WO2018030323A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2018030323A1
WO2018030323A1 PCT/JP2017/028550 JP2017028550W WO2018030323A1 WO 2018030323 A1 WO2018030323 A1 WO 2018030323A1 JP 2017028550 W JP2017028550 W JP 2017028550W WO 2018030323 A1 WO2018030323 A1 WO 2018030323A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
liquid cooling
oil
unit
liquid
Prior art date
Application number
PCT/JP2017/028550
Other languages
French (fr)
Japanese (ja)
Inventor
山口 康夫
貴之 右田
勇樹 石川
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201780049277.5A priority Critical patent/CN109643937B/en
Priority to DE112017004011.6T priority patent/DE112017004011T5/en
Priority to JP2018533022A priority patent/JPWO2018030323A1/en
Priority to US16/323,269 priority patent/US11139720B2/en
Publication of WO2018030323A1 publication Critical patent/WO2018030323A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics

Definitions

  • the present invention relates to a drive device.
  • a rotating electric machine includes a case for storing a lubricating fluid for lubrication and cooling such as a stator and a rotor.
  • Patent Document 1 describes a rotating electrical machine mounted on a vehicle.
  • the lubricating fluid supplied to the stator or the like in order to efficiently cool the stator or the like, it is preferable to cool the lubricating fluid supplied to the stator or the like to lower the temperature of the lubricating fluid.
  • a cooling device is provided in the middle of an oil passage for supplying the lubricating fluid stored in the case to the stator or the like, and the lubricating fluid is cooled by the cooling device. It is conceivable to cool the battery.
  • an object of the present invention is to provide a drive device having a structure capable of sufficiently cooling oil for cooling and suppressing an increase in size.
  • One aspect of the drive device of the present invention includes a motor having a motor shaft disposed along a first central axis extending in one direction, and a first accommodating portion that accommodates the motor, and can store oil.
  • a liquid cooling part that is disposed in thermal contact with a housing and an inverter unit that is electrically connected to the motor, and in which a refrigerant liquid flows, and is connected to the liquid cooling part, and the refrigerant liquid in the liquid cooling part And a pipe part through which the pipe part passes.
  • a drive device having a structure that can sufficiently cool the cooling oil and can suppress the increase in size.
  • FIG. 1 is a perspective view showing the drive device of the first embodiment.
  • FIG. 2 is a perspective view showing the driving apparatus of the first embodiment.
  • FIG. 3 is a diagram showing the drive device of the first embodiment, and is a partial cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is a perspective view schematically showing a part of the drive device of the first embodiment.
  • FIG. 5 is a diagram illustrating a part of the bus bar according to the first embodiment. 6 is a view showing the cooling unit of the first embodiment, and is a cross-sectional view taken along the line VI-VI in FIG.
  • FIG. 7 is a perspective view schematically showing a part of a drive device which is a modified example of the first embodiment.
  • FIG. 1 is a perspective view showing the drive device of the first embodiment.
  • FIG. 2 is a perspective view showing the driving apparatus of the first embodiment.
  • FIG. 3 is a diagram showing the drive device of the first embodiment, and is a partial cross-sectional view
  • FIG. 8 is a cross-sectional view showing the driving apparatus of the second embodiment.
  • FIG. 9 is a perspective view schematically showing a part of the driving apparatus of the third embodiment.
  • FIG. 10 is a cross-sectional view illustrating a cooling unit that is another example of each embodiment.
  • the Z-axis direction shown as appropriate in each drawing is a vertical direction Z in which the positive side is the upper side and the negative side is the lower side.
  • the Y-axis direction is a direction orthogonal to the Z-axis direction.
  • the X-axis direction is a direction orthogonal to both the Z-axis direction and the Y-axis direction.
  • the Y-axis direction is simply referred to as “first direction Y”
  • the negative side in the Y-axis direction is referred to as “first direction one side”
  • the positive side in the Y-axis direction is referred to as “first direction”. Call the other side. *
  • the X-axis direction is a direction in which the first central axis J1 shown as appropriate in each drawing extends. That is, the axial direction of the first central axis J1 is a direction orthogonal to both the vertical direction Z and the first direction Y.
  • the X-axis direction is simply referred to as “axial direction X”
  • the negative side in the X-axis direction is referred to as “axial one side”
  • the positive side in the X-axis direction is referred to as “axial other side”.
  • the radial direction centered on the first central axis J1 is simply referred to as “radial direction”
  • the circumferential direction centered on the first central axis J1 is simply referred to as “circumferential direction”. *
  • the vertical direction, the upper side, and the lower side are simply names for explaining the relative positional relationship between the respective parts, and the actual layout relationship is a layout relationship other than the layout relationship indicated by these names. May be. *
  • the drive device 10 of the present embodiment includes a housing 20, a motor 30, an inverter unit 40, a bus bar 70, a liquid cooling unit 50, and piping units 61, 62, and 63.
  • the differential device 80 is provided.
  • the housing 20 accommodates the motor 30 and the differential device 80.
  • the housing 20 includes a first housing part 21 and a second housing part 22.
  • the first accommodating part 21 accommodates the motor 30.
  • the 1st accommodating part 21 has the cylindrical part 21a and the protrusion part 21b.
  • the cylindrical portion 21a has a substantially cylindrical shape extending in the axial direction X.
  • the protruding portion 21 b protrudes from the cylindrical portion 21 a toward the lower side and slightly obliquely in the first direction.
  • the cross-sectional shape orthogonal to the axial direction X of the protrusion 21b is a trapezoid whose width decreases as the distance from the cylindrical portion 21a increases. *
  • a direction parallel to the direction in which the protruding portion 21b protrudes is referred to as a protruding direction P, and is indicated as a P-axis direction in each drawing.
  • the protruding direction P is a direction slightly inclined with respect to the vertical direction Z toward the other side in the first direction.
  • a direction orthogonal to both the projecting direction P and the axial direction X is referred to as a width direction W, and is indicated as a W-axis direction in each drawing.
  • the width direction W is a direction inclined slightly downward with respect to the first direction Y.
  • the positive side of the protruding direction P is called the protruding direction upper side
  • the negative side of the protruding direction P is called the protruding direction lower side.
  • the liquid surface OS1 of the oil O is schematically shown as a state when the protruding direction P is parallel to the vertical direction Z. That is, in the figure showing the protruding direction P as the vertical direction, the liquid surface OS1 of the oil O is shown as a surface orthogonal to the protruding direction P.
  • the second accommodating portion 22 accommodates the differential device 80.
  • the second housing portion 22 is disposed on the other axial side of the first housing portion 21.
  • the second housing portion 22 extends in the first direction Y and protrudes further to the other side in the first direction than the first housing portion 21.
  • the inside of the first housing portion 21 and the inside of the second housing portion 22 are the connection portion between the first housing portion 21 and the second housing portion 22, that is, the other in the axial direction of the first housing portion 21. It is connected at the end of the side.
  • the lower end portion of the second accommodating portion 22 is disposed below the lower end portion of the first accommodating portion 21. *
  • the housing 20 can store the oil O.
  • the 1st accommodating part 21 and the 2nd accommodating part 22 can store the oil O, respectively.
  • the liquid level OS ⁇ b> 1 of the oil O stored in the first storage unit 21 is located above the liquid level OS ⁇ b> 2 of the oil O stored in the second storage unit 22.
  • the motor 30 includes a motor shaft 31, a rotor core 32, and a stator 33 that are disposed along a first central axis J ⁇ b> 1 extending in one direction, that is, the axial direction X.
  • the rotor core 32 is fixed to the motor shaft 31.
  • the rotor core 32 has an annular shape that is fixed to the outer peripheral surface of the motor shaft 31.
  • the rotor core 32 is disposed above the liquid surface OS1 of the oil O stored in the first storage unit 21. Therefore, it is possible to prevent the rotor core 32 from being immersed in the oil O stored in the first housing portion 21. Thereby, when the rotor core 32 rotates, it can suppress that oil O becomes rotational resistance of the rotor core 32.
  • the upper limit of the liquid level OS1 of the oil O in the first storage unit 21 is, for example, the liquid level upper limit OS1a indicated by a two-dot chain line in FIG.
  • the liquid level upper limit OS 1 a is in contact with the lower end of the rotor core 32.
  • the driving device 10 is driven to rotate the differential device 80
  • the oil O stored in the second housing portion 22 is lifted up by the gear of the differential device 80 and flows into the first housing portion 21. .
  • the quantity of the oil O stored in the 1st accommodating part 21 increases, and liquid level OS1 of the oil O stored in the 1st accommodating part 21 rises.
  • the liquid level OS1 of the oil O does not rise above the liquid level upper limit OS1a.
  • the stator 33 faces the rotor core 32 via a gap in the radial direction.
  • the stator 33 surrounds the outer side of the rotor core 32 in the radial direction.
  • the stator 33 has a stator core 34 and a plurality of coils 35.
  • the stator core 34 has an annular core back 34a and a plurality of teeth 34b extending radially inward from the core back 34a.
  • the core back 34 a is fixed to the radially inner side surface of the first housing portion 21.
  • the plurality of coils 35 are attached to the stator core 34. More specifically, the plurality of coils 35 are attached to each of the plurality of teeth 34b.
  • the inverter unit 40 is electrically connected to the motor 30.
  • the inverter unit 40 controls the current supplied to the motor 30.
  • the inverter unit 40 is fixed to the outer surface of the housing 20.
  • the inverter unit 40 includes a first unit 41 and a second unit 42.
  • the first unit 41 is fixed to the lower portion of the first housing portion 21.
  • the first unit 41 includes a first inverter case 41 a and a first inverter unit 43. That is, the inverter unit 40 has a first inverter unit 43.
  • the first inverter case 41a has a substantially cubic box shape. As shown in FIG. 3, the first inverter case 41 a is fixed to the radially outer surface of the first housing part 21 and extends downward from the first housing part 21 in the protruding direction. The lower part of the first accommodating portion 21 is accommodated in the first inverter case 41a. More specifically, the lower portion of the cylindrical portion 21a in the protruding direction and the protruding portion 21b are accommodated in the first inverter case 41a. *
  • the first inverter unit 43 is accommodated in the first inverter case 41a.
  • the 1st inverter part 43 is installed in the bottom face of the 1st inverter case 41a.
  • the first inverter unit 43 includes a rectangular parallelepiped box-shaped case 43a and a plurality of power elements 43b accommodated in the case 43a.
  • the case 43a opens to the upper side in the protruding direction.
  • the opening of the case 43a is closed by a heat sink 55 described later.
  • the power element 43b is attached to the lower surface of the heat sink 55 in the protruding direction.
  • the amount of heat generated by the power element 43b is relatively large, for example, the largest among the elements of the inverter unit 40. *
  • the second unit 42 includes a second inverter case 42 a, a second inverter unit 44, and a connector unit 45. That is, the inverter unit 40 has a second inverter unit 44.
  • the second inverter case 42a has a substantially cubic box shape.
  • the second inverter case 42 a is fixed to the radially outer side surface of the first housing part 21 and extends from the first housing part 21 to one side in the substantially first direction.
  • the end of one side in the first direction of the first housing part 21 is housed inside the second inverter case 42a.
  • the lower end portion of the second inverter case 42a is connected to the end portion on one side in the first direction of the first inverter case 41a.
  • the inside of the second inverter case 42a is connected to the inside of the first inverter case 41a at the connection portion with the first inverter case 41a.
  • the second inverter unit 44 is accommodated in the second inverter case 42 a.
  • the second inverter unit 44 is disposed on one side in the first direction of the first housing unit 21 in the first direction Y orthogonal to the vertical direction Z.
  • the second inverter unit 44 is electrically connected to the first inverter unit 43.
  • the elements included in the second inverter unit 44 are elements that generate a relatively small amount of heat or elements that do not generate heat. *
  • the connector part 45 protrudes upward from the upper surface of the second inverter case 42a.
  • An external power supply (not shown) is connected to the connector unit 45. Power is supplied to the first inverter unit 43 and the second inverter unit 44 through an external power source connected to the connector unit 45. *
  • the bus bar 70 has a rod shape extending in the protruding direction P.
  • the lower end of the bus bar 70 in the protruding direction is electrically connected to the first inverter unit 43.
  • the bus bar 70 extends from the first inverter portion 43 to the upper side in the protruding direction and passes through the housing 20.
  • a plurality of bus bars 70 are provided along the width direction W. In FIG. 4, for example, three bus bars 70 are provided. *
  • a crimp terminal 71 is fixed to the upper end of the bus bar 70 in the protruding direction.
  • the crimp terminal 71 is fixed to the bus bar 70 by, for example, screws.
  • the crimp terminal 71 may be fixed to the bus bar 70 by welding or the like.
  • the lead wire 35 a is connected to the crimp terminal 71.
  • the conducting wire 35a is, for example, an end portion of a conducting wire constituting the coil 35.
  • the bus bar 70 is connected to the coil 35 via the crimp terminal 71 and electrically connects the inverter unit 40 and the motor 30.
  • the conducting wire 35 a may be another wiring member that is electrically connected to the coil 35. *
  • the end of the bus bar 70 on the upper side in the protruding direction is disposed on the upper side in the protruding direction with respect to the liquid surface OS ⁇ b> 1 of the oil O.
  • the crimp terminal 71 is disposed above the liquid surface OS1 of the oil O stored in the first housing portion 21, that is, above the liquid surface of the oil O stored in the housing 20. Therefore, for example, even if the drive device 10 is vibrated and the oil O stored in the first housing portion 21 is shaken, the crimp terminal 71 is not easily affected by the oil O. Thereby, it can suppress that the connection of the bus-bar 70 and the conducting wire 35a remove
  • the liquid cooling unit 50 cools the inverter unit 40.
  • the liquid cooling unit 50 is accommodated in the first inverter case 41a.
  • the liquid cooling part 50 is fixed to the lower end part of the first housing part 21.
  • the liquid cooling unit 50 is disposed below the rotor core 32.
  • the liquid cooling unit 50 includes a case 51, a heat sink 55, and a wall 52.
  • the case 51 has a rectangular parallelepiped box shape that opens downward in the protruding direction. The opening on the lower side in the protruding direction of the case 51 is closed by the heat sink 55. *
  • the case 51 has a plate-shaped top plate portion 51 a orthogonal to the protruding direction P.
  • the top plate portion 51a faces the heat sink 55 in the protruding direction P with a gap therebetween.
  • the top plate portion 51a is fixed in thermal contact with the lower surface of the protruding portion 21b in the protruding direction.
  • the protruding portion 21b corresponds to a contact portion with which the liquid cooling portion 50 comes into thermal contact. That is, the housing 20 has the protrusion part 21b as a contact part with which the liquid cooling part 50 contacts thermally.
  • a certain object "contacts thermally” includes the case where certain objects contact directly, and the case where certain objects contact via a heat-transfer member.
  • the heat transfer member include silicon, compound, thermal tape, and grease.
  • the heat sink 55 includes a bottom plate portion 55a and a plurality of fins 55b.
  • the bottom plate portion 55a has a plate shape orthogonal to the protruding direction P.
  • the lower surface of the bottom plate portion 55a in the protruding direction is the lower surface of the liquid cooling unit 50 in the protruding direction.
  • the bottom plate portion 55a closes the opening on the lower side in the protruding direction of the case 51 and closes the opening on the upper side in the protruding direction of the case 43a. That is, the bottom plate part 55 a partitions the inside of the liquid cooling part 50 and the inside of the first inverter part 43 in the protruding direction P.
  • the case 43a and the power element 43b are fixed to the lower surface of the bottom plate portion 55a in the protruding direction. That is, the first inverter portion 43 is fixed to the bottom plate portion 55a. Thereby, the liquid cooling unit 50 is disposed in thermal contact with the inverter unit 40.
  • the plurality of fins 55b have a rod shape that protrudes upward in the protruding direction from the upper surface of the bottom plate portion 55a in the protruding direction.
  • the end of the fin 55b on the upper side in the protruding direction is disposed at a position farther to the lower side in the protruding direction than the top plate portion 51a of the case 51.
  • the plurality of fins 55 b are arranged in alignment along the width direction W and the axial direction X. *
  • the wall 52 extends from the upper surface in the protruding direction of the bottom plate 55a to the upper side in the protruding direction and is connected to the lower surface of the top plate 51a in the protruding direction.
  • the wall portion 52 extends from the surface on one side in the axial direction to the other side in the axial direction on the inner side surface of the case 51.
  • a flow path 50a surrounded by a case 51, a heat sink 55 and a wall part 52 is formed inside the liquid cooling part 50.
  • the flow path 50a is U-shaped opening to one side in the axial direction.
  • the liquid cooling unit 50 includes a first inflow / outflow port 53 and a second inflow / outflow port 54.
  • the first inflow / outflow port 53 and the second inflow / outflow port 54 are provided on the surface on one side in the axial direction of the case 51 so as to be separated in the width direction W.
  • the first inlet / outlet 53 and the second inlet / outlet 54 connect the outside of the liquid cooling unit 50 and the flow path 50a, respectively.
  • the first inflow / outflow port 53 is connected to one end of the flow path 50a.
  • the second inlet / outlet 54 is connected to the other end of the flow path 50a.
  • the refrigerant liquid flows into the flow path 50a via the second inflow / outflow port 54.
  • the refrigerant liquid that has flowed into the flow path 50 a flows out from the first inflow / outflow port 53. In this way, the refrigerant liquid flows inside the liquid cooling unit 50.
  • a refrigerant liquid is not specifically limited, For example, it is water. *
  • the inverter unit 40 and the housing 20 are in thermal contact with the liquid cooling unit 50, the inverter unit 40 and the housing 20 can be cooled by the liquid cooling unit 50.
  • the protruding portion 21b in which the liquid cooling unit 50 in the housing 20 is in thermal contact is disposed below the liquid level OS1 in the vertical direction Z. That is, at least a part of the protruding portion 21b as the contact portion is disposed below the liquid level OS1.
  • the stored oil O can be cooled by the liquid cooling unit 50, and therefore, the oil O can be compared with a case where a cooling device is disposed in the flow path through which the oil O flows. It is easy to cool sufficiently. Moreover, since the liquid cooling part 50 which cools the inverter unit 40 which adjusts the electric current supplied to the motor 30 can be utilized, compared with the case where the cooling device which cools the oil O is provided separately, the drive device 10 whole becomes large. This can be suppressed. As described above, according to the present embodiment, it is possible to obtain the driving device 10 having a structure that can sufficiently cool the cooling oil O and can suppress an increase in size. Since the oil O can be sufficiently cooled, the motor 30 can be suitably cooled by the oil O. Moreover, since the number of parts of the drive apparatus 10 can be reduced, the effort and cost of assembling the drive apparatus 10 can be reduced. *
  • “at least a part of the contact portion is disposed below the oil level” means that the contact is made in at least a part of the mode and posture in which the driving device is used and in the posture. It suffices that at least a part of the portion is disposed below the oil level. That is, for example, if at least a part of the protruding portion 21b is arranged below the liquid surface OS1 in the state shown in FIG. 3, the driving device 10 is inclined in the circumferential direction from the posture shown in FIG. When it becomes, the whole protrusion part 21b may be arrange
  • the surface area of the heat sink 55 that contacts the refrigerant liquid can be increased. Therefore, it is easy to radiate the heat of the power element 43b fixed to the bottom plate portion 55a to the refrigerant liquid flowing through the flow path 50a via the plurality of fins 55b. Accordingly, the first inverter unit 43 can be more easily cooled by the liquid cooling unit 50.
  • the protruding portion 21 b which is a contact portion is disposed below the rotor core 32. Therefore, even when the liquid level OS1 is set below the rotor core 32 as described above, at least a part of the inner surface of the protruding portion 21b can be brought into contact with the oil O. Therefore, the oil O stored in the first accommodating portion 21 can be sufficiently cooled by cooling the protruding portion 21b by the liquid cooling portion 50 while suppressing the oil O from becoming the rotational resistance of the rotor core 32.
  • the protruding portion 21 b that is a contact portion is a lower portion of the first accommodating portion 21. Therefore, the oil O stored in the first storage unit 21 can be cooled by the liquid cooling unit 50. Thereby, the motor 30 can be efficiently cooled by the oil O.
  • the “lower part of the first housing part” means a part arranged below the center in the vertical direction Z of the first housing part when the drive device is arranged in a normal use posture. Including. *
  • the portion of the inverter unit 40 that is in thermal contact with the liquid cooling unit 50 is the first inverter unit 43.
  • the first inverter unit 43 is disposed in thermal contact with the lower side of the liquid cooling unit 50. Therefore, the liquid cooling part 50 is easily sandwiched between the housing 20 and the first inverter part 43 in the vertical direction Z, and the liquid cooling part 50 is easily brought into thermal contact with both the housing 20 and the first inverter part 43. Further, for example, by mounting the power element 43b having a relatively large heat generation amount in the first inverter unit 43 as in the present embodiment, a portion that is particularly likely to generate heat in the inverter unit 40 can be easily cooled by the liquid cooling unit 50. *
  • the inverter unit 40 includes the second inverter unit 44 disposed on one side in the first direction of the first housing unit 21.
  • the first inverter unit 43 is disposed on the lower side with respect to the first housing unit 21, and the second inverter unit 44 is disposed on one side in the first direction, whereby the entire inverter unit 40 is first housed.
  • the entire driving device 10 can be easily downsized.
  • the inverter unit 40 can be efficiently used. Can be cooled.
  • the liquid cooling unit 50 can efficiently cool the inverter unit 40 while suppressing the drive device 10 from becoming large.
  • the piping parts 61 and 62 shown in FIG. 4 are connected to the liquid cooling part 50, and the refrigerant liquid in the liquid cooling part 50 flows.
  • a part of the piping part 61 is arranged in the first housing part 21. More specifically, as shown in FIG. 4, the piping portion 61 is inserted into the first housing portion 21 from the surface on one side in the axial direction of the first housing portion 21, and is U-shaped in the first housing portion 21. And protrudes from the surface on one side in the axial direction of the first housing portion 21 to the outside of the first housing portion 21. Thereby, the piping part 61 passes through the housing 20. Therefore, the inside of the housing 20 can be cooled by the piping portion 61, and the oil O stored in the housing 20 can be easily cooled. *
  • the stored oil O can be cooled by the pipe portion 61, so that the oil O is sufficient as compared with the case where the cooling device is disposed in the flow path through which the oil O flows. Easy to cool down. Moreover, since the piping part 61 connected with the liquid cooling part 50 which cools the inverter unit 40 which adjusts the electric current supplied to the motor 30 can be utilized, compared with the case where the cooling device which cools the oil O is provided separately, the drive device 10. It can suppress that the whole enlarges. As described above, according to the present embodiment, it is possible to obtain the driving device 10 having a structure that can sufficiently cool the cooling oil O and can suppress an increase in size. Further, in the present embodiment, as described above, the oil O stored in the housing 20 can be cooled also by the liquid cooling unit 50, so that the oil O can be further cooled. *
  • the piping part 61 passes through the lower region in the vertical direction in the housing 20. Therefore, the piping part 61 can be easily passed through the oil O stored in the lower side of the vertical direction Z in the housing 20. Thereby, the oil O stored in the housing 20 can be more easily cooled by the pipe portion 61.
  • the “vertical lower region in the housing” is a portion located below the center of the vertical direction Z in an arbitrary portion of the interior of the housing. That is, for example, in the first housing part 21, a portion located below the center in the vertical direction Z inside the first housing part 21 is a vertically lower region in the housing. Moreover, in the 2nd accommodating part 22, the part located below the center of the vertical direction Z in the inside of the 2nd accommodating part 22 is a vertical direction lower side area
  • the piping part 61 passes through the lower region in the vertical direction in the first housing part 21. Therefore, it is easy to pass the piping part 61 into the housing 20 below the liquid level OS1, and the oil O stored in the first accommodating part 21 can be suitably cooled by the piping part 61. At least a part of the piping part 61 disposed in the housing 20 is disposed below the liquid level of the oil O stored in the housing 20, that is, below the liquid level OS1 in this embodiment. Therefore, the piping part 61 can be brought into contact with the oil O, and the oil O can be more easily cooled by the refrigerant liquid flowing through the piping part 61. *
  • the entire portion of the piping portion 61 disposed in the housing 20 is disposed below the liquid level OS1 and passes through the oil O.
  • the piping part 61 disposed in the housing 20 is disposed below the rotor core 32.
  • the piping part 61 passes through the inside of the protruding part 21b.
  • the pipe portion 61 that protrudes from the first housing portion 21 to the outside of the first housing portion 21 is connected to the second inlet / outlet 54 of the liquid cooling portion 50.
  • the refrigerant liquid flowing in the piping part 61 flows into the liquid cooling part 50, that is, the flow path 50a through the second inlet / outlet 54.
  • the piping part 62 is connected to the first inlet / outlet 53 of the liquid cooling part 50.
  • the refrigerant liquid in the liquid cooling part 50, that is, in the flow path 50 a flows out to the pipe part 62 through the first inflow / outlet 53.
  • the piping part 63 shown in FIG. 3 is connected to the piping part 61 or the piping part 62, and is connected to the liquid cooling part 50 via the piping part 61 or the piping part 62.
  • the piping part 63 passes through the housing 20. More specifically, the piping part 63 passes through the lower region in the vertical direction in the second housing part 22. Therefore, it is easy to cool the oil O stored in the second accommodating portion 22 by the piping portion 63. At least a part of the pipe part 63 is disposed below the liquid surface OS2 of the oil O stored in the second storage part 22.
  • the piping part 61 and the piping part 62 are drawn from the first inverter case 41a into the second inverter case 42a, and are drawn out of the driving device 10 from the second inverter case 42a.
  • the piping part 61 and the piping part 62 drawn out of the driving device 10 are connected to a pump (not shown).
  • the pump circulates the refrigerant liquid in the order of the piping part 61, the flow path 50 a, and the piping part 62.
  • the refrigerant liquid flows through the pipe part 61 or the pipe part 63 connected to the pipe part 62 during the circulation.
  • the piping unit 62 is connected to a radiator (not shown) outside the driving device 10.
  • the radiator cools the refrigerant liquid in the pipe part 62.
  • the driving force from the motor 30 is transmitted to the differential device 80 shown in FIG. More specifically, the differential device 80 is connected to the motor shaft 31 via a reduction mechanism (not shown), and the rotation of the reduced motor shaft 31 is transmitted.
  • the differential device 80 has a connecting hole 81 centered on the second central axis J2.
  • the second central axis J2 is parallel to the first central axis J1, and is arranged in the first direction Y on the opposite side of the second inverter unit 44 with respect to the first central axis J1, that is, on the other side in the first direction. . *
  • an output shaft disposed along the second central axis J2 is coupled to the coupling hole 81.
  • the differential device 80 can output the driving force transmitted from the motor shaft 31 via the speed reduction mechanism to the output shaft coupled to the coupling hole 81. That is, the differential device 80 can output a driving force around the second central axis J2 with respect to the output shaft.
  • the output shaft is, for example, a vehicle axle.
  • the second central axis J2 is disposed at a position sandwiching the first central axis J1 with the second inverter unit 44. Therefore, it can suppress that the 2nd inverter part 44, ie, the 2nd unit 42, is arrange
  • the present invention is not limited to the above-described embodiment, and other configurations can be employed.
  • the same configurations as those in the above embodiment may be omitted by appropriately attaching the same reference numerals. *
  • the entire inverter unit 40 may be disposed on the lower side with respect to the first housing portion 21 or on either one side in the first direction Y.
  • the first unit 41 and the second unit 42 may be combined into one unit.
  • a part of the liquid cooling unit 50 may be disposed above the liquid level OS1.
  • the second unit 42 may be provided with another liquid cooling unit that cools the second inverter unit 44.
  • the other liquid cooling unit may be connected to the liquid cooling unit 50 via the piping unit 61 and the piping unit 62, for example.
  • the shape of the plurality of fins 55b may be a shape along the flow of the refrigerant liquid flowing through the flow path 50a.
  • the bus bar 70 and the conductive wire 35a may be directly fixed without using the crimp terminal 71.
  • the bus bar 70 and the conductive wire 35a may be directly fixed by screws, for example, or may be directly fixed by welding. *
  • the first housing 121 of the housing 120 has a window 121c.
  • the window part 121c is an opening part provided on the surface of the first housing part 121 on one side in the axial direction.
  • the window part 121 c connects the inside of the first housing part 121 and the outside of the first housing part 121.
  • the window 121c has a rounded rectangular shape extending in the width direction W.
  • the housing 120 has a lid portion 123 that closes the window portion 121c.
  • the lid portion 123 has a plate shape orthogonal to the axial direction X.
  • the shape of the lid 123 viewed along the axial direction X is a rounded rectangular shape extending in the width direction W.
  • the lid portion 123 is fitted into the window portion 121c to close the window portion 121c.
  • the material of the lid 123 is, for example, rubber or metal.
  • a seal member such as FIPG (Formed In Place Gasket) is disposed between the window portion 121c and the lid portion 123, for example. Thereby, it can suppress that oil O leaks outside the 1st accommodating part 121 from the clearance gap between the window part 121c and the cover part 123.
  • the lid portion 123 has holes that penetrate the lid portion 123 in the axial direction X at both ends in the width direction W.
  • the hole part of the lid part 123 projects from the outside of the first housing part 121 to the portion of the piping part 61 inserted into the first housing part 121 and from the inside of the first housing part 121 to the outside of the first housing part 121.
  • the piping part 61 to be passed is passed through.
  • a seal member such as FIPG is disposed between the hole of the lid portion 123 and the piping portion 61. Thereby, it can suppress that oil O leaks outside the 1st accommodating part 121 from the clearance gap between the hole of the cover part 123, and the piping part 61.
  • the window part 121c since the window part 121c is provided, it is easy to pass the pipe part 61 into the first accommodating part 121. Specifically, the pipe part 61 is passed through the hole of the lid part 123 and the lid part 123 is fixed to the pipe part 61. It inserts in the 1st accommodating part 121 via. And while inserting the piping part 61 to the other side of an axial direction, the cover part 123 is engage
  • the refrigerant liquid flows into the liquid cooling unit 50 from the pipe unit 62, and the refrigerant liquid that flows into the liquid cooling unit 50 flows out of the pipe unit 61. That is, the flow direction of the refrigerant liquid in the pipe portions 61, 62, 63 and the liquid cooling portion 50 in the present modification is opposite to that of the driving device 10 shown in FIG.
  • the refrigerant liquid supplied from a pump can flow into the liquid cooling unit 50 before the inside of the first storage unit 21. Therefore, the temperature of the refrigerant liquid flowing inside the liquid cooling unit 50 can be lowered, and the first inverter unit 43 can be cooled more suitably.
  • the first housing portion 221 opens to the lower side in the protruding direction. More specifically, the protrusion 221b opens downward in the protrusion direction.
  • the opening on the lower side in the protruding direction of the protruding portion 221 b is closed by the top plate portion 251 a of the case 251 in the liquid cooling unit 250. That is, in this embodiment, a part of the liquid cooling unit 250 is also a part of the housing 220.
  • the refrigerant liquid flowing inside the liquid cooling unit 250 causes the top plate portion 251 a that constitutes a part of the first housing portion 221.
  • the liquid cooling unit 250 is in thermal contact with the housing 220.
  • the refrigerant liquid since the refrigerant liquid directly contacts the top plate portion 251a that constitutes a part of the first housing part 221 that stores the oil O, the refrigerant liquid more easily absorbs heat from the oil O, Oil O is easier to cool.
  • the top plate portion 251a is fixed with screws to the lower end of the protruding portion 221b in the protruding direction.
  • a seal member is disposed between the top plate portion 251a and the end portion on the lower side in the protruding direction of the protruding portion 221b.
  • the seal member is, for example, FIPG. Thereby, it can suppress that the oil O in the 1st accommodating part 221 leaks to the exterior of the housing 220.
  • the piping part 361 extends in a U-shape that opens to one side in the axial direction.
  • the piping part 361 is inserted into the first accommodating part 21 from the surface on one side in the axial direction of the first accommodating part 21, and protrudes to the outside of the first accommodating part 21 from the surface on the other side in the axial direction of the first accommodating part 21.
  • the piping part 361 that protrudes from the surface on the other axial side of the first housing part 21 is folded back in a U-shape and extends to one axial direction while contacting the side surface on one side in the width direction of the protruding part 21b.
  • the piping part 361 is in thermal contact with the outer side surface of the first housing part 21, that is, the outer side surface of the housing 20. Therefore, according to the present embodiment, the inside of the housing 20 can be cooled by the piping portion 361, and the housing 20 can also be cooled from the outside. Therefore, the oil O stored in the housing 20 can be further cooled.
  • the portion where the piping portion 361 is in thermal contact is the outer surface of the protruding portion 21b.
  • the outer side surface of the protruding portion 21 b is the outer side surface of the lower region in the vertical direction in the first accommodating portion 21. That is, the piping part 361 is in thermal contact with the outer surface of the lower region in the vertical direction in the housing 20. Thereby, it is easier to cool the oil O stored in the housing 20 by the pipe portion 361.
  • the pipe portion 361 may be in thermal contact with the outer surface of the housing 20 other than the protruding portion 21b.
  • the piping part 361 may be in thermal contact with the outer surface of the second housing part 22.
  • coolant liquid with respect to the liquid cooling part were performed from the surface of the same side of the axial direction X of a liquid cooling part, but it is not restricted to this.
  • the inflow and outflow of the refrigerant liquid with respect to the liquid cooling unit may be performed from the surface opposite to the axial direction X of the liquid cooling unit as in the liquid cooling unit 450 illustrated in FIG.
  • the first inlet / outlet 453 is provided on the surface on the one side in the axial direction of the case 451.
  • the second inlet / outlet 454 is provided on the other surface in the axial direction of the case 451.
  • the refrigerant liquid that has flowed into the flow path 450a from the one side in the axial direction via the first inflow / outlet 453 flows out to the other side in the axial direction via the second inflow / outlet 454.
  • the first inlet / outlet 453 is disposed at the center in the width direction W on the surface on one side in the axial direction of the case 451.
  • the second inlet / outlet 454 is disposed at the center in the width direction W on the other surface in the axial direction of the case 451.
  • the refrigerant liquid may flow from the second inlet / outlet 454 to the flow path 450a, and the refrigerant liquid in the flow path 450a may flow out from the first inlet / outlet 453.
  • the contact part which the liquid cooling part in a housing contacts thermally was made into a part of 1st accommodating part, it is not restricted to this.
  • the contact portion may be a part of the second housing portion.
  • the liquid cooling part is fixed in thermal contact with the lower end part of the second housing part, for example. That is, the contact portion of the housing with which the liquid cooling portion is in thermal contact is the lower portion of the second housing portion.
  • the inverter unit is fixed to the lower surface of the liquid cooling unit.
  • the liquid cooling part was set as the structure which contacts a housing thermally, it is not restricted to this.
  • the liquid cooling unit may not be in thermal contact with the housing. That is, the housing may not have a contact portion.
  • the liquid cooling unit and the inverter unit are arranged away from the housing.
  • the location where the liquid cooling unit and the inverter unit are arranged is not particularly limited. Even in this case, since the piping portion passes through the housing, the oil stored in the housing can be cooled by the piping portion. *
  • the drive device may be provided with the 2nd liquid cooling part different from a liquid cooling part.
  • the second liquid cooling unit is in thermal contact with the housing and cools the housing and the oil O stored in the housing.
  • the second liquid cooling unit may be connected to the liquid cooling unit via a piping unit.
  • the liquid cooling part and the second liquid cooling part may be arranged with the housing interposed therebetween. According to this configuration, since the oil O stored in the housing can be cooled by the liquid cooling unit and the second liquid cooling unit, the oil O can be more suitably cooled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

One embodiment of a drive device according to the present invention comprises: a motor that has a motor shaft positioned along a first central axis, said first central axis extending in one direction; a housing that can retain oil and has a first accommodation part accommodating the motor; a liquid cooling part that is positioned in thermal contact with an inverter unit, said inverter unit being electrically connected to the motor, a refrigerant liquid flowing in an interior of the liquid cooling part; and a piping part that is connected to the liquid cooling part and through which the refrigerant liquid in the liquid cooling part flows. The piping part passes within the housing.

Description

駆動装置Drive device
本発明は、駆動装置に関する。 The present invention relates to a drive device.
ステータおよびロータ等の潤滑および冷却のための潤滑用流体を貯留するケースを備える回転電機が知られる。例えば、特許文献1では、車両に搭載される回転電機が記載される。 2. Description of the Related Art A rotating electric machine is known that includes a case for storing a lubricating fluid for lubrication and cooling such as a stator and a rotor. For example, Patent Document 1 describes a rotating electrical machine mounted on a vehicle.
特開2013-055728号公報JP 2013-055728 A
上記のような回転電機においては、ステータ等を効率よく冷却するために、ステータ等に供給される潤滑用流体を冷却して潤滑用流体の温度を低くすることが好ましい。ステータ等に供給される潤滑用流体を冷却する方法としては、例えば、ケースに貯留された潤滑用流体をステータ等へと供給する油路の途中に冷却装置を設けて、冷却装置によって潤滑用流体を冷却する方法が考えられる。  In the rotating electric machine as described above, in order to efficiently cool the stator or the like, it is preferable to cool the lubricating fluid supplied to the stator or the like to lower the temperature of the lubricating fluid. As a method for cooling the lubricating fluid supplied to the stator or the like, for example, a cooling device is provided in the middle of an oil passage for supplying the lubricating fluid stored in the case to the stator or the like, and the lubricating fluid is cooled by the cooling device. It is conceivable to cool the battery. *
しかし、この方法では、潤滑用流体が冷却装置を通る間しか冷却されないため、潤滑用流体を十分に冷却できない場合があった。また、潤滑用流体を冷却するための冷却装置を別途設ける必要があるため、回転電機が大型化しやすい問題があった。  However, in this method, since the lubricating fluid is cooled only while passing through the cooling device, the lubricating fluid may not be sufficiently cooled. Further, since it is necessary to separately provide a cooling device for cooling the lubricating fluid, there is a problem that the rotating electrical machine is likely to be large. *
本発明は、上記事情に鑑みて、冷却用のオイルを十分に冷却でき、かつ、大型化を抑制できる構造を有する駆動装置を提供することを目的の一つとする。 In view of the above circumstances, an object of the present invention is to provide a drive device having a structure capable of sufficiently cooling oil for cooling and suppressing an increase in size.
本発明の駆動装置の一つの態様は、一方向に延びる第1中心軸に沿って配置されるモータシャフトを有するモータと、前記モータを収容する第1収容部を有し、オイルを貯留可能なハウジングと、前記モータと電気的に接続されるインバータユニットに熱的に接触して配置され、内部に冷媒液が流れる液冷部と、前記液冷部に繋がり、前記液冷部内の前記冷媒液が流れる配管部と、を備え、前記配管部は、前記ハウジング内を通る。 One aspect of the drive device of the present invention includes a motor having a motor shaft disposed along a first central axis extending in one direction, and a first accommodating portion that accommodates the motor, and can store oil. A liquid cooling part that is disposed in thermal contact with a housing and an inverter unit that is electrically connected to the motor, and in which a refrigerant liquid flows, and is connected to the liquid cooling part, and the refrigerant liquid in the liquid cooling part And a pipe part through which the pipe part passes.
本発明の一つの態様によれば、冷却用のオイルを十分に冷却でき、かつ、大型化を抑制できる構造を有する駆動装置が提供される。 According to one aspect of the present invention, there is provided a drive device having a structure that can sufficiently cool the cooling oil and can suppress the increase in size.
図1は、第1実施形態の駆動装置を示す斜視図である。FIG. 1 is a perspective view showing the drive device of the first embodiment. 図2は、第1実施形態の駆動装置を示す斜視図である。FIG. 2 is a perspective view showing the driving apparatus of the first embodiment. 図3は、第1実施形態の駆動装置を示す図であって、図2におけるIII-III部分断面図である。FIG. 3 is a diagram showing the drive device of the first embodiment, and is a partial cross-sectional view taken along the line III-III in FIG. 図4は、第1実施形態の駆動装置の一部を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a part of the drive device of the first embodiment. 図5は、第1実施形態のバスバーの一部を示す図である。FIG. 5 is a diagram illustrating a part of the bus bar according to the first embodiment. 図6は、第1実施形態の冷却部を示す図であって、図4におけるVI-VI断面図である。6 is a view showing the cooling unit of the first embodiment, and is a cross-sectional view taken along the line VI-VI in FIG. 図7は、第1実施形態の変形例である駆動装置の一部を模式的に示す斜視図である。FIG. 7 is a perspective view schematically showing a part of a drive device which is a modified example of the first embodiment. 図8は、第2実施形態の駆動装置を示す断面図である。FIG. 8 is a cross-sectional view showing the driving apparatus of the second embodiment. 図9は、第3実施形態の駆動装置の一部を模式的に示す斜視図である。FIG. 9 is a perspective view schematically showing a part of the driving apparatus of the third embodiment. 図10は、各実施形態の他の一例である冷却部を示す断面図である。FIG. 10 is a cross-sectional view illustrating a cooling unit that is another example of each embodiment.
各図に適宜示すZ軸方向は、正の側を上側とし、負の側を下側とする鉛直方向Zである。Y軸方向は、Z軸方向と直交する方向である。X軸方向は、Z軸方向およびY軸方向の両方と直交する方向である。以下の説明においては、Y軸方向を単に「第1方向Y」と呼び、Y軸方向の負の側を「第1方向一方側」と呼び、Y軸方向の正の側を「第1方向他方側」と呼ぶ。  The Z-axis direction shown as appropriate in each drawing is a vertical direction Z in which the positive side is the upper side and the negative side is the lower side. The Y-axis direction is a direction orthogonal to the Z-axis direction. The X-axis direction is a direction orthogonal to both the Z-axis direction and the Y-axis direction. In the following description, the Y-axis direction is simply referred to as “first direction Y”, the negative side in the Y-axis direction is referred to as “first direction one side”, and the positive side in the Y-axis direction is referred to as “first direction”. Call the other side. *
また、X軸方向は、各図に適宜示す第1中心軸J1の延びる一方向である。すなわち第1中心軸J1の軸方向は、鉛直方向Zおよび第1方向Yの両方と直交する方向である。以下の説明においては、X軸方向を単に「軸方向X」と呼び、X軸方向の負の側を「軸方向一方側」と呼び、X軸方向の正の側を「軸方向他方側」と呼ぶ。また、第1中心軸J1を中心とする径方向を単に「径方向」と呼び、第1中心軸J1を中心とする周方向を単に「周方向」と呼ぶ。  Further, the X-axis direction is a direction in which the first central axis J1 shown as appropriate in each drawing extends. That is, the axial direction of the first central axis J1 is a direction orthogonal to both the vertical direction Z and the first direction Y. In the following description, the X-axis direction is simply referred to as “axial direction X”, the negative side in the X-axis direction is referred to as “axial one side”, and the positive side in the X-axis direction is referred to as “axial other side”. Call it. The radial direction centered on the first central axis J1 is simply referred to as “radial direction”, and the circumferential direction centered on the first central axis J1 is simply referred to as “circumferential direction”. *
なお、鉛直方向、上側および下側とは、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。  The vertical direction, the upper side, and the lower side are simply names for explaining the relative positional relationship between the respective parts, and the actual layout relationship is a layout relationship other than the layout relationship indicated by these names. May be. *



<第1実施形態>



図1から図4に示すように、本実施形態の駆動装置10は、ハウジング20と、モータ30と、インバータユニット40と、バスバー70と、液冷部50と、配管部61,62,63と、差動装置80と、を備える。ハウジング20は、モータ30および差動装置80を収容する。図3に示すように、ハウジング20は、第1収容部21と、第2収容部22と、を有する。 



<First Embodiment>



As shown in FIGS. 1 to 4, the drive device 10 of the present embodiment includes a housing 20, a motor 30, an inverter unit 40, a bus bar 70, a liquid cooling unit 50, and piping units 61, 62, and 63. The differential device 80 is provided. The housing 20 accommodates the motor 30 and the differential device 80. As shown in FIG. 3, the housing 20 includes a first housing part 21 and a second housing part 22.
第1収容部21は、モータ30を収容する。第1収容部21は、円筒部21aと、突出部21bと、を有する。円筒部21aは、軸方向Xに延びる略円筒状である。突出部21bは、図3において、円筒部21aから下側やや斜め第1方向一方側に向かって突出する。突出部21bの軸方向Xと直交する断面形状は、円筒部21aから離れるに従って幅が小さくなる台形状である。  The first accommodating part 21 accommodates the motor 30. The 1st accommodating part 21 has the cylindrical part 21a and the protrusion part 21b. The cylindrical portion 21a has a substantially cylindrical shape extending in the axial direction X. In FIG. 3, the protruding portion 21 b protrudes from the cylindrical portion 21 a toward the lower side and slightly obliquely in the first direction. The cross-sectional shape orthogonal to the axial direction X of the protrusion 21b is a trapezoid whose width decreases as the distance from the cylindrical portion 21a increases. *
以下の説明においては、突出部21bが突出する方向に平行な方向を、突出方向Pと呼び、各図においてP軸方向として示す。突出方向Pは、鉛直方向Zに対してやや第1方向他方側に傾いた方向である。また、突出方向Pと軸方向Xとの両方と直交する方向を、幅方向Wと呼び、各図においてW軸方向として示す。幅方向Wは、第1方向Yに対してやや下側に傾いた方向である。また、突出方向Pの正の側を突出方向上側と呼び、突出方向Pの負の側を突出方向下側と呼ぶ。  In the following description, a direction parallel to the direction in which the protruding portion 21b protrudes is referred to as a protruding direction P, and is indicated as a P-axis direction in each drawing. The protruding direction P is a direction slightly inclined with respect to the vertical direction Z toward the other side in the first direction. A direction orthogonal to both the projecting direction P and the axial direction X is referred to as a width direction W, and is indicated as a W-axis direction in each drawing. The width direction W is a direction inclined slightly downward with respect to the first direction Y. Further, the positive side of the protruding direction P is called the protruding direction upper side, and the negative side of the protruding direction P is called the protruding direction lower side. *
なお、例えば図4等、突出方向Pを上下方向として示す図において、オイルOの液面OS1は、突出方向Pが鉛直方向Zと平行になった場合の状態として模式的に示される。すなわち、突出方向Pを上下方向として示す図においてオイルOの液面OS1は、突出方向Pと直交する面として示される。  In FIG. 4 and the like, in which the protruding direction P is the vertical direction, the liquid surface OS1 of the oil O is schematically shown as a state when the protruding direction P is parallel to the vertical direction Z. That is, in the figure showing the protruding direction P as the vertical direction, the liquid surface OS1 of the oil O is shown as a surface orthogonal to the protruding direction P. *
第2収容部22は、差動装置80を収容する。図1および図2に示すように、第2収容部22は、第1収容部21の軸方向他方側に配置される。図2および図3に示すように、第2収容部22は、第1方向Yに延び、第1収容部21よりも第1方向他方側に突出する。図示は省略するが、第1収容部21の内部と第2収容部22の内部とは、第1収容部21と第2収容部22との接続部、すなわち第1収容部21の軸方向他方側の端部において繋がる。第2収容部22の下端部は、第1収容部21の下端部よりも下側に配置される。  The second accommodating portion 22 accommodates the differential device 80. As shown in FIGS. 1 and 2, the second housing portion 22 is disposed on the other axial side of the first housing portion 21. As shown in FIGS. 2 and 3, the second housing portion 22 extends in the first direction Y and protrudes further to the other side in the first direction than the first housing portion 21. Although illustration is omitted, the inside of the first housing portion 21 and the inside of the second housing portion 22 are the connection portion between the first housing portion 21 and the second housing portion 22, that is, the other in the axial direction of the first housing portion 21. It is connected at the end of the side. The lower end portion of the second accommodating portion 22 is disposed below the lower end portion of the first accommodating portion 21. *
図3に示すように、ハウジング20は、オイルOを貯留可能である。本実施形態では、第1収容部21および第2収容部22は、それぞれオイルOを貯留可能である。図3では、第1収容部21に貯留されるオイルOの液面OS1は、第2収容部22に貯留されるオイルOの液面OS2よりも上側に位置する。  As shown in FIG. 3, the housing 20 can store the oil O. In this embodiment, the 1st accommodating part 21 and the 2nd accommodating part 22 can store the oil O, respectively. In FIG. 3, the liquid level OS <b> 1 of the oil O stored in the first storage unit 21 is located above the liquid level OS <b> 2 of the oil O stored in the second storage unit 22. *
モータ30は、一方向、すなわち軸方向Xに延びる第1中心軸J1に沿って配置されるモータシャフト31と、ロータコア32と、ステータ33と、を有する。ロータコア32は、モータシャフト31に固定される。ロータコア32は、モータシャフト31の外周面に固定される円環状である。ロータコア32は、第1収容部21に貯留されるオイルOの液面OS1よりも上側に配置される。そのため、ロータコア32が第1収容部21に貯留されるオイルOに浸かることを抑制できる。これにより、ロータコア32が回転する際に、オイルOがロータコア32の回転抵抗となることを抑制できる。  The motor 30 includes a motor shaft 31, a rotor core 32, and a stator 33 that are disposed along a first central axis J <b> 1 extending in one direction, that is, the axial direction X. The rotor core 32 is fixed to the motor shaft 31. The rotor core 32 has an annular shape that is fixed to the outer peripheral surface of the motor shaft 31. The rotor core 32 is disposed above the liquid surface OS1 of the oil O stored in the first storage unit 21. Therefore, it is possible to prevent the rotor core 32 from being immersed in the oil O stored in the first housing portion 21. Thereby, when the rotor core 32 rotates, it can suppress that oil O becomes rotational resistance of the rotor core 32. FIG. *
本実施形態において、第1収容部21におけるオイルOの液面OS1の上限は、例えば、図3において二点鎖線で示す液面上限OS1aである。液面上限OS1aは、ロータコア32の下端に接する。例えば、駆動装置10が駆動して差動装置80が回転すると、第2収容部22に貯留されるオイルOが差動装置80のギアによってかき上げられて、第1収容部21へと流入する。これにより、第1収容部21に貯留されるオイルOの量が増加して、第1収容部21に貯留されるオイルOの液面OS1が上昇する。この場合であっても、本実施形態では、オイルOの液面OS1は、液面上限OS1aよりも上側には上昇しない。  In the present embodiment, the upper limit of the liquid level OS1 of the oil O in the first storage unit 21 is, for example, the liquid level upper limit OS1a indicated by a two-dot chain line in FIG. The liquid level upper limit OS 1 a is in contact with the lower end of the rotor core 32. For example, when the driving device 10 is driven to rotate the differential device 80, the oil O stored in the second housing portion 22 is lifted up by the gear of the differential device 80 and flows into the first housing portion 21. . Thereby, the quantity of the oil O stored in the 1st accommodating part 21 increases, and liquid level OS1 of the oil O stored in the 1st accommodating part 21 rises. Even in this case, in the present embodiment, the liquid level OS1 of the oil O does not rise above the liquid level upper limit OS1a. *
ステータ33は、ロータコア32と径方向に隙間を介して対向する。ステータ33は、ロータコア32の径方向外側を囲む。ステータ33は、ステータコア34と、複数のコイル35と、を有する。ステータコア34は、円環状のコアバック34aと、コアバック34aから径方向内側に延びる複数のティース34bと、を有する。コアバック34aは、第1収容部21の径方向内側面に固定される。複数のコイル35は、ステータコア34に装着される。より詳細には、複数のコイル35は、複数のティース34bのそれぞれに装着される。  The stator 33 faces the rotor core 32 via a gap in the radial direction. The stator 33 surrounds the outer side of the rotor core 32 in the radial direction. The stator 33 has a stator core 34 and a plurality of coils 35. The stator core 34 has an annular core back 34a and a plurality of teeth 34b extending radially inward from the core back 34a. The core back 34 a is fixed to the radially inner side surface of the first housing portion 21. The plurality of coils 35 are attached to the stator core 34. More specifically, the plurality of coils 35 are attached to each of the plurality of teeth 34b. *
インバータユニット40は、モータ30と電気的に接続される。インバータユニット40は、モータ30に供給される電流を制御する。図1および図2に示すように、インバータユニット40は、ハウジング20の外側面に固定される。図1に示すように、インバータユニット40は、第1ユニット41と、第2ユニット42と、を有する。図3に示すように、第1ユニット41は、第1収容部21の下部に固定される。第1ユニット41は、第1インバータケース41aと、第1インバータ部43と、を有する。すなわち、インバータユニット40は、第1インバータ部43を有する。  The inverter unit 40 is electrically connected to the motor 30. The inverter unit 40 controls the current supplied to the motor 30. As shown in FIGS. 1 and 2, the inverter unit 40 is fixed to the outer surface of the housing 20. As shown in FIG. 1, the inverter unit 40 includes a first unit 41 and a second unit 42. As shown in FIG. 3, the first unit 41 is fixed to the lower portion of the first housing portion 21. The first unit 41 includes a first inverter case 41 a and a first inverter unit 43. That is, the inverter unit 40 has a first inverter unit 43. *
図1および図3に示すように、第1インバータケース41aは、略立方体箱状である。図3に示すように、第1インバータケース41aは、第1収容部21の径方向外側面に固定され、第1収容部21から突出方向下側に延びる。第1インバータケース41aの内部には、第1収容部21の下部が収容される。より詳細には、第1インバータケース41aの内部には、円筒部21aの突出方向下側の部分と突出部21bとが収容される。  As shown in FIGS. 1 and 3, the first inverter case 41a has a substantially cubic box shape. As shown in FIG. 3, the first inverter case 41 a is fixed to the radially outer surface of the first housing part 21 and extends downward from the first housing part 21 in the protruding direction. The lower part of the first accommodating portion 21 is accommodated in the first inverter case 41a. More specifically, the lower portion of the cylindrical portion 21a in the protruding direction and the protruding portion 21b are accommodated in the first inverter case 41a. *
第1インバータ部43は、第1インバータケース41aの内部に収容される。第1インバータ部43は、第1インバータケース41aの底面に設置される。第1インバータ部43は、直方体箱状のケース43aと、ケース43a内に収容される複数のパワー素子43bと、を有する。ケース43aは、突出方向上側に開口する。ケース43aの開口は、後述するヒートシンク55によって閉塞される。パワー素子43bは、ヒートシンク55の突出方向下側の面に取り付けられる。パワー素子43bの発熱量は、比較的大きく、例えば、インバータユニット40が有する素子のうちで最も大きい。  The first inverter unit 43 is accommodated in the first inverter case 41a. The 1st inverter part 43 is installed in the bottom face of the 1st inverter case 41a. The first inverter unit 43 includes a rectangular parallelepiped box-shaped case 43a and a plurality of power elements 43b accommodated in the case 43a. The case 43a opens to the upper side in the protruding direction. The opening of the case 43a is closed by a heat sink 55 described later. The power element 43b is attached to the lower surface of the heat sink 55 in the protruding direction. The amount of heat generated by the power element 43b is relatively large, for example, the largest among the elements of the inverter unit 40. *
第2ユニット42は、第2インバータケース42aと、第2インバータ部44と、コネクタ部45と、を有する。すなわち、インバータユニット40は、第2インバータ部44を有する。図1に示すように、第2インバータケース42aは、略立方体箱状である。第2インバータケース42aは、第1収容部21の径方向外側面に固定され、第1収容部21から略第1方向一方側に延びる。第2インバータケース42aの内部には、第1収容部21の第1方向一方側の端部が収容される。第2インバータケース42aの下端部は、第1インバータケース41aの第1方向一方側の端部と繋がる。第2インバータケース42aの内部は、第1インバータケース41aとの接続部において第1インバータケース41aの内部と繋がる。  The second unit 42 includes a second inverter case 42 a, a second inverter unit 44, and a connector unit 45. That is, the inverter unit 40 has a second inverter unit 44. As shown in FIG. 1, the second inverter case 42a has a substantially cubic box shape. The second inverter case 42 a is fixed to the radially outer side surface of the first housing part 21 and extends from the first housing part 21 to one side in the substantially first direction. The end of one side in the first direction of the first housing part 21 is housed inside the second inverter case 42a. The lower end portion of the second inverter case 42a is connected to the end portion on one side in the first direction of the first inverter case 41a. The inside of the second inverter case 42a is connected to the inside of the first inverter case 41a at the connection portion with the first inverter case 41a. *
図3に示すように、第2インバータ部44は、第2インバータケース42aの内部に収容される。第2インバータ部44は、鉛直方向Zと直交する第1方向Yにおいて第1収容部21の第1方向一方側に配置される。図示は省略するが、第2インバータ部44は、第1インバータ部43と電気的に接続される。本実施形態において第2インバータ部44に含まれる素子は、比較的発熱量が小さい素子、あるいは発熱しない素子である。  As shown in FIG. 3, the second inverter unit 44 is accommodated in the second inverter case 42 a. The second inverter unit 44 is disposed on one side in the first direction of the first housing unit 21 in the first direction Y orthogonal to the vertical direction Z. Although not shown, the second inverter unit 44 is electrically connected to the first inverter unit 43. In the present embodiment, the elements included in the second inverter unit 44 are elements that generate a relatively small amount of heat or elements that do not generate heat. *
コネクタ部45は、第2インバータケース42aの上面から上側に突出する。コネクタ部45には、図示しない外部電源が接続される。コネクタ部45に接続される外部電源を介して、第1インバータ部43および第2インバータ部44に電源が供給される。  The connector part 45 protrudes upward from the upper surface of the second inverter case 42a. An external power supply (not shown) is connected to the connector unit 45. Power is supplied to the first inverter unit 43 and the second inverter unit 44 through an external power source connected to the connector unit 45. *
図4に示すように、バスバー70は、突出方向Pに延びる棒状である。バスバー70の突出方向下側の端部は、第1インバータ部43に電気的に接続される。バスバー70は、第1インバータ部43から突出方向上側に延びて、ハウジング20内を通る。バスバー70は、幅方向Wに沿って複数並んで設けられる。図4では、バスバー70は、例えば、3つ設けられる。  As shown in FIG. 4, the bus bar 70 has a rod shape extending in the protruding direction P. The lower end of the bus bar 70 in the protruding direction is electrically connected to the first inverter unit 43. The bus bar 70 extends from the first inverter portion 43 to the upper side in the protruding direction and passes through the housing 20. A plurality of bus bars 70 are provided along the width direction W. In FIG. 4, for example, three bus bars 70 are provided. *
図5に示すように、バスバー70の突出方向上側の端部には、圧着端子71が固定される。圧着端子71は、バスバー70に例えばビスで止められて固定される。なお、圧着端子71は、溶接等によってバスバー70に固定されてもよい。圧着端子71には、導線35aが接続される。導線35aは、例えば、コイル35を構成する導線の端部である。これにより、バスバー70は、コイル35と圧着端子71を介して接続され、インバータユニット40とモータ30とを電気的に接続する。なお、導線35aは、コイル35に電気的に接続された他の配線部材であってもよい。  As shown in FIG. 5, a crimp terminal 71 is fixed to the upper end of the bus bar 70 in the protruding direction. The crimp terminal 71 is fixed to the bus bar 70 by, for example, screws. The crimp terminal 71 may be fixed to the bus bar 70 by welding or the like. The lead wire 35 a is connected to the crimp terminal 71. The conducting wire 35a is, for example, an end portion of a conducting wire constituting the coil 35. Thus, the bus bar 70 is connected to the coil 35 via the crimp terminal 71 and electrically connects the inverter unit 40 and the motor 30. The conducting wire 35 a may be another wiring member that is electrically connected to the coil 35. *
図4に示すように、バスバー70の突出方向上側の端部は、オイルOの液面OS1よりも突出方向上側に配置される。これにより、圧着端子71は、第1収容部21に貯留されるオイルOの液面OS1、すなわちハウジング20に貯留されるオイルOの液面よりも上側に配置される。そのため、例えば駆動装置10に振動が加えられて第1収容部21に貯留されるオイルOが揺れても、圧着端子71は、オイルOによって影響を受けにくい。これにより、バスバー70と導線35aとの接続が外れることを抑制できる。  As shown in FIG. 4, the end of the bus bar 70 on the upper side in the protruding direction is disposed on the upper side in the protruding direction with respect to the liquid surface OS <b> 1 of the oil O. As a result, the crimp terminal 71 is disposed above the liquid surface OS1 of the oil O stored in the first housing portion 21, that is, above the liquid surface of the oil O stored in the housing 20. Therefore, for example, even if the drive device 10 is vibrated and the oil O stored in the first housing portion 21 is shaken, the crimp terminal 71 is not easily affected by the oil O. Thereby, it can suppress that the connection of the bus-bar 70 and the conducting wire 35a remove | deviates. *
液冷部50は、インバータユニット40を冷却する。図3に示すように、本実施形態において液冷部50は、第1インバータケース41a内に収容される。液冷部50は、第1収容部21の下端部に固定される。液冷部50は、ロータコア32よりも下側に配置される。図6に示すように、液冷部50は、ケース51と、ヒートシンク55と、壁部52と、を有する。図3に示すように、ケース51は、突出方向下側に開口する直方体箱状である。ケース51の突出方向下側の開口は、ヒートシンク55によって閉塞される。  The liquid cooling unit 50 cools the inverter unit 40. As shown in FIG. 3, in this embodiment, the liquid cooling unit 50 is accommodated in the first inverter case 41a. The liquid cooling part 50 is fixed to the lower end part of the first housing part 21. The liquid cooling unit 50 is disposed below the rotor core 32. As shown in FIG. 6, the liquid cooling unit 50 includes a case 51, a heat sink 55, and a wall 52. As shown in FIG. 3, the case 51 has a rectangular parallelepiped box shape that opens downward in the protruding direction. The opening on the lower side in the protruding direction of the case 51 is closed by the heat sink 55. *
ケース51は、突出方向Pと直交する板状の天板部51aを有する。天板部51aは、ヒートシンク55と突出方向Pに隙間を介して対向する。天板部51aは、突出部21bの突出方向下側の面に熱的に接触して固定される。本実施形態において突出部21bは、液冷部50が熱的に接触する接触部に相当する。すなわち、ハウジング20は、液冷部50が熱的に接触する接触部として突出部21bを有する。  The case 51 has a plate-shaped top plate portion 51 a orthogonal to the protruding direction P. The top plate portion 51a faces the heat sink 55 in the protruding direction P with a gap therebetween. The top plate portion 51a is fixed in thermal contact with the lower surface of the protruding portion 21b in the protruding direction. In the present embodiment, the protruding portion 21b corresponds to a contact portion with which the liquid cooling portion 50 comes into thermal contact. That is, the housing 20 has the protrusion part 21b as a contact part with which the liquid cooling part 50 contacts thermally. *
なお、本明細書において、ある対象同士が「熱的に接触する」とは、ある対象同士が直接的に接触する場合と、ある対象同士が伝熱部材を介して接触する場合と、を含む。伝熱部材としては、例えば、シリコン、コンパウンド、サーマルテープ、グリース等が挙げられる。  In addition, in this specification, a certain object "contacts thermally" includes the case where certain objects contact directly, and the case where certain objects contact via a heat-transfer member. . Examples of the heat transfer member include silicon, compound, thermal tape, and grease. *
ヒートシンク55は、底板部55aと、複数のフィン55bと、を有する。底板部55aは、突出方向Pと直交する板状である。底板部55aの突出方向下側の面は、液冷部50の突出方向下側の面である。底板部55aは、ケース51の突出方向下側の開口を閉塞するとともに、ケース43aの突出方向上側の開口を閉塞する。すなわち、底板部55aは、液冷部50の内部と第1インバータ部43の内部とを突出方向Pに仕切る。  The heat sink 55 includes a bottom plate portion 55a and a plurality of fins 55b. The bottom plate portion 55a has a plate shape orthogonal to the protruding direction P. The lower surface of the bottom plate portion 55a in the protruding direction is the lower surface of the liquid cooling unit 50 in the protruding direction. The bottom plate portion 55a closes the opening on the lower side in the protruding direction of the case 51 and closes the opening on the upper side in the protruding direction of the case 43a. That is, the bottom plate part 55 a partitions the inside of the liquid cooling part 50 and the inside of the first inverter part 43 in the protruding direction P. *
底板部55aの突出方向下側の面には、ケース43aおよびパワー素子43bが固定される。すなわち、底板部55aには、第1インバータ部43が固定される。これにより、液冷部50は、インバータユニット40と熱的に接触して配置される。複数のフィン55bは、底板部55aの突出方向上側の面から突出方向上側に突出する棒状である。フィン55bの突出方向上側の端部は、ケース51の天板部51aよりも突出方向下側に離れた位置に配置される。図6に示すように、複数のフィン55bは、幅方向Wおよび軸方向Xに沿って整列して配置される。  The case 43a and the power element 43b are fixed to the lower surface of the bottom plate portion 55a in the protruding direction. That is, the first inverter portion 43 is fixed to the bottom plate portion 55a. Thereby, the liquid cooling unit 50 is disposed in thermal contact with the inverter unit 40. The plurality of fins 55b have a rod shape that protrudes upward in the protruding direction from the upper surface of the bottom plate portion 55a in the protruding direction. The end of the fin 55b on the upper side in the protruding direction is disposed at a position farther to the lower side in the protruding direction than the top plate portion 51a of the case 51. As shown in FIG. 6, the plurality of fins 55 b are arranged in alignment along the width direction W and the axial direction X. *

壁部52は、底板部55aの突出方向上側の面から突出方向上側に延びて天板部51aの突出方向下側の面に繋がる。壁部52は、ケース51の内側面のうち軸方向一方側の面から軸方向他方側に延びる。液冷部50の内部には、ケース51とヒートシンク55と壁部52とによって囲まれた流路50aが構成される。流路50aは、軸方向一方側に開口するU字状である。

The wall 52 extends from the upper surface in the protruding direction of the bottom plate 55a to the upper side in the protruding direction and is connected to the lower surface of the top plate 51a in the protruding direction. The wall portion 52 extends from the surface on one side in the axial direction to the other side in the axial direction on the inner side surface of the case 51. Inside the liquid cooling part 50, a flow path 50a surrounded by a case 51, a heat sink 55 and a wall part 52 is formed. The flow path 50a is U-shaped opening to one side in the axial direction.
液冷部50は、第1流入出口53と、第2流入出口54と、を有する。第1流入出口53と第2流入出口54とは、ケース51の軸方向一方側の面に、幅方向Wに離れて設けられる。第1流入出口53と第2流入出口54とは、それぞれ液冷部50の外部と流路50aとを繋ぐ。第1流入出口53は、流路50aの一端に繋がる。第2流入出口54は、流路50aの他端に繋がる。本実施形態において流路50aには、第2流入出口54を介して冷媒液が流入する。流路50aに流入した冷媒液は、第1流入出口53から流出する。このようにして、液冷部50の内部に冷媒液が流れる。冷媒液は、特に限定されず、例えば、水である。  The liquid cooling unit 50 includes a first inflow / outflow port 53 and a second inflow / outflow port 54. The first inflow / outflow port 53 and the second inflow / outflow port 54 are provided on the surface on one side in the axial direction of the case 51 so as to be separated in the width direction W. The first inlet / outlet 53 and the second inlet / outlet 54 connect the outside of the liquid cooling unit 50 and the flow path 50a, respectively. The first inflow / outflow port 53 is connected to one end of the flow path 50a. The second inlet / outlet 54 is connected to the other end of the flow path 50a. In the present embodiment, the refrigerant liquid flows into the flow path 50a via the second inflow / outflow port 54. The refrigerant liquid that has flowed into the flow path 50 a flows out from the first inflow / outflow port 53. In this way, the refrigerant liquid flows inside the liquid cooling unit 50. A refrigerant liquid is not specifically limited, For example, it is water. *
流路50aに冷媒液が流されることで、液冷部50と熱的に接触する部品を冷却することができる。本実施形態では、液冷部50には、インバータユニット40およびハウジング20が熱的に接触するため、液冷部50によってインバータユニット40およびハウジング20を冷却することができる。ここで、図3に示すように、ハウジング20における液冷部50が熱的に接触する突出部21bは、少なくとも一部が液面OS1よりも鉛直方向Zの下側に配置される。すなわち、接触部としての突出部21bの少なくとも一部は、液面OS1よりも下側に配置される。これにより、突出部21bの少なくとも一部の内側面は、第1収容部21に貯留されるオイルOと接触する。したがって、突出部21bを液冷部50によって冷却することで、ハウジング20に貯留されるオイルOを冷却することができる。  By flowing the coolant liquid through the flow path 50a, it is possible to cool components that are in thermal contact with the liquid cooling unit 50. In the present embodiment, since the inverter unit 40 and the housing 20 are in thermal contact with the liquid cooling unit 50, the inverter unit 40 and the housing 20 can be cooled by the liquid cooling unit 50. Here, as shown in FIG. 3, at least a part of the protruding portion 21b in which the liquid cooling unit 50 in the housing 20 is in thermal contact is disposed below the liquid level OS1 in the vertical direction Z. That is, at least a part of the protruding portion 21b as the contact portion is disposed below the liquid level OS1. Thereby, at least a part of the inner surface of the protruding portion 21 b comes into contact with the oil O stored in the first storage portion 21. Therefore, the oil O stored in the housing 20 can be cooled by cooling the protruding portion 21b by the liquid cooling portion 50. *
このように、本実施形態によれば、貯留された状態のオイルOを液冷部50によって冷却できるため、オイルOが流れる流路に冷却装置を配置するような場合に比べて、オイルOを十分に冷却しやすい。また、モータ30に供給される電流を調整するインバータユニット40を冷却する液冷部50を利用できるため、オイルOを冷却する冷却装置を別途設ける場合に比べて、駆動装置10全体が大型化することを抑制できる。以上により、本実施形態によれば、冷却用のオイルOを十分に冷却でき、かつ、大型化を抑制できる構造を有する駆動装置10が得られる。オイルOを十分に冷却できるため、オイルOによってモータ30を好適に冷却できる。また、駆動装置10の部品点数を少なくできるため、駆動装置10を組み立てる手間およびコストを低減できる。  As described above, according to the present embodiment, the stored oil O can be cooled by the liquid cooling unit 50, and therefore, the oil O can be compared with a case where a cooling device is disposed in the flow path through which the oil O flows. It is easy to cool sufficiently. Moreover, since the liquid cooling part 50 which cools the inverter unit 40 which adjusts the electric current supplied to the motor 30 can be utilized, compared with the case where the cooling device which cools the oil O is provided separately, the drive device 10 whole becomes large. This can be suppressed. As described above, according to the present embodiment, it is possible to obtain the driving device 10 having a structure that can sufficiently cool the cooling oil O and can suppress an increase in size. Since the oil O can be sufficiently cooled, the motor 30 can be suitably cooled by the oil O. Moreover, since the number of parts of the drive apparatus 10 can be reduced, the effort and cost of assembling the drive apparatus 10 can be reduced. *
なお、本明細書において「接触部の少なくとも一部がオイルの液面よりも下側に配置される」とは、駆動装置が使用される態様および姿勢の少なくとも一部の態様および姿勢において、接触部の少なくとも一部がオイルの液面よりも下側に配置されればよい。すなわち、例えば、図3に示す状態において突出部21bの少なくとも一部が液面OS1よりも下側に配置されるならば、駆動装置10が図3に示す姿勢よりも周方向に傾いた姿勢となった場合に、突出部21bの全体が液面OS1よりも上側に配置されてもよい。また、駆動装置10の姿勢が変わらない場合において液面OS1が鉛直方向Zに変化する場合においても、液面OS1が変化する鉛直方向Zの範囲の少なくとも一部において、突出部21bの少なくとも一部が液面OS1よりも下側に配置されればよい。  In the present specification, “at least a part of the contact portion is disposed below the oil level” means that the contact is made in at least a part of the mode and posture in which the driving device is used and in the posture. It suffices that at least a part of the portion is disposed below the oil level. That is, for example, if at least a part of the protruding portion 21b is arranged below the liquid surface OS1 in the state shown in FIG. 3, the driving device 10 is inclined in the circumferential direction from the posture shown in FIG. When it becomes, the whole protrusion part 21b may be arrange | positioned above liquid level OS1. Further, even when the liquid level OS1 changes in the vertical direction Z when the attitude of the driving device 10 does not change, at least a part of the protruding portion 21b in at least a part of the range of the vertical direction Z in which the liquid level OS1 changes. May be disposed below the liquid surface OS1. *
本実施形態では複数のフィン55bが設けられることで、ヒートシンク55における冷媒液と接触する表面積を大きくできる。そのため、底板部55aに固定されたパワー素子43bの熱を、複数のフィン55bを介して流路50aを流れる冷媒液に放熱しやすい。これにより、液冷部50によって第1インバータ部43をより冷却しやすい。  In the present embodiment, by providing the plurality of fins 55b, the surface area of the heat sink 55 that contacts the refrigerant liquid can be increased. Therefore, it is easy to radiate the heat of the power element 43b fixed to the bottom plate portion 55a to the refrigerant liquid flowing through the flow path 50a via the plurality of fins 55b. Accordingly, the first inverter unit 43 can be more easily cooled by the liquid cooling unit 50. *
本実施形態において接触部である突出部21bの少なくとも一部は、ロータコア32よりも下側に配置される。そのため、上述したようにして液面OS1をロータコア32より下側にしても、突出部21bの少なくとも一部の内側面をオイルOと接触させることができる。したがって、オイルOがロータコア32の回転抵抗となることを抑制しつつ、突出部21bを液冷部50によって冷却することで第1収容部21に貯留されるオイルOを十分に冷却できる。  In the present embodiment, at least a part of the protruding portion 21 b which is a contact portion is disposed below the rotor core 32. Therefore, even when the liquid level OS1 is set below the rotor core 32 as described above, at least a part of the inner surface of the protruding portion 21b can be brought into contact with the oil O. Therefore, the oil O stored in the first accommodating portion 21 can be sufficiently cooled by cooling the protruding portion 21b by the liquid cooling portion 50 while suppressing the oil O from becoming the rotational resistance of the rotor core 32. *
また、本実施形態では、接触部である突出部21bは、第1収容部21の下部である。そのため、液冷部50によって、第1収容部21に貯留されるオイルOを冷却できる。これにより、オイルOによってモータ30を効率的に冷却できる。なお、本明細書において「第1収容部の下部」とは、駆動装置を通常使用する姿勢に配置した場合において、第1収容部の鉛直方向Zの中心よりも下側に配置される部分を含む。  In the present embodiment, the protruding portion 21 b that is a contact portion is a lower portion of the first accommodating portion 21. Therefore, the oil O stored in the first storage unit 21 can be cooled by the liquid cooling unit 50. Thereby, the motor 30 can be efficiently cooled by the oil O. In the present specification, the “lower part of the first housing part” means a part arranged below the center in the vertical direction Z of the first housing part when the drive device is arranged in a normal use posture. Including. *
また、本実施形態において液冷部50と熱的に接触するインバータユニット40の部分は、第1インバータ部43である。第1インバータ部43は、液冷部50の下側に熱的に接触して配置される。そのため、液冷部50をハウジング20と第1インバータ部43とで鉛直方向Zに挟みやすく、液冷部50をハウジング20と第1インバータ部43との両方に熱的に接触させやすい。また、例えば、本実施形態のように第1インバータ部43に発熱量が比較的大きいパワー素子43bを搭載することで、インバータユニット40において特に発熱しやすい部分を液冷部50で冷却しやすい。  In the present embodiment, the portion of the inverter unit 40 that is in thermal contact with the liquid cooling unit 50 is the first inverter unit 43. The first inverter unit 43 is disposed in thermal contact with the lower side of the liquid cooling unit 50. Therefore, the liquid cooling part 50 is easily sandwiched between the housing 20 and the first inverter part 43 in the vertical direction Z, and the liquid cooling part 50 is easily brought into thermal contact with both the housing 20 and the first inverter part 43. Further, for example, by mounting the power element 43b having a relatively large heat generation amount in the first inverter unit 43 as in the present embodiment, a portion that is particularly likely to generate heat in the inverter unit 40 can be easily cooled by the liquid cooling unit 50. *
また、本実施形態では、インバータユニット40は、第1収容部21の第1方向一方側に配置される第2インバータ部44を有する。このように、第1収容部21に対して、下側に第1インバータ部43を配置し、第1方向一方側に第2インバータ部44を配置することで、インバータユニット40全体を第1収容部21に対して下側あるいは第1方向一方側に配置する場合に比べて、駆動装置10全体を小型化しやすい。また、インバータユニット40の素子のうちで発熱量が比較的大きい素子を第1インバータ部43に集めて搭載することで、インバータユニット40を2つのインバータ部に分けても、インバータユニット40を効率的に冷却できる。このようにして、本実施形態によれば、液冷部50によってインバータユニット40を効率的に冷却しつつ、駆動装置10が大型化することを抑制できる。  In the present embodiment, the inverter unit 40 includes the second inverter unit 44 disposed on one side in the first direction of the first housing unit 21. Thus, the first inverter unit 43 is disposed on the lower side with respect to the first housing unit 21, and the second inverter unit 44 is disposed on one side in the first direction, whereby the entire inverter unit 40 is first housed. Compared with the case where it is arranged on the lower side or one side in the first direction with respect to the portion 21, the entire driving device 10 can be easily downsized. Moreover, even if the inverter unit 40 is divided into two inverter units by collecting and mounting the elements having a relatively large calorific value among the elements of the inverter unit 40 in the first inverter unit 43, the inverter unit 40 can be efficiently used. Can be cooled. As described above, according to the present embodiment, the liquid cooling unit 50 can efficiently cool the inverter unit 40 while suppressing the drive device 10 from becoming large. *
図4に示す配管部61,62は、液冷部50に繋がり、液冷部50内の冷媒液が流れる。配管部61の一部は、第1収容部21内に配置される。より詳細には、図4に示すように、配管部61は、第1収容部21の軸方向一方側の面から第1収容部21内に挿入され、第1収容部21内においてU字状に折り返して第1収容部21の軸方向一方側の面から第1収容部21の外部に突出する。これにより、配管部61は、ハウジング20内を通る。そのため、配管部61によってハウジング20の内部を冷却することができ、ハウジング20に貯留されるオイルOを冷却しやすい。  The piping parts 61 and 62 shown in FIG. 4 are connected to the liquid cooling part 50, and the refrigerant liquid in the liquid cooling part 50 flows. A part of the piping part 61 is arranged in the first housing part 21. More specifically, as shown in FIG. 4, the piping portion 61 is inserted into the first housing portion 21 from the surface on one side in the axial direction of the first housing portion 21, and is U-shaped in the first housing portion 21. And protrudes from the surface on one side in the axial direction of the first housing portion 21 to the outside of the first housing portion 21. Thereby, the piping part 61 passes through the housing 20. Therefore, the inside of the housing 20 can be cooled by the piping portion 61, and the oil O stored in the housing 20 can be easily cooled. *
このように、本実施形態によれば、貯留された状態のオイルOを配管部61によって冷却できるため、オイルOが流れる流路に冷却装置を配置するような場合に比べて、オイルOを十分に冷却しやすい。また、モータ30に供給される電流を調整するインバータユニット40を冷却する液冷部50に繋がる配管部61を利用できるため、オイルOを冷却する冷却装置を別途設ける場合に比べて、駆動装置10全体が大型化することを抑制できる。以上により、本実施形態によれば、冷却用のオイルOを十分に冷却でき、かつ、大型化を抑制できる構造を有する駆動装置10が得られる。また、本実施形態においては、上述したように、液冷部50によってもハウジング20に貯留されるオイルOを冷却できるため、オイルOをより冷却できる。  As described above, according to the present embodiment, the stored oil O can be cooled by the pipe portion 61, so that the oil O is sufficient as compared with the case where the cooling device is disposed in the flow path through which the oil O flows. Easy to cool down. Moreover, since the piping part 61 connected with the liquid cooling part 50 which cools the inverter unit 40 which adjusts the electric current supplied to the motor 30 can be utilized, compared with the case where the cooling device which cools the oil O is provided separately, the drive device 10. It can suppress that the whole enlarges. As described above, according to the present embodiment, it is possible to obtain the driving device 10 having a structure that can sufficiently cool the cooling oil O and can suppress an increase in size. Further, in the present embodiment, as described above, the oil O stored in the housing 20 can be cooled also by the liquid cooling unit 50, so that the oil O can be further cooled. *
配管部61は、ハウジング20内の鉛直方向下側領域を通る。そのため、ハウジング20内の鉛直方向Zの下側に貯留されるオイルO内に配管部61を通しやすい。これにより、ハウジング20に貯留されるオイルOを配管部61によってより冷却しやすい。  The piping part 61 passes through the lower region in the vertical direction in the housing 20. Therefore, the piping part 61 can be easily passed through the oil O stored in the lower side of the vertical direction Z in the housing 20. Thereby, the oil O stored in the housing 20 can be more easily cooled by the pipe portion 61. *
なお、本明細書において「ハウジング内の鉛直方向下側領域」とは、ハウジングの内部のうちの任意の部分における鉛直方向Zの中心よりも下側に位置する部分である。すなわち、例えば、第1収容部21においては、第1収容部21の内部における鉛直方向Zの中心よりも下側に位置する部分が、ハウジング内の鉛直方向下側領域である。また、第2収容部22においては、第2収容部22の内部における鉛直方向Zの中心よりも下側に位置する部分が、ハウジング内の鉛直方向下側領域である。すなわち、ハウジング内の鉛直方向下側領域の鉛直方向Zの位置は、例えば、収容部によって異なる場合がある。  In the present specification, the “vertical lower region in the housing” is a portion located below the center of the vertical direction Z in an arbitrary portion of the interior of the housing. That is, for example, in the first housing part 21, a portion located below the center in the vertical direction Z inside the first housing part 21 is a vertically lower region in the housing. Moreover, in the 2nd accommodating part 22, the part located below the center of the vertical direction Z in the inside of the 2nd accommodating part 22 is a vertical direction lower side area | region in a housing. That is, the position in the vertical direction Z of the lower region in the vertical direction in the housing may differ depending on the accommodating portion, for example. *
本実施形態では、配管部61は、第1収容部21内の鉛直方向下側領域を通る。そのため、配管部61を液面OS1よりも下側においてハウジング20内に通しやすく、第1収容部21に貯留されるオイルOを配管部61によって好適に冷却することができる。ハウジング20内に配置される配管部61の少なくとも一部は、ハウジング20に貯留されるオイルOの液面、すなわち本実施形態では液面OS1よりも下側に配置される。そのため、配管部61をオイルOに接触させることができ、配管部61を流れる冷媒液によってオイルOをより冷却しやすい。  In the present embodiment, the piping part 61 passes through the lower region in the vertical direction in the first housing part 21. Therefore, it is easy to pass the piping part 61 into the housing 20 below the liquid level OS1, and the oil O stored in the first accommodating part 21 can be suitably cooled by the piping part 61. At least a part of the piping part 61 disposed in the housing 20 is disposed below the liquid level of the oil O stored in the housing 20, that is, below the liquid level OS1 in this embodiment. Therefore, the piping part 61 can be brought into contact with the oil O, and the oil O can be more easily cooled by the refrigerant liquid flowing through the piping part 61. *
本実施形態では、ハウジング20内に配置される配管部61の部分全体が、液面OS1よりも下側に配置され、オイルO内を通る。図3に示すように、ハウジング20内に配置される配管部61は、ロータコア32よりも下側に配置される。本実施形態において配管部61は、突出部21bの内部を通る。  In the present embodiment, the entire portion of the piping portion 61 disposed in the housing 20 is disposed below the liquid level OS1 and passes through the oil O. As shown in FIG. 3, the piping part 61 disposed in the housing 20 is disposed below the rotor core 32. In this embodiment, the piping part 61 passes through the inside of the protruding part 21b. *
図4に示すように、第1収容部21内から第1収容部21の外部に突出した配管部61は、液冷部50の第2流入出口54に繋がる。これにより、配管部61内を流れる冷媒液が第2流入出口54を介して液冷部50内、すなわち流路50aに流入する。配管部62は、液冷部50の第1流入出口53に繋がる。これにより、液冷部50内、すなわち流路50a内の冷媒液が第1流入出口53を介して配管部62に流出する。  As shown in FIG. 4, the pipe portion 61 that protrudes from the first housing portion 21 to the outside of the first housing portion 21 is connected to the second inlet / outlet 54 of the liquid cooling portion 50. Thereby, the refrigerant liquid flowing in the piping part 61 flows into the liquid cooling part 50, that is, the flow path 50a through the second inlet / outlet 54. The piping part 62 is connected to the first inlet / outlet 53 of the liquid cooling part 50. Thereby, the refrigerant liquid in the liquid cooling part 50, that is, in the flow path 50 a flows out to the pipe part 62 through the first inflow / outlet 53. *

図3に示す配管部63は、配管部61あるいは配管部62と繋がり、配管部61あるいは配管部62を介して、液冷部50に繋がる。配管部63は、ハウジング20内を通る。より詳細には、配管部63は、第2収容部22内の鉛直方向下側領域を通る。そのため、配管部63によって、第2収容部22に貯留されるオイルOを冷却しやすい。配管部63の少なくとも一部は、第2収容部22に貯留されるオイルOの液面OS2よりも下側に配置される。

The piping part 63 shown in FIG. 3 is connected to the piping part 61 or the piping part 62, and is connected to the liquid cooling part 50 via the piping part 61 or the piping part 62. The piping part 63 passes through the housing 20. More specifically, the piping part 63 passes through the lower region in the vertical direction in the second housing part 22. Therefore, it is easy to cool the oil O stored in the second accommodating portion 22 by the piping portion 63. At least a part of the pipe part 63 is disposed below the liquid surface OS2 of the oil O stored in the second storage part 22.
図示は省略するが、配管部61と配管部62とは、第1インバータケース41a内から第2インバータケース42a内に引き回され、第2インバータケース42aから駆動装置10の外部に引き出される。駆動装置10の外部に引き出された配管部61と配管部62とは、図示しないポンプに接続される。ポンプは、配管部61、流路50a、配管部62の順に冷媒液を循環させる。本実施形態では、例えば、この循環の途中において配管部61あるいは配管部62に繋がる配管部63に冷媒液が流れる。また、配管部62は、駆動装置10の外部において図示しないラジエータに接続される。ラジエータは、配管部62内の冷媒液を冷却する。これにより、冷媒液によって、インバータユニット40およびハウジング20に貯留されるオイルOから吸収した熱を放熱できる。  Although illustration is omitted, the piping part 61 and the piping part 62 are drawn from the first inverter case 41a into the second inverter case 42a, and are drawn out of the driving device 10 from the second inverter case 42a. The piping part 61 and the piping part 62 drawn out of the driving device 10 are connected to a pump (not shown). The pump circulates the refrigerant liquid in the order of the piping part 61, the flow path 50 a, and the piping part 62. In the present embodiment, for example, the refrigerant liquid flows through the pipe part 61 or the pipe part 63 connected to the pipe part 62 during the circulation. The piping unit 62 is connected to a radiator (not shown) outside the driving device 10. The radiator cools the refrigerant liquid in the pipe part 62. Thereby, the heat absorbed from the oil O stored in the inverter unit 40 and the housing 20 can be radiated by the refrigerant liquid. *
図3に示す差動装置80には、モータシャフト31を介してモータ30からの駆動力が伝達される。より詳細には、差動装置80は、図示しない減速機構を介してモータシャフト31と連結され、減速されたモータシャフト31の回転が伝達される。差動装置80は、第2中心軸J2を中心とする連結孔部81を有する。第2中心軸J2は、第1中心軸J1と平行であり、第1方向Yにおいて、第1中心軸J1に対して第2インバータ部44と逆側、すなわち第1方向他方側に配置される。  The driving force from the motor 30 is transmitted to the differential device 80 shown in FIG. More specifically, the differential device 80 is connected to the motor shaft 31 via a reduction mechanism (not shown), and the rotation of the reduced motor shaft 31 is transmitted. The differential device 80 has a connecting hole 81 centered on the second central axis J2. The second central axis J2 is parallel to the first central axis J1, and is arranged in the first direction Y on the opposite side of the second inverter unit 44 with respect to the first central axis J1, that is, on the other side in the first direction. . *
連結孔部81には、例えば、第2中心軸J2に沿って配置される出力シャフトが連結される。差動装置80は、モータシャフト31から減速機構を介して伝達された駆動力を、連結孔部81に連結された出力シャフトに対して出力可能である。すなわち、差動装置80は、出力シャフトに対して第2中心軸J2周りの駆動力を出力可能である。出力シャフトは、例えば、車両の車軸である。  For example, an output shaft disposed along the second central axis J2 is coupled to the coupling hole 81. The differential device 80 can output the driving force transmitted from the motor shaft 31 via the speed reduction mechanism to the output shaft coupled to the coupling hole 81. That is, the differential device 80 can output a driving force around the second central axis J2 with respect to the output shaft. The output shaft is, for example, a vehicle axle. *
本実施形態によれば、第1方向Yにおいて、第2中心軸J2が第2インバータ部44との間で第1中心軸J1を挟む位置に配置される。そのため、第2インバータ部44、すなわち第2ユニット42が連結孔部81と軸方向Xに重なる位置に配置されることを抑制できる。これにより、連結孔部81に対して出力シャフトを連結しやすい。  According to the present embodiment, in the first direction Y, the second central axis J2 is disposed at a position sandwiching the first central axis J1 with the second inverter unit 44. Therefore, it can suppress that the 2nd inverter part 44, ie, the 2nd unit 42, is arrange | positioned in the position which overlaps with the connection hole part 81 and the axial direction X. FIG. Thereby, it is easy to connect the output shaft to the connection hole 81. *
本発明は上述の実施形態に限られず、他の構成を採用することもできる。なお、以下の説明において、上記実施形態と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。  The present invention is not limited to the above-described embodiment, and other configurations can be employed. In the following description, the same configurations as those in the above embodiment may be omitted by appropriately attaching the same reference numerals. *
インバータユニット40は、全体が第1収容部21に対して下側、あるいは第1方向Yのいずれか一方側に配置されてもよい。この場合、第1ユニット41と第2ユニット42とは一つのユニットにまとめられてもよい。液冷部50の一部は、液面OS1よりも上側に配置されてもよい。第2ユニット42には、第2インバータ部44を冷却する他の液冷部が設けられてもよい。この場合、他の液冷部は、例えば、配管部61および配管部62を介して液冷部50と繋がってもよい。また、複数のフィン55bの形状を、流路50aを流れる冷媒液の流れに沿った形状としてもよい。バスバー70と導線35aとは、圧着端子71を介さずに直接的に固定されてもよい。バスバー70と導線35aとは、例えば、ビスによって直接的に固定されてもよいし、溶接によって直接的に固定されてもよい。  The entire inverter unit 40 may be disposed on the lower side with respect to the first housing portion 21 or on either one side in the first direction Y. In this case, the first unit 41 and the second unit 42 may be combined into one unit. A part of the liquid cooling unit 50 may be disposed above the liquid level OS1. The second unit 42 may be provided with another liquid cooling unit that cools the second inverter unit 44. In this case, the other liquid cooling unit may be connected to the liquid cooling unit 50 via the piping unit 61 and the piping unit 62, for example. The shape of the plurality of fins 55b may be a shape along the flow of the refrigerant liquid flowing through the flow path 50a. The bus bar 70 and the conductive wire 35a may be directly fixed without using the crimp terminal 71. The bus bar 70 and the conductive wire 35a may be directly fixed by screws, for example, or may be directly fixed by welding. *

<第1実施形態の変形例>

 図7に示すように、本変形例の駆動装置110において、ハウジング120の第1収容部121は、窓部121cを有する。窓部121cは、第1収容部121の軸方向一方側の面に設けられた開口部である。窓部121cは、第1収容部121の内部と第1収容部121の外部とを繋ぐ。窓部121cは、幅方向Wに延びる角丸長方形状である。 

<Modification of First Embodiment>

As shown in FIG. 7, in the drive device 110 according to this modification, the first housing 121 of the housing 120 has a window 121c. The window part 121c is an opening part provided on the surface of the first housing part 121 on one side in the axial direction. The window part 121 c connects the inside of the first housing part 121 and the outside of the first housing part 121. The window 121c has a rounded rectangular shape extending in the width direction W.
ハウジング120は、窓部121cを塞ぐ蓋部123を有する。蓋部123は、軸方向Xと直交する板状である。蓋部123を軸方向Xに沿って視た形状は、幅方向Wに延びる角丸長方形形状である。蓋部123は、窓部121cに嵌め込まれて、窓部121cを閉塞する。蓋部123の材質は、例えば、ゴムあるいは金属である。窓部121cと蓋部123との間には、例えばFIPG(Formed In Place Gasket)等のシール部材が配置される。これにより、窓部121cと蓋部123との隙間から第1収容部121の外部にオイルOが漏れることを抑制できる。  The housing 120 has a lid portion 123 that closes the window portion 121c. The lid portion 123 has a plate shape orthogonal to the axial direction X. The shape of the lid 123 viewed along the axial direction X is a rounded rectangular shape extending in the width direction W. The lid portion 123 is fitted into the window portion 121c to close the window portion 121c. The material of the lid 123 is, for example, rubber or metal. A seal member such as FIPG (Formed In Place Gasket) is disposed between the window portion 121c and the lid portion 123, for example. Thereby, it can suppress that oil O leaks outside the 1st accommodating part 121 from the clearance gap between the window part 121c and the cover part 123. FIG. *
蓋部123は、蓋部123を軸方向Xに貫通する孔部を幅方向Wの両端部に有する。蓋部123の孔部には、第1収容部121の外部から第1収容部121内に挿入される配管部61の部分と、第1収容部121内から第1収容部121の外部に突出する配管部61の部分とが、それぞれ通される。蓋部123の孔部と配管部61との間には、例えばFIPG等のシール部材が配置される。これにより、蓋部123の孔部と配管部61との隙間から第1収容部121の外部にオイルOが漏れることを抑制できる。  The lid portion 123 has holes that penetrate the lid portion 123 in the axial direction X at both ends in the width direction W. The hole part of the lid part 123 projects from the outside of the first housing part 121 to the portion of the piping part 61 inserted into the first housing part 121 and from the inside of the first housing part 121 to the outside of the first housing part 121. The piping part 61 to be passed is passed through. A seal member such as FIPG is disposed between the hole of the lid portion 123 and the piping portion 61. Thereby, it can suppress that oil O leaks outside the 1st accommodating part 121 from the clearance gap between the hole of the cover part 123, and the piping part 61. FIG. *
本変形例によれば、窓部121cが設けられるため、第1収容部121内に配管部61を通すことが容易である。具体的には、配管部61が蓋部123の孔部に通され、蓋部123が配管部61に固定された状態で、配管部61のU字状に折り曲げられた部分を、窓部121cを介して第1収容部121内に挿入する。そして、配管部61を軸方向他方側に差し込むとともに、蓋部123を窓部121cに嵌め込んで固定する。これにより、配管部61の一部を第1収容部121内に容易に配置でき、配管部61を第1収容部121内に容易に通すことができる。  According to this modification, since the window part 121c is provided, it is easy to pass the pipe part 61 into the first accommodating part 121. Specifically, the pipe part 61 is passed through the hole of the lid part 123 and the lid part 123 is fixed to the pipe part 61. It inserts in the 1st accommodating part 121 via. And while inserting the piping part 61 to the other side of an axial direction, the cover part 123 is engage | inserted and fixed to the window part 121c. Thereby, a part of the piping part 61 can be easily arranged in the first housing part 121, and the piping part 61 can be easily passed through the first housing part 121. *
本変形例では、図4に示す駆動装置10と異なり、配管部62から液冷部50に冷媒液が流入し、液冷部50内に流入した冷媒液は配管部61から流出する。すなわち、本変形例における配管部61,62,63と液冷部50とにおける冷媒液の流れる向きは、図4に示す駆動装置10と逆向きとなる。これにより、図示しないポンプから供給される冷媒液を第1収容部21の内部よりも先に液冷部50内に流すことができる。そのため、液冷部50の内部を流れる冷媒液の温度をより低くすることができ、第1インバータ部43をより好適に冷却できる。  In the present modification, unlike the drive device 10 shown in FIG. 4, the refrigerant liquid flows into the liquid cooling unit 50 from the pipe unit 62, and the refrigerant liquid that flows into the liquid cooling unit 50 flows out of the pipe unit 61. That is, the flow direction of the refrigerant liquid in the pipe portions 61, 62, 63 and the liquid cooling portion 50 in the present modification is opposite to that of the driving device 10 shown in FIG. As a result, the refrigerant liquid supplied from a pump (not shown) can flow into the liquid cooling unit 50 before the inside of the first storage unit 21. Therefore, the temperature of the refrigerant liquid flowing inside the liquid cooling unit 50 can be lowered, and the first inverter unit 43 can be cooled more suitably. *

<第2実施形態>

図8に示すように、本実施形態の駆動装置210において第1収容部221は、突出方向下側に開口する。より詳細には、突出部221bは、突出方向下側に開口する。突出部221bの突出方向下側の開口は、液冷部250におけるケース251の天板部251aによって閉塞される。すなわち、本実施形態では、液冷部250の一部が、ハウジング220の一部でもある。 

Second Embodiment

As shown in FIG. 8, in the driving device 210 of the present embodiment, the first housing portion 221 opens to the lower side in the protruding direction. More specifically, the protrusion 221b opens downward in the protrusion direction. The opening on the lower side in the protruding direction of the protruding portion 221 b is closed by the top plate portion 251 a of the case 251 in the liquid cooling unit 250. That is, in this embodiment, a part of the liquid cooling unit 250 is also a part of the housing 220.
なお、本明細書では「液冷部がハウジングと熱的に接触する」とは、液冷部の内部を流れる冷媒液がハウジングと熱的に接触可能な場合も含む。本実施形態では、天板部251aが第1収容部221の一部を構成するため、液冷部250の内部を流れる冷媒液は、第1収容部221の一部を構成する天板部251aに熱的に接触する。したがって、液冷部250は、ハウジング220と熱的に接触する。これにより、第1実施形態と同様に、液冷部250によって、ハウジング220に貯留されるオイルOを冷却できるため、オイルOをより冷却しやすい。特に本実施形態では、オイルOを貯留する第1収容部221の一部を構成する天板部251aに冷媒液が直接的に接触するため、冷媒液はオイルOから熱をより吸収しやすく、オイルOをさらに冷却しやすい。  In the present specification, “the liquid cooling part is in thermal contact with the housing” includes the case where the refrigerant liquid flowing inside the liquid cooling part can be in thermal contact with the housing. In the present embodiment, since the top plate portion 251 a constitutes a part of the first housing portion 221, the refrigerant liquid flowing inside the liquid cooling unit 250 causes the top plate portion 251 a that constitutes a part of the first housing portion 221. In thermal contact. Accordingly, the liquid cooling unit 250 is in thermal contact with the housing 220. Thereby, since the oil O stored in the housing 220 can be cooled by the liquid cooling unit 250 as in the first embodiment, it is easier to cool the oil O. In particular, in the present embodiment, since the refrigerant liquid directly contacts the top plate portion 251a that constitutes a part of the first housing part 221 that stores the oil O, the refrigerant liquid more easily absorbs heat from the oil O, Oil O is easier to cool. *
天板部251aは、突出部221bの突出方向下側の端部にビスで固定される。図示は省略するが、天板部251aと突出部221bの突出方向下側の端部との間には、シール部材が配置される。シール部材は、例えば、FIPG等である。これにより、第1収容部221内のオイルOがハウジング220の外部に漏れることを抑制できる。  The top plate portion 251a is fixed with screws to the lower end of the protruding portion 221b in the protruding direction. Although illustration is omitted, a seal member is disposed between the top plate portion 251a and the end portion on the lower side in the protruding direction of the protruding portion 221b. The seal member is, for example, FIPG. Thereby, it can suppress that the oil O in the 1st accommodating part 221 leaks to the exterior of the housing 220. FIG. *

<第3実施形態>

図9に示す本実施形態の駆動装置310において、配管部361は、軸方向一方側に開口するU字状に延びる。配管部361は、第1収容部21の軸方向一方側の面から第1収容部21内に挿入され、第1収容部21の軸方向他方側の面から第1収容部21の外部に突出する。第1収容部21の軸方向他方側の面から突出した配管部361は、U字状に折り返して、突出部21bの幅方向一方側の側面に接触しつつ軸方向一方側に延びる。これにより、配管部361は、第1収容部21の外側面、すなわちハウジング20の外側面に熱的に接触する。そのため、本実施形態によれば、配管部361によって、ハウジング20の内部を冷却できるとともに、ハウジング20を外側からも冷却できる。したがって、ハウジング20に貯留されるオイルOをより冷却することができる。 

<Third Embodiment>

In the drive device 310 of this embodiment shown in FIG. 9, the piping part 361 extends in a U-shape that opens to one side in the axial direction. The piping part 361 is inserted into the first accommodating part 21 from the surface on one side in the axial direction of the first accommodating part 21, and protrudes to the outside of the first accommodating part 21 from the surface on the other side in the axial direction of the first accommodating part 21. To do. The piping part 361 that protrudes from the surface on the other axial side of the first housing part 21 is folded back in a U-shape and extends to one axial direction while contacting the side surface on one side in the width direction of the protruding part 21b. Thereby, the piping part 361 is in thermal contact with the outer side surface of the first housing part 21, that is, the outer side surface of the housing 20. Therefore, according to the present embodiment, the inside of the housing 20 can be cooled by the piping portion 361, and the housing 20 can also be cooled from the outside. Therefore, the oil O stored in the housing 20 can be further cooled.
本実施形態では、配管部361が熱的に接触する部分は、突出部21bの外側面である。突出部21bの外側面は、第1収容部21内の鉛直方向下側領域の外側面である。すなわち、配管部361は、ハウジング20内の鉛直方向下側領域の外側面に熱的に接触する。これにより、配管部361によってハウジング20に貯留されるオイルOをより冷却しやすい。  In the present embodiment, the portion where the piping portion 361 is in thermal contact is the outer surface of the protruding portion 21b. The outer side surface of the protruding portion 21 b is the outer side surface of the lower region in the vertical direction in the first accommodating portion 21. That is, the piping part 361 is in thermal contact with the outer surface of the lower region in the vertical direction in the housing 20. Thereby, it is easier to cool the oil O stored in the housing 20 by the pipe portion 361. *
なお、配管部361は、ハウジング20における突出部21b以外の部分の外側面に熱的に接触してもよい。例えば、配管部361は、第2収容部22の外側面に熱的に接触してもよい。  Note that the pipe portion 361 may be in thermal contact with the outer surface of the housing 20 other than the protruding portion 21b. For example, the piping part 361 may be in thermal contact with the outer surface of the second housing part 22. *
上述した各実施形態において液冷部に対する冷媒液の流入および流出は、液冷部の軸方向Xの同じ側の面から行われたが、これに限られない。液冷部に対する冷媒液の流入および流出は、図10に示す液冷部450のように、液冷部の軸方向Xの逆側の面から行われてもよい。図10に示すように、液冷部450において、第1流入出口453は、ケース451の軸方向一方側の面に設けられる。第2流入出口454は、ケース451の軸方向他方側の面に設けられる。これにより、例えば軸方向一方側から第1流入出口453を介して流路450aに流入した冷媒液は、第2流入出口454を介して軸方向他方側に流出する。  In each embodiment mentioned above, inflow and outflow of the refrigerant | coolant liquid with respect to the liquid cooling part were performed from the surface of the same side of the axial direction X of a liquid cooling part, but it is not restricted to this. The inflow and outflow of the refrigerant liquid with respect to the liquid cooling unit may be performed from the surface opposite to the axial direction X of the liquid cooling unit as in the liquid cooling unit 450 illustrated in FIG. As shown in FIG. 10, in the liquid cooling unit 450, the first inlet / outlet 453 is provided on the surface on the one side in the axial direction of the case 451. The second inlet / outlet 454 is provided on the other surface in the axial direction of the case 451. Thereby, for example, the refrigerant liquid that has flowed into the flow path 450a from the one side in the axial direction via the first inflow / outlet 453 flows out to the other side in the axial direction via the second inflow / outlet 454. *
第1流入出口453は、ケース451の軸方向一方側の面における幅方向Wの中央に配置される。第2流入出口454は、ケース451の軸方向他方側の面における幅方向Wの中央に配置される。なお、液冷部450においては、第2流入出口454から流路450aに冷媒液が流入し、第1流入出口453から流路450a内の冷媒液が流出してもよい。  The first inlet / outlet 453 is disposed at the center in the width direction W on the surface on one side in the axial direction of the case 451. The second inlet / outlet 454 is disposed at the center in the width direction W on the other surface in the axial direction of the case 451. In the liquid cooling unit 450, the refrigerant liquid may flow from the second inlet / outlet 454 to the flow path 450a, and the refrigerant liquid in the flow path 450a may flow out from the first inlet / outlet 453. *
また、上述した各実施形態においては、ハウジングにおける液冷部が熱的に接触する接触部は、第1収容部の一部としたが、これに限られない。接触部は、第2収容部の一部であってもよい。この場合、液冷部は、例えば、第2収容部の下端部に熱的に接触して固定される。すなわち、液冷部が熱的に接触するハウジングの接触部は、第2収容部の下部である。これにより、液冷部によって第2収容部に貯留されるオイルOを十分に冷却することができる。この構成では、例えば、液冷部の下側の面にインバータユニットが固定される。  Moreover, in each embodiment mentioned above, although the contact part which the liquid cooling part in a housing contacts thermally was made into a part of 1st accommodating part, it is not restricted to this. The contact portion may be a part of the second housing portion. In this case, the liquid cooling part is fixed in thermal contact with the lower end part of the second housing part, for example. That is, the contact portion of the housing with which the liquid cooling portion is in thermal contact is the lower portion of the second housing portion. Thereby, the oil O stored in the 2nd accommodating part by the liquid cooling part can fully be cooled. In this configuration, for example, the inverter unit is fixed to the lower surface of the liquid cooling unit. *
また、上述した各実施形態においては、液冷部がハウジングと熱的に接触する構成としたが、これに限られない。液冷部は、ハウジングと熱的に接触しなくてもよい。すなわち、ハウジングは、接触部を有しなくてもよい。この場合、液冷部およびインバータユニットは、ハウジングから離れて配置される。液冷部およびインバータユニットが配置される箇所は、特に限定されない。この場合であっても、配管部がハウジング内を通るため、配管部によってハウジングに貯留されるオイルを冷却できる。  Moreover, in each embodiment mentioned above, although the liquid cooling part was set as the structure which contacts a housing thermally, it is not restricted to this. The liquid cooling unit may not be in thermal contact with the housing. That is, the housing may not have a contact portion. In this case, the liquid cooling unit and the inverter unit are arranged away from the housing. The location where the liquid cooling unit and the inverter unit are arranged is not particularly limited. Even in this case, since the piping portion passes through the housing, the oil stored in the housing can be cooled by the piping portion. *
また、上述した各実施形態において駆動装置は、液冷部と異なる第2液冷部を備えてもよい。第2液冷部は、ハウジングに熱的に接触し、ハウジングおよびハウジングに貯留されるオイルOを冷却する。第2液冷部は、例えば、配管部を介して液冷部と繋がってもよい。液冷部と第2液冷部とは、ハウジングを挟んで配置されてもよい。この構成によれば、液冷部と第2液冷部とによって、ハウジングに貯留されるオイルOを冷却できるため、オイルOをより好適に冷却できる。  Moreover, in each embodiment mentioned above, the drive device may be provided with the 2nd liquid cooling part different from a liquid cooling part. The second liquid cooling unit is in thermal contact with the housing and cools the housing and the oil O stored in the housing. For example, the second liquid cooling unit may be connected to the liquid cooling unit via a piping unit. The liquid cooling part and the second liquid cooling part may be arranged with the housing interposed therebetween. According to this configuration, since the oil O stored in the housing can be cooled by the liquid cooling unit and the second liquid cooling unit, the oil O can be more suitably cooled. *
なお、上述した各実施形態の駆動装置の用途は限定されず、各実施形態の駆動装置は、いかなる機器に搭載されてもよい。また、上述した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 In addition, the use of the drive device of each embodiment described above is not limited, and the drive device of each embodiment may be mounted on any device. Moreover, each structure mentioned above can be suitably combined in the range which is not mutually contradictory.
10,110,210,310…駆動装置、20,120,220…ハウジング、21,121,221…第1収容部、22…第2収容部、30…モータ、31…モータシャフト、40…インバータユニット、50,250,450…液冷部、61,62,63,361…配管部、80…差動装置、J1…第1中心軸、O…オイル、OS1,OS2…液面、Z…鉛直方向 DESCRIPTION OF SYMBOLS 10,110,210,310 ... Drive device, 20,120,220 ... Housing, 21,121,221 ... 1st accommodating part, 22 ... 2nd accommodating part, 30 ... Motor, 31 ... Motor shaft, 40 ... Inverter unit 50, 250, 450 ... liquid cooling part, 61, 62, 63, 361 ... piping part, 80 ... differential, J1 ... first central axis, O ... oil, OS1, OS2 ... liquid level, Z ... vertical direction

Claims (6)


  1. 一方向に延びる第1中心軸に沿って配置されるモータシャフトを有するモータと、

    前記モータを収容する第1収容部を有し、オイルを貯留可能なハウジングと、

    前記モータと電気的に接続されるインバータユニットに熱的に接触して配置され、内部に冷媒液が流れる液冷部と、

    前記液冷部に繋がり、前記液冷部内の前記冷媒液が流れる配管部と、

    を備え、

    前記配管部は、前記ハウジング内を通る、駆動装置。

    A motor having a motor shaft disposed along a first central axis extending in one direction;

    A housing having a first housing for housing the motor and capable of storing oil;

    A liquid cooling unit that is disposed in thermal contact with an inverter unit that is electrically connected to the motor, and in which a refrigerant liquid flows;

    A pipe part connected to the liquid cooling part and through which the refrigerant liquid in the liquid cooling part flows;

    With

    The said piping part is a drive device which passes the inside of the said housing.

  2. 前記配管部は、前記ハウジング内の鉛直方向下側領域を通る、請求項1に記載の駆動装置。

    The driving device according to claim 1, wherein the pipe portion passes through a lower region in the vertical direction in the housing.

  3. 前記第1収容部は、オイルを貯留可能であり、

    前記配管部は、前記第1収容部内の鉛直方向下側領域を通る、請求項2に記載の駆動装置。

    The first accommodating portion can store oil;

    The driving device according to claim 2, wherein the pipe portion passes through a lower region in the vertical direction in the first housing portion.

  4. 前記モータシャフトを介して前記モータからの駆動力が伝達される差動装置をさらに備え、

    前記ハウジングは、前記差動装置を収容するとともにオイルを貯留可能な第2収容部を有し、

    前記配管部は、前記第2収容部内の鉛直方向下側領域を通る、請求項1から3のいずれか一項に記載の駆動装置。

    A differential device that transmits a driving force from the motor via the motor shaft;

    The housing has a second accommodating portion that accommodates the differential and stores oil.

    The drive device according to any one of claims 1 to 3, wherein the pipe portion passes through a lower region in the vertical direction in the second housing portion.

  5. 前記ハウジング内に配置される前記配管部の少なくとも一部は、前記ハウジングに貯留されるオイルの液面よりも下側に配置される、請求項1から4のいずれか一項に記載の駆動装置。

    5. The drive device according to claim 1, wherein at least a part of the pipe portion disposed in the housing is disposed below a level of oil stored in the housing. .

  6. 前記配管部は、前記ハウジング内の鉛直方向下側領域における外側面に熱的に接触する、請求項1から5のいずれか一項に記載の駆動装置。

    The driving device according to any one of claims 1 to 5, wherein the pipe portion is in thermal contact with an outer surface of a lower region in the vertical direction in the housing.
PCT/JP2017/028550 2016-08-09 2017-08-07 Drive device WO2018030323A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780049277.5A CN109643937B (en) 2016-08-09 2017-08-07 Drive device
DE112017004011.6T DE112017004011T5 (en) 2016-08-09 2017-08-07 DRIVE DEVICE
JP2018533022A JPWO2018030323A1 (en) 2016-08-09 2017-08-07 Drive unit
US16/323,269 US11139720B2 (en) 2016-08-09 2017-08-07 Drive apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201662372411P 2016-08-09 2016-08-09
US62/372411 2016-08-09
US201662402027P 2016-09-30 2016-09-30
US62/402027 2016-09-30
US201662439201P 2016-12-27 2016-12-27
US62/439201 2016-12-27
JP2017-071507 2017-03-31
JP2017071507 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018030323A1 true WO2018030323A1 (en) 2018-02-15

Family

ID=61162583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028550 WO2018030323A1 (en) 2016-08-09 2017-08-07 Drive device

Country Status (1)

Country Link
WO (1) WO2018030323A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112172492A (en) * 2019-07-02 2021-01-05 本田技研工业株式会社 Vehicle with a steering wheel
CN112187138A (en) * 2019-07-02 2021-01-05 本田技研工业株式会社 Drive unit
CN113472147A (en) * 2020-03-31 2021-10-01 日本电产株式会社 Motor unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081984A1 (en) * 2007-01-04 2008-07-10 Toyota Jidosha Kabushiki Kaisha Mounting structure for vehicle drive device
WO2008153169A1 (en) * 2007-06-13 2008-12-18 Toyota Jidosha Kabushiki Kaisha Drive device and vehicle with drive device
JP5381872B2 (en) * 2010-04-01 2014-01-08 三菱自動車工業株式会社 Hybrid vehicle cooling system
JP2015104290A (en) * 2013-11-27 2015-06-04 日立建機株式会社 Rotary electric machine, and electric vehicle equipped with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081984A1 (en) * 2007-01-04 2008-07-10 Toyota Jidosha Kabushiki Kaisha Mounting structure for vehicle drive device
WO2008153169A1 (en) * 2007-06-13 2008-12-18 Toyota Jidosha Kabushiki Kaisha Drive device and vehicle with drive device
JP5381872B2 (en) * 2010-04-01 2014-01-08 三菱自動車工業株式会社 Hybrid vehicle cooling system
JP2015104290A (en) * 2013-11-27 2015-06-04 日立建機株式会社 Rotary electric machine, and electric vehicle equipped with the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112172492A (en) * 2019-07-02 2021-01-05 本田技研工业株式会社 Vehicle with a steering wheel
CN112187138A (en) * 2019-07-02 2021-01-05 本田技研工业株式会社 Drive unit
JP2021010267A (en) * 2019-07-02 2021-01-28 本田技研工業株式会社 vehicle
JP2021010268A (en) * 2019-07-02 2021-01-28 本田技研工業株式会社 Drive unit
US11198353B2 (en) 2019-07-02 2021-12-14 Honda Motor Co., Ltd. Vehicle
JP6990217B2 (en) 2019-07-02 2022-01-12 本田技研工業株式会社 vehicle
US11489415B2 (en) 2019-07-02 2022-11-01 Honda Motor Co., Ltd. Drive unit
CN112172492B (en) * 2019-07-02 2024-01-09 本田技研工业株式会社 Vehicle with a vehicle body having a vehicle body support
CN113472147A (en) * 2020-03-31 2021-10-01 日本电产株式会社 Motor unit
CN113472147B (en) * 2020-03-31 2024-07-09 日本电产株式会社 Motor unit

Similar Documents

Publication Publication Date Title
WO2018030322A1 (en) Drive device
JP6406443B2 (en) Drive device
JP4442628B2 (en) Power supply device and vehicle
JP4788674B2 (en) Power supply
JP5261514B2 (en) Mounting structure of power control device
WO2018030323A1 (en) Drive device
WO2012105353A1 (en) Mounting structure for power control unit
JP2006197781A (en) Motor unit with integrated inverter
CN109643937B (en) Drive device
JP2012200068A (en) Rotating electric machine
CN114901499A (en) Drive device
US10958136B2 (en) Drive apparatus
EP3817202A1 (en) Stator cooling structure
CN210431151U (en) Motor drive unit
JP2010090776A (en) Electric pump
CN111527678B (en) Motor unit and method for manufacturing motor unit
CN114520567B (en) Driving device
TW202315282A (en) Drive apparatus
US11677292B2 (en) Electric motor cooling jacket
TWI814089B (en) motor unit
JP7363642B2 (en) motor unit
JP7468269B2 (en) Drive unit
JP7480274B2 (en) Inverter integrated motor
JP2019170066A (en) motor
US20230027341A1 (en) Rotating electric machine and drive apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533022

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17839394

Country of ref document: EP

Kind code of ref document: A1