WO2018030299A1 - Leveling valve - Google Patents
Leveling valve Download PDFInfo
- Publication number
- WO2018030299A1 WO2018030299A1 PCT/JP2017/028431 JP2017028431W WO2018030299A1 WO 2018030299 A1 WO2018030299 A1 WO 2018030299A1 JP 2017028431 W JP2017028431 W JP 2017028431W WO 2018030299 A1 WO2018030299 A1 WO 2018030299A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piston
- valve
- rotor
- air spring
- supply
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/02—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
- F16F9/04—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/34—Special valve constructions; Shape or construction of throttling passages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/56—Means for adjusting the length of, or for locking, the spring or damper, e.g. at the end of the stroke
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61F—RAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
- B61F5/00—Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
- B61F5/02—Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
- B61F5/04—Bolster supports or mountings
- B61F5/10—Bolster supports or mountings incorporating fluid springs
Definitions
- the present invention relates to a leveling valve.
- JP 2004-52889A describes a leveling valve that keeps the height of a vehicle body constant by supplying and discharging compressed air to and from an air spring provided between a vehicle body such as a railway vehicle and a carriage.
- the moving amount of the piston increases in proportion to the swing angle of the lever, and the moving amount of the piston increases, and the flow rate of the compressed air flowing into and out of the air spring increases.
- the flow rate of the compressed air flowing into and out of the air spring becomes maximum when the movement amount of the piston reaches a predetermined amount, and hardly changes even if the piston further moves.
- the movement amount of the piston changes in proportion to the swing angle of the lever, it further increases after the flow rate of the compressed air flowing into and out of the air spring becomes maximum.
- the length of the leveling valve in the moving direction of the piston is set according to the maximum moving amount of the piston, not the flow rate of the compressed air flowing into and out of the air spring.
- the overall length of the leveling valve becomes long, the mountability of the leveling valve to the vehicle body decreases, and the weight of the leveling valve may increase.
- the present invention aims to shorten the overall length of the leveling valve.
- the air spring communicates with the air pressure source, and when the piston moves in the other direction from the neutral position as the rotor rotates.
- a supply / discharge valve for communicating the air spring and the atmosphere, and the piston has a guide groove formed on an outer periphery and extending in a direction perpendicular to the sliding direction,
- the data has a protrusion protruding toward the piston at a position offset from the rotation center and having a tip inserted into the guide groove.
- the guide groove has a rotation angle of the rotor less than or equal to a predetermined value.
- FIG. 1 is a mounting diagram of a leveling valve according to an embodiment of the present invention.
- FIG. 2 is a sectional view in the axial direction of the leveling valve according to the embodiment of the present invention.
- FIG. 3 is a cross-sectional view of the leveling valve along the line III-III in FIG.
- FIG. 4A is a diagram for explaining the movement of the piston of the leveling valve according to the embodiment of the present invention.
- FIG. 4B is a diagram for explaining the movement of the piston of the leveling valve according to the embodiment of the present invention.
- FIG. 4C is a diagram for explaining the movement of the piston of the leveling valve according to the embodiment of the present invention.
- FIG. 4D is a diagram for explaining the movement of the piston of the leveling valve according to the embodiment of the present invention.
- FIG. 4E is a view for explaining the movement of the piston of the leveling valve according to the embodiment of the present invention.
- FIG. 4F is a view for explaining movement of the piston of the leveling valve according to the embodiment of the present invention.
- FIG. 5 is a graph showing the amount of movement of the piston that changes according to the rotation angle of the rotor.
- FIG. 6 is a graph showing the amount of air flowing through the supply / discharge valve, which changes according to the amount of movement of the piston.
- the leveling valve 100 adjusts the expansion and contraction of an air spring provided between the body of the railway vehicle and the carriage, and maintains the height of the body relative to the carriage.
- the leveling valve 100 is attached to the vehicle body 1 and is connected to the carriage 2 via a lever 4 and a connecting rod 5.
- the air spring 3 expands and contracts due to a load change of the vehicle body 1 and the height of the vehicle body 1 changes, this change is transmitted to the leveling valve 100 via the connecting rod 5 and the lever 4.
- the leveling valve 100 selectively communicates the air spring passage 6 with the supply passage 9 or the exhaust passage 8 in accordance with the turning direction of the lever 4 that turns with the relative displacement of the vehicle body 1 with respect to the carriage 2. ing. Thereby, the relative displacement generated between the vehicle body 1 and the carriage 2 is reduced, and the height of the vehicle body 1 with respect to the carriage 2 is maintained at a specified height.
- FIGS. 2 is a sectional view in the axial direction of the leveling valve 100
- FIG. 3 is a sectional view in the radial direction of the leveling valve 100 along the line III-III in FIG.
- the leveling valve 100 includes a housing 10 in which an air spring passage 6, a supply passage 9 and an exhaust passage 8 are formed, a piston 20 slidably accommodated in the housing 10, and a relative displacement of the vehicle body 1 with respect to the carriage 2.
- a rotor 30 that transmits the amount to the piston 20 and a supply / discharge valve 40 that selectively connects the air spring passage 6 to the supply passage 9 or the exhaust passage 8 according to the moving direction of the piston 20 are provided.
- the housing 10 includes a main case 11 in which an accommodation hole 11a in which the piston 20 is accommodated is formed penetrating along the first central axis O1, and one opening of the accommodation hole 11a attached to one side surface of the main case 11. And a second cap member 13 that is attached to the other side surface of the main case 11 and that is formed through a through hole 13b that is concentric with the accommodation hole 11a.
- the first cap member 12 and the second cap member 13 are attached to the main case 11 via bolts (not shown). Further, the housing 10 is fixed to the vehicle body 1 by attaching the main case 11 to the vehicle body 1 via bolts (not shown).
- the main case 11 and the first cap member 12 are formed with passages 11c, 11d, and 12a constituting the air spring passage 6, respectively.
- the air spring 3 communicates with the supply / discharge valve 40 through these passages 11c, 11d, and 12a.
- the main case 11 and the second cap member 13 are formed with passages 11e and 13a constituting the supply passage 9, respectively.
- the compressor 7 communicates with the supply / discharge valve 40 through these passages 11e and 13a.
- the air spring passage 6 may be formed only in the main case 11 without passing through the first cap member 12.
- the supply passage 9 may be provided only in the second cap member 13 without passing through the main case 11.
- the main case 11 is formed with a recess 11b that opens radially outward with respect to the accommodation hole 11a.
- the housing 10 further includes a cover member 14 that covers the recess 11b and is attached to the main case 11. By attaching the cover member 14 to the main case 11, an accommodation space 15 in which the rotor 30 is accommodated is defined.
- the cover member 14 is formed with a communication hole 14a that allows the accommodation space 15 to communicate with the outside.
- the communication hole 14a functions as an exhaust passage 8 that allows the supply / discharge valve 40 to communicate with the outside.
- a filter 16 is provided in the communication hole 14a in order to prevent foreign substances from entering from the outside.
- the supply / discharge valve 40 has a cylindrical valve case 41 having one end inserted into the housing hole 11a of the main case 11 and the other end inserted into the through hole 13b of the second cap member 13, and one end fixed to the piston 20 and the like.
- the end side is configured by a valve rod 42 inserted into the valve case 41, a valve body and the like disposed in the valve case 41.
- the valve case 41 includes a first cylindrical portion 41a inserted into the accommodation hole 11a, a second cylindrical portion 41c inserted into the second cap member 13, and a first cylindrical portion 41a and a second cylindrical portion 41c. And a flange portion 41b having an outer diameter larger than that of the first cylindrical portion 41a and the second cylindrical portion 41c and having an external thread formed on the outer peripheral surface.
- the valve case 41 is fixed to the main case 11 by screwing the flange portion 41b into the female screw portion 11f formed in the opening of the accommodation hole 11a.
- the second cap member 13 prevents the flange portion 41b from coming out of the main case 11. Is done. As a result, the valve case 41 is prevented from being detached from the main case 11.
- valve case 41 is formed continuously with the first insertion hole 41d and the first insertion hole 41d, which is open to the first cylindrical portion 41a side and into which the valve rod 42 is inserted.
- a second insertion hole 41e having a larger inner diameter and a stepped portion 41f formed at a connection portion between the first insertion hole 41d and the second insertion hole 41e are provided.
- the second insertion hole 41e is opened on the second cylindrical portion 41c side, and a columnar plug 48 is inserted and fixed at the opening end of the second insertion hole 41e.
- the opening end of the second insertion hole 41e is closed by the plug 48.
- An annular first valve seat portion 41g centered on the first central axis O1 is formed to protrude toward the plug 48 side at a portion near the inner periphery of the step portion 41f. Further, an annular second valve seat portion 48a centering on the first central axis O1 is formed on the end surface of the plug 48 facing the step portion 41f so as to protrude toward the step portion 41f side.
- the plug 48 is provided with a passage 48 b having one end opened on the inner peripheral side of the second valve seat portion 48 a and the other end opened on the outer peripheral surface of the plug 48.
- a disc-shaped valve body 43 that is separated from and seated on the first valve seat portion 41g, a disc-shaped check valve body 44 that is seated and seated on the second valve seat portion 48a, and the valve body 43 are disposed.
- a spring 45 is provided that biases the first valve seat 41g toward the first valve seat 41g and biases the check valve body 44 toward the second valve seat 48a. That is, when the valve body 43 is seated on the first valve seat portion 41g and the check valve body 44 is seated on the second valve seat portion 48a by the biasing force of the spring 45, the space in the second insertion hole 41e is closed. It becomes a state.
- valve body 43 is slidably supported by the second insertion hole 41e on the outer peripheral surface, and communicates the spaces partitioned by the valve body 43 through notch portions (not shown) provided on the outer peripheral surface.
- the check valve body 44 communicates with the spaces partitioned by the check valve body 44 through notch portions (not shown).
- the valve case 41 is formed with a passage 41h that connects the passage 13a formed in the second cap member 13 and the passage 48b formed in the plug 48.
- the compressed air discharged from the compressor 7 is guided upstream of the check valve body 44 through these passages 11e, 13a, 41h, and 48b.
- the check valve body 44 When the pressure on the upstream side of the check valve body 44, that is, the pressure on the compressor 7 side is higher than the pressure on the downstream side of the check valve body 44, the check valve body 44 is second against the biasing force of the spring 45. It separates from the valve seat part 48a, and connects the supply passage 9 and the space in the second insertion hole 41e. On the other hand, when the pressure on the compressor 7 side is lower than the pressure on the downstream side of the check valve body 44, the check valve body 44 is seated on the second valve seat portion 48a, and inside the supply passage 9 and the second insertion hole 41e. Block communication with the space. Thus, the check valve body 44 functions as a check valve that allows only the flow toward the valve body 43.
- the valve rod 42 is a rod-like member, a sliding portion 42a that is slidably supported by the valve case 41, and a fixed portion 42b that is formed to have an outer diameter smaller than the sliding portion 42a and is inserted and fixed to the piston 20. And having.
- the sliding portion 42a has a non-through hole 42d opened on the end surface 42c on the side inserted into the valve case 41, and a plurality of through-holes communicating the space in the non-through hole 42d and the space in the accommodation hole 11a. 42e are formed. That is, the space in the non-through hole 42d communicates with the outside through the through hole 42e, the accommodation hole 11a, the accommodation space 15, and the communication hole 14a.
- the end surface 42c of the valve rod 42 can be separated from the valve body 43. When the end surface 42c is in contact with the valve body 43, the open end of the non-through hole 42d is closed by the valve body 43.
- the valve rod 42 has a large-diameter portion 42f formed on the outer periphery of the tip inserted into the valve case 41, and a small-diameter portion 42g having a smaller diameter than the large-diameter portion 42f is formed continuously to the large-diameter portion 42f.
- the first insertion hole 41d of the valve case 41 is provided with a reduced diameter portion 41i at a position facing the large diameter portion 42f and an enlarged diameter portion 41j at a position facing the small diameter portion 42g.
- An annular gap is formed between the large diameter portion 42f and the reduced diameter portion 41i.
- the airflow flowing through the annular gap corresponds to the flow path length of the annular gap in the first central axis O1 direction, that is, the length in which the large diameter portion 42f and the reduced diameter portion 41i overlap in the first central axis O1 direction.
- Channel resistance is applied.
- the length over which the large diameter portion 42 f and the reduced diameter portion 41 i overlap varies depending on the amount of displacement of the valve rod 42 relative to the valve case 41. That is, when the displacement of the valve rod 42 with respect to the valve case 41 is relatively small and the flow path length of the annular gap is long, it becomes difficult for air to flow, and the displacement of the valve rod 42 with respect to the valve case 41 is relatively large and the flow path length of the annular gap. When is short, air becomes easy to flow.
- valve case 41 is opened to the first insertion hole 41d in the enlarged diameter portion 41j and to the outer peripheral surface of the valve case 41, and the space in the first insertion hole 41d is formed as a passage constituting the air spring passage 6.
- a plurality of through holes 41k communicating with 11c are formed. That is, the space surrounded by the first insertion hole 41d and the outer peripheral surface of the valve rod 42 is always in communication with the air spring 3 through the through hole 41k and the passages 11c, 12a, and 11d.
- the air spring passage 6 and the supply passage 9 are provided. And the communication between the air spring passage 6 and the exhaust passage 8 are blocked.
- valve rod 42 moves in the direction of entering the valve case 41 (the direction of arrow C in FIG. 2), and the valve body 43 is in the first valve seat portion 41g with the end surface 42c of the valve rod 42 in contact with the valve body 43.
- the air spring passage 6 and the supply passage 9 communicate with each other, and the communication between the air spring passage 6 and the exhaust passage 8 is blocked.
- valve rod 42 moves in the direction of retreating from the valve case 41 (the direction of arrow D in FIG. 2), the end surface 42c of the valve rod 42 is separated from the valve body 43, and the valve body 43 is moved to the first valve seat portion 41g.
- the communication between the air spring passage 6 and the supply passage 9 is cut off, and the air spring passage 6 and the exhaust passage 8 are in communication with each other.
- the supply / discharge valve 40 selectively communicates the supply passage 9 or the exhaust passage 8 with the air spring passage 6 in accordance with the movement of the valve rod 42 with respect to the valve case 41, and also with respect to the air spring passage 6. Communication between the supply passage 9 and the exhaust passage 8 can be blocked.
- the piston 20 is a cylindrical member in which a through hole 20a through which the fixed portion 42b of the valve rod 42 is inserted is formed at the center, and is supported by the accommodation hole 11a so as to be slidable in the first central axis O1 direction.
- a guide groove 21 having a half-moon-shaped cross section is predetermined in a direction orthogonal to the sliding direction of the piston 20 (the first central axis O1 direction) on a part of the outer peripheral surface of the piston 20. It is formed with a width of The piston 20 is formed with a flow path (not shown) that communicates with both sides thereof. Thereby, when the piston 20 moves in the first central axis O1 direction, the air in the accommodation hole 11a can move through this flow path.
- the rotor 30 includes a cylindrical main body portion 31, a quadrangular columnar boss portion 32 that is formed to protrude from one end portion of the main body portion 31, and has a two-surface width smaller than the outer diameter of the main body portion 31.
- the flange portion 33 provided at the other end of the arm 31 and the arm portion 34 formed so as to protrude radially outward from the outer peripheral surface of the flange portion 33.
- the rotor 30 has a main body 31 supported by a support hole 14 b via bearings 17 and 18 provided on the cover member 14.
- the rotor 30 is supported by the housing 10 so as to be rotatable about the second central axis O2 extending in the direction orthogonal to the first central axis O1.
- the arm portion 34 of the rotor 30 offset from the second central axis O2, which is the rotation center of the rotor 30, is provided with a pin 35 as a protrusion.
- the pin 35 is attached so that one end side is press-fitted into the arm portion 34 and the other end side protrudes from the arm portion 34. As shown in FIG. 3, the other end side of the pin 35 protruding from the arm portion 34 is inserted into the guide groove 21 of the piston 20 in a state where the rotor 30 is assembled to the housing 10.
- the boss portion 32 is fitted into the fitting hole 4a formed in the lever 4 as shown in FIG. Therefore, when the boss portion 32 is rotated in accordance with the rotation of the lever 4, the pin 35 press-fitted into the arm portion 34 is centered on the second central axis O2 in the direction of the arrow E or the arrow F shown in FIG. Moving. Since the pin 35 is in contact with the guide groove 21 of the piston 20, the rotation of the rotor 30 is transmitted to the piston 20 via the pin 35, and the piston 20 moves in the housing hole 11 a as the pin 35 moves. It moves in the direction of the central axis O1 (directions of arrows C and D in FIG. 2).
- the guide groove 21 is formed to be continuous with the first groove portion 22 and the first groove portion 22 that are formed to have substantially the same width as the diameter of the pin 35, and the piston groove 20 is formed more than the first groove portion 22.
- a second groove portion 23 having a large width in the sliding direction (first central axis O1 direction).
- the first groove portion 22 is formed at a position where the pin 35 contacts when the relative displacement of the vehicle body 1 with respect to the carriage 2 is relatively small, that is, when the rotation amount of the rotor 30 is small, and the second groove portion 23 is formed on the vehicle body with respect to the carriage 2.
- the pin 35 is formed at a contact position.
- the first groove portion 22 faces the first supply side wall 22a in the sliding direction of the piston 20 and a first supply side wall 22a extending orthogonally to the sliding direction of the piston 20 (first central axis O1 direction).
- the first discharge side wall 22b is provided with two wall surfaces.
- the distance between the first supply side wall 22 a and the first discharge side wall 22 b is set to be approximately the same as the diameter of the pin 35. For this reason, when the pin 35 exists in the 1st groove part 22, the pin 35 will be in the state which contacted both the 1st supply side wall 22a and the 1st discharge
- the second groove portion 23 includes a widened portion 24 formed with a predetermined width larger than the width of the first groove portion 22, and a width changing portion in which the width gradually increases from the first groove portion 22 toward the widened portion 24. 25.
- the widened portion 24 is provided to face the second supply side wall 24a in the sliding direction of the piston 20 and a second supply side wall 24a extending perpendicularly to the sliding direction of the piston 20 (first central axis O1 direction). And the second discharge side wall 24b.
- the distance between the second supply side wall 24a and the second discharge side wall 24b is set larger than the distance between the first supply side wall 22a and the first discharge side wall 22b.
- the width changing portion 25 includes a supply side connection wall 25a that connects the first supply side wall 22a and the second supply side wall 24a, a discharge side connection wall 25b that connects the first discharge side wall 22b and the second discharge side wall 24b, Have The interval between the supply side connection wall 25 a and the discharge side connection wall 25 b is set so as to gradually increase from the first groove portion 22 toward the widened portion 24.
- the distance between the second supply side wall 24a and the second discharge side wall 24b and the distance between the supply side connection wall 25a and the discharge side connection wall 25b are the same as the first supply side wall 22a and the first discharge side wall. It is set larger than the distance between the side wall 22b, that is, larger than the diameter of the pin 35. For this reason, when the pin 35 exists in the 2nd groove part 23, the pin 35 will be in the state which contacted only any one wall surface which opposes in the sliding direction of piston 20. As shown in FIG.
- the valve rod 42 connected to the piston 20 separates the valve body 43 from the first valve seat 41g against the urging force of the spring 45.
- the supply passage 9 and the air spring passage 6 communicate with each other.
- the air is discharged from the compressor 7 that passes through the passages 11e, 13a, 41h, and 48b, passes between the check valve body 44 and the second valve seat portion 48a, and flows into the space in the second insertion hole 41e.
- the compressed air passes between the valve body 43 and the first valve seat portion 41g and between the large diameter portion 42f and the reduced diameter portion 41i, and passes through the through hole 41k and the passages 11c, 12a, and 11d to form an air spring. 3 is supplied.
- the air spring passage 6 and the exhaust passage 8 communicate with each other.
- the compressed air in the air spring 3 passes through the passages 11d, 12a, 11c and the through hole 41k, and passes between the large diameter portion 42f and the reduced diameter portion 41i and between the valve body 43 and the end face 42c. It passes through and flows into the non-through hole 42d, and is further released to the atmosphere through the through hole 42e, the accommodation hole 11a, the accommodation space 15, and the communication hole 14a.
- the leveling valve 100 selectively communicates the air spring 3 with the compressor 7 or the atmosphere according to the turning direction of the lever 4 that turns with the relative displacement of the vehicle body 1 with respect to the carriage 2. Adjustment is made so that the height of the vehicle body 1 with respect to the carriage 2 becomes a specified height.
- FIGS. 4A to 4F are views mainly showing the guide groove 21 portion of the piston 20 and show how the movement amount S of the piston 20 changes as the rotor 30 rotates.
- 5 is a graph showing a change in the movement amount S of the piston 20 with respect to the rotation angle ⁇ of the rotor 30.
- FIG. 6 shows the amount of air flowing through the supply / discharge valve 40 with respect to the movement amount S of the piston 20. It is the graph which showed the change of Q.
- the rotor 30 rotates in the direction of the arrow E about the second central axis O2, and the rotation of the rotor 30
- the moving angle ⁇ is the first rotation angle ⁇ 1.
- the pin 35 that moves with the rotation of the rotor 30 is pressed against the first supply side wall 22 a of the first groove 22.
- the rotation of the rotor 30 is transmitted to the piston 20 via the pin 35.
- the piston 20 is moved from the neutral position N to the first distance S1 by the arrow C. Move in the direction of.
- the pin 35 is in contact with both wall surfaces of the first supply side wall 22a and the first discharge side wall 22b of the first groove portion 22. For this reason, even if the relative displacement amount of the vehicle body 1 with respect to the carriage 2 slightly changes, the change in the relative displacement amount is transmitted to the piston 20 via the pin 35. That is, as long as the pin 35 is in the first groove 22, the movement amount S of the piston 20 changes with good responsiveness in proportion to the rotation angle ⁇ of the rotor 30 in a sine wave shape as shown in FIG. 5. Will be.
- the movement amount S of the piston 20 is As shown by a broken line in FIG. 5, it increases monotonously in a sinusoidal shape in proportion to the rotation angle ⁇ of the rotor 30.
- the pin 35 is placed in the second groove portion 23 as shown in FIGS. 4D to 4F. Even if the piston 20 is pressed against the supply side connection wall 25a or the second supply side wall 24a, the movement amount S of the piston 20 does not continuously increase and is limited to a certain size as shown by a solid line in FIG. .
- the second groove portion 23 having a width larger than that of the first groove portion 22 when the rotation angle ⁇ of the rotor 30 exceeds a predetermined value (transition rotation angle ⁇ L). Since the pin 35 is in contact with the piston 35, the range in which the piston 20 moves is greatly limited. When the moving range of the piston 20 is reduced, the valve case 41 and the first cap member 12 that may come into contact with the piston 20 can be disposed closer to the piston 20, and leveling in the moving direction of the piston 20 is possible. The overall length of the valve 100 can be shortened.
- the movement range of the piston 20 is small.
- the overall length can be greatly shortened. Furthermore, since the overall length of the leveling valve 100 is shortened, the weight of the leveling valve 100 can be reduced, and the mountability of the leveling valve 100 to the vehicle body 1 can be improved.
- the air amount Q flowing through the supply / discharge valve 40 becomes substantially constant when the movement amount S of the piston 20 exceeds a predetermined amount. This is because, when the large diameter portion 42f and the reduced diameter portion 41i do not overlap in the first central axis O1 direction, the flow path between the valve body 43 and the second insertion hole 41e and the other formed in the housing 10 This is because the amount of air Q flowing through the supply / discharge valve 40 is limited by the cross-sectional area of the passage.
- the flow rate of the compressed air supplied to and discharged from the air spring 3 hardly changes even if the movement amount S of the piston 20 is changed. . Accordingly, in a region where the air amount Q flowing through the supply / discharge valve 40 is substantially constant regardless of the movement amount S of the piston 20, that is, a region where the air amount Q flowing through the supply / discharge valve 40 does not change even when the piston 20 moves. If the movement amount S of the piston 20 is limited at a reached stage, the overall length of the leveling valve 100 can be shortened without impairing the function of the leveling valve 100.
- the pin 35 comes into contact with the second groove portion 23 when the air amount Q flowing through the supply / discharge valve 40 is substantially constant regardless of the movement amount S of the piston 20.
- the position of the second groove portion 23 with respect to the first groove portion 22 is set. More specifically, as shown in FIG. 6, the movement amount S of the piston 20 when the air amount Q flowing through the supply / discharge valve 40 becomes a predetermined reference air amount QL is defined as a restriction movement amount SL, and is shown in FIG.
- the rotation angle ⁇ of the rotor 30 when the movement amount S of the piston 20 reaches the limit movement amount SL is the transition rotation angle ⁇ L
- the rotation angle ⁇ of the rotor 30 exceeds the transition rotation angle ⁇ L.
- the position of the second groove portion 23 with respect to the first groove portion 22 is set so that the pin 35 sometimes contacts the second groove portion 23.
- the movement amount S of the piston 20 is the same as when the movement amount S of the piston 20 is between zero and the second movement amount S2.
- the region in which the degree of change in the air amount Q with respect to is relatively large is an important region for exerting the function of the leveling valve 100.
- the region in which the movement amount S of the piston 20 exceeds the second movement amount S2 and the change amount of the air amount Q with respect to the movement amount S of the piston 20 is very small is a region in which the function of the leveling valve 100 is not significantly affected. Absent.
- the degree of change in the air amount Q flowing through the supply / discharge valve 40 with respect to the movement amount S of the piston 20 is smaller when the pin 35 is in contact with the second groove portion 23 than when the pin 35 is in contact with the first groove portion 22.
- the width of the second groove portion 23 is formed larger than the width of the first groove portion 22, for example, as shown in FIGS. 4D to 4F, when the pin 35 is in the second groove portion 23, the piston 20 is further movable in the direction of arrow C in the figure.
- the amount of air Q flowing through the supply / discharge valve 40 is substantially maximum, and therefore the piston 20 is further moved in the direction of the arrow C.
- the function of the leveling valve 100 is not affected.
- the piston 20 moves in the direction opposite to the arrow C, the amount of air Q flowing through the supply / discharge valve 40 decreases, and the adjustment of the height of the vehicle body 1 relative to the carriage 2 may be slow.
- the piston 20 is opposite to the arrow C because the second supply side wall 24a of the widened portion 24 of the second groove portion 23 and the supply side connection wall 25a of the width changing portion 25 abut on the pin 35. The movement in the direction is restricted.
- the 2nd supply side wall 24a and the supply side connection wall 25a function as a 1st control surface, it is prevented that the air quantity Q which flows through the supply / discharge valve 40 falls as mentioned above.
- the height of the vehicle body 1 with respect to the carriage 2 decreases from the specified height.
- the movement direction of the piston 20 is the opposite direction (the direction of the arrow D in FIG. 2), and the only difference is that the air spring passage 6 and the exhaust passage 8 are communicated by the supply / discharge valve 40. Yes, the movement amount S of the piston 20 changes as shown in FIG. 5, and the air amount Q flowing through the supply / discharge valve 40 changes as shown in FIG. Therefore, the description thereof is omitted.
- the second discharge side wall 24b of the widened portion 24 of the second groove portion 23 and the discharge side connection wall 25b of the width changing portion 25 come into contact with the pin 35 so that the piston 20 is in the direction opposite to the arrow D. It functions as a second restriction surface that restricts movement.
- the pin 35 coupled to the rotor 30 is more than the first groove portion 22.
- the piston 20 contacts the second groove 23 having a large width in the sliding direction.
- the movement amount S of the piston 20 is limited to a certain amount without monotonously increasing in proportion to the rotation angle ⁇ of the rotor 30, that is, the relative displacement amount of the vehicle body 1 with respect to the carriage 2.
- the overall length of the leveling valve 100 in the moving direction of the piston 20 is shortened, the weight of the leveling valve 100 can be reduced, and the mountability of the leveling valve 100 to the vehicle body 1 can be improved.
- the second supply side wall 24a of the widened portion 24 of the second groove portion 23 is formed in parallel with the first supply side wall 22a of the first groove portion 22, and the second discharge of the widened portion 24 of the second groove portion 23. Since the side wall 24b is formed in parallel with the first discharge side wall 22b of the first groove portion 22, the movement amount S of the piston 20 once reaches the limit movement amount SL as shown by the solid line in FIG. After slowly decreasing, it increases proportionally again.
- the second supply side wall 24a and the second discharge side wall 24b are formed to be curved so that the movement amount S of the piston 20 reaches the limit movement amount SL and then becomes a constant movement amount S. Also good.
- the amount of air Q flowing through the supply / discharge valve 40 can be made constant within a range in which the movement amount S of the piston 20 is suppressed.
- the second groove portion 23 is formed to be curved, the processing time is increased and the manufacturing cost is increased. Therefore, in order to suppress the manufacturing cost, as shown in FIG. 4A, the second supply side wall 24a and the second discharge are provided.
- the side wall 24b is preferably formed in parallel.
- the second supply side wall 24a of the widened portion 24 of the second groove portion 23 is provided at a position separated from the first supply side wall 22a of the first groove portion 22 by a predetermined distance in the first central axis O1 direction.
- the second discharge side wall 24b of the widened portion 24 of the second groove portion 23 is provided at a position away from the first discharge side wall 22b of the first groove portion 22 by a predetermined distance in the first central axis O1 direction.
- the width of the second groove portion 23 is larger than the width of the first groove portion 22.
- the first central axis is formed by forming the second supply sidewall 24a flush with the first supply sidewall 22a or by forming the second discharge sidewall 24b flush with the first discharge sidewall 22b.
- the transition rotation angle ⁇ L that is the rotation angle ⁇ of the rotor 30 when the pin 35 contacts the second groove 23 is set based on the reference air amount QL.
- the transition rotation angle ⁇ L may be any angle as long as the movement amount S of the piston 20 is limited.
- the transition rotation angle ⁇ L is smaller than the second rotation angle ⁇ 2. Also good.
- the leveling valve 100 is rotated by the housing 10 in which an air spring passage 6 communicating with the air spring 3 is formed, a piston 20 slidably accommodated in an accommodation hole 11 a formed in the housing 10, and the housing 10.
- a rotor 30 that is freely supported and rotates according to the relative displacement amount of the vehicle body 1 with respect to the carriage 2 and moves the piston 20, and the piston 20 moves in one direction from the neutral position N (in the direction of arrow C as the rotor 30 rotates). ) causes the air spring 3 and the compressor 7 to communicate with each other, and as the rotor 30 rotates, the piston 20 moves from the neutral position N in the other direction (in the direction of arrow D) to allow the air spring 3 to communicate with the atmosphere.
- the piston 20 has a guide groove 21 formed on the outer periphery and extending in a direction perpendicular to the sliding direction, and the rotor 30 has a second central axis O.
- the guide groove 21 has a pin 35 that protrudes toward the piston 20 at a position offset from the tip and is inserted into the guide groove 21.
- the guide groove 21 has a rotation angle ⁇ of the rotor 30 that is a predetermined value (transition rotation angle ⁇ L) or less.
- the first groove portion 22 that is sometimes in contact with the pin 35 and the first groove portion 22 are formed continuously, the width in the sliding direction of the piston 20 is larger than the first groove portion 22, and the rotation angle ⁇ of the rotor 30 is a predetermined value.
- the pin 35 coupled to the rotor 30 when the rotation angle ⁇ of the rotor 30 that rotates according to the relative displacement amount of the vehicle body 1 with respect to the carriage 2 exceeds a predetermined value (transition rotation angle ⁇ L), the pin 35 coupled to the rotor 30. However, it is in contact with the second groove portion 23 having a larger width in the sliding direction of the piston 20 than the first groove portion 22. For this reason, the movement amount S of the piston 20 is limited to a certain amount without monotonously increasing in proportion to the rotation angle ⁇ of the rotor 30, that is, the relative displacement amount of the vehicle body 1 with respect to the carriage 2. As a result, the overall length of the leveling valve 100 in the moving direction of the piston 20 is shortened, the weight of the leveling valve 100 can be reduced, and the mountability of the leveling valve 100 to the vehicle body 1 can be improved.
- a predetermined value transition rotation angle ⁇ L
- the second groove portion 23 is formed in the piston 20 so that the pin 35 contacts when the air amount Q flowing through the supply / discharge valve 40 becomes constant regardless of the movement of the piston 20.
- the pin 35 contacts the second groove 23 when the amount of air Q flowing through the supply / discharge valve 40 is constant regardless of the movement of the piston 20. That is, the movement amount S of the piston 20 is limited at a stage where the air amount Q flowing through the supply / discharge valve 40 does not change even when the piston 20 moves. In the region where the air amount Q flowing through the supply / discharge valve 40 is substantially constant, the flow rate of the compressed air supplied to and discharged from the air spring 3 hardly changes even if the movement amount S of the piston 20 is changed. Therefore, the overall length of the leveling valve 100 can be shortened without impairing the function as the leveling valve 100.
- the degree of change of the air amount Q flowing through the supply / discharge valve 40 with respect to the movement amount S of the piston 20 is more in contact with the second groove portion 23 than when the pin 35 is in contact with the first groove portion 22.
- the piston 20 is formed so that the time is smaller.
- the change in the amount of air Q flowing through the supply / discharge valve 40 relative to the movement amount S of the piston 20 is greater when the pin 35 is in contact with the second groove 23 than when the pin 35 is in contact with the first groove 22.
- the degree is reduced. That is, in this configuration, the movement amount S of the piston 20 is limited in a region where the change amount of the air amount Q flowing through the supply / discharge valve 40 with respect to the movement amount S of the piston 20 is relatively small. In a region where the change amount of the air amount Q flowing through the supply / discharge valve 40 with respect to the movement amount S of the piston 20 is small, the flow rate of the compressed air supplied to and discharged from the air spring 3 even if the movement amount S of the piston 20 is changed Almost no change. Therefore, the overall length of the leveling valve 100 can be shortened without impairing the function as the leveling valve 100.
- the second groove portion 23 is a second supply side wall that restricts movement of the piston 20 in the other direction (arrow D direction) when the piston 20 moves in one direction (arrow C direction).
- 24a and the supply side connection wall 25a and the second discharge that regulates the movement of the piston 20 in one direction (arrow C direction) when the piston 20 moves in the other direction (arrow D direction).
- the second supply side wall 24a and the second discharge side wall 24b are formed in parallel to each other.
- the second supply side wall 24a and the second discharge side wall 24b are formed in parallel to each other.
- the guide groove 21 is simplified by simplifying the shape of the guide groove 21, an increase in the manufacturing cost of the leveling valve 100 is suppressed even when the second groove portion 23 is provided. can do.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vehicle Body Suspensions (AREA)
- Fluid-Damping Devices (AREA)
Abstract
A leveling valve (100) is provided with: a piston (20) housed within a housing hole (11a) formed in a housing (10); a rotor (30) rotatably supported by the housing (10); and a supply and exhaust valve (40) for causing an air spring (3) to interconnect with a compressor (7) or the atmosphere. The piston (20) has a guide groove (21), the rotor (30) has a pin (35) which is inserted into the guide groove (21), and the guide groove (21) has a first groove section (22) with which the pin (35) makes contact when the rotation angle (α) of the rotor (30) is equal to or less than a prescribed value, and a second groove section (23) with which the pin (35) makes contact when the rotation angle (α) of the rotor (30) exceeds the prescribed value.
Description
本発明は、レベリングバルブに関するものである。
The present invention relates to a leveling valve.
JP2004-52889Aには、鉄道車両等の車体と台車との間に設けられる空気ばねに対して圧縮空気を給排することで、車体の高さを一定に保つレベリングバルブが記載されている。
JP 2004-52889A describes a leveling valve that keeps the height of a vehicle body constant by supplying and discharging compressed air to and from an air spring provided between a vehicle body such as a railway vehicle and a carriage.
JP2004-52889Aに記載のレベリングバルブでは、車体の荷重変化により空気ばねによる車体の支持高さが変化すると、変化に応じてレバーが揺動し、レバーの先端に連結されたピストンが軸方向に移動する。このようなピストンの移動に伴って、空気ばねに接続された空気ばね通路に、空気圧供給源に接続された供給通路と大気に開放される排気通路とのいずれかが選択的に接続される。
In the leveling valve described in JP2004-52889A, when the support height of the vehicle body by the air spring changes due to a change in the vehicle body load, the lever swings according to the change and the piston connected to the tip of the lever moves in the axial direction. To do. With such movement of the piston, either the supply passage connected to the air pressure supply source or the exhaust passage opened to the atmosphere is selectively connected to the air spring passage connected to the air spring.
JP2004-52889Aに記載のレベリングバルブでは、ピストンの移動量はレバーの揺動角度に比例して増加し、ピストンの移動量が増加するとともに空気ばねに対して流出入する圧縮空気の流量も増加する。ここで、空気ばねに対して流出入する圧縮空気の流量は、ピストンの移動量が所定量に至ると最大となり、ピストンがさらに移動してもほとんど変化しなくなる。一方で、ピストンの移動量は、レバーの揺動角度に比例して変化するため、空気ばねに対して流出入する圧縮空気の流量が最大となった後もさらに増加する。
In the leveling valve described in JP2004-52889A, the moving amount of the piston increases in proportion to the swing angle of the lever, and the moving amount of the piston increases, and the flow rate of the compressed air flowing into and out of the air spring increases. . Here, the flow rate of the compressed air flowing into and out of the air spring becomes maximum when the movement amount of the piston reaches a predetermined amount, and hardly changes even if the piston further moves. On the other hand, since the movement amount of the piston changes in proportion to the swing angle of the lever, it further increases after the flow rate of the compressed air flowing into and out of the air spring becomes maximum.
したがって、ピストンの移動方向におけるレベリングバルブの長さは、空気ばねに対して流出入する圧縮空気の流量ではなく、ピストンの最大移動量に合せて設定される。この結果、レベリングバルブの全長が長くなり、車体に対するレベリングバルブの搭載性が低下するとともに、レベリングバルブの重量が増加するおそれがある。
Therefore, the length of the leveling valve in the moving direction of the piston is set according to the maximum moving amount of the piston, not the flow rate of the compressed air flowing into and out of the air spring. As a result, the overall length of the leveling valve becomes long, the mountability of the leveling valve to the vehicle body decreases, and the weight of the leveling valve may increase.
本発明は、レベリングバルブの全長を短縮することを目的とする。
The present invention aims to shorten the overall length of the leveling valve.
本発明のある態様によれば、車両の車体と台車との間に設けられる空気ばねの高さを調整するレベリングバルブは、前記空気ばねと連通する空気ばね通路が形成されたハウジングと、前記ハウジングに形成された収容孔内に摺動自在に収容されるピストンと、前記ハウジングにより回動自在に支持され、前記台車に対する前記車体の相対変位量に応じて回動し前記ピストンを移動させるロータと、前記ロータの回動に伴って前記ピストンが中立位置から一方向へ移動すると前記空気ばねと空気圧源とを連通させ、前記ロータの回動に伴って前記ピストンが中立位置から他方向へ移動すると前記空気ばねと大気とを連通させる給排弁と、を備え、前記ピストンは、外周に形成され摺動方向に対して直交する方向に延びるガイド溝を有し、前記ロータは、回動中心からオフセットした位置において前記ピストンに向かって突出し先端が前記ガイド溝に挿入される突起部を有し、前記ガイド溝は、前記ロータの回動角が所定値以下のときに前記突起部が接する第1溝部と、前記第1溝部よりも前記ピストンの摺動方向における幅が大きく、前記ロータの回動角が前記所定値を超えるときに前記突起部が接する第2溝部と、を有する。
According to an aspect of the present invention, a leveling valve that adjusts the height of an air spring provided between a vehicle body and a carriage of a vehicle includes a housing in which an air spring passage communicating with the air spring is formed, and the housing A piston that is slidably received in an accommodation hole formed in the housing, a rotor that is rotatably supported by the housing, and that rotates according to the relative displacement of the vehicle body relative to the carriage to move the piston. When the piston moves in one direction from the neutral position as the rotor rotates, the air spring communicates with the air pressure source, and when the piston moves in the other direction from the neutral position as the rotor rotates. A supply / discharge valve for communicating the air spring and the atmosphere, and the piston has a guide groove formed on an outer periphery and extending in a direction perpendicular to the sliding direction, The data has a protrusion protruding toward the piston at a position offset from the rotation center and having a tip inserted into the guide groove. The guide groove has a rotation angle of the rotor less than or equal to a predetermined value. A first groove portion that is in contact with the protrusion portion, and a second groove portion that is larger in width in the sliding direction of the piston than the first groove portion and is in contact with the protrusion portion when the rotation angle of the rotor exceeds the predetermined value. And having.
以下、図面を参照して、本発明の実施形態について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
まず、図1を参照して、本発明の実施形態に係るレベリングバルブ100の概要について説明する。
First, an overview of a leveling valve 100 according to an embodiment of the present invention will be described with reference to FIG.
レベリングバルブ100は、鉄道車両の車体と台車との間に設けられる空気ばねの伸縮を調整して、台車に対する車体の高さを一定に維持するものである。
The leveling valve 100 adjusts the expansion and contraction of an air spring provided between the body of the railway vehicle and the carriage, and maintains the height of the body relative to the carriage.
レベリングバルブ100は、図1に示すように、車体1側に取り付けられ、レバー4と連結棒5とを介して台車2に連結される。車体1の荷重変化により空気ばね3が伸縮して車体1の高さが変化すると、この変化が連結棒5及びレバー4を介してレベリングバルブ100に伝達される。
As shown in FIG. 1, the leveling valve 100 is attached to the vehicle body 1 and is connected to the carriage 2 via a lever 4 and a connecting rod 5. When the air spring 3 expands and contracts due to a load change of the vehicle body 1 and the height of the vehicle body 1 changes, this change is transmitted to the leveling valve 100 via the connecting rod 5 and the lever 4.
車体荷重が増加して空気ばね3が収縮した場合、すなわち、台車2に対する車体1の高さが規定の高さよりも低くなった場合には、レバー4が図1に示される中立位置から上方(図1の矢印A方向)に押し上げられる。このようにレバー4が上方に変位すると、空気ばね3に連通する空気ばね通路6と圧縮空気を供給する空気圧源としてのコンプレッサ7に連通する供給通路9とがレベリングバルブ100内において連通される。これにより、コンプレッサ7から空気ばね3へ圧縮空気が供給され、空気ばね3は伸長する。空気ばね3が伸長したことで台車2に対する車体1の高さが規定の高さになると、レバー4が中立位置に戻り、空気ばね3への圧縮空気の供給が停止される。
When the vehicle body load increases and the air spring 3 contracts, that is, when the height of the vehicle body 1 with respect to the carriage 2 becomes lower than the specified height, the lever 4 is moved upward from the neutral position shown in FIG. It is pushed up in the direction of arrow A in FIG. When the lever 4 is displaced upward in this way, the air spring passage 6 communicating with the air spring 3 and the supply passage 9 communicating with the compressor 7 as a pneumatic source for supplying compressed air are communicated in the leveling valve 100. Thereby, compressed air is supplied from the compressor 7 to the air spring 3, and the air spring 3 expands. When the height of the vehicle body 1 with respect to the carriage 2 reaches a specified height due to the extension of the air spring 3, the lever 4 returns to the neutral position, and the supply of compressed air to the air spring 3 is stopped.
一方、車体荷重が減少して空気ばね3が伸長した場合、すなわち、台車2に対する車体1の高さが規定の高さよりも高くなった場合には、レバー4が中立位置から下方(図1の矢印B方向)に引き下げられる。このようにレバー4が下方に変位すると、空気ばね通路6と排気通路8とがレベリングバルブ100内において連通される。排気通路8は一端が大気に開放されているため、空気ばね3内の圧縮空気は大気へと排出され、空気ばね3は収縮する。空気ばね3が収縮したことで台車2に対する車体1の高さが規定の高さになると、レバー4が中立位置に戻り、空気ばね3からの圧縮空気の排出が停止される。
On the other hand, when the vehicle body load decreases and the air spring 3 extends, that is, when the height of the vehicle body 1 with respect to the carriage 2 becomes higher than a specified height, the lever 4 moves downward from the neutral position (see FIG. 1). It is pulled down in the direction of arrow B). When the lever 4 is displaced downward in this way, the air spring passage 6 and the exhaust passage 8 are communicated with each other in the leveling valve 100. Since one end of the exhaust passage 8 is open to the atmosphere, the compressed air in the air spring 3 is discharged to the atmosphere, and the air spring 3 contracts. When the height of the vehicle body 1 with respect to the carriage 2 reaches a specified height due to the contraction of the air spring 3, the lever 4 returns to the neutral position and the discharge of the compressed air from the air spring 3 is stopped.
このように、レベリングバルブ100は、台車2に対する車体1の相対変位に伴って回動するレバー4の回動方向に応じて空気ばね通路6を供給通路9又は排気通路8に選択的に連通させている。これにより、車体1と台車2との間に生じた相対変位が減少し、台車2に対する車体1の高さは規定の高さに維持される。
In this way, the leveling valve 100 selectively communicates the air spring passage 6 with the supply passage 9 or the exhaust passage 8 in accordance with the turning direction of the lever 4 that turns with the relative displacement of the vehicle body 1 with respect to the carriage 2. ing. Thereby, the relative displacement generated between the vehicle body 1 and the carriage 2 is reduced, and the height of the vehicle body 1 with respect to the carriage 2 is maintained at a specified height.
次に、図2及び図3を参照して、レベリングバルブ100の構成について説明する。図2は、レベリングバルブ100の軸方向の断面図であり、図3は、図2のIII-III線に沿うレベリングバルブ100の径方向の断面図である。
Next, the configuration of the leveling valve 100 will be described with reference to FIGS. 2 is a sectional view in the axial direction of the leveling valve 100, and FIG. 3 is a sectional view in the radial direction of the leveling valve 100 along the line III-III in FIG.
レベリングバルブ100は、空気ばね通路6,供給通路9及び排気通路8が内部に形成されるハウジング10と、ハウジング10内に摺動自在に収容されるピストン20と、台車2に対する車体1の相対変位量をピストン20に伝達するロータ30と、ピストン20の移動方向に応じて空気ばね通路6を供給通路9又は排気通路8に選択的に連通させる給排弁40と、を備える。
The leveling valve 100 includes a housing 10 in which an air spring passage 6, a supply passage 9 and an exhaust passage 8 are formed, a piston 20 slidably accommodated in the housing 10, and a relative displacement of the vehicle body 1 with respect to the carriage 2. A rotor 30 that transmits the amount to the piston 20 and a supply / discharge valve 40 that selectively connects the air spring passage 6 to the supply passage 9 or the exhaust passage 8 according to the moving direction of the piston 20 are provided.
ハウジング10は、ピストン20が収容される収容孔11aが第1中心軸O1に沿って貫通して形成されるメインケース11と、メインケース11の一方の側面に取り付けられ収容孔11aの一方の開口を閉塞する第1キャップ部材12と、メインケース11の他方の側面に取り付けられ、収容孔11aと同心の貫通孔13bが貫通して形成される第2キャップ部材13と、を有する。第1キャップ部材12と第2キャップ部材13とは、図示しないボルトを介してメインケース11に取り付けられる。また、図示しないボルトを介してメインケース11が車体1に取り付けられることでハウジング10は車体1に対して固定される。
The housing 10 includes a main case 11 in which an accommodation hole 11a in which the piston 20 is accommodated is formed penetrating along the first central axis O1, and one opening of the accommodation hole 11a attached to one side surface of the main case 11. And a second cap member 13 that is attached to the other side surface of the main case 11 and that is formed through a through hole 13b that is concentric with the accommodation hole 11a. The first cap member 12 and the second cap member 13 are attached to the main case 11 via bolts (not shown). Further, the housing 10 is fixed to the vehicle body 1 by attaching the main case 11 to the vehicle body 1 via bolts (not shown).
メインケース11及び第1キャップ部材12には、空気ばね通路6を構成する通路11c,11d,12aがそれぞれ形成される。これらの通路11c,11d,12aによって、空気ばね3は給排弁40と連通する。また、メインケース11及び第2キャップ部材13には、供給通路9を構成する通路11e,13aがそれぞれ形成される。これらの通路11e,13aによって、コンプレッサ7は給排弁40と連通する。なお、空気ばね通路6は、第1キャップ部材12を通ることなく、メインケース11のみに形成されていてもよい。同様に、供給通路9は、メインケース11を通ることなく、第2キャップ部材13のみに設けられていてもよい。
The main case 11 and the first cap member 12 are formed with passages 11c, 11d, and 12a constituting the air spring passage 6, respectively. The air spring 3 communicates with the supply / discharge valve 40 through these passages 11c, 11d, and 12a. The main case 11 and the second cap member 13 are formed with passages 11e and 13a constituting the supply passage 9, respectively. The compressor 7 communicates with the supply / discharge valve 40 through these passages 11e and 13a. The air spring passage 6 may be formed only in the main case 11 without passing through the first cap member 12. Similarly, the supply passage 9 may be provided only in the second cap member 13 without passing through the main case 11.
また、メインケース11には、図3に示されるように、収容孔11aに対して径方向外側に開口する凹部11bが形成される。ハウジング10は、この凹部11bを覆ってメインケース11に取り付けられるカバー部材14をさらに備える。カバー部材14がメインケース11に取り付けられることにより、ロータ30が収容される収容空間15が画定される。
Further, as shown in FIG. 3, the main case 11 is formed with a recess 11b that opens radially outward with respect to the accommodation hole 11a. The housing 10 further includes a cover member 14 that covers the recess 11b and is attached to the main case 11. By attaching the cover member 14 to the main case 11, an accommodation space 15 in which the rotor 30 is accommodated is defined.
カバー部材14には、収容空間15と外部とを連通する連通孔14aが形成される。連通孔14aは、給排弁40と外部とを連通させる排気通路8として機能する。連通孔14aには、外部からの異物の侵入を防止するためにフィルタ16が設けられる。
The cover member 14 is formed with a communication hole 14a that allows the accommodation space 15 to communicate with the outside. The communication hole 14a functions as an exhaust passage 8 that allows the supply / discharge valve 40 to communicate with the outside. A filter 16 is provided in the communication hole 14a in order to prevent foreign substances from entering from the outside.
給排弁40は、一端側がメインケース11の収容孔11aに挿入され他端側が第2キャップ部材13の貫通孔13bに挿入される筒状の弁ケース41と、一端側がピストン20に固定され他端側が弁ケース41内に挿入されるバルブロッド42と、弁ケース41内に配置される弁体等と、により構成される。給排弁40の具体的な構成について、以下に説明する。
The supply / discharge valve 40 has a cylindrical valve case 41 having one end inserted into the housing hole 11a of the main case 11 and the other end inserted into the through hole 13b of the second cap member 13, and one end fixed to the piston 20 and the like. The end side is configured by a valve rod 42 inserted into the valve case 41, a valve body and the like disposed in the valve case 41. A specific configuration of the supply / discharge valve 40 will be described below.
弁ケース41は、収容孔11a内に挿入される第1円筒部41aと、第2キャップ部材13内に挿入される第2円筒部41cと、第1円筒部41aと第2円筒部41cとの間に設けられ、第1円筒部41a及び第2円筒部41cよりも外径が大きく外周面に雄ねじが形成されたフランジ部41bと、を有する。弁ケース41は、収容孔11aの開口部に形成された雌ねじ部11fにフランジ部41bが螺合されることで、メインケース11に固定される。メインケース11から突出した第2円筒部41cを覆うようにして第2キャップ部材13がメインケース11に固定されることで、第2キャップ部材13によってフランジ部41bがメインケース11から抜け出ることが規制される。この結果、弁ケース41がメインケース11から外れることが防止される。
The valve case 41 includes a first cylindrical portion 41a inserted into the accommodation hole 11a, a second cylindrical portion 41c inserted into the second cap member 13, and a first cylindrical portion 41a and a second cylindrical portion 41c. And a flange portion 41b having an outer diameter larger than that of the first cylindrical portion 41a and the second cylindrical portion 41c and having an external thread formed on the outer peripheral surface. The valve case 41 is fixed to the main case 11 by screwing the flange portion 41b into the female screw portion 11f formed in the opening of the accommodation hole 11a. By restricting the second cap member 13 to the main case 11 so as to cover the second cylindrical portion 41c protruding from the main case 11, the second cap member 13 prevents the flange portion 41b from coming out of the main case 11. Is done. As a result, the valve case 41 is prevented from being detached from the main case 11.
また、弁ケース41の内部には、第1円筒部41a側に開口しバルブロッド42が挿入される第1挿入孔41dと、第1挿入孔41dに連続して形成され、第1挿入孔41dよりも内径が大きい第2挿入孔41eと、第1挿入孔41dと第2挿入孔41eとの接続部に形成される段差部41fと、が設けられる。第2挿入孔41eは、第2円筒部41c側で開口しており、第2挿入孔41eの開口端には、円柱状のプラグ48が挿入固定される。このように、第2挿入孔41eの開口端は、プラグ48によって閉塞される。
In addition, the valve case 41 is formed continuously with the first insertion hole 41d and the first insertion hole 41d, which is open to the first cylindrical portion 41a side and into which the valve rod 42 is inserted. A second insertion hole 41e having a larger inner diameter and a stepped portion 41f formed at a connection portion between the first insertion hole 41d and the second insertion hole 41e are provided. The second insertion hole 41e is opened on the second cylindrical portion 41c side, and a columnar plug 48 is inserted and fixed at the opening end of the second insertion hole 41e. Thus, the opening end of the second insertion hole 41e is closed by the plug 48.
段差部41fの内周寄りの部分には、第1中心軸O1を中心とする環状の第1弁座部41gがプラグ48側に向かって突出して形成される。また、段差部41fに対向するプラグ48の端面には、第1中心軸O1を中心とする環状の第2弁座部48aが段差部41f側に向かって突出して形成される。プラグ48には、一端が第2弁座部48aの内周側において開口し、他端がプラグ48の外周面において開口する通路48bが設けられる。
An annular first valve seat portion 41g centered on the first central axis O1 is formed to protrude toward the plug 48 side at a portion near the inner periphery of the step portion 41f. Further, an annular second valve seat portion 48a centering on the first central axis O1 is formed on the end surface of the plug 48 facing the step portion 41f so as to protrude toward the step portion 41f side. The plug 48 is provided with a passage 48 b having one end opened on the inner peripheral side of the second valve seat portion 48 a and the other end opened on the outer peripheral surface of the plug 48.
第2挿入孔41e内には、第1弁座部41gに離着座する円盤状の弁体43と、第2弁座部48aに離着座する円盤状のチェック弁体44と、弁体43を第1弁座部41gに向けて付勢するとともにチェック弁体44を第2弁座部48aに向けて付勢するスプリング45と、が設けられる。つまり、スプリング45の付勢力によって、第1弁座部41gに弁体43が着座し、第2弁座部48aにチェック弁体44が着座すると、第2挿入孔41e内の空間は閉塞された状態となる。弁体43は、外周面において第2挿入孔41eに摺動支持されるとともに、外周面に設けられた図示しない切欠部を通じて弁体43で仕切られる空間同士を連通している。チェック弁体44も弁体43と同様に図示しない切欠部を通じてチェック弁体44で仕切られる空間同士を連通している。
In the second insertion hole 41e, a disc-shaped valve body 43 that is separated from and seated on the first valve seat portion 41g, a disc-shaped check valve body 44 that is seated and seated on the second valve seat portion 48a, and the valve body 43 are disposed. A spring 45 is provided that biases the first valve seat 41g toward the first valve seat 41g and biases the check valve body 44 toward the second valve seat 48a. That is, when the valve body 43 is seated on the first valve seat portion 41g and the check valve body 44 is seated on the second valve seat portion 48a by the biasing force of the spring 45, the space in the second insertion hole 41e is closed. It becomes a state. The valve body 43 is slidably supported by the second insertion hole 41e on the outer peripheral surface, and communicates the spaces partitioned by the valve body 43 through notch portions (not shown) provided on the outer peripheral surface. Similarly to the valve body 43, the check valve body 44 communicates with the spaces partitioned by the check valve body 44 through notch portions (not shown).
弁ケース41には、第2キャップ部材13に形成される通路13aとプラグ48に形成される通路48bとを連通する通路41hが形成される。コンプレッサ7から吐出された圧縮空気は、これらの通路11e,13a,41h,48bを通じて、チェック弁体44の上流に導かれる。
The valve case 41 is formed with a passage 41h that connects the passage 13a formed in the second cap member 13 and the passage 48b formed in the plug 48. The compressed air discharged from the compressor 7 is guided upstream of the check valve body 44 through these passages 11e, 13a, 41h, and 48b.
チェック弁体44は、チェック弁体44の上流側の圧力、すなわち、コンプレッサ7側の圧力が、チェック弁体44の下流側の圧力よりも高いときには、スプリング45の付勢力に抗して第2弁座部48aから離間し、供給通路9と第2挿入孔41e内の空間とを連通させる。反対に、コンプレッサ7側の圧力がチェック弁体44の下流側の圧力よりも低いときには、チェック弁体44は、第2弁座部48aに着座し、供給通路9と第2挿入孔41e内の空間との連通を遮断する。このようにチェック弁体44は、弁体43に向かう流れのみを許容する逆止弁として機能する。
When the pressure on the upstream side of the check valve body 44, that is, the pressure on the compressor 7 side is higher than the pressure on the downstream side of the check valve body 44, the check valve body 44 is second against the biasing force of the spring 45. It separates from the valve seat part 48a, and connects the supply passage 9 and the space in the second insertion hole 41e. On the other hand, when the pressure on the compressor 7 side is lower than the pressure on the downstream side of the check valve body 44, the check valve body 44 is seated on the second valve seat portion 48a, and inside the supply passage 9 and the second insertion hole 41e. Block communication with the space. Thus, the check valve body 44 functions as a check valve that allows only the flow toward the valve body 43.
バルブロッド42は、棒状部材であり、弁ケース41により摺動自在に支持される摺動部42aと、摺動部42aよりも外径が小さく形成され、ピストン20に挿入固定される固定部42bと、を有する。
The valve rod 42 is a rod-like member, a sliding portion 42a that is slidably supported by the valve case 41, and a fixed portion 42b that is formed to have an outer diameter smaller than the sliding portion 42a and is inserted and fixed to the piston 20. And having.
摺動部42aには、弁ケース41内に挿入される側の端面42cにおいて開口する非貫通孔42dと、非貫通孔42d内の空間と収容孔11a内の空間とを連通する複数の貫通孔42eと、が形成される。つまり、非貫通孔42d内の空間は、貫通孔42e,収容孔11a,収容空間15及び連通孔14aを通じて、外部と連通する。
The sliding portion 42a has a non-through hole 42d opened on the end surface 42c on the side inserted into the valve case 41, and a plurality of through-holes communicating the space in the non-through hole 42d and the space in the accommodation hole 11a. 42e are formed. That is, the space in the non-through hole 42d communicates with the outside through the through hole 42e, the accommodation hole 11a, the accommodation space 15, and the communication hole 14a.
バルブロッド42の端面42cは、弁体43に対して離接可能であり、端面42cが弁体43に接しているとき、非貫通孔42dの開口端は弁体43によって閉塞される。
The end surface 42c of the valve rod 42 can be separated from the valve body 43. When the end surface 42c is in contact with the valve body 43, the open end of the non-through hole 42d is closed by the valve body 43.
また、バルブロッド42には、弁ケース41に挿入される先端の外周に大径部42fが形成されるとともに、大径部42fに連続して大径部42fより小径の小径部42gが形成される。これに対して、弁ケース41の第1挿入孔41dには、大径部42fに対向する位置に縮径部41iが設けられ、小径部42gに対向する位置に拡径部41jが設けられる。大径部42fと縮径部41iとの間には、環状隙間が形成される。
The valve rod 42 has a large-diameter portion 42f formed on the outer periphery of the tip inserted into the valve case 41, and a small-diameter portion 42g having a smaller diameter than the large-diameter portion 42f is formed continuously to the large-diameter portion 42f. The On the other hand, the first insertion hole 41d of the valve case 41 is provided with a reduced diameter portion 41i at a position facing the large diameter portion 42f and an enlarged diameter portion 41j at a position facing the small diameter portion 42g. An annular gap is formed between the large diameter portion 42f and the reduced diameter portion 41i.
この環状隙間を流れる空気流には、第1中心軸O1方向における環状隙間の流路長、すなわち、第1中心軸O1方向において大径部42fと縮径部41iとが重なり合う長さに応じた流路抵抗が付与される。ここで、大径部42fと縮径部41iとが重なり合う長さは、弁ケース41に対するバルブロッド42の変位量に応じて変化する。つまり、弁ケース41に対するバルブロッド42の変位が比較的小さく環状隙間の流路長が長い場合は空気が流れにくくなり、弁ケース41に対するバルブロッド42の変位が比較的大きく環状隙間の流路長が短い場合は空気が流れやすくなる。
The airflow flowing through the annular gap corresponds to the flow path length of the annular gap in the first central axis O1 direction, that is, the length in which the large diameter portion 42f and the reduced diameter portion 41i overlap in the first central axis O1 direction. Channel resistance is applied. Here, the length over which the large diameter portion 42 f and the reduced diameter portion 41 i overlap varies depending on the amount of displacement of the valve rod 42 relative to the valve case 41. That is, when the displacement of the valve rod 42 with respect to the valve case 41 is relatively small and the flow path length of the annular gap is long, it becomes difficult for air to flow, and the displacement of the valve rod 42 with respect to the valve case 41 is relatively large and the flow path length of the annular gap. When is short, air becomes easy to flow.
また、弁ケース41には、拡径部41jにおいて第1挿入孔41dに開口するとともに弁ケース41の外周面において開口し、第1挿入孔41d内の空間を、空気ばね通路6を構成する通路11cと連通させる貫通孔41kが複数形成される。つまり、第1挿入孔41dとバルブロッド42の外周面により囲まれる空間は、貫通孔41k及び通路11c,12a,11dを通じて、常時、空気ばね3と連通する。
Further, the valve case 41 is opened to the first insertion hole 41d in the enlarged diameter portion 41j and to the outer peripheral surface of the valve case 41, and the space in the first insertion hole 41d is formed as a passage constituting the air spring passage 6. A plurality of through holes 41k communicating with 11c are formed. That is, the space surrounded by the first insertion hole 41d and the outer peripheral surface of the valve rod 42 is always in communication with the air spring 3 through the through hole 41k and the passages 11c, 12a, and 11d.
上記構成の給排弁40によれば、バルブロッド42の端面42cが弁体43に接するとともに、弁体43が第1弁座部41gに着座しているときには、空気ばね通路6と供給通路9との連通、及び空気ばね通路6と排気通路8との連通が遮断された状態となる。
According to the supply / discharge valve 40 configured as described above, when the end surface 42c of the valve rod 42 is in contact with the valve body 43 and the valve body 43 is seated on the first valve seat portion 41g, the air spring passage 6 and the supply passage 9 are provided. And the communication between the air spring passage 6 and the exhaust passage 8 are blocked.
一方、バルブロッド42が弁ケース41に進入する方向(図2の矢印C方向)に移動し、バルブロッド42の端面42cが弁体43に接した状態で弁体43が第1弁座部41gから離座すると、空気ばね通路6と供給通路9とが連通し、空気ばね通路6と排気通路8との連通が遮断された状態となる。
On the other hand, the valve rod 42 moves in the direction of entering the valve case 41 (the direction of arrow C in FIG. 2), and the valve body 43 is in the first valve seat portion 41g with the end surface 42c of the valve rod 42 in contact with the valve body 43. When separated from the position, the air spring passage 6 and the supply passage 9 communicate with each other, and the communication between the air spring passage 6 and the exhaust passage 8 is blocked.
反対に、バルブロッド42が弁ケース41から退出する方向(図2の矢印D方向)に移動し、バルブロッド42の端面42cが弁体43から離れ、弁体43が第1弁座部41gに着座しているときには、空気ばね通路6と供給通路9との連通が遮断され、空気ばね通路6と排気通路8とが連通された状態となる。
On the other hand, the valve rod 42 moves in the direction of retreating from the valve case 41 (the direction of arrow D in FIG. 2), the end surface 42c of the valve rod 42 is separated from the valve body 43, and the valve body 43 is moved to the first valve seat portion 41g. When seated, the communication between the air spring passage 6 and the supply passage 9 is cut off, and the air spring passage 6 and the exhaust passage 8 are in communication with each other.
このように、給排弁40は、弁ケース41に対するバルブロッド42の移動に応じて、空気ばね通路6に対して供給通路9又は排気通路8を選択的に連通させるとともに、空気ばね通路6に対する供給通路9及び排気通路8の連通を遮断することが可能である。
In this way, the supply / discharge valve 40 selectively communicates the supply passage 9 or the exhaust passage 8 with the air spring passage 6 in accordance with the movement of the valve rod 42 with respect to the valve case 41, and also with respect to the air spring passage 6. Communication between the supply passage 9 and the exhaust passage 8 can be blocked.
続いて、バルブロッド42を移動させるピストン20と、台車2に対する車体1の相対変位量をピストン20に伝達するロータ30について説明する。
Next, the piston 20 that moves the valve rod 42 and the rotor 30 that transmits the relative displacement of the vehicle body 1 with respect to the carriage 2 to the piston 20 will be described.
ピストン20は、バルブロッド42の固定部42bが挿通する貫通孔20aが中央に形成された円筒状部材であり、収容孔11aによって第1中心軸O1方向に摺動自在に支持される。ピストン20の外周面の一部には、図3に示すように、断面形状が半月状のガイド溝21がピストン20の摺動方向(第1中心軸O1方向)に対して直交する方向に所定の幅を持って形成される。また、ピストン20にはその両側を連通する図示しない流路が形成される。これにより、ピストン20が第1中心軸O1方向に移動する際に、収容孔11a内の空気はこの流路を通じて移動することが可能である。
The piston 20 is a cylindrical member in which a through hole 20a through which the fixed portion 42b of the valve rod 42 is inserted is formed at the center, and is supported by the accommodation hole 11a so as to be slidable in the first central axis O1 direction. As shown in FIG. 3, a guide groove 21 having a half-moon-shaped cross section is predetermined in a direction orthogonal to the sliding direction of the piston 20 (the first central axis O1 direction) on a part of the outer peripheral surface of the piston 20. It is formed with a width of The piston 20 is formed with a flow path (not shown) that communicates with both sides thereof. Thereby, when the piston 20 moves in the first central axis O1 direction, the air in the accommodation hole 11a can move through this flow path.
ロータ30は、円筒状の本体部31と、本体部31の一方の端部から突出して形成され、本体部31の外径よりも小さな二面幅を有する四角柱状のボス部32と、本体部31の他方の端部に設けられたフランジ部33と、フランジ部33の外周面から径方向外側に向かって突出して形成されたアーム部34と、を有する。
The rotor 30 includes a cylindrical main body portion 31, a quadrangular columnar boss portion 32 that is formed to protrude from one end portion of the main body portion 31, and has a two-surface width smaller than the outer diameter of the main body portion 31. The flange portion 33 provided at the other end of the arm 31 and the arm portion 34 formed so as to protrude radially outward from the outer peripheral surface of the flange portion 33.
ロータ30は、図3に示すように、カバー部材14に設けられた軸受17,18を介して、支持孔14bにより本体部31が支持される。このように、ロータ30は、第1中心軸O1と直交する方向に延びる第2中心軸O2を中心として回動自在にハウジング10により支持される。
As shown in FIG. 3, the rotor 30 has a main body 31 supported by a support hole 14 b via bearings 17 and 18 provided on the cover member 14. Thus, the rotor 30 is supported by the housing 10 so as to be rotatable about the second central axis O2 extending in the direction orthogonal to the first central axis O1.
また、ロータ30の回動中心である第2中心軸O2からオフセットしたロータ30のアーム部34には、突起部としてのピン35が設けられる。ピン35は、一端側がアーム部34に圧入され、他端側がアーム部34から突出した状態で取り付けられる。アーム部34から突出したピン35の他端側は、ロータ30がハウジング10に組み付けられた状態で、図3に示すように、ピストン20のガイド溝21内に挿入される。
Also, the arm portion 34 of the rotor 30 offset from the second central axis O2, which is the rotation center of the rotor 30, is provided with a pin 35 as a protrusion. The pin 35 is attached so that one end side is press-fitted into the arm portion 34 and the other end side protrudes from the arm portion 34. As shown in FIG. 3, the other end side of the pin 35 protruding from the arm portion 34 is inserted into the guide groove 21 of the piston 20 in a state where the rotor 30 is assembled to the housing 10.
ボス部32は、図1に示すように、レバー4に形成された嵌合穴4aに嵌合される。したがって、レバー4の回動に伴ってボス部32が回動すると、アーム部34に圧入されたピン35は、第2中心軸O2を中心として、図2に示す矢印Eまたは矢印Fの方向に移動する。ピン35はピストン20のガイド溝21に接しているため、ロータ30の回動は、ピン35を介してピストン20に伝達され、ピストン20はピン35の移動に伴って収容孔11a内を第1中心軸O1方向(図2の矢印C,Dの方向)に移動する。
The boss portion 32 is fitted into the fitting hole 4a formed in the lever 4 as shown in FIG. Therefore, when the boss portion 32 is rotated in accordance with the rotation of the lever 4, the pin 35 press-fitted into the arm portion 34 is centered on the second central axis O2 in the direction of the arrow E or the arrow F shown in FIG. Moving. Since the pin 35 is in contact with the guide groove 21 of the piston 20, the rotation of the rotor 30 is transmitted to the piston 20 via the pin 35, and the piston 20 moves in the housing hole 11 a as the pin 35 moves. It moves in the direction of the central axis O1 (directions of arrows C and D in FIG. 2).
次に、ピン35が接するピストン20のガイド溝21について説明する。
Next, the guide groove 21 of the piston 20 with which the pin 35 contacts will be described.
ガイド溝21は、図4Aに示すように、ピン35の径とほぼ同じ幅に形成される第1溝部22と、第1溝部22に連続して形成され、第1溝部22よりもピストン20の摺動方向(第1中心軸O1方向)における幅が大きい第2溝部23と、を有する。第1溝部22は、台車2に対する車体1の相対変位が比較的小さいとき、すなわち、ロータ30の回動量が小さいときにピン35が接する位置に形成され、第2溝部23は、台車2に対する車体1の相対変位が比較的大きいとき、すなわち、ロータ30の回動量が大きいときにピン35が接する位置に形成される。
As shown in FIG. 4A, the guide groove 21 is formed to be continuous with the first groove portion 22 and the first groove portion 22 that are formed to have substantially the same width as the diameter of the pin 35, and the piston groove 20 is formed more than the first groove portion 22. And a second groove portion 23 having a large width in the sliding direction (first central axis O1 direction). The first groove portion 22 is formed at a position where the pin 35 contacts when the relative displacement of the vehicle body 1 with respect to the carriage 2 is relatively small, that is, when the rotation amount of the rotor 30 is small, and the second groove portion 23 is formed on the vehicle body with respect to the carriage 2. When the relative displacement of 1 is relatively large, that is, when the amount of rotation of the rotor 30 is large, the pin 35 is formed at a contact position.
第1溝部22は、ピストン20の摺動方向(第1中心軸O1方向)に対して直交して延びる第1供給側壁22aと、ピストン20の摺動方向において第1供給側壁22aに対向して設けられる第1排出側壁22bと、の二つの壁面を有する。ロータ30の回動に応じて第1供給側壁22aにピン35が押し付けられると、ピストン20及びバルブロッド42は、空気ばね通路6と供給通路9とを連通させる方向に移動する。一方、ロータ30の回動に応じて第1排出側壁22bにピン35が押し付けられると、ピストン20及びバルブロッド42は、空気ばね通路6と排気通路8とを連通させる方向に移動する。第1供給側壁22aと第1排出側壁22bとの間の間隔は、ピン35の径とほぼ同じに設定される。このため、ピン35が第1溝部22にあるとき、ピン35は、第1供給側壁22aと第1排出側壁22bとの両方に接触した状態となる。
The first groove portion 22 faces the first supply side wall 22a in the sliding direction of the piston 20 and a first supply side wall 22a extending orthogonally to the sliding direction of the piston 20 (first central axis O1 direction). The first discharge side wall 22b is provided with two wall surfaces. When the pin 35 is pressed against the first supply side wall 22 a according to the rotation of the rotor 30, the piston 20 and the valve rod 42 move in a direction in which the air spring passage 6 and the supply passage 9 are communicated. On the other hand, when the pin 35 is pressed against the first discharge side wall 22 b according to the rotation of the rotor 30, the piston 20 and the valve rod 42 move in a direction in which the air spring passage 6 and the exhaust passage 8 are communicated. The distance between the first supply side wall 22 a and the first discharge side wall 22 b is set to be approximately the same as the diameter of the pin 35. For this reason, when the pin 35 exists in the 1st groove part 22, the pin 35 will be in the state which contacted both the 1st supply side wall 22a and the 1st discharge | emission side wall 22b.
第2溝部23は、第1溝部22の幅よりも大きい所定の大きさの幅で形成された拡幅部24と、第1溝部22から拡幅部24に向かって徐々に幅が大きくなる幅変化部25と、を有する。
The second groove portion 23 includes a widened portion 24 formed with a predetermined width larger than the width of the first groove portion 22, and a width changing portion in which the width gradually increases from the first groove portion 22 toward the widened portion 24. 25.
拡幅部24は、ピストン20の摺動方向(第1中心軸O1方向)に対して直交して延びる第2供給側壁24aと、ピストン20の摺動方向において第2供給側壁24aに対向して設けられる第2排出側壁24bと、の二つの壁面を有する。第2供給側壁24aと第2排出側壁24bとの間の間隔は、第1供給側壁22aと第1排出側壁22bとの間の間隔よりも大きく設定される。
The widened portion 24 is provided to face the second supply side wall 24a in the sliding direction of the piston 20 and a second supply side wall 24a extending perpendicularly to the sliding direction of the piston 20 (first central axis O1 direction). And the second discharge side wall 24b. The distance between the second supply side wall 24a and the second discharge side wall 24b is set larger than the distance between the first supply side wall 22a and the first discharge side wall 22b.
幅変化部25は、第1供給側壁22aと第2供給側壁24aとを接続する供給側接続壁25aと、第1排出側壁22bと第2排出側壁24bとを接続する排出側接続壁25bと、を有する。供給側接続壁25aと排出側接続壁25bとの間の間隔は、第1溝部22から拡幅部24に向かって徐々に大きくなるように設定される。
The width changing portion 25 includes a supply side connection wall 25a that connects the first supply side wall 22a and the second supply side wall 24a, a discharge side connection wall 25b that connects the first discharge side wall 22b and the second discharge side wall 24b, Have The interval between the supply side connection wall 25 a and the discharge side connection wall 25 b is set so as to gradually increase from the first groove portion 22 toward the widened portion 24.
このように、第2供給側壁24aと第2排出側壁24bとの間の間隔、及び、供給側接続壁25aと排出側接続壁25bとの間の間隔は、第1供給側壁22aと第1排出側壁22bとの間の間隔よりも大きく、すなわち、ピン35の径よりも大きく設定される。このため、ピン35が第2溝部23にあるとき、ピン35は、ピストン20の摺動方向において対向する何れか一方の壁面のみに接触した状態となる。
As described above, the distance between the second supply side wall 24a and the second discharge side wall 24b and the distance between the supply side connection wall 25a and the discharge side connection wall 25b are the same as the first supply side wall 22a and the first discharge side wall. It is set larger than the distance between the side wall 22b, that is, larger than the diameter of the pin 35. For this reason, when the pin 35 exists in the 2nd groove part 23, the pin 35 will be in the state which contacted only any one wall surface which opposes in the sliding direction of piston 20. As shown in FIG.
以上のように構成されたレベリングバルブ100の基本的な動作について説明する。
The basic operation of the leveling valve 100 configured as described above will be described.
車体荷重が増加して空気ばね3が収縮した場合、すなわち、台車2に対する車体1の高さが規定の高さよりも低くなった場合には、レバー4が中立位置から上方(図1の矢印A方向)に押し上げられる。レバー4が上方に変位するのに伴ってレバー4に連結されたロータ30は、第2中心軸O2を中心として、図2における矢印E方向に回動し、ロータ30のアーム部34に設けられたピン35も矢印E方向に移動する。ピン35の移動は、ガイド溝21を介してピストン20に伝達されるため、ピストン20は、ピン35の移動に伴って、図2における中立位置Nから矢印C方向へと移動する。
When the vehicle body load increases and the air spring 3 contracts, that is, when the height of the vehicle body 1 with respect to the carriage 2 becomes lower than a specified height, the lever 4 moves upward from the neutral position (arrow A in FIG. 1). Direction). As the lever 4 is displaced upward, the rotor 30 connected to the lever 4 rotates about the second central axis O2 in the direction of arrow E in FIG. 2 and is provided on the arm portion 34 of the rotor 30. The pin 35 also moves in the direction of arrow E. Since the movement of the pin 35 is transmitted to the piston 20 through the guide groove 21, the piston 20 moves from the neutral position N in FIG.
ピストン20が矢印C方向に移動することで、ピストン20に連結されたバルブロッド42は、スプリング45の付勢力に抗して弁体43を第1弁座部41gから離間させる。この結果、供給通路9と空気ばね通路6とが連通する。具体的には、通路11e,13a,41h,48bを通り、チェック弁体44と第2弁座部48aとの間を通過して第2挿入孔41e内の空間に流入したコンプレッサ7から吐出された圧縮空気は、弁体43と第1弁座部41gとの間及び大径部42fと縮径部41iとの間を通過し、貫通孔41k及び通路11c,12a,11dを通って空気ばね3に供給される。
When the piston 20 moves in the direction of arrow C, the valve rod 42 connected to the piston 20 separates the valve body 43 from the first valve seat 41g against the urging force of the spring 45. As a result, the supply passage 9 and the air spring passage 6 communicate with each other. Specifically, the air is discharged from the compressor 7 that passes through the passages 11e, 13a, 41h, and 48b, passes between the check valve body 44 and the second valve seat portion 48a, and flows into the space in the second insertion hole 41e. The compressed air passes between the valve body 43 and the first valve seat portion 41g and between the large diameter portion 42f and the reduced diameter portion 41i, and passes through the through hole 41k and the passages 11c, 12a, and 11d to form an air spring. 3 is supplied.
このとき、バルブロッド42の端面42cは、弁体43に押圧されているため、非貫通孔42dの開口端は弁体43によって閉塞される。つまり、ピストン20が中立位置Nから矢印C方向に移動すると、第1弁座部41gと弁体43とで構成される供給弁が開放状態になって供給通路9と空気ばね通路6とが連通し、弁体43とバルブロッド42の端面42cとで構成される排出弁が閉鎖状態になって排気通路8と空気ばね通路6とが遮断された状態になる。
At this time, since the end surface 42c of the valve rod 42 is pressed by the valve body 43, the open end of the non-through hole 42d is closed by the valve body 43. That is, when the piston 20 moves from the neutral position N in the direction of arrow C, the supply valve constituted by the first valve seat portion 41g and the valve body 43 is opened, and the supply passage 9 and the air spring passage 6 communicate with each other. Then, the discharge valve formed by the valve body 43 and the end surface 42c of the valve rod 42 is closed, and the exhaust passage 8 and the air spring passage 6 are blocked.
このように、供給通路9と空気ばね通路6とが連通すると、コンプレッサ7からの圧縮空気が供給通路9及び空気ばね通路6を通じて空気ばね3に供給され、空気ばね3は伸長する。空気ばね3が伸長することで、台車2に対する車体1の高さが高くなり、それに伴ってレバー4も中立位置に近づく。レバー4が中立位置に近づくにつれて、ピストン20も図2における中立位置Nに向かって矢印D方向に移動し、やがて、車体1の高さが規定の高さになると、ピストン20は中立位置Nに至る。このとき、弁体43は第1弁座部41gに着座するため供給弁は、閉鎖状態となる。この結果、供給通路9と空気ばね通路6との連通が遮断され、空気ばね3への圧縮空気の供給が停止される。
Thus, when the supply passage 9 and the air spring passage 6 communicate with each other, the compressed air from the compressor 7 is supplied to the air spring 3 through the supply passage 9 and the air spring passage 6, and the air spring 3 extends. When the air spring 3 extends, the height of the vehicle body 1 with respect to the carriage 2 increases, and the lever 4 also approaches the neutral position accordingly. As the lever 4 approaches the neutral position, the piston 20 also moves toward the neutral position N in FIG. 2 in the direction of the arrow D. When the height of the vehicle body 1 reaches a specified height, the piston 20 moves to the neutral position N. It reaches. At this time, since the valve body 43 is seated on the first valve seat portion 41g, the supply valve is closed. As a result, the communication between the supply passage 9 and the air spring passage 6 is blocked, and the supply of compressed air to the air spring 3 is stopped.
これに対して、車体荷重が減少して空気ばね3が伸長した場合、すなわち、台車2に対する車体1の高さが規定の高さよりも高くなった場合には、レバー4が中立位置から下方(図1の矢印B方向)に引き下げられる。レバー4が下方に変位するのに伴ってレバー4に連結されたロータ30は、第2中心軸O2を中心として、図2における矢印F方向に回動し、ロータ30のアーム部34に設けられたピン35も矢印F方向に移動する。ピン35の移動は、ガイド溝21を介してピストン20に伝達されるため、ピストン20は、ピン35の移動に伴って、図2における中立位置Nから矢印D方向へと移動する。
On the other hand, when the vehicle body load is reduced and the air spring 3 is extended, that is, when the height of the vehicle body 1 with respect to the carriage 2 is higher than a specified height, the lever 4 is moved downward from the neutral position ( It is pulled down in the direction of arrow B in FIG. As the lever 4 is displaced downward, the rotor 30 connected to the lever 4 rotates about the second central axis O2 in the direction of arrow F in FIG. 2, and is provided on the arm portion 34 of the rotor 30. The pin 35 also moves in the direction of arrow F. Since the movement of the pin 35 is transmitted to the piston 20 through the guide groove 21, the piston 20 moves from the neutral position N in FIG.
ピストン20が矢印D方向に移動することで、ピストン20に連結されたバルブロッド42の端面42cは、弁体43から離間する。この結果、空気ばね通路6と排気通路8とが連通する。具体的には、空気ばね3内の圧縮空気は、通路11d,12a,11c及び貫通孔41kを通り、大径部42fと縮径部41iとの間及び弁体43と端面42cとの間を通過し、非貫通孔42d内に流れ込み、さらに、貫通孔42e,収容孔11a,収容空間15及び連通孔14aを通じて、大気へ放出される。
When the piston 20 moves in the direction of arrow D, the end face 42c of the valve rod 42 connected to the piston 20 is separated from the valve body 43. As a result, the air spring passage 6 and the exhaust passage 8 communicate with each other. Specifically, the compressed air in the air spring 3 passes through the passages 11d, 12a, 11c and the through hole 41k, and passes between the large diameter portion 42f and the reduced diameter portion 41i and between the valve body 43 and the end face 42c. It passes through and flows into the non-through hole 42d, and is further released to the atmosphere through the through hole 42e, the accommodation hole 11a, the accommodation space 15, and the communication hole 14a.
このとき、弁体43はスプリング45の付勢力によって第1弁座部41gに押圧されているので、第2挿入孔41e内の空間と、大径部42fと縮径部41iとの間の環状隙間と、は遮断された状態になる。つまり、ピストン20が中立位置Nから矢印D方向に移動すると、弁体43とバルブロッド42の端面42cとで構成される排出弁が開放状態になって空気ばね通路6と排気通路8とが連通し、第1弁座部41gと弁体43とで構成される供給弁が閉鎖状態になって供給通路9と空気ばね通路6との連通が遮断された状態になる。
At this time, since the valve body 43 is pressed against the first valve seat portion 41g by the biasing force of the spring 45, the annular space between the space in the second insertion hole 41e and the large diameter portion 42f and the reduced diameter portion 41i. The gap is cut off. That is, when the piston 20 moves from the neutral position N in the direction of the arrow D, the discharge valve constituted by the valve body 43 and the end surface 42c of the valve rod 42 is opened, and the air spring passage 6 and the exhaust passage 8 communicate with each other. Then, the supply valve composed of the first valve seat portion 41g and the valve body 43 is closed, and the communication between the supply passage 9 and the air spring passage 6 is blocked.
このように、空気ばね通路6と排気通路8とが連通すると、空気ばね3内の圧縮空気が空気ばね通路6及び排気通路8を通じて大気に放出され、空気ばね3は収縮する。空気ばね3が収縮することで、台車2に対する車体1の高さが低くなり、それに伴ってレバー4も中立位置に近づく。レバー4が中立位置に近づくにつれて、ピストン20も図2における中立位置Nに向かって矢印C方向に移動し、やがて、車体1の高さが規定の高さになると、ピストン20は中立位置Nに至る。このとき、バルブロッド42の端面42cは弁体43に当接するため排出弁は、閉鎖状態となる。この結果、空気ばね通路6と排気通路8との連通が遮断され、空気ばね3からの圧縮空気の排出が停止される。
Thus, when the air spring passage 6 and the exhaust passage 8 communicate with each other, the compressed air in the air spring 3 is released to the atmosphere through the air spring passage 6 and the exhaust passage 8, and the air spring 3 contracts. When the air spring 3 contracts, the height of the vehicle body 1 with respect to the carriage 2 decreases, and the lever 4 also approaches the neutral position accordingly. As the lever 4 approaches the neutral position, the piston 20 also moves toward the neutral position N in FIG. 2 in the direction of arrow C. When the height of the vehicle body 1 reaches a specified height, the piston 20 moves to the neutral position N. It reaches. At this time, since the end surface 42c of the valve rod 42 contacts the valve body 43, the discharge valve is closed. As a result, the communication between the air spring passage 6 and the exhaust passage 8 is blocked, and the discharge of compressed air from the air spring 3 is stopped.
このようにして、レベリングバルブ100は、台車2に対する車体1の相対変位に伴って回動するレバー4の回動方向に応じて、空気ばね3をコンプレッサ7又は大気に選択的に連通させて、台車2に対する車体1の高さが規定の高さとなるように調整する。
In this way, the leveling valve 100 selectively communicates the air spring 3 with the compressor 7 or the atmosphere according to the turning direction of the lever 4 that turns with the relative displacement of the vehicle body 1 with respect to the carriage 2. Adjustment is made so that the height of the vehicle body 1 with respect to the carriage 2 becomes a specified height.
続いて、ロータ30の回動角αに対するピストン20の移動量Sの変化について、図4~6を参照して説明する。図4Aから図4Fは、ピストン20のガイド溝21の部分を中心に示した図であり、ロータ30の回動に伴ってピストン20の移動量Sがどのように変化するかを示している。また、図5は、ロータ30の回動角αに対するピストン20の移動量Sの変化を示したグラフであり、図6は、ピストン20の移動量Sに対して給排弁40を流れる空気量Qの変化を示したグラフである。
Subsequently, a change in the movement amount S of the piston 20 with respect to the rotation angle α of the rotor 30 will be described with reference to FIGS. 4A to 4F are views mainly showing the guide groove 21 portion of the piston 20 and show how the movement amount S of the piston 20 changes as the rotor 30 rotates. 5 is a graph showing a change in the movement amount S of the piston 20 with respect to the rotation angle α of the rotor 30. FIG. 6 shows the amount of air flowing through the supply / discharge valve 40 with respect to the movement amount S of the piston 20. It is the graph which showed the change of Q.
まず、台車2に対する車体1の高さが規定の高さから徐々に低下することでピストン20の移動量Sがどのように変化するのかについて説明する。
First, how the moving amount S of the piston 20 changes as the height of the vehicle body 1 with respect to the carriage 2 gradually decreases from a specified height will be described.
台車2に対する車体1の高さが規定の高さにあるとき、図4Aに示されるように、レバー4の変位に応じて回動するロータ30の回動角αはゼロとなり、ピストン20は、中立位置Nに位置した状態となる。このとき、ガイド溝21内に挿入されたピン35は、第1溝部22の第1供給側壁22aと第1排出側壁22bとに接触した状態となり、ピストン20の位置を中立位置Nに保持するように機能する。このように、台車2に対する車体1の高さが規定の高さにあり、台車2に対する車体1の相対変位量がゼロ、すなわち、ロータ30の回動角αがゼロのときのピストン20の移動量Sは、図5にも示されるように、ゼロとなる。
When the height of the vehicle body 1 with respect to the carriage 2 is at a specified height, as shown in FIG. 4A, the rotation angle α of the rotor 30 that rotates according to the displacement of the lever 4 becomes zero, and the piston 20 It will be in the state located in the neutral position N. At this time, the pin 35 inserted into the guide groove 21 comes into contact with the first supply side wall 22a and the first discharge side wall 22b of the first groove portion 22 so that the position of the piston 20 is held at the neutral position N. To work. Thus, the movement of the piston 20 when the height of the vehicle body 1 with respect to the carriage 2 is at a prescribed height and the relative displacement of the vehicle body 1 with respect to the carriage 2 is zero, that is, the rotation angle α of the rotor 30 is zero. The quantity S is zero, as also shown in FIG.
また、この状態では、弁体43にはバルブロッド42の端面42cが当接しており、弁体43はスプリング45の付勢力によって第1弁座部41gに押圧されている。つまり、空気ばね通路6は、排気通路8及び供給通路9との連通が遮断されている。このため、給排弁40を流れる空気量Qは、図6に示されるようにゼロとなる。
In this state, the end face 42c of the valve rod 42 is in contact with the valve body 43, and the valve body 43 is pressed against the first valve seat 41g by the urging force of the spring 45. That is, the air spring passage 6 is disconnected from the exhaust passage 8 and the supply passage 9. For this reason, the amount of air Q flowing through the supply / discharge valve 40 becomes zero as shown in FIG.
台車2に対する車体1の高さが規定の高さから僅かに低下すると、図4Bに示されるように、ロータ30は第2中心軸O2を中心として矢印E方向に回動し、ロータ30の回動角αは第1回動角α1となる。このとき、ロータ30の回動に伴って移動するピン35は、第1溝部22の第1供給側壁22aに押し付けられた状態となる。このように第1供給側壁22aにピン35が押し付けられることでロータ30の回動がピン35を介してピストン20に伝達され、結果として、ピストン20は中立位置Nから第1距離S1だけ矢印Cの方向へと移動する。
When the height of the vehicle body 1 with respect to the carriage 2 slightly decreases from the specified height, as shown in FIG. 4B, the rotor 30 rotates in the direction of the arrow E about the second central axis O2, and the rotation of the rotor 30 The moving angle α is the first rotation angle α1. At this time, the pin 35 that moves with the rotation of the rotor 30 is pressed against the first supply side wall 22 a of the first groove 22. As the pin 35 is pressed against the first supply side wall 22a in this way, the rotation of the rotor 30 is transmitted to the piston 20 via the pin 35. As a result, the piston 20 is moved from the neutral position N to the first distance S1 by the arrow C. Move in the direction of.
なお、この状態においてピン35は、第1溝部22の第1供給側壁22aと第1排出側壁22bとの両壁面に接した状態にある。このため、台車2に対する車体1の相対変位量がわずかに変化する場合であっても、この相対変位量の変化はピン35を介してピストン20に伝達される。つまり、ピン35が第1溝部22内にある限り、ピストン20の移動量Sは、図5に示されるように、ロータ30の回動角αに対して正弦波状に比例して応答性よく変化することとなる。
In this state, the pin 35 is in contact with both wall surfaces of the first supply side wall 22a and the first discharge side wall 22b of the first groove portion 22. For this reason, even if the relative displacement amount of the vehicle body 1 with respect to the carriage 2 slightly changes, the change in the relative displacement amount is transmitted to the piston 20 via the pin 35. That is, as long as the pin 35 is in the first groove 22, the movement amount S of the piston 20 changes with good responsiveness in proportion to the rotation angle α of the rotor 30 in a sine wave shape as shown in FIG. 5. Will be.
また、ピストン20が矢印Cの方向へと移動すると、ピストン20とともに移動するバルブロッド42によって、弁体43は、第1弁座部41gから離間する方向へと押圧される。この結果、供給通路9と空気ばね通路6とが連通し、空気ばね3に圧縮空気が供給される状態となる。
Further, when the piston 20 moves in the direction of the arrow C, the valve body 43 is pressed in a direction away from the first valve seat portion 41g by the valve rod 42 that moves together with the piston 20. As a result, the supply passage 9 and the air spring passage 6 communicate with each other, and the compressed air is supplied to the air spring 3.
ここで、弁ケース41に対するバルブロッド42の移動量が小さいと、上述のように、大径部42fと縮径部41iとが第1中心軸O1方向において重なり合う長さが長い状態となる。このため、ピストン20の移動量Sが比較的小さい間、例えば、第1距離S1に至るまでは、図6に示されるように、圧縮空気が流れにくくなり、給排弁40を流れる空気量Qの変化度合も抑制される。このように、台車2に対する車体1の相対変位量が比較的小さいときは、空気ばね3に対して給排される圧縮空気の流量が微量となるため、規定の高さへの微調整が可能となる。
Here, when the amount of movement of the valve rod 42 relative to the valve case 41 is small, as described above, the length in which the large diameter portion 42f and the reduced diameter portion 41i overlap in the first central axis O1 direction is long. For this reason, while the movement amount S of the piston 20 is relatively small, for example, until reaching the first distance S1, the compressed air hardly flows and the air amount Q flowing through the supply / discharge valve 40 as shown in FIG. The degree of change is also suppressed. Thus, when the relative displacement amount of the vehicle body 1 with respect to the carriage 2 is relatively small, the flow rate of the compressed air supplied to and discharged from the air spring 3 becomes a very small amount, so that fine adjustment to a specified height is possible. It becomes.
台車2に対する車体1の高さがさらに低下し、図4Cに示されるように、ロータ30の回動角αが第1回動角α1よりも大きい第2回動角α2になると、ピン35は、第1溝部22の第1供給側壁22aと第2溝部23の幅変化部25の供給側接続壁25aとの境界付近に至る。ロータ30の回動角αが第1回動角α1から第2回動角α2に変化する間も、ピン35は、第1供給側壁22aに押し付けられるため、ピン35の移動に伴ってピストン20は、中立位置Nから第1距離S1よりも離れた第2距離S2だけ矢印C方向へと移動する。
When the height of the vehicle body 1 with respect to the carriage 2 is further lowered and the rotation angle α of the rotor 30 becomes a second rotation angle α2 larger than the first rotation angle α1 as shown in FIG. The first supply side wall 22a of the first groove portion 22 and the vicinity of the boundary between the supply side connection wall 25a of the width changing portion 25 of the second groove portion 23 are reached. Since the pin 35 is pressed against the first supply side wall 22a while the rotation angle α of the rotor 30 changes from the first rotation angle α1 to the second rotation angle α2, the piston 20 is moved along with the movement of the pin 35. Moves from the neutral position N in the direction of arrow C by a second distance S2 that is further than the first distance S1.
このように、ピストン20が第2距離S2まで移動すると、弁ケース41に対するバルブロッド42の移動量が大きくなるため、ピストン20が第1距離S1にあるときと比較して、大径部42fと縮径部41iとが重なり合う長さは短くなる。このため、ピストン20の移動量Sが第2距離S2に達するまでの間、給排弁40を流れる圧縮空気に付与される抵抗は徐々に小さくなり、図6に示されるように、給排弁40を流れる空気量Qは、ピストン20の移動量Sの増加とともに増加する。つまり、台車2に対する車体1の相対変位量が比較的大きいときは、空気ばね3に対して給排される圧縮空気の流量が台車2に対する車体1の相対変位量に応じて大きく変化するため、規定の高さへの収束性を高めることができる。
As described above, when the piston 20 moves to the second distance S2, the amount of movement of the valve rod 42 with respect to the valve case 41 increases. Therefore, compared to when the piston 20 is at the first distance S1, the large diameter portion 42f and The length over which the reduced diameter portion 41i overlaps is shortened. For this reason, until the movement amount S of the piston 20 reaches the second distance S2, the resistance applied to the compressed air flowing through the supply / discharge valve 40 gradually decreases, and as shown in FIG. The amount of air Q flowing through 40 increases as the amount of movement S of the piston 20 increases. That is, when the relative displacement amount of the vehicle body 1 with respect to the carriage 2 is relatively large, the flow rate of the compressed air supplied to and discharged from the air spring 3 changes greatly according to the relative displacement amount of the vehicle body 1 with respect to the carriage 2. Convergence to a specified height can be improved.
台車2に対する車体1の高さがさらに低下し、図4Dに示されるように、ロータ30の回動角αが第2回動角α2よりも大きい第3回動角α3になると、ピン35は、第2溝部23の幅変化部25の供給側接続壁25aに押し付けられた状態になる。また、図4E及び図4Fに示されるように、台車2に対する車体1の高さがさらに低下してロータ30の回動角αが第3回動角α3よりも大きい第4回動角α4や第4回動角α4よりも大きい第5回動角α5になると、ピン35は、第2溝部23の拡幅部24の第2供給側壁24aに押し付けられた状態になる。
When the height of the vehicle body 1 with respect to the carriage 2 is further lowered and the rotation angle α of the rotor 30 becomes a third rotation angle α3 larger than the second rotation angle α2 as shown in FIG. In this state, the second groove 23 is pressed against the supply-side connecting wall 25a of the width changing portion 25. As shown in FIGS. 4E and 4F, the height of the vehicle body 1 with respect to the carriage 2 is further reduced, and the rotation angle α of the rotor 30 is larger than the third rotation angle α3. When the fifth rotation angle α5 is larger than the fourth rotation angle α4, the pin 35 is pressed against the second supply side wall 24a of the widened portion 24 of the second groove portion 23.
ここで、第2溝部23の幅が第1溝部22と同じ幅で形成されていた場合、すなわち、ガイド溝21が互いに平行な一対の壁面で形成されていた場合、ピストン20の移動量Sは、図5において破線で示されるように、ロータ30の回動角αに比例して正弦波状に単調増加する。
Here, when the width of the second groove portion 23 is the same as that of the first groove portion 22, that is, when the guide groove 21 is formed of a pair of wall surfaces parallel to each other, the movement amount S of the piston 20 is As shown by a broken line in FIG. 5, it increases monotonously in a sinusoidal shape in proportion to the rotation angle α of the rotor 30.
これに対して、本実施形態では、第2溝部23の幅が第1溝部22よりも大きく形成されているため、図4D~図4Fに示されるように、ピン35が第2溝部23内に至り、供給側接続壁25aや第2供給側壁24aに押し付けられてもピストン20の移動量Sは単調に増加し続けることなく、図5において実線で示されるようにある程度の大きさに制限される。
On the other hand, in the present embodiment, since the width of the second groove portion 23 is larger than that of the first groove portion 22, the pin 35 is placed in the second groove portion 23 as shown in FIGS. 4D to 4F. Even if the piston 20 is pressed against the supply side connection wall 25a or the second supply side wall 24a, the movement amount S of the piston 20 does not continuously increase and is limited to a certain size as shown by a solid line in FIG. .
このように、本実施形態に係るレベリングバルブ100では、ロータ30の回動角αが所定値(移行回動角αL)を超えたときに、第1溝部22よりも幅が大きい第2溝部23にピン35が接する構成としたことで、ピストン20が移動する範囲が大幅に制限される。ピストン20の移動範囲が小さくなると、ピストン20と当接するおそれがある弁ケース41や第1キャップ部材12をピストン20に対してより近い位置に配置させることが可能となり、ピストン20の移動方向におけるレベリングバルブ100の全長を短縮させることができる。つまり、ピストン20の移動量がロータ30の回動角αに比例して単調増加する場合と比較して、ピストン20の移動範囲が小さい本実施形態では、ピストン20の移動方向におけるレベリングバルブ100の全長を大幅に短縮させることが可能となる。さらに、レベリングバルブ100の全長が短くなることで、レベリングバルブ100の重量を軽減させることができるとともに、車体1に対するレベリングバルブ100の搭載性を向上させることができる。
As described above, in the leveling valve 100 according to the present embodiment, the second groove portion 23 having a width larger than that of the first groove portion 22 when the rotation angle α of the rotor 30 exceeds a predetermined value (transition rotation angle αL). Since the pin 35 is in contact with the piston 35, the range in which the piston 20 moves is greatly limited. When the moving range of the piston 20 is reduced, the valve case 41 and the first cap member 12 that may come into contact with the piston 20 can be disposed closer to the piston 20, and leveling in the moving direction of the piston 20 is possible. The overall length of the valve 100 can be shortened. That is, compared with the case where the movement amount of the piston 20 increases monotonously in proportion to the rotation angle α of the rotor 30, in the present embodiment, the movement range of the piston 20 is small. The overall length can be greatly shortened. Furthermore, since the overall length of the leveling valve 100 is shortened, the weight of the leveling valve 100 can be reduced, and the mountability of the leveling valve 100 to the vehicle body 1 can be improved.
また、給排弁40を流れる空気量Qは、図6に示されるように、ピストン20の移動量Sが所定量を超えるとほぼ一定となる。これは、大径部42fと縮径部41iとが第1中心軸O1方向において重なり合わなくなると、弁体43と第2挿入孔41eとの間の流路やハウジング10内に形成された他の通路の断面積等によって給排弁40を流れる空気量Qが制限されるためである。
Further, as shown in FIG. 6, the air amount Q flowing through the supply / discharge valve 40 becomes substantially constant when the movement amount S of the piston 20 exceeds a predetermined amount. This is because, when the large diameter portion 42f and the reduced diameter portion 41i do not overlap in the first central axis O1 direction, the flow path between the valve body 43 and the second insertion hole 41e and the other formed in the housing 10 This is because the amount of air Q flowing through the supply / discharge valve 40 is limited by the cross-sectional area of the passage.
このように、給排弁40を流れる空気量Qがほぼ一定となる領域では、ピストン20の移動量Sを変化させても空気ばね3に対して給排される圧縮空気の流量はほとんど変化しない。したがって、給排弁40を流れる空気量Qがピストン20の移動量Sに関わらずほぼ一定となる領域、すなわち、ピストン20が移動しても給排弁40を流れる空気量Qが変化しない領域に至った段階でピストン20の移動量Sが制限されれば、レベリングバルブ100としての機能を損なうことなく、レベリングバルブ100の全長を短縮することが可能となる。
As described above, in the region where the air amount Q flowing through the supply / discharge valve 40 is substantially constant, the flow rate of the compressed air supplied to and discharged from the air spring 3 hardly changes even if the movement amount S of the piston 20 is changed. . Accordingly, in a region where the air amount Q flowing through the supply / discharge valve 40 is substantially constant regardless of the movement amount S of the piston 20, that is, a region where the air amount Q flowing through the supply / discharge valve 40 does not change even when the piston 20 moves. If the movement amount S of the piston 20 is limited at a reached stage, the overall length of the leveling valve 100 can be shortened without impairing the function of the leveling valve 100.
このため、本実施形態に係るレベリングバルブ100では、給排弁40を流れる空気量Qがピストン20の移動量Sに関わらずほぼ一定となるときに、ピン35が第2溝部23に接するように、第1溝部22に対する第2溝部23の位置が設定される。より具体的には、図6に示すように、給排弁40を流れる空気量Qが所定の基準空気量QLになるときのピストン20の移動量Sを制限移動量SLとし、図5に示すように、ピストン20の移動量Sが制限移動量SLに達するときのロータ30の回動角αを移行回動角αLとすると、ロータ30の回動角αが移行回動角αLを超えたときにピン35が第2溝部23に接するように、第1溝部22に対する第2溝部23の位置が設定される。
For this reason, in the leveling valve 100 according to the present embodiment, the pin 35 comes into contact with the second groove portion 23 when the air amount Q flowing through the supply / discharge valve 40 is substantially constant regardless of the movement amount S of the piston 20. The position of the second groove portion 23 with respect to the first groove portion 22 is set. More specifically, as shown in FIG. 6, the movement amount S of the piston 20 when the air amount Q flowing through the supply / discharge valve 40 becomes a predetermined reference air amount QL is defined as a restriction movement amount SL, and is shown in FIG. As described above, when the rotation angle α of the rotor 30 when the movement amount S of the piston 20 reaches the limit movement amount SL is the transition rotation angle αL, the rotation angle α of the rotor 30 exceeds the transition rotation angle αL. The position of the second groove portion 23 with respect to the first groove portion 22 is set so that the pin 35 sometimes contacts the second groove portion 23.
また、給排弁40を流れる空気量Qの変化度合の大きさからみると、ピストン20の移動量Sがゼロから第2移動量S2の間にあるときのように、ピストン20の移動量Sに対する空気量Qの変化度合が比較的大きい領域は、レベリングバルブ100の機能を発揮するために重要な領域である。一方、ピストン20の移動量Sが第2移動量S2を超え、ピストン20の移動量Sに対する空気量Qの変化度合が非常に小さい領域はレベリングバルブ100の機能の発揮にあまり影響を及ぼす領域ではない。
Further, from the viewpoint of the degree of change in the amount of air Q flowing through the supply / discharge valve 40, the movement amount S of the piston 20 is the same as when the movement amount S of the piston 20 is between zero and the second movement amount S2. The region in which the degree of change in the air amount Q with respect to is relatively large is an important region for exerting the function of the leveling valve 100. On the other hand, the region in which the movement amount S of the piston 20 exceeds the second movement amount S2 and the change amount of the air amount Q with respect to the movement amount S of the piston 20 is very small is a region in which the function of the leveling valve 100 is not significantly affected. Absent.
したがって、第1溝部22にピン35が接するときよりも第2溝部23にピン35が接するときの方が、ピストン20の移動量Sに対する給排弁40を流れる空気量Qの変化度合が小さくなるように、第1溝部22に対する第2溝部23の位置を設定することで、レベリングバルブ100としての機能を十分に発揮させつつ、レベリングバルブ100の全長を短縮することが可能となる。
Therefore, the degree of change in the air amount Q flowing through the supply / discharge valve 40 with respect to the movement amount S of the piston 20 is smaller when the pin 35 is in contact with the second groove portion 23 than when the pin 35 is in contact with the first groove portion 22. Thus, by setting the position of the second groove portion 23 with respect to the first groove portion 22, it is possible to shorten the overall length of the leveling valve 100 while sufficiently exerting the function as the leveling valve 100.
なお、第2溝部23の幅は第1溝部22の幅よりも大きく形成されているため、例えば、図4D~図4Fに示されるように、ピン35が第2溝部23内にあるとき、ピストン20は、図中の矢印Cの方向にさらに移動可能である。しかしながら、上述のように、ピン35が第2溝部23内にあるときは、給排弁40を流れる空気量Qがほぼ最大となっているため、ピストン20が矢印Cの方向にさらに移動したとしてもレベリングバルブ100の機能に影響を及ぼすことはない。
Since the width of the second groove portion 23 is formed larger than the width of the first groove portion 22, for example, as shown in FIGS. 4D to 4F, when the pin 35 is in the second groove portion 23, the piston 20 is further movable in the direction of arrow C in the figure. However, as described above, when the pin 35 is in the second groove portion 23, the amount of air Q flowing through the supply / discharge valve 40 is substantially maximum, and therefore the piston 20 is further moved in the direction of the arrow C. However, the function of the leveling valve 100 is not affected.
しかし、ピストン20が矢印Cと反対の方向に移動してしまうと、給排弁40を流れる空気量Qが低下し、台車2に対する車体1の高さの調整が緩慢になるおそれがある。これに対して、本実施形態では、第2溝部23の拡幅部24の第2供給側壁24aと幅変化部25の供給側接続壁25aがピン35に当接することでピストン20が矢印Cと反対の方向へ移動することが規制される。このように、第2供給側壁24aと供給側接続壁25aとが第1規制面として機能するため、上述のように給排弁40を流れる空気量Qが低下することが防止される。
However, if the piston 20 moves in the direction opposite to the arrow C, the amount of air Q flowing through the supply / discharge valve 40 decreases, and the adjustment of the height of the vehicle body 1 relative to the carriage 2 may be slow. On the other hand, in this embodiment, the piston 20 is opposite to the arrow C because the second supply side wall 24a of the widened portion 24 of the second groove portion 23 and the supply side connection wall 25a of the width changing portion 25 abut on the pin 35. The movement in the direction is restricted. Thus, since the 2nd supply side wall 24a and the supply side connection wall 25a function as a 1st control surface, it is prevented that the air quantity Q which flows through the supply / discharge valve 40 falls as mentioned above.
なお、台車2に対する車体1の高さが規定の高さから徐々に上昇した場合のピストン20の移動量Sの変化については、台車2に対する車体1の高さが規定の高さから低下する場合に対して、ピストン20の移動方向が反対方向(図2の矢印Dの方向)であり、給排弁40によって連通されるのが空気ばね通路6と排気通路8とである点で異なるだけであり、ピストン20の移動量Sは、図5に示すように変化し、また、給排弁40を流れる空気量Qは、図6に示すように変化する。このため、その説明を省略する。また、この場合、第2溝部23の拡幅部24の第2排出側壁24bと幅変化部25の排出側接続壁25bとは、ピン35と当接することでピストン20が矢印Dと反対の方向に移動することを規制する第2規制面として機能する。
In addition, about the change of the moving amount S of the piston 20 when the height of the vehicle body 1 with respect to the carriage 2 gradually increases from the specified height, the height of the vehicle body 1 with respect to the carriage 2 decreases from the specified height. On the other hand, the movement direction of the piston 20 is the opposite direction (the direction of the arrow D in FIG. 2), and the only difference is that the air spring passage 6 and the exhaust passage 8 are communicated by the supply / discharge valve 40. Yes, the movement amount S of the piston 20 changes as shown in FIG. 5, and the air amount Q flowing through the supply / discharge valve 40 changes as shown in FIG. Therefore, the description thereof is omitted. Further, in this case, the second discharge side wall 24b of the widened portion 24 of the second groove portion 23 and the discharge side connection wall 25b of the width changing portion 25 come into contact with the pin 35 so that the piston 20 is in the direction opposite to the arrow D. It functions as a second restriction surface that restricts movement.
以上の実施形態によれば、以下の効果を奏する。
According to the above embodiment, the following effects are obtained.
レベリングバルブ100では、台車2に対する車体1の相対変位量に応じて回動するロータ30の回動角αが所定値を超えると、ロータ30に結合されたピン35が、第1溝部22よりもピストン20の摺動方向における幅が大きい第2溝部23に接する。このため、ピストン20の移動量Sは、ロータ30の回動角α、すなわち、台車2に対する車体1の相対変位量に比例して単調増加することなく、ある程度の大きさに制限される。この結果、ピストン20の移動方向におけるレベリングバルブ100の全長が短縮され、レベリングバルブ100の重量を軽減させることができるとともに、車体1に対するレベリングバルブ100の搭載性を向上させることができる。
In the leveling valve 100, when the rotation angle α of the rotor 30 that rotates according to the relative displacement amount of the vehicle body 1 with respect to the carriage 2 exceeds a predetermined value, the pin 35 coupled to the rotor 30 is more than the first groove portion 22. The piston 20 contacts the second groove 23 having a large width in the sliding direction. For this reason, the movement amount S of the piston 20 is limited to a certain amount without monotonously increasing in proportion to the rotation angle α of the rotor 30, that is, the relative displacement amount of the vehicle body 1 with respect to the carriage 2. As a result, the overall length of the leveling valve 100 in the moving direction of the piston 20 is shortened, the weight of the leveling valve 100 can be reduced, and the mountability of the leveling valve 100 to the vehicle body 1 can be improved.
なお、レベリングバルブ100では、第2溝部23の拡幅部24の第2供給側壁24aが第1溝部22の第1供給側壁22aと平行に形成され、第2溝部23の拡幅部24の第2排出側壁24bが第1溝部22の第1排出側壁22bと平行に形成されているため、ピストン20の移動量Sは、図5において実線で示されるように、一旦、制限移動量SLに達してから緩やかに減少した後、また比例的に増加する。
In the leveling valve 100, the second supply side wall 24a of the widened portion 24 of the second groove portion 23 is formed in parallel with the first supply side wall 22a of the first groove portion 22, and the second discharge of the widened portion 24 of the second groove portion 23. Since the side wall 24b is formed in parallel with the first discharge side wall 22b of the first groove portion 22, the movement amount S of the piston 20 once reaches the limit movement amount SL as shown by the solid line in FIG. After slowly decreasing, it increases proportionally again.
これに代えて、第2供給側壁24a及び第2排出側壁24bを湾曲させて形成することで、ピストン20の移動量Sが制限移動量SLに達してから一定の移動量Sとなるようにしてもよい。この場合、ピストン20の移動量Sが抑制される範囲において、給排弁40を流れる空気量Qを一定量とすることができる。但し、第2溝部23を湾曲させて形成すると、加工時間が長くなり製造コストが上昇するため、製造コストを抑制させるためには、図4Aに示すように、第2供給側壁24aと第2排出側壁24bとを平行に形成することが好ましい。
Instead, the second supply side wall 24a and the second discharge side wall 24b are formed to be curved so that the movement amount S of the piston 20 reaches the limit movement amount SL and then becomes a constant movement amount S. Also good. In this case, the amount of air Q flowing through the supply / discharge valve 40 can be made constant within a range in which the movement amount S of the piston 20 is suppressed. However, if the second groove portion 23 is formed to be curved, the processing time is increased and the manufacturing cost is increased. Therefore, in order to suppress the manufacturing cost, as shown in FIG. 4A, the second supply side wall 24a and the second discharge are provided. The side wall 24b is preferably formed in parallel.
また、レベリングバルブ100では、第1溝部22の第1供給側壁22aに対して第1中心軸O1方向に所定距離だけ離れた位置に第2溝部23の拡幅部24の第2供給側壁24aが設けられるとともに、第1溝部22の第1排出側壁22bに対して第1中心軸O1方向に所定距離だけ離れた位置に第2溝部23の拡幅部24の第2排出側壁24bが設けられることで、第2溝部23の幅が第1溝部22の幅よりも大きくなっている。これに代えて、第2供給側壁24aを第1供給側壁22aと面一に形成するか、あるいは、第2排出側壁24bを第1排出側壁22bと面一に形成することで、第1中心軸O1方向の何れか一方側へ第2溝部23の幅を第1溝部22の幅より大きくしてもよい。この場合も、第1中心軸O1方向の何れか一方側へのピストン20の移動量Sが抑制されるため、結果として、レベリングバルブ100の全長を短縮させることができる。
Further, in the leveling valve 100, the second supply side wall 24a of the widened portion 24 of the second groove portion 23 is provided at a position separated from the first supply side wall 22a of the first groove portion 22 by a predetermined distance in the first central axis O1 direction. In addition, the second discharge side wall 24b of the widened portion 24 of the second groove portion 23 is provided at a position away from the first discharge side wall 22b of the first groove portion 22 by a predetermined distance in the first central axis O1 direction. The width of the second groove portion 23 is larger than the width of the first groove portion 22. Instead, the first central axis is formed by forming the second supply sidewall 24a flush with the first supply sidewall 22a or by forming the second discharge sidewall 24b flush with the first discharge sidewall 22b. You may make the width | variety of the 2nd groove part 23 larger than the width | variety of the 1st groove part 22 to either one side of O1 direction. Also in this case, the movement amount S of the piston 20 toward one side in the first central axis O1 direction is suppressed, and as a result, the overall length of the leveling valve 100 can be shortened.
また、レベリングバルブ100では、第2溝部23にピン35が接するときのロータ30の回動角αである移行回動角αLは、基準空気量QLに基づいて設定されている。これに限定されず、移行回動角αLは、ピストン20の移動量Sが制限されれば、どのような大きさの角度でもよく、例えば、第2回動角α2よりも小さい角度であってもよい。
Further, in the leveling valve 100, the transition rotation angle αL that is the rotation angle α of the rotor 30 when the pin 35 contacts the second groove 23 is set based on the reference air amount QL. However, the transition rotation angle αL may be any angle as long as the movement amount S of the piston 20 is limited. For example, the transition rotation angle αL is smaller than the second rotation angle α2. Also good.
以上のように構成された本発明の実施形態の構成、作用、及び効果をまとめて説明する。
The configuration, operation, and effect of the embodiment of the present invention configured as described above will be described together.
レベリングバルブ100は、空気ばね3と連通する空気ばね通路6が形成されたハウジング10と、ハウジング10に形成された収容孔11a内に摺動自在に収容されるピストン20と、ハウジング10により回動自在に支持され、台車2に対する車体1の相対変位量に応じて回動しピストン20を移動させるロータ30と、ロータ30の回動に伴ってピストン20が中立位置Nから一方向(矢印C方向)へ移動すると空気ばね3とコンプレッサ7とを連通させ、ロータ30の回動に伴ってピストン20が中立位置Nから他方向(矢印D方向)へ移動すると空気ばね3と大気とを連通させる給排弁40と、を備え、ピストン20は、外周に形成され摺動方向に対して直交する方向に延びるガイド溝21を有し、ロータ30は、第2中心軸O2からオフセットした位置においてピストン20に向かって突出し先端がガイド溝21に挿入されるピン35を有し、ガイド溝21は、ロータ30の回動角αが所定値(移行回動角αL)以下のときにピン35が接する第1溝部22と、第1溝部22に連続して形成され、第1溝部22よりもピストン20の摺動方向における幅が大きく、ロータ30の回動角αが所定値(移行回動角αL)を超えるときにピン35が接する第2溝部23と、を有する。
The leveling valve 100 is rotated by the housing 10 in which an air spring passage 6 communicating with the air spring 3 is formed, a piston 20 slidably accommodated in an accommodation hole 11 a formed in the housing 10, and the housing 10. A rotor 30 that is freely supported and rotates according to the relative displacement amount of the vehicle body 1 with respect to the carriage 2 and moves the piston 20, and the piston 20 moves in one direction from the neutral position N (in the direction of arrow C as the rotor 30 rotates). ) Causes the air spring 3 and the compressor 7 to communicate with each other, and as the rotor 30 rotates, the piston 20 moves from the neutral position N in the other direction (in the direction of arrow D) to allow the air spring 3 to communicate with the atmosphere. The piston 20 has a guide groove 21 formed on the outer periphery and extending in a direction perpendicular to the sliding direction, and the rotor 30 has a second central axis O. The guide groove 21 has a pin 35 that protrudes toward the piston 20 at a position offset from the tip and is inserted into the guide groove 21. The guide groove 21 has a rotation angle α of the rotor 30 that is a predetermined value (transition rotation angle αL) or less. The first groove portion 22 that is sometimes in contact with the pin 35 and the first groove portion 22 are formed continuously, the width in the sliding direction of the piston 20 is larger than the first groove portion 22, and the rotation angle α of the rotor 30 is a predetermined value. And a second groove portion 23 with which the pin 35 comes into contact when exceeding (transition rotation angle αL).
この構成によれば、台車2に対する車体1の相対変位量に応じて回動するロータ30の回動角αが所定値(移行回動角αL)を超えると、ロータ30に結合されたピン35が、第1溝部22よりもピストン20の摺動方向における幅が大きい第2溝部23に接する。このため、ピストン20の移動量Sは、ロータ30の回動角α、すなわち、台車2に対する車体1の相対変位量に比例して単調増加することなく、ある程度の大きさに制限される。この結果、ピストン20の移動方向におけるレベリングバルブ100の全長が短縮され、レベリングバルブ100の重量を軽減させることができるとともに、車体1に対するレベリングバルブ100の搭載性を向上させることができる。
According to this configuration, when the rotation angle α of the rotor 30 that rotates according to the relative displacement amount of the vehicle body 1 with respect to the carriage 2 exceeds a predetermined value (transition rotation angle αL), the pin 35 coupled to the rotor 30. However, it is in contact with the second groove portion 23 having a larger width in the sliding direction of the piston 20 than the first groove portion 22. For this reason, the movement amount S of the piston 20 is limited to a certain amount without monotonously increasing in proportion to the rotation angle α of the rotor 30, that is, the relative displacement amount of the vehicle body 1 with respect to the carriage 2. As a result, the overall length of the leveling valve 100 in the moving direction of the piston 20 is shortened, the weight of the leveling valve 100 can be reduced, and the mountability of the leveling valve 100 to the vehicle body 1 can be improved.
また、第2溝部23は、給排弁40を流れる空気量Qがピストン20の移動に関わらず一定となるときにピン35が接するようにピストン20に形成される。
Further, the second groove portion 23 is formed in the piston 20 so that the pin 35 contacts when the air amount Q flowing through the supply / discharge valve 40 becomes constant regardless of the movement of the piston 20.
この構成によれば、給排弁40を流れる空気量Qがピストン20の移動に関わらず一定となるとき、ピン35は第2溝部23に接する。つまり、ピストン20が移動しても給排弁40を流れる空気量Qが変化しない領域に至った段階でピストン20の移動量Sが制限される。給排弁40を流れる空気量Qがほぼ一定となる領域では、ピストン20の移動量Sを変化させても空気ばね3に対して給排される圧縮空気の流量はほとんど変化しない。したがって、レベリングバルブ100としての機能を損なうことなく、レベリングバルブ100の全長を短縮することが可能となる。
According to this configuration, the pin 35 contacts the second groove 23 when the amount of air Q flowing through the supply / discharge valve 40 is constant regardless of the movement of the piston 20. That is, the movement amount S of the piston 20 is limited at a stage where the air amount Q flowing through the supply / discharge valve 40 does not change even when the piston 20 moves. In the region where the air amount Q flowing through the supply / discharge valve 40 is substantially constant, the flow rate of the compressed air supplied to and discharged from the air spring 3 hardly changes even if the movement amount S of the piston 20 is changed. Therefore, the overall length of the leveling valve 100 can be shortened without impairing the function as the leveling valve 100.
また、第2溝部23は、ピストン20の移動量Sに対する給排弁40を流れる空気量Qの変化度合が、第1溝部22にピン35が接するときよりも第2溝部23にピン35が接するときの方が小さくなるようにピストン20に形成される。
Further, in the second groove portion 23, the degree of change of the air amount Q flowing through the supply / discharge valve 40 with respect to the movement amount S of the piston 20 is more in contact with the second groove portion 23 than when the pin 35 is in contact with the first groove portion 22. The piston 20 is formed so that the time is smaller.
この構成によれば、第1溝部22にピン35が接するときよりも第2溝部23にピン35が接するときの方が、ピストン20の移動量Sに対する給排弁40を流れる空気量Qの変化度合が小さくなる。つまり、この構成では、ピストン20の移動量Sに対する給排弁40を流れる空気量Qの変化度合が比較的小さい領域においてピストン20の移動量Sが制限される。ピストン20の移動量Sに対する給排弁40を流れる空気量Qの変化度合が小さい領域では、ピストン20の移動量Sを変化させても空気ばね3に対して給排される圧縮空気の流量はほとんど変化しない。したがって、レベリングバルブ100としての機能を損なうことなく、レベリングバルブ100の全長を短縮することが可能となる。
According to this configuration, the change in the amount of air Q flowing through the supply / discharge valve 40 relative to the movement amount S of the piston 20 is greater when the pin 35 is in contact with the second groove 23 than when the pin 35 is in contact with the first groove 22. The degree is reduced. That is, in this configuration, the movement amount S of the piston 20 is limited in a region where the change amount of the air amount Q flowing through the supply / discharge valve 40 with respect to the movement amount S of the piston 20 is relatively small. In a region where the change amount of the air amount Q flowing through the supply / discharge valve 40 with respect to the movement amount S of the piston 20 is small, the flow rate of the compressed air supplied to and discharged from the air spring 3 even if the movement amount S of the piston 20 is changed Almost no change. Therefore, the overall length of the leveling valve 100 can be shortened without impairing the function as the leveling valve 100.
また、第2溝部23は、ピストン20が一方向(矢印C方向)へ移動したときにピン35が当接し、ピストン20が他方向(矢印D方向)へ移動することを規制する第2供給側壁24a及び供給側接続壁25aと、ピストン20が他方向(矢印D方向)へ移動したときにピン35が当接し、ピストン20が一方向(矢印C方向)へ移動することを規制する第2排出側壁24b及び排出側接続壁25bと、を有する。
Further, the second groove portion 23 is a second supply side wall that restricts movement of the piston 20 in the other direction (arrow D direction) when the piston 20 moves in one direction (arrow C direction). 24a and the supply side connection wall 25a and the second discharge that regulates the movement of the piston 20 in one direction (arrow C direction) when the piston 20 moves in the other direction (arrow D direction). A side wall 24b and a discharge-side connection wall 25b.
この構成によれば、第2供給側壁24a及び供給側接続壁25aがピン35に当接することでピストン20が矢印C方向と反対の方向へ移動することが規制され、第2排出側壁24b及び排出側接続壁25bがピン35に当接することでピストン20が矢印D方向と反対の方向へ移動することが規制される。このように、給排弁40を流れる空気量Qが低下する方向にピストン20が変位することが規制されるため、台車2に対する車体1の高さの調整が緩慢になることを防止することができる。
According to this configuration, when the second supply side wall 24a and the supply side connection wall 25a abut on the pin 35, the piston 20 is restricted from moving in the direction opposite to the arrow C direction, and the second discharge side wall 24b and the discharge side are restricted. When the side connection wall 25b abuts on the pin 35, the piston 20 is restricted from moving in the direction opposite to the arrow D direction. As described above, since the piston 20 is restricted from being displaced in the direction in which the air amount Q flowing through the supply / discharge valve 40 decreases, it is possible to prevent the adjustment of the height of the vehicle body 1 relative to the carriage 2 from being slow. it can.
また、第2供給側壁24aと第2排出側壁24bとは、互いに平行に形成される。
The second supply side wall 24a and the second discharge side wall 24b are formed in parallel to each other.
この構成によれば、第2供給側壁24aと第2排出側壁24bとは、互いに平行に形成される。このように、ガイド溝21の形状が簡素化されることでガイド溝21の加工が容易になるため、第2溝部23が設けられる場合であっても、レベリングバルブ100の製造コストの上昇を抑制することができる。
According to this configuration, the second supply side wall 24a and the second discharge side wall 24b are formed in parallel to each other. As described above, since the guide groove 21 is simplified by simplifying the shape of the guide groove 21, an increase in the manufacturing cost of the leveling valve 100 is suppressed even when the second groove portion 23 is provided. can do.
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
本願は2016年8月12日に日本国特許庁に出願された特願2016-158781に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
This application claims priority based on Japanese Patent Application No. 2016-158781 filed with the Japan Patent Office on August 12, 2016, the entire contents of which are incorporated herein by reference.
Claims (5)
- 車両の車体と台車との間に設けられる空気ばねの高さを調整するレベリングバルブであって、
前記空気ばねと連通する空気ばね通路が形成されたハウジングと、
前記ハウジングに形成された収容孔内に摺動自在に収容されるピストンと、
前記ハウジングにより回動自在に支持され、前記台車に対する前記車体の相対変位量に応じて回動し前記ピストンを移動させるロータと、
前記ロータの回動に伴って前記ピストンが中立位置から一方向へ移動すると前記空気ばねと空気圧源とを連通させ、前記ロータの回動に伴って前記ピストンが中立位置から他方向へ移動すると前記空気ばねと大気とを連通させる給排弁と、を備え、
前記ピストンは、外周に形成され摺動方向に対して直交する方向に延びるガイド溝を有し、
前記ロータは、回動中心からオフセットした位置において前記ピストンに向かって突出し先端が前記ガイド溝に挿入される突起部を有し、
前記ガイド溝は、前記ロータの回動角が所定値以下のときに前記突起部が接する第1溝部と、前記第1溝部よりも前記ピストンの摺動方向における幅が大きく、前記ロータの回動角が前記所定値を超えるときに前記突起部が接する第2溝部と、を有するレベリングバルブ。 A leveling valve for adjusting the height of an air spring provided between a vehicle body and a carriage,
A housing formed with an air spring passage communicating with the air spring;
A piston slidably accommodated in an accommodation hole formed in the housing;
A rotor that is rotatably supported by the housing, rotates according to a relative displacement amount of the vehicle body with respect to the carriage, and moves the piston;
When the piston moves in one direction from the neutral position with the rotation of the rotor, the air spring communicates with the air pressure source, and when the piston moves in the other direction from the neutral position with the rotation of the rotor, A supply / exhaust valve for communicating the air spring and the atmosphere,
The piston has a guide groove formed on the outer periphery and extending in a direction perpendicular to the sliding direction,
The rotor has a protrusion that protrudes toward the piston at a position that is offset from the rotation center, and a tip is inserted into the guide groove;
The guide groove has a first groove portion that contacts the protrusion when the rotation angle of the rotor is equal to or less than a predetermined value, and a width in the sliding direction of the piston larger than that of the first groove portion. A leveling valve having a second groove part with which the projection part contacts when a corner exceeds the predetermined value. - 請求項1に記載のレベリングバルブであって、
前記第2溝部は、前記給排弁を流れる空気量が前記ピストンの移動に関わらず一定となるときに前記突起部が接するように前記ピストンに形成されるレベリングバルブ。 The leveling valve according to claim 1,
The second groove portion is a leveling valve formed on the piston so that the protrusion comes into contact when the amount of air flowing through the supply / discharge valve becomes constant regardless of the movement of the piston. - 請求項1に記載のレベリングバルブであって、
前記第2溝部は、前記ピストンの移動量に対する前記給排弁を流れる空気量の変化度合が、前記第1溝部に前記突起部が接するときよりも前記第2溝部に前記突起部が接するときの方が小さくなるように前記ピストンに形成されるレベリングバルブ。 The leveling valve according to claim 1,
The second groove portion has a degree of change in the amount of air flowing through the supply / discharge valve with respect to the movement amount of the piston when the protrusion portion contacts the second groove portion than when the protrusion portion contacts the first groove portion. A leveling valve formed on the piston so that it becomes smaller. - 請求項1に記載のレベリングバルブであって、
前記第2溝部は、前記ピストンが前記一方向へ移動したときに前記突起部が当接し、前記ピストンが前記他方向へ移動することを規制する第1規制面と、前記ピストンが前記他方向へ移動したときに前記突起部が当接し、前記ピストンが前記一方向へ移動することを規制する第2規制面と、を有するレベリングバルブ。 The leveling valve according to claim 1,
The second groove includes a first restricting surface that restricts movement of the piston in the other direction when the piston moves in the one direction, and the piston moves in the other direction. A leveling valve comprising: a second restricting surface that abuts the protrusion when moved and restricts the piston from moving in the one direction. - 請求項4に記載のレベリングバルブであって、
前記第1規制面と前記第2規制面とは、互いに平行に形成されるレベリングバルブ。 A leveling valve according to claim 4,
The leveling valve in which the first restriction surface and the second restriction surface are formed in parallel to each other.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016158781A JP6286496B2 (en) | 2016-08-12 | 2016-08-12 | Leveling valve |
JP2016-158781 | 2016-08-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018030299A1 true WO2018030299A1 (en) | 2018-02-15 |
Family
ID=61163355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/028431 WO2018030299A1 (en) | 2016-08-12 | 2017-08-04 | Leveling valve |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6286496B2 (en) |
TW (1) | TW201809498A (en) |
WO (1) | WO2018030299A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018139605A1 (en) * | 2017-01-27 | 2018-08-02 | Kyb株式会社 | Leveling valve |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51111920A (en) * | 1975-03-05 | 1976-10-02 | Bosch Gmbh Robert | Changing over head for operating direct control spool of direction control valve |
JPS58133675U (en) * | 1982-03-03 | 1983-09-08 | 株式会社クボタ | Operation part structure for control valve |
JP2004052889A (en) * | 2002-07-19 | 2004-02-19 | Kayaba Ind Co Ltd | Leveling valve |
-
2016
- 2016-08-12 JP JP2016158781A patent/JP6286496B2/en active Active
-
2017
- 2017-08-04 WO PCT/JP2017/028431 patent/WO2018030299A1/en active Application Filing
- 2017-08-09 TW TW106126830A patent/TW201809498A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51111920A (en) * | 1975-03-05 | 1976-10-02 | Bosch Gmbh Robert | Changing over head for operating direct control spool of direction control valve |
JPS58133675U (en) * | 1982-03-03 | 1983-09-08 | 株式会社クボタ | Operation part structure for control valve |
JP2004052889A (en) * | 2002-07-19 | 2004-02-19 | Kayaba Ind Co Ltd | Leveling valve |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018139605A1 (en) * | 2017-01-27 | 2018-08-02 | Kyb株式会社 | Leveling valve |
Also Published As
Publication number | Publication date |
---|---|
TW201809498A (en) | 2018-03-16 |
JP2018025273A (en) | 2018-02-15 |
JP6286496B2 (en) | 2018-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6805155B2 (en) | Cartridge relief valve with improved stability | |
US7686033B2 (en) | Valve connector | |
KR101579642B1 (en) | Leveling valve | |
WO2012132859A1 (en) | Pressure governor and air dryer | |
CN104755821B (en) | Leveling valve | |
WO2018030299A1 (en) | Leveling valve | |
CN107975602B (en) | Flow control device | |
CN109072654A (en) | Door closer device | |
CN111623126A (en) | Electronic expansion valve | |
JP2008128314A (en) | Check valve | |
JP4694383B2 (en) | Spool valve | |
JP2022536236A (en) | electronic expansion valve | |
CN111473119A (en) | Pressure regulating valve and pressure regulating system | |
US11015720B2 (en) | Closed-loop control valve module | |
JP2007177460A (en) | Door closer | |
CN212643551U (en) | Pressure regulating valve and pressure regulating system | |
JPWO2012120751A1 (en) | Fitting | |
JP6357550B1 (en) | Leveling valve | |
JP4145062B2 (en) | Rotating damper | |
CN219549704U (en) | Hydraulic speed regulating valve and hydraulic system | |
JP6709101B2 (en) | Leveling valve | |
CN114278635B (en) | Anti-reverse valve for rotary motor | |
CN113719491B (en) | Use stable combination load control valve | |
JP5065979B2 (en) | Suction throttle valve for screw compressor and screw compressor provided with the same | |
CN117006185A (en) | Damping device and valve comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17839370 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17839370 Country of ref document: EP Kind code of ref document: A1 |