醒接收机正确收到发送给自己的WUP后,唤醒接收端设备的主收发机2,然后自己转入休眠状态,发送端设备则通过主收发机1与主收发机2进行通信。当主收发机2与发送端设备完成通信后会进入休眠,同时唤醒接收机苏醒又开始侦听是否有发送给自己的WUP,以便在收到WUP时唤醒主收发机2。
应理解,某接收端设备的主收发机只能被对应该接收端设备的唤醒接收机唤醒。本文中未作特殊说明的情况下,主收发机和唤醒接收机均指同一接收端设备的主收发机和唤醒接收机。当接收端设备为STA时,对应的发送端设备为AP;当接收端设备为AP时,对应的接收端设备未STA。
还应理解,本申请实施例中提到的WUP也可以称之为唤醒帧(Wake Up Frame),图3示出了根据本申请实施例的WUP的一种可能的结构,该WUP中包括802.11的传统导频(Legacy 802.11Preamble)和WUP有效载荷(Payload)。WUP Payload包括唤醒导频(Wake Up Preamble)、介质访问控制头(Medium Access Control Header,MAC Header)、帧体(Frame Body)和帧校验序列(Frame Check Sequence,FCS)。其中,WUP有效载荷也可以成为数据部分(Data Part)。
其中,Legacy 802.11Preamble用于保护WUP的后续部分不会被传统802.11设备干扰,Wake Up Preamble的功能是用于接收端设备识别WUP信号,MAC Header部分可以 携带接收端设备和发送端设备的地址等信息,Frame Body用于承载一些其他信息,FCS部分用来确保接收端设备接收到的数据与发送端设备发送时的数据一样。
下面将结合具体的实施例,描述根据本申请实施例的通信系统中传输唤醒包的方法。需要说明的是,在下述的实施例中,数据速率指的是单位时间内在信道上传输的信息量(比特数),符号速率指的是单位时间内在信道上传输的符号的个数,发送端设备向接收端设备的唤醒接收机发送唤醒包也可以描述发送端设备向接收端设备发送唤醒包。
图4是根据本申请实施例的通信系统中传输唤醒包的方法的示意性流程图。通信系统中包括发送端设备和接收端设备,接收端设备包括唤醒接收机和主收发机。如图4所示,方法100包括:
S110,发送端设备采用第一数据速率向唤醒接收机发送第一唤醒包WUP;
S120,发送端设备确定第二数据速率;
S130,发送端设备采用该第二数据速率向唤醒接收机发送第二WUP。
可选地,作为一个例子,在S110中,发送端设备采用第一数据速率向唤醒接收机发送第一WUP的一种可能的实现方式是:发送端设备采用第一符号速率向唤醒接收机发送第一WUP,相对应的,在S120中,发送端设备确定第二符号速率,在S130中,发送端设备采用该第二符号速率向唤醒接收机发送第二WUP。
也就是说,发送端设备采用可变的数据速率向接收端设备的唤醒接收机发送WUP的一种具体实现方式是:发送端设备采用可变的符号速率向接收端设备的唤醒接收机发送WUP。
可以理解的是,可变的符号速率可以具体体现为可变的符号长度,例如,t1,t2,t3…。
在上述实施例中,一种产生可变的符号长度的方式为:定义最小的符号长度为t us,其余符号长度基于t确定,例如,可以定义t1=t,t2=2t,t3=3t,…。图5示出了根据本申请实施例的两种不同符号长度的示意图。可选地,可以规定t的取值为下列取值中的一个:1.6us、2us、2.4us、3.2us和4us。或者,定义最小的符号长度为t us,采用不同的扩频码来生成多种长度的符号,具体地,可以定义长度为1、2、4、8…的多种扩频码,不同的符号长度对应不同的扩频码,例如,信息比特为1,扩频码长度为1,则用于承载信息比特1的符号包含一个t us长的符号,如果扩频码长度为4,则用于承载信息比特1的符号包含4个t us长的符号。
在本申请实施例中,可选地,发送端设备每次发送WUP之前,需要确定符号长度,发送端设备确定的符号长度需要使得WUP到达接收端设备的功率不小于预设功率门限(或WUP中的符号到达接收端设备的平均功率不小于预设功率门限),或者使得WUP在接收端设备处解调的误包率(Packet Error Rate,PER)小于预设误包率门限(或WUP中的符号在接收端设备处的平均误符号率小于预设误符号率门限),或者使得WUP在接收端设备处的信噪比不小于预设信噪比门限(或WUP中的符号在接收端设备处的平均信噪比不小于预设信噪比门限),假设满足上述条件的符号长度为T1,发送端设备确定本次发送WUP时采用的符号长度T大于或等于T1。
进一步的,发送端设备根据多径时延扩展确定符号长度,使得发送端确定的符号长度不小于近距离(室内环境)的多径时延扩展,或不小于远距离(室外环境)的多径时延扩展,或不小于当前通信环境下的多径时延扩展。假设满足上述约束条件的符号长度为T2。发送端设备可以将大于或等于T1和T2中的最大值的值确定为本次发送WUP时 采用的符号长度T。或者,发送端设备确定的符号长度T满足:T1+T2≥T≥T1或T1+T2≥T≥max(T1,T2)。相对应的接收端设备在接收端每个符号后,丢掉前面的x us或T2us以避免符号间的干扰。
在上述实施例中,可选地,发送端设备可以复用OFDM发射机,对于符号长度小于现有标准中的符号长度的情况,可以对傅里叶逆变换(Inverse Fourier Transform,IFFT)模块输出的符号利用OFDM发射机中已有的截断(Truncate)模块进行截断;或者,可以采用降采样模块对IFFT模块输出的符号进行抽取;或者可以直接采用更小点数的IFFT产生更短的符号,但本申请并不限于此。
可选地,作为另一个例子,在S110中,发送端设备采用第一数据速率向唤醒接收机发送第一WUP的一种可能的实现方式是:发送端设备采用第一调制编码方式向唤醒接收机发送第一WUP,相对应的,在S120中,发送端设备确定第二调制编码方式,在S130中,发送端设备采用该第二调制编码方式向唤醒接收机发送第二WUP。
也就是说,发送端设备采用可变的数据速率向接收端设备的唤醒接收机发送WUP的一种具体实现方式是:发送端设备采用可变的编码调制方式向接收端设备的唤醒接收机发送WUP。
可以理解的是,可变的编码调制可以具体体现为可变的频率调制阶数和/或可变的相位调制阶数和/或可变的幅度调制阶数和/或可变的编码速率,例如可变的频率调制阶数和/或可变的相位调制阶数和/或可变的幅度调制阶数分别为2幅移键控调制(Amplitude-shift-keying,ASK),4ASK,…或2频移键控调制(Frequency-shift-keying,FSK)FSK,4FSK,…或2相移键控(Phase-shift-keying,PSK),4PSK,…或4正交振幅调制(Quadrature Amplitude Modulation,QAM),16QAM,…;例如可变的编码速率分别为1/2BCC编码,3/4BCC编码,无编码,…。
在本申请实施例中,可选地,发送端设备每次发送WUP之前,需要确定调制编码方式,发送端设备确定的调制编码方式需要使得WUP到达接收端设备的功率不小于预设功率门限(或WUP中的符号到达接收端设备的平均功率不小于预设功率门限),或者使得WUP在接收端设备处解调的误包率(Packet Error Rate,PER)小于预设误包率门限(或WUP中的符号在接收端设备处的平均误符号率小于预设误符号率门限),或者使得WUP在接收端设备处的信噪比不小于预设信噪比门限(或WUP中的符号在接收端设备处的平均信噪比不小于预设信噪比门限)。
可选地,作为另一个例子,在S110中,发送端设备采用第一数据速率向唤醒接收机发送第一WUP的一种可能的实现方式是:发送端设备采用第一符号速率和第一调制编码方式向唤醒接收机发送第一WUP,相对应的,在S120中,发送端设备确定第二符号速率和第二调制编码方式,在S130中,发送端设备采用该第二符号速率和第二调制编码方式向唤醒接收机发送第二WUP。
也就是说,发送端设备采用可变的数据速率向接收端设备的唤醒接收机发送WUP的一种具体实现方式是:发送端设备采用可变的符号速率和可变的调制编码方式向接收端设备的唤醒接收机发送WUP。
可变的符号速率和可变的调制编码方式可以具体体现为可变的符号长度+可变的频率调制阶数和/或可变的相位调制阶数和/或可变的幅度调制阶数和/或编码速率,例如 t1+2ASK,t2+2ASK,t2+4ASK…。一个具体的例子:4us+幅度0表示0,4us+幅度A表示1;4us+幅度0表示00,4us+幅度A表示01,4us+幅度2A表示10,4us+幅度3A表示11;2.4us+幅度0表示0,2.4us+幅度A表示1;2.4us+幅度0表示00,2.4us+幅度A表示01,2.4us+幅度2A表示10,2.4us+幅度3A表示11。
在本申请实施例中,可选地,发送端设备每次发送WUP之前,需要确定符号长度和调制编码方式,发送端设备确定的符号长度和调制编码需要使得WUP到达接收端设备的功率不小于预设功率门限(或WUP中的符号到达接收端设备的平均功率不小于预设功率门限),或者使得WUP在接收端设备处解调的误包率(Packet Error Rate,PER)小于预设误包率门限(或WUP中的符号在接收端设备处的平均误符号率小于预设误符号率门限),或者使得WUP在接收端设备处的信噪比不小于预设信噪比门限(或WUP中的符号在接收端设备处的平均信噪比不小于预设信噪比门限)。
在上述实施例中,可选地,发送端设备可以复用OFDM发射机,对于符号长度小于现有标准中的符号长度的情况,可以对傅里叶逆变换(Inverse Fourier Transform,IFFT)模块输出的符号利用OFDM发射机中已有的截断(Truncate)模块进行截断;或者,可以采用降采样模块对IFFT模块输出的符号进行抽取;或者可以直接采用更小点数的IFFT产生更短的符号,但本申请并不限于此。
可选地,作为一个实施例,在S120中,发送端设备确定第二数据速率时,根据发送端设备向主收发机发送数据时采用的数据速率,确定该第二数据速率。举例来说,发送端设备以第一数据速率向主收发机发送数据,如果发送端设备确定接收端设备能够正确接收数据,则发送端设备认为当前信道质量较好,可以进一步提高发送数据时采用的数据速率,由此,发送端设备在发送第二WUP时,可以采用比第一数据速率大的第二数据速率来向唤醒接收机发送唤醒包。或者,发送端设备以第一数据速率向主收发机发送数据,如果发送端设备确定接收端设备不能正确接收数据,则发送端设备认为当前信道质量较差,需要进一步降低发送数据时采用的数据速率,由此,发送端设备在发送第二WUP时,可以采用比第一数据速率小的第二数据速率来向唤醒接收机发送WUP。
可选地,作为另一个实施例,在S120中,发送端设备确定第二数据速率时,根据主收发机所处的工作频段和/或唤醒接收机所处的工作频段,确定该第二数据速率。举例来说,主收发机工作在2.4GHz频段上,唤醒接收机工作在5GHz频段上,则发送端设备以第一数据速率向唤醒接收机发送唤醒包。主收发机工作在5GHz频段上,唤醒接收机工作在2.4GHz频段上,则发送端设备以第二数据速率向唤醒接收机发送唤醒包。或者,主收发机工作与唤醒接收机工作在相同频段上,则发送端设备以第一数据速率向唤醒接收机发送唤醒包。主收发机与唤醒接收机工作在不同频段上,则发送端设备以第二数据速率向唤醒接收机发送唤醒包。
可选地,作为另一个实施例,如图6所示,S120具体包括:
S121,发送端设备接收端设备通过主收发机发送的反馈信息;
S122,发送端设备根据反馈信息,确定第二数据速率。
可选地,在S121中,反馈信息中包括接收端设备期望发送端设备采用的数据速率,发送端设备可以直接将反馈信息中的数据速率确定为该第二数据速率。
可选地,在S121中,反馈信息中包括用于指示主收发机和/或唤醒接收机的工作频点上的信噪比(Signal Noise Ratio,SNR)的第一信息,相对应的,在S122中,发送端 设备根据该第一信息、信噪比与数据速率的对应关系,确定该第二数据速率。
可选地,信噪比与数据速率的对应关系可以以表格的形式存储在发送端设备中,例如,若考虑所有唤醒接收机的能力相同,比如都具有信道编码能力,或都不具备信道编码能力,一种可能的SNR与数据速率的对应关系可以如表1中所示。
表1
SNR范围 数据速率
<snr_1dB 速率1
snr_1~snr_2dB 速率2
snr_2~snr_3dB 速率3
>snr_3dB 速率4
若考虑唤醒接收机有能力的区别,比如,有些唤醒接收机具备信道编码能力,另一些唤醒接收机不具备。在这种情况下,接收端设备在进行能量汇报时,需要汇报自己的唤醒接收机是否支持信道编码。接收端设备可以在与发送端设备进行关联时上报自己的唤醒接收机是否支持信道编码,可以在通过主收发机与发送端设备进行通信的过程中,告知发送端设备自己的唤醒接收机是否支持信道编码。一种可能的SNR与数据速率的对应关系如表2中所示。
表2
Figure PCTCN2017089953-appb-000001
或者,可以针对具备信道编码能力的唤醒接收机与不具备信道编码能力的唤醒接收机分别设置SNR与数据速率的对应关系表。其中,具备信道编码能力的唤醒机对应的SNR与数据速率的对应关系如表1所示,不具备信道编码能力的唤醒机对应的SNR与数据速率的对应关系如表3所示。
表3
SNR范围 数据速率
<snr_1dB 速率1’
snr_1~snr_2dB 速率2’
snr_2~snr_3dB 速率3’
>snr_3dB 速率4’
进一步的,可以针对唤醒接收机规定一组调制编码方式(Modulation Coding Scheme,MCS),数据速率与调制编码方式具有对应关系,一种可能的数据速率与调制编码方式的对应关系如表4所示。
表4
MCS 方案
0 速率1
1 速率2
2 速率3
3 速率4
4 速率1+信道编码
5 速率2+信道编码
6 速率3+信道编码
7 速率4+信道编码
可选地,可以仅规定MCS0-3,对于无信道编码能力的唤醒接收机认为当前MCS对应速率1~速率4,而对于有信道编码能力的唤醒接收机则认为当前MCS对应速率1+信道编码~速率4+信道编码。
可选的,可以将表1~表3中的速率替换成MCS方式。
可以理解的是,上述表格中的数据速率具体可以是可变符号长度的形式,或可变符号长度+可变的频率调制阶数和/或可变的相位调制阶数和/或可变的幅度调制阶数的形式。
可选地,在S121中,该反馈信息包括用于指示该第一WUP到达该唤醒接收机时的功率的第二信息,相对应的,S122具体为:该发送端设备根据该第二信息和预设功率门限,确定该第二数据速率;或,
在S121中,该反馈信息包括用于指示该第一WUP在该唤醒接收机处的信噪比的第三信息,相对应的,S122具体为:该发送端设备根据该第三信息和预设信噪比门限,确定该第二数据速率;或,
在S121中,该反馈信息包括用于指示该第一WUP在该唤醒接收机处的误包率的第四信息,相对应的,S122具体为:该发送端设备根据该第四信息和预设误包率门限,确定该第二数据速率。
可选地,作为一个实施例,接收端设备通过主收发机向发送端设备发送反馈信息的具体实现方式为:接收端设备通过主收发机向发送端设备发送介质访问控制(Medium Access Control,MAC)帧,该MAC帧中承载该反馈信息。
具体来说,该MAC帧为服务质量(Quality of Service,QoS)数据(Data)帧。图7示出了根据本申请实施例的QoS数据帧的帧结构,如图7所示,QoS数据帧包括帧控制(Frame Control)字段、时长/标识(Duration/ID)字段、地址(Address)1字段、地址1字段、地址3字段、序列控制字段(Sequence Control)字段、地址4字段、服务质量 控制(QoS Control)字段、高吞吐率控制(HT Control)字段、帧体(Frame Body)字段和帧校验序列FCS字段。其中,HT Control字段承载该反馈信息。
或者,该MAC帧为QoS空白(Null)帧,该QoS Null帧包括高效聚合控制(High Efficient Aggregated Control,HE-A-Control)字段。图8示出了根据本申请实施例的高效聚合控制字段的结构。如图8所示,HE-A-Control字段包括非常高吞吐率字段、高效字段和聚合控制(Aggregated Control)字段,其中。聚合控制字段包括多个控制(控制1-控制N)字段和填充(Padding)字段,每个控制字段包括控制标识字段和控制信息(Control Info)字段,Control Info字段包括空间流数(Number of Separate Stream,NSS)字段、HE-MCS字段、唤醒接收机字段、信道信息字段和预留字段。其中,该唤醒接收机字段承载反馈信息。
实际通信过程中,通过改变控制标识字段指示的值来确定每个控制字段的功能,例如,当控制标识字段指示2时,代表控制字段的信息用于链路自适应,进行信道质量指示(Channel Quality Indication,CQI)、MCS等的反馈。并且根据唤醒接收机字段的指示确定反馈信息是应用在唤醒接收机的速率调整上还是应用在主链路的链路自适应上。例如,唤醒接收机字段指示为“1”则表示是应用在唤醒接收机的速率调整上,唤醒接收机字段指示为“0”则表示是应用在主链路的链路自适应上。
进一步的,控制信息字段还可以携带Channel Info,指示反馈信息是用于哪个信道/资源块上的信息,进一步的,可以反馈多个信道/资源块上的速率信息。还可以增加新的控制标识字段,该新的控制标识字段承载反馈信息。
可选地,该MAC帧为波束成型报告(Beamforming Report),图9示出了根据本申请实施例的波束成型报告的结构图。如图9所示,波束成型报告包括帧控制字段、高效多输入多输出(Multiple Input Multiple Output,MIMO)控制字段、唤醒接收机速率反馈字段和帧校验序列字段,其中,该唤醒接收机速率反馈字段用于承载反馈信息,该高效MIMO控制字段的预留比特用于指示该波束成型报告的用途是用于承载反馈信息。
需要说明的是,本申请实施例中的MAC帧并不限于上述给出的几种类型的MAC帧,还可以是其他类型的MAC帧,例如,标准中新定义的MAC帧,或者新定义的Action No ACK帧(不需要确认帧的动作帧)等。
可选地,作为一个实施例,发送端设备采用信息元素(Information Element)承载反馈信息,图10示出了根据本申请实施例的信息元素的结构图。如图10所示,信息元素包括元素标识符(Element Identifier)字段、长度(Length)字段、元素标识符扩展(Element Identifier Extension)和信息(Information)字段,信息字段中包括唤醒接收机速率反馈字段,唤醒接收机速率反馈字段承载反馈信息。在实际通信过程中,可以利用不同的Element Identifier字段标识Information字段承载着不同的管理信息。Information Element可以承载在管理帧中,其中,管理帧可以是Action No ACK帧、ACK帧或Beacon帧,但本申请并不限于此。
在上述的实施例中,反馈信息对数据速率的反馈形式,可以进行每个信道/资源块的单独指示,也可以先进性一些公共信息的指示,再进行每个资源块的信息指示。
进一步的,对于下行反馈,除了反馈站点STA和接入点AP点对点的多个信道上的速率,还可以反馈AP和多个STA在多个信道上的速率。并且可以利用多块确认(Multiple Block Acknowledgement,M-BA)帧或触发(Trigger)帧来携带数据速率。
例如,图11示出了根据本申请实施例的M-BA帧的结构,如图11所示,M-BA帧包括Frame Control字段、时长(Duration)字段、接收地址(Receive Address,简称为“RA”)字段、发送地址(Transmit Address,TA)字段、BA控制字段、BA信息字段和FCS字段。其中,BA信息字段包括重复出现的每STA信息(Pre STA Info)字段、块确认起始序列控制(Block ACK Starting Sequence Control)字段和块确认点阵图(Block ACK Bitmap)字段。其中,Per STA Info字段中包括关联标识(Association Identifier,AID)字段、ACK/BA字段和业务标识(Traffic Identifier,TID)值(Value)字段。可以利用特殊的TID/AID值标识Block ACK Starting Sequence Control字段和Block ACK Bitmap字段用来承载唤醒接收机的数据速率。
图12示出了根据本申请实施例的触发帧的结构。如图12所示,触发帧包括帧控制字段、触发帧类型字段、与触发帧类型相关的公共字段、公共信息字段、逐个站点信息字段、FCS字段,其中,与触发帧类型相关的公共字段用于承载数据速率。或者如图12所示出的,逐个站点信息字段包括唤醒接收机速率字段,用于承载数据速率。
需要说明的是,上述AP向多个STA反馈数据速率的方法,也适用于STA向AP反馈数据速率。不仅适用于STA向1个AP反馈多个信道/资源块上的针对唤醒包的数据速率,也适用于STA向多个AP或STA反馈多个信道/资源块上的针对唤醒包的数据速率。
在本申请实施例中,可选地,发送端设备可以向接收端设备指示传输唤醒包时采用的数据速率,以便于接收端设备根据数据速率接收并解析接收到的唤醒包。图13是根据本申请另一实施例的唤醒包的结构的示意图。如图13所示,唤醒包包括前导字段、信令(Signal,SIG)字段、数据(载荷)字段。其中,该前导字段用于接收端设备进行自动增益控制(Automatic Gain Control,ACG)和时间同步,信令字段包括速率指示字段,该速率指示字段用于指示第二数据速率,该信令字段还可以包括用于承载其他用于解析数据的信息的字段,本申请对此不作限定。
进一步的,接收端设备的唤醒接收机接收到唤醒包后,没有办法立刻完成数据速率的调整,则如图14中所示的,在SIG字段(如果SIG字段只包括速率指示字段,则在速率指示字段)后增加一个冗余字段,冗余字段可以包括N个符号,N为大于或等于1的正整数,以便于唤醒接收机进行数据速率的调整。
可选地,作为一个实施例,可以在SIG字段后放M个固定数据速率(符号长度和/或MCS)的符号,M的取值可以为1,2…,以便于接收端设备根据这M个固定数据速率的符号进行信道估计。
可选地,作为一个实施例,接收端设备可以基于前导码模式与数据速率的对应关系确定第二数据速率。举例来说,可以预设设置前导码模式与数据速率的对应关系,当接收端设备确定前导码模式后,可以根据确定出的前导码模式和这个对应关系,确定当前的数据速率。例如,若前导码的模式为10101010,则认为后续的数据部分的数据速率为速率1;若前导码的模式为110011001100,则认为后续的数据部分的数据速率为速率2。或者,如果前导码字段中在承载用于接收端设备进行时间同步或AGC的信息的字段之后还包括额外的序列,则接收端设备可以根据这额外的序列判断数据速率,例如,若前导码字段为“时间同步/AGC”码字+序列1,则接收端设备确定数据速率为速率1;若前导码字段为“时间同步/AGC+序列2”,则接收端设备确定数据速率为速率2。
可选地,作为一个实施例,接收端设备可以通过主收发机使用的数据速率确定唤醒 包的数据速率,具体的,唤醒包的数据速率与主收发机的数据速率有一个对应关系。举例来说,主收发机使用MCS0~2,则唤醒包使用速率1,主收发机使用MCS3~5,则唤醒包使用速率2。
可选地,作为一个实施例,接收端设备可以通过主收发机所处的工作频段和/或唤醒链路所处的工作频段确定唤醒包的数据速率。举例来说,当主收发机和唤醒收发机处于同一工作频段(同时处于2.4GHz或同时处于5GHz),则唤醒包采用速率1,当主收发机和唤醒接收机处于不同工作频段(主收发机处于2.4GHz,唤醒链路处于5GHz),则唤醒包采用速率2,当主收发机和唤醒接收机处于不同工作频段(主收发机处于5GHz,唤醒链路处于2.4GHz),则唤醒包采用速率3。
可选地,作为一个实施例,接收端设备可以通过主收发机与发送端设备进行协商的结果确定数据速率,例如,接收端设备可以通过向发送端设备发送上文中该的QoS数据帧或QoS空白帧或波束成型报告等告知发送端设备自己期望的数据速率,如果发送端设备确认可以采用接收端设备期望的数据传输速率,发送端设备向接收端设备发送确认帧,接收端设备接收到发送端设备发送的确认帧之后,认为后续发送端设备传输唤醒包的数据速率为之前反馈的自己期望的数据速率。
可选地,作为另一个实施例,如果接收端设备为STA,发送端设备为AP,则当STA关联到AP时,AP根据STA距离自己的远近,直接规定向该STA传输唤醒包时采用的数据速率。发送端设备可以在数据交互的过程中,通过与主收发机之间的主链路更新数据速率,例如通过操作模式通知(Operation Mode Notification)的交互更新数据速率。
需要说明的是,上文中所述的通过SIG字段携带用于指示数据速率的信息的方法告知接收端设备数据速率的方案中,发送端设备在向接收端设备发送唤醒包中的前导码字段、SIG字段和数据字段时采用的数据速率可以不同,发送前导码字段和SIG字段可以采用更鲁棒性的速率。
而对于上述其他告知接收端设备数据速率的方案中,接收端可以利用特定的数据速率对前导码和SIG字段进行解析,而按照上述方案计算出的或约定协商好的数据速率对数据进行解析,这种情况下,发送端设备发送前导码字段和数据字段时可以采用不同的数据速率,发送前导码字段时采用更鲁棒性的数据速率;或者,接收端设备可以利用按照上述方案约定或协商好的数据速率对整个唤醒包进行解析,这种情况下,发送端设备采用相同的数据速率发送前导码字段和数据字段。
在发送端设备向接收端设备的唤醒接收机发送唤醒包时,发送端设备需要告知接收端设备当前发送的唤醒包是否是发送给该接收端设备的唤醒接收机的。由此,图13或14中所示出的唤醒包的结构中的数据字段部分包括MAC头字段,该MAC头字段中包括标识信息字段,该标识信息字段用于承载接收端设备的标识信息。该标识信息可以是MAC Address、AID或者部分(Partial)AID,为了避免标识信息字段包括的信息比特数过多带来的不必要开销,可以使得标识信息字段包括的信息比特数与第二数据速率的大小呈正相关。
其中,假设标识ID为AID,那么对于需要较低数据速率的接收端设备,将其AID的第一个比特Bit设为1,而其他需要较高数据速率的接收端设备的AID的第一个Bit设为0,假设需要较低数据速率的接收端设备有n个,则地址信息字段仅需要包括1+ceil(log2(n))个比特就可以区分各个接收端设备,其中,ceil()为向上取整函数。或者, 更一般的,令AID的前s位标识不同数据速率的用户组,例如,对于s=2的情况,00表示数据速率最大的用户组,01表示数据速率第二大的用户组,10表示数据速率第三大的用户组,11表示数据速率最小的用户组,之后的比特组合进行每个用户组的区分,具体如图15中所示。并且如果结合上文中该的数据速率的指示方法,则当唤醒包中携带图15所示的AID时,则可以不传输前2Bit。
可选地,MAC头字段中还可以包括一个比特数指示字段,该比特数指示字段用于承载指示标识信息字段包括的信息比特数的信息。该比特数指示字段可以指示信息比特的具体个数,或者,该比特数指示字段可以指示信息比特数与数据速率的对应关系。
进一步的,对需要较低数据速率的接收端设备分配ID时,尽量避免连续出现多个符号能量为0的符号,以减少冗余信息的传输。
在上述所有的实施例中,发送端设备在采用第二数据速率向接收端设备的唤醒接收机发送第二WUP时,发送端设备根据第二数据速率,将第二WUP中的信息比特调制为多个调制符号,多个调制符号包括符号能量为0的第一调制符号和符号能量不为0的第二调制符号,之后向接收端设备的唤醒接收机发送该多个调制符号。
可选地,作为一个例子,在发送端设备向接收端设备的唤醒接收机发送多个调制符号时,可以每间隔N个调制符号就插入一个占位(ON)符号,占住信道,避免信道长时间处于空闲状态而导致其他接收端设备抢占信道影响唤醒包的传输的情况发生。其中,N可以是固定的数值,例如,N可以为4。N也可以是根据调制符号的符号长度确定的一个值,例如,假设符号长度为x us,通信系统最大可以接受连续发送符号能量为0的调制符号的时间为y us(y可以在标准里事先规定好,或者AP在与STA关联的时候约定),则可以领N=floor(y/x)。假设x=4,y=25,则N=floor(25/4)=6。或者,N与符号长度之前具有一一对应关系,例如,可以约定2us的符号长度对应N=12,4us的符号长度对应N=6,8us的符号长度对应N=3等。
相对应的,接收端设备的唤醒接收机在接收的过程中,每接收到N个调制符号就忽略下一个符号。如果N为随符号长度变化的,则接收端设备可以根据发送端设备显示或者隐式的指示获知当前符号长度,然后根据上文中提到的N的计算方法或者N与符号长度的一一对应关系,确定N个值。
可选地,作为另一个例子,在发送端设备向接收端设备的唤醒接收机发送多个调制符号时,可以每间隔N个符号能量为0的第一调制符号就插入一个占位符号,其中,N的选择与上文中的方法相同,在此不再赘述。
相对应的,接收端设备每接收到N个符号能量为0的第一调制符号就忽略下一个符号。
需要说明的是,上文中的占位符号不携带信息比特,但占位符号的符号能量不为0。
可选地,发送端设备可以复用OFDM发射机生成与第二WUP中的信息比特相对应的多个时域符号,其中,符号能量不为0的时域符号的生成方法是:发送端设备产生一个时域序列s_pre,该s_pre中的值具有相同幅度;对该s_pre进行快速傅里叶变换(Fast Fourier Transform,FFT)得到频域序列s,将s填充到唤醒接收机的工作频带处的子载波上,之后进行进行IFFT变换到时域上形成时域符号。其中,该时域序列s_pre的长度可以根据唤醒接收机的工作带宽与子载波宽度的比值确定,例如,如果唤醒接收机的工作带宽为4M,子载波宽度为312.5kHz,则s_pre的长度为13;如果唤醒接收机的工作带 宽为4M,子载波宽度为78.125kHz,则s_pre的长度为52。可选地,为了FFT变换的易操作性,可以规定s_pre的长度为偶数。
或者,发送端设备直接确定频域序列s,s序列中两个相邻非零值之间间隔n个0,n可以为1,2,3,4。例如,n为1时的s可以表示为:s=[s1,0,s2,0,s3,0,s4...]。
在本申请实施例中,可选地,如图16中所示出的,发送端设备可以在一次传输中,通过不同的频点向不同的接收端设备发送唤醒包。发送端设备在生成与每个接收端设备的唤醒包中的信息比特相对应的时域符号时,可以先将针对每个接收端设备的唤醒包的s乘以不同的旋转因子,例如旋转因子可以从[1-1j-j]中进行选择,1表示不旋转,-1表示旋转180°,j表示旋转90°,-j表示旋转-90°。一个具体的例子,当同时传输4个唤醒包时,唤醒包1~4的s序列对应的旋转因子为[1-1-1-1],即唤醒包1对应的子载波s,唤醒包2~唤醒包4对应的子载波填充-s。
或者,发送端设备可以生成全带宽的填充序列s,当对应的频点上有唤醒包需要发送时,则用s对应位置的值填充相应的子载波,例如,s采用l-stf序列:
Figure PCTCN2017089953-appb-000002
当只有唤醒包1需要传输时,在对应子载波上填充全带宽的填充序列s对应位置处的数值,例如,4M对应的13个子载波上填充“0 0 1+j 0 0 0-1-j 0 0 0 1+j 0 0”序列。
以上结合图4至图16详细描述了根据本申请实施例的通信系统中传输唤醒包的方法,下面将结合图17详细描述根据本申请实施例的发送端设备。
图17示出了根据本申请实施例的通信系统中的发送端设备,该通信系统包括该发送端设备和接收端设备,该接收端设备包括唤醒接收模块和主收发模块。如图17所示,发送端设备10包括:
收发模块11,用于采用第一数据速率向该唤醒接收模块发送第一唤醒包WUP;
确定模块12,用于确定第二数据速率;
该收发模块11,还用于采用该第二数据速率向该唤醒接收模块发送第二WUP。
因此,根据本申请实施例的发送端设备能够采用不同的数据速率向接收端设备发送唤醒包,由此,发送端设备能够根据通信过程中具体的传输条件确定合适的发送唤醒包的数据速率,提高唤醒包的传输效率。
在本申请实施例中,可选地,在采用第一数据速率向该唤醒接收模块发送第一唤醒包方面,该收发模块11具体用于:采用第一符号速率,向该唤醒接收模块发送该第一WUP;
其中,在确定第二数据速率方面,该确定模块12具体用于:确定第二符号速率;
在采用该第二数据速率向该唤醒接收模块发送第二WUP方面,该收发模块11具体用于:采用该第二符号速率向该唤醒接收模块发送该第二WUP。
在本申请实施例中,可选地,在采用第一数据速率向该唤醒接收模块发送第一唤醒包WUP方面,该收发模块11具体用于:采用第一调制编码方式向该唤醒接收模块发送该第一WUP;
其中,在确定第二数据速率方面,该确定模块12具体用于:确定第二调制编码方式;
在采用该第二数据速率向该唤醒接收模块发送第二WUP方面,该收发模块11具体用于:采用该第二调制编码方式向该唤醒接收模块发送该第二WUP。
在本申请实施例中,可选地,在确定第二数据速率方面,该确定模块12具体用于:根据向该主收发模块发送数据时采用的数据速率,确定该第二数据速率。
在本申请实施例中,可选地,在确定第二数据速率方面,该确定模块12具体用于:根据该主收发模块和/或该唤醒接收模块所处的工作频段确定该第二数据速率。
在本申请实施例中,可选地,在确定第二数据速率方面,该确定模块12具体用于:根据多径时延扩展,确定该第二数据速率对应的符号长度。
在本申请实施例中,可选地,在确定第二数据速率方面,该收发模块11用于:接收该接收端设备通过该主收发模块发送的反馈信息;
该确定模块12,用于根据该反馈信息,确定该第二数据速率。
在本申请实施例中,可选地,该反馈信息包括用于指示该主收发模块和/或该唤醒接收模块的工作频点上的信噪比的第一信息;
其中,在根据该反馈信息,确定该第二数据速率方面,该确定模块12具体用于:根据该第一信息和信噪比与数据速率的对应关系,确定该第二数据速率。
在本申请实施例中,可选地,该反馈信息包括用于指示该第一WUP到达该唤醒接收模块时的功率的第二信息,其中,在根据该反馈信息,确定第二数据速率方面,该确定模块12用于:根据该第二信息和预设功率门限,确定该第二数据速率;或,
该反馈信息包括用于指示该第一WUP在该唤醒接收模块处的信噪比的第三信息,其中,在根据该反馈信息,确定第二数据速率方面,该确定模块12用于:根据该第三信息和预设信噪比门限,确定该第二数据速率;或,
该反馈信息包括用于指示该第一WUP在该唤醒接收模块处的误包率的第四信息,其中,在根据该反馈信息,确定第二数据速率方面,该确定模块12用于:根据该第四信息和预设误包率门限,确定该第二数据速率。
在本申请实施例中,可选地,在接收该接收端设备通过该主收发模块发送的反馈信息方面,该收发模块11具体用于:接收该接收端设备通过该主收发模块发送的介质访问控制MAC帧,该MAC帧承载该反馈信息。
在本申请实施例中,可选地,在接收该接收端设备通过主收发模块发送的介质访问控制MAC帧方面,该收发模块11具体用于:接收该接收端设备通过该主收发模块发送的服务质量QoS数据帧,该QoS数据帧包括高吞吐率控制字段,该高吞吐率控制字段承载该反馈信息;或,接收该接收端设备通过该主收发模块发送的QoS空白帧,该QoS空白帧包括高效聚合控制字段,该高效聚合控制字段承载该反馈信息;或,接收该接收端设备通过该主收发模块发送的波束成型报告,该波束成型报告包括反馈字段,该反馈字段承载该反馈信息。
在本申请实施例中,可选地,在采用第二数据速率向该唤醒接收模块发送第二WUP方面,该收发模块11具体用于:根据该第二数据速率,将该第二WUP中的信息比特调制为多个调制符号,该多个调制符号包括符号能量为0的第一调制符号和符号能量不为0的第二调制符号;向该唤醒接收模块发送该多个调制符号。
在本申请实施例中,可选地,在向该唤醒接收模块发送该多个调制符号方面,该收发模块11具体用于:采用每向该唤醒接收模块发送第一预设数量的该调制符号,向该唤 醒接收模块发送一个占位符号的方式,向该唤醒接收模块发送该多个调制符号,其中,该占位符号不携带信息比特,且该占位符号的符号能量不为0;或,采用每向该唤醒接收模块发送第二预设数量的该第一调制符号,向该唤醒接收模块发送一个占位符号的方式,向该唤醒接收模块发送该多个调制符号,其中,该占位符号不携带信息比特,且该占位符号的符号能量不为0。
在本申请实施例中,可选地,该第二WUP包括按照发送时序排列的信令字段和数据字段,该信令字段承载用于指示该第二数据速率的指示信息。
在本申请实施例中,可选地,该第二WUP还包括冗余字段,该冗余字段的发送时间在该信令字段的发送时间之后,且在该数据字段的发送时间之前。
在本申请实施例中,可选地,该第二WUP包括按照发送时序的前导码字段和数据字段,以便于该接收端设备根据该前导码字段对应的前导码模式与预设对应关系,确定该第二数据速率,其中,该预设对应关系包括前导码模式与数据速率的对应关系。
在本申请实施例中,可选地,该第二WUP包括MAC头字段,该MAC头字段包括标识信息字段,该标识信息字段用于承载该接收端设备的标识信息,该确定模块12还用于:根据该第二数据速率,确定该标识信息字段包括的信息比特数,其中,该标识信息字段包括的信息比特数与该第二数据速率的大小正相关。
应理解,根据本申请实施例的发送端设备10可对应于执行本申请实施例中的通信系统中传输唤醒包的方法100,并且发送端设备10中的各个模块的上述和其它操作和/或功能分别为了实现方法100中的发送端设备执行的相应流程,为了简洁,在此不再赘述。
图18示出了根据本申请实施例的通信系统中的接收端设备,该通信系统包括发送端设备和该接收端设备。如图18所示,接收端设备20包括唤醒接收模块21、主接收模块22和确定模块23,其中:
该唤醒接收模块21,用于接收该发送端设备采用第一数据速率发送的第一唤醒包WUP;
该唤醒接收模块21,还用于接收该发送端设备采用第二数据速率发送的第二WUP;
该确定模块23,用于确定该第二数据速率;
该确定模块23,还用于根据该第二数据速率,解析该第二WUP。
因此,根据本申请实施例的通信系统中的接收端设备接收发送端设备采用不同的数据传输速率发送的唤醒包,发送端设备能够根据通信过程中具体的传输条件确定合适的发送唤醒包的数据速率,提高唤醒包的传输效率。
在本申请实施例中,可选地,在接收该发送端设备采用第一数据速率发送的第一唤醒WUP方面,该唤醒接收模块21具体用于:接收该发送端设备采用第一符号速率发送的该第一WUP;
在接收该发送端设备采用第二数据速率发送的第二WUP方面,该唤醒接收模块21用于:接收该发送端设备采用该第二符号速率发送的该第二WUP;在确定该第二数据速率方面,该确定模块23具体用于:确定该第二符号速率;在根据该第二数据速率,解析该第二WUP方面,该确定模块23具体用于:根据该第二符号速率,解析该第二WUP。
在本申请实施例中,可选地,在接收该发送端设备采用第一数据速率发送的第一唤醒WUP方面,该唤醒接收模块21具体用于:接收该发送端设备采用第一调制编码方式发送的该第一WUP;在接收该发送端设备采用第二数据速率发送的第二WUP方面,该 唤醒接收模块21具体用于:接收该发送端设备采用该第二调制编码方式发送的该第二WUP;在确定该第二数据速率方面,该确定模块23具体用于:确定该第二调制编码方式;在根据该第二数据速率,解析该第二WUP方面,该确定模块23具体用于:根据该第二调制编码方式,解析该第二WUP。
在本申请实施例中,可选地,该主接收模块22具体用于:向该发送端设备发送反馈信息,以便于该发送端设备根据该反馈信息确定该第二数据速率。
在本申请实施例中,可选地,该反馈信息包括用于指示该主收发模块和/或该唤醒接收模块的工作频点的信噪比的第一信息,以便于该发送端设备根据该第一信息和信噪比与数据速率的对应关系,确定该第二数据速率。
在本申请实施例中,可选地,该反馈信息包括用于指示该第一WUP到达该唤醒接收模块时的功率的第二信息,以便于该发送端设备根据该第二信息和预设功率门限,确定该第二数据速率;或,该反馈信息包括用于指示该第一WUP在该唤醒接收模块处的信噪比的第三信息,以便于该发送端设备根据该第三信息和预设信噪比门限,确定该第二数据速率;或,该反馈信息包括用于指示该第一WUP在该唤醒接收模块处误包率的第四信息,以便于该发送端设备根据该第四信息和预设误包率门限,确定该第二数据速率。
在本申请实施例中,可选地,在向该发送端设备发送反馈信息方面,该主收发模块用于:向该发送端设备发送介质访问控制MAC帧,该MAC帧承载该反馈信息。
在本申请实施例中,可选地,在向该发送端设备发送介质访问控制MAC帧方面,该主收发模块22具体用于:向该发送端设备发送服务质量QoS数据帧,该QoS数据帧包括高吞吐率控制字段,该高吞吐率控制字段承载该反馈信息;或,向该发送端设备发送QoS空白帧,该QoS空白帧包括高效聚合控制字段,该高效聚合控制字段承载该反馈信息;或,向该发送端设备发送波束成型报告,该波束成型报告包括反馈字段,该反馈字段承载该反馈信息。
在本申请实施例中,可选地,在接收该发送端设备采用第二数据速率发送的第二WUP方面,该唤醒接收模块21具体用于:接收该发送端设备发送的多个调制符号,其中,该多个调制符号是该发送端设备根据该第二数据速率,将该第二WUP中的信息比特进行调制得到的,所多个调制符号中包括符号能量为0的第一调制符号和符号能量不为0的第二调制符号。
在本申请实施例中,可选地,该多个调制符号是由该发送端设备采用每向该唤醒接收模块21发送第一预设数量的该调制符号,向该唤醒接收模块21发送一个占位符号的方式发送的,其中,该占位符号不携带信息比特,且该占位符号的符号能量不为0;
其中,在接收该发送端设备发送的多个调制符号方面,该唤醒接收模块21具体用于:采用每接收该第一预设数量的该调制符号,忽略一个该占位符号的方式接收该多个调制符号。
在本申请实施例中,可选地,该多个调制符号是该发送端设备采用每向该唤醒接收模块21发送第二预设数量的该第二调制符号,向该唤醒接收模块21发送一个占位符号的方式发送的,其中,该占位符号不携带信息比特,且该占位符号的符号能量不为0;
其中,在接收该发送端设备发送的多个调制符号方面,该唤醒接收模块21具体用于:采用每接收该第二预设数量的该第二调制符号,忽略一个该占位符号的方式接收该多个调制符号。
在本申请实施例中,可选地,该第二WUP包括按照发送时序排列的信令字段和数据字段,该信令字段承载用于指示该第二数据速率的指示信息;其中,在确定该第二数据速率方面,该确定模块23具体用于:根据该指示信息,确定该第二数据速率。
在本申请实施例中,可选地,该第二WUP还包括冗余字段,该冗余字段的发送时间在该信令字段的发送时间之后,且在该数据字段的发送时间之前。
在本申请实施例中,可选地,该第二WUP包括按照发送时序的前导码字段和数据字段;
其中,在确定该第二数据速率方面,该确定模块23具体用于:根据该前导码字段对应的前导码模式与预设对应关系,确定该第二数据速率,其中,该预设对应关系包括前导码模式与数据速率的对应关系。
在本申请实施例中,可选地,该第二WUP包括MAC头字段,该MAC头字段包括标识信息字段,该标识信息字段用于承载该接收端设备的标识信息,该标识信息字段包括的信息比特数与该第二数据速率的大小正相关。
应理解,根据本申请实施例的接收端设备20可对应于执行本申请实施例中的通信系统中传输唤醒包的方法100,并且接收端设备20中的各个模块的上述和其它操作和/或功能分别为了实现方法100中的接收端设备执行的相应流程,为了简洁,在此不再赘述。
图19是本申请另一实施例的通信系统中的发送端设备的示意性结构图。该通信系统包括该发送端设备和接收端设备,该接收端设备包括唤醒接收机和主收发机。图19的发送端设备可以执行方法100中各流程中发送端设备所执行的流程。图19的发送端设备100包括收发机110、处理器120和存储器130。处理器120控制发送端设备100的操作,并可用于处理信号。存储器130可以包括只读存储器和随机存取存储器,并向处理器120提供指令和数据。发送端设备100的各个组件通过总线系统140耦合在一起,其中总线系统140除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统140。
具体地,该收发机110用于:用于采用第一数据速率向该唤醒接收模块发送第一唤醒包WUP;该处理器120,用于确定第二数据速率;该收发机110,还用于采用该第二数据速率向该唤醒接收模块发送第二WUP。
应理解,在本申请实施例中,该处理器120可以是中央处理单元(Central Processing Unit,CPU),该处理器120还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器130可以包括只读存储器和随机存取存储器,并向处理器120提供指令和数据。存储器130的一部分还可以包括非易失性随机存取存储器。例如,存储器130还可以存储设备类型的信息。
该总线系统140除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统140。
在实现过程中,上述方法的各步骤可以通过处理器120中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随 机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器130,处理器120读取存储器130中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,在采用第一数据速率向该唤醒接收机发送第一唤醒包方面,该收发机110具体用于:采用第一符号速率,向该唤醒接收机发送该第一WUP;
其中,在确定第二数据速率方面,该处理器120具体用于:确定第二符号速率;
在采用该第二数据速率向该唤醒接收机发送第二WUP方面,该收发机110具体用于:采用该第二符号速率向该唤醒接收机发送该第二WUP。
可选地,作为一个实施例,在采用第一数据速率向该唤醒接收机发送第一唤醒包WUP方面,该收发机110具体用于:采用第一调制编码方式向该唤醒接收机发送该第一WUP;
其中,在确定第二数据速率方面,该处理器120具体用于:确定第二调制编码方式;
在采用该第二数据速率向该唤醒接收机发送第二WUP方面,该收发机110具体用于:采用该第二调制编码方式向该唤醒接收机发送该第二WUP。
可选地,作为一个实施例,在确定第二数据速率方面,该处理器120具体用于:根据向该主收发机发送数据时采用的数据速率,确定该第二数据速率。
可选地,作为一个实施例,在确定第二数据速率方面,该处理器120具体用于:根据该主收发机和/或该唤醒接收机所处的工作频段确定该第二数据速率。
可选地,作为一个实施例,在确定第二数据速率方面,该处理器120具体用于:根据多径时延扩展,确定该第二数据速率对应的符号长度。
可选地,作为一个实施例,在确定第二数据速率方面,该收发机110用于:接收该接收端设备通过该主收发机发送的反馈信息;
该处理器120,用于根据该反馈信息,确定该第二数据速率。
可选地,作为一个实施例,该反馈信息包括用于指示该主收发机和/或该唤醒接收机的工作频点上的信噪比的第一信息;
其中,在根据该反馈信息,确定该第二数据速率方面,该处理器120具体用于:根据该第一信息和信噪比与数据速率的对应关系,确定该第二数据速率。
可选地,作为一个实施例,该反馈信息包括用于指示该第一WUP到达该唤醒接收机时的功率的第二信息,其中,在根据该反馈信息,确定第二数据速率方面,该处理器120用于:根据该第二信息和预设功率门限,确定该第二数据速率;或,
该反馈信息包括用于指示该第一WUP在该唤醒接收机处的信噪比的第三信息,其中,在根据该反馈信息,确定第二数据速率方面,该处理器120用于:根据该第三信息和预设信噪比门限,确定该第二数据速率;或,
该反馈信息包括用于指示该第一WUP在该唤醒接收机处的误包率的第四信息,其中,在根据该反馈信息,确定第二数据速率方面,该处理器120用于:根据该第四信息和预设误包率门限,确定该第二数据速率。
可选地,作为一个实施例,在接收该接收端设备通过该主收发机发送的反馈信息方面,该收发机110具体用于:接收该接收端设备通过该主收发机发送的介质访问控制MAC帧,该MAC帧承载该反馈信息。
可选地,作为一个实施例,在接收该接收端设备通过主收发机发送的介质访问控制 MAC帧方面,该收发机110具体用于:接收该接收端设备通过该主收发机发送的服务质量QoS数据帧,该QoS数据帧包括高吞吐率控制字段,该高吞吐率控制字段承载该反馈信息;或,接收该接收端设备通过该主收发机发送的QoS空白帧,该QoS空白帧包括高效聚合控制字段,该高效聚合控制字段承载该反馈信息;或,接收该接收端设备通过该主收发机发送的波束成型报告,该波束成型报告包括反馈字段,该反馈字段承载该反馈信息。
可选地,作为一个实施例,在采用第二数据速率向该唤醒接收机发送第二WUP方面,该收发机110具体用于:根据该第二数据速率,将该第二WUP中的信息比特调制为多个调制符号,该多个调制符号包括符号能量为0的第一调制符号和符号能量不为0的第二调制符号;向该唤醒接收模块发送该多个调制符号。
可选地,作为一个实施例,在向该唤醒接收机发送该多个调制符号方面,该收发机110具体用于:采用每向该唤醒接收机发送第一预设数量的该调制符号,向该唤醒接收机发送一个占位符号的方式,向该唤醒接收机发送该多个调制符号,其中,该占位符号不携带信息比特,且该占位符号的符号能量不为0;或,采用每向该唤醒接收机发送第二预设数量的该第一调制符号,向该唤醒接收机发送一个占位符号的方式,向该唤醒接收机发送该多个调制符号,其中,该占位符号不携带信息比特,且该占位符号的符号能量不为0。
可选地,作为一个实施例,该第二WUP包括按照发送时序排列的信令字段和数据字段,该信令字段承载用于指示该第二数据速率的指示信息。
可选地,作为一个实施例,该第二WUP还包括冗余字段,该冗余字段的发送时间在该信令字段的发送时间之后,且在该数据字段的发送时间之前。
可选地,作为一个实施例,该第二WUP包括按照发送时序的前导码字段和数据字段,以便于该接收端设备根据该前导码字段对应的前导码模式与预设对应关系,确定该第二数据速率,其中,该预设对应关系包括前导码模式与数据速率的对应关系。
可选地,作为一个实施例,该第二WUP包括MAC头字段,该MAC头字段包括标识信息字段,该标识信息字段用于承载该接收端设备的标识信息,该处理器120还用于:根据该第二数据速率,确定该标识信息字段包括的信息比特数,其中,该标识信息字段包括的信息比特数与该第二数据速率的大小正相关。
应理解,根据本申请实施例的发送端设备100可对应于根据本申请实施例的发送端设备10,并可以对应于执行根据本申请实施例的通信系统中传输唤醒包的方法中的相应主体,并且发送端设备100中的各个模块的上述和其他操作和/或功能分别为了实现方法100中的相应流程,为了简洁,在此不再赘述。
因此,根据本申请实施例的发送端设备能够采用不同的数据速率向接收端设备发送唤醒包,由此,发送端设备能够根据通信过程中具体的传输条件确定合适的发送唤醒包的数据速率,提高唤醒包的传输效率。
图20是本申请另一实施例的通信系统中的接收端设备的示意性结构图。该通信系统包括发送端设备和该接收端设备。图20的接收端设备可以执行方法100中各流程中接收端设备所执行的流程。图20的接收端设备200包括唤醒接收机210,主收发机220、处理器230和存储器240。处理器230控制接收端设备200的操作,并可用于处理信号。存储器240可以包括只读存储器和随机存取存储器,并向处理器230提供指令和数据。接 收端设备200的各个组件通过总线系统250耦合在一起,其中总线系统250除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统250。
具体地,该唤醒接收机210,用于接收该发送端设备采用第一数据速率发送的第一唤醒包WUP;该唤醒接收机210,还用于接收该发送端设备采用第二数据速率发送的第二WUP;该处理器230,用于确定该第二数据速率;该处理器230,还用于根据该第二数据速率,解析该第二WUP。
应理解,在本申请实施例中,该处理器230可以是中央处理单元(Central Processing Unit,CPU),该处理器230还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器240可以包括只读存储器和随机存取存储器,并向处理器230提供指令和数据。存储器240的一部分还可以包括非易失性随机存取存储器。例如,存储器240还可以存储设备类型的信息。
该总线系统250除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统250。
在实现过程中,上述方法的各步骤可以通过处理器230中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器240,处理器230读取存储器240中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,在接收该发送端设备采用第一数据速率发送的第一唤醒WUP方面,该唤醒接收机210具体用于:接收该发送端设备采用第一符号速率发送的该第一WUP;
在接收该发送端设备采用第二数据速率发送的第二WUP方面,该唤醒接收机210用于:接收该发送端设备采用该第二符号速率发送的该第二WUP;在确定该第二数据速率方面,该处理器230具体用于:确定该第二符号速率;在根据该第二数据速率,解析该第二WUP方面,该处理器230具体用于:根据该第二符号速率,解析该第二WUP。
可选地,作为一个实施例,在接收该发送端设备采用第一数据速率发送的第一唤醒WUP方面,该唤醒接收机210具体用于:接收该发送端设备采用第一调制编码方式发送的该第一WUP;在接收该发送端设备采用第二数据速率发送的第二WUP方面,该唤醒接收机210具体用于:接收该发送端设备采用该第二调制编码方式发送的该第二WUP;在确定该第二数据速率方面,该处理器230具体用于:确定该第二调制编码方式;在根据该第二数据速率,解析该第二WUP方面,该处理器230具体用于:根据该第二调制编码方式,解析该第二WUP。
可选地,作为一个实施例,该主收发机220具体用于:向该发送端设备发送反馈信息,以便于该发送端设备根据该反馈信息确定该第二数据速率。
可选地,作为一个实施例,该反馈信息包括用于指示该主收发机220和/或该唤醒接 收机210的工作频点的信噪比的第一信息,以便于该发送端设备根据该第一信息和信噪比与数据速率的对应关系,确定该第二数据速率。
可选地,作为一个实施例,该反馈信息包括用于指示该第一WUP到达该唤醒接收机时的功率的第二信息,以便于该发送端设备根据该第二信息和预设功率门限,确定该第二数据速率;或,该反馈信息包括用于指示该第一WUP在该唤醒接收机处的信噪比的第三信息,以便于该发送端设备根据该第三信息和预设信噪比门限,确定该第二数据速率;或,该反馈信息包括用于指示该第一WUP在该唤醒接收机处误包率的第四信息,以便于该发送端设备根据该第四信息和预设误包率门限,确定该第二数据速率。
可选地,作为一个实施例,在向该发送端设备发送反馈信息方面,该主收发机220用于:向该发送端设备发送介质访问控制MAC帧,该MAC帧承载该反馈信息。
可选地,作为一个实施例,在向该发送端设备发送介质访问控制MAC帧方面,该主收发机220具体用于:向该发送端设备发送服务质量QoS数据帧,该QoS数据帧包括高吞吐率控制字段,该高吞吐率控制字段承载该反馈信息;或,向该发送端设备发送QoS空白帧,该QoS空白帧包括高效聚合控制字段,该高效聚合控制字段承载该反馈信息;或,向该发送端设备发送波束成型报告,该波束成型报告包括反馈字段,该反馈字段承载该反馈信息。
可选地,作为一个实施例,在接收该发送端设备采用第二数据速率发送的第二WUP方面,该唤醒接收机210具体用于:接收该发送端设备发送的多个调制符号,其中,该多个调制符号是该发送端设备根据该第二数据速率,将该第二WUP中的信息比特进行调制得到的,所多个调制符号中包括符号能量为0的第一调制符号和符号能量不为0的第二调制符号。
可选地,作为一个实施例,该多个调制符号是由该发送端设备采用每向该唤醒接收机210发送第一预设数量的该调制符号,向该唤醒接收机210发送一个占位符号的方式发送的,其中,该占位符号不携带信息比特,且该占位符号的符号能量不为0;
其中,在接收该发送端设备发送的多个调制符号方面,该唤醒接收机210具体用于:采用每接收该第一预设数量的该调制符号,忽略一个该占位符号的方式接收该多个调制符号。
可选地,作为一个实施例,该多个调制符号是该发送端设备采用每向该唤醒接收机210发送第二预设数量的该第二调制符号,向该唤醒接收机210发送一个占位符号的方式发送的,其中,该占位符号不携带信息比特,且该占位符号的符号能量不为0;
其中,在接收该发送端设备发送的多个调制符号方面,该唤醒接收机210具体用于:采用每接收该第二预设数量的该第二调制符号,忽略一个该占位符号的方式接收该多个调制符号。
可选地,作为一个实施例,该第二WUP包括按照发送时序排列的信令字段和数据字段,该信令字段承载用于指示该第二数据速率的指示信息;其中,在确定该第二数据速率方面,该处理器230具体用于:根据该指示信息,确定该第二数据速率。
可选地,作为一个实施例,该第二WUP还包括冗余字段,该冗余字段的发送时间在该信令字段的发送时间之后,且在该数据字段的发送时间之前。
可选地,作为一个实施例,该第二WUP包括按照发送时序的前导码字段和数据字段;
其中,在确定该第二数据速率方面,该处理器230具体用于:根据该前导码字段对 应的前导码模式与预设对应关系,确定该第二数据速率,其中,该预设对应关系包括前导码模式与数据速率的对应关系。
可选地,作为一个实施例,该第二WUP包括MAC头字段,该MAC头字段包括标识信息字段,该标识信息字段用于承载该接收端设备的标识信息,该标识信息字段包括的信息比特数与该第二数据速率的大小正相关。
应理解,根据本申请实施例的接收端设备200可对应于根据本申请实施例的接收端设备20,并可以对应于执行根据本申请实施例的通信系统中传输唤醒包的方法中的相应主体,并且接收端设备200中的各个模块的上述和其他操作和/或功能分别为了实现方法100中的相应流程,为了简洁,在此不再赘述。
因此,根据本申请实施例的通信系统中的接收端设备接收发送端设备采用不同的数据传输速率发送的唤醒包,发送端设备能够根据通信过程中具体的传输条件确定合适的发送唤醒包的数据速率,提高唤醒包的传输效率。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或步骤可以用硬件、处理器执行的软件程序,或者二者的结合来实施。软件程序可以置于随机存储器(Random Access Memory,RAM)、内存、只读存储器(Read-Only Memory,ROM)、电可编程只读存储器(Electrically Programmable Read-Only Memory,EPROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、寄存器、硬盘、可移动磁盘、致密盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、或技术领域内所公知的任意其它形式的存储介质中。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
尽管通过参考附图并结合优选实施例的方式对本申请进行了详细描述,但本申请并不限于此。在不脱离本申请的精神和实质的前提下,本领域普通技术人员可以对本申请的实施例进行各种等效的修改或替换,而这些修改或替换都应在本申请的涵盖范围内。

Claims (64)

  1. 一种通信系统中传输唤醒包的方法,所述通信系统包括发送端设备和接收端设备,其特征在于,所述接收端设备包括唤醒接收机和主收发机,所述方法包括:
    所述发送端设备采用第一数据速率向所述唤醒接收机发送第一唤醒包WUP;
    所述发送端设备确定第二数据速率;
    所述发送端设备采用所述第二数据速率向所述唤醒接收机发送第二WUP。
  2. 根据权利要求1所述的方法,其特征在于,所述发送端设备采用第一数据速率向所述唤醒接收机发送第一唤醒包,包括:
    所述发送端设备采用第一符号速率,向所述唤醒接收机发送所述第一WUP;
    其中,所述发送端设备确定第二数据速率,所述发送端设备采用所述第二数据速率向所述唤醒接收机发送第二WUP,包括:
    所述发送端设备确定第二符号速率;
    所述发送端设备采用所述第二符号速率向所述唤醒接收机发送所述第二WUP。
  3. 根据权利要求1或2所述的方法,其特征在于,所述发送端设备采用第一数据速率向所述唤醒接收机发送第一唤醒包WUP,包括:
    所述发送端设备采用第一调制编码方式向所述唤醒接收机发送所述第一WUP;
    其中,所述发送端设备确定第二数据速率,所述发送端设备采用所述第二数据速率向所述唤醒接收机发送第二WUP,包括:
    所述发送端设备确定第二调制编码方式;
    所述发送端设备采用所述第二调制编码方式向所述唤醒接收机发送所述第二WUP。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述发送端设备确定第二数据速率,包括:
    所述发送端设备根据向所述主收发机发送数据时采用的数据速率,确定所述第二数据速率。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述发送端设备确定第二数据速率,包括:
    所述发送端设备根据所述主收发机所处的工作频段和/或所述唤醒接收机所处的工作频段,确定所述第二数据速率。
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,所述发送端设备确定第二数据速率,包括:
    所述发送端设备根据多径时延扩展,确定所述第二数据速率对应的符号长度。
  7. 根据权利要求1至3中任一项所述的方法,其特征在于,所述发送端设备确定第二数据速率,包括:
    所述发送端设备接收所述接收端设备通过所述主收发机发送的反馈信息;
    所述发送端设备根据所述反馈信息,确定所述第二数据速率。
  8. 根据权利要求7所述的方法,其特征在于,所述反馈信息包括用于指示所述主收发机和/或所述唤醒接收机的工作频点上的信噪比的第一信息;
    其中,所述发送端设备根据所述反馈信息,确定所述第二数据速率,包括:
    所述发送端设备根据所述第一信息和信噪比与数据速率的对应关系,确定所述第二 数据速率。
  9. 根据权利要求7所述的方法,其特征在于,所述反馈信息包括用于指示所述第一WUP到达所述唤醒接收机时的功率的第二信息,
    其中,所述发送端设备根据所述反馈信息,确定第二数据速率,包括:所述发送端设备根据所述第二信息和预设功率门限,确定所述第二数据速率;或,
    所述反馈信息包括用于指示所述第一WUP在所述唤醒接收机处的信噪比的第三信息,
    其中,所述发送端设备根据所述反馈信息,确定第二数据速率,包括:所述发送端设备根据所述第三信息和预设信噪比门限,确定所述第二数据速率;或,
    所述反馈信息包括用于指示所述第一WUP在所述唤醒接收机处的误包率的第四信息,
    其中,所述发送端设备根据所述反馈信息,确定第二数据速率,包括:所述发送端设备根据所述第四信息和预设误包率门限,确定所述第二数据速率。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述发送端设备接收所述接收端设备通过所述主收发机发送的反馈信息,包括:
    所述发送端设备接收所述接收端设备通过所述主收发机发送的介质访问控制MAC帧,所述MAC帧承载所述反馈信息。
  11. 根据权利要求10所述的方法,其特征在于,所述发送端设备接收所述接收端设备通过主收发机发送的介质访问控制MAC帧,包括:
    所述发送端设备接收所述接收端设备通过所述主收发机发送的服务质量QoS数据帧,所述QoS数据帧包括高吞吐率控制字段,所述高吞吐率控制字段承载所述反馈信息;或,
    所述发送端设备接收所述接收端设备通过所述主收发机发送的QoS空白帧,所述QoS空白帧包括高效聚合控制字段,所述高效聚合控制字段承载所述反馈信息;或,
    所述发送端设备接收所述接收端设备通过所述主收发机发送的波束成型报告,所述波束成型报告包括反馈字段,所述反馈字段承载所述反馈信息。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述发送端设备采用第二数据速率向所述唤醒接收机发送第二WUP,包括:
    所述发送端设备根据所述第二数据速率,将所述第二WUP中的信息比特调制为多个调制符号,所述多个调制符号包括符号能量为0的第一调制符号和符号能量不为0的第二调制符号;
    所述发送端设备向所述唤醒接收机发送所述多个调制符号。
  13. 根据权利要求12所述的方法,其特征在于,所述发送端设备向所述唤醒接收机发送所述多个调制符号,包括:
    所述发送端设备采用每向所述唤醒接收机发送第一预设数量的所述调制符号,向所述唤醒接收机发送一个占位符号的方式,向所述唤醒接收机发送所述多个调制符号,其中,所述占位符号不携带信息比特,且所述占位符号的符号能量不为0;或,
    所述发送端设备采用每向所述唤醒接收机发送第二预设数量的所述第一调制符号,向所述唤醒接收机发送一个占位符号的方式,向所述唤醒接收机发送所述多个调制符号,其中,所述占位符号不携带信息比特,且所述占位符号的符号能量不为0。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述第二WUP包括按照发送时序排列的信令字段和数据字段,所述信令字段承载用于指示所述第二数据速率的指示信息。
  15. 根据权利要求14所述的方法,其特征在于,所述第二WUP还包括冗余字段,所述冗余字段的发送时间在所述信令字段的发送时间之后,且在所述数据字段的发送时间之前。
  16. 根据权利要求1至13中任一项所述的方法,其特征在于,所述第二WUP包括按照发送时序的前导码字段和数据字段,以便于所述接收端设备根据所述前导码字段对应的前导码模式与预设对应关系,确定所述第二数据速率,其中,所述预设对应关系包括前导码模式与数据速率的对应关系。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述第二WUP包括MAC头字段,所述MAC头字段包括标识信息字段,所述标识信息字段用于承载所述接收端设备的标识信息,所述方法还包括:
    所述发送端设备根据所述第二数据速率,确定所述标识信息字段包括的信息比特数,其中,所述标识信息字段包括的信息比特数与所述第二数据速率的大小正相关。
  18. 一种通信系统中传输唤醒包的方法,所述通信系统包括发送端设备和接收端设备,其特征在于,所述接收端设备包括唤醒接收机和主收发机,所述方法包括:
    所述接收端设备通过所述唤醒接收机接收所述发送端设备采用第一数据速率发送的第一唤醒包WUP;
    所述接收端设备通过所述唤醒接收机接收所述发送端设备采用第二数据速率发送的第二WUP;
    所述接收端设备确定所述第二数据速率;
    所述接收端设备根据所述第二数据速率,解析所述第二WUP。
  19. 根据权利要求18所述的方法,其特征在于,所述接收端设备通过所述唤醒接收机接收所述发送端设备采用第一数据速率发送的第一唤醒WUP,包括:所述接收端设备通过所述唤醒接收机接收所述发送端设备采用第一符号速率发送的所述第一WUP;
    所述接收端设备通过所述唤醒接收机接收所述发送端设备采用第二数据速率发送的第二WUP,包括:所述接收端设备通过所述唤醒接收机接收所述发送端设备采用所述第二符号速率发送的所述第二WUP;
    所述接收端设备确定所述第二数据速率,包括:所述接收端设备确定所述第二符号速率;
    所述接收端设备根据所述第二数据速率,解析所述第二WUP,包括:所述接收端设备根据所述第二符号速率,解析所述第二WUP。
  20. 根据权利要求18或19所述的方法,其特征在于,所述接收端设备通过所述唤醒接收机接收所述发送端设备采用第一数据速率发送的第一唤醒WUP,包括:所述接收端设备通过所述唤醒接收机接收所述发送端设备采用第一调制编码方式发送的所述第一WUP;
    所述接收端设备通过所述唤醒接收机接收所述发送端设备采用第二数据速率发送的第二WUP,包括:所述接收端设备通过所述唤醒接收机接收所述发送端设备采用所述第二调制编码方式发送的所述第二WUP;
    所述接收端设备确定所述第二数据速率,包括:所述接收端设备确定所述第二调制编码方式;
    所述接收端设备根据所述第二数据速率,解析所述第二WUP,包括:所述接收端设备根据所述第二调制编码方式,解析所述第二WUP。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述方法还包括:
    所述接收端设备通过所述主收发机向所述发送端设备发送反馈信息,以便于所述发送端设备根据所述反馈信息确定所述第二数据速率。
  22. 根据权利要求21所述的方法,其特征在于,所述反馈信息包括用于指示所述主收发机和/或所述唤醒接收机的工作频点的信噪比的第一信息,以便于所述发送端设备根据所述第一信息和信噪比与数据速率的对应关系,确定所述第二数据速率。
  23. 根据权利要求21所述的方法,其特征在于,所述反馈信息包括用于指示所述第一WUP到达所述唤醒接收机时的功率的第二信息,以便于所述发送端设备根据所述第二信息和预设功率门限,确定所述第二数据速率;或,
    所述反馈信息包括用于指示所述第一WUP在所述唤醒接收机处的信噪比的第三信息,以便于所述发送端设备根据所述第三信息和预设信噪比门限,确定所述第二数据速率;或,
    所述反馈信息包括用于指示所述第一WUP在所述唤醒接收机处误包率的第四信息,以便于所述发送端设备根据所述第四信息和预设误包率门限,确定所述第二数据速率。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述接收端设备通过所述主收发机向所述发送端设备发送反馈信息,包括:
    所述接收端设备通过所述主收发机向所述发送端设备发送介质访问控制MAC帧,所述MAC帧承载所述反馈信息。
  25. 根据权利要求24所述的方法,其特征在于,所述接收端设备通过所述主收发机向所述发送端设备发送介质访问控制MAC帧,包括:
    所述接收端设备通过所述主收发机向所述发送端设备发送服务质量QoS数据帧,所述QoS数据帧包括高吞吐率控制字段,所述高吞吐率控制字段承载所述反馈信息;或,
    所述接收端设备通过所述主收发机向所述发送端设备发送QoS空白帧,所述QoS空白帧包括高效聚合控制字段,所述高效聚合控制字段承载所述反馈信息;或,
    所述接收端设备通过所述主收发机向所述发送端设备发送波束成型报告,所述波束成型报告包括反馈字段,所述反馈字段承载所述反馈信息。
  26. 根据权利要求18至25中任一项所述的方法,其特征在于,所述接收端设备通过所述唤醒接收机接收所述发送端设备采用第二数据速率发送的第二WUP,包括:
    所述接收端设备通过所述唤醒接收机接收所述发送端设备发送的多个调制符号,其中,所述多个调制符号是所述发送端设备根据所述第二数据速率,将所述第二WUP中的信息比特进行调制得到的,所多个调制符号中包括符号能量为0的第一调制符号和符号能量不为0的第二调制符号。
  27. 根据权利要求26所述的方法,其特征在于,所述多个调制符号是由所述发送端设备采用每向所述唤醒接收机发送第一预设数量的所述调制符号,向所述唤醒接收机发送一个占位符号的方式发送的,其中,所述占位符号不携带信息比特,且所述占位符号的符号能量不为0;
    其中,所述接收端设备通过所述唤醒接收机接收所述发送端设备发送的多个调制符号,包括:
    所述接收端设备通过所述唤醒接收机采用每接收所述第一预设数量的所述调制符号,忽略一个所述占位符号的方式接收所述多个调制符号。
  28. 根据权利要求26所述的方法,其特征在于,所述多个调制符号是所述发送端设备采用每向所述唤醒接收机发送第二预设数量的所述第二调制符号,向所述唤醒接收机发送一个占位符号的方式发送的,其中,所述占位符号不携带信息比特,且所述占位符号的符号能量不为0;
    其中,所述接收端设备通过所述唤醒接收机接收所述发送端设备发送的多个调制符号,包括:
    所述接收端设备通过所述唤醒接收机采用每接收所述第二预设数量的所述第二调制符号,忽略一个所述占位符号的方式接收所述多个调制符号。
  29. 根据权利要求18至28中任一项所述的方法,其特征在于,所述第二WUP包括按照发送时序排列的信令字段和数据字段,所述信令字段承载用于指示所述第二数据速率的指示信息;
    其中,所述接收端设备确定所述第二数据速率,包括:
    所述接收端设备根据所述指示信息,确定所述第二数据速率。
  30. 根据权利要求29所述的方法,其特征在于,所述第二WUP还包括冗余字段,所述冗余字段的发送时间在所述信令字段的发送时间之后,且在所述数据字段的发送时间之前。
  31. 根据权利要求18至28中任一项所述的方法,其特征在于,所述第二WUP包括按照发送时序的前导码字段和数据字段;
    其中,所述接收端设备确定所述第二数据速率,包括:
    所述接收端设备根据所述前导码字段对应的前导码模式与预设对应关系,确定所述第二数据速率,其中,所述预设对应关系包括前导码模式与数据速率的对应关系。
  32. 根据权利要求18至31中任一项所述的方法,其特征在于,所述第二WUP包括MAC头字段,所述MAC头字段包括标识信息字段,所述标识信息字段用于承载所述接收端设备的标识信息,所述标识信息字段包括的信息比特数与所述第二数据速率的大小正相关。
  33. 一种通信系统中的发送端设备,所述通信系统包括所述发送端设备和接收端设备,其特征在于,所述接收端设备包括唤醒接收模块和主收发模块,所述发送端设备包括:
    收发模块,用于采用第一数据速率向所述唤醒接收模块发送第一唤醒包WUP;
    确定模块,用于确定第二数据速率;
    所述收发模块,还用于采用所述第二数据速率向所述唤醒接收模块发送第二WUP。
  34. 根据权利要求33所述的发送端设备,其特征在于,在采用第一数据速率向所述唤醒接收模块发送第一唤醒包方面,所述收发模块具体用于:
    采用第一符号速率,向所述唤醒接收模块发送所述第一WUP;
    其中,在确定第二数据速率方面,所述确定模块具体用于:确定第二符号速率;
    在采用所述第二数据速率向所述唤醒接收模块发送第二WUP方面,所述收发模块具 体用于:采用所述第二符号速率向所述唤醒接收模块发送所述第二WUP。
  35. 根据权利要求33或34所述的发送端设备,其特征在于,在采用第一数据速率向所述唤醒接收模块发送第一唤醒包WUP方面,所述收发模块具体用于:采用第一调制编码方式向所述唤醒接收模块发送所述第一WUP;
    其中,在确定第二数据速率方面,所述确定模块具体用于:确定第二调制编码方式;
    在采用所述第二数据速率向所述唤醒接收模块发送第二WUP方面,所述收发模块具体用于:采用所述第二调制编码方式向所述唤醒接收模块发送所述第二WUP。
  36. 根据权利要求33至35中任一项所述的发送端设备,其特征在于,在确定第二数据速率方面,所述确定模块具体用于:
    根据向所述主收发模块发送数据时采用的数据速率,确定所述第二数据速率。
  37. 根据权利要求33至35中任一项所述的发送端设备,其特征在于,在确定第二数据速率方面,所述确定模块具体用于:
    根据所述主收发模块所处的工作频段和/或所述唤醒接收模块所处的工作频段,确定所述第二数据速率。
  38. 根据权利要求33至35中任一项所述的发送端设备,其特征在于,在确定第二数据速率方面,所述确定模块具体用于:
    根据多径时延扩展,确定所述第二数据速率对应的符号长度。
  39. 根据权利要求33至35中任一项所述的发送端设备,其特征在于,在确定第二数据速率方面,所述收发模块用于:
    接收所述接收端设备通过所述主收发模块发送的反馈信息;
    所述确定模块,用于根据所述反馈信息,确定所述第二数据速率。
  40. 根据权利要求39所述的发送端设备,其特征在于,所述反馈信息包括用于指示所述主收发模块和/或所述唤醒接收模块的工作频点上的信噪比的第一信息;
    其中,在根据所述反馈信息,确定所述第二数据速率方面,所述确定模块具体用于:
    根据所述第一信息和信噪比与数据速率的对应关系,确定所述第二数据速率。
  41. 根据权利要求39所述的发送端设备,其特征在于,所述反馈信息包括用于指示所述第一WUP到达所述唤醒接收模块时的功率的第二信息,
    其中,在根据所述反馈信息,确定第二数据速率方面,所述确定模块用于:根据所述第二信息和预设功率门限,确定所述第二数据速率;或,
    所述反馈信息包括用于指示所述第一WUP在所述唤醒接收模块处的信噪比的第三信息,
    其中,在根据所述反馈信息,确定第二数据速率方面,所述确定模块用于:根据所述第三信息和预设信噪比门限,确定所述第二数据速率;或,
    所述反馈信息包括用于指示所述第一WUP在所述唤醒接收模块处的误包率的第四信息,
    其中,在根据所述反馈信息,确定第二数据速率方面,所述确定模块用于:根据所述第四信息和预设误包率门限,确定所述第二数据速率。
  42. 根据权利要求39至41中任一项所述的发送端设备,其特征在于,在接收所述接收端设备通过所述主收发模块发送的反馈信息方面,所述收发模块具体用于:
    接收所述接收端设备通过所述主收发模块发送的介质访问控制MAC帧,所述MAC 帧承载所述反馈信息。
  43. 根据权利要求42所述的发送端设备,其特征在于,在接收所述接收端设备通过主收发模块发送的介质访问控制MAC帧方面,所述收发模块具体用于:
    接收所述接收端设备通过所述主收发模块发送的服务质量QoS数据帧,所述QoS数据帧包括高吞吐率控制字段,所述高吞吐率控制字段承载所述反馈信息;或,
    接收所述接收端设备通过所述主收发模块发送的QoS空白帧,所述QoS空白帧包括高效聚合控制字段,所述高效聚合控制字段承载所述反馈信息;或,
    接收所述接收端设备通过所述主收发模块发送的波束成型报告,所述波束成型报告包括反馈字段,所述反馈字段承载所述反馈信息。
  44. 根据权利要求33至43中任一项所述的发送端设备,其特征在于,在采用第二数据速率向所述唤醒接收模块发送第二WUP方面,所述收发模块具体用于:
    根据所述第二数据速率,将所述第二WUP中的信息比特调制为多个调制符号,所述多个调制符号包括符号能量为0的第一调制符号和符号能量不为0的第二调制符号;
    向所述唤醒接收模块发送所述多个调制符号。
  45. 根据权利要求44所述的发送端设备,其特征在于,在向所述唤醒接收模块发送所述多个调制符号方面,所述收发模块具体用于:
    采用每向所述唤醒接收模块发送第一预设数量的所述调制符号,向所述唤醒接收模块发送一个占位符号的方式,向所述唤醒接收模块发送所述多个调制符号,其中,所述占位符号不携带信息比特,且所述占位符号的符号能量不为0;或,
    采用每向所述唤醒接收模块发送第二预设数量的所述第一调制符号,向所述唤醒接收模块发送一个占位符号的方式,向所述唤醒接收模块发送所述多个调制符号,其中,所述占位符号不携带信息比特,且所述占位符号的符号能量不为0。
  46. 根据权利要求33至45中任一项所述的发送端设备,其特征在于,所述第二WUP包括按照发送时序排列的信令字段和数据字段,所述信令字段承载用于指示所述第二数据速率的指示信息。
  47. 根据权利要求46所述的发送端设备,其特征在于,所述第二WUP还包括冗余字段,所述冗余字段的发送时间在所述信令字段的发送时间之后,且在所述数据字段的发送时间之前。
  48. 根据权利要求33至45中任一项所述的发送端设备,其特征在于,所述第二WUP包括按照发送时序的前导码字段和数据字段,以便于所述接收端设备根据所述前导码字段对应的前导码模式与预设对应关系,确定所述第二数据速率,其中,所述预设对应关系包括前导码模式与数据速率的对应关系。
  49. 根据权利要求33至48中任一项所述的发送端设备,其特征在于,所述第二WUP包括MAC头字段,所述MAC头字段包括标识信息字段,所述标识信息字段用于承载所述接收端设备的标识信息,所述确定模块还用于:
    根据所述第二数据速率,确定所述标识信息字段包括的信息比特数,其中,所述标识信息字段包括的信息比特数与所述第二数据速率的大小正相关。
  50. 一种通信系统中的接收端设备,所述通信系统包括发送端设备和所述接收端设备,其特征在于,所述接收端设备包括唤醒接收模块、主收发模块和确定模块;
    其中,所述唤醒接收模块,用于接收所述发送端设备采用第一数据速率发送的第一 唤醒包WUP;
    所述唤醒接收模块,还用于接收所述发送端设备采用第二数据速率发送的第二WUP;
    所述确定模块,用于确定所述第二数据速率;
    所述确定模块,还用于根据所述第二数据速率,解析所述第二WUP。
  51. 根据权利要求50所述的接收端设备,其特征在于,在接收所述发送端设备采用第一数据速率发送的第一唤醒WUP方面,所述唤醒接收模块具体用于:接收所述发送端设备采用第一符号速率发送的所述第一WUP;
    在接收所述发送端设备采用第二数据速率发送的第二WUP方面,所述唤醒接收模块用于:接收所述发送端设备采用所述第二符号速率发送的所述第二WUP;
    在确定所述第二数据速率方面,所述确定模块具体用于:确定所述第二符号速率;
    在根据所述第二数据速率,解析所述第二WUP方面,所述确定模块具体用于:根据所述第二符号速率,解析所述第二WUP。
  52. 根据权利要求50或51所述的接收端设备,其特征在于,在接收所述发送端设备采用第一数据速率发送的第一唤醒WUP方面,所述唤醒接收模块具体用于:接收所述发送端设备采用第一调制编码方式发送的所述第一WUP;
    在接收所述发送端设备采用第二数据速率发送的第二WUP方面,所述唤醒接收模块具体用于:接收所述发送端设备采用所述第二调制编码方式发送的所述第二WUP;
    在确定所述第二数据速率方面,所述确定模块具体用于:确定所述第二调制编码方式;
    在根据所述第二数据速率,解析所述第二WUP方面,所述确定模块具体用于:根据所述第二调制编码方式,解析所述第二WUP。
  53. 根据权利要求50至52中任一项所述的接收端设备,其特征在于,所述主接收模块具体用于:
    向所述发送端设备发送反馈信息,以便于所述发送端设备根据所述反馈信息确定所述第二数据速率。
  54. 根据权利要求53所述的接收端设备,其特征在于,所述反馈信息包括用于指示所述主收发模块和/或所述唤醒接收模块的工作频点的信噪比的第一信息,以便于所述发送端设备根据所述第一信息和信噪比与数据速率的对应关系,确定所述第二数据速率。
  55. 根据权利要求53所述的接收端设备,其特征在于,所述反馈信息包括用于指示所述第一WUP到达所述唤醒接收模块时的功率的第二信息,以便于所述发送端设备根据所述第二信息和预设功率门限,确定所述第二数据速率;或,
    所述反馈信息包括用于指示所述第一WUP在所述唤醒接收模块处的信噪比的第三信息,以便于所述发送端设备根据所述第三信息和预设信噪比门限,确定所述第二数据速率;或,
    所述反馈信息包括用于指示所述第一WUP在所述唤醒接收模块处误包率的第四信息,以便于所述发送端设备根据所述第四信息和预设误包率门限,确定所述第二数据速率。
  56. 根据权利要求53至55中任一项所述的接收端设备,其特征在于,在向所述发送端设备发送反馈信息方面,所述主收发模块用于:
    向所述发送端设备发送介质访问控制MAC帧,所述MAC帧承载所述反馈信息。
  57. 根据权利要求56所述的接收端设备,其特征在于,在向所述发送端设备发送介质访问控制MAC帧方面,所述主收发模块具体用于:
    向所述发送端设备发送服务质量QoS数据帧,所述QoS数据帧包括高吞吐率控制字段,所述高吞吐率控制字段承载所述反馈信息;或,
    向所述发送端设备发送QoS空白帧,所述QoS空白帧包括高效聚合控制字段,所述高效聚合控制字段承载所述反馈信息;或,
    向所述发送端设备发送波束成型报告,所述波束成型报告包括反馈字段,所述反馈字段承载所述反馈信息。
  58. 根据权利要求50至57中任一项所述的接收端设备,其特征在于,在接收所述发送端设备采用第二数据速率发送的第二WUP方面,所述唤醒接收模块具体用于:
    接收所述发送端设备发送的多个调制符号,其中,所述多个调制符号是所述发送端设备根据所述第二数据速率,将所述第二WUP中的信息比特进行调制得到的,所多个调制符号中包括符号能量为0的第一调制符号和符号能量不为0的第二调制符号。
  59. 根据权利要求58所述的接收端设备,其特征在于,所述多个调制符号是由所述发送端设备采用每向所述唤醒接收模块发送第一预设数量的所述调制符号,向所述唤醒接收模块发送一个占位符号的方式发送的,其中,所述占位符号不携带信息比特,且所述占位符号的符号能量不为0;
    其中,在接收所述发送端设备发送的多个调制符号方面,所述唤醒接收模块具体用于:
    采用每接收所述第一预设数量的所述调制符号,忽略一个所述占位符号的方式接收所述多个调制符号。
  60. 根据权利要求58所述的接收端设备,其特征在于,所述多个调制符号是所述发送端设备采用每向所述唤醒接收模块发送第二预设数量的所述第二调制符号,向所述唤醒接收模块发送一个占位符号的方式发送的,其中,所述占位符号不携带信息比特,且所述占位符号的符号能量不为0;
    其中,在接收所述发送端设备发送的多个调制符号方面,所述唤醒接收模块具体用于:
    采用每接收所述第二预设数量的所述第二调制符号,忽略一个所述占位符号的方式接收所述多个调制符号。
  61. 根据权利要求50至60中任一项所述的接收端设备,其特征在于,所述第二WUP包括按照发送时序排列的信令字段和数据字段,所述信令字段承载用于指示所述第二数据速率的指示信息;
    其中,在确定所述第二数据速率方面,所述确定模块具体用于:
    根据所述指示信息,确定所述第二数据速率。
  62. 根据权利要求61所述的接收端设备,其特征在于,所述第二WUP还包括冗余字段,所述冗余字段的发送时间在所述信令字段的发送时间之后,且在所述数据字段的发送时间之前。
  63. 根据权利要求50至60中任一项所述的接收端设备,其特征在于,所述第二WUP包括按照发送时序的前导码字段和数据字段;
    其中,在确定所述第二数据速率方面,所述确定模块具体用于:
    根据所述前导码字段对应的前导码模式与预设对应关系,确定所述第二数据速率,其中,所述预设对应关系包括前导码模式与数据速率的对应关系。
  64. 根据权利要求50至63中任一项所述的接收端设备,其特征在于,所述第二WUP包括MAC头字段,所述MAC头字段包括标识信息字段,所述标识信息字段用于承载所述接收端设备的标识信息,所述标识信息字段包括的信息比特数与所述第二数据速率的大小正相关。
PCT/CN2017/089953 2016-08-15 2017-06-26 通信系统中传输唤醒包的方法和设备 WO2018032877A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/475,628 US11452042B2 (en) 2016-08-15 2017-06-26 Method for transmitting wake-up packet in communications system, and device
EP17840853.0A EP3528557A4 (en) 2016-08-15 2017-06-26 METHOD AND DEVICE FOR TRANSMITTING AND RECEIVING AN ALARM PACKET IN A COMMUNICATION SYSTEM
US17/896,976 US20230067562A1 (en) 2016-08-15 2022-08-26 Method for transmitting wake-up packet in communications system, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610674267.8 2016-08-15
CN201610674267.8A CN107770848B (zh) 2016-08-15 2016-08-15 通信系统中传输唤醒包的方法和设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/475,628 A-371-Of-International US11452042B2 (en) 2016-08-15 2017-06-26 Method for transmitting wake-up packet in communications system, and device
US17/896,976 Continuation US20230067562A1 (en) 2016-08-15 2022-08-26 Method for transmitting wake-up packet in communications system, and device

Publications (1)

Publication Number Publication Date
WO2018032877A1 true WO2018032877A1 (zh) 2018-02-22

Family

ID=61197198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089953 WO2018032877A1 (zh) 2016-08-15 2017-06-26 通信系统中传输唤醒包的方法和设备

Country Status (4)

Country Link
US (2) US11452042B2 (zh)
EP (1) EP3528557A4 (zh)
CN (2) CN107770848B (zh)
WO (1) WO2018032877A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105849A1 (ko) * 2016-12-07 2018-06-14 엘지전자 주식회사 무선랜 시스템에서 웨이크업 패킷을 송신하는 방법 및 장치
CN108541047B (zh) * 2017-03-03 2021-07-16 华为技术有限公司 下行业务数据的指示方法和设备
US11729716B2 (en) 2017-04-11 2023-08-15 Mediatek, Inc. Efficient preamble design and modulation schemes for wake-up packets in WLAN with wake-up radio receivers
EP3616446A4 (en) * 2017-04-27 2020-05-06 Panasonic Intellectual Property Corporation of America COMMUNICATION DEVICE AND COMMUNICATION METHOD
CN110603794A (zh) 2017-05-02 2019-12-20 交互数字专利控股公司 针对单用户和多用户传输的波形编码以及调制
US11564169B2 (en) * 2017-07-05 2023-01-24 Apple Inc. Wake-up-radio link adaptation
US20190059056A1 (en) * 2017-08-18 2019-02-21 Qualcomm Incorporated Transmission of wakeup signal through millimeter wave and sub-6 ghz bands
EP3677073A4 (en) * 2017-08-30 2020-09-30 Panasonic Intellectual Property Corporation of America COMMUNICATION APPARATUS AND COMMUNICATION METHOD
US11647463B2 (en) 2017-09-13 2023-05-09 Intel Corporation Methods and arrangements to enable wake-up receiver for modes of operation
US11576123B2 (en) 2017-10-11 2023-02-07 Intel Corporation Methods and arrangements to support wake-up radio packet transmission
WO2019080097A1 (en) * 2017-10-27 2019-05-02 Hewlett Packard Enterprise Development Lp ADJUSTING DATA FLOWS IN WIRELESS NETWORKS
EP3704839A1 (en) 2017-11-03 2020-09-09 Telefonaktiebolaget LM Ericsson (PUBL) Receiver, communication apparatus, method and computer program for receiving binary information
US11063797B2 (en) * 2017-11-03 2021-07-13 Telefonaktiebolaget Lm Ericsson (Publ) Transmitter, network node, method and computer program
US11589309B2 (en) * 2018-01-12 2023-02-21 Intel Corporation Methods and arrangements to support wake-up radio packet transmission
WO2019156478A1 (ko) * 2018-02-06 2019-08-15 엘지전자 주식회사 무선랜 시스템에서 통신하기 위한 방법 및 이를 이용한 무선 단말
WO2019167915A1 (ja) * 2018-02-28 2019-09-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置、受信装置、送信方法、及び、受信方法
SG10201805402YA (en) * 2018-06-22 2020-01-30 Panasonic Ip Corp America Communication apparatus and communication method for low power event monitoring
US20210185611A1 (en) * 2018-08-10 2021-06-17 Sony Corporation Support of multiple wake-up-signal-related capabilities
US11082983B2 (en) * 2018-09-10 2021-08-03 Intel Corporation Tone plans and preambles for extremely high throughput
CN112333812B (zh) * 2020-11-30 2022-09-13 紫光展锐(重庆)科技有限公司 数据传输方法、设备、装置及存储介质
US11805483B2 (en) * 2020-12-14 2023-10-31 Marvell Asia Pte, Ltd. Method and apparatus for restoring WUP mode for multi-speed ethernet device
FI20206306A1 (fi) * 2020-12-15 2022-06-16 Nokia Technologies Oy Vastaanotetun datan dekoodattavuuden ennustaminen
EP4020823A1 (en) * 2020-12-22 2022-06-29 INTEL Corporation A distributed radiohead system
EP4020853A1 (en) * 2020-12-24 2022-06-29 INTEL Corporation A distributed radiohead system
CN112764520B (zh) * 2020-12-31 2024-03-29 广州技象科技有限公司 集中数据处理的中转设备数据处理方法及装置
WO2022258729A1 (en) * 2021-06-11 2022-12-15 Nordic Semiconductor Asa Low-power radio transmissions
CN114095995B (zh) * 2021-10-21 2022-10-14 荣耀终端有限公司 唤醒方法、装置及电子设备
CN117858206A (zh) * 2022-09-30 2024-04-09 中兴通讯股份有限公司 唤醒信号发送方法、接收方法及装置、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391460B2 (ja) * 2011-02-23 2014-01-15 株式会社国際電気通信基礎技術研究所 端末装置、それと無線通信を行う無線装置、およびそれらを備えた無線通信システム
CN104301973A (zh) * 2014-10-30 2015-01-21 西安电子科技大学 一种无线体域网快速唤醒关联的方法
CN104838700A (zh) * 2012-12-29 2015-08-12 英特尔公司 无线网络中协调通信的方法和布置
CN104917619A (zh) * 2014-03-14 2015-09-16 海尔集团公司 一种唤醒控制方法及终端
CN105703992A (zh) * 2014-12-15 2016-06-22 施耐德电气(澳大利亚)私人有限公司 可变数据速率控制方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377609B1 (en) * 1999-03-05 2002-04-23 Neptune Technology Group Inc. Spread spectrum frequency hopping system and method
EP1310052A1 (en) * 2000-08-14 2003-05-14 Ericsson Inc. Communication methods and devices providing dynamic allocation of radio resources
US7027843B2 (en) * 2002-03-21 2006-04-11 Lenovo (Singapore) Pte. Ltd. Wireless device power optimization
US7907564B2 (en) * 2002-11-12 2011-03-15 Cisco Technology, Inc. Method and apparatus for supporting user mobility in a communication system
US7822424B2 (en) * 2003-02-24 2010-10-26 Invisitrack, Inc. Method and system for rangefinding using RFID and virtual triangulation
KR101015736B1 (ko) 2003-11-19 2011-02-22 삼성전자주식회사 직교 주파수 분할 다중 방식의 이동통신 시스템에서선택적 전력 제어 장치 및 방법
US7002940B2 (en) * 2004-03-12 2006-02-21 Freescale Semiconductor, Inc. Multiple-stage filtering device and method
US7969858B2 (en) * 2004-10-14 2011-06-28 Qualcomm Incorporated Wireless terminal methods and apparatus for use in wireless communications systems supporting different size frequency bands
KR100950670B1 (ko) * 2006-11-17 2010-04-02 삼성전자주식회사 통신 시스템에서 데이터 송수신 장치 및 방법과 이를 위한 무선망
FI20075667A (fi) * 2007-09-25 2009-04-09 Teliasonera Ab Parannettu liityntäpyynnön hallinta
WO2011121690A1 (ja) * 2010-03-31 2011-10-06 パナソニック株式会社 通信装置、通信システム、通信方法、集積回路
US8903012B2 (en) * 2010-05-04 2014-12-02 Hughes Network Systems, Llc Continuous phase modulation for satellite communications
US8811247B2 (en) * 2010-06-25 2014-08-19 Cisco Technology, Inc. Automating radio enablement to facilitate power saving
WO2012010676A1 (en) 2010-07-21 2012-01-26 University College Cork - National University Of Ireland, Cork Low power wake-up system and method for wireless body area networks
KR101830882B1 (ko) * 2010-09-02 2018-02-22 삼성전자주식회사 제어 패킷 생성 방법 및 그 장치
US9350428B2 (en) * 2010-12-01 2016-05-24 Lg Electronics Inc. Method and apparatus of link adaptation in wireless local area network
JP5190568B2 (ja) * 2011-02-23 2013-04-24 株式会社国際電気通信基礎技術研究所 無線基地局およびそれを用いた無線通信システム
US9544852B2 (en) 2011-08-27 2017-01-10 Lg Electronics Inc. Method and apparatus of transmitting paging frame and wakeup frame
CA2902439C (en) * 2013-03-15 2022-04-05 Vivint, Inc Bandwidth estimation based on location in a wireless network
US20140269666A1 (en) * 2013-03-15 2014-09-18 Qualcomm Incorporated Method and apparatus for efficient signaling of communication mode and delimiter information
EP3104542B1 (en) * 2014-03-03 2021-10-13 Huawei Technologies Co., Ltd. Information transmission method, base station, and user equipment
US9444576B2 (en) * 2014-05-09 2016-09-13 Qualcomm Incorporated Updates to MU-MIMO rate adaptation algorithm
WO2015191044A1 (en) * 2014-06-10 2015-12-17 Hewlett-Packard Development Company, L.P. Wake up message transmission rate
WO2016021838A1 (ko) * 2014-08-07 2016-02-11 엘지전자(주) 무선 통신 시스템에서 프레임 전송 방법 및 이를 위한 장치
US20160278013A1 (en) * 2015-03-20 2016-09-22 Qualcomm Incorporated Phy for ultra-low power wireless receiver
JP6369384B2 (ja) * 2015-04-24 2018-08-08 株式会社デンソー 通信システム
US9485733B1 (en) * 2015-05-17 2016-11-01 Intel Corporation Apparatus, system and method of communicating a wakeup packet
US9974023B2 (en) * 2015-09-25 2018-05-15 Intel Corporation Apparatus, system and method of communicating a wakeup packet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391460B2 (ja) * 2011-02-23 2014-01-15 株式会社国際電気通信基礎技術研究所 端末装置、それと無線通信を行う無線装置、およびそれらを備えた無線通信システム
CN104838700A (zh) * 2012-12-29 2015-08-12 英特尔公司 无线网络中协调通信的方法和布置
CN104917619A (zh) * 2014-03-14 2015-09-16 海尔集团公司 一种唤醒控制方法及终端
CN104301973A (zh) * 2014-10-30 2015-01-21 西安电子科技大学 一种无线体域网快速唤醒关联的方法
CN105703992A (zh) * 2014-12-15 2016-06-22 施耐德电气(澳大利亚)私人有限公司 可变数据速率控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3528557A4

Also Published As

Publication number Publication date
EP3528557A4 (en) 2019-12-11
EP3528557A1 (en) 2019-08-21
US20200045635A1 (en) 2020-02-06
US20230067562A1 (en) 2023-03-02
CN112153703A (zh) 2020-12-29
CN107770848A (zh) 2018-03-06
CN107770848B (zh) 2020-09-11
US11452042B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2018032877A1 (zh) 通信系统中传输唤醒包的方法和设备
JP7408699B2 (ja) マルチユーザパケットをシグナリングするための無線通信方法及び無線通信端末
KR102626348B1 (ko) 불연속 채널을 이용한 무선 통신 방법 및 무선 통신 단말
EP3291611B1 (en) Ul mu transmission method of sta operating in power save mode, and device for performing method
US10111132B2 (en) Methods and apparatus for channel state information sounding and feedback
EP2810493B1 (en) Method for transmitting and receiving frame performed by station operating in power save mode in wireless local area network system and apparatus for the same
US10104617B2 (en) Power save mode-based operating method and device in WLAN
AU2016226461A1 (en) Methods and apparatus for channel state information sounding and feedback
KR20160074533A (ko) 채널 상태 정보 피드백을 위한 방법들 및 장치
US20210099955A1 (en) Method for communicating in wireless lan system and wireless terminal using same
US20230189139A1 (en) Wake-up signals and adaptive numerology
KR20230043865A (ko) 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
US11582692B2 (en) Method for communication in wireless LAN system and wireless terminal using same
KR102615560B1 (ko) 시그널링 필드를 이용하는 무선 통신 방법 및 무선 통신 단말
WO2024031463A1 (zh) Sl通信方法、装置、设备、存储介质及程序产品
CN116746106A (zh) 在无线通信系统中发送和接收数据的方法和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017840853

Country of ref document: EP

Effective date: 20190315