WO2018032268A1 - 一种目标星座图的确定方法、数据发送方法及装置 - Google Patents

一种目标星座图的确定方法、数据发送方法及装置 Download PDF

Info

Publication number
WO2018032268A1
WO2018032268A1 PCT/CN2016/095349 CN2016095349W WO2018032268A1 WO 2018032268 A1 WO2018032268 A1 WO 2018032268A1 CN 2016095349 W CN2016095349 W CN 2016095349W WO 2018032268 A1 WO2018032268 A1 WO 2018032268A1
Authority
WO
WIPO (PCT)
Prior art keywords
constellation
data
candidate
training data
receiving device
Prior art date
Application number
PCT/CN2016/095349
Other languages
English (en)
French (fr)
Inventor
李沫
斯托亚诺维奇·内博伊沙
埃里克·威利米尔
乔尔杰维奇·伊万
库彭斯·弗兰克
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/095349 priority Critical patent/WO2018032268A1/zh
Priority to CN201680083071.XA priority patent/CN109076041B/zh
Priority to EP16913032.5A priority patent/EP3490207B1/en
Publication of WO2018032268A1 publication Critical patent/WO2018032268A1/zh
Priority to US16/274,209 priority patent/US10841135B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03203Trellis search techniques
    • H04L25/03235Trellis search techniques with state-reduction using feedback filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/345Modifications of the signal space to allow the transmission of additional information
    • H04L27/3461Modifications of the signal space to allow the transmission of additional information in order to transmit a subchannel
    • H04L27/3472Modifications of the signal space to allow the transmission of additional information in order to transmit a subchannel by switching between alternative constellations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0779Monitoring line transmitter or line receiver equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/03292Arrangements for operating in conjunction with other apparatus with channel estimation circuitry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3818Demodulator circuits; Receiver circuits using coherent demodulation, i.e. using one or more nominally phase synchronous carriers
    • H04L27/3836Demodulator circuits; Receiver circuits using coherent demodulation, i.e. using one or more nominally phase synchronous carriers in which the carrier is recovered using the received modulated signal or the received IF signal, e.g. by detecting a pilot or by frequency multiplication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03745Timing of adaptation
    • H04L2025/03764Timing of adaptation only during predefined intervals
    • H04L2025/0377Timing of adaptation only during predefined intervals during the reception of training signals

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method for determining a target constellation, a data transmitting method, and an apparatus.
  • SPM self-phase modulation
  • XPM cross-phase modulation
  • the fiber input power it is generally desirable to increase the fiber input power to increase the optical signal noise ratio (OSNR) of the optical signal, thereby improving signal transmission performance and transmission distance.
  • OSNR optical signal noise ratio
  • the nonlinear phase noise generated by the SPM and XPM effects as the transmission distance increases will also increase.
  • the constellation transmitted by the transmitting device will receive.
  • the device side exhibits a different distribution state than the low nonlinear effect. Since the existing data transmission and reception detection methods are designed for low nonlinear effects, the performance of the effects is poor under high nonlinearities.
  • the embodiment of the present application provides a method for determining a target constellation, a data transmission method, and a device for improving data transmission performance under a high nonlinear effect.
  • Receiving, by the receiving device, a plurality of candidate constellations according to the set of candidate constellations for the receiving transmitting device The training data generated and transmitted by each of the candidate constellations in the figure is performed: determining a detection area of each constellation point in the candidate constellation according to a position of the training data in an alternative constellation; and Obtaining, according to the distance between the detection regions of the respective constellation points, a cumulative distance corresponding to the one candidate constellation;
  • the receiving device After the receiving device obtains the cumulative distance corresponding to each candidate constellation in the candidate constellation set, the candidate constellation with the largest cumulative distance is determined as the target constellation, and the notification message is sent to the sending device.
  • the notification message is used to notify the sending device of the target constellation to enable the transmitting device to modulate data to be transmitted according to the target constellation.
  • the detection region of each constellation point in the candidate constellation determined according to the training data is More accurate and in line with the actual situation; and, since the cumulative distance corresponding to the candidate constellation is obtained according to the distance between the detection regions of the constellation points in the alternative constellation, the distance between the detection regions fully reflects the adoption After the data is transmitted by the candidate constellation, the centralized distribution of the data received by the receiving device, and the more concentrated the received data distribution, the greater the distance between the obtained detection regions, and the better the data transmission performance.
  • the embodiment of the present application determines the target constellation according to the cumulative distance that can accurately reflect the distance between the detection regions of the constellation points in the candidate constellation, and transmits the data by using the determined target constellation.
  • the linear effect effectively improves the data transmission performance.
  • the receiving device determines a detection region of the first constellation point in the one candidate constellation by using any one of the constellation points in the candidate constellation:
  • the receiving device After receiving the training data corresponding to the first constellation point sent by the sending device, the receiving device performs denoising processing on the training data to obtain valid training data;
  • the receiving device according to the location of the valid training data in the candidate constellation, will be able to completely cover the valid training data, and the area with the smallest area is determined as the detection area of the first constellation point.
  • the receiving device processes the training data generated by different constellation points separately, thereby avoiding the interference between the training data generated by different constellation points, so that the obtained effective training data is more accurate. Indeed, a good data foundation is laid for the subsequent determination of the detection areas of the various constellation points. Moreover, the receiving device performs the denoising processing on the training data, thereby effectively eliminating the error that may be caused by the abnormal data, and providing a relatively accurate data foundation for the subsequent determination of the detection region of the constellation point.
  • the receiving device performs denoising processing on the received training data to obtain valid training data, including:
  • the receiving device performs clustering processing on the received training data by using a preset clustering algorithm
  • the receiving device removes the training data that cannot be clustered as noise, and obtains the effective training data.
  • the receiving device performs clustering processing on the training data, and according to the clustering result, the training data that cannot be clustered, that is, the scattered data is removed as noise, thereby effectively eliminating noise interference.
  • the receiving device will be able to completely cover the valid training data, and the area with the smallest area is determined as the detection area of the first constellation point, including:
  • the receiving device determines a minimum deflection angle and a maximum deflection angle of the effective training data in the candidate constellation
  • the receiving device divides an interval between the minimum deflection angle and the maximum deflection angle into a plurality of angular intervals
  • the receiving device determines first training data having the smallest distance between the points of the candidate constellation in each angular interval and the second training data having the largest distance;
  • the receiving device determines an arc where the first training data of each angle interval is located as an inner boundary corresponding to the first constellation point, where the second training data of each angle interval is located An arc is determined as an outer boundary corresponding to the first constellation point;
  • the receiving device determines the inner boundary and the area enclosed by the outer boundary as the detection area of the first constellation point.
  • the receiving device first divides the angular interval, and determines the first training data and the second training data for each angular interval respectively, and obtains an inner boundary and an outer boundary corresponding to the first constellation point, thereby determining the first constellation point.
  • the detection area which is based on a smaller angle interval to determine the inner and outer boundaries, has a higher accuracy, thereby also enabling the determination of the determined first constellation point The area is more accurate.
  • the receiving device obtains a cumulative distance corresponding to the candidate constellation according to a distance between detection regions of each constellation point in the candidate constellation, including:
  • the receiving device divides the candidate constellation into a plurality of sectors in a radial direction
  • the receiving device determines a sum of cumulative distances corresponding to the plurality of sectors as a cumulative distance corresponding to the one candidate constellation.
  • the receiving device divides the candidate constellation into a plurality of sectors, calculates a cumulative distance corresponding to each sector, and further obtains a cumulative distance corresponding to the candidate constellation, and the calculated alternative constellation corresponding to the calculated constellation
  • the cumulative distance is more accurate and more reflective of the distance between the detection areas of the individual constellation points in the alternative constellation.
  • the method further includes:
  • the receiving device demodulates the data according to a constellation point corresponding to the detection area where the data is located.
  • the receiving device receives the data transmitted by the transmitting device according to the target constellation diagram, and detects the data by using the detection region of the previously determined target constellation, so that accurate demodulation of the data can be realized.
  • the method further includes:
  • the receiving device determines that the data is not detected in each constellation point of the target constellation In the region, determining, according to the location of the data in the target constellation, a constellation point having a smallest distance from a location where the data is located;
  • the receiving device demodulates the data according to a constellation point having a smallest distance from a location where the data is located.
  • the demodulation of the data can be implemented according to the constellation point with the smallest distance from the position where the data is located, thereby realizing complete and accurate reception of all the data.
  • the detection effectively avoids misjudgment of data in the detection area that is not at the constellation point.
  • Transmitting device generates training data according to a plurality of candidate constellations in the set of candidate constellations and sends the training data to the receiving device, so that the receiving device, according to the training data of the plurality of candidate constellations, from the plurality of devices Determining the target constellation in the selected constellation;
  • the transmitting device modulates the to-be-sent data according to the target constellation and sends the data to the receiving device.
  • the transmitting device generates and sends the training data according to the candidate constellation, and provides a valid data source for determining the target constellation for the receiving device; the transmitting device sends the data according to the target constellation, and the receiving device detects the data according to the detection region of the target constellation. Can effectively improve the data transmission performance.
  • the sending device generates the training data according to the multiple candidate constellations and sends the data to the receiving device, including:
  • the transmitting device generates training data for any of the constellation points in any of the candidate constellations
  • the sending device sends the training data generated by different constellation points in the any candidate constellation to the receiving device according to a preset time interval.
  • the sending device uses the foregoing sending training data, so that the receiving device can separately process the training data generated by each constellation point, thereby avoiding the interaction between the training data generated by different constellation points. Disturbing the situation makes the resulting effective training data more accurate.
  • An embodiment of the present application provides a receiving device, where the receiving device includes a transceiver module and a processing module;
  • the transceiver module is configured to receive training data generated and sent by the sending device according to each of the candidate constellations in the candidate constellation of the candidate constellation set;
  • the processing module is configured to: according to the received training data generated and sent by the sending device according to each of the candidate constellations of the candidate constellation set of the candidate constellation set, according to the training data Determining a detection area of each constellation point in the candidate constellation in a candidate constellation; and obtaining an alternative constellation corresponding to the distance between the detection areas of the respective constellation points And a cumulative constellation corresponding to each candidate constellation in the candidate constellation set, and determining an alternative constellation having the largest cumulative distance as the target constellation, and transmitting to the transmitting device through the transceiver module And sending a notification message, the notification message is used to notify the sending device of the target constellation, so that the sending device modulates the data to be sent according to the target constellation.
  • the processing module is specifically configured to determine, by using, a detection area of a first constellation point in the candidate constellation, where the first constellation point is any one of the candidate constellations A constellation point:
  • the effective training data According to the position of the effective training data in the candidate constellation, the effective training data will be completely covered, and the area with the smallest area is determined as the detection area of the first constellation point.
  • processing module is specifically configured to:
  • the received training data is clustered by using a preset clustering algorithm
  • the training data that cannot be clustered is removed as noise, and the effective training data is obtained.
  • processing module is specifically configured to:
  • An area enclosed by the inner boundary and the outer boundary is determined as a detection area of the first constellation point.
  • processing module is specifically configured to:
  • the first sector Determining, for the first sector of the plurality of sectors, whether the number of detection regions in the first sector is greater than or equal to two, and if so, calculating each detection region in the first sector The distance between the first sector is obtained, and if not, the cumulative distance corresponding to the first sector is directly determined as a preset distance threshold; the first sector is the plurality of Any of the sectors;
  • a sum of cumulative distances corresponding to the plurality of sectors is determined as a cumulative distance corresponding to the one candidate constellation.
  • the transceiver module is further configured to: receive data sent by the sending device, where the data is obtained by the sending device modulating the to-be-sent data according to the target constellation diagram;
  • the processing module is further configured to: determine, according to the received data, a detection area where the data is located in a location of the target constellation and a detection area of each constellation point of the target constellation; and, according to the data The constellation points corresponding to the detection area are located, and the data is demodulated.
  • the processing module is further configured to: if it is determined that the data is not in the detection area of each constellation point of the target constellation, determine the location according to the location of the data in the target constellation a constellation point having a smallest distance between locations where the data is located; and demodulating the data according to a constellation point having a smallest distance from a location where the data is located.
  • the embodiment of the present application provides a sending device, where the sending device includes a transceiver module and a processing module;
  • the processing module is configured to generate training data according to the multiple candidate constellations in the candidate constellation set and send the training data to the receiving device, so that the receiving device according to the training data of the multiple candidate constellations Determining a target constellation map in the plurality of candidate constellations;
  • the transceiver module is configured to receive a notification message sent by the receiving device, where the notification message is used to notify the sending device of the target constellation;
  • the processing module is further configured to: modulate the to-be-sent data according to the target constellation, and send the data to the receiving device by using the transceiver module.
  • processing module is specifically configured to:
  • the training data generated by the different constellation points in the any candidate constellation is respectively sent to the receiving device through the transceiver module according to a preset time interval.
  • Another receiving device includes a communication interface and a processor
  • the communication interface is configured to receive training data generated and sent by the sending device according to each of the candidate constellations of the candidate constellation of the candidate constellation set;
  • the processor is configured to: according to the received training data generated and sent by the sending device according to each of the candidate constellations of the candidate constellation set of the candidate constellation set, according to the training data Determining a detection area of each constellation point in the candidate constellation in a candidate constellation; and obtaining an alternative constellation corresponding to the distance between the detection areas of the respective constellation points a cumulative distance; and, after obtaining a cumulative distance corresponding to each candidate constellation in the candidate constellation set, determining an alternative constellation having the largest cumulative distance as the target constellation and transmitting the communication device to the transmitting device And sending a notification message, the notification message is used to notify the sending device of the target constellation, so that the sending device modulates the data to be sent according to the target constellation.
  • the processor is specifically configured to determine, by using, a detection area of a first constellation point in the one candidate constellation, where the first constellation point is any one of the candidate constellations A constellation point:
  • the effective training data According to the position of the effective training data in the candidate constellation, the effective training data will be completely covered, and the area with the smallest area is determined as the detection area of the first constellation point.
  • the processor is specifically configured to:
  • the received training data is clustered by using a preset clustering algorithm
  • the training data that cannot be clustered is removed as noise, and the effective training data is obtained.
  • the processor is specifically configured to:
  • An area enclosed by the inner boundary and the outer boundary is determined as a detection area of the first constellation point.
  • the processor is specifically configured to:
  • the first sector Determining, for the first sector of the plurality of sectors, whether the number of detection regions in the first sector is greater than or equal to two, and if so, calculating each detection region in the first sector The distance between the first sector is obtained, and if not, the cumulative distance corresponding to the first sector is directly determined as a preset distance threshold; the first sector is the plurality of Any of the sectors;
  • the communication interface is further configured to: receive data sent by the sending device, where the data is obtained by the sending device modulating the to-be-sent data according to the target constellation;
  • the processor is further configured to: determine, according to the received data, a detection area where the data is located in a location of the target constellation and a detection area of each constellation point of the target constellation; and, according to the data The constellation points corresponding to the detection area are located, and the data is demodulated.
  • the processor is further configured to: if it is determined that the data is not in a detection area of each constellation point of the target constellation, determine, according to a location of the data in the target constellation a constellation point having a smallest distance between locations where the data is located; and demodulating the data according to a constellation point having a smallest distance from a location where the data is located.
  • An embodiment of the present application provides a sending device, where the sending device includes a communications interface and a processor;
  • the processor is configured to generate training data according to the multiple candidate constellations in the candidate constellation set and send the data to the receiving device, so that the receiving device according to the training data of the multiple candidate constellations Determining a target constellation map in the plurality of candidate constellations;
  • the communication interface is configured to receive a notification message sent by the receiving device, where the notification message is used to notify the sending device of the target constellation;
  • the processor is further configured to: modulate the to-be-sent data according to the target constellation, and send the data to the receiving device by using the communication interface.
  • the processor is specifically configured to:
  • the training data generated by the different constellation points in the any candidate constellation is respectively sent to the receiving device through the communication interface according to a preset time interval.
  • the receiving device receives training data that is generated and sent by the sending device according to each constellation point in the candidate constellation; the receiving device is in the candidate constellation according to the training data corresponding to the respective constellation points. a location in the determining a detection area of each of the constellation points; the receiving device obtaining the candidate constellation according to a distance between the detection areas of the respective constellation points Corresponding cumulative distance; the receiving device determines, according to the cumulative distance corresponding to the plurality of the candidate constellations, the candidate constellation with the largest cumulative distance as the target constellation, and sends a notification message to the sending device, The notification message is used to notify the sending device of the target constellation, so that the sending device modulates the data to be sent according to the target constellation.
  • the detection region of each constellation point in the candidate constellation determined according to the training data is more Accurate and in line with the actual situation; and, since the cumulative distance corresponding to the candidate constellation is obtained according to the distance between the detection regions of the constellation points in the alternative constellation, the distance between the detection regions fully reflects the adoption of the preparation
  • the centralized distribution of the data received by the receiving device, and the more concentrated the received data distribution the greater the distance between the obtained detection regions, and the better the data transmission performance.
  • the embodiment determines the target constellation according to the cumulative distance that can accurately reflect the distance between the detection regions of the respective constellation points in the candidate constellation, and transmits the data by using the determined target constellation, which can have a high nonlinear effect. Effectively improve the data transmission performance.
  • FIG. 1a is a schematic diagram of a constellation diagram including eight constellation points in the embodiment of the present application.
  • Figure 1b is a schematic diagram of dividing a signal plane by a two-stage detector
  • FIG. 1c is a schematic diagram of clustering results of signal points received by a receiving end in a low nonlinear scenario
  • Figure 1d is a schematic diagram showing the clustering results of signal points received by the receiving end in a highly nonlinear scenario.
  • FIG. 2 is a schematic structural diagram of a system applicable to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an overall process for performing data transmission according to Embodiment 1 of the present application.
  • 4a is a schematic diagram of an alternative constellation diagram a in the embodiment of the present application.
  • 4b is a schematic diagram of distribution of effective training data in an embodiment of the present application.
  • 4c is a schematic diagram of a detection area of a first constellation point in the embodiment of the present application.
  • 4d is a schematic diagram of a detection area of each constellation point in an alternate constellation determined by a receiving device according to an embodiment of the present application;
  • 4e is a schematic diagram of calculation of a cumulative distance corresponding to a first sector
  • FIG. 5 is a schematic flowchart of determining a detection area of a first constellation point by a receiving device according to an embodiment of the present application
  • FIG. 6 is a schematic flowchart of determining a cumulative distance corresponding to an alternate constellation diagram in an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of a receiving device according to Embodiment 2 of the present application.
  • FIG. 8 is a schematic structural diagram of a sending device according to Embodiment 3 of the present application.
  • FIG. 9 is a schematic structural diagram of a receiving device according to Embodiment 4 of the present application.
  • FIG. 10 is a schematic structural diagram of a sending device according to Embodiment 5 of the present application.
  • modulating a signal using a constellation is a commonly used digital modulation technique in which a bit sequence carrying digital information is mapped into a sequence of symbols suitable for transmission.
  • the constellation diagram represents a set of all values of the output symbols, and each constellation point on the constellation map corresponds to a value of the output symbol.
  • the process of data transmission is as follows: the transmitting end modulates and transmits the data by using a pre-designed constellation diagram, and after receiving the data sent by the transmitting device, the receiving end detects the data, thereby Demodulation of current data.
  • a constellation design method transmitting end
  • Min-TS-SER minimum two-level error symbol rate
  • the Min-TS-SER algorithm determines a constellation diagram for transmitting data by using a minimum error symbol rate when the receiving end adopts a two-stage detector, and then the transmitting end modulates the data by using the constellation diagram. send. After receiving the data sent by the transmitting device, the receiving end detects the data by using a two-stage detector.
  • the two-level detector divides the signal plane into N sub-regions, and the value of N is the number of constellation points in the constellation used by the transmitting end, and each sub-region is the detection region corresponding to each constellation point, when the received signal When the point falls within the detection area of a constellation point, the two-stage detector determines that the transmitting end sends the constellation point.
  • N the number of constellation points in the constellation used by the transmitting end
  • each sub-region is the detection region corresponding to each constellation point, when the received signal
  • the two-stage detector determines that the transmitting end sends the constellation point.
  • a low-nonlinear scenario for example, a short-haul optical transmission line with a small fiber-injection power
  • each constellation point transmitted by the transmitting end is received by the receiving end, and the signal point is received.
  • the clustering will be concentrated in the detection area corresponding to the constellation point, so that the above method can be used to accurately demodulate the data and have better transmission performance.
  • Figure 1a is a constellation diagram consisting of 8 constellation points, namely constellation point 1, constellation point 2, constellation point 3, constellation point 4 , constellation point 5, constellation point 6, constellation point 7, constellation point 8.
  • Figure 1b is a schematic diagram of a two-level detector dividing the signal plane. As shown in FIG. 1b, the two-stage detector divides the signal plane into eight sub-regions, namely constellation point 1, constellation point 2, constellation point 3, constellation point 4, constellation point 5, constellation point 6, constellation point 7, constellation point. 8 corresponding detection area.
  • the clustering result of the signal points received by the receiving end is as shown in FIG. 1c, and is concentrated in the detection area corresponding to the constellation point 1, thereby realizing Accurate demodulation of data.
  • Figure 1d is a schematic diagram of the clustering results of signal points in a highly nonlinear scenario.
  • a plurality of constellation points 1 transmitted by the transmitting end, and the signal point clusters received by the receiving end cross the detection areas corresponding to the constellation point 1, the constellation point 2, and the constellation point 4, thereby causing a large number of detection errors.
  • Serious shadow The transmission performance of the data.
  • the embodiment of the present application provides a method for determining a target constellation for transmitting data, and a method for transmitting and receiving data, which are used to improve data transmission performance under a high nonlinear effect.
  • FIG. 2 is a schematic structural diagram of a system applicable to an embodiment of the present application.
  • the system architecture includes a transmitting device 201, a transmission channel, and a receiving device 202.
  • the transmitting device 201 modulates the data by using the target constellation image determined in the embodiment of the present application
  • the modulated channel is modulated by the transmission channel.
  • the data is sent to the receiving device 202, and the receiving device 202 demodulates the received modulated data according to the detection regions of the respective constellation points in the target constellation, thereby realizing effective data transmission.
  • the transmitting device 201 may specifically include a constellation mapper 2011 and a two-dimensional modulator 2012.
  • the receiving device 202 may specifically include an optical front end 2021, a time domain/frequency domain equalizer 2022, and a first detector 2023. Second detector 2024.
  • the constellation mapper 2011 may be a maximum likelihood optimal constellation (MLOSC) mapper for determining a target constellation according to the target constellation determination method in the embodiment of the present application.
  • Figure 2 mapping a bit stream into a two-dimensional symbol; a two-dimensional modulator 2012 for modulating a two-dimensional symbol into an optical signal for transmission to a fiber channel; and an optical front end 2021 for converting the received optical signal back into an electrical signal;
  • a domain/frequency domain equalizer 2022 for compensating for chromatic dispersion and other effects in the optical channel;
  • the first detector 2023 may be a Monte Carlo Most Likely Detector (MCMLD) detector for targeting
  • MMLD Monte Carlo Most Likely Detector
  • FIG. 3 is a schematic diagram of an overall process for performing data transmission according to Embodiment 1 of the present application. As shown in FIG. 3, the method includes the following steps:
  • Step 301 The sending device generates training data according to multiple candidate constellations in the candidate constellation set and sends the training data to the receiving device.
  • Step 401 The receiving device performs, according to the received training data, the training data generated and sent by each of the multiple candidate constellations of the candidate constellation set, according to the training data. Selecting a position in the constellation to determine a detection area of each constellation point in the candidate constellation; and, according to a distance between the detection areas of the respective constellation points, obtaining an accumulation corresponding to the candidate constellation distance;
  • Step 402 After receiving the cumulative distance corresponding to each candidate constellation in the candidate constellation set, the receiving device determines the candidate constellation with the largest cumulative distance as the target constellation, and sends a notification message to the sending device.
  • the notification message is used to notify the sending device of the target constellation;
  • Step 302 The sending device receives the notification message sent by the receiving device.
  • Step 303 The transmitting device modulates the to-be-sent data according to the target constellation and sends the data to the receiving device.
  • Step 403 The receiving device receives data sent by the sending device, where the data is obtained by the sending device to perform modulation according to the target constellation map.
  • Step 404 The receiving device determines, according to the received data, a detection area where the data is located in a location of the target constellation and a detection area of each constellation point of the target constellation.
  • Step 405 The receiving device demodulates the data according to a constellation point corresponding to the detection area where the data is located.
  • the detection region of each constellation point in the candidate constellation determined according to the training data is more Accurate and in line with the actual situation; and, since the cumulative distance corresponding to the candidate constellation is obtained according to the distance between the detection regions of the constellation points in the alternative constellation, the distance between the detection regions fully reflects the adoption of the preparation
  • the present application determines the target constellation according to the cumulative distance that can accurately reflect the distance between the detection regions of the respective constellation points in the candidate constellation, and transmits the data by using the determined target constellation. Effectively improve data transmission performance under high nonlinear effects.
  • steps 301 to 303 are schematic flowcharts of data transmission in the embodiment of the present application.
  • steps 401 to 402 are schematic flowcharts of determining a target constellation in the embodiment of the present application
  • steps 403 to 405 are data receiving in the embodiment of the present application. Schematic diagram of the process.
  • an alternative constellation set may be determined according to a preset rule, and the preset rule may be set by a person skilled in the art according to experience, taking a constellation diagram with 8 constellation points as an example, in advance.
  • the following rules can be included in the set rules: (1) If there is a constellation point in the center of the constellation, it can be regarded as the innermost ring, and the total number of rings is at most three. Otherwise, the total number of rings is at most two; (2) The outer two rings contain the number of constellation points as close as possible; (3) on each ring, multiple constellation points equate the ring.
  • the sending device may process each candidate constellation according to the set sequence. Specifically, the sending device may select the candidate constellation set according to the set sequence. An alternative constellation map is generated and sent to the receiving device according to the selected candidate constellation map.
  • the manner in which the sending device sends the training data to the receiving device according to the selected candidate constellation may be various, for example, the following manners 1 and 2.
  • the sending device separately generates training data for each constellation point in the selected candidate constellation, and sends the training data generated by the different constellation points in the selected candidate constellation to the receiving device according to a preset time interval, thereby
  • the receiving device can determine the detection regions of different constellation points for the training data generated by the different constellation points.
  • the preset time interval may be set by a person skilled in the art according to experience, and specifically, may be set according to the time required by the receiving device to determine the detection area according to the training data of the received constellation point.
  • the transmitting device selects the alternative constellation a
  • FIG. 4a is a schematic diagram of the alternative constellation a
  • the alternative constellation a has eight constellation points (the constellation point 1, the constellation point respectively) 2.
  • the transmitting device can generate training data according to the eight constellation points, and can be in a preset order, for example, Firstly, the training data generated by the constellation point 1 is sent, and after reaching the preset time interval, the training data generated by the constellation point 2 is transmitted, and reaches again. After the preset time interval, the training data generated by the constellation point 3 is transmitted, and so on, until the training data generated by the constellation point 8 is transmitted to the receiving device.
  • the sending device may be configured as training data of 8 constellation points, and then transmitted according to a preset time interval, or may also be sent to the training data of the constellation point 1 and sent. And the training data of the constellation point 2 is simultaneously generated in the sending process, which is convenient for subsequent transmission.
  • the method for generating a constellation point is not specifically limited in the embodiment of the present application, as long as the training data generated by each constellation point is respectively sent to the receiving device according to a preset time interval.
  • the receiving device may separately process the training data generated by different constellation points.
  • the receiving device may determine the following manner Detection area of the first constellation point:
  • the receiving device After receiving the training data generated by the first constellation point sent by the sending device, the receiving device performs denoising processing on the training data to obtain valid training data. Specifically, the receiving device may perform denoising processing by using various methods. In the embodiment of the present application, the receiving device may perform clustering processing on the received training data by using a preset clustering algorithm, and may not be clustered. The training data is removed as noise, thereby obtaining the effective training data, taking the first constellation point as the constellation point 1 as an example, as shown in FIG. 4b, which is a distribution diagram of the effective training data obtained by the above manner.
  • the preset clustering algorithm may be a DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering algorithm, and the DBSCAN clustering algorithm is a density-based scatter clustering algorithm, which can be used for pre-unknown clustering categories. In the case of numbers.
  • DBSCAN Density-Based Spatial Clustering of Applications with Noise
  • the DBSCAN clustering algorithm aggregates the training data generated by the first constellation points into multiple categories, after removing the training data that cannot be clustered, the multiple categories may be combined into one large category, so as to facilitate The detection area of the first constellation point is subsequently determined for a large category.
  • the receiving device According to the position of the effective training data shown in FIG. 4b in the candidate constellation a, the receiving device will be able to completely cover the valid training data, and the area with the smallest area is determined as the detection area of the first constellation point. .
  • FIG. 5 is a schematic flowchart of determining a detection area of a first constellation point by a receiving device according to an embodiment of the present application.
  • the receiving device can determine the detection area of the first constellation point according to the flow shown in FIG. The following is specifically described in conjunction with FIG. 5, which includes:
  • Step 501 The receiving device determines a minimum deflection angle and a maximum deflection angle of the valid training data in the candidate constellation; as shown in FIG. 4b, the receiving device determines that the effective training data is in the candidate constellation a
  • the minimum deflection angle is 45° and the maximum deflection angle is 135°.
  • Step 502 the receiving device divides the interval between the minimum deflection angle and the maximum deflection angle into multiple angular intervals; specifically, the receiving device may divide the angular interval according to the small step size, and the small step length may be Those skilled in the art are set according to experience.
  • Step 503 The receiving device determines first training data with the smallest distance between the points of the candidate constellation and the second training data with the largest distance in each angular interval.
  • the distance between the first training data and the dot of the candidate constellation is the minimum radius of the angular interval, and the first training data may be a sample on the minimum radius; the second training data and the alternative constellation
  • the distance between the dots is the maximum radius of the angular interval, and the second training data can be a sample on the maximum radius.
  • Step 504 The receiving device determines an arc where the first training data of each angle interval is located as an inner boundary corresponding to the first constellation point, and the second of each angle interval The arc where the training data is located is determined as the outer boundary corresponding to the first constellation point.
  • Step 505 The receiving device determines the area enclosed by the inner boundary and the outer boundary as the detection area of the first constellation point, as shown in FIG. 4c, which is a schematic diagram of the detection area of the first constellation point.
  • FIGS. 4b and 4c are merely illustrative, and there may be a deviation between the maximum deflection angle and the minimum deflection angle, the shape of the detection area, and the like.
  • the receiving device can separately process the training data generated by each constellation point, thereby avoiding interference between the training data generated by different constellation points, so that the obtained device
  • the effective training data is more accurate, which lays a good data foundation for the subsequent determination of the detection area of each constellation point.
  • the receiving device first divides the angle interval, and determines the first training data and the second training data for each angle interval, respectively, and obtains an inner boundary and an outer boundary corresponding to the first constellation point, thereby determining the first constellation point.
  • the detection area which is based on the smaller angle interval to determine the inner boundary and the outer boundary, has higher accuracy, and thus makes the determined detection area of the first constellation point more accurate.
  • the transmitting device generates training data for each constellation point in the selected candidate constellation and simultaneously transmits the data to the receiving device, so that the receiving device can simultaneously perform subsequent processing on the training data generated by the different constellation points.
  • the receiving device may simultaneously perform denoising processing on the training data generated by each constellation point in the candidate constellation, and obtain effective corresponding to each constellation point. Training data. Then, the effective training data corresponding to each constellation point is processed by using the flow in FIG. 5 described above, and the detection regions of the respective constellation points are obtained.
  • the receiving device can simultaneously process the training data generated by each constellation point in the candidate constellation, thereby effectively improving the processing speed and saving the processing time.
  • the clustering algorithm when the receiving device determines the detection area of each constellation point in the candidate constellation, the clustering algorithm is required to cluster the training data generated by each constellation point, and when the sending device uses the mode 2 to send the training.
  • the receiving device When the data is received, the receiving device simultaneously clusters the training data generated by each constellation point. If the training data generated by a certain constellation point is aggregated into multiple categories, the clustering confusion may occur, thereby affecting the accuracy of the subsequent determination of the detection area. Therefore, in the embodiment of the present application, the sending device preferably uses the first method to send the training data.
  • the transmitting device can also send the training data in mode two.
  • FIG. 4 is a schematic diagram of a detection area of each constellation point in the candidate constellation a determined by the receiving device in the embodiment of the present application, where the spiral area is the detection area of each constellation point.
  • the receiving device may determine the cumulative distance corresponding to the candidate constellation according to the detection regions of the respective constellation points in the candidate constellation.
  • FIG. 6 is a schematic flowchart of determining a cumulative distance corresponding to an alternate constellation diagram in the embodiment of the present application, which is specifically described below with reference to FIG. 6. As shown in Figure 6, the process includes:
  • Step 601 The receiving device divides the candidate constellation into a plurality of sectors in a radial direction.
  • the arc length of each sector should be less than a preset arc length threshold, that is, the arc length of each sector should be as large as possible. small.
  • the preset arc length threshold can be set empirically by those skilled in the art.
  • Step 602 The receiving device determines, according to the first sector of the multiple sectors, whether the number of detection areas in the first sector is greater than or equal to two, and if yes, calculating the first fan The distance between the detection areas in the area is obtained as the cumulative distance corresponding to the first sector, and if not, the cumulative distance corresponding to the first sector is directly determined as a preset distance threshold; A sector is any one of the plurality of sectors.
  • the preset distance threshold can be set by a person skilled in the art based on experience and actual conditions.
  • FIG. 4e is a schematic diagram of calculation of the cumulative distance corresponding to the first sector. As shown in Fig. 4e, the number of detection areas in the first sector is three, and the cumulative distance corresponding to the first sector is the sum of the lengths of d1 and d2 in Fig. 4e.
  • Step 603 The receiving device determines a sum of cumulative distances corresponding to the multiple sectors as a cumulative distance corresponding to the candidate constellation.
  • the receiving device divides the candidate constellation into a plurality of sectors, calculates a cumulative distance corresponding to each sector, and further obtains a cumulative distance corresponding to the candidate constellation, and the calculated preparation is obtained by the dividing manner.
  • the cumulative distance corresponding to the selected constellation is more accurate and more reflective of the distance between the detection regions of the constellation points in the alternative constellation.
  • step 402 the cumulative distance corresponding to each candidate constellation in the candidate constellation set will be accumulated.
  • the largest alternative constellation is determined as the target constellation.
  • the receiving device may determine whether the candidate constellation is the last candidate constellation in the candidate constellation set, and if not, continue to calculate The cumulative distance of an alternative constellation; if so, the cumulative distance of each of the candidate constellations in the candidate constellation set is compared to determine the candidate constellation with the largest cumulative distance as the target constellation.
  • the determining manner of the receiving device determining whether the candidate constellation is the last candidate constellation may be multiple. For example, the sending device may notify the receiving device of the number of the candidate constellations in the candidate constellation set. The receiving device determines whether the candidate constellation is the last candidate constellation according to the number of candidate constellations that have been processed.
  • the receiving device After the receiving device determines the target constellation, the receiving device sends a notification message to the sending device, where the notification message is used to notify the sending device of the target constellation, so that the sending device modulates the data to be sent by using the target constellation.
  • the notification message may carry the target constellation, that is, the receiving device directly sends the target constellation to the sending device, or the notification message may also carry the identifier information of the target constellation, that is, the receiving device determines The identification information of the target constellation is sent to the sending device, which is not specifically limited in this embodiment of the present application.
  • the receiving device receives the data sent by the transmitting device, that is, a symbol point, and determines the location of the symbol point according to the position of the symbol point in the target constellation and the detection region of each constellation point of the target constellation. Detection area. The detection area of the target constellation is determined by the receiving device according to the training data in the process of determining the target constellation.
  • step 405 the receiving device maps the data into bits according to the constellation points corresponding to the detection area where the data is located, and completes demodulation of the data.
  • the location of the data in the target constellation may be determined according to the location of the data.
  • the detection area of each constellation point in the target constellation is spiral, and the data received by the received data may be in the detection area of the constellation point or outside the detection area of the constellation point.
  • data in the detection area of the constellation point is detected according to the detection area of each constellation point, and data in the detection area not in the constellation point may be Determining the position of the data in the target constellation, determining a constellation point having the smallest distance from the location where the data is located, and demodulating the data according to the constellation point.
  • the data in the detection area that is not in the constellation point is also in the embodiment of the present application. Other methods may be used to detect the data, which are not limited.
  • the first detector in FIG. 2 is used to detect data in the detection area of the constellation point, and the second detector is configured to detect data in the detection area that is not in the constellation point. Thereby achieving complete and accurate detection of all data received.
  • the receiving device receives training data that is generated and sent by the sending device according to each constellation point in the candidate constellation; the receiving device is in the candidate constellation according to the training data corresponding to the respective constellation points. a location in the determining a detection area of each of the constellation points; the receiving device obtains a cumulative distance corresponding to the candidate constellation according to a distance between the detection areas of the respective constellation points; And determining, by the cumulative distance corresponding to the candidate constellation, the candidate constellation having the largest cumulative distance as the target constellation, and sending a notification message to the sending device, where the notification message is used to notify the sending device a target constellation to cause the transmitting device to modulate data to be transmitted according to the target constellation.
  • the detection region of each constellation point in the candidate constellation determined according to the training data is more Accurate and in line with the actual situation; and, since the cumulative distance corresponding to the candidate constellation is obtained according to the distance between the detection regions of the constellation points in the alternative constellation, the distance between the detection regions fully reflects the adoption of the preparation
  • the centralized distribution of the data received by the receiving device, and the more concentrated the received data distribution the greater the distance between the obtained detection regions, and the better the data transmission performance.
  • the embodiment determines the target constellation according to the cumulative distance that can accurately reflect the distance between the detection regions of the respective constellation points in the candidate constellation, and transmits the data by using the determined target constellation, which can have a high nonlinear effect. Effectively improve the data transmission performance.
  • the embodiment of the present application further provides a sending device and a receiving device, and specific contents of the sending device and the receiving device may be implemented by referring to the foregoing method.
  • FIG. 7 is a schematic structural diagram of a receiving device according to Embodiment 2 of the present application.
  • the receiving device 700 includes a transceiver module 701 and a processing module 702;
  • the transceiver module 701 is configured to receive, by the sending device, multiple candidate stars according to the set of candidate constellations Training data generated and transmitted for each candidate constellation in the block diagram;
  • the processing module 702 is configured to perform, according to the received training data, the training data generated and sent according to each of the candidate constellations of the candidate constellation of the candidate constellation set, according to the training data. Determining a detection area of each constellation point in the candidate constellation in a position in an alternate constellation; and obtaining the candidate constellation according to a distance between the detection areas of the respective constellation points Corresponding cumulative distances; and, after obtaining the cumulative distance corresponding to each candidate constellation in the candidate constellation set, determining the candidate constellation with the largest cumulative distance as the target constellation, and transmitting the The sending device sends a notification message, where the notification message is used to notify the sending device of the target constellation, so that the sending device modulates the data to be sent according to the target constellation.
  • the processing module 702 is specifically configured to determine, by using, a detection area of a first constellation point in the candidate constellation, where the first constellation point is in the candidate constellation Any constellation point:
  • the effective training data According to the position of the effective training data in the candidate constellation, the effective training data will be completely covered, and the area with the smallest area is determined as the detection area of the first constellation point.
  • processing module 702 is specifically configured to:
  • the received training data is clustered by using a preset clustering algorithm
  • the training data that cannot be clustered is removed as noise, and the effective training data is obtained.
  • processing module 702 is specifically configured to:
  • An area enclosed by the inner boundary and the outer boundary is determined as a detection area of the first constellation point.
  • processing module 702 is specifically configured to:
  • the first sector Determining, for the first sector of the plurality of sectors, whether the number of detection regions in the first sector is greater than or equal to two, and if so, calculating each detection region in the first sector The distance between the first sector is obtained, and if not, the cumulative distance corresponding to the first sector is directly determined as a preset distance threshold; the first sector is the plurality of Any of the sectors;
  • a sum of cumulative distances corresponding to the plurality of sectors is determined as a cumulative distance corresponding to the one candidate constellation.
  • the transceiver module 701 is further configured to: receive data sent by the sending device, where the data is obtained by the sending device modulating the to-be-sent data according to the target constellation;
  • the processing module 702 is further configured to: determine, according to the received data, a detection area where the data is located in a location of the target constellation and a detection area of each constellation point of the target constellation; and, according to the The constellation point corresponding to the detection area where the data is located demodulates the data.
  • the processing module 702 is further configured to: if it is determined that the data is not in a detection area of each constellation point of the target constellation, determine, according to a location of the data in the target constellation a constellation point having a smallest distance between locations where the data is located; and demodulating the data according to a constellation point having a smallest distance from a location where the data is located.
  • FIG. 8 is a schematic structural diagram of a sending device according to Embodiment 3 of the present application.
  • the transmitting device 800 includes a transceiver module 801 and a processing module 802;
  • the processing module 802 is configured to generate a training according to multiple candidate constellations in the set of candidate constellations Performing data and transmitting to the receiving device, so that the receiving device determines the target constellation from the plurality of candidate constellations according to the training data of the plurality of candidate constellations;
  • the transceiver module 801 is configured to receive a notification message sent by the receiving device, where the notification message is used to notify the sending device of the target constellation;
  • the processing module 802 is further configured to: modulate the to-be-transmitted data according to the target constellation, and send the data to the receiving device by using the transceiver module 801.
  • processing module 802 is specifically configured to:
  • the training data generated by the different constellation points in the any candidate constellation is respectively sent to the receiving device through the transceiver module according to a preset time interval.
  • FIG. 9 is a schematic structural diagram of a receiving device according to Embodiment 4 of the present application.
  • the receiving device 900 includes a communication interface 901, a processor 902, a memory 903, and a bus system 904;
  • the memory 903 is used to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 903 may be a random access memory (RAM) or a non-volatile memory such as at least one disk storage. Only one memory is shown in the figure, of course, the memory can also be set to a plurality as needed. Memory 903 can also be a memory in processor 902.
  • the memory 903 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set thereof:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 902 controls the operation of the receiving device 900, which may also be referred to as a CPU (Central Processing Unit).
  • the various components of the receiving device 900 are coupled together by a bus system 904, which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. But for the sake of clarity, in the picture
  • the various buses are labeled as the bus system 904. For ease of representation, only the schematic drawing is shown in FIG.
  • Processor 902 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 902 or an instruction in a form of software.
  • the processor 902 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 903, and the processor 902 reads the information in the memory 903 and performs the following steps in conjunction with its hardware:
  • the processor 902 is specifically configured to determine, by using, a detection area of a first constellation point in the candidate constellation, where the first constellation point is in the candidate constellation Any constellation point:
  • the effective training data According to the position of the effective training data in the candidate constellation, the effective training data will be completely covered, and the area with the smallest area is determined as the detection area of the first constellation point.
  • processor 902 is specifically configured to:
  • the received training data is clustered by using a preset clustering algorithm
  • the training data that cannot be clustered is removed as noise, and the effective training data is obtained.
  • processor 902 is specifically configured to:
  • An area enclosed by the inner boundary and the outer boundary is determined as a detection area of the first constellation point.
  • processor 902 is specifically configured to:
  • the first sector Determining, for the first sector of the plurality of sectors, whether the number of detection regions in the first sector is greater than or equal to two, and if so, calculating each detection region in the first sector The distance between the first sector is obtained, and if not, the cumulative distance corresponding to the first sector is directly determined as a preset distance threshold; the first sector is the plurality of Any of the sectors;
  • a sum of cumulative distances corresponding to the plurality of sectors is determined as a cumulative distance corresponding to the one candidate constellation.
  • the communication interface 901 is further configured to: receive data sent by the sending device, where the data is obtained by the sending device modulating the to-be-sent data according to the target constellation;
  • the processor 902 is further configured to: determine, according to the received data, a detection area where the data is located in a location of the target constellation and a detection area of each constellation point of the target constellation; and, according to the The constellation point corresponding to the detection area where the data is located demodulates the data.
  • the processor 902 is further configured to: if it is determined that the data is not in a detection area of each constellation point of the target constellation, determine, according to a location of the data in the target constellation a constellation point having a smallest distance between locations where the data is located; and demodulating the data according to a constellation point having a smallest distance from a location where the data is located.
  • FIG. 10 is a schematic structural diagram of a sending device according to Embodiment 5 of the present application.
  • the transmitting device 1000 includes a communication interface 1001, a processor 1002, a memory 1003, and a bus system 1004.
  • the memory 1003 is configured to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 1003 may be a random access memory (RAM) or a non-volatile memory, such as at least one disk storage. Only one memory is shown in the figure, of course, the memory can also be set to a plurality as needed.
  • the memory 1003 can also be a memory in the processor 1002.
  • the memory 1003 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set thereof:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 1002 controls the operation of the transmitting device 1000, which may also be referred to as a CPU (Central Processing Unit).
  • the transmitting device 1000 The various components are coupled together by a bus system 1004, which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like.
  • bus system 1004 may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like.
  • bus system 1004 may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like.
  • bus system 1004 for clarity of description, various buses are labeled as bus system 1004 in the figure. For ease of representation, only the schematic drawing is shown in FIG.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 1002 or implemented by the processor 1002.
  • the processor 1002 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1002 or an instruction in a form of software.
  • the processor 1002 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1003, and the processor 1002 reads the information in the memory 1003 and performs the following steps in conjunction with its hardware:
  • the processor 1002 is specifically configured to:
  • Training data generated by different constellation points in any of the alternative constellations according to a preset time interval And respectively sent to the receiving device through the communication interface.
  • the receiving device receives the training data that is generated and sent by the sending device according to each constellation point in the candidate constellation; the receiving device is in the candidate constellation according to the training data corresponding to the respective constellation points. a location, the detection area of each of the constellation points is determined; the receiving device obtains a cumulative distance corresponding to the candidate constellation according to a distance between the detection areas of the respective constellation points; Determining the cumulative distance corresponding to the candidate constellation, determining the candidate constellation with the largest cumulative distance as the target constellation, and sending a notification message to the sending device, where the notification message is used to notify the transmitting device of the target constellation a diagram for causing the transmitting device to modulate data to be transmitted according to the target constellation.
  • the detection region of each constellation point in the candidate constellation determined according to the training data is more Accurate and in line with the actual situation; and, since the cumulative distance corresponding to the candidate constellation is obtained according to the distance between the detection regions of the constellation points in the alternative constellation, the distance between the detection regions fully reflects the adoption of the preparation
  • the centralized distribution of the data received by the receiving device, and the more concentrated the received data distribution the greater the distance between the obtained detection regions, and the better the data transmission performance.
  • the embodiment determines the target constellation according to the cumulative distance that can accurately reflect the distance between the detection regions of the respective constellation points in the candidate constellation, and transmits the data by using the determined target constellation, which can have a high nonlinear effect. Effectively improve the data transmission performance.
  • embodiments of the present application can be provided as a method, or a computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the present application.
  • the flow chart can be implemented by computer program instructions And/or a combination of the processes and/or blocks in the block diagrams, and the flowcharts and/or blocks in the flowcharts.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Optical Communication System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种目标星座图的确定方法、数据发送方法及装置,包括:接收设备接收发送设备根据备选星座图中各个星座点生成并发送的训练数据,根据训练数据在备选星座图中的位置,确定各个星座点的检测区域,根据各个星座点的检测区域之间的距离,得到备选星座图对应的累积距离,进而根据多个备选星座图对应的累积距离,将累积距离最大的备选星座图确定为目标星座图,并将目标星座图通知给发送设备,以使发送设备根据目标星座图对待发送数据进行调制。采用本申请实施例中的方法,能够在高非线性效应下有效提高数据的传输性能。

Description

一种目标星座图的确定方法、数据发送方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种目标星座图的确定方法、数据发送方法及装置。
背景技术
在长途相干光传输系统中,要传输的数据被同时承载在光信号的幅度和相位上进行传输。在传输过程中,光信号的质量会受到光噪声和光纤非线性的影响而变差,劣化传输性能。其中,自相位调制(Self-phase modulation,简称SPM)和交叉相位调制(Cross-phase modulation,简称XPM)是对传输性能影响最大的两种非线性效应。
在光传输系统中,通常希望尽可能的增加入纤功率来提升光信号的光信噪比(Optical Signal Noise Ratio,简称OSNR),从而提升信号的传输性能与传输距离。然而,随着入纤功率的增加,SPM和XPM效应产生的随传输距离累积的非线性相位噪声也会增大,在这种高非线性效应的影响下,发射设备发射的星座图会在接收设备一侧呈现出不同于低非线性效应下的分布状态。由于现有的数据发送与接收检测方法是针对于低非线性效应而设计的,因此在高非线性下效应的工作性能很差。
综上,目前亟需一种用于发送数据的目标星座图的确定方法、数据发送方法,用于在高非线性效应下提高数据的传输性能。
发明内容
本申请实施例提供一种目标星座图的确定方法、数据发送方法及装置,用于在高非线性效应下提高数据的传输性能。
本申请实施例提供的一种目标星座图的确定方法,包括:
接收设备针对于接收到的发送设备根据备选星座图集合的多个备选星座 图中的每一个备选星座图生成并发送的训练数据,执行:根据所述训练数据在一个备选星座图中的位置,确定所述一个备选星座图中各个星座点的检测区域;以及,根据所述各个星座点的检测区域之间的距离,得到所述一个备选星座图对应的累积距离;
所述接收设备得到所述备选星座图集合中各个备选星座图对应的累积距离后,将累积距离最大的备选星座图确定为目标星座图,并向所述发送设备发送通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备,以使所述发送设备根据所述目标星座图对待发送数据进行调制。
如此,本申请实施例中,由于接收设备接收到的训练数据能够准确反映出高非线性效应影响下信号的分布状态,因此,根据训练数据确定出的备选星座图中各个星座点的检测区域更为准确和符合实际情况;且,由于备选星座图对应的累积距离是根据备选星座图中各个星座点的检测区域之间的距离得到的,而检测区域之间的距离充分反映了采用该备选星座图发送数据后,接收设备接收到的数据的集中分布情况,接收到的数据分布越集中,则得到的各个检测区域之间的距离越大,数据的传输性能越好,因此,本申请实施例根据能够准确反映出备选星座图中各个星座点的检测区域之间的距离情况的累积距离来确定目标星座图,并采用确定出的目标星座图来发送数据,能够在高非线性效应下有效提高数据的传输性能。
可选地,所述接收设备通过以下方式确定所述一个备选星座图中的第一星座点的检测区域,所述第一星座点为所述一个备选星座图中的任一星座点:
所述接收设备接收到所述发送设备发送的与所述第一星座点对应的训练数据后,对所述训练数据进行去噪处理,得到有效训练数据;
所述接收设备根据所述有效训练数据在所述备选星座图中的位置,将能够完全覆盖所述有效训练数据,且面积最小的区域确定为所述第一星座点的检测区域。
如此,接收设备对不同星座点生成的训练数据分别进行处理,避免了不同星座点生成的训练数据之间的干扰情况,使得得出的有效训练数据更为准 确,为后续确定各个星座点的检测区域奠定良好的数据基础。且,接收设备通过对训练数据进行去噪处理,有效排除了异常数据可能引起的误差,为后续确定星座点的检测区域提供了较为准确的数据基础。
可选地,所述接收设备对接收到的训练数据进行去噪处理,得到有效训练数据,包括:
所述接收设备采用预设的聚类算法对接收到的训练数据进行聚类处理;
所述接收设备将无法聚类的训练数据作为噪声去除,得到所述有效训练数据。
如此,接收设备对训练数据进行聚类处理,并根据聚类结果将无法聚类的训练数据,即零散的数据作为噪声去除,从而有效排除噪声干扰。
可选地,所述接收设备将能够完全覆盖所述有效训练数据,且面积最小的区域确定为所述第一星座点的检测区域,包括:
所述接收设备确定所述有效训练数据在所述备选星座图中的最小偏转角度和最大偏转角度;
所述接收设备将所述最小偏转角度和所述最大偏转角度之间的区间划分为多个角度区间;
所述接收设备确定每个角度区间中与所述备选星座图的圆点之间的距离最小的第一训练数据以及距离最大的第二训练数据;
所述接收设备将所述每个角度区间的所述第一训练数据所在的弧线确定为所述第一星座点对应的内边界,将所述每个角度区间的所述第二训练数据所在的弧线确定为所述第一星座点对应的外边界;
所述接收设备将所述内边界以及所述外边界所围成的区域确定为所述第一星座点的检测区域。
如此,接收设备先进行角度区间的划分,并分别针对各个角度区间确定出第一训练数据和第二训练数据,得到第一星座点对应的内边界和外边界,进而确定出第一星座点的检测区域,这种基于较小的角度区间来确定内边界和外边界的方式具有较高的准确性,从而也使得确定出的第一星座点的检测 区域较为准确。
可选地,所述接收设备根据所述一个备选星座图中各个星座点的检测区域之间的距离,得到所述一个备选星座图对应的累积距离,包括:
所述接收设备将所述一个备选星座图按径向划分为多个扇区;
所述接收设备针对所述多个扇区中的第一扇区,确定所述第一扇区中的检测区域的个数是否大于等于两个,若是,则计算所述第一扇区中的各个检测区域之间的距离,得到所述第一扇区对应的累积距离,若否,则直接确定所述第一扇区对应的累积距离设定为预设距离阈值;所述第一扇区为所述多个扇区中的任一扇区;
所述接收设备将所述多个扇区对应的累积距离之和,确定为所述一个备选星座图对应的累积距离。
如此,接收设备将备选星座图划分为多个扇区,计算各个扇区对应的累积距离,进而得到备选星座图对应的累积距离,通过这种划分方式使得计算出的备选星座图对应的累积距离准确性较高,且更能反映出备选星座图中各个星座点的检测区域之间的距离大小。
可选地,所述接收设备向所述发送设备发送通知消息之后,还包括:
所述接收设备接收所述发送设备发送的数据;所述数据是所述发送设备根据所述目标星座图对所述待发送数据进行调制后得到的;
所述接收设备根据接收到的数据在所述目标星座图的位置以及所述目标星座图的各个星座点的检测区域,确定所述数据所在的检测区域;
所述接收设备根据所述数据所在的检测区域对应的星座点,对所述数据进行解调。
如此,接收设备接收发送设备根据目标星座图调制后发送的数据,并采用之前确定的目标星座图的检测区域对数据进行检测,从而能够实现对数据的准确解调。
可选地,该方法还包括:
所述接收设备若确定所述数据不在所述目标星座图的各个星座点的检测 区域中,则根据所述数据在所述目标星座图中的位置,确定与所述数据所在的位置之间的距离最小的星座点;
所述接收设备根据与所述数据所在的位置之间的距离最小的星座点,对所述数据进行解调。
如此,对于不在星座点的检测区域内的数据,可根据与所述数据所在的位置之间的距离最小的星座点,实现对数据的解调,从而实现对接收到的所有数据进行完整准确的检测,有效避免对不在星座点的检测区域内的数据的误判。
本发明实施例提供的一种数据发送方法,该方法包括:
发送设备根据备选星座图集合中的多个备选星座图生成训练数据并发送给接收设备,以使所述接收设备根据所述多个备选星座图的训练数据,从所述多个备选星座图中确定出目标星座图;
所述发送设备接收所述接收设备发送的通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备;
所述发送设备根据所述目标星座图对所述待发送数据进行调制并发送给所述接收设备。
如此,发送设备根据备选星座图生成并发送训练数据,为接收设备确定目标星座图提供了有效的数据来源;发送设备根据目标星座图发送数据,结合接收设备根据目标星座图的检测区域检测数据,能够有效提高数据的传输性能。
可选地,所述发送设备根据多个备选星座图生成训练数据并发送给接收设备,包括:
所述发送设备针对任一备选星座图中的任一星座点生成训练数据;
所述发送设备将所述任一备选星座图中不同星座点生成的训练数据按照预设时间间隔分别发送给所述接收设备。
如此,发送设备采用上述发送训练数据,使得接收设备可分别对各个星座点生成的训练数据进行处理,避免了不同星座点生成的训练数据之间的干 扰情况,使得得出的有效训练数据更为准确。
本申请实施例提供一种接收设备,该接收设备包括收发模块和处理模块;
所述收发模块,用于接收发送设备根据备选星座图集合的多个备选星座图中的每一个备选星座图生成并发送的训练数据;
所述处理模块,用于针对于接收到的发送设备根据备选星座图集合的多个备选星座图中的每一个备选星座图生成并发送的训练数据,执行:根据所述训练数据在一个备选星座图中的位置,确定所述一个备选星座图中各个星座点的检测区域;以及,根据所述各个星座点的检测区域之间的距离,得到所述一个备选星座图对应的累积距离;以及,得到所述备选星座图集合中各个备选星座图对应的累积距离后,将累积距离最大的备选星座图确定为目标星座图,并通过收发模块向所述发送设备发送通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备,以使所述发送设备根据所述目标星座图对待发送数据进行调制。
可选地,所述处理模块具体用于,通过以下方式确定所述一个备选星座图中的第一星座点的检测区域,所述第一星座点为所述一个备选星座图中的任一星座点:
接收到所述发送设备发送的与所述第一星座点对应的训练数据后,对所述训练数据进行去噪处理,得到有效训练数据;
根据所述有效训练数据在所述备选星座图中的位置,将能够完全覆盖所述有效训练数据,且面积最小的区域确定为所述第一星座点的检测区域。
可选地,所述处理模块具体用于:
采用预设的聚类算法对接收到的训练数据进行聚类处理;
将无法聚类的训练数据作为噪声去除,得到所述有效训练数据。
可选地,所述处理模块具体用于:
确定所述有效训练数据在所述备选星座图中的最小偏转角度和最大偏转角度;
将所述最小偏转角度和所述最大偏转角度之间的区间划分为多个角度区 间;
确定每个角度区间中与所述备选星座图的圆点之间的距离最小的第一训练数据以及距离最大的第二训练数据;
将所述每个角度区间的所述第一训练数据所在的弧线确定为所述第一星座点对应的内边界,将所述每个角度区间的所述第二训练数据所在的弧线确定为所述第一星座点对应的外边界;
将所述内边界以及所述外边界所围成的区域确定为所述第一星座点的检测区域。
可选地,所述处理模块具体用于:
将所述一个备选星座图按径向划分为多个扇区;
针对所述多个扇区中的第一扇区,确定所述第一扇区中的检测区域的个数是否大于等于两个,若是,则计算所述第一扇区中的各个检测区域之间的距离,得到所述第一扇区对应的累积距离,若否,则直接确定所述第一扇区对应的累积距离设定为预设距离阈值;所述第一扇区为所述多个扇区中的任一扇区;
将所述多个扇区对应的累积距离之和,确定为所述一个备选星座图对应的累积距离。
可选地,所述收发模块还用于:接收所述发送设备发送的数据;所述数据是所述发送设备根据所述目标星座图对所述待发送数据进行调制后得到的;
所述处理模块还用于:根据接收到的数据在所述目标星座图的位置以及所述目标星座图的各个星座点的检测区域,确定所述数据所在的检测区域;以及,根据所述数据所在的检测区域对应的星座点,对所述数据进行解调。
可选地,所述处理模块还用于:若确定所述数据不在所述目标星座图的各个星座点的检测区域中,则根据所述数据在所述目标星座图中的位置,确定与所述数据所在的位置之间的距离最小的星座点;以及,根据与所述数据所在的位置之间的距离最小的星座点,对所述数据进行解调。
本申请实施例提供一种发送设备,该发送设备包括收发模块和处理模块;
所述处理模块,用于根据备选星座图集合中的多个备选星座图生成训练数据并发送给接收设备,以使所述接收设备根据所述多个备选星座图的训练数据,从所述多个备选星座图中确定出目标星座图;
所述收发模块,用于接收所述接收设备发送的通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备;
所述处理模块还用于:根据所述目标星座图对所述待发送数据进行调制,并通过所述收发模块发送给所述接收设备。
可选地,所述处理模块具体用于:
针对任一备选星座图中的任一星座点生成训练数据;
将所述任一备选星座图中不同星座点生成的训练数据按照预设时间间隔通过所述收发模块分别发送给所述接收设备。
本申请实施例提供的另一种接收设备,包括通信接口和处理器;
所述通信接口,用于接收发送设备根据备选星座图集合的多个备选星座图中的每一个备选星座图生成并发送的训练数据;
所述处理器,用于针对于接收到的发送设备根据备选星座图集合的多个备选星座图中的每一个备选星座图生成并发送的训练数据,执行:根据所述训练数据在一个备选星座图中的位置,确定所述一个备选星座图中各个星座点的检测区域;以及,根据所述各个星座点的检测区域之间的距离,得到所述一个备选星座图对应的累积距离;以及,得到所述备选星座图集合中各个备选星座图对应的累积距离后,将累积距离最大的备选星座图确定为目标星座图,并通过通信接口向所述发送设备发送通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备,以使所述发送设备根据所述目标星座图对待发送数据进行调制。
可选地,所述处理器具体用于,通过以下方式确定所述一个备选星座图中的第一星座点的检测区域,所述第一星座点为所述一个备选星座图中的任一星座点:
接收到所述发送设备发送的与所述第一星座点对应的训练数据后,对所述训练数据进行去噪处理,得到有效训练数据;
根据所述有效训练数据在所述备选星座图中的位置,将能够完全覆盖所述有效训练数据,且面积最小的区域确定为所述第一星座点的检测区域。
可选地,所述处理器具体用于:
采用预设的聚类算法对接收到的训练数据进行聚类处理;
将无法聚类的训练数据作为噪声去除,得到所述有效训练数据。
可选地,所述处理器具体用于:
确定所述有效训练数据在所述备选星座图中的最小偏转角度和最大偏转角度;
将所述最小偏转角度和所述最大偏转角度之间的区间划分为多个角度区间;
确定每个角度区间中与所述备选星座图的圆点之间的距离最小的第一训练数据以及距离最大的第二训练数据;
将所述每个角度区间的所述第一训练数据所在的弧线确定为所述第一星座点对应的内边界,将所述每个角度区间的所述第二训练数据所在的弧线确定为所述第一星座点对应的外边界;
将所述内边界以及所述外边界所围成的区域确定为所述第一星座点的检测区域。
可选地,所述处理器具体用于:
将所述一个备选星座图按径向划分为多个扇区;
针对所述多个扇区中的第一扇区,确定所述第一扇区中的检测区域的个数是否大于等于两个,若是,则计算所述第一扇区中的各个检测区域之间的距离,得到所述第一扇区对应的累积距离,若否,则直接确定所述第一扇区对应的累积距离设定为预设距离阈值;所述第一扇区为所述多个扇区中的任一扇区;
将所述多个扇区对应的累积距离之和,确定为所述一个备选星座图对应 的累积距离。
可选地,所述通信接口还用于:接收所述发送设备发送的数据;所述数据是所述发送设备根据所述目标星座图对所述待发送数据进行调制后得到的;
所述处理器还用于:根据接收到的数据在所述目标星座图的位置以及所述目标星座图的各个星座点的检测区域,确定所述数据所在的检测区域;以及,根据所述数据所在的检测区域对应的星座点,对所述数据进行解调。
可选地,所述处理器还用于:若确定所述数据不在所述目标星座图的各个星座点的检测区域中,则根据所述数据在所述目标星座图中的位置,确定与所述数据所在的位置之间的距离最小的星座点;以及,根据与所述数据所在的位置之间的距离最小的星座点,对所述数据进行解调。
本申请实施例提供一种发送设备,该发送设备包括通信接口和处理器;
所述处理器,用于根据备选星座图集合中的多个备选星座图生成训练数据并发送给接收设备,以使所述接收设备根据所述多个备选星座图的训练数据,从所述多个备选星座图中确定出目标星座图;
所述通信接口,用于接收所述接收设备发送的通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备;
所述处理器还用于:根据所述目标星座图对所述待发送数据进行调制,并通过所述通信接口发送给所述接收设备。
可选地,所述处理器具体用于:
针对任一备选星座图中的任一星座点生成训练数据;
将所述任一备选星座图中不同星座点生成的训练数据按照预设时间间隔通过所述通信接口分别发送给所述接收设备。
本申请的上述实施例中,接收设备接收发送设备根据备选星座图中各个星座点生成并发送的训练数据;所述接收设备根据所述各个星座点对应的训练数据在所述备选星座图中的位置,确定所述各个星座点的检测区域;所述接收设备根据所述各个星座点的检测区域之间的距离,得到所述备选星座图 对应的累积距离;所述接收设备根据多个所述备选星座图对应的累积距离,将累积距离最大的备选星座图确定为目标星座图,并向所述发送设备发送通知消息,所述通知消息用于通知所述发送设备所述目标星座图,以使所述发送设备根据所述目标星座图对待发送数据进行调制。本申请实施例中,由于接收设备接收到的训练数据能够准确反映出高非线性效应影响下信号的分布状态,因此,根据训练数据确定出的备选星座图中各个星座点的检测区域更为准确和符合实际情况;且,由于备选星座图对应的累积距离是根据备选星座图中各个星座点的检测区域之间的距离得到的,而检测区域之间的距离充分反映了采用该备选星座图发送数据后,接收设备接收到的数据的集中分布情况,接收到的数据分布越集中,则得到的各个检测区域之间的距离越大,数据的传输性能越好,因此,本申请实施例根据能够准确反映出备选星座图中各个星座点的检测区域之间的距离情况的累积距离来确定目标星座图,并采用确定出的目标星座图来发送数据,能够在高非线性效应下有效提高数据的传输性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1a为本申请实施例中包括8个星座点的星座图的示意图;
图1b为双级检测器划分信号平面的示意图;
图1c为低非线性场景下接收端接收到的信号点的聚类结果示意图;
图1d为高非线性场景下接收端接收到的信号点的聚类结果示意图
图2为本申请实施例适用的一种系统架构示意图;
图3为本申请实施例一提供的一种进行数据传输的整体流程示意图;
图4a为本申请实施例中备选星座图a的示意图;
图4b为本申请实施例中有效训练数据的分布示意图;
图4c为本申请实施例中第一星座点的检测区域示意图;
图4d为本申请实施例中接收设备确定出的备选星座图中各个星座点的检测区域示意图;
图4e为第一扇区对应的累积距离的计算示意图;
图5为本申请实施例中接收设备确定第一星座点的检测区域的流程示意图;
图6为本申请实施例中确定备选星座图对应的累积距离的流程示意图;
图7为本申请实施例二提供的一种接收设备的结构示意图;
图8为本申请实施例三提供的一种发送设备的结构示意图;
图9为本申请实施例四提供的一种接收设备的结构示意图;
图10为本申请实施例五提供的一种发送设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
由于实际要传输的信号(基带信号)所占据的频带通常是低频开始的,而实际通信信道往往都是带通的,为实现在这种情况下的通信,需要对包含信息的信号进行调制,以适合实际信道的传输。采用星座图对信号进行调制是一种常用的数字调制技术,其过程是将携带数字信息的比特序列映射成适于传输的符号序列。其中,星座图代表输出符号的所有取值组成的集合,星座图上的每一个星座点对应输出符号的一种取值。
进行数据传输的过程为:发送端采用预先设计好的星座图对数据进行调制并发送,接收端接收到发送设备发送的数据后,对数据进行检测,从而实 现数据的解调。
为获得良好的传输性能,现有技术中提供一种基于Min-TS-SER(最小双级误符号率)算法的星座图设计方法(发送端),同时配合双级检测器(接收端)实现数据的传输。具体来说,Min-TS-SER算法以接收端采用双级检测器时获得最小误符号率为准则,确定出用于发送数据的星座图,随后,发送端采用该星座图对数据进行调制并发送。接收端接收到发送设备发送的数据后,采用双级检测器对数据进行检测。其中,双级检测器将信号平面分成N个子区域,N的数值为发送端所采用的星座图中星座点的个数,每个子区域即为每个星座点对应的检测区域,当接收的信号点落在某星座点的检测区域内时,双级检测器判断发送端发送的为该星座点。在低非线性场景中(例如,入纤功率较小的短距光传输线路中),由于非线性效应较小,因此,发送端发送的每个星座点,经接收端接收后,信号点的聚类会集中在该星座点对应的检测区域内,从而采用上述方法能够实现对数据的准确解调,具有较好的传输性能。
举个例子,通过Min-TS-SER算法确定出的星座图如图1a所示,为一个包括8个星座点的星座图,分别为星座点1、星座点2、星座点3、星座点4、星座点5、星座点6、星座点7、星座点8。相应地,图1b为双级检测器划分信号平面的示意图。如图1b所示,双级检测器将信号平面分成8个子区域,分别为星座点1、星座点2、星座点3、星座点4、星座点5、星座点6、星座点7、星座点8对应的检测区域。在低非线性场景下,发送端发送多个星座点1后,接收端接收到的信号点的聚类结果如图1c所示,集中在星座点1对应的检测区域内,从而实现能够实现对数据的准确解调。
然而,在高非线性场景中(例如,入纤功率较高的长途光传输线路中),由于非线性相位噪声较大,导致信号点的聚类会跨越双级检测器中多个星座点的检测区域。图1d为高非线性场景下信号点的聚类结果示意图。如图1d所示,发送端发送的多个星座点1,接收端接收到的信号点聚类跨越了星座点1、星座点2和星座点4对应的检测区域,从而导致大量的检测错误,严重影 响数据的传输性能。
基于上述问题,本申请实施例提供一种用于发送数据的目标星座图的确定方法、数据发送与接收方法,用于在高非线性效应下提高数据的传输性能。
本申请实施例中的目标星座图的确定方法、数据发送与接收方法可适用于多种系统架构。图2为本申请实施例适用的一种系统架构示意图。如图2所示,该系统架构中包括发送设备201、传输通道和接收设备202,发送设备201采用本申请实施例中确定出的目标星座图对数据进行调制后,通过传输通道将调制后的数据发送给接收设备202,接收设备202根据目标星座中各个星座点的检测区域对接收到的调制后的数据进行解调,从而实现数据的有效传输。
如图2所示,发送设备201中具体可包括星座图映射器2011、二维调制器2012,接收设备202中具体可包括光前端2021、时域/频域均衡器2022、第一检测器2023、第二检测器2024。
具体来说,星座图映射器2011可以为最大似然最优星座图(Most Likely optimal signal constellation,简称MLOSC)映射器,用于根据本申请实施例中的目标星座图确定方法确定出的目标星座图,将比特流映射成二维符号;二维调制器2012,用于将二维符号调制成光信号发送到光纤信道;光前端2021,用于将接收到的光信号转化回电信号;时域/频域均衡器2022,用于补偿光信道中的色散和其他效应;第一检测器2023可以为蒙特卡洛最大似然(Monte Carlo Most Likely detector,简称MCMLD)检测器,用于根据目标星座图中各个星座点的检测区域,对时域/频域均衡器2022输出的符号进行检测;第二检测器2024用于检测MCMLD检测器无法检测的剩余符号,即对在各个星座点的检测区域以外的符号进行检测。
基于图2所示的系统架构,图3为本申请实施例一提供的一种进行数据传输的整体流程示意图,如图3所示,包括以下步骤:
步骤301,发送设备根据备选星座图集合中的多个备选星座图生成训练数据并发送给接收设备;
步骤401,接收设备针对于接收到的发送设备根据备选星座图集合的多个备选星座图中的每一个备选星座图生成并发送的训练数据,执行:根据所述训练数据在一个备选星座图中的位置,确定所述一个备选星座图中各个星座点的检测区域;以及,根据所述各个星座点的检测区域之间的距离,得到所述一个备选星座图对应的累积距离;
步骤402,接收设备得到所述备选星座图集合中各个备选星座图对应的累积距离后,将累积距离最大的备选星座图确定为目标星座图,并向所述发送设备发送通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备;
步骤302,发送设备接收所述接收设备发送的通知消息;
步骤303,发送设备根据所述目标星座图对所述待发送数据进行调制并发送给所述接收设备;
步骤403,接收设备接收发送设备发送的数据;所述数据是所述发送设备根据目标星座图对待发送数据进行调制后得到的;
步骤404,接收设备根据接收到的数据在所述目标星座图的位置以及所述目标星座图的各个星座点的检测区域,确定所述数据所在的检测区域;
步骤405,接收设备根据所述数据所在的检测区域对应的星座点,对所述数据进行解调。
本申请实施例中,由于接收设备接收到的训练数据能够准确反映出高非线性效应影响下信号的分布状态,因此,根据训练数据确定出的备选星座图中各个星座点的检测区域更为准确和符合实际情况;且,由于备选星座图对应的累积距离是根据备选星座图中各个星座点的检测区域之间的距离得到的,而检测区域之间的距离充分反映了采用该备选星座图发送数据后,接收设备接收到的数据的集中分布情况,接收到的数据分布越集中,则得到的各个检测区域之间的距离越大,数据的传输性能越好,因此,本申请实施例根据能够准确反映出备选星座图中各个星座点的检测区域之间的距离情况的累积距离来确定目标星座图,并采用确定出的目标星座图来发送数据,能够在 高非线性效应下有效提高数据的传输性能。
上述步骤301至步骤303为本申请实施例中数据发送的流程示意图,步骤401至步骤402为本申请实施例中确定目标星座图的流程示意图,步骤403至步骤405为本申请实施例中数据接收的流程示意图。
具体来说,在步骤301中,可根据预先设定的规则确定备选星座图集合,预先设定的规则可由本领域技术人员根据经验设置,以具有8个星座点的星座图为例,预先设定的规则中可以包括以下几个条件:(1)若星座图中心有一个星座点,可将其作为最内环,总环数至多为三,否则,总环数至多为二;(2)外层两个环包含的星座点的个数应尽可能接近;(3)在每个环上,多个星座点等分该环。
本申请实施例中,确定出备选星座图集合后,发送设备可按照设置的顺序来对各个备选星座图进行处理,具体地,发送设备可按照设置的顺序从备选星座图集合中选取一个备选星座图,并根据选取的备选星座图生成训练数据发送给接收设备。其中,发送设备根据选取的备选星座图生成训练数据发送给接收设备的方式可以有多种,例如,如下方式一和方式二。
方式一:
发送设备针对选取的备选星座图中的各个星座点分别生成训练数据,并将选取的备选星座图中不同星座点生成的训练数据按照预设时间间隔分别发送给所述接收设备,从而使得接收设备能够对不同星座点生成的训练数据分别确定不同星座点的检测区域。其中,预设时间间隔可由本领域技术人员根据经验设置,具体来说,可依据接收设备根据接收到的一个星座点的训练数据确定出检测区域所需的时间来设置。
举个例子,发送设备选取了备选星座图a,图4a为备选星座图a的示意图,如图4a所示,备选星座图a具有8个星座点(分别为星座点1、星座点2、星座点3、星座点4、星座点5、星座点6、星座点7、星座点8),则发送设备可根据8个星座点分别生成训练数据,并可按照预设顺序,例如,先发送星座点1生成的训练数据,达到预设时间间隔后,发送星座点2生成的训练数据,再次达到 预设时间间隔后,发送星座点3生成的训练数据,以此类推,直到将星座点8生成的训练数据发送给接收设备。
以上过程仅为示例性说明,具体实施过程中,发送设备可先生成8个星座点的训练数据,然后按照预设时间间隔来发送,或者,也可以先生成星座点1的训练数据并发送,并在发送过程中同时生成星座点2的训练数据,便于后续发送。本申请实施例对生成星座点的方式不做具体限定,只要满足按照预设时间间隔将各个星座点生成的训练数据分别发送给接收设备即可。
相应地,在步骤401,接收设备接收到发送设备通过上述方式发送的训练数据后,可对不同星座点生成的训练数据分别进行处理。针对备选星座图中的第一星座点(第一星座点为所述备选星座图中的任一星座点),接收设备接收到第一星座点生成的训练数据后,可通过以下方式确定第一星座点的检测区域:
接收设备接收到所述发送设备发送的所述第一星座点生成的训练数据后,对所述训练数据进行去噪处理,得到有效训练数据。具体来说,接收设备可采用多种方法进行去噪处理,本申请实施例中优选地,接收设备可采用预设的聚类算法对接收到的训练数据进行聚类处理,并将无法聚类的训练数据作为噪声去除,从而得到所述有效训练数据,以第一星座点为星座点1为例,如图4b所示,为通过上述方式得到的有效训练数据的分布示意图。其中,预设的聚类算法可以为DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,DBSCAN聚类算法是一种基于密度的散点聚类算法,可用于预先未知聚类类别个数的情形中。
本申请实施例中,若DBSCAN聚类算法将第一星座点生成的训练数据聚成多个类别,则在去除无法聚类的训练数据后,可将多个类别合并为一个大类别,以便于后续针对一个大类别确定第一星座点的检测区域。
接收设备根据图4b中所示的有效训练数据在所述备选星座图a中的位置,将能够完全覆盖所述有效训练数据,且面积最小的区域确定为所述第一星座点的检测区域。
图5为本申请实施例中接收设备确定第一星座点的检测区域的流程示意图。接收设备可根据图5中所示的流程来确定第一星座点的检测区域。下面结合图5进行具体说明,该流程包括:
步骤501,接收设备确定所述有效训练数据在所述备选星座图中的最小偏转角度和最大偏转角度;如图4b所示,接收设备确定有效训练数据在所述备选星座图a中的最小偏转角度为45°,最大偏转角度为135°。
步骤502,所述接收设备将所述最小偏转角度和所述最大偏转角度之间的区间划分为多个角度区间;具体来说,接收设备可按照微小步长来划分角度区间,微小步长可由本领域技术人员根据经验设置。
步骤503,所述接收设备确定每个角度区间中与所述备选星座图的圆点之间的距离最小的第一训练数据以及距离最大的第二训练数据。其中,第一训练数据与备选星座图的圆点之间的距离即为该角度区间的最小半径,第一训练数据可以为最小半径上的一个样点;第二训练数据与备选星座图的圆点之间的距离即为该角度区间的最大半径,第二训练数据可以为最大半径上的一个样点。
步骤504,所述接收设备将所述每个角度区间的所述第一训练数据所在的弧线确定为所述第一星座点对应的内边界,将所述每个角度区间的所述第二训练数据所在的弧线确定为所述第一星座点对应的外边界。
步骤505,所述接收设备将所述内边界以及所述外边界所围成的区域确定为所述第一星座点的检测区域,如图4c所示,为第一星座点的检测区域示意图。
需要说明的是,上述图4b和图4c仅为示例性说明,其中的最大偏转角度和最小偏转角度以及检测区域的形状等可能存在偏差。
本申请实施例中,发送设备采用方式一发送训练数据后,接收设备可分别对各个星座点生成的训练数据进行处理,避免了不同星座点生成的训练数据之间的干扰情况,使得得出的有效训练数据更为准确,为后续确定各个星座点的检测区域奠定良好的数据基础。
进一步地,接收设备先进行角度区间的划分,并分别针对各个角度区间确定出第一训练数据和第二训练数据,得到第一星座点对应的内边界和外边界,进而确定出第一星座点的检测区域,这种基于较小的角度区间来确定内边界和外边界的方式具有较高的准确性,从而也使得确定出的第一星座点的检测区域较为准确。
方式二:
发送设备针对选取的备选星座图中的各个星座点生成训练数据,并同时发送给接收设备,从而使得接收设备能够同时对不同星座点生成的训练数据进行后续处理。
相应地,在步骤401,接收设备接收到发送设备通过上述方式发送的训练数据后,可同时对备选星座图中的各个星座点生成的训练数据进行去噪处理,得到各个星座点对应的有效训练数据。随后采用上述图5中的流程对各个星座点对应的有效训练数据进行处理,得到各个星座点的检测区域。
根据上述内容可知,发送设备采用方式二发送训练数据后,接收设备可同时对备选星座图中的各个星座点生成的训练数据进行同时处理,从而能够有效提高处理的速度,节省处理时间。
本申请实施例中,接收设备确定备选星座图中的各个星座点的检测区域时,需要采用聚类算法来对各个星座点生成的训练数据进行聚类,而当发送设备采用方式二发送训练数据时,接收设备同时对各个星座点生成的训练数据进行聚类,若某一星座点生成的训练数据聚成多个类别,则会导致聚类混乱,进而影响后续确定检测区域的准确性,因此,本申请实施例中优选发送设备采用方式一来发送训练数据。当然,在传输通道性能较好或其它适合的情况下,发送设备也可以方式二来发送训练数据。
图4d为本申请实施例中接收设备确定出的备选星座图a中各个星座点的检测区域示意图,图中的螺旋状区域即为各个星座点的检测区域。在步骤401中,接收设备可根据备选星座图中各个星座点的检测区域确定备选星座图对应的累积距离。
图6为本申请实施例中确定备选星座图对应的累积距离的流程示意图,下面结合图6进行具体说明。如图6所示,该流程包括:
步骤601,接收设备将所述备选星座图按径向划分为多个扇区;其中,各个扇区的弧长应小于预设弧长阈值,即应尽量使得各个扇区的弧长都足够小。预设弧长阈值可由本领域技术人员根据经验设置。
步骤602,所述接收设备针对所述多个扇区中的第一扇区,确定所述第一扇区中的检测区域的个数是否大于等于两个,若是,则计算所述第一扇区中的各个检测区域之间的距离,得到所述第一扇区对应的累积距离,若否,则直接确定所述第一扇区对应的累积距离设定为预设距离阈值;所述第一扇区为所述多个扇区中的任一扇区。预设距离阈值可由本领域技术人员根据经验和实际情况来设置。
图4e为第一扇区对应的累积距离的计算示意图。如图4e中所示,第一扇区中的检测区域的个数为三个,则第一扇区对应的累积距离为图4e中的d1和d2的长度之和。
步骤603,所述接收设备将所述多个扇区对应的累积距离之和,确定为所述备选星座图对应的累积距离。
本申请实施例中,接收设备将备选星座图划分为多个扇区,计算各个扇区对应的累积距离,进而得到备选星座图对应的累积距离,通过这种划分方式使得计算出的备选星座图对应的累积距离准确性较高,且更能反映出备选星座图中各个星座点的检测区域之间的距离大小。
接收设备通过上述方式可确定出备选星座图集合中各个备选星座图的累积距离后,在步骤402中,根据所述备选星座图集合中各个备选星座图对应的累积距离,将累积距离最大的备选星座图确定为目标星座图。
本申请实施例中,接收设备在确定出备选星座图的累积距离后,可判断该备选星座图是否为备选星座图集合中的最后一个备选星座图,若否,则继续计算下一备选星座图的累积距离;若是,则比较备选星座图集合中各个备选星座图的累积距离,从而将累积距离最大的备选星座图确定为目标星座图。 其中,接收设备判断备选星座图是否为最后一个备选星座图的判断方式可以有多种,例如,发送设备可将备选星座图集合中的备选星座图的个数预先通知给接收设备,接收设备根据已经处理过的备选星座图的个数,判断该备选星座图是否为最后一个备选星座图。
接收设备确定出目标星座图后,向发送设备发送通知消息,所述通知消息用于将所述目标星座图通知给发送设备,以使发送设备采用目标星座图对待发送数据进行调制。具体来说,所述通知消息中可以携带目标星座图,即接收设备直接将目标星座图发送给发送设备,或者,所述通知消息中也可以携带目标星座图的标识信息,即接收设备将确定出的目标星座图的标识信息发送给发送设备,本申请实施例对此不做具体限定。
在步骤403和步骤404中,接收设备接收发送设备发送的数据,即为符号点,并根据符号点在目标星座图中的位置以及目标星座图的各个星座点的检测区域,确定符号点所在的检测区域。其中,目标星座图的检测区域是接收设备在确定目标星座图的过程中,根据训练数据已经确定出来的。
在步骤405中,接收设备根据所述数据所在的检测区域对应的星座点,将所述数据映射为比特,完成对数据的解调。
进一步地,接收设备若确定所述数据不在所述目标星座图的各个星座点的检测区域中,则可根据所述数据在所述目标星座图中的位置,确定与所述数据所在的位置之间的距离最小的星座点;根据与所述数据所在的位置之间的距离最小的星座点,对所述数据进行解调。
具体来说,如图4d所示,目标星座图中各个星座点的检测区域为螺旋型,接收数据接收到的数据可能在星座点的检测区域内,也可能在星座点的检测区域外。为实现对接收到的所有数据进行准确检测,本申请实施例中根据各个星座点的检测区域检测出在星座点的检测区域内的数据,对于不在星座点的检测区域内的数据,可根据所述数据在所述目标星座图中的位置,确定与所述数据所在的位置之间的距离最小的星座点,进而根据该星座点对数据进行解调。可选地,对于不在星座点的检测区域内的数据,本申请实施例中也 可以采用其它的方式来检测数据,具体不作限定。
根据上述内容,本申请实施例图2中的第一检测器用于实现对在星座点的检测区域内的数据进行检测,第二检测器用于实现对不在星座点的检测区域内的数据进行检测,从而实现对接收到的所有数据进行完整准确的检测。
本申请的上述实施例中,接收设备接收发送设备根据备选星座图中各个星座点生成并发送的训练数据;所述接收设备根据所述各个星座点对应的训练数据在所述备选星座图中的位置,确定所述各个星座点的检测区域;所述接收设备根据所述各个星座点的检测区域之间的距离,得到所述备选星座图对应的累积距离;所述接收设备根据多个所述备选星座图对应的累积距离,将累积距离最大的备选星座图确定为目标星座图,并向所述发送设备发送通知消息,所述通知消息用于通知所述发送设备所述目标星座图,以使所述发送设备根据所述目标星座图对待发送数据进行调制。本申请实施例中,由于接收设备接收到的训练数据能够准确反映出高非线性效应影响下信号的分布状态,因此,根据训练数据确定出的备选星座图中各个星座点的检测区域更为准确和符合实际情况;且,由于备选星座图对应的累积距离是根据备选星座图中各个星座点的检测区域之间的距离得到的,而检测区域之间的距离充分反映了采用该备选星座图发送数据后,接收设备接收到的数据的集中分布情况,接收到的数据分布越集中,则得到的各个检测区域之间的距离越大,数据的传输性能越好,因此,本申请实施例根据能够准确反映出备选星座图中各个星座点的检测区域之间的距离情况的累积距离来确定目标星座图,并采用确定出的目标星座图来发送数据,能够在高非线性效应下有效提高数据的传输性能。
针对上述方法流程,本申请实施例还提供一种发送设备和接收设备,该发送设备和接收设备的具体内容可以参照上述方法实施。
基于相同构思,图7为本申请实施例二提供的一种接收设备的结构示意图。如图7所示,该接收设备700包括收发模块701和处理模块702;
所述收发模块701,用于接收发送设备根据备选星座图集合的多个备选星 座图中的每一个备选星座图生成并发送的训练数据;
所述处理模块702,用于针对于接收到的发送设备根据备选星座图集合的多个备选星座图中的每一个备选星座图生成并发送的训练数据,执行:根据所述训练数据在一个备选星座图中的位置,确定所述一个备选星座图中各个星座点的检测区域;以及,根据所述各个星座点的检测区域之间的距离,得到所述一个备选星座图对应的累积距离;以及,得到所述备选星座图集合中各个备选星座图对应的累积距离后,将累积距离最大的备选星座图确定为目标星座图,并通过收发模块701向所述发送设备发送通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备,以使所述发送设备根据所述目标星座图对待发送数据进行调制。
可选地,所述处理模块702具体用于,通过以下方式确定所述一个备选星座图中的第一星座点的检测区域,所述第一星座点为所述一个备选星座图中的任一星座点:
接收到所述发送设备发送的与所述第一星座点对应的训练数据后,对所述训练数据进行去噪处理,得到有效训练数据;
根据所述有效训练数据在所述备选星座图中的位置,将能够完全覆盖所述有效训练数据,且面积最小的区域确定为所述第一星座点的检测区域。
可选地,所述处理模块702具体用于:
采用预设的聚类算法对接收到的训练数据进行聚类处理;
将无法聚类的训练数据作为噪声去除,得到所述有效训练数据。
可选地,所述处理模块702具体用于:
确定所述有效训练数据在所述备选星座图中的最小偏转角度和最大偏转角度;
将所述最小偏转角度和所述最大偏转角度之间的区间划分为多个角度区间;
确定每个角度区间中与所述备选星座图的圆点之间的距离最小的第一训练数据以及距离最大的第二训练数据;
将所述每个角度区间的所述第一训练数据所在的弧线确定为所述第一星座点对应的内边界,将所述每个角度区间的所述第二训练数据所在的弧线确定为所述第一星座点对应的外边界;
将所述内边界以及所述外边界所围成的区域确定为所述第一星座点的检测区域。
可选地,所述处理模块702具体用于:
将所述一个备选星座图按径向划分为多个扇区;
针对所述多个扇区中的第一扇区,确定所述第一扇区中的检测区域的个数是否大于等于两个,若是,则计算所述第一扇区中的各个检测区域之间的距离,得到所述第一扇区对应的累积距离,若否,则直接确定所述第一扇区对应的累积距离设定为预设距离阈值;所述第一扇区为所述多个扇区中的任一扇区;
将所述多个扇区对应的累积距离之和,确定为所述一个备选星座图对应的累积距离。
可选地,所述收发模块701还用于:接收所述发送设备发送的数据;所述数据是所述发送设备根据所述目标星座图对所述待发送数据进行调制后得到的;
所述处理模块702还用于:根据接收到的数据在所述目标星座图的位置以及所述目标星座图的各个星座点的检测区域,确定所述数据所在的检测区域;以及,根据所述数据所在的检测区域对应的星座点,对所述数据进行解调。
可选地,所述处理模块702还用于:若确定所述数据不在所述目标星座图的各个星座点的检测区域中,则根据所述数据在所述目标星座图中的位置,确定与所述数据所在的位置之间的距离最小的星座点;以及,根据与所述数据所在的位置之间的距离最小的星座点,对所述数据进行解调。
基于相同构思,图8为本申请实施例三提供的一种发送设备的结构示意图。如图8所示,该发送设备800包括收发模块801和处理模块802;
所述处理模块802,用于根据备选星座图集合中的多个备选星座图生成训 练数据并发送给接收设备,以使所述接收设备根据所述多个备选星座图的训练数据,从所述多个备选星座图中确定出目标星座图;
所述收发模块801,用于接收所述接收设备发送的通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备;
所述处理模块802还用于:根据所述目标星座图对所述待发送数据进行调制,并通过所述收发模块801发送给所述接收设备。
可选地,所述处理模块802具体用于:
针对任一备选星座图中的任一星座点生成训练数据;
将所述任一备选星座图中不同星座点生成的训练数据按照预设时间间隔通过所述收发模块分别发送给所述接收设备。
基于相同构思,图9为本申请实施例四提供的一种接收设备的结构示意图。如图9所示,该接收设备900包括通信接口901、处理器902、存储器903和总线系统904;
其中,存储器903,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器903可能为随机存取存储器(random access memory,简称RAM),也可能为非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。图中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器903也可以是处理器902中的存储器。
存储器903存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器902控制接收设备900的操作,处理器902还可以称为CPU(Central Processing Unit,中央处理单元)。具体的应用中,接收设备900的各个组件通过总线系统904耦合在一起,其中总线系统904除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图 中将各种总线都标为总线系统904。为便于表示,图9中仅是示意性画出。
上述本申请实施例揭示的方法可以应用于处理器902中,或者由处理器902实现。处理器902可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器902中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器902可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器903,处理器902读取存储器903中的信息,结合其硬件执行以下步骤:
通过所述通信接口901接收发送设备根据备选星座图集合的多个备选星座图中的每一个备选星座图生成并发送的训练数据;
针对于接收到的发送设备根据备选星座图集合的多个备选星座图中的每一个备选星座图生成并发送的训练数据,执行:根据所述训练数据在一个备选星座图中的位置,确定所述一个备选星座图中各个星座点的检测区域;以及,根据所述各个星座点的检测区域之间的距离,得到所述一个备选星座图对应的累积距离;以及,得到所述备选星座图集合中各个备选星座图对应的累积距离后,将累积距离最大的备选星座图确定为目标星座图,并通过通信接口901向所述发送设备发送通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备,以使所述发送设备根据所述目标星座图对待发送数据进行调制。
可选地,所述处理器902具体用于,通过以下方式确定所述一个备选星座图中的第一星座点的检测区域,所述第一星座点为所述一个备选星座图中的 任一星座点:
接收到所述发送设备发送的与所述第一星座点对应的训练数据后,对所述训练数据进行去噪处理,得到有效训练数据;
根据所述有效训练数据在所述备选星座图中的位置,将能够完全覆盖所述有效训练数据,且面积最小的区域确定为所述第一星座点的检测区域。
可选地,所述处理器902具体用于:
采用预设的聚类算法对接收到的训练数据进行聚类处理;
将无法聚类的训练数据作为噪声去除,得到所述有效训练数据。
可选地,所述处理器902具体用于:
确定所述有效训练数据在所述备选星座图中的最小偏转角度和最大偏转角度;
将所述最小偏转角度和所述最大偏转角度之间的区间划分为多个角度区间;
确定每个角度区间中与所述备选星座图的圆点之间的距离最小的第一训练数据以及距离最大的第二训练数据;
将所述每个角度区间的所述第一训练数据所在的弧线确定为所述第一星座点对应的内边界,将所述每个角度区间的所述第二训练数据所在的弧线确定为所述第一星座点对应的外边界;
将所述内边界以及所述外边界所围成的区域确定为所述第一星座点的检测区域。
可选地,所述处理器902具体用于:
将所述一个备选星座图按径向划分为多个扇区;
针对所述多个扇区中的第一扇区,确定所述第一扇区中的检测区域的个数是否大于等于两个,若是,则计算所述第一扇区中的各个检测区域之间的距离,得到所述第一扇区对应的累积距离,若否,则直接确定所述第一扇区对应的累积距离设定为预设距离阈值;所述第一扇区为所述多个扇区中的任一扇区;
将所述多个扇区对应的累积距离之和,确定为所述一个备选星座图对应的累积距离。
可选地,所述通信接口901还用于:接收所述发送设备发送的数据;所述数据是所述发送设备根据所述目标星座图对所述待发送数据进行调制后得到的;
所述处理器902还用于:根据接收到的数据在所述目标星座图的位置以及所述目标星座图的各个星座点的检测区域,确定所述数据所在的检测区域;以及,根据所述数据所在的检测区域对应的星座点,对所述数据进行解调。
可选地,所述处理器902还用于:若确定所述数据不在所述目标星座图的各个星座点的检测区域中,则根据所述数据在所述目标星座图中的位置,确定与所述数据所在的位置之间的距离最小的星座点;以及,根据与所述数据所在的位置之间的距离最小的星座点,对所述数据进行解调。
基于相同构思,图10为本申请实施例五提供的一种发送设备的结构示意图。如图10所示,该发送设备1000包括通信接口1001、处理器1002、存储器1003和总线系统1004;
其中,存储器1003,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器1003可能为随机存取存储器(random access memory,简称RAM),也可能为非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。图中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器1003也可以是处理器1002中的存储器。
存储器1003存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器1002控制发送设备1000的操作,处理器1002还可以称为CPU(Central Processing Unit,中央处理单元)。具体的应用中,发送设备1000的 各个组件通过总线系统1004耦合在一起,其中总线系统1004除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统1004。为便于表示,图10中仅是示意性画出。
上述本申请实施例揭示的方法可以应用于处理器1002中,或者由处理器1002实现。处理器1002可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1002中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1002可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1003,处理器1002读取存储器1003中的信息,结合其硬件执行以下步骤:
根据备选星座图集合中的多个备选星座图生成训练数据并通过所述通信接口1001发送给接收设备,以使所述接收设备根据所述多个备选星座图的训练数据,从所述多个备选星座图中确定出目标星座图;
通过所述通信接口1001接收所述接收设备发送的通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备;
根据所述目标星座图对所述待发送数据进行调制,并通过所述通信接口1001发送给所述接收设备。
可选地,所述处理器1002具体用于:
针对任一备选星座图中的任一星座点生成训练数据;
将所述任一备选星座图中不同星座点生成的训练数据按照预设时间间隔 通过所述通信接口分别发送给所述接收设备。
从上述内容可以看出:
本申请实施例中,接收设备接收发送设备根据备选星座图中各个星座点生成并发送的训练数据;所述接收设备根据所述各个星座点对应的训练数据在所述备选星座图中的位置,确定所述各个星座点的检测区域;所述接收设备根据所述各个星座点的检测区域之间的距离,得到所述备选星座图对应的累积距离;所述接收设备根据多个所述备选星座图对应的累积距离,将累积距离最大的备选星座图确定为目标星座图,并向所述发送设备发送通知消息,所述通知消息用于通知所述发送设备所述目标星座图,以使所述发送设备根据所述目标星座图对待发送数据进行调制。本申请实施例中,由于接收设备接收到的训练数据能够准确反映出高非线性效应影响下信号的分布状态,因此,根据训练数据确定出的备选星座图中各个星座点的检测区域更为准确和符合实际情况;且,由于备选星座图对应的累积距离是根据备选星座图中各个星座点的检测区域之间的距离得到的,而检测区域之间的距离充分反映了采用该备选星座图发送数据后,接收设备接收到的数据的集中分布情况,接收到的数据分布越集中,则得到的各个检测区域之间的距离越大,数据的传输性能越好,因此,本申请实施例根据能够准确反映出备选星座图中各个星座点的检测区域之间的距离情况的累积距离来确定目标星座图,并采用确定出的目标星座图来发送数据,能够在高非线性效应下有效提高数据的传输性能。
本领域内的技术人员应明白,本申请的实施例可提供为方法、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图 和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种目标星座图的确定方法,其特征在于,该方法包括:
    接收设备针对于接收到的发送设备根据备选星座图集合的多个备选星座图中的每一个备选星座图生成并发送的训练数据,执行:根据所述训练数据在一个备选星座图中的位置,确定所述一个备选星座图中各个星座点的检测区域;以及,根据所述各个星座点的检测区域之间的距离,得到所述一个备选星座图对应的累积距离;
    所述接收设备得到所述备选星座图集合中各个备选星座图对应的累积距离后,将累积距离最大的备选星座图确定为目标星座图,并向所述发送设备发送通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备,以使所述发送设备根据所述目标星座图对待发送数据进行调制。
  2. 如权利要求1所述的方法,其特征在于,所述接收设备通过以下方式确定所述一个备选星座图中的第一星座点的检测区域,所述第一星座点为所述一个备选星座图中的任一星座点:
    所述接收设备接收到所述发送设备发送的与所述第一星座点对应的训练数据后,对所述训练数据进行去噪处理,得到有效训练数据;
    所述接收设备根据所述有效训练数据在所述备选星座图中的位置,将能够完全覆盖所述有效训练数据,且面积最小的区域确定为所述第一星座点的检测区域。
  3. 如权利要求2所述的方法,其特征在于,所述接收设备对接收到的训练数据进行去噪处理,得到有效训练数据,包括:
    所述接收设备采用预设的聚类算法对接收到的训练数据进行聚类处理;
    所述接收设备将无法聚类的训练数据作为噪声去除,得到所述有效训练数据。
  4. 如权利要求2所述的方法,其特征在于,所述接收设备将能够完全覆盖所述有效训练数据,且面积最小的区域确定为所述第一星座点的检测区域, 包括:
    所述接收设备确定所述有效训练数据在所述备选星座图中的最小偏转角度和最大偏转角度;
    所述接收设备将所述最小偏转角度和所述最大偏转角度之间的区间划分为多个角度区间;
    所述接收设备确定每个角度区间中与所述备选星座图的圆点之间的距离最小的第一训练数据以及距离最大的第二训练数据;
    所述接收设备将所述每个角度区间的所述第一训练数据所在的弧线确定为所述第一星座点对应的内边界,将所述每个角度区间的所述第二训练数据所在的弧线确定为所述第一星座点对应的外边界;
    所述接收设备将所述内边界以及所述外边界所围成的区域确定为所述第一星座点的检测区域。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述接收设备根据所述一个备选星座图中各个星座点的检测区域之间的距离,得到所述一个备选星座图对应的累积距离,包括:
    所述接收设备将所述一个备选星座图按径向划分为多个扇区;
    所述接收设备针对所述多个扇区中的第一扇区,确定所述第一扇区中的检测区域的个数是否大于等于两个,若是,则计算所述第一扇区中的各个检测区域之间的距离,得到所述第一扇区对应的累积距离,若否,则直接确定所述第一扇区对应的累积距离设定为预设距离阈值;所述第一扇区为所述多个扇区中的任一扇区;
    所述接收设备将所述多个扇区对应的累积距离之和,确定为所述一个备选星座图对应的累积距离。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,所述接收设备向所述发送设备发送通知消息之后,还包括:
    所述接收设备接收所述发送设备发送的数据;所述数据是所述发送设备根据所述目标星座图对所述待发送数据进行调制后得到的;
    所述接收设备根据接收到的数据在所述目标星座图的位置以及所述目标星座图的各个星座点的检测区域,确定所述数据所在的检测区域;
    所述接收设备根据所述数据所在的检测区域对应的星座点,对所述数据进行解调。
  7. 如权利要求6所述的方法,其特征在于,该方法还包括:
    所述接收设备若确定所述数据不在所述目标星座图的各个星座点的检测区域中,则根据所述数据在所述目标星座图中的位置,确定与所述数据所在的位置之间的距离最小的星座点;
    所述接收设备根据与所述数据所在的位置之间的距离最小的星座点,对所述数据进行解调。
  8. 一种数据发送方法,其特征在于,该方法包括:
    发送设备根据备选星座图集合中的多个备选星座图生成训练数据并发送给接收设备,以使所述接收设备根据所述多个备选星座图的训练数据,从所述多个备选星座图中确定出目标星座图;
    所述发送设备接收所述接收设备发送的通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备;
    所述发送设备根据所述目标星座图对所述待发送数据进行调制并发送给所述接收设备。
  9. 如权利要求8所述的方法,其特征在于,所述发送设备根据多个备选星座图生成训练数据并发送给接收设备,包括:
    所述发送设备针对任一备选星座图中的任一星座点生成训练数据;
    所述发送设备将所述任一备选星座图中不同星座点生成的训练数据按照预设时间间隔分别发送给所述接收设备。
  10. 一种接收设备,其特征在于,该接收设备包括通信接口和处理器;
    所述通信接口,用于接收发送设备根据备选星座图集合的多个备选星座图中的每一个备选星座图生成并发送的训练数据;
    所述处理器,用于针对于接收到的发送设备根据备选星座图集合的多个 备选星座图中的每一个备选星座图生成并发送的训练数据,执行:根据所述训练数据在一个备选星座图中的位置,确定所述一个备选星座图中各个星座点的检测区域;以及,根据所述各个星座点的检测区域之间的距离,得到所述一个备选星座图对应的累积距离;以及,得到所述备选星座图集合中各个备选星座图对应的累积距离后,将累积距离最大的备选星座图确定为目标星座图,并通过通信接口向所述发送设备发送通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备,以使所述发送设备根据所述目标星座图对待发送数据进行调制。
  11. 如权利要求10所述的接收设备,其特征在于,所述处理器具体用于,通过以下方式确定所述一个备选星座图中的第一星座点的检测区域,所述第一星座点为所述一个备选星座图中的任一星座点:
    接收到所述发送设备发送的与所述第一星座点对应的训练数据后,对所述训练数据进行去噪处理,得到有效训练数据;
    根据所述有效训练数据在所述备选星座图中的位置,将能够完全覆盖所述有效训练数据,且面积最小的区域确定为所述第一星座点的检测区域。
  12. 如权利要求11所述的接收设备,其特征在于,所述处理器具体用于:
    采用预设的聚类算法对接收到的训练数据进行聚类处理;
    将无法聚类的训练数据作为噪声去除,得到所述有效训练数据。
  13. 如权利要求11所述的接收设备,其特征在于,所述处理器具体用于:
    确定所述有效训练数据在所述备选星座图中的最小偏转角度和最大偏转角度;
    将所述最小偏转角度和所述最大偏转角度之间的区间划分为多个角度区间;
    确定每个角度区间中与所述备选星座图的圆点之间的距离最小的第一训练数据以及距离最大的第二训练数据;
    将所述每个角度区间的所述第一训练数据所在的弧线确定为所述第一星座点对应的内边界,将所述每个角度区间的所述第二训练数据所在的弧线确 定为所述第一星座点对应的外边界;
    将所述内边界以及所述外边界所围成的区域确定为所述第一星座点的检测区域。
  14. 如权利要求10-13中任一项所述的接收设备,其特征在于,所述处理器具体用于:
    将所述一个备选星座图按径向划分为多个扇区;
    针对所述多个扇区中的第一扇区,确定所述第一扇区中的检测区域的个数是否大于等于两个,若是,则计算所述第一扇区中的各个检测区域之间的距离,得到所述第一扇区对应的累积距离,若否,则直接确定所述第一扇区对应的累积距离设定为预设距离阈值;所述第一扇区为所述多个扇区中的任一扇区;
    将所述多个扇区对应的累积距离之和,确定为所述一个备选星座图对应的累积距离。
  15. 如权利要求10-14中任一项所述的接收设备,其特征在于,所述通信接口还用于:接收所述发送设备发送的数据;所述数据是所述发送设备根据所述目标星座图对所述待发送数据进行调制后得到的;
    所述处理器还用于:根据接收到的数据在所述目标星座图的位置以及所述目标星座图的各个星座点的检测区域,确定所述数据所在的检测区域;以及,根据所述数据所在的检测区域对应的星座点,对所述数据进行解调。
  16. 如权利要求15所述的接收设备,其特征在于,所述处理器还用于:若确定所述数据不在所述目标星座图的各个星座点的检测区域中,则根据所述数据在所述目标星座图中的位置,确定与所述数据所在的位置之间的距离最小的星座点;以及,根据与所述数据所在的位置之间的距离最小的星座点,对所述数据进行解调。
  17. 一种发送设备,其特征在于,该发送设备包括通信接口和处理器;
    所述处理器,用于根据备选星座图集合中的多个备选星座图生成训练数据并发送给接收设备,以使所述接收设备根据所述多个备选星座图的训练数 据,从所述多个备选星座图中确定出目标星座图;
    所述通信接口,用于接收所述接收设备发送的通知消息,所述通知消息用于将所述目标星座图通知给所述发送设备;
    所述处理器还用于:根据所述目标星座图对所述待发送数据进行调制,并通过所述通信接口发送给所述接收设备。
  18. 如权利要求17所述的发送设备,其特征在于,所述处理器具体用于:
    针对任一备选星座图中的任一星座点生成训练数据;
    将所述任一备选星座图中不同星座点生成的训练数据按照预设时间间隔通过所述通信接口分别发送给所述接收设备。
PCT/CN2016/095349 2016-08-15 2016-08-15 一种目标星座图的确定方法、数据发送方法及装置 WO2018032268A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/095349 WO2018032268A1 (zh) 2016-08-15 2016-08-15 一种目标星座图的确定方法、数据发送方法及装置
CN201680083071.XA CN109076041B (zh) 2016-08-15 2016-08-15 一种目标星座图的确定方法、数据发送方法及装置
EP16913032.5A EP3490207B1 (en) 2016-08-15 2016-08-15 Target constellation diagram determination method and apparatus
US16/274,209 US10841135B2 (en) 2016-08-15 2019-02-12 Target constellation diagram determining method, data sending method, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/095349 WO2018032268A1 (zh) 2016-08-15 2016-08-15 一种目标星座图的确定方法、数据发送方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/274,209 Continuation US10841135B2 (en) 2016-08-15 2019-02-12 Target constellation diagram determining method, data sending method, and apparatus

Publications (1)

Publication Number Publication Date
WO2018032268A1 true WO2018032268A1 (zh) 2018-02-22

Family

ID=61196115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095349 WO2018032268A1 (zh) 2016-08-15 2016-08-15 一种目标星座图的确定方法、数据发送方法及装置

Country Status (4)

Country Link
US (1) US10841135B2 (zh)
EP (1) EP3490207B1 (zh)
CN (1) CN109076041B (zh)
WO (1) WO2018032268A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022042523A1 (zh) * 2020-08-25 2022-03-03 华为技术有限公司 一种通信方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10530490B1 (en) * 2019-02-27 2020-01-07 Fujitsu Limited Probabilistic constellation shaping for optical networks with diverse transmission media
WO2020261401A1 (ja) * 2019-06-25 2020-12-30 日本電信電話株式会社 光送受信システム
CN112260729A (zh) * 2020-10-10 2021-01-22 上海擎昆信息科技有限公司 一种信号检测方法及装置、电子设备、可读存储介质
WO2022213326A1 (zh) * 2021-04-08 2022-10-13 华为技术有限公司 一种数据接收方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050237971A1 (en) * 2004-02-23 2005-10-27 Kabushiki Kaisha Toshiba Adaptive MIMO systems
CN101340412A (zh) * 2008-05-22 2009-01-07 清华大学 抗相位噪声的幅度相位联合键控调制解调方法
CN102447667A (zh) * 2010-09-30 2012-05-09 华为技术有限公司 基于网络编码的数据处理方法和系统
CN104158633A (zh) * 2014-09-09 2014-11-19 电子科技大学 一种基于混合高斯模型的最大似然调制识别方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734920B2 (en) * 2001-04-23 2004-05-11 Koninklijke Philips Electronics N.V. System and method for reducing error propagation in a decision feedback equalizer of ATSC VSB receiver
US7693032B2 (en) * 2004-02-13 2010-04-06 Neocific, Inc. Methods and apparatus for multi-carrier communication systems with adaptive transmission and feedback
US20070047678A1 (en) * 2005-08-30 2007-03-01 Motorola, Inc. Method and system for combined polarimetric and coherent processing for a wireless system
CN100558096C (zh) * 2007-07-25 2009-11-04 北京天碁科技有限公司 一种应用于通信系统的正交幅度调制解调方法和装置
US8306102B2 (en) * 2009-08-27 2012-11-06 Telefonaktiebolaget L M Ericsson (Publ) Demodulation using serial localization with indecision
US8874987B2 (en) * 2011-10-06 2014-10-28 Nec Laboratories America, Inc. Optimum signal constellation design for high-speed optical transmission
US8897655B2 (en) * 2012-06-18 2014-11-25 Alcatel Lucent Adaptive constellations and decision regions for an optical transport system
US9106470B2 (en) * 2012-12-03 2015-08-11 Qualcomm Incorporated Enhanced decoding and demapping method and apparatus for QAM data signals
WO2015120891A1 (en) * 2014-02-13 2015-08-20 Telefonaktiebolaget L M Ericsson (Publ) An adaptive modulation system and method for increasing throughput over a transmission channel
CN105704073B (zh) * 2014-11-28 2019-07-09 联芯科技有限公司 一种干扰消除方法及装置
CN104682996B (zh) * 2015-02-03 2017-01-11 北京大学 一种全双工系统的自干扰消除方法
CN104702557A (zh) * 2015-02-27 2015-06-10 南京航空航天大学 一种基于不完全csi的分布式天线系统自适应调制方法
CN105656604B (zh) * 2016-01-21 2019-03-26 北京邮电大学 一种比特交织极化编码调制方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050237971A1 (en) * 2004-02-23 2005-10-27 Kabushiki Kaisha Toshiba Adaptive MIMO systems
CN101340412A (zh) * 2008-05-22 2009-01-07 清华大学 抗相位噪声的幅度相位联合键控调制解调方法
CN102447667A (zh) * 2010-09-30 2012-05-09 华为技术有限公司 基于网络编码的数据处理方法和系统
CN104158633A (zh) * 2014-09-09 2014-11-19 电子科技大学 一种基于混合高斯模型的最大似然调制识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3490207A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022042523A1 (zh) * 2020-08-25 2022-03-03 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN109076041B (zh) 2020-07-07
EP3490207B1 (en) 2021-03-31
US20190182080A1 (en) 2019-06-13
CN109076041A (zh) 2018-12-21
EP3490207A1 (en) 2019-05-29
EP3490207A4 (en) 2019-07-24
US10841135B2 (en) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2018032268A1 (zh) 一种目标星座图的确定方法、数据发送方法及装置
JP7091025B2 (ja) 信号送信装置、キャリア位相復元装置及び方法
CN110971560B (zh) 一种qam信号调制方法、装置及电子设备
US11218355B2 (en) Multi-dimensional signal encoding
CN104283835A (zh) 一种正交幅度调制软比特解调方法及其装置
WO2022218319A1 (zh) 符号发送方法、符号接收方法、发送设备、接收设备及存储介质
US8331496B2 (en) Phase recovery device, phase recovery method and receiver for 16 QAM data modulation
US20240080126A1 (en) How to Maximize Throughput and Phase Margin in 5G/6G Communications
JP6761173B2 (ja) 無線解析装置、無線解析方法、及びプログラム
Kader et al. Image transmission over noisy wireless channels using HQAM and median filter
CN109861733B (zh) 一种物理层安全通信方法、装置及电子设备
WO2021033297A1 (ja) 無線通信装置、制御回路、無線通信方法および記憶媒体
KR102133416B1 (ko) 펄스진폭변조와 직교진폭변조의 대수우도비 생성 장치 및 방법
US20070030915A1 (en) Receiver Block Providing Signal Quality Information in a Communication System with Signal Constellation not Having multiple Symbols in Same Angle
US9100115B1 (en) Processor unit for determining a quality indicator of a communication channel and a method thereof
JP5240102B2 (ja) 送信装置及びサイクリックプレフィックス挿入方法
US9276788B2 (en) Joint demodulating and demapping of digital signal
CN109412701B (zh) 一种选择奇数阶正交振幅调制信号预编码星座点方法
US20180109287A1 (en) Transmission device, method thereof, and program
US20210328852A1 (en) Systems and Methods for Supporting Both Pulse Amplitude Modulation and Quadrature Amplitude Modulation
US11646894B2 (en) Single channel multiple access communications system
JP3965328B2 (ja) 送信装置、受信装置及び無線通信方法
JP2017183921A (ja) 測定装置、測定方法およびプログラム
Chernoyarov et al. On the Digital Algorithms for the DASK Signal Noncoherent Demodulation
KR20230164190A (ko) 심볼 송신 및 수신 방법, 송신 기기, 수신 기기 및 저장 매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016913032

Country of ref document: EP

Effective date: 20190225