WO2018032842A1 - 河湖泊涌污染底泥处理在线监测与智能辨识系统及方法 - Google Patents

河湖泊涌污染底泥处理在线监测与智能辨识系统及方法 Download PDF

Info

Publication number
WO2018032842A1
WO2018032842A1 PCT/CN2017/085162 CN2017085162W WO2018032842A1 WO 2018032842 A1 WO2018032842 A1 WO 2018032842A1 CN 2017085162 W CN2017085162 W CN 2017085162W WO 2018032842 A1 WO2018032842 A1 WO 2018032842A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
concentration
sediment
river
drain pipe
Prior art date
Application number
PCT/CN2017/085162
Other languages
English (en)
French (fr)
Inventor
翟德勤
林忠成
张平
杨立
张敏
卢弛江
Original Assignee
中电建水环境治理技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中电建水环境治理技术有限公司 filed Critical 中电建水环境治理技术有限公司
Publication of WO2018032842A1 publication Critical patent/WO2018032842A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/02Stream regulation, e.g. breaking up subaqueous rock, cleaning the beds of waterways, directing the water flow
    • E02B3/023Removing sediments
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/02Stream regulation, e.g. breaking up subaqueous rock, cleaning the beds of waterways, directing the water flow
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1813Specific cations in water, e.g. heavy metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Definitions

  • the invention belongs to the technical field of water environment treatment, and particularly relates to an on-line monitoring and intelligent identification system for river and lake pollution sediment treatment, and an online monitoring and intelligent identification method for river and lake pollution sediment treatment. Background technique
  • the river is a kind of open water, generally characterized by narrow water surface, long process, and tidal characteristics of coastal and offshore rivers.
  • the lake is a relatively closed water area with wide water surface, shallow water and water flow.
  • the characteristics of slow speed and slow water exchange are generally affected by seasonal rain.
  • the urban population has increased sharply, and the amount of sewage discharged into urban rivers and lakes has increased greatly.
  • Rivers and lakes have become a gathering place for various pollutants, causing serious pollution of water bodies and deteriorating water environment.
  • the water quality has become black and stinky, and the living environment of fish and shrimp has deteriorated drastically or cannot survive.
  • the bottom sediment of the river and lake bed is polluted by the long-term erosion of the contaminated water body, and the sedimentation of the sediment is formed for many years, which is an intrinsic pollution source that affects the quality of the water environment.
  • the object of the present invention is to provide an on-line monitoring and intelligent identification system for polluted sediment treatment of rivers and lakes, aiming at solving the technical problem of realizing monitoring of contaminated sediment in rivers and lakes.
  • the present invention is implemented in this way, an on-line monitoring and intelligent identification system for river and lake pollution sediment treatment, including: [0006] an excavating device for collecting the contaminated sediment in the river and lake and providing a drain pipe and a mud pump, wherein the drain pipe is disposed at an end of the mud pump;
  • a monitoring device is disposed on one side of the drain pipe and configured to perform monitoring of pollutant concentration on the contaminated sediment collected;
  • the control device is electrically connected to the excavating device and the monitoring device, and the control device receives the monitoring result of the monitoring device and returns control to operate the digging device.
  • the monitoring device includes a first sensor disposed on one side of the drain pipe and configured to monitor the concentration of ammonia nitrogen in the contaminated sediment in the drain pipe.
  • the monitoring device includes a second sensor disposed on one side of the drain pipe and configured to monitor the concentration of COD in the contaminated sediment.
  • the monitoring device includes a third sensor disposed on one side of the drain pipe and configured to monitor the concentration of heavy metals in the contaminated sediment.
  • the present invention also provides an online monitoring and intelligent identification method for polluted sediment treatment of rivers and lakes, including the following steps:
  • the method includes:
  • the method includes:
  • the pollutant concentration of the contaminated sediment in the dredging pipe is detected in the river lake
  • the steps include:
  • the technical effect of the present invention relative to the prior art is:
  • the river lake rushing sewage sediment treatment online monitoring and intelligent identification system is provided by the monitoring device on the side of the drain pipe of the excavating device. Monitoring the concentration of pollutants in the contaminated sediment that is excavated, and using the control device to control the movement of the excavating device according to the monitoring result of the monitoring device, thereby realizing online monitoring and identification of the contaminated sediment Control, realize intelligent judgment and automatic and efficient treatment of contaminated sediment mining.
  • FIG. 1 is a block diagram of an on-line monitoring and intelligent identification system for river sediment pollution sludge treatment according to an embodiment of the present invention
  • FIG. 2 is a flow chart of an online monitoring and intelligent identification method for polluted sediment treatment of rivers and lakes according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like are to be understood broadly, and may be, for example, a fixed connection or a Removable connection, or integrated; can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal connection of two elements or the interaction of two elements.
  • the meaning of the above terms in the present invention can be understood by those skilled in the art on a case-by-case basis.
  • the online monitoring and intelligent identification system for river sediment pollution sedimentation provided by the embodiment of the present invention includes:
  • the excavating device 10 is configured to collect the contaminated sediment in the river and lake and is provided with a drain pipe 12 and a mud pump 14, and the mud pipe 12 is disposed on the mud pump 14 End of
  • the monitoring device 20 is disposed on the side of the drain pipe 12 and used to smear the contaminated sediment collected Monitoring of the concentration of the dye;
  • the control device 30 is electrically connected to the excavation device 10 and the monitoring device 20, and the control device 30 receives the monitoring result of the monitoring device 20 and returns control to the excavating device. 10 actions.
  • the on-line monitoring and intelligent identification system for the river-soil pollution sediment treatment monitors the excavation by setting the monitoring device 20 on the side of the sludge discharge pipe 12 of the excavation device 10 Contaminant concentration in the contaminated sediment, and using the control device 30 to control the action of the excavating device 10 according to the monitoring result of the monitoring device 20, for example, when the monitoring device 20 detects the pollution
  • the concentration of the sediment is lower than the preset concentration ⁇ , and the control device 30 sends a warning signal to the excavating device 10 (such as reducing the dredging depth), thereby realizing the online monitoring and identification control of the contaminated sediment, and realizing the pollution.
  • Intelligent determination and automated efficient treatment of sediment mining monitors the excavation by setting the monitoring device 20 on the side of the sludge discharge pipe 12 of the excavation device 10 Contaminant concentration in the contaminated sediment, and using the control device 30 to control the action of the excavating device 10 according to the monitoring result of the monitoring device 20, for example, when the monitoring device 20 detects the pollution
  • the excavating device 10 may be a cutter suction dredger, a pneumatic pump ship or an amphibious dredger, or other types of dredgers, which may be based on the size of rivers and lakes.
  • the excavation device 10, such as the water depth distribution, the navigation condition, the type of the water body and the sediment source, and the pollution degree, are not limited thereto.
  • the cutter suction dredger is a small-sized environmentally-friendly cutter suction dredger, for example, a built-in cutter suction dredger with a capacity of 200-500 cubic meters/small crucible, with a monthly capacity of 10-15.
  • control device 30 is connected to the central control room in the excavation device 10, and the driver adjusts the dredging depth according to the received warning signal to achieve the mining of the contaminated sediment. Automatic control.
  • the control device 30 may be disposed in the central control room of the excavation device 10, and is equipped with a display device, and the driver adjusts the actual display according to the data display and the warning signal on the display device.
  • the dredging depth of the excavation device 10 is used to achieve visualization and automation.
  • the control device 30 is connected to the ship automatic driving system of the excavating device 10, and the control device 30 transmits to the ship automatic driving according to the monitoring result of receiving the monitoring device 20. System, and the excavation device 10 controls the mining of the contaminated sediment by the ship automatic driving system
  • the control device 30 is disposed in a control center of a sediment treatment plant, and is electrically connected to the central control room of the excavation device 10 and the monitoring device 20, and the control device 30 is configured according to the The monitoring signal of the monitoring device 20 sends a warning signal to the central control room, for example, adjusting a dredging depth signal, etc., and controls the mining operation of the excavating device 10, thereby realizing automatic control.
  • the control device 30 is further equipped with a display device through which the mining situation of the dredging device can be observed. For example, the dredging device actually drains the river and the contaminated sediment of the mining.
  • the image information and data parameters are transmitted to the control device 30 and displayed by the display device to facilitate visualization operations and control.
  • the monitoring device 20 includes a first sensor 22 disposed on the side of the sludge discharge pipe 12 and configured to monitor the concentration of ammonia nitrogen in the contaminated sediment in the sludge discharge pipe 12. .
  • the on-line monitoring and intelligent identification system for the sewage and sediment treatment of the river and lakes is used to monitor the ammonia nitrogen concentration of the contaminated sediment in the sludge discharge pipe 12 by setting the first sensor 22, so as to monitor the pollution inside the river and lake. Concentration of substances, in order to achieve real monitoring and intelligent identification.
  • the monitoring device 20 includes a second sensor 24 disposed on the side of the drain pipe 12 and configured to monitor the concentration of COD in the contaminated sediment.
  • the on-line monitoring and intelligent identification system for the sewage and sediment treatment of the river and lake is monitored by setting the second sensor 24 to monitor the COD concentration of the contaminated sediment in the sludge pipe 12, thereby monitoring the river and lake Contaminant concentration for easy monitoring and intelligent identification.
  • COD is an abbreviation of Chemical Oxygen Demand
  • Chinese meaning is chemical oxygen consumption
  • the monitoring device 20 includes a third sensor 26 disposed on the side of the sludge discharge tube 12 and configured to monitor the concentration of heavy metals in the contaminated sediment.
  • the river lake rushing sediment treatment online monitoring and intelligent identification system monitors the concentration of heavy metals in the contaminated sediment in the sludge discharge pipe 12 by setting the third sensor 26, and the control device 30 according to the The concentration of heavy metal monitored by the three sensors 26 controls the mining operation of the dredging device 10 on the contaminated sediment to facilitate real monitoring and intelligent identification.
  • the third sensor 26 may monitor heavy metal concentrations such as copper, hexavalent chromium, lead, zinc, nickel, mercury, etc., but is not limited thereto.
  • the online monitoring and intelligent identification method for river bottom pollution sedimentation includes the following steps:
  • S2 determining whether the monitored concentration of the pollutant reaches a preset concentration value
  • S4 when the pollutant concentration is higher than the preset concentration value ⁇ , the mining is continued along the dredging depth direction.
  • the on-line monitoring and intelligent identification method for treating river sediments in rivers and lakes monitors the concentration of pollutants in the sediments of the rivers and lakes to the sludges in the mud pipes 12 by monitoring And determining whether the concentration of the pollutant reaches a preset concentration value, thereby controlling the dredging depth.
  • the control device 30 issues a warning signal and requests to reduce the dredging depth.
  • the method includes:
  • the first sensor 22 is disposed on the side of the drain pipe 12 of the excavating device 10;
  • the first sensor 22 is used to monitor the concentration of ammonia nitrogen in the contaminated sediment in the sludge discharge pipe 12.
  • the on-line monitoring and intelligent identification method for the river mud pollution sediment treatment is used to monitor the ammonia nitrogen concentration of the contaminated sediment through the first sensor 22, and compare the monitored ammonia nitrogen concentration with the preset ammonia nitrogen concentration. If the monitored ammonia nitrogen concentration is lower than the preset ammonia nitrogen concentration, the dredging depth is reduced, and vice versa. Continue to dig. By setting the first sensor 22, not only the actual monitoring of the ammonia nitrogen concentration can be realized, but also the actual dredging control of the dredging depth can be realized, and the secondary pollution of the sediment and the water body in the river and lake can be reduced.
  • the excavating device 10 may be a cutter suction dredger, a pneumatic pump ship or an amphibious dredger, or other types of dredgers, which may be based on the size of rivers and lakes.
  • the excavation device 10, such as the water depth distribution, the navigation condition, the type of the water body and the sediment source, and the pollution degree, are not limited thereto.
  • the cutter suction dredger is a small-sized environmentally-friendly cutter suction dredger, for example, a built-in cutter suction dredger with a capacity of 200-500 cubic meters/small crucible, with a monthly capacity of 10-15.
  • the method includes:
  • the second sensor 24 is disposed on the side of the drain pipe 12 of the excavating device 10;
  • the concentration of COD in the contaminated sediment is monitored by the second sensor 24.
  • the on-line monitoring and intelligent identification method for the river and lake pollution sediment treatment is performed by the second sensor 24 to monitor the COD concentration of the contaminated sediment, and compares the monitored COD concentration with the preset COD concentration. If the monitored COD concentration is lower than the preset COD concentration ⁇ , the dredging depth is reduced, and conversely, the excavation continues.
  • the second sensor 24 not only the actual monitoring of the COD concentration, but also the actual control of the dredging depth can be realized, and the secondary pollution of the sediment and the water body in the river and lake can be reduced.
  • the method includes:
  • a third sensor 26 is disposed on the side of the drain pipe 12 of the excavating device 10;
  • the third sensor 26 is used to monitor the concentration of heavy metals in the contaminated sediment.
  • the on-line monitoring and intelligent identification method for the river mud surge sediment treatment is performed by the third sensor 26 to monitor the heavy metal concentration of the contaminated sediment, and according to the monitored heavy metal concentration and the preset heavy metal concentration For comparison, if the monitored heavy metal concentration is lower than the preset heavy metal concentration ⁇ , the dredging depth is reduced, and conversely, the excavation continues.
  • the third sensor 26 not only real-time monitoring of heavy metal concentration is realized, but also real control of the dredging depth can be realized, and secondary pollution to the sediment and water body in the river and lake is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Mining & Mineral Resources (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Sludge (AREA)

Abstract

一种河湖泊涌污染底泥处理在线监测与智能辨识系统包括:挖掘装置(10)、监测装置(20)以及控制装置(30)。控制装置(30)电性连接于挖掘装置(10)和监测装置(20),控制装置(30)接收监测装置(20)的监测结果并回传控制挖掘装置(10)动作。该监测与辨识系统通过在挖掘装置(10)的排泥管一侧设置监测装置(20),实时监测所采挖的污染底泥中污染物浓度,利用控制装置(30)根据监测装置(20)的监测结果以控制挖掘装置(10)的动作,实现污染底泥的在线实时监测和辨识控制,实现对污染底泥采挖的智能判定和自动化高效处理。

Description

说明书 发明名称:河湖泊涌污染底泥处理在线监测与智能辨识系统及方法 技术领域
[0001] 本发明属于水环境治理技术领域, 尤其涉及一种河湖泊涌污染底泥处理在线监 测与智能辨识系统以及河湖泊涌污染底泥处理在线监测与智能辨识方法。 背景技术
[0002] 河涌是一种幵放式水域, 一般具有水面窄、 流程长、 沿海与近海河流多具有感 潮特征等特点, 湖泊是一种相对封闭的水域, 具有水面宽、 水深浅、 水流速度 缓、 水体交换慢等特点, 河湖泊涌一般容易受季节雨汛影响。 随着社会经济的 迅猛发展, 城市人口急剧增多, 面向城市河湖泊涌的排污量大幅度增加, 河湖 泊涌成了各种污染物的汇集场所, 使水体污染日趋严重, 水环境状况日益恶化 , 水质变黑发臭、 鱼虾生存环境急剧恶化或无法生存。 河湖泊涌床底底泥受污 染水体长期侵蚀、 多年沉积形成污染底泥且日益加重, 是影响水环境质量的内 在污染源。
[0003] 在对污染底泥进行疏浚的过程中, 挖泥船并不能清楚辨识污染底泥的污染程度 , 容易将未被污染的底泥一并挖出, 而造成对该底泥的污染。 另外, 河湖泊涌 中水质污染也是一项重大的治理点, 在对河湖泊涌的整体治理中, 如何检测出 水中污染物的含量以提供相应的应对措施, 是目前河湖泊涌水治理的一项重要 工作。 因此, 提供一种可以实吋监测河湖泊涌中污染底泥的在线监测与智能辨 识系统已成为业内亟待解决的技术问题。
技术问题
[0004] 本发明的目的在于提供一种河湖泊涌污染底泥处理在线监测与智能辨识系统, 旨在解决如何实现实吋监测河湖泊涌中污染底泥的技术问题。
问题的解决方案
技术解决方案
[0005] 本发明是这样实现的, 一种河湖泊涌污染底泥处理在线监测与智能辨识系统, 包括: [0006] 挖掘装置, 所述挖掘装置用于对河湖泊涌中污染底泥进行采挖并设有排泥管和 泥泵, 所述排泥管设置于所述泥泵的末端;
[0007] 监测装置, 设置于所述排泥管一侧并用于对所采挖的所述污染底泥进行污染物 浓度实吋监测;
[0008] 控制装置, 所述控制装置电性连接于所述挖掘装置和所述监测装置, 所述控制 装置接收所述监测装置的监测结果并回传控制所述挖掘装置动作。
[0009] 进一步地, 所述监测装置包括布置于所述排泥管一侧并用于实吋监测所述排泥 管内污染底泥中氨氮浓度的第一传感器。
[0010] 进一步地, 所述监测装置包括布置于所述排泥管一侧并用于实吋监测所述污染 底泥中 COD浓度的第二传感器。
[0011] 进一步地, 所述监测装置包括布置于所述排泥管一侧并用于实吋监测所述污染 底泥中重金属浓度的第三传感器。
[0012] 本发明还提供了一种河湖泊涌污染底泥处理在线监测与智能辨识方法, 包括以 下步骤:
[0013] 实吋监测河湖泊涌中采挖至排泥管内污染底泥的污染物浓度;
[0014] 判断所监测的所述污染物浓度是否达到预设浓度值;
[0015] 当所述污染物浓度低于所述预设浓度值吋, 则采挖吋的挖泥深度超过污染层, 并发出报警信号并降低挖泥深度;
[0016] 当所述污染物浓度高于所述预设浓度值吋, 则沿挖泥深度方向继续采挖。
[0017] 进一步地, 在所述实吋检测河湖泊涌中采挖至排泥管内污染底泥的污染物浓度 的步骤中, 包括:
[0018] 在挖掘装置的排泥管一侧布置第一传感器;
[0019] 利用所述第一传感器实吋监测所述排泥管内污染底泥中氨氮浓度。
[0020] 进一步地, 在所述实吋检测河湖泊涌中采挖至排泥管内污染底泥的污染物浓度 的步骤中, 包括:
[0021] 在挖掘装置的排泥管一侧布置第二传感器;
[0022] 利用所述第二传感器实吋监测所述污染底泥中 COD污染浓度。
[0023] 进一步地, 在所述实吋检测河湖泊涌中采挖至排泥管内污染底泥的污染物浓度 的步骤中, 包括:
[0024] 在挖掘装置的排泥管一侧布置第三传感器;
[0025] 利用所述第三传感器实吋监测所述污染底泥中重金属浓度。
发明的有益效果
有益效果
[0026] 本发明相对于现有技术的技术效果是: 该河湖泊涌污染底泥处理在线监测与智 能辨识系统通过在所述挖掘装置的排泥管一侧设置所述监测装置, 以实吋监测 所采挖的所述污染底泥中污染物浓度, 并利用所述控制装置根据所述监测装置 的监测结果以控制所述挖掘装置的动作, 从而实现污染底泥的在线实吋监测和 辨识控制, 实现对污染底泥采挖的智能判定和自动化高效处理。
对附图的简要说明
附图说明
[0027] 为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面所描述的附图仅 仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳 动的前提下, 还可以根据这些附图获得其他的附图。
[0028] 图 1是本发明实施例提供的河湖泊涌污染底泥处理在线监测与智能辨识系统的 框结构图;
[0029] 图 2是本发明实施例提供的河湖泊涌污染底泥处理在线监测与智能辨识方法的 流程图。
[0030] 附图标记说明:
[] [表 1]
Figure imgf000005_0001
本发明的实施方式
[0031] 下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至 终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下 面通过参考附图描述的实施例是示例性的, 旨在用于解释本发明, 而不能理解 为对本发明的限制。
[0032] 在本发明的描述中, 需要理解的是, 术语"长度"、 "宽度"、 "上"、 "下"、 "前" 、 "后"、 "左"、 "右"、 "竖直"、 "水平"、 "顶"、 "底 ""内"、 "外"等指示的方位或 位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简化 描述, 而不是指示或暗示所指的装置或元件必须具有特定的方位、 以特定的方 位构造和操作, 因此不能理解为对本发明的限制。
[0033] 此外, 术语"第一"、 "第二 "仅用于描述目的, 而不能理解为指示或暗示相对重 要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二 "的特 征可以明示或者隐含地包括一个或者更多个该特征。 在本发明的描述中, "多个" 的含义是两个或两个以上, 除非另有明确具体的限定。
[0034] 在本发明中, 除非另有明确的规定和限定, 术语"安装"、 "相连"、 "连接"、 "固 定"等术语应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或成 一体; 可以是机械连接, 也可以是电连接; 可以是直接相连, 也可以通过中间 媒介间接相连, 可以是两个元件内部的连通或两个元件的相互作用关系。 对于 本领域的普通技术人员而言, 可以根据具体情况理解上述术语在本发明中的具 体含义。
[0035] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例
, 对本发明进行进一步详细说明。
[0036] 请参照图 1, 本发明实施例提供的河湖泊涌污染底泥处理在线监测与智能辨识 系统包括:
[0037] 挖掘装置 10, 所述挖掘装置 10用于对河湖泊涌中污染底泥进行采挖并设有排泥 管 12和泥泵 14, 所述排泥管 12设置于所述泥泵 14的末端;
[0038] 监测装置 20, 设置于所述排泥管 12—侧并用于对所采挖的所述污染底泥进行污 染物浓度实吋监测;
[0039] 控制装置 30, 所述控制装置 30电性连接于所述挖掘装置 10和所述监测装置 20, 所述控制装置 30接收所述监测装置 20的监测结果并回传控制所述挖掘装置 10动 作。
[0040] 本发明实施例提供的河湖泊涌污染底泥处理在线监测与智能辨识系统通过在所 述挖掘装置 10的排泥管 12—侧设置所述监测装置 20, 以实吋监测所采挖的所述 污染底泥中污染物浓度, 并利用所述控制装置 30根据所述监测装置 20的监测结 果以控制所述挖掘装置 10的动作, 例如, 当所述监测装置 20检测到所述污染底 泥的浓度低于预设浓度吋, 所述控制装置 30向所述挖掘装置 10发出警告信号 ( 如降低挖泥深度) , 从而实现污染底泥的在线实吋监测和辨识控制, 实现对污 染底泥采挖的智能判定和自动化高效处理。
[0041] 在该实施例中, 所述挖掘装置 10可以是绞吸式挖泥船、 气力泵船或者水陆两栖 挖泥船, 也可以是其他类型的挖泥船, 可以根据河湖泊涌水域大小、 水深分布 、 通航条件、 水体和底泥污染源种类、 污染程度等选择挖掘装置 10, 不限于此 。 更优地, 所述绞吸式挖泥船为拼装式小型环保绞吸式挖泥船, 例如, 产能 200 ~500立方米 /小吋的拼装式绞吸式挖泥船, 月产能 10~15万立方米, 与底泥处理厂 产能匹配性较好, 适合短期、 大规模、 高强度污染底泥清淤疏浚及处理处置工 程; 而且这类挖泥船船体结构紧凑、 船舶吃水小、 挖泥深度一般可达 9~12m, 施 工作业定位精度高、 作业全程对污染水体、 底泥扰动小, 可 24小吋连续作业, 且具备一定的抗风、 抗凌、 抗汛能力, 环境适应能力强; 另外, 采用拼装式绞 吸挖泥船可以在拆解后通过陆路实现船体的快速转移, 适合河湖泊涌各种水域 施工。
[0042] 在该实施例中, 所述控制装置 30与所述挖掘装置 10内的中控室相连接, 驾驶员 根据接收到的警告信号调整挖泥深度, 以实现对所述污染底泥采挖的自动化控 制。
[0043] 在该实施例中, 所述控制装置 30可以设置于所述挖掘装置 10的中控室内, 并配 备有显示装置, 驾驶员根据显示装置上的数据显示和警告信号实吋调整所述挖 掘装置 10的挖泥深度, 以实现可视化和自动化操作。 [0044] 在该实施例中, 所述控制装置 30与所述挖掘装置 10的船舶自动驾驶系统连接, 所述控制装置 30根据接收到所述监测装置 20的监测结果传送至所述船舶自动驾 驶系统, 并由所述船舶自动驾驶系统控制所述挖掘装置 10对污染底泥进行采挖
[0045] 在其他实施例中, 所述控制装置 30设置于底泥处理厂控制中心, 与所述挖掘装 置 10的中控室和所述监测装置 20电性连接, 所述控制装置 30根据所述监测装置 2 0的监测信号向所述中控室发出警告信号, 例如调整挖泥深度信号等, 并控制所 述挖掘装置 10的采挖动作, 从而实现自动化控制。 优选地, 所述控制装置 30还 配备有显示装置, 通过显示装置可以实吋观测到所述挖泥装置的采挖情况, 例 如, 所述挖泥装置实吋将河道和采挖的污染底泥的图像信息以及数据参数传送 至所述控制装置 30, 并通过所述显示装置加以显示, 以便于实现可视化操作和 控制。
[0046] 请参照图 1, 进一步地, 所述监测装置 20包括布置于所述排泥管 12—侧并用于 实吋监测所述排泥管 12内污染底泥中氨氮浓度的第一传感器 22。 该河湖泊涌污 染底泥处理在线监测与智能辨识系统通过设置所述第一传感器 22, 以实吋监测 所述排泥管 12内污染底泥的氨氮浓度, 从而实吋监测河湖泊涌内污染物浓度, 以便于实现实吋监控和智能辨识。
[0047] 请参照图 1, 进一步地, 所述监测装置 20包括布置于所述排泥管 12—侧并用于 实吋监测所述污染底泥中 COD浓度的第二传感器 24。 该河湖泊涌污染底泥处理 在线监测与智能辨识系统通过设置所述第二传感器 24, 以实吋监测所述排泥管 1 2内污染底泥的 COD浓度, 从而实吋监测河湖泊涌内污染物浓度, 以便于实现实 吋监控和智能辨识。
[0048] 在该实施例中, COD是 Chemical Oxygen Demand的简称, 中文含义是化学耗氧
[0049] 通过检测所述污染底泥中的 COD浓度, 以确定所述污染底泥的污染程度, 并根 据所述第二传感器 24监测的所述 COD浓度, 所述控制装置 30控制所述挖泥装置 1 0动作, 即根据所述第二传感器 24检测的 COD浓度实吋控制所述挖泥装置 10对污 染底泥的采挖动作。 [0050] 请参照图 1, 进一步地, 所述监测装置 20包括布置于所述排泥管 12—侧并用于 实吋监测所述污染底泥中重金属浓度的第三传感器 26。 该河湖泊涌污染底泥处 理在线监测与智能辨识系统通过设置所述第三传感器 26, 以实吋监测所述排泥 管 12内污染底泥中重金属浓度, 所述控制装置 30根据所述第三传感器 26监测的 重金属浓度控制所述挖泥装置 10对污染底泥的采挖动作, 以便于实现实吋监控 和智能辨识。
[0051] 在该实施例中, 所述第三传感器 26可以监测诸如铜、 六价铬、 铅、 锌、 镍、 汞 等重金属浓度, 但不限于此。
[0052] 请参照图 1和图 2, 本发明实施例提供的河湖泊涌污染底泥处理在线监测与智能 辨识方法包括以下步骤:
[0053] S1 : 实吋监测河湖泊涌中采挖至排泥管 12内污染底泥的污染物浓度;
[0054] S2: 判断所监测的所述污染物浓度是否达到预设浓度值;
[0055] S3: 当所述污染物浓度低于所述预设浓度值吋, 则采挖吋的挖泥深度超过污染 层, 并发出报警信号以提醒操作员降低挖泥深度;
[0056] S4: 当所述污染物浓度高于所述预设浓度值吋, 则沿挖泥深度方向继续采挖。
[0057] 本发明实施例提供的河湖泊涌污染底泥处理在线监测与智能辨识方法通过实吋 监测所述河湖泊涌中采挖至所述排泥管 12内污染底泥的污染物浓度, 并判断该 污染物浓度是否达到预设浓度值, 以此控制挖泥深度, 当所述污染底泥的浓度 低于预设浓度吋, 所述控制装置 30发出警告信号并要求降低挖泥深度, 从而实 现污染底泥的在线实吋监测和辨识控制, 实现对污染底泥采挖的智能判定和自 动化高效处理。
[0058] 请参照图 1和图 2, 进一步地, 在所述实吋检测河湖泊涌中采挖至排泥管 12内污 染底泥的污染物浓度的步骤 S1中, 包括:
[0059] 在挖掘装置 10的排泥管 12—侧布置第一传感器 22;
[0060] 利用所述第一传感器 22实吋监测所述排泥管 12内污染底泥中氨氮浓度。
[0061] 该河湖泊涌污染底泥处理在线监测与智能辨识方法通过所述第一传感器 22实吋 监测所述污染底泥的氨氮浓度, 并根据所监测的氨氮浓度与预设氨氮浓度进行 比较, 如果所监测的氨氮浓度低于预设氨氮浓度吋, 则降低挖泥深度, 反之, 继续挖掘。 通过设置所述第一传感器 22不仅实现氨氮浓度的实吋监测, 而且还 可以实现对挖泥深度的实吋控制, 减少对河湖泊涌内底泥和水体的二次污染。
[0062] 在该实施例中, 所述挖掘装置 10可以是绞吸式挖泥船、 气力泵船或者水陆两栖 挖泥船, 也可以是其他类型的挖泥船, 可以根据河湖泊涌水域大小、 水深分布 、 通航条件、 水体和底泥污染源种类、 污染程度等选择挖掘装置 10, 不限于此 。 更优地, 所述绞吸式挖泥船为拼装式小型环保绞吸式挖泥船, 例如, 产能 200 ~500立方米 /小吋的拼装式绞吸式挖泥船, 月产能 10~15万立方米, 与底泥处理厂 产能匹配性较好, 适合短期、 大规模、 高强度污染底泥清淤疏浚及处理处置工 程; 而且这类挖泥船船体结构紧凑、 船舶吃水小、 挖泥深度一般可达 9~12m, 施 工作业定位精度高、 作业全程对污染水体、 底泥扰动小, 可 24小吋连续作业, 且具备一定的抗风、 抗凌、 抗汛能力, 环境适应能力强; 另外, 采用拼装式绞 吸挖泥船可以在拆解后通过陆路实现船体的快速转移, 适合河湖泊涌各种水域 施工。
[0063] 请参照图 1和图 2, 进一步地, 在所述实吋检测河湖泊涌中采挖至排泥管 12内污 染底泥的污染物浓度的步骤 S1中, 包括:
[0064] 在挖掘装置 10的排泥管 12—侧布置第二传感器 24;
[0065] 利用所述第二传感器 24实吋监测所述污染底泥中 COD浓度。
[0066] 该河湖泊涌污染底泥处理在线监测与智能辨识方法通过所述第二传感器 24实吋 监测所述污染底泥的 COD浓度, 并根据所监测的 COD浓度与预设 COD浓度进行 比较, 如果所监测的 COD浓度低于预设 COD浓度吋, 则降低挖泥深度, 反则, 继续挖掘。 通过设置所述第二传感器 24不仅实现 COD浓度的实吋监测, 而且还 可以实现对挖泥深度的实吋控制, 减少对河湖泊涌内底泥和水体的二次污染。
[0067] 请参照图 1和图 2, 进一步地, 在所述实吋检测河湖泊涌中采挖至排泥管 12内污 染底泥的污染物浓度的步骤 S1中, 包括:
[0068] 在挖掘装置 10的排泥管 12—侧布置第三传感器 26;
[0069] 利用所述第三传感器 26实吋监测所述污染底泥中重金属浓度。
[0070] 该河湖泊涌污染底泥处理在线监测与智能辨识方法通过所述第三传感器 26实吋 监测所述污染底泥的重金属浓度, 并根据所监测的重金属浓度与预设重金属浓 度进行比较, 如果所监测的重金属浓度低于预设重金属浓度吋, 则降低挖泥深 度, 反则, 继续挖掘。 通过设置所述第三传感器 26不仅实现重金属浓度的实吋 监测, 而且还可以实现对挖泥深度的实吋控制, 减少对河湖泊涌内底泥和水体 的二次污染。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
一种河湖泊涌污染底泥处理在线监测与智能辨识系统, 其特征在于, 包括:
挖掘装置, 所述挖掘装置用于对河湖泊涌中污染底泥进行采挖并设有 排泥管和泥泵, 所述排泥管设置于所述泥泵的末端;
监测装置, 设置于所述排泥管一侧并用于对所采挖的所述污染底泥进 行污染物浓度实吋监测;
控制装置, 所述控制装置电性连接于所述挖掘装置和所述监测装置, 所述控制装置接收所述监测装置的监测结果并回传控制所述挖掘装置 动作。
如权利要求 1所述的河湖泊涌污染底泥处理在线监测与智能辨识系统
, 其特征在于, 所述监测装置包括布置于所述排泥管一侧并用于实吋 监测所述排泥管内污染底泥中氨氮浓度的第一传感器。
如权利要求 1所述的河湖泊涌污染底泥处理在线监测与智能辨识系统
, 其特征在于, 所述监测装置包括布置于所述排泥管一侧并用于实吋 监测所述污染底泥中 COD浓度的第二传感器。
如权利要求 1所述的河湖泊涌污染底泥处理在线监测与智能辨识系统 , 其特征在于, 所述监测装置包括布置于所述排泥管一侧并用于实吋 监测所述污染底泥中重金属浓度的第三传感器。
一种河湖泊涌污染底泥处理在线监测与智能辨识方法, 其特征在于, 包括以下步骤:
实吋监测河湖泊涌中采挖至排泥管内污染底泥的污染物浓度; 判断所监测的所述污染物浓度是否达到预设浓度值;
当所述污染物浓度低于所述预设浓度值吋, 则采挖吋的挖泥深度超过 污染层, 并发出报警信号并降低挖泥深度;
当所述污染物浓度高于所述预设浓度值吋, 则沿挖泥深度方向继续采 挖。
如权利要求 5所述的河湖泊涌污染底泥处理在线监测与智能辨识方法 , 其特征在于, 在所述实吋检测河湖泊涌中采挖至排泥管内污染底泥 的污染物浓度的步骤中, 包括:
在挖掘装置的排泥管一侧布置第一传感器;
利用所述第一传感器实吋监测所述排泥管内污染底泥中氨氮浓度。
[权利要求 7] 如权利要求 5所述的河湖泊涌污染底泥处理在线监测与智能辨识方法
, 其特征在于, 在所述实吋检测河湖泊涌中采挖至排泥管内污染底泥 的污染物浓度的步骤中, 包括:
在挖掘装置的排泥管一侧布置第二传感器;
利用所述第二传感器实吋监测所述污染底泥中 COD污染浓度。
[权利要求 8] 如权利要求 5所述的河湖泊涌污染底泥处理在线监测与智能辨识方法
, 其特征在于, 在所述实吋检测河湖泊涌中采挖至排泥管内污染底泥 的污染物浓度的步骤中, 包括:
在挖掘装置的排泥管一侧布置第三传感器;
利用所述第三传感器实吋监测所述污染底泥中重金属浓度。
PCT/CN2017/085162 2016-08-16 2017-05-19 河湖泊涌污染底泥处理在线监测与智能辨识系统及方法 WO2018032842A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610677121.9A CN106337389B (zh) 2016-08-16 2016-08-16 河湖泊涌污染底泥处理在线监测与智能辨识系统及方法
CN201610677121.9 2016-08-16

Publications (1)

Publication Number Publication Date
WO2018032842A1 true WO2018032842A1 (zh) 2018-02-22

Family

ID=57825757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085162 WO2018032842A1 (zh) 2016-08-16 2017-05-19 河湖泊涌污染底泥处理在线监测与智能辨识系统及方法

Country Status (2)

Country Link
CN (1) CN106337389B (zh)
WO (1) WO2018032842A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106337389B (zh) * 2016-08-16 2018-04-10 中电建水环境治理技术有限公司 河湖泊涌污染底泥处理在线监测与智能辨识系统及方法
CN109387401A (zh) * 2017-08-11 2019-02-26 上海环境节能工程股份有限公司 一种场地环境初步采样的分析方法
CN112557616B (zh) * 2020-12-10 2022-03-11 中国科学院水生生物研究所 一种通江湖泊商业采砂活动影响水生态健康的监测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130864A (ja) * 2001-10-25 2003-05-08 Mitsubishi Heavy Ind Ltd 水質改善効果予測システム
NL1036642C2 (nl) * 2009-02-27 2010-08-30 Arcadis Nederland Inrichting voor het in een watergang afvangen van sediment, alsmede werkwijze voor de plaatsing daarvan.
CN101899849A (zh) * 2010-08-12 2010-12-01 中交天津航道局有限公司 一种挖泥船基于土质土层分布的精确疏浚方法
CN103174186A (zh) * 2013-03-22 2013-06-26 徐工集团工程机械股份有限公司 一种挖掘机的监控装置、方法及挖掘机
CN103195126A (zh) * 2013-03-29 2013-07-10 上海华兴数字科技有限公司 一种挖掘机传感器的软件容错处理方法
CN106337389A (zh) * 2016-08-16 2017-01-18 中电建水环境治理技术有限公司 河湖泊涌污染底泥处理在线监测与智能辨识系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266235A (zh) * 2008-04-03 2008-09-17 中国科学院南京地理与湖泊研究所 污染水体底泥环保疏浚深度的确定方法
KR100978785B1 (ko) * 2008-04-23 2010-08-30 재단법인서울대학교산학협력재단 하천유지유량을 이용한 일최대 오염허용부하량 산정방법
CN104005441B (zh) * 2014-06-11 2016-04-20 山东省环境保护科学研究设计院 一种污染底泥环保疏浚系统及其疏浚方法
CN104773942A (zh) * 2015-04-14 2015-07-15 合肥清原自控科技有限公司 基于plc控制的污泥处理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130864A (ja) * 2001-10-25 2003-05-08 Mitsubishi Heavy Ind Ltd 水質改善効果予測システム
NL1036642C2 (nl) * 2009-02-27 2010-08-30 Arcadis Nederland Inrichting voor het in een watergang afvangen van sediment, alsmede werkwijze voor de plaatsing daarvan.
CN101899849A (zh) * 2010-08-12 2010-12-01 中交天津航道局有限公司 一种挖泥船基于土质土层分布的精确疏浚方法
CN103174186A (zh) * 2013-03-22 2013-06-26 徐工集团工程机械股份有限公司 一种挖掘机的监控装置、方法及挖掘机
CN103195126A (zh) * 2013-03-29 2013-07-10 上海华兴数字科技有限公司 一种挖掘机传感器的软件容错处理方法
CN106337389A (zh) * 2016-08-16 2017-01-18 中电建水环境治理技术有限公司 河湖泊涌污染底泥处理在线监测与智能辨识系统及方法

Also Published As

Publication number Publication date
CN106337389B (zh) 2018-04-10
CN106337389A (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2018032842A1 (zh) 河湖泊涌污染底泥处理在线监测与智能辨识系统及方法
CN106638456B (zh) 大中型水库一体化生态清淤设计方法
Guven et al. Heavy metals partitioning in the sediments of Izmir Inner Bay
CN107340375A (zh) 一种水体污染在线监测装置及方法
KR101294338B1 (ko) 초기우수처리 장치 및 초기우수처리 관리시스템
CN207650196U (zh) 一种水体污染在线监测装置
CN111908748A (zh) 一种河道清淤方法
CN108911461B (zh) 一种河道底泥污染物原位消减处置船
WO2018032834A1 (zh) 河湖泊涌污染底泥的智能环保疏浚系统
Bloom et al. A comparison of the speciation and fate of mercury in two contaminated coastal marine ecosystems: the Venice Lagoon (Italy) and Lavaca Bay (Texas)
CN116698129A (zh) 一种地下污水管道混接雨水管道数据采集探测装置及方法
CN111207791A (zh) 污水参数采集设备和污水井监测系统
CN215218804U (zh) 一种高精度环境工程用污水监测装置
CN212433153U (zh) 一种水质自控在线检测装置
CN110565593B (zh) 一种生态净水坝
CN109138032B (zh) 基于摆动动力的环保型疏浚工作船
CN112710799A (zh) 一种水利工程河道污泥杂质监测系统及方法
CN110412244B (zh) 一种富营养化滩涂沉积物生境修复信息处理系统及方法
CN209906508U (zh) 污水处理装置
Jackson Heavy metals and other inorganic toxic substances
CN212513112U (zh) 一种城市面源污染监测装置
CN105839686A (zh) 一种河塘水下清淤机器人
Wang et al. Heavy metal pollution of surface sediments in the northern waters of the abandoned Yellow River Delta in Jiangsu Province of China and ecological risk assessment.
CN215296806U (zh) 一种漂浮式环境废水取样检测装置
Sittoni et al. The living lab for mud: integrated sediment management based on building with nature concepts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17840818

Country of ref document: EP

Kind code of ref document: A1