WO2018032781A1 - 一种基于旋涡水动力特性的集群式深海海底集矿装备 - Google Patents

一种基于旋涡水动力特性的集群式深海海底集矿装备 Download PDF

Info

Publication number
WO2018032781A1
WO2018032781A1 PCT/CN2017/079648 CN2017079648W WO2018032781A1 WO 2018032781 A1 WO2018032781 A1 WO 2018032781A1 CN 2017079648 W CN2017079648 W CN 2017079648W WO 2018032781 A1 WO2018032781 A1 WO 2018032781A1
Authority
WO
WIPO (PCT)
Prior art keywords
seabed
mineral
concentrator
mining
cluster
Prior art date
Application number
PCT/CN2017/079648
Other languages
English (en)
French (fr)
Inventor
赵国成
赵伟杰
杨建民
彭涛
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610695064.7A external-priority patent/CN106121656B/zh
Priority claimed from CN201710024604.3A external-priority patent/CN106761761A/zh
Priority claimed from CN201710191103.4A external-priority patent/CN106812529B/zh
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2018032781A1 publication Critical patent/WO2018032781A1/zh
Priority to US16/172,269 priority Critical patent/US10480317B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C50/00Obtaining minerals from underwater, not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/8858Submerged units
    • E02F3/8866Submerged units self propelled
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/905Manipulating or supporting suction pipes or ladders; Mechanical supports or floaters therefor; pipe joints for suction pipes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • E02F3/9243Passive suction heads with no mechanical cutting means
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • E02F3/9256Active suction heads; Suction heads with cutting elements, i.e. the cutting elements are mounted within the housing of the suction head
    • E02F3/9262Active suction heads; Suction heads with cutting elements, i.e. the cutting elements are mounted within the housing of the suction head with jets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material
    • E02F7/005Equipment for conveying or separating excavated material conveying material from the underwater bottom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/8858Submerged units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • E02F3/9243Passive suction heads with no mechanical cutting means
    • E02F3/925Passive suction heads with no mechanical cutting means with jets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/006Dredgers or soil-shifting machines for special purposes adapted for working ground under water not otherwise provided for

Definitions

  • the invention relates to a submarine mining equipment, in particular to an intelligent collaborative operation subsea gathering equipment.
  • the ocean is the largest potential resource base on Earth that has not been fully recognized and utilized by human beings.
  • metal mineral resources such as polymetallic nodules, cobalt-rich crusts and polymetallic sulphides are currently known for commercial exploitation on the seabed. These minerals are rich in nickel, cobalt, copper, manganese and gold, silver metal, etc., and the total reserves are several tens to thousands of times higher than the corresponding reserves on land. In 2013, China officially obtained a piece of Pacific cobalt-rich crust mine.
  • the development of deep-sea mineral resources must rely on deep-sea mining equipment.
  • the concentrator and the main body are integrated structures, which have certain requirements on the walking road of the equipment (not too rugged), which adversely affect the scope of mining;
  • the concentrating capacity of the concentrator is weak.
  • the publication date is February 24, 2016, the Chinese patent document published as CN105350968A, which discloses a submarine collecting vehicle, which adopts a suction hood and adopts a spiral deflector and The water jet nozzle can be seen from the drawing, the spiral baffle and the water jet nozzle fail to achieve a good fit, and the spiral deflector of this type is also very effective in improving the adsorption force; Insufficient sealing of the suction hood, which also leads to insufficient adsorption capacity;
  • the object of the present invention is to provide a submarine mining equipment, which adopts a split structure between the concentrator and the main body.
  • the concentrator itself can move freely, and find a suitable mining area for suction and absorption, thereby improving mining efficiency.
  • Improve the pumping capacity of the concentrator while allowing the concentrator to avoid obstacles.
  • a cluster-type deep sea submarine mining equipment based on vortex hydrodynamic characteristics comprising a main body of equipment, a plurality of subsea adaptive concentrators 10 and respective mining pipes; the conveying pipe connecting the main body of the equipment with the seabed adaptive concentrator 10 connected, the ore tube can be controlled to adjust the length of the protruding device body;
  • the subsea adaptive concentrator 10 has a crawler running mechanism capable of controlled autonomous walking. Compared with the traditional "integrated" structure, the design effectively improves the flexibility of the movement, and the height of the concentrator from the seabed does not change rapidly with the terrain, which makes the collection efficiency stable.
  • a plurality of small crawler belts 19 are evenly arranged around the seabed adaptive concentrator 10 to constitute the small crawler walking mechanism.
  • a skirt cover 18 is disposed around the bottom of the sea floor adaptive concentrator 10, and the skirt cover can be contracted and lifted inward when it collides with an obstacle, and the skirt is passed through the obstacle after the obstacle. It automatically hangs down to increase the sealing effect of the bottom of the concentrator.
  • baffles 23 are disposed around the interior of the subsea adaptive concentrator 10, and at least one adjacent baffle is provided with a water jet head 22, and the sprinkler head sprays water.
  • the swirling effect is generated inside the seabed adaptive concentrator 10 to increase the suction capacity; the skirt cover 18 is provided with a guide groove 20 for guiding the entry of external seawater.
  • the skirt cover is a multi-segment structure, and the adjacent two sections are partially staggered, so that when the external seawater enters the seabed adaptive concentrator 10, a certain swirling effect is generated; the water flow guiding structure and the intersection generated by the staggered parts
  • the direction of the flow guiding of the deflector 23 is adapted.
  • an underwater detector is further included, which is electrically connected to the main body of the device by a wire and automatically travels at a higher position in front of the device body, and has a visual or sonar detection function.
  • the underwater detector comprises a sonar detector 1, an electronic equipment compartment 2, a plurality of propellers 4 and corresponding multi-degree of freedom connectors 3, a tail 5, an optical cable 6; the multi-degree of freedom connector
  • the direction of rotation of the propeller 4 can be adjusted to adjust the travel and steering of the underwater detector; the optical cable 6 is coupled to the body of the apparatus.
  • the main body of the device is provided with a storage tank 7, a mine inlet 8, a shock absorber 11, a plurality of crawler travel devices, a discharge port 13, an outer transfer pipe 14, and an underwater detector berth.
  • Track line The maximum travel speed of the entry device is 1 m/s, and the maximum travel speed of the crawler travel mechanism is 3 m/s.
  • subsea adaptive concentrator 10 is provided with a dish-shaped outer cover 17, a skirt outer cover 18, a small crawler belt 19, a guide groove 20, and a water pump 21.
  • the storage tank 7 is used to store mineral raw materials from the subsea adaptive concentrator 10, and has a crushing device inside, which can break large-scale ore particles into fine particles for water transportation. When the storage reaches a certain level, it can be transported to the submarine relay tank through a large slurry pump. Further, a mechanical device for adjusting the length of the flat-type delivery pipe 9 is installed inside the inlet port 8, which facilitates the free expansion and contraction of the flat-type delivery pipe 9 and prevents entanglement.
  • the storage tank 7 is provided with a pressure reducing valve 15 which can reduce the pressure in the storage tank 7 by discharging the seawater outward once the pressure in the storage tank is excessive.
  • the concentrator cover of the subsea adaptive concentrator 10 is divided into two parts: a dish outer cover 17 and a skirt outer cover 18.
  • skirt cover 18 has a plurality of layers of pleats, which are highly stretchable and flexible.
  • the main body of the device is in the form of a ⁇ -type all-terrain double-section tracked vehicle, and two tracked vehicles are arranged one after the other, the connection mode between the two is hinged, and the two tracked vehicles have their own driving capability; the front one
  • the crawler car is equipped with a water pump and a flat conveying pipe adjusting device, and the rear crawler car is equipped with a crushing device, a storage device and a conveying device.
  • the concentrator 10 induces a specific spiral flow to the suction frequency of the ore particles close to the natural frequency of the vibration of the ore particles buried in the sea mud, thereby exciting the ore resonance in the sea mud, making the ore particles easier. It was picked up from the sea mud.
  • the walking speed of the main body of the equipment can be greatly reduced. On the basis of ensuring the mining efficiency, the reliability and controllability of the main body of the equipment are improved; the lower walking speed can simultaneously reduce the rise and weakening of the sea mud during the traveling process. Adverse effects on the seabed environment.
  • a skirt cover is arranged on the submarine adaptive concentrator to enhance the suction;
  • the skirt cover has a multi-layered pleat structure, which can be lifted up after being stressed, avoiding obstacles, and therefore has strong expansion and contraction Sexuality and flexibility; it can cover the seabed surface of the mining area, has strong seabed topography adaptability, and can reduce the disturbance to the surrounding seabed;
  • the skirting cover has a plurality of diversion grooves on the surface of the skirt. It is used to induce horizontal spiral flow, which is beneficial to enhance the concentrating effect and increase the suction power per unit energy consumption, thereby arranging a smaller number of smaller volume pumps, reducing the main scale of the concentrator and greatly reducing energy consumption.
  • Environmental protection is used to induce horizontal spiral flow, which is beneficial to enhance the concentrating effect and increase the suction power per unit energy consumption, thereby arranging a smaller number of smaller volume pumps, reducing the main scale of the concentrator and greatly reducing energy consumption.
  • the deflector is arranged inside the diversion trough, and a water jet head is arranged between the adjacent baffles to increase the swirling effect and enhance the adsorption capacity;
  • the skirt cover can be contracted upwards to avoid obstacles, and the impact of the concentrator can be avoided while ensuring the lifting of the suction force;
  • underwater detectors floating on the front of the front of the equipment body, using underwater detectors to detect the seabed topography and mineral distribution near the working area.
  • the design of the underwater detector meets the requirements for intelligent sea-going mining tasks.
  • the underwater detector is equipped with an electronic equipment compartment, which can place electronic equipment for controlling navigation, detection, ore collection, ore mining, etc. in the electronic equipment compartment, so as to avoid loading it on the storage vehicle, thereby reducing
  • the weight of the tanker allows it to travel more smoothly on the sea floor. It is beneficial to both structural safety and energy saving.
  • the underwater detector and the storage truck are connected by optical cable, and the optical fiber is combined with the metal wire to meet the power supply requirement, and the control signal of the underwater detector can be transmitted to the storage truck. Make the two work together.
  • the storage truck adopts a crawler traveling device, and its contact with the seabed is in surface contact. Compared with point contact, the track travel device is more suitable for the soft geological conditions of the seabed, and the pressure acting on the seabed is smaller, which can provide greater grip and therefore can continuously and stably travel.
  • each concentrator uses multiple subsea adaptive concentrators to work independently at the same time, each concentrator covers a certain working range through system control. Therefore, compared with a single unit, multiple concentrators cover a wider range of operations per unit time, thereby effectively increasing the total amount of ore collected per unit time, improving work efficiency, and shortening the task period.
  • the flat type mining pipe can integrate the ore pipeline and the optical cable to facilitate the transmission of minerals and the power supply and control of the concentrator. Moreover, the flat type ore tube is more convenient for stretching and preventing entanglement due to the limitation of its deformation freedom, thereby improving the reliability of the device.
  • the concentrator is provided with a skirt cover having a multi-layered pleat structure, so that it has strong flexibility and flexibility. It can cover the seabed surface of the mining area, has strong seabed topography adaptability, and can reduce the disturbance to the surrounding seabed.
  • Figure 1 is a perspective view of a subsea mining equipment of the present invention.
  • Figure 2 is a front elevational view of the subsea mining equipment of the present invention.
  • Figure 3 is a perspective view of a subsea adaptive current collector.
  • Figure 4 is a perspective view of the bottom position of the subsea adaptive concentrator.
  • Figure 5 is a schematic view of a skirt-type outer cover adopting a multi-segment structure, the adjacent two sections are partially staggered, so that when the external seawater enters the seabed adaptive concentrator, a certain swirling effect is generated; the water flow guiding structure generated by the staggered portion and the The direction of the flow guiding of the deflector is adapted.
  • Figure 6 is a schematic view showing the external structure of a skirt cover using a deflector and a tangential hole structure, so that the set The miner can use two methods of inducing swirl according to working conditions.
  • Figure 7 is a schematic view showing the internal structure of a skirt cover using a deflector and a tangential hole structure.
  • Figure 8 is a perspective structural view of a subsea mining equipment provided with an alternate underwater detector.
  • Figure 9 is a front elevational view of Figure 8.
  • Figure 10 is a logic diagram of the design of the subsea mining equipment of the present invention.
  • sonar detector In the figure, 1. sonar detector, 2. electronic equipment compartment, 3. multi-degree of freedom connector, 4. propeller propeller, 5. tail wing, 6. optical cable, 7. storage tank, 8. mine entrance, 9. Flat type mining pipe, 10. Subsea adaptive current collector, 11. Shock absorber, 12. Track type traveling device, 13. Mine exit, 14. Outer transfer pipe, 15. Pressure reducing valve, 16 Underwater detector berth, 17. dish cover, 18. skirt cover, 19. small track, 20. diversion chute, 21. water pump, 22. sprinkler head, 23. baffle, 24. tangential hole.
  • Collaboration refers to the ability to coordinate two or more individuals, to perform their respective functions, and to cooperate to accomplish a specific task. For complex projects such as deep sea mining, multiple tasks are required and multiple functions need to be completed. Therefore, using a variety of equipment to "do the job", collaborative work will be a very effective design method.
  • the invention proposes a submarine mining equipment, which combines intelligent and collaborative design.
  • the complete equipment includes underwater detectors, subsea adaptive miners and crawler storage trucks, which can perform the functions of detection, mining, storage and processing.
  • the synergy between the various systems can significantly improve the safety and efficiency of seabed mining operations.
  • each type of equipment is rationalized according to the characteristics of its own operations, so that it can achieve its own functions while achieving coordinated operation, in order to achieve reliability requirements.
  • the whisker-type collaborative work layout Improve the efficiency of mining.
  • the impact on the seabed environment is reduced from two aspects: reducing the pressure of travel and improving the way of lifting.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a subsea mining equipment including underwater detectors, crawler storage vehicles and subsea adaptive miners.
  • the underwater detector mainly includes: a sonar detector 1, an electronic equipment cabin 2, a multi-degree of freedom connector 3, a propeller propeller 4 and a tail fin 5, and the like.
  • the underwater detector is connected to the tracked storage vehicle via an optical cable 6.
  • the crawler type storage truck mainly includes: a storage tank 7, a mine entrance 8, a shock absorber 11, a crawler type traveling device 12, an ore discharge port 13, an outer transfer pipe 14, a pressure reducing valve 15, and a detector berth 16 and the like.
  • the subsea adaptive concentrator mainly comprises a dish cover 17, a skirt cover 18, a small crawler 19, a guide groove 20, and a water pump 21.
  • the concentrator is connected to the inlet 8 of the hopper by means of a flat ore tube 9.
  • the functions of the underwater detector are mainly: 1 detecting the seabed topography; 2 detecting the distribution of seabed minerals; 3 carrying electronic equipment.
  • the underwater detector is self-propelled and capable of sailing in deep sea environments.
  • a sonar detector 1 is installed on the detector to detect the distribution of seabed topography and minerals in order to reasonably plan the travel path, avoid risky work areas, and improve the production efficiency of the mining operation. Therefore, the design of the underwater detector meets the requirements for intelligent intelligence of deep sea mining tasks.
  • the electronic equipment compartment 2 is equipped with electronic equipment for controlling navigation, detection, mining, ore mining, etc., and its outer casing is a pressure-resistant casing structure capable of withstanding tremendous pressure in the deep sea.
  • the navigation of the underwater detector is propelled by the propeller 4, which is connected to the detector through the multi-degree of freedom connector 3, so that the navigational attitude can be adjusted by freely adjusting the direction.
  • the empennage 5 can improve the maneuverability of the underwater detector, allowing it to sail stably, thereby protecting the equipment in the electronic equipment compartment 2 from damage.
  • Optical cable 6 is a kind of light
  • the transmission medium combining fiber and metal wire has the functions of power transmission and information transmission.
  • the underwater detector obtains the power supply from the storage vehicle via the optical cable 6, while transmitting control signals to the control equipment on the storage vehicle to travel along the planned path and carry out mining tasks. Therefore, this design enables the collaborative operation of the underwater detector and the storage truck.
  • the functions of the crawler type tanker are: 1 to store the minerals from the seabed adaptive concentrator 10; 2 to process the minerals into pulp; 3 to transport the slurry to the submarine relay tank; 4 to provide electricity for the underwater detectors And mooring spaces; 5 receiving control signals from underwater detectors and controlling travel paths and mining operations.
  • Minerals from the subsea adaptive concentrator 10 are stored in the storage tank 7.
  • the storage tank 7 is provided with a plurality of inlet ports 8, each of which is connected to a subsea adaptive concentrator 10 through a flat type delivery pipe 9. Therefore, the storage tank 7 can simultaneously collect minerals collected from a plurality of subsea adaptive current collectors 10, covering a wide range, thereby effectively increasing the total amount of ore collection per unit time and improving the overall efficiency of the mining operation.
  • a mechanical device for adjusting the length of the flat conveying pipe 9 is installed inside the inlet port 8 for the purpose of facilitating the free expansion and contraction of the flat conveying pipe 9 and preventing entanglement.
  • a crushing device is installed in the storage tank 7 to break large-scale ore particles into fine particles for water transportation. When the storage amount is close to saturation, it can be transported from the outflow port 13 through the outer transfer pipe 14 to the submarine relay tank by means of a large slurry pump. If necessary, the seawater can be discharged through the pressure reducing valve 15 to reduce the pressure in the cabin.
  • the bottom of the tanker adopts a crawler type traveling device 12, which is in surface contact with the seabed.
  • the crawler type traveling device is more suitable for the soft geological conditions of the seabed, and the pressure acting on the seabed is small, and the pressure is small, so that it can continuously and stably travel under large load conditions.
  • the crawler type traveling device 12 is also equipped with a shock absorber 11 for reducing the vibration generated when the storage truck travels on the complex seabed topography, ensuring the safety of the structure and equipment, and compensating for the heave chassis. Close to the seabed to ensure the stability of the mining operations.
  • the underwater detector berth 16 is installed on the storage truck, and the detector can be parked when the three-dimensional scanning of the seabed terrain is completed, the non-working state and the concentrator are trimmed.
  • the main functions of the subsea adaptive concentrator 10 are: 1 autonomous movement on the surface of the seabed; The pumping action of the pump and the induction of the spiral flow collect the seabed minerals.
  • the outer cover of the concentrator is divided into two parts, the upper part is a dish-shaped outer cover 17, and the lower part is a skirt type outer cover 18.
  • the skirt cover 18 has a plurality of layers of pleats, so that it has a strong expansion and flexibility and can cover the seabed surface of the mining area, thereby reducing the disturbance to the sea floor.
  • the surface of the skirt cover 18 is evenly opened with a guide groove 20, and its function is to induce a horizontal spiral flow, thereby improving the effect of collecting.
  • a small crawler belt 19 is installed at the bottom of the concentrator, which enables the concentrator to drive autonomously on the seabed.
  • the upper part of the concentrator is equipped with a water pump 21, which can pump the mineral to the flat conveying pipe 9 by means of the suction of the water pump.
  • a plurality of baffles 23 are disposed around the interior of the subsea adaptive concentrator 10, and at least one adjacent baffle is provided with a water jet head 22, which sprays water to adapt the seabed The swirling effect is generated inside the sex collector 10 to increase the suction force.
  • the basic idea of the invention is: according to the characteristics of the seabed mining operation, the feasibility and efficiency of the seabed mining operation are improved through the cooperative operation of the underwater detector, the crawler type storage truck and the seabed adaptive collecting device. In order to achieve intelligent, coordinated and efficient seabed mining operations.
  • This intelligent collaborative operation of submarine mining equipment carries out seabed mining tasks in a deep sea area.
  • the specific distribution of seabed topography and minerals is unknown, so underwater detectors are dispatched to perform detection missions.
  • the underwater detector relies on the sonar detector 1 to detect the topography of the sea floor and the distribution of minerals.
  • This information is processed by the control system to plan the optimal path of travel to increase the productivity of the ore and to avoid dangerous areas of work.
  • the electronic equipment compartment 2 of the underwater detector carries a large amount of electronic equipment for controlling its navigation, detection and mining, storage, processing, transportation and other tasks.
  • the underwater detector is propelled by the multi-degree of freedom connector 3 and the propeller 4, and when it needs to ascend, descend or turn, the multi-degree of freedom connector 3 can be adjusted to change the position and angle of the propeller 4, thereby achieving navigation. Attitude control.
  • the empennage 5 ensures that it remains stable during the voyage.
  • the underwater detector is powered by a storage truck, and the power is transmitted through the optical cable 6, while the underwater detector The emitted control signal is also transmitted via the optical cable 6 to the hopper.
  • the underwater detector berth 16 is installed on the storage truck. When the three-dimensional scanning of the seabed terrain is completed, the non-working state and the concentrator are trimmed, the detector can be parked.
  • the storage truck travels according to the planned path according to the control signal of the underwater detector.
  • the track-carrying vehicle employs a crawler-type traveling device 12 that can continuously and stably travel on a complicated seabed surface.
  • the crawler type traveling device 12 is further provided with a damper 11 so as to be smoothly moved on the seabed, thereby ensuring the safety of the structure and the stable operation of the collecting operation.
  • the storage tank 7 is provided with a plurality of inlets 8 and an outlet 13 . Each of the ore inlets is connected to a subsea adaptive concentrator 10 via a flat ore tube 9.
  • the storage tank 7 can simultaneously collect minerals collected from a plurality of subsea adaptive current collectors 10, covering a wide range, thereby effectively increasing the total amount of ore collection per unit time and improving the overall efficiency of the mining operation. If the concentrator travels away from the hopper, the length of the flat ore tube 9 needs to be elongated; otherwise, it needs to be shortened. To this end, a mechanical device for adjusting the length of the flat conveying pipe 9 is installed inside the inlet port 8 to facilitate the free expansion and contraction of the flat conveying pipe 9.
  • the storage tank 7 not only has the function of storing mineral raw materials, but also has processing equipment capable of processing mineral raw materials into pulp. As the miners continue to transport mineral raw materials, the storage capacity of the pulp is also increasing. When a certain level is reached, the stored slurry is transported from the outflow port 13 through the outer transfer pipe 14 to the submarine relay tank by means of a large slurry pump, thereby achieving a cycle of work tasks.
  • the concentrator is connected to the hopper car through the flat ore tube 9 while receiving power supply and control signals from the hopper car through the integrated optical cable inside the flat sump 9. With the help of small track, the concentrator can move autonomously in a certain area of the seabed, and then carry out the mining task.
  • the skirt cover 18 at the lower part of the concentrator has a multi-layered pleat structure, which can cover the seabed surface of the mining area, reduce the disturbance to other sea floor areas, and can make the concentrator and the sea bottom fit more tightly, which is beneficial to enhance the suction. . After the start of the mining, the seawater and the ore particles are subjected to a strong suction force under the suction of the water pump 21.
  • This form of spiral flow can effectively enhance the ore collection effect and improve the collection efficiency.
  • the mineral particles mixed with the seawater and the sea mud are successively passed through the skirt cover 19 and the dish-shaped outer cover 18, and are transported to the storage and transportation vehicle through the flat type delivery pipe 9 under the pumping action of the water pump 21.
  • the numerical simulation and experimental study based on dimensional analysis are used to obtain the vertical force law of different sizes of ore particles under different ore conditions (concentration flow, concentrator basin morphology, etc.).
  • the suction force obtained through calculation and analysis just meets the operation requirements.
  • Excessive suction force not only requires the pump to provide a larger suction flow, but also increases the walking resistance of the concentrator track, resulting in a great waste of energy consumption.
  • the suction force that just meets the needs of the ore collection not only minimizes the disturbance to the seabed, but the adsorption force of the seabed formed during the suction process increases the stability of the structure of the concentrator, and the construction is safer.
  • an electronic equipment compartment which can be used to control the navigation, detection, mining, ore mining and other electronic equipment in the electronic equipment compartment, to avoid loading it on the storage truck.
  • the underwater detector and the storage truck are connected by optical cable, which can transmit power and information at the same time.
  • the storage truck adopts a crawler traveling device, which is suitable for traveling on the seabed.
  • the concentrator is provided with a skirt type cover, which has a multi-layered pleat structure, and thus has strong flexibility and flexibility.
  • the surface of the skirt cover of the concentrator is provided with a plurality of drainage grooves for inducing a horizontal spiral flow.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the skirt cover is a multi-segment structure, and the adjacent two sections are partially staggered, so that when the external seawater enters the seabed adaptive concentrator 10, a certain swirling effect is produced.
  • the water flow guiding structure generated by the staggered portion is adapted to the direction of the flow guiding of the deflector 23.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the deflector 23 is disposed at the lower part of the concentrator, and the lower edge of the dish-shaped outer cover is provided with a plurality of tangential holes 24, so that The miner can use two methods of inducing swirl according to working conditions.
  • a certain swirling effect can be produced by the suction of the water pump and the diversion of the deflector; when the seabed is rugged, the concentrator cannot be close to the seabed.
  • the tangential holes are capable of creating a lateral water jet that provides angular momentum of the water flow to ensure swirling.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the structure of the main body of the mining vehicle adopts the form of a ⁇ -type all-terrain double-section crawler.
  • the two tracked vehicles are arranged one after the other, and the connection between the two is hinged.
  • Both tracked vehicles have a certain driving capacity, which makes them have good obstacles and strong terrain adaptability. Therefore, for a region with a steep slope of the seabed, it has better maneuverability and passability than a single tracked vehicle, thereby improving the reliability of the seabed mining operation.
  • the previous tracked vehicle is mainly equipped with a water pump, a flat conveying pipe adjusting device, etc.
  • a rear crawler car is mainly equipped with a crushing device, a storage device, a conveying device and the like.
  • the semi-buried mineral particles have a relatively fixed natural frequency range of vibration (13-17 Hz).
  • the concentration of the specific spiral flow induced by the concentrator on the ore particles is close to the vibration inherent in the semi-buried granules.
  • Frequency which stimulates the ore resonance in the sea mud, making the ore particles easier to be Pump up to increase the efficiency of the collection.

Abstract

公开了一种海底集矿装备,包括设备主体、多个海底适应性集矿器(10)及各自输矿管(9);输矿管(9)将设备主体与海底适应性集矿器(10)连接,输矿管(9)能够受控调节伸出设备主体的长度;海底适应性集矿器(10)具有履带行走机构,能够受控自主行走。利用水下探测器探测作业区域附近的海底地形和矿物分布,根据探测的信息合理地规划海底集矿器(10)和储矿车的行进路径;多台海底适应性集矿器(10)同时独立工作,让集矿器轻小型化,减少集矿作业对海底生态环境的破坏;设备主体可选择相对平坦的海底路径,避开崎岖的道路;集矿器诱导水平的螺旋流,有利于增强集矿效果,提高单位能耗的抽吸力,从而配置更少数量的更小体积的水泵,降低集矿器主尺度从而降低能耗,更加环保。

Description

一种基于旋涡水动力特性的集群式深海海底集矿装备 技术领域
本发明涉及一种海底集矿装备,尤其涉及一种智能化协同作业海底集矿装备。
背景技术
海洋是地球上尚未被人类充分认识和利用的最大潜在资源基地。除海洋石油气资源和海滨矿砂外,海底目前已知有商业开采价值的还有多金属结核、富钴结壳和多金属硫化物等金属矿产资源。这些矿物中富含镍、钴、铜、锰及金、银金属等,总储量分别高出陆上相应储量的几十倍到几千倍。2013年我国又正式获得一块太平洋富钴结壳矿区。显然,深海矿产资源的开发必须依赖深海采矿装备进行。2015年5月19日公布的《中国制造2025》为“制造强国”战略指明了方向,把“海洋工程装备及高科技船舶”归为重点突破的十大战略领域之一,着重进行先进海洋工程装备的研发和国有化。
随着现代通信技术的发展和自动化控制的普及,智能化设计越来越受到重视。近年来,在电力、机械、化工、制药、建筑、物流等各个领域,智能化装备都得到了广泛的应用。在这样的时代背景下,海洋工程装备的智能化也成为必然趋势。尤其对于深远海作业而言,实现作业装备的智能化、自动化能够大大降低人力物力投入,有效提高作业生产率,对于海洋资源的合理开发具有十分重要的意义。
现有的海底集矿装备:
集矿器与主体为一体式结构,对设备的行走道路有一定要求(不可过于崎岖),对采矿的范围造成了不利影响;
为了保证一定的采矿效率,设备的行走速度被迫提高,影响了设备的可控性和可靠性;
集矿器的吸附能力较弱,公布日为2016年2月24日,公布号为CN105350968A的中国专利文献,公开了一种海底集矿车,其采用的吸矿罩采用了螺旋导流板和水射流喷嘴,从其附图上可以看出,这种螺旋导流板与水射流喷嘴未能实现良好的配合,而且这种形式的螺旋导流板对提高吸附力的功效也十分有限;此外,其吸矿罩的密封不足,也会导致吸附能力的不足;
集矿器随主体移动时容易与矿石或其他障碍物发生碰撞,集矿器必须向上提升避开障碍物,导致吸力不足,当避让不及时,碰撞对集矿器会产生一定损伤;
由于水下地形复杂,现有海底集矿装备行走时,对于水下复杂地形的探测不足,对于矿物分布也探测不足,影响了行进路径的正确引导判定,也影响了对于高风险作业区域的避开。
发明内容
本发明的目的是提供一种海底集矿装备,集矿器与主体之间采用分体式结构,主体行进缓慢的过程中集矿器自身可以自由移动,寻找合适的矿区进行采吸,提高采矿效率;提高集矿器的抽吸能力,同时使集矿器可以避让障碍物。
本发明采取以下技术方案:
一种基于旋涡水动力特性的集群式深海海底集矿装备,包括设备主体、多个海底适应性集矿器10及各自输矿管;所述输矿管将设备主体与海底适应性集矿器10连接,所述输矿管能够受控调节伸出设备主体的长度;所述 海底适应性集矿器10具有履带行走机构,能够受控自主行走。该设计与传统的“一体化”结构相比有效提高了运动的灵活性,并且集矿器距海底高度不会随地形快速变化,使集矿效率稳定。
进一步的,所述海底适应性集矿器10的四周均匀布置多个小型履带19,构成所述小型履带行走机构。
进一步的,所述海底适应性集矿器10底部周围设有裙式外罩18,所述裙式外罩在与障碍物相碰时能够向内侧收缩抬起,通过障碍物后裙式外罩在重力作用下自动垂落,起到增加集矿器底部封闭效果的作用。
更进一步的,所述海底适应性集矿器10内部周围设有一圈多个导流板23,至少有一处相邻导流板之间设有喷水头22,所述喷水头喷净水,使海底适应性集矿器10内部产生旋流效果,从而增加抽吸能力;所述裙式外罩18设有引导外部海水进入的导流槽20。
再进一步的,所述裙式外罩为多段式结构,相邻两段具有部分交错,使外部海水进入海底适应性集矿器10时,产生一定旋流效果;交错部位产生的水流导向结构与所述导流板23的导流方向相适应。
进一步的,还包括水下探测器,所述水下探测器通过有线的方式与所述设备主体电连接,并在位于设备本体前方较高位置自动行进,具有视觉或声呐探测功能。
更进一步的,所述水下探测器包括声呐探测仪1、电子设备舱2、若干螺旋桨推进器4及对应的多自由度连接器3、尾翼5、光电缆6;所述多自由度连接器可调节螺旋桨推进器4的转动方向,从而调节水下探测器的行进和转向;所述光电缆6与设备主体连接。
更进一步的,所述设备主体设有储矿舱7、进矿口8、减震器11、多个履带行进装置、出矿口13、外输矿管14、水下探测器泊位16,所述履带行 进装置的最大行走速度为1m/s,所述履带行走机构的最大行走速度为3m/s。
更进一步的,所述海底适应性集矿器10设有碟形外罩17、裙式外罩18、小型履带19、导流槽20、水泵21。
再进一步的,储矿舱7用于储存来自海底适应性集矿器10的矿物原料,内部具有破碎装置,可将大尺度的矿粒破碎成细小的颗粒以便于水力输送。当储存量达到一定程度,可通过大型矿浆泵输送至海底中继舱。再进一步的,进矿口8内部安装有调节扁型输矿管9长度的机械装置,便于扁型输矿管9自由伸缩以及防止缠绕。
进一步的,储矿舱7设置有减压阀15,一旦储矿舱内压力过大时,能够通过向外排出海水来降低储矿舱7内的压力。
进一步的,海底适应性集矿器10的集矿器外罩分为碟形外罩17和裙式外罩18两部分。
更进一步的,裙式外罩18具有多层褶皱,具有强伸缩性和灵活性。
进一步的,所述设备主体采用蟒式全地形双节履带车的形式,两台履带车一前一后布置,二者之间连接方式为铰接,两台履带车自带驱动能力;前面一台履带车安装有水泵、扁形输矿管调节装置,后面一台履带车安装有破碎装置、储存装置、输送装置。
更进一步的,集矿器10诱导出特定的螺旋流对矿粒的抽吸力频率接近半埋入海泥中矿粒的振动固有频率,从而激发海泥中的矿粒共振,使得矿粒更容易从海泥中被抽起。
本发明的有益效果在于:
1)采用多个各自独立的海底适应性集矿器,与装备主体通过柔性的输矿管连接,扩大了采矿的范围,设备主体可选择相对平坦的海底道路,避开崎岖的道路;该设计与传统的“一体化”结构相比有效提高了运动的灵 活性,并且集矿器距海底高度不会随地形快速变化,使集矿效率稳定。
2)设备主体的行走速度可以大幅降低,在确保采矿效率的基础上,提高了设备主体的可靠性与可控性;较低的行走速度同时能够降低行进过程中对海泥的扬起,减弱对海底环境的不利影响。
3)在海底适应性集矿器上设置了裙式外罩,提升了吸力;裙式外罩,其具有多层褶皱结构,受力后可向上抬起,避开障碍物,因此具有很强的伸缩性和灵活性;其可以罩住集矿区域的海底表面,具有很强的海底地形适应性,且可以减少对周围海底的扰动;集矿器的裙式外罩表面开有多个导流槽,用以诱导水平的螺旋流,进而有利于增强集矿效果,提高单位能耗的抽吸力,从而配置更少数量的更小体积的水泵,降低集矿机主尺度从而大大降低能耗,更加环保。
4)导流槽内部位置设置导流板,同时在相邻导流板之间设置喷水头,增加旋流效果,提升吸附能力;
5)裙式外罩能够向上收缩,避开障碍物,在确保提升吸附力的同时还可以避免集矿器撞击受损;
6)采用水下探测器,漂浮行走在设备主体前部上方,利用水下探测器探测作业区域附近的海底地形和矿物分布。水下探测器的设计满足了深海采矿任务智能化的要求。
7)水下探测器设有电子设备舱,可将用于控制航行、探测、集矿、输矿等作业的电子设备置于电子设备舱内,避免将其搭载于储矿车上,从而减轻储矿车的重量,使其能够在海底较为平稳地行进。既有利于结构安全,又有利于节省能量。
8)水下探测器与储矿车之间通过光电缆连接,将光纤与金属导线结合,既能够满足供电的需求,又能够将水下探测器的控制信号输送至储矿车, 使得二者得以协同工作。
9)储矿车采用履带行进装置,其与海底的接触方式是面接触。与点接触相比,履带行进装置更加适应海底松软的地质条件,作用于海底的压强较小,能提供更大的抓地力,因此能够连续、稳定地行进。
10)使用多台海底适应性集矿器同时独立工作,通过系统控制使得每一台集矿器均覆盖一定的工作范围。因此,多台集矿器与单台相比,在单位时间内相当于覆盖了更广的作业范围,进而有效增加单位时间内的集矿总量,提高工作效率,缩短任务周期。
11)扁型输矿管可以将输矿管道和光电缆集成于一体,便于矿物的传输以及集矿器的供电和控制。且扁型输矿管因其变形自由度受限制而更加便于伸缩和防止缠绕,提高了装置的可靠性。
12)集矿器设置有裙式外罩,其具有多层褶皱结构,因此具有很强的伸缩性和灵活性。其可以罩住集矿区域的海底表面,具有很强的海底地形适应性,且可以减少对周围海底的扰动。
附图说明
图1是本发明海底集矿装备的立体图。
图2是本发明海底集矿装备的主视图。
图3是海底适应性集矿器的立体图。
图4是海底适应性集矿器底部位置的立体图。
图5是采用多段式结构的裙式外罩的示意图,相邻两段具有部分交错,使外部海水进入海底适应性集矿器时,产生一定旋流效果;交错部位产生的水流导向结构与所述导流板的导流方向相适应。
图6是采用导流板和切向孔结构的裙式外罩的外部结构示意图,使得集 矿器能够根据工作条件采用两种诱导旋流的方法。
图7是采用导流板和切向孔结构的裙式外罩的内部结构示意图。
图8是设有备用水下探测器的海底集矿装备的立体结构图。
图9是图8的主视图。
图10是本发明海底集矿装备设计的逻辑图。
图中,1.声呐探测仪,2.电子设备舱,3.多自由度连接器,4.螺旋桨推进器,5.尾翼,6.光电缆,7.储矿舱,8.进矿口,9.扁型输矿管,10.海底适应性集矿器,11.减震器,12.履带式行进装置,13.出矿口,14.外输矿管,15.减压阀,16.水下探测器泊位,17.碟形外罩,18.裙式外罩,19.小型履带,20.导流槽,21.水泵,22.喷水头,23.导流板,24.切向孔。
具体实施方式
下面结合附图和具体实施例对本发明进一步说明。
协同是指协调两个或以上的个体,发挥各自功能,合作完成特定任务的能力。对于深海采矿这样的复杂工程来说,包含多种作业任务,需要完成多项功能。因此,采用多种装备“各司其职”,协同作业将是十分有效的设计方法。本发明提出一款海底集矿装备,将智能化与协同化设计相结合。整套装备包括水下探测器、海底适应性集矿器和履带式储矿车等多个部分,能够分别完成探测、采矿、储矿和加工的功能。各个系统之间协同配合,可显著提高海底采矿作业的安全性和高效性。此外,每一种装备都根据各自的作业特点进行了合理化设计,使其在协同作业的同时,保证自身功能可实现,以期达到可靠性的要求。
参见图10,下面对本发明总的设计思路进一步阐述:
首先,从改善水力集矿性能和多个集矿器形成触须式协同作业布局两 个方面提高集矿效率。从原理上具有突破:利用旋涡水动力特性,增加负压的传递距离,有效降低矿粒的临界起动速度,增加单位能耗的抽吸力;
第二,从减小行进压力和改进抬矿方式两个方面降低对海底环境的影响。从结果布置上具有创新:利用补水射流或者水平附加水射流,通过增加切向角动量形成稳定的竖轴旋涡。详见附图10。
实施例一:
如图1-3所示,一款海底集矿装备,包括水下探测器、履带式储矿车和海底适应性集矿器等多个部分。水下探测器主要包括:声呐探测仪1、电子设备舱2、多自由度连接器3、螺旋桨推进器4和尾翼5等。水下探测器通过光电缆6与履带式储矿车连接。履带式储矿车主要包括:储矿舱7、进矿口8、减震器11、履带式行进装置12、出矿口13、外输矿管14、减压阀15和探测器泊位16等。海底适应性集矿器主要包括:碟形外罩17、裙式外罩18、小型履带19、导流槽20、水泵21。集矿器通过扁形输矿管9与储矿车的进矿口8相连接。
水下探测器的功能主要是:①探测海底地形;②探测海底矿物的分布;③搭载电子设备。水下探测器具备自航能力,并且能够在深海环境中航行。探测器上安装有声呐探测仪1,用于探测海底地形和矿物的分布,以便合理地规划行进路径,规避存在风险的作业区域,以及提高集矿作业的生产效率。因此,水下探测器的设计满足了深海采矿任务智能化的要求。电子设备舱2搭载用于控制航行、探测、集矿、输矿等作业的电子装备,其外壳为耐压壳体结构,能够承受深海巨大的压力。水下探测器的航行由螺旋桨推进器4推进,其通过多自由度连接器3与探测器相连,因此可以通过自由调整方向,实现航行姿态的调整。尾翼5能够改善水下探测器的操纵性,使其稳定航行,从而保护电子设备舱2内的设备不受损坏。光电缆6是一种将光 纤和金属导线结合起来的传输介质,兼具电力输送和信息传输的功能。水下探测器通过光电缆6获得来自储矿车的电力供应,同时将控制信号传输至储矿车上的控制设备,使其按照规划的路径行进和开展采矿任务。因此,这一设计实现了水下探测器和储矿车的协同作业。
履带式储矿车的功能主要是:①储存来自海底适应性集矿器10的矿物;②加工矿物,使其成为矿浆;③将矿浆输送至海底中继舱;④为水下探测器提供电力和停泊处所;⑤接收来自水下探测器的控制信号,并控制行进路径和采矿作业。来自海底适应性集矿器10的矿物储存于储矿舱7中。储矿舱7设置有多个进矿口8,每个进矿口通过扁型输矿管9与一台海底适应性集矿器10相连。因此储矿舱7可同时收集来自多台海底适应性集矿器10采集的矿物,覆盖较广的范围,进而有效增加单位时间内的集矿总量,提高集矿作业的整体效率。进矿口8内部安装有调节扁型输矿管9长度的机械装置,目的是便于扁型输矿管9自由伸缩以及防止缠绕。储矿舱7中安装有破碎装置,可将大尺度矿粒破碎成细小的颗粒,以便于水力输送。当储存量接近饱和时,可借助大型矿浆泵由出矿口13通过外输矿管14输送至海底中继舱。必要时亦可通过减压阀15向外排出海水来降低舱内压力。储矿车底部采用履带式行进装置12,其与海底的接触方式为面接触。与点接触相比,履带式行进装置更加适应海底松软的地质条件,作用于海底的压强较小,压陷小,因此能够在大承载情况下连续、稳定地行进。履带式行进装置12上还安装有减震器11,目的是降低储矿车在复杂海底地形上行进时产生的振动,保证结构和设备的安全,以及对集矿器底盘进行升沉补偿,动态贴靠海底,保证集矿作业任务的稳定进行。储矿车上安装有水下探测器泊位16,当海底地形三维扫描完毕、非工作状态以及集矿机修整时,可供探测器停泊。
海底适应性集矿器10的主要功能是:①在海底表面自主移动;②通过 水泵的抽吸作用以及诱导螺旋流,收集海底矿物。集矿器的外罩分为两部分,上部是碟形外罩17,下部是裙式外罩18。裙式外罩18具有多层褶皱,因此具有很强的伸缩能力和灵活性,可以罩住吸矿区域的海底表面,进而减少对海底的扰动。裙式外罩18表面均匀地开有导流槽20,其作用是诱导水平的螺旋流,进而提高集矿的效果。集矿器底部安装有小型履带19,可以使得集矿器在海底自主行驶。集矿器的上部安装有水泵21,借助水泵的抽吸作用可将矿物泵送至扁型输矿管9。
所述海底适应性集矿器10内部周围设有一圈多个导流板23,至少有一处相邻导流板之间设有喷水头22,所述喷水头喷净水,使海底适应性集矿器10内部产生旋流效果,从而增加抽吸力。
本发明的基本思想是:根据海底集矿作业的特点,通过水下探测器、履带式储矿车和海底适应性集矿器三者的协同作业,提高海底集矿作业的可行性、高效性,从而实现智能、协同、高效的海底集矿作业。
下面结合图1-2进一步说明本装置的具体工作原理:
此智能化协同作业海底集矿装备在某深海海域开展海底采矿任务。海底地形和矿物的具体分布未知,因此派出水下探测器执行探测任务。水下探测器依靠声呐探测仪1探测海底的地形状况以及矿物的分布情况。这些信息经过控制系统的处理,能够规划出最优的行进路径,以提高集矿的生产率,并能够避开存在危险的作业区域。水下探测器的电子设备舱2内携带有大量电子设备,用于控制其航行、探测以及采矿、储矿、加工、输送等任务。水下探测器依靠多自由度连接器3和螺旋桨推进器4推进,当其需要上升、下降或转弯时,可调整多自由度连接器3,改变螺旋桨推进器4的位置和角度,从而实现航行姿态的控制。尾翼5能够保证其在航行过程中维持稳定。水下探测器依靠储矿车供电,电力通过光电缆6传输,同时水下探测器 发出的控制信号亦通过光电缆6传输至储矿车。储矿车上安装有水下探测器泊位16,当海底地形三维扫描完毕、非工作状态以及集矿器修整时,可供探测器停泊。
储矿车根据水下探测器的控制信号,按照规划的路径行进。储矿车采用履带式行进装置12,能够在复杂的海床表面连续、稳定地行进。履带式行进装置12上还安装有减振器11,使其在海底能够平稳地移动,从而保证结构的安全性以及集矿作业的稳定进行。储矿舱7设置多个进矿口8和一个出矿口13。每个进矿口通过扁型输矿管9与一台海底适应性集矿器10相连。因此储矿舱7可同时收集来自多台海底适应性集矿器10采集的矿物,覆盖较广的范围,进而有效增加单位时间内的集矿总量,提高集矿作业的整体效率。若集矿机向远离储矿车的方向行进,则需伸长扁型输矿管9的长度;反之,则需缩短。为此,进矿口8内部安装有调节扁型输矿管9长度的机械装置,便于扁型输矿管9自由伸缩。储矿舱7不仅具备储存矿物原料的功能,还安装有加工设备,能够将矿物原料加工成矿浆。随着集矿器源源不断输送矿物原料,矿浆的储存量也不断增加。当达到某一程度时,借助大型矿浆泵,将储存的矿浆由出矿口13通过外输矿管14输送至海底中继舱,从而实现作业任务的循环。
集矿器通过扁形输矿管9与储矿车相连接,同时通过扁型输矿管9内部集成的光电缆接收来自储矿车的电力供应和控制信号。借助小型履带,集矿器可以在海底一定区域内自主移动,进而开展集矿任务。集矿器下部的裙式外罩18具有多层褶皱结构,可以罩住集矿区域的海底表面,减少对其他海底区域的扰动,并且可以使集矿器与海底贴合更加紧密,有利于增强吸力。集矿开始后,在水泵21的抽吸作用下,海水和矿粒受到强大的抽吸力。大量的水通过裙式外罩18表面的导流槽20流入集矿器内部,进而诱导 出水平的螺旋流。这种形式的螺旋流可以有效地增强集矿效果,提高集矿效率。被抽吸上来的矿物颗粒混合海水和海泥,陆续通过裙式外罩19和碟形外罩18,并在水泵21的泵送作用下,通过扁型输矿管9输送至储矿车。
利用基于量纲分析的数值模拟和试验研究获得不同大小矿粒在不同集矿工况(集矿流量、集矿器流域形态等)下的垂向受力规律。使得集矿作业中,通过计算分析获得的抽吸力恰好满足作业要求。过大的抽吸力不仅需要水泵提供更大的抽吸流量,更是增大了集矿器履带的行走阻力,从而造成能耗极大浪费。而刚好满足集矿需求的抽吸力不仅能最大程度降低对海底的扰动,抽吸过程中形成的贴靠海床吸附力增加了集矿器结构的稳性,从而施工更加安全。
本实施例具有以下创新点:
1、利用水下探测器探测作业区域附近的海底地形和矿物分布,进而根据探测的信息合理地规划海底集矿车和储矿车的行进路径。
2、设有电子设备舱,可将用于控制航行、探测、集矿、输矿等作业的电子设备置于电子设备舱内,避免将其搭载于储矿车上。
3、水下探测器与储矿车之间通过光电缆连接,能够同时输送电力和信息。
4、储矿车采用履带行进装置,适合于在海底行进。
5、使用多台海底适应性集矿器同时独立工作,能够扩大集矿范围,提高单位时间内的集矿总量。
6、使用扁型输矿管,其在机械装置的作用下可以自由调整长度。
7、集矿器设置有裙式外罩,其具有多层褶皱结构,因此具有很强的伸缩性和灵活性。
8、集矿器的裙式外罩表面开有多个导流槽,用以诱导水平的螺旋流。
实施例二:
与实施例一的不同之处在于:参见图5,所述裙式外罩为多段式结构,相邻两段具有部分交错,使外部海水进入海底适应性集矿器10时,产生一定旋流效果;交错部位产生的水流导向结构与所述导流板23的导流方向相适应。
实施例三:
与实施例一、二的不同之处在于:参见图6、图7,将所述的导流板23设置于集矿器下部,同时碟形外罩下缘表面开有若干切向孔24,使得集矿器能够根据工作条件采用两种诱导旋流的方法。当海底平坦,集矿器与海底贴靠较紧密时,借助水泵的抽吸和导流板的导流作用,即可产生一定的旋流效果;当海底崎岖,集矿器无法紧密贴靠海底时,切向孔能够产生横向水射流,提供水流的的角动量,从而保证旋流的产生。
实施例四:
与实施例一的不同之处在于:参见图8、图9,储矿车主体的结构采用蟒式全地形双节履带车的形式。两台履带车一前一后布置,二者之间连接方式为铰接。两台履带车均有一定的驱动能力,使其具有良好的越障能力和很强的地形适应性。因此对于海底地形坡度较大的区域,与单台履带车相比,其具有更加良好的机动性和通过性,进而提高了海底集矿作业过程的可靠性。在设备布局方面,前面一台履带车主要安装有水泵、扁形输矿管调节装置等,后面一台履带车主要安装有破碎装置、储存装置、输送装置等。
半埋入海泥中的矿粒具有较为固定的振动固有频率范围(13-17Hz),集矿器诱导出特定的螺旋流对矿粒的抽吸力频率接近半埋入海泥中矿粒的振动固有频率,从而激发海泥中的矿粒共振,使得矿粒更容易从海泥中被 抽起,从而增加集矿效率。
以上四个实施例均为本申请的优选实施例,本领域的普通技术人员还可以在此基础上进行各种变换或改进,在不脱离本申请总的构思的前提下,这些变换或改进都应当属于本申请要求保护的范围之内。

Claims (16)

  1. 一种基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:
    包括设备主体、多个海底适应性集矿器(10)及各自输矿管;
    所述输矿管将设备主体与海底适应性集矿器(10)连接,所述输矿管能够受控调节伸出设备主体的长度;
    所述海底适应性集矿器(10)具有履带行走机构,能够受控自主行走。
  2. 如权利要求1所述的基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:所述海底适应性集矿器(10)的四周均匀布置多个小型履带(19),构成所述小型履带行走机构。
  3. 如权利要求1所述的基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:所述海底适应性集矿器(10)底部周围设有裙式外罩(18),所述裙式外罩在与障碍物相碰时能够向内侧收缩抬起,通过障碍物后裙式外罩在重力作用下自动垂落,起到增加集矿器底部封闭效果的作用。
  4. 如权利要求1或3所述的基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:所述海底适应性集矿器(10)内部周围设有一圈多个导流板(23),至少有一处相邻导流板之间设有喷水头(22),所述喷水头喷净水,使海底适应性集矿器(10)内部产生旋流效果,从而增加抽吸力;所述裙式外罩(18)设有引导外部海水进入的导流槽(20)。
  5. 如权利要求4所述的基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:所述裙式外罩为多段式结构,相邻两段具有部分交错,使外部海水进入海底适应性集矿器(10)时,产生一定旋流效果;交错部位产生的水流导向结构与所述导流板(23)的导流方向相适应。
  6. 如权利要求1所述的基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:还包括水下探测器,所述水下探测器通过有线的方式与所述设备主体电连接,并在位于设备本体前方较高位置自动行进,具有声呐探测和视觉探测功能。
  7. 如权利要求6所述的基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:所述水下探测器包括声呐探测仪(1)、电子设备舱(2)、若干螺旋桨推进器(4)及对应的多自由度连接器(3)、尾翼(5)、光电缆(6);所述多自由度连接器可调节螺旋桨推进器(4)的转动方向,从而调节水下探测器的行进和转向;所述光电缆(6)与设备主体连接。
  8. 如权利要求1或6所述的海底集矿装备,其特征在于:所述设备主体设有储矿舱(7)、进矿口(8)、减震器(11)、多个履带行进装置、出矿口(13)、外输矿管(14)、水下探测器泊位(16),所述履带行进装置最大行走速度为1m/s,所述履带行走机构最大行走速度为3m/s。
  9. 如权利要求1或6所述的基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:所述海底适应性集矿器(10)设有碟形外罩(17)、裙式外罩(18)、小型履带(19)、导流槽(20)、水泵(21)。
  10. 如权利要求8所述的基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:储矿舱(7)中安装有破碎装置,可将大尺度矿粒破碎成细小的颗粒,以便于水力输送。当储存量接近饱和时,借助大型矿浆泵由出矿口(13)通过外输矿管(14)输送至海底中继舱。
  11. 如权利要求8所述的基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:进矿口(8)内部安装有调节扁型输矿管(9)长度 的机械装置,便于扁型输矿管(9)自由伸缩以及防止缠绕。
  12. 如权利要求3所述的基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:储矿舱(7)设置有减压阀(15),能够降低储矿舱(7)内的压力。
  13. 如权利要求3所述的基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:海底适应性集矿器(10)的集矿器外罩分为碟形外罩(17)和裙式外罩(18)两部分。
  14. 如权利要求13所述的海底集矿装备,其特征在于:裙式外罩(18)具有多层褶皱,具有强伸缩性和灵活性。
  15. 如权利要求1所述的基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:所述设备主体采用蟒式全地形双节履带车的形式,两台履带车一前一后布置,二者之间连接方式为铰接,两台履带车自带驱动能力;前面一台履带车安装有水泵、扁形输矿管调节装置,后面一台履带车安装有破碎装置、储存装置、输送装置。
  16. 如权利要求1所述的基于旋涡水动力特性的集群式深海海底集矿装备,其特征在于:集矿器(10)诱导出特定的螺旋流对矿粒的抽吸力频率接近半埋入海泥中矿粒的振动固有频率,从而激发海泥中的矿粒共振,使得矿粒更容易从海泥中被抽起。
PCT/CN2017/079648 2016-08-19 2017-04-07 一种基于旋涡水动力特性的集群式深海海底集矿装备 WO2018032781A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/172,269 US10480317B2 (en) 2016-08-19 2018-10-26 Cluster-type deep-sea submarine mining equipment based on vortex hydrodynamic characteristics

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610695064.7 2016-08-19
CN201610695064.7A CN106121656B (zh) 2016-08-19 2016-08-19 一种深海海底集矿装置及其集矿方法
CN201710024604.3 2017-01-13
CN201710024604.3A CN106761761A (zh) 2017-01-13 2017-01-13 一种智能化协同作业海底集矿装备
CN201710191103.4 2017-03-28
CN201710191103.4A CN106812529B (zh) 2017-03-28 2017-03-28 一种基于旋涡水动力特性的集群式深海海底集矿装备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/172,269 Continuation US10480317B2 (en) 2016-08-19 2018-10-26 Cluster-type deep-sea submarine mining equipment based on vortex hydrodynamic characteristics

Publications (1)

Publication Number Publication Date
WO2018032781A1 true WO2018032781A1 (zh) 2018-02-22

Family

ID=61196433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079648 WO2018032781A1 (zh) 2016-08-19 2017-04-07 一种基于旋涡水动力特性的集群式深海海底集矿装备

Country Status (2)

Country Link
US (1) US10480317B2 (zh)
WO (1) WO2018032781A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109630122A (zh) * 2019-02-01 2019-04-16 上海交通大学 一种海底集矿系统的矿物海泥分离装置及其方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112681424B (zh) * 2021-01-21 2022-04-12 张宏磊 一种基于机器人算法塑造人工涡流的水库泥沙抽取系统
CN112982530A (zh) * 2021-02-25 2021-06-18 南京顺冰顺商贸有限公司 一种水利工程用的沟渠清淤设备
CN116950661B (zh) * 2023-09-01 2024-02-13 中国海洋大学 基于二氧化碳乳液的深海采矿羽流抑制装置及方法
CN117005869B (zh) * 2023-10-07 2024-02-20 长沙矿冶研究院有限责任公司 一种防止结核卡塞的水下集矿装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180634A (zh) * 1996-10-24 1998-05-06 冶金工业部马鞍山矿山研究院 深海集散式采矿系统
DE19715284A1 (de) * 1997-04-11 1998-10-22 Wirth Co Kg Masch Bohr Unterwasser-Mineralgewinnungsgerät
AU2009100534A4 (en) * 2009-06-02 2009-07-09 Magnum Rental Pty Ltd Vehicle mounted unmanned water cannon
CN102425420A (zh) * 2011-11-30 2012-04-25 长沙矿冶研究院有限责任公司 海底集矿车
CN104653184A (zh) * 2015-01-23 2015-05-27 三亚深海科学与工程研究所 一种深海矿产资源组装式采矿系统
CN105332874A (zh) * 2015-11-09 2016-02-17 大连海事大学 一种海底浮式集矿装置、集矿系统及集矿方法
CN105350968A (zh) * 2015-12-03 2016-02-24 上海交通大学 一种海底集矿车及其集矿方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19902133A1 (de) * 1999-01-20 2000-07-27 Andreas Hoboy Förderung von Materialien unter Wasser
KR20180135116A (ko) * 2011-06-17 2018-12-19 노틸러스 미네랄즈 퍼시픽 피티 리미티드 해저 비축 시스템 및 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180634A (zh) * 1996-10-24 1998-05-06 冶金工业部马鞍山矿山研究院 深海集散式采矿系统
DE19715284A1 (de) * 1997-04-11 1998-10-22 Wirth Co Kg Masch Bohr Unterwasser-Mineralgewinnungsgerät
AU2009100534A4 (en) * 2009-06-02 2009-07-09 Magnum Rental Pty Ltd Vehicle mounted unmanned water cannon
CN102425420A (zh) * 2011-11-30 2012-04-25 长沙矿冶研究院有限责任公司 海底集矿车
CN104653184A (zh) * 2015-01-23 2015-05-27 三亚深海科学与工程研究所 一种深海矿产资源组装式采矿系统
CN105332874A (zh) * 2015-11-09 2016-02-17 大连海事大学 一种海底浮式集矿装置、集矿系统及集矿方法
CN105350968A (zh) * 2015-12-03 2016-02-24 上海交通大学 一种海底集矿车及其集矿方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109630122A (zh) * 2019-02-01 2019-04-16 上海交通大学 一种海底集矿系统的矿物海泥分离装置及其方法
CN109630122B (zh) * 2019-02-01 2024-01-19 上海交通大学 一种海底集矿系统的矿物海泥分离装置及其方法

Also Published As

Publication number Publication date
US20190063218A1 (en) 2019-02-28
US10480317B2 (en) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2018032781A1 (zh) 一种基于旋涡水动力特性的集群式深海海底集矿装备
CN106812529B (zh) 一种基于旋涡水动力特性的集群式深海海底集矿装备
WO2019148943A1 (zh) 适应于极稀软地质的可悬浮履带式特种水下作业机器人
CN104653184B (zh) 一种深海矿产资源组装式采矿系统
CN109291743B (zh) 适应于极稀软地质的可悬浮履带式特种水下作业机器人
CN103628881B (zh) 一种海洋矿产资源开采装置及开采方法
CN105350968B (zh) 一种海底集矿车及其集矿方法
CN205895240U (zh) 一种深海海底集矿装置
CN205172582U (zh) 一种海底集矿车
CN203752864U (zh) 防水淹汽车车罩
CN106761761A (zh) 一种智能化协同作业海底集矿装备
CN106703812A (zh) 深海钴结壳采矿车
CN107503752A (zh) 一种浮力提升型海底矿产开采装置
CN109235523A (zh) 一种水下自平衡清淤机器人
CN102261086B (zh) 一种无泥舱双体耙吸挖泥船及其施工方法
CN206468353U (zh) 一种智能化协同作业海底集矿装备
CN203594452U (zh) 一种海洋矿产资源开采装置
CA3165483A1 (en) Sea-bed mining vehicle
CN113700486B (zh) 深海多金属结核区域富集装备系统及运行方法
CN206753584U (zh) 一种基于旋涡水动力特性的集群式深海海底集矿装备
CN207131403U (zh) 一种浮力提升型海底矿产开采装置
CN207278260U (zh) 一种深海矿产资源开发系统
CN101565942B (zh) 海上铲式浮油收集器
CN107738728A (zh) 一种水上收油机及其收油方法
EP3421670B1 (en) A seafloor nodule collecting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17840757

Country of ref document: EP

Kind code of ref document: A1