WO2018030293A1 - 符号化装置、復号装置、符号化方法及び復号方法 - Google Patents

符号化装置、復号装置、符号化方法及び復号方法 Download PDF

Info

Publication number
WO2018030293A1
WO2018030293A1 PCT/JP2017/028397 JP2017028397W WO2018030293A1 WO 2018030293 A1 WO2018030293 A1 WO 2018030293A1 JP 2017028397 W JP2017028397 W JP 2017028397W WO 2018030293 A1 WO2018030293 A1 WO 2018030293A1
Authority
WO
WIPO (PCT)
Prior art keywords
basic block
block
frequency
current
binarized
Prior art date
Application number
PCT/JP2017/028397
Other languages
English (en)
French (fr)
Inventor
安倍 清史
西 孝啓
橋本 隆
遠間 正真
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Publication of WO2018030293A1 publication Critical patent/WO2018030293A1/ja
Priority to US16/268,979 priority Critical patent/US10742978B2/en
Priority to US16/911,834 priority patent/US10904527B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Definitions

  • the present invention relates to an encoding device or the like that encodes image information.
  • H. is a conventional encoding method.
  • image information including frequency conversion coefficient information regarding the frequency component of the image is encoded.
  • the code amount of the frequency conversion coefficient information is large and greatly affects the entire code amount of the image information. Therefore, if the frequency conversion coefficient information is not appropriately processed, the total code amount of the image information may increase.
  • the present invention provides an encoding device and the like that can appropriately process frequency conversion coefficient information.
  • An encoding apparatus is an encoding apparatus that encodes image information, and includes a memory and a circuit that can access the memory, and the circuit that can access the memory includes a plurality of circuits.
  • a data value indicating the number of non-zero coefficients included in a current basic block that is one of one or more basic blocks in a frequency conversion block composed of a plurality of frequency conversion coefficients, a plurality of data values, and a plurality of binarization values Is binarized according to a conversion table associated with each other, encodes the image information including the data value, and in the binarization of the data value, a current frequency conversion block which is the frequency conversion block including the current basic block
  • the encoding device or the like can appropriately process the frequency conversion coefficient information.
  • FIG. 1 is a block diagram showing a functional configuration of the encoding apparatus according to Embodiment 1.
  • FIG. 2 is a diagram illustrating an example of block division in the first embodiment.
  • FIG. 3 is a table showing conversion basis functions corresponding to each conversion type.
  • FIG. 4A is a diagram illustrating an example of the shape of a filter used in ALF.
  • FIG. 4B is a diagram illustrating another example of the shape of a filter used in ALF.
  • FIG. 4C is a diagram illustrating another example of the shape of a filter used in ALF.
  • FIG. 5 is a diagram illustrating 67 intra prediction modes in intra prediction.
  • FIG. 6 is a diagram for explaining pattern matching (bilateral matching) between two blocks along the motion trajectory.
  • FIG. 1 is a block diagram showing a functional configuration of the encoding apparatus according to Embodiment 1.
  • FIG. 2 is a diagram illustrating an example of block division in the first embodiment.
  • FIG. 3 is a table showing conversion basis functions
  • FIG. 7 is a diagram for explaining pattern matching (template matching) between a template in the current picture and a block in the reference picture.
  • FIG. 8 is a diagram for explaining a model assuming constant velocity linear motion.
  • FIG. 9 is a diagram for explaining the derivation of motion vectors in units of sub-blocks based on the motion vectors of a plurality of adjacent blocks.
  • FIG. 10 is a block diagram showing a functional configuration of the decoding apparatus according to the first embodiment.
  • FIG. 11 is a block diagram showing a detailed functional configuration of the entropy encoding unit in the encoding apparatus according to Embodiment 1.
  • FIG. 12 is a block diagram showing a detailed functional configuration of the entropy decoding unit in the decoding apparatus according to Embodiment 1.
  • FIG. 13 is a flowchart showing the syntax structure according to the first embodiment.
  • FIG. 14A is a conceptual diagram illustrating a basic block in the 4 ⁇ 4 frequency conversion block according to Embodiment 1.
  • FIG. 14B is a conceptual diagram illustrating basic blocks in the 8 ⁇ 8 frequency conversion block according to Embodiment 1.
  • FIG. 14C is a conceptual diagram showing a basic block in the 8 ⁇ 4 frequency conversion block according to Embodiment 1.
  • FIG. 14D is a conceptual diagram illustrating a basic block in the 4 ⁇ 8 frequency conversion block according to Embodiment 1.
  • FIG. 14E is a conceptual diagram illustrating basic blocks in the 16 ⁇ 16 frequency conversion block according to Embodiment 1.
  • FIG. 14A is a conceptual diagram illustrating a basic block in the 4 ⁇ 4 frequency conversion block according to Embodiment 1.
  • FIG. 14B is a conceptual diagram illustrating basic blocks in the 8 ⁇ 8 frequency conversion block according to Embodiment 1.
  • FIG. 14C is a conceptual diagram
  • FIG. 14F is a conceptual diagram illustrating basic blocks in the 16 ⁇ 8 frequency conversion block according to Embodiment 1.
  • FIG. 14G is a conceptual diagram illustrating basic blocks in the 8 ⁇ 16 frequency conversion block according to Embodiment 1.
  • FIG. 14H is a conceptual diagram showing basic blocks in the 16 ⁇ 12 frequency conversion block according to Embodiment 1.
  • FIG. 14I is a conceptual diagram showing a basic block in the 4 ⁇ 16 frequency conversion block according to Embodiment 1.
  • FIG. 15 is a conceptual diagram showing two types of tables according to the first embodiment.
  • FIG. 16 is a flowchart showing selection of a table according to the first embodiment.
  • FIG. 17 is a conceptual diagram showing four types of tables according to the first embodiment.
  • FIG. 18A is a conceptual diagram illustrating a hierarchy of basic blocks in the 4 ⁇ 4 frequency conversion block according to Embodiment 1.
  • FIG. 18B is a conceptual diagram illustrating a hierarchy of basic blocks in the 8 ⁇ 8 frequency transform block according to Embodiment 1.
  • FIG. 18C is a conceptual diagram illustrating a hierarchy of basic blocks in the 8 ⁇ 4 frequency transform block according to Embodiment 1.
  • FIG. 18D is a conceptual diagram illustrating a hierarchy of basic blocks in the 4 ⁇ 8 frequency transform block according to Embodiment 1.
  • FIG. 18E is a conceptual diagram illustrating a hierarchy of basic blocks in the 16 ⁇ 16 frequency transform block according to Embodiment 1.
  • FIG. 18A is a conceptual diagram illustrating a hierarchy of basic blocks in the 4 ⁇ 4 frequency conversion block according to Embodiment 1.
  • FIG. 18B is a conceptual diagram illustrating a hierarchy of basic blocks in the 8 ⁇ 8 frequency transform block according to Embodiment 1.
  • FIG. 18C is a conceptual diagram
  • FIG. 18F is a conceptual diagram illustrating a hierarchy of basic blocks in the 16 ⁇ 8 frequency transform block according to Embodiment 1.
  • FIG. 18G is a conceptual diagram illustrating a hierarchy of basic blocks in the 8 ⁇ 16 frequency transform block according to Embodiment 1.
  • FIG. 18H is a conceptual diagram illustrating a hierarchy of basic blocks in the 16 ⁇ 12 frequency conversion block according to Embodiment 1.
  • FIG. 18I is a conceptual diagram illustrating a hierarchy of basic blocks in the 4 ⁇ 16 frequency transform block according to Embodiment 1.
  • FIG. 19 is a flowchart showing a pattern determination process according to the first embodiment.
  • FIG. 20A is a conceptual diagram showing a current basic block of the first pattern according to the first embodiment.
  • FIG. 20A is a conceptual diagram showing a current basic block of the first pattern according to the first embodiment.
  • FIG. 20B is a conceptual diagram showing a current basic block of the second pattern according to Embodiment 1.
  • FIG. 20C is a conceptual diagram showing a current basic block of the third pattern according to Embodiment 1.
  • FIG. 21 is a relationship diagram illustrating a table selected in the first pattern according to the first embodiment.
  • FIG. 22 is a relationship diagram illustrating a table selected in the second pattern according to the first embodiment.
  • FIG. 23 is a relationship diagram illustrating a table selected by the surrounding frequency conversion blocks in the third pattern according to the first embodiment.
  • FIG. 24 is a relationship diagram illustrating a table selected in the encoding mode in the third pattern according to Embodiment 1.
  • FIG. 25 is a relationship diagram illustrating a table selected by the quantization parameter in the third pattern according to the first embodiment.
  • FIG. 26 is a data diagram showing a syntax structure according to the first embodiment.
  • FIG. 27 is a block diagram illustrating an implementation example of the coding apparatus according to Embodiment 1.
  • FIG. 28 is a flowchart showing a first encoding operation example of the encoding apparatus according to Embodiment 1.
  • FIG. 29 is a flowchart showing binarization processing in the first coding operation example of the coding apparatus according to Embodiment 1.
  • FIG. 30 is a flowchart showing binarization processing of frequency transform coefficient information in the first coding operation example of the coding apparatus according to Embodiment 1.
  • FIG. 31 is a flowchart showing a second coding operation example of the coding apparatus according to Embodiment 1.
  • FIG. 32 is a flowchart showing a third coding operation example of the coding apparatus according to Embodiment 1.
  • FIG. 33 is a flowchart showing a binarization process in the third coding operation example of the coding apparatus according to Embodiment 1.
  • FIG. 34 is a flowchart showing a binarization process in the fourth coding operation example of the coding apparatus according to Embodiment 1.
  • FIG. 35 is a block diagram illustrating an implementation example of the decoding apparatus according to the first embodiment.
  • FIG. 36 is a flowchart illustrating a first decoding operation example of the decoding device according to the first embodiment.
  • FIG. 37 is a flowchart showing inverse binarization processing in the first decoding operation example of the decoding apparatus according to Embodiment 1.
  • FIG. 38 is a flowchart showing an inverse binarization process of the binarized data string of the frequency transform coefficient information in the first decoding operation example of the decoding apparatus according to Embodiment 1.
  • FIG. 39 is a flowchart illustrating a second decoding operation example of the decoding device according to the first embodiment.
  • FIG. 40 is a flowchart illustrating a third decoding operation example of the decoding device according to the first embodiment.
  • FIG. 41 is a flowchart showing inverse binarization processing in the third decoding operation example of the decoding apparatus according to Embodiment 1.
  • FIG. 42 is a flowchart showing inverse binarization processing in the fourth decoding operation example of the decoding apparatus according to Embodiment 1.
  • FIG. 43 is an overall configuration diagram of a content supply system that implements a content distribution service.
  • FIG. 44 is a diagram illustrating an example of a coding structure at the time of scalable coding.
  • FIG. 45 is a diagram illustrating an example of a coding structure at the time of scalable coding.
  • FIG. 46 shows an example of a web page display screen.
  • FIG. 47 is a diagram showing an example of a web page display screen.
  • FIG. 48 is a diagram illustrating an example of a smartphone.
  • FIG. 49 is a block diagram illustrating a configuration example of a smartphone.
  • H. a conventional encoding method.
  • arithmetic coding is used to efficiently encode image information.
  • CABAC context adaptive binary arithmetic coding method
  • a multilevel signal is converted into a binary data string that is a data string of values represented by 0 or 1 by binarization. Then, an occurrence probability of 0 or 1 is selected from a plurality of predetermined occurrence probabilities according to the context such as the data type, and binary arithmetic coding is applied to the binarized data string according to the selected occurrence probability. . Then, the occurrence probability is updated according to the value of 0 or 1 included in the binarized data string.
  • binary arithmetic coding is performed according to a variable occurrence probability.
  • binary arithmetic coding is performed according to a fixed occurrence probability for a specific data type or the like.
  • the frequency conversion coefficient information is information regarding the frequency component of the image and is suitable for processing such as image encoding and decoding.
  • the code amount of the frequency conversion coefficient information greatly affects the entire code amount of the image information. Therefore, if the frequency conversion coefficient information is not properly encoded, the overall code amount of the image information may increase.
  • an encoding device is an encoding device that encodes image information and outputs a bit string in which the image information is encoded, and includes a memory and a circuit that can access the memory And the circuit capable of accessing the memory binarizes the image information and switches whether to apply arithmetic coding to a binarized data string obtained by binarizing the image information
  • arithmetic coding is applied to the binarized data string
  • arithmetic coding is applied to the binary data string
  • the binary data string to which arithmetic coding is applied When the bit string is output and arithmetic coding is not applied to the binarized data string, arithmetic coding is not applied to the binarized data string without applying arithmetic coding
  • the bit including the binarized data string In the binarization of the image information, when arithmetic coding is applied to the binary data sequence and when arithmetic coding is not applied to the binary data sequence According to different
  • the encoding apparatus can skip arithmetic encoding. Therefore, the encoding apparatus can assist in reducing processing delay caused by arithmetic encoding. Also, the encoding apparatus can appropriately binarize the frequency transform coefficient information that has a large effect on the overall code amount according to the binarization format that differs depending on whether or not arithmetic coding is applied. Therefore, the encoding device can appropriately encode the frequency conversion coefficient information, and can suppress an increase in the overall code amount.
  • the circuit includes information on the encoding mode, information on the prediction direction of intra prediction, information on a reference picture for inter prediction, and information on a motion vector for inter prediction, which is included in the prediction parameter information.
  • the binarization common to the case where arithmetic coding is applied to the binarized data sequence and the case where arithmetic coding is not applied to the binarized data sequence for at least one Binarization may be performed according to the format.
  • the encoding device can efficiently binarize at least a part of information included in the prediction parameter information according to a common binarization format.
  • the circuit may include information related to a coding mode, information related to a prediction direction of intra prediction, information related to a reference picture for inter prediction, and information related to a motion vector for inter prediction. And binarization according to a common binarization format when arithmetic coding is applied to the binarized data string and when arithmetic coding is not applied to the binarized data string. You may give it.
  • the encoding apparatus can efficiently binarize various kinds of information included in the prediction parameter information according to a common binarization format.
  • the circuit binarizes only the frequency conversion coefficient information in the image information according to the different binarization format, and the frequency conversion coefficient information in the image information. All other information except for may be binarized according to the common binarization format.
  • the encoding apparatus can binarize all the information other than the frequency conversion coefficient information according to a common binarization format. Therefore, the process is simplified.
  • the circuit applies arithmetic coding to the binarized data sequence when arithmetic coding is not applied to the binarized data sequence.
  • the frequency conversion coefficient information may be binarized in a format with fewer generated bits than in the case where
  • the encoding apparatus can assist in reducing the code amount of the frequency conversion coefficient information when arithmetic encoding is not applied.
  • a decoding device is a decoding device that acquires a bit string in which image information is encoded and decodes the image information, and includes a memory and a circuit that can access the memory. And the circuit capable of accessing the memory acquires the bit string including a binarized data string obtained by binarizing the image information, and performs arithmetic decoding on the binarized data string included in the bit string When the arithmetic decoding is applied to the binarized data sequence, the arithmetic decoding is applied to the binarized data sequence, and the binary to which the arithmetic decoding is applied is applied.
  • arithmetic decoding is applied to the binarized data sequence. Without arithmetic decoding applied.
  • the image information is decoded by inverse binarizing the binarized data sequence, and arithmetic decoding is applied to the binarized data sequence in the inverse binarization of the binarized data sequence Frequency conversion coefficient information related to the frequency component of the image in the binarized data sequence in accordance with an inverse binarization format that is different from that in the case where arithmetic decoding is not applied to the binarized data sequence.
  • a part or all of the prediction parameter information related to the image prediction method is binarized in the binarized data sequence in accordance with a common inverse binarization format when arithmetic decoding is not applied to Reverse binarize the part.
  • the decoding apparatus can skip arithmetic decoding. Therefore, the decoding apparatus can assist in reducing processing delay caused by arithmetic decoding. Also, the decoding apparatus can appropriately binarize the first part in which the frequency transform coefficient information that has a large influence on the entire code amount is binarized according to whether or not arithmetic decoding is applied. Therefore, the decoding apparatus can appropriately decode the frequency transform coefficient information, and can suppress an increase in the overall code amount.
  • the circuit includes information on the encoding mode, information on the prediction direction of intra prediction, information on a reference picture for inter prediction, and information on a motion vector for inter prediction, which is included in the prediction parameter information.
  • arithmetic decoding is applied to the binarized data sequence and arithmetic decoding is not applied to the binarized data sequence for the second part at least one of which is binarized
  • inverse binarization may be performed according to a common inverse binarization format.
  • the decoding apparatus can efficiently perform the inverse binarization on the portion obtained by binarizing at least a part of the information included in the prediction parameter information according to the common inverse binarization format.
  • the circuit includes information on the encoding mode, information on the prediction direction of intra prediction, information on a reference picture for inter prediction, and information on a motion vector for inter prediction, which are included in the prediction parameter information.
  • information on the encoding mode information on the prediction direction of intra prediction
  • information on a reference picture for inter prediction information on a motion vector for inter prediction, which are included in the prediction parameter information.
  • Inverse binarization may be performed according to the inverse binarization format.
  • the decoding apparatus can efficiently binarize a portion obtained by binarizing various types of information included in the prediction parameter information according to a common inverse binarization format.
  • the circuit performs inverse binarization only on the first part of the binarized data sequence according to the different inverse binarization format, and All the parts other than the first part in the digitized data string may be inverse binarized according to the common inverse binarization format.
  • the decoding apparatus can debinarize all other parts except the first part in which the frequency conversion coefficient information is binarized according to a common debinarization format. Therefore, the process is simplified.
  • the circuit may perform arithmetic decoding on the binarized data string when arithmetic decoding is not applied to the binarized data string in inverse binarization of the binarized data string.
  • the first portion in which the frequency conversion coefficient information is binarized in a form with fewer generated bits than when applied may be binarized.
  • the decoding apparatus can assist in reducing the code amount of the frequency transform coefficient information when arithmetic decoding is not applied.
  • An encoding method is an encoding method for encoding image information and outputting a bit string in which the image information is encoded, and binarizing the image information,
  • arithmetic coding is applied to the binarized data sequence, whether or not to apply arithmetic coding to the binarized data sequence in which the information is binarized, the binarized data
  • the bit string including the binarized data string to which arithmetic coding is applied is output, and when arithmetic coding is not applied to the binary data string, Without applying arithmetic coding to the binarized data sequence, the bit sequence including the binarized data sequence to which arithmetic coding has not been applied is output, and in binarization of the image information, Arithmetic coding is applied to binary data strings And binarizing frequency transform coefficient information related to the frequency component of the image among the image information according to a binarization format different from
  • an apparatus using an encoding method can skip arithmetic encoding. Therefore, an apparatus using an encoding method can assist in reducing processing delay caused by arithmetic encoding. Also, an apparatus using an encoding method can appropriately binarize frequency transform coefficient information that greatly affects the overall code amount according to a different binarization format depending on whether or not arithmetic encoding is applied. Therefore, an apparatus using an encoding method can appropriately encode frequency conversion coefficient information, and can suppress an increase in the overall code amount.
  • the decoding method is a decoding method for acquiring a bit string in which image information is encoded and decoding the image information, and binarization in which the image information is binarized.
  • the bit string including the data string is acquired, switching whether to apply arithmetic decoding to the binary data string included in the bit string, and arithmetic decoding is applied to the binary data string
  • the image information is decoded by applying arithmetic decoding to the binarized data sequence, and debinarizing the binarized data sequence to which the arithmetic decoding is applied, and the binarization
  • arithmetic decoding is not applied to the data sequence, by applying inverse binarization to the binary data sequence to which arithmetic decoding has not been applied without applying arithmetic decoding to the binary data sequence
  • the image information is decoded and the binarized data is decoded.
  • the binarization In inverse binarization of columns, according to different inverse binarization formats when arithmetic decoding is applied to the binary data sequence and when arithmetic decoding is not applied to the binary data sequence
  • the binarized data sequence the first portion obtained by binarizing the frequency conversion coefficient information related to the frequency component of the image is binarized, and in the binarization of the binarized data sequence, the binarization is performed.
  • the second part obtained by binarizing a part or all of the prediction parameter information related to the image prediction method is inversely binarized.
  • a device using this decoding method can skip arithmetic decoding. Therefore, an apparatus or the like using this decoding method can assist in reducing processing delay caused by arithmetic decoding.
  • an apparatus using this decoding method can appropriately debinarize the first part in which the frequency transform coefficient information that greatly affects the entire code amount is binarized according to whether or not arithmetic decoding is applied. . Therefore, a device or the like using this decoding method can appropriately decode the frequency conversion coefficient information, and can suppress an increase in the overall code amount.
  • An encoding apparatus is an encoding apparatus that encodes image information, and includes a memory and a circuit that can access the memory, and the circuit that can access the memory includes: The position of a specific basic block that is a basic block that first includes a non-zero coefficient in a predetermined scan order defined in order of frequency with respect to one or more basic blocks in a frequency conversion block composed of a plurality of frequency conversion coefficients Block information indicating a plurality of frequency transform coefficients constituting the basic block only for each basic block after the specific basic block in the predetermined scan order among the one or more basic blocks. It may be an encoding device that encodes.
  • the encoding apparatus can encode the position information and the block information as frequency conversion coefficient information. Since the encoding apparatus encodes block information for each basic block after the specific basic block in a predetermined scan order, it can assist in reducing the code amount of the frequency transform coefficient information.
  • the circuit may encode the position information only when the number of the one or more basic blocks is two or more.
  • the encoding device can assist in reducing the code amount of the frequency transform coefficient information.
  • the circuit may encode the position information and the block information only when the specific basic block exists in the frequency conversion block.
  • the encoding apparatus can assist in making the code amount of the frequency transform coefficient information smaller when, for example, the non-zero coefficient is not included in the frequency transform block.
  • the circuit encodes the image information and outputs a bit string in which the image information is encoded, and the image information is binarized in the encoding of the image information and the output of the bit string.
  • Switching whether or not to apply arithmetic coding to the binarized data sequence in which the image information is binarized, and when arithmetic coding is applied to the binarized data sequence Applying arithmetic encoding to the binarized data sequence, outputting the bit sequence including the binarized data sequence to which arithmetic encoding is applied, and performing arithmetic encoding on the binarized data sequence
  • the bit string including the binary data string to which arithmetic coding has not been applied is output, and the binary of the image information In the binarization data string.
  • a frequency conversion coefficient relating to the frequency component of the image in the image information Information is binarized, and in the binarization of the image information, arithmetic coding is applied to the binarized data sequence, and arithmetic coding is not applied to the binarized data sequence
  • arithmetic coding is applied to the binarized data sequence, and arithmetic coding is not applied to the binarized data sequence
  • the position information and the block information are encoded by binarizing the frequency transform coefficient information including the position information and the block information. It may be turned into.
  • the encoding device can assist in reducing the code amount of the frequency conversion coefficient information when arithmetic encoding is not applied.
  • a decoding device is a decoding device that decodes image information, and includes a memory and a circuit that can access the memory, and the circuit that can access the memory includes a plurality of circuits.
  • a position indicating the position of a specific basic block that is a basic block that first includes a non-zero coefficient in a predetermined scan order that is defined in order of increasing frequency with respect to one or more basic blocks in a frequency conversion block configured with frequency conversion coefficients Information is decoded, and block information indicating a plurality of frequency transform coefficients constituting the basic block is decoded only for each basic block after the specific basic block in the predetermined scan order among the one or more basic blocks. It may be a decoding device.
  • the decoding apparatus can decode the position information and the block information as the frequency conversion coefficient information. And since the decoding apparatus decodes block information about each basic block after a specific basic block in a predetermined scan order, it can support reducing the code amount of frequency transform coefficient information.
  • the circuit may decode the position information only when the number of the one or more basic blocks is two or more.
  • the decoding apparatus can assist in reducing the code amount of the frequency transform coefficient information.
  • the circuit may decode the position information and the block information only when the specific basic block exists in the frequency conversion block.
  • the decoding apparatus can assist in reducing the code amount of the frequency transform coefficient information.
  • the circuit acquires a bit string in which the image information is encoded, decodes the image information, and binarizes the image information in the acquisition of the bit string and the decoding of the image information.
  • the image information is decoded by applying arithmetic decoding to the binarized data sequence and debinarizing the binarized data sequence to which the arithmetic decoding is applied.
  • the binary data sequence to which the arithmetic decoding has not been applied is applied to the binarized data sequence without applying arithmetic decoding.
  • arithmetic decoding is applied to the binarized data sequence
  • arithmetic decoding is not applied to the binarized data sequence
  • a different inverse binarization format a first part of the binarized data sequence in which frequency conversion coefficient information related to the frequency component of the image is binarized is inverse binarized, and the binarized data sequence In the inverse binarization, according to a common inverse binarization format when arithmetic decoding is applied to the binarized data sequence and when arithmetic decoding is not applied to the binarized data sequence
  • the decoding apparatus can assist in reducing the code amount of the frequency transform coefficient information when arithmetic decoding is not applied.
  • An encoding method is an encoding method for encoding image information, and the frequency of one or more basic blocks in a frequency conversion block configured by a plurality of frequency conversion coefficients.
  • Encode position information indicating the position of a specific basic block that is a basic block including a non-zero coefficient first in a predetermined scan order defined in descending order, and the one or more basic blocks in the predetermined scan order
  • an encoding method for encoding block information indicating a plurality of frequency transform coefficients constituting the basic block may be used.
  • a device or the like using this encoding method can encode position information and block information as frequency transform coefficient information.
  • An apparatus using this encoding method supports reducing the code amount of frequency transform coefficient information in order to encode block information for each basic block after the specific basic block in a predetermined scan order. Can do.
  • a decoding method is a decoding method for decoding image information, and is defined in order of increasing frequency with respect to one or more basic blocks in a frequency conversion block configured by a plurality of frequency conversion coefficients.
  • Position information indicating the position of a specific basic block which is a basic block including a non-zero coefficient first in a predetermined scan order is decoded, and the specific basic block is selected in the predetermined scan order among the one or more basic blocks. Only for each subsequent basic block, a decoding method for decoding block information indicating a plurality of frequency transform coefficients constituting the basic block may be used.
  • a device or the like using this decoding method can decode position information and block information as frequency transform coefficient information.
  • An apparatus or the like using this decoding method can assist in reducing the code amount of the frequency transform coefficient information because the block information is decoded for each basic block after the specific basic block in a predetermined scan order. .
  • An encoding apparatus is an encoding apparatus that encodes image information, and includes a memory and a circuit that can access the memory, and the circuit that can access the memory includes: A data value indicating the number of non-zero coefficients included in a current basic block that is one of one or more basic blocks in a frequency conversion block composed of a plurality of frequency conversion coefficients is converted into a plurality of data values and a plurality of binarizations.
  • Binarization according to a conversion table in which values are associated encoding the image information including the data values, and correspondence of data values indicating 0 as the number of non-zero coefficients in the binarization of the data values
  • the conversion table from among a plurality of tables including a first table including an addition and a second table not including an association of data values indicating 0 as the number of the non-zero coefficients Select, in accordance with the conversion table selected, said data value may be a coding device for binarizing.
  • the encoding device can appropriately encode information for efficiently indicating a plurality of frequency transform coefficients constituting the basic block. Also, the encoding apparatus can use a table with a reduced amount of information as a conversion table for binarization. Therefore, the encoding apparatus can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit may include a non-zero coefficient first in the one or more basic blocks in a predetermined scan order defined in order of frequency with respect to the one or more basic blocks. For each basic block after a specific basic block that is a basic block including a data value indicating the number of non-zero coefficients included in the basic block as a data value indicating the number of non-zero coefficients included in the current basic block You may binarize.
  • the encoding apparatus can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit binarizes the data value only when the specific basic block exists in the one or more basic blocks, and in the selection of the conversion table, When the frequency conversion block and the current basic block are the same, the second table may be selected as the conversion table.
  • the encoding apparatus uses the second table that does not include the association of zero non-zero coefficients when the size of the frequency transform block and the size of each basic block are the same, for example. It is possible to assist in reducing the code amount of information.
  • the circuit may select the second table as the conversion table when the current basic block is the specific basic block.
  • the encoding apparatus reduces the code amount of the frequency transform coefficient information using the second table that does not include the association of zero non-zero coefficients. Can help.
  • the circuit encodes the image information and outputs a bit string in which the image information is encoded, and the image information is binarized in the encoding of the image information and the output of the bit string.
  • Switching whether or not to apply arithmetic coding to the binarized data sequence in which the image information is binarized, and when arithmetic coding is applied to the binarized data sequence Applying arithmetic encoding to the binarized data sequence, outputting the bit sequence including the binarized data sequence to which arithmetic encoding is applied, and performing arithmetic encoding on the binarized data sequence
  • the bit string including the binary data string to which arithmetic coding has not been applied is output, and the binary of the image information In the binarization data string.
  • a frequency conversion coefficient relating to the frequency component of the image in the image information Information is binarized, and in the binarization of the image information, arithmetic coding is applied to the binarized data sequence, and arithmetic coding is not applied to the binarized data sequence
  • arithmetic coding is applied to the binarized data sequence, and arithmetic coding is not applied to the binarized data sequence
  • the frequency conversion unit The data values contained in the information may be binarized.
  • the encoding device uses the conversion table selected from the plurality of tables including the second table that does not include the association of the zero non-zero coefficients when the arithmetic encoding is not applied. It is possible to assist in reducing the code amount of the transform coefficient information.
  • a decoding device is a decoding device that decodes image information, and includes a memory and a circuit that can access the memory, and the circuit that can access the memory includes a plurality of circuits.
  • the decoding device can appropriately decode information for efficiently indicating a plurality of frequency transform coefficients constituting the basic block. Also, the decoding device can use a table with a reduced amount of information as a conversion table for inverse binarization. Therefore, the decoding apparatus can assist in reducing the code amount of the frequency transform coefficient information.
  • the circuit may start with the first scan among the one or more basic blocks in a predetermined scan order defined in order of frequency with respect to the one or more basic blocks.
  • a binary value obtained by binarizing a data value indicating the number of non-zero coefficients included in the basic block is the current basic block. May be binarized as a binarized value obtained by binarizing data values indicating the number of non-zero coefficients included in.
  • the decoding apparatus can assist in making the code amount of the frequency conversion coefficient information smaller.
  • the circuit reverse binarizes the binarized value only when the specific basic block exists in the one or more basic blocks, and the conversion In the table selection, when the frequency conversion block and the current basic block are the same, the second table may be selected as the conversion table.
  • the decoding device uses the second table that does not include the association of zero non-zero coefficients, for example, when the size of the frequency transform block is the same as the size of each basic block, It is possible to assist in reducing the code amount.
  • the circuit may select the second table as the conversion table when the current basic block is the specific basic block.
  • the decoding apparatus reduces the code amount of the frequency transform coefficient information using the second table that does not include the association of zero non-zero coefficients. Can help.
  • the circuit acquires a bit string in which the image information is encoded, decodes the image information, and binarizes the image information in the acquisition of the bit string and the decoding of the image information.
  • the image information is decoded by applying arithmetic decoding to the binarized data sequence and debinarizing the binarized data sequence to which the arithmetic decoding is applied.
  • the binary data sequence to which the arithmetic decoding has not been applied is applied to the binarized data sequence without applying arithmetic decoding.
  • arithmetic decoding is applied to the binarized data sequence
  • arithmetic decoding is not applied to the binarized data sequence
  • a different inverse binarization format a first part of the binarized data sequence in which frequency conversion coefficient information related to the frequency component of the image is binarized is inverse binarized, and the binarized data sequence In the inverse binarization, according to a common inverse binarization format when arithmetic decoding is applied to the binarized data sequence and when arithmetic decoding is not applied to the binarized data sequence
  • the decoding device uses the conversion table selected from the plurality of tables including the second table not including the association of the zero non-zero coefficients when the arithmetic decoding is not applied, and uses the frequency conversion coefficient. It is possible to assist in reducing the code amount of information.
  • An encoding method is an encoding method for encoding image information, and is one of one or more basic blocks in a frequency conversion block including a plurality of frequency conversion coefficients. Binarizing a data value indicating the number of non-zero coefficients included in the current basic block in accordance with a conversion table in which a plurality of data values and a plurality of binarized values are associated, and the image information including the data values In encoding and binarization of the data value, the first table including the association of the data value indicating 0 as the number of the non-zero coefficients and the association of the data value indicating 0 as the number of the non-zero coefficients An encoding method that selects the conversion table from a plurality of tables including a second table that is not included, and binarizes the data value according to the selected conversion table. It may be.
  • an apparatus using this encoding method can appropriately encode information for efficiently indicating a plurality of frequency transform coefficients constituting the basic block. Also, an apparatus using this encoding method can use a table with a reduced amount of information as a conversion table for binarization. Therefore, an apparatus or the like using this encoding method can assist in reducing the code amount of the frequency conversion coefficient information.
  • a decoding method is a decoding method for decoding image information, and is a current basic block that is one of one or more basic blocks in a frequency conversion block configured by a plurality of frequency conversion coefficients.
  • a binarized value obtained by binarizing a data value indicating the number of non-zero coefficients included in a binarized value according to a conversion table in which a plurality of data values and a plurality of binarized values are associated, Decoding the image information including data values, and in the inverse binarization of the binarized values, a first table including a correspondence of data values indicating 0 as the number of the non-zero coefficients, and the non-zero coefficient
  • the conversion table is selected from a plurality of tables including a second table that does not include the association of data values indicating 0 as the number, and the binarized value is converted into an inverted binary according to the selected conversion table. It may be a decoding method for.
  • a device or the like using this decoding method can appropriately decode information for efficiently indicating a plurality of frequency transform coefficients constituting the basic block.
  • a device using this decoding method can use a table with a reduced amount of information as a conversion table for inverse binarization. Therefore, an apparatus using this decoding method can assist in reducing the code amount of the frequency conversion coefficient information.
  • An encoding apparatus is an encoding apparatus that encodes image information, and includes a memory and a circuit that can access the memory, and the circuit that can access the memory includes: A data value indicating the number of non-zero coefficients included in a current basic block that is one of one or more basic blocks in a frequency conversion block composed of a plurality of frequency conversion coefficients is converted into a plurality of data values and a plurality of binarizations.
  • a current frequency which is the frequency conversion block including the current basic block in the binarization of the data value by encoding the image information including the data value by binarizing according to a conversion table associated with the value According to the position of the current basic block in the transform block, the longest bit length of a plurality of binarized values associated with a plurality of data values;
  • An encoding device that selects the conversion table from a plurality of tables including two or more tables that differ from each other in short bit length, and binarizes the data value according to the selected conversion table. May be.
  • the encoding device can appropriately encode information for efficiently indicating a plurality of frequency transform coefficients constituting the basic block. Also, the encoding device can select a conversion table for binarizing data values indicating the number of non-zero coefficients according to the position of the current basic block. The characteristic of the number of non-zero coefficients varies depending on the position of the current basic block. Therefore, the encoding apparatus can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table using the position of the current basic block. Therefore, the encoding apparatus can appropriately select the conversion table, and can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit may include a preceding basic block that is a basic block preceding the current basic block in a predetermined scan order defined in order of frequency with respect to the one or more basic blocks.
  • the conversion table may be selected according to the number of non-zero coefficients included in the preceding basic block.
  • the encoding apparatus can select the conversion table according to the number of non-zero coefficients of the preceding basic block estimated that the number of non-zero coefficients is similar to the current basic block.
  • the circuit may include the preceding basic block at the same level, and the number of non-zero coefficients included in the preceding basic block is a first number.
  • a first table is selected from among a plurality of tables as the conversion table, the preceding basic block exists at the same level, and the number of non-zero coefficients included in the preceding basic block is greater than the first number.
  • a second table having a smaller difference than the first table may be selected from the plurality of tables as the conversion table.
  • the encoding apparatus selects a table with a small bit length difference as a conversion table, It can help control the increase in the amount.
  • the circuit is a preceding basic block that is a basic block preceding the current basic block in a predetermined scan order defined in order of frequency with respect to the one or more basic blocks.
  • the specific basic block which is a basic block that does not exist at the same level as the frequency level at the position of the current basic block and first includes a non-zero coefficient in the predetermined scan order, is the position of the current basic block. If the frequency is higher than the level of the frequency, the table having the difference smaller than the predetermined difference may be selected from the plurality of tables as the conversion table.
  • the encoding apparatus selects a table with a small bit length difference as the conversion table, and increases the code amount. Can help control.
  • the circuit selects from the plurality of tables.
  • a table having the smallest difference may be selected as the conversion table.
  • the encoding device selects a table with a small bit length difference as the conversion table, and increases the code amount. It is possible to support further suppression.
  • the circuit is a preceding basic block that is a basic block preceding the current basic block in a predetermined scan order defined in order of frequency with respect to the one or more basic blocks.
  • the specific basic block which is a basic block that does not exist at the same level as the frequency level at the position of the current basic block and first includes a non-zero coefficient in the predetermined scan order, is the position of the current basic block. If the frequency is not higher than the level of the frequency, the number of non-zero coefficients included in the current basic block is estimated from the peripheral frequency conversion block that is a frequency conversion block around the current frequency conversion block, The conversion table may be selected.
  • the encoding apparatus can select a conversion table using a peripheral frequency conversion block that is estimated to have a similar number of non-zero coefficients to the current basic block.
  • the circuit may include the preceding basic block not existing at the same level, the specific basic block not existing at the higher level, and the peripheral frequency conversion block.
  • the first table is selected from the plurality of tables as the conversion table, the preceding basic block does not exist at the same level, and the specific basic block Does not exist at the high level, and the number estimated from the peripheral frequency transform block is a second number larger than the first number, and the number of the plurality of tables is higher than that of the first table.
  • a second table having a small difference may be selected as the conversion table.
  • the encoding device selects a table with a small bit length difference as the transform table, and suppresses an increase in code amount. Can help.
  • the peripheral frequency conversion block includes (i) a frequency conversion block adjacent to the left or above the current frequency conversion block, (ii) a frequency conversion block encoded immediately before the current frequency conversion block, or (Iii)
  • the frequency conversion block may be located within a predetermined range from the current frequency conversion block and the encoding mode of the inter prediction or the intra prediction may be the same as the current frequency conversion block.
  • the encoding apparatus can select a conversion table using an appropriate peripheral frequency conversion block.
  • the number estimated from the peripheral frequency conversion block is: (i) Among the one or more basic blocks in the peripheral frequency conversion block, the relative position to the peripheral frequency conversion block is the current frequency conversion block May be estimated from the number of non-zero coefficients included in the basic block equal to the relative position of the current basic block to (ii), or (ii) the number of non-zero coefficients included in the entire peripheral frequency transform block.
  • the encoding apparatus can select the conversion table according to the number appropriately estimated from the peripheral frequency conversion blocks.
  • the circuit is a preceding basic block that is a basic block preceding the current basic block in a predetermined scan order defined in order of frequency with respect to the one or more basic blocks.
  • the specific basic block which is a basic block that does not exist at the same level as the frequency level at the position of the current basic block and first includes a non-zero coefficient in the predetermined scan order, is the position of the current basic block.
  • the conversion table may be selected according to whether the coding mode of the current basic block is inter prediction or intra prediction.
  • the encoding apparatus can select the conversion table according to the encoding mode of inter prediction or intra prediction. It is estimated that the characteristics of the number of non-zero coefficients differ depending on the encoding mode. Therefore, the encoding apparatus can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table using the encoding mode. Therefore, the encoding apparatus can appropriately select the conversion table, and can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit may include the preceding basic block not existing at the same level, the specific basic block not existing at the higher level, and the current basic block.
  • the encoding mode is inter-plane prediction
  • the first table is selected as the conversion table from the plurality of tables
  • the preceding basic block does not exist at the same level
  • the specific basic block is If the encoding mode of the current basic block is in-plane prediction, the second table having the difference smaller than the first table is used as the conversion table. You may choose.
  • the encoding device selects a table with a small bit length difference as the conversion table when the prediction accuracy is low and the number of non-zero coefficients is estimated to be large. In addition, it is possible to support the suppression of the increase in the code amount.
  • the circuit is a preceding basic block that is a basic block preceding the current basic block in a predetermined scan order defined in order of frequency with respect to the one or more basic blocks.
  • the specific basic block which is a basic block that does not exist at the same level as the frequency level at the position of the current basic block and first includes a non-zero coefficient in the predetermined scan order, is the position of the current basic block. If the frequency does not exist at a level higher than the frequency level, the conversion table may be selected according to a quantization parameter used for encoding the current basic block.
  • the encoding apparatus can select the conversion table according to the quantization parameter used for encoding the current basic block. It is estimated that the characteristics of the number of non-zero coefficients differ depending on the quantization parameter. Therefore, the encoding apparatus can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table using the quantization parameter. Therefore, the encoding apparatus can appropriately select the conversion table, and can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit may include the preceding basic block not existing at the same level, the specific basic block not existing at the higher level, and the quantization parameter being If it is the first value, the first table is selected from the plurality of tables as the conversion table, the preceding basic block does not exist at the same level, and the specific basic block reaches the higher level. If the quantization parameter is a second value smaller than the first value and does not exist, a second table having a smaller difference than the first table is selected from the plurality of tables as the conversion table. You may choose as
  • the encoding device selects a table with a small bit length difference as a conversion table, and suppresses an increase in code amount. Can help.
  • the circuit encodes the image information and outputs a bit string in which the image information is encoded, and the image information is binarized in the encoding of the image information and the output of the bit string.
  • Switching whether or not to apply arithmetic coding to the binarized data sequence in which the image information is binarized, and when arithmetic coding is applied to the binarized data sequence Applying arithmetic encoding to the binarized data sequence, outputting the bit sequence including the binarized data sequence to which arithmetic encoding is applied, and performing arithmetic encoding on the binarized data sequence
  • the bit string including the binary data string to which arithmetic coding has not been applied is output, and the binary of the image information In the binarization data string.
  • a frequency conversion coefficient relating to the frequency component of the image in the image information Information is binarized, and in the binarization of the image information, arithmetic coding is applied to the binarized data sequence, and arithmetic coding is not applied to the binarized data sequence
  • arithmetic coding is applied to the binarized data sequence, and arithmetic coding is not applied to the binarized data sequence
  • the frequency conversion coefficient information is determined according to the conversion table selected from the plurality of tables according to the position of the current basic block. The data values contained in it may be binarized.
  • the encoding device can reduce the code amount of the frequency conversion coefficient information using a conversion table selected according to the position of the current basic block from a plurality of tables when arithmetic coding is not applied. Can help.
  • a decoding device is a decoding device that decodes image information, and includes a memory and a circuit that can access the memory, and the circuit that can access the memory includes a plurality of circuits.
  • the conversion table is selected from a plurality of tables including two or more tables in which the difference between the longest bit length and the shortest bit length is different from each other, and the binarized value is converted into the inverse binary according to the selected conversion table. It may be a decoding device that performs valuation.
  • the decoding device can appropriately decode information for efficiently indicating a plurality of frequency transform coefficients constituting the basic block.
  • the decoding apparatus can select a conversion table for de-binarizing the binarized value of the data value indicating the number of non-zero coefficients according to the position of the current basic block.
  • the characteristic of the number of non-zero coefficients varies depending on the position of the current basic block. Therefore, the decoding apparatus can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table using the position of the current basic block. Therefore, the decoding apparatus can appropriately select the conversion table and can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit may include a preceding basic block that is a basic block preceding the current basic block in a predetermined scan order defined in order of frequency with respect to the one or more basic blocks.
  • the conversion table may be selected according to the number of non-zero coefficients included in the preceding basic block.
  • the decoding apparatus can select the conversion table according to the number of non-zero coefficients of the preceding basic block estimated that the number of non-zero coefficients is similar to the current basic block.
  • the circuit may include the preceding basic block at the same level, and the number of non-zero coefficients included in the preceding basic block is a first number.
  • a first table is selected from among a plurality of tables as the conversion table, the preceding basic block exists at the same level, and the number of non-zero coefficients included in the preceding basic block is greater than the first number.
  • a second table having a smaller difference than the first table may be selected from the plurality of tables as the conversion table.
  • the decoding apparatus selects a table with a small bit length difference as the conversion table, and the code amount It is possible to support the suppression of increase.
  • the circuit is a preceding basic block that is a basic block preceding the current basic block in a predetermined scan order defined in order of frequency with respect to the one or more basic blocks.
  • the specific basic block which is a basic block that does not exist at the same level as the frequency level at the position of the current basic block and first includes a non-zero coefficient in the predetermined scan order, is the position of the current basic block. If the frequency is higher than the level of the frequency, the table having the difference smaller than the predetermined difference may be selected from the plurality of tables as the conversion table.
  • the decoding apparatus selects a table with a small bit length difference as a conversion table, and suppresses an increase in code amount. Can help.
  • the circuit selects from the plurality of tables.
  • a table having the smallest difference may be selected as the conversion table.
  • the decoding apparatus selects a table with a small bit length difference as the conversion table, and further increases the code amount. It can help to suppress.
  • the circuit is a preceding basic block that is a basic block preceding the current basic block in a predetermined scan order defined in order of frequency with respect to the one or more basic blocks.
  • the specific basic block which is a basic block that does not exist at the same level as the frequency level at the position of the current basic block and first includes a non-zero coefficient in the predetermined scan order, is the position of the current basic block. If the frequency is not higher than the level of the frequency, the number of non-zero coefficients included in the current basic block is estimated from the peripheral frequency conversion block that is a frequency conversion block around the current frequency conversion block, The conversion table may be selected.
  • the decoding apparatus can select the conversion table using the peripheral frequency conversion block estimated that the number of non-zero coefficients is similar to the current basic block.
  • the circuit may include the preceding basic block not existing at the same level, the specific basic block not existing at the higher level, and the peripheral frequency conversion block.
  • the first table is selected from the plurality of tables as the conversion table, the preceding basic block does not exist at the same level, and the specific basic block Does not exist at the high level, and the number estimated from the peripheral frequency transform block is a second number larger than the first number, and the number of the plurality of tables is higher than that of the first table.
  • a second table having a small difference may be selected as the conversion table.
  • the decoding apparatus selects a table with a small bit length difference as the transform table, and suppresses the increase in the code amount. Can help.
  • the peripheral frequency conversion block includes (i) a frequency conversion block adjacent to the left or above the current frequency conversion block, (ii) a frequency conversion block decoded immediately before the current frequency conversion block, or (Iii)
  • the frequency conversion block may be located within a predetermined range from the current frequency conversion block, and the encoding mode of inter prediction or intra prediction may be the same as the current frequency conversion block.
  • the decoding apparatus can select a conversion table using an appropriate peripheral frequency conversion block.
  • the number estimated from the peripheral frequency conversion block is: (i) Among the one or more basic blocks in the peripheral frequency conversion block, the relative position to the peripheral frequency conversion block is the current frequency conversion block May be estimated from the number of non-zero coefficients included in the basic block equal to the relative position of the current basic block to (ii), or (ii) the number of non-zero coefficients included in the entire peripheral frequency transform block.
  • the decoding apparatus can select the conversion table according to the number appropriately estimated from the peripheral frequency conversion blocks.
  • the circuit is a preceding basic block that is a basic block preceding the current basic block in a predetermined scan order defined in order of frequency with respect to the one or more basic blocks.
  • the specific basic block which is a basic block that does not exist at the same level as the frequency level at the position of the current basic block and first includes a non-zero coefficient in the predetermined scan order, is the position of the current basic block.
  • the conversion table may be selected according to whether the coding mode of the current basic block is inter prediction or intra prediction.
  • the decoding apparatus can select the conversion table according to the encoding mode of inter prediction or intra prediction. It is estimated that the characteristics of the number of non-zero coefficients differ depending on the encoding mode. Therefore, the decoding apparatus can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table using the encoding mode. Therefore, the decoding apparatus can appropriately select the conversion table and can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit may include the preceding basic block not existing at the same level, the specific basic block not existing at the higher level, and the current basic block.
  • the encoding mode is inter-plane prediction
  • the first table is selected as the conversion table from the plurality of tables
  • the preceding basic block does not exist at the same level
  • the specific basic block is If the encoding mode of the current basic block is in-plane prediction, the second table having the difference smaller than the first table is used as the conversion table. You may choose.
  • the decoding apparatus selects a table with a small bit length difference as the conversion table when the prediction accuracy is low and the number of non-zero coefficients is large because the encoding mode is in-plane prediction. Therefore, it is possible to support the suppression of the increase in the code amount.
  • the circuit is a preceding basic block that is a basic block preceding the current basic block in a predetermined scan order defined in order of frequency with respect to the one or more basic blocks.
  • the specific basic block which is a basic block that does not exist at the same level as the frequency level at the position of the current basic block and first includes a non-zero coefficient in the predetermined scan order, is the position of the current basic block. If the frequency does not exist at a level higher than the frequency level, the conversion table may be selected according to a quantization parameter used for decoding the current basic block.
  • the decoding apparatus can select the conversion table according to the quantization parameter used for decoding the current basic block. It is estimated that the characteristics of the number of non-zero coefficients differ depending on the quantization parameter. Therefore, the decoding apparatus can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table by the quantization parameter. Therefore, the decoding apparatus can appropriately select the conversion table and can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit may include the preceding basic block not existing at the same level, the specific basic block not existing at the higher level, and the quantization parameter being If it is the first value, the first table is selected from the plurality of tables as the conversion table, the preceding basic block does not exist at the same level, and the specific basic block reaches the higher level. If the quantization parameter is a second value smaller than the first value and does not exist, a second table having a smaller difference than the first table is selected from the plurality of tables as the conversion table. You may choose as
  • the decoding device selects a table with a small bit length difference as a conversion table, and supports the suppression of an increase in code amount. can do.
  • the circuit acquires a bit string in which the image information is encoded, decodes the image information, and binarizes the image information in the acquisition of the bit string and the decoding of the image information.
  • the image information is decoded by applying arithmetic decoding to the binarized data sequence and debinarizing the binarized data sequence to which the arithmetic decoding is applied.
  • the binary data sequence to which the arithmetic decoding has not been applied is applied to the binarized data sequence without applying arithmetic decoding.
  • arithmetic decoding is applied to the binarized data sequence
  • arithmetic decoding is not applied to the binarized data sequence
  • a different inverse binarization format a first part of the binarized data sequence in which frequency conversion coefficient information related to the frequency component of the image is binarized is inverse binarized, and the binarized data sequence In the inverse binarization, according to a common inverse binarization format when arithmetic decoding is applied to the binarized data sequence and when arithmetic decoding is not applied to the binarized data sequence
  • the decoding device supports reducing the code amount of the frequency conversion coefficient information by using a conversion table selected according to the position of the current basic block from a plurality of tables when arithmetic decoding is not applied. be able to.
  • An encoding method is an encoding method for encoding image information, and is one of one or more basic blocks in a frequency conversion block including a plurality of frequency conversion coefficients. Binarizing a data value indicating the number of non-zero coefficients included in the current basic block in accordance with a conversion table in which a plurality of data values and a plurality of binarized values are associated, and the image information including the data values
  • the conversion table is selected from a plurality of tables including two or more tables in which the difference between the longest bit length and the shortest bit length of the quantization value is different from each other. Select Le, in accordance with the conversion table selected, said data value may be a coding method for binarization.
  • an apparatus using this encoding method can appropriately encode information for efficiently indicating a plurality of frequency transform coefficients constituting the basic block. Also, an apparatus using this encoding method can select a conversion table for binarizing data values indicating the number of non-zero coefficients according to the position of the current basic block. The characteristic of the number of non-zero coefficients varies depending on the position of the current basic block. Therefore, a device using this encoding method can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table using the position of the current basic block. Therefore, an apparatus or the like using this encoding method can appropriately select the conversion table, and can assist in reducing the code amount of the frequency conversion coefficient information.
  • a decoding method is a decoding method for decoding image information, and is a current basic block that is one of one or more basic blocks in a frequency conversion block configured by a plurality of frequency conversion coefficients.
  • a binarized value obtained by binarizing a data value indicating the number of non-zero coefficients included in a binarized value according to a conversion table in which a plurality of data values and a plurality of binarized values are associated,
  • the image information including data values is decoded, and in the inverse binarization of the binarized values, a plurality of current information is obtained according to the position of the current basic block in the current frequency transform block that is the frequency transform block including the current basic block.
  • a plurality of tables including two or more tables in which the difference between the longest bit length and the shortest bit length of a plurality of binarized values associated with the data value is different from each other.
  • a device or the like using this decoding method can appropriately decode information for efficiently indicating a plurality of frequency transform coefficients constituting the basic block.
  • an apparatus using this decoding method can select a conversion table for debinarizing a binarized value of a data value indicating the number of non-zero coefficients according to the position of the current basic block. The characteristic of the number of non-zero coefficients varies depending on the position of the current basic block. Therefore, an apparatus using this decoding method can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table using the position of the current basic block. Therefore, an apparatus using this decoding method can appropriately select a conversion table, and can assist in reducing the code amount of frequency conversion coefficient information.
  • these comprehensive or specific aspects may be realized by a system, an apparatus, a method, an integrated circuit, a computer program, or a non-transitory recording medium such as a computer-readable CD-ROM.
  • the present invention may be realized by any combination of an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • FIG. 1 is a block diagram showing a functional configuration of encoding apparatus 100 according to Embodiment 1.
  • the encoding device 100 is a moving image / image encoding device that encodes moving images / images in units of blocks.
  • an encoding apparatus 100 is an apparatus that encodes an image in units of blocks, and includes a dividing unit 102, a subtracting unit 104, a transforming unit 106, a quantizing unit 108, and entropy encoding.
  • Unit 110 inverse quantization unit 112, inverse transform unit 114, addition unit 116, block memory 118, loop filter unit 120, frame memory 122, intra prediction unit 124, inter prediction unit 126, A prediction control unit 128.
  • the encoding device 100 is realized by, for example, a general-purpose processor and a memory.
  • the processor when the software program stored in the memory is executed by the processor, the processor performs the division unit 102, the subtraction unit 104, the conversion unit 106, the quantization unit 108, the entropy encoding unit 110, and the inverse quantization unit 112.
  • the encoding apparatus 100 includes a dividing unit 102, a subtracting unit 104, a transforming unit 106, a quantizing unit 108, an entropy coding unit 110, an inverse quantizing unit 112, an inverse transforming unit 114, an adding unit 116, and a loop filter unit 120.
  • the intra prediction unit 124, the inter prediction unit 126, and the prediction control unit 128 may be implemented as one or more dedicated electronic circuits.
  • the dividing unit 102 divides each picture included in the input moving image into a plurality of blocks, and outputs each block to the subtracting unit 104.
  • the dividing unit 102 first divides a picture into blocks of a fixed size (for example, 128 ⁇ 128).
  • This fixed size block may be referred to as a coding tree unit (CTU).
  • the dividing unit 102 divides each of the fixed size blocks into blocks of a variable size (for example, 64 ⁇ 64 or less) based on recursive quadtree and / or binary tree block division.
  • This variable size block may be referred to as a coding unit (CU), a prediction unit (PU) or a transform unit (TU).
  • CU, PU, and TU do not need to be distinguished, and some or all blocks in a picture may be processing units of CU, PU, and TU.
  • FIG. 2 is a diagram showing an example of block division in the first embodiment.
  • a solid line represents a block boundary by quadtree block division
  • a broken line represents a block boundary by binary tree block division.
  • the block 10 is a 128 ⁇ 128 pixel square block (128 ⁇ 128 block).
  • the 128 ⁇ 128 block 10 is first divided into four square 64 ⁇ 64 blocks (quadtree block division).
  • the upper left 64 ⁇ 64 block is further divided vertically into two rectangular 32 ⁇ 64 blocks, and the left 32 ⁇ 64 block is further divided vertically into two rectangular 16 ⁇ 64 blocks (binary tree block division). As a result, the upper left 64 ⁇ 64 block is divided into two 16 ⁇ 64 blocks 11 and 12 and a 32 ⁇ 64 block 13.
  • the upper right 64 ⁇ 64 block is horizontally divided into two rectangular 64 ⁇ 32 blocks 14 and 15 (binary tree block division).
  • the lower left 64x64 block is divided into four square 32x32 blocks (quadrant block division). Of the four 32 ⁇ 32 blocks, the upper left block and the lower right block are further divided.
  • the upper left 32 ⁇ 32 block is vertically divided into two rectangular 16 ⁇ 32 blocks, and the right 16 ⁇ 32 block is further divided horizontally into two 16 ⁇ 16 blocks (binary tree block division).
  • the lower right 32 ⁇ 32 block is horizontally divided into two 32 ⁇ 16 blocks (binary tree block division).
  • the lower left 64 ⁇ 64 block is divided into a 16 ⁇ 32 block 16, two 16 ⁇ 16 blocks 17 and 18, two 32 ⁇ 32 blocks 19 and 20, and two 32 ⁇ 16 blocks 21 and 22.
  • the lower right 64x64 block 23 is not divided.
  • the block 10 is divided into 13 variable-size blocks 11 to 23 based on the recursive quadtree and binary tree block division.
  • Such division may be called QTBT (quad-tree plus binary tree) division.
  • one block is divided into four or two blocks (quadrature tree or binary tree block division), but the division is not limited to this.
  • one block may be divided into three blocks (triple tree block division).
  • Such a division including a tri-tree block division may be called an MBT (multi type tree) division.
  • the subtraction unit 104 subtracts the prediction signal (prediction sample) from the original signal (original sample) in units of blocks divided by the division unit 102. That is, the subtraction unit 104 calculates a prediction error (also referred to as a residual) of a coding target block (hereinafter referred to as a current block). Then, the subtraction unit 104 outputs the calculated prediction error to the conversion unit 106.
  • a prediction error also referred to as a residual of a coding target block (hereinafter referred to as a current block).
  • the original signal is an input signal of the encoding device 100, and is a signal (for example, a luminance (luma) signal and two color difference (chroma) signals) representing an image of each picture constituting the moving image.
  • a signal representing an image may be referred to as a sample.
  • the transform unit 106 transforms the prediction error in the spatial domain into a transform factor in the frequency domain, and outputs the transform coefficient to the quantization unit 108. Specifically, the transform unit 106 performs, for example, a predetermined discrete cosine transform (DCT) or discrete sine transform (DST) on a prediction error in the spatial domain.
  • DCT discrete cosine transform
  • DST discrete sine transform
  • the conversion unit 106 adaptively selects a conversion type from a plurality of conversion types, and converts a prediction error into a conversion coefficient using a conversion basis function corresponding to the selected conversion type. May be. Such a conversion may be referred to as EMT (explicit multiple core transform) or AMT (adaptive multiple transform).
  • the plurality of conversion types include, for example, DCT-II, DCT-V, DCT-VIII, DST-I and DST-VII.
  • FIG. 3 is a table showing conversion basis functions corresponding to each conversion type. In FIG. 3, N indicates the number of input pixels. Selection of a conversion type from among these multiple conversion types may depend on, for example, the type of prediction (intra prediction and inter prediction), or may depend on an intra prediction mode.
  • Information indicating whether or not to apply such EMT or AMT (for example, called an AMT flag) and information indicating the selected conversion type are signaled at the CU level.
  • AMT flag information indicating whether or not to apply such EMT or AMT
  • the signalization of these pieces of information need not be limited to the CU level, but may be other levels (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
  • the conversion unit 106 may reconvert the conversion coefficient (conversion result). Such reconversion is sometimes referred to as AST (adaptive secondary transform) or NSST (non-separable secondary transform). For example, the conversion unit 106 performs re-conversion for each sub-block (for example, 4 ⁇ 4 sub-block) included in the block of the conversion coefficient corresponding to the intra prediction error. Information indicating whether or not NSST is applied and information related to the transformation matrix used for NSST are signaled at the CU level. Note that the signalization of these pieces of information need not be limited to the CU level, but may be other levels (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
  • the quantization unit 108 quantizes the transform coefficient output from the transform unit 106. Specifically, the quantization unit 108 scans the transform coefficients of the current block in a predetermined scanning order, and quantizes the transform coefficients based on the quantization parameter (QP) corresponding to the scanned transform coefficients. Then, the quantization unit 108 outputs the quantized transform coefficient (hereinafter referred to as a quantization coefficient) of the current block to the entropy encoding unit 110 and the inverse quantization unit 112.
  • QP quantization parameter
  • the predetermined order is an order for quantization / inverse quantization of transform coefficients.
  • the predetermined scanning order is defined in ascending order of frequency (order from low frequency to high frequency) or descending order (order from high frequency to low frequency).
  • the quantization parameter is a parameter that defines a quantization step (quantization width). For example, if the value of the quantization parameter increases, the quantization step also increases. That is, if the value of the quantization parameter increases, the quantization error increases.
  • the entropy encoding unit 110 generates an encoded signal (encoded bit stream) by performing variable length encoding on the quantization coefficient that is input from the quantization unit 108. Specifically, the entropy encoding unit 110 binarizes the quantization coefficient, for example, and arithmetically encodes the binary signal.
  • the inverse quantization unit 112 inversely quantizes the quantization coefficient that is an input from the quantization unit 108. Specifically, the inverse quantization unit 112 inversely quantizes the quantization coefficient of the current block in a predetermined scanning order. Then, the inverse quantization unit 112 outputs the inverse-quantized transform coefficient of the current block to the inverse transform unit 114.
  • the inverse transform unit 114 restores the prediction error by inverse transforming the transform coefficient that is an input from the inverse quantization unit 112. Specifically, the inverse transform unit 114 restores the prediction error of the current block by performing an inverse transform corresponding to the transform by the transform unit 106 on the transform coefficient. Then, the inverse transformation unit 114 outputs the restored prediction error to the addition unit 116.
  • the restored prediction error does not match the prediction error calculated by the subtraction unit 104 because information is lost due to quantization. That is, the restored prediction error includes a quantization error.
  • the adder 116 reconstructs the current block by adding the prediction error input from the inverse transform unit 114 and the prediction sample input from the prediction control unit 128. Then, the adding unit 116 outputs the reconfigured block to the block memory 118 and the loop filter unit 120.
  • the reconstructed block is sometimes referred to as a local decoding block.
  • the block memory 118 is a storage unit for storing blocks in an encoding target picture (hereinafter referred to as current picture) that are referred to in intra prediction. Specifically, the block memory 118 stores the reconstructed block output from the adding unit 116.
  • the loop filter unit 120 applies a loop filter to the block reconstructed by the adding unit 116 and outputs the filtered reconstructed block to the frame memory 122.
  • the loop filter is a filter (in-loop filter) used in the encoding loop, and includes, for example, a deblocking filter (DF), a sample adaptive offset (SAO), an adaptive loop filter (ALF), and the like.
  • a least square error filter is applied to remove coding distortion. For example, for each 2 ⁇ 2 sub-block in the current block, a plurality of multiples based on the direction of the local gradient and the activity are provided. One filter selected from the filters is applied.
  • sub-blocks for example, 2 ⁇ 2 sub-blocks
  • a plurality of classes for example, 15 or 25 classes.
  • the direction value D of the gradient is derived, for example, by comparing gradients in a plurality of directions (for example, horizontal, vertical, and two diagonal directions).
  • the gradient activation value A is derived, for example, by adding gradients in a plurality of directions and quantizing the addition result.
  • a filter for a sub-block is determined from among a plurality of filters.
  • FIG. 4A to 4C are diagrams showing a plurality of examples of filter shapes used in ALF.
  • 4A shows a 5 ⁇ 5 diamond shape filter
  • FIG. 4B shows a 7 ⁇ 7 diamond shape filter
  • FIG. 4C shows a 9 ⁇ 9 diamond shape filter.
  • Information indicating the shape of the filter is signalized at the picture level. It should be noted that the signalization of the information indicating the filter shape need not be limited to the picture level, but may be another level (for example, a sequence level, a slice level, a tile level, a CTU level, or a CU level).
  • ON / OFF of ALF is determined at the picture level or the CU level, for example. For example, for luminance, it is determined whether to apply ALF at the CU level, and for color difference, it is determined whether to apply ALF at the picture level.
  • Information indicating ALF on / off is signaled at the picture level or the CU level. Signaling of information indicating ALF on / off need not be limited to the picture level or the CU level, and may be performed at other levels (for example, a sequence level, a slice level, a tile level, or a CTU level). Good.
  • a coefficient set of a plurality of selectable filters (for example, up to 15 or 25 filters) is signalized at the picture level.
  • the signalization of the coefficient set need not be limited to the picture level, but may be another level (for example, sequence level, slice level, tile level, CTU level, CU level, or sub-block level).
  • the frame memory 122 is a storage unit for storing a reference picture used for inter prediction, and is sometimes called a frame buffer. Specifically, the frame memory 122 stores the reconstructed block filtered by the loop filter unit 120.
  • the intra prediction unit 124 generates a prediction signal (intra prediction signal) by referring to the block in the current picture stored in the block memory 118 and performing intra prediction (also referred to as intra-screen prediction) of the current block. Specifically, the intra prediction unit 124 generates an intra prediction signal by performing intra prediction with reference to a sample (for example, luminance value and color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. To the unit 128.
  • the intra prediction unit 124 performs intra prediction using one of a plurality of predefined intra prediction modes.
  • the plurality of intra prediction modes include one or more non-directional prediction modes and a plurality of directional prediction modes.
  • One or more non-directional prediction modes are for example H.264. It includes Planar prediction mode and DC prediction mode defined by H.265 / HEVC (High-Efficiency Video Coding) standard (Non-patent Document 1).
  • the multiple directionality prediction modes are for example H.264. It includes 33-direction prediction modes defined in the H.265 / HEVC standard. In addition to the 33 directions, the plurality of directionality prediction modes may further include 32 direction prediction modes (a total of 65 directionality prediction modes).
  • FIG. 5 is a diagram illustrating 67 intra prediction modes (two non-directional prediction modes and 65 directional prediction modes) in intra prediction. The solid line arrows The 33 directions defined in the H.265 / HEVC standard are represented, and the dashed arrow represents the added 32 directions.
  • the luminance block may be referred to in the intra prediction of the color difference block. That is, the color difference component of the current block may be predicted based on the luminance component of the current block.
  • Such intra prediction is sometimes called CCLM (cross-component linear model) prediction.
  • the intra prediction mode (for example, called CCLM mode) of the color difference block which refers to such a luminance block may be added as one of the intra prediction modes of the color difference block.
  • the intra prediction unit 124 may correct the pixel value after intra prediction based on the gradient of the reference pixel in the horizontal / vertical direction. Intra prediction with such correction may be called PDPC (position dependent intra prediction combination). Information indicating whether or not PDPC is applied (for example, referred to as a PDPC flag) is signaled, for example, at the CU level.
  • the signalization of this information need not be limited to the CU level, but may be another level (for example, a sequence level, a picture level, a slice level, a tile level, or a CTU level).
  • the inter prediction unit 126 refers to a reference picture stored in the frame memory 122 and is different from the current picture, and performs inter prediction (also referred to as inter-screen prediction) of the current block, thereby generating a prediction signal (inter prediction signal). Prediction signal). Inter prediction is performed in units of a current block or a sub-block (for example, 4 ⁇ 4 block) in the current block. For example, the inter prediction unit 126 performs motion estimation in the reference picture for the current block or sub-block. Then, the inter prediction unit 126 generates an inter prediction signal of the current block or sub-block by performing motion compensation using motion information (for example, a motion vector) obtained by motion search. Then, the inter prediction unit 126 outputs the generated inter prediction signal to the prediction control unit 128.
  • inter prediction also referred to as inter-screen prediction
  • a motion vector predictor may be used for signalizing the motion vector. That is, the difference between the motion vector and the predicted motion vector may be signaled.
  • an inter prediction signal may be generated using not only the motion information of the current block obtained by motion search but also the motion information of adjacent blocks. Specifically, the inter prediction signal is generated in units of sub-blocks in the current block by weighted addition of the prediction signal based on the motion information obtained by motion search and the prediction signal based on the motion information of adjacent blocks. May be.
  • Such inter prediction motion compensation
  • OBMC overlapped block motion compensation
  • OBMC block size information indicating the size of a sub-block for OBMC
  • OBMC flag information indicating whether or not to apply the OBMC mode
  • the level of signalization of these information does not need to be limited to the sequence level and the CU level, and may be other levels (for example, a picture level, a slice level, a tile level, a CTU level, or a sub-block level). Good.
  • the motion information may be derived on the decoding device side without being converted into a signal.
  • H.M. A merge mode defined in the H.265 / HEVC standard may be used.
  • the motion information may be derived by performing motion search on the decoding device side. In this case, motion search is performed without using the pixel value of the current block.
  • the mode in which motion search is performed on the decoding device side is sometimes called a PMMVD (patterned motion vector derivation) mode or an FRUC (frame rate up-conversion) mode.
  • PMMVD patterned motion vector derivation
  • FRUC frame rate up-conversion
  • a list of a plurality of candidates each having a predicted motion vector is generated Is done. Then, the evaluation value of each candidate included in the candidate list is calculated, and one candidate is selected based on the evaluation value.
  • a motion vector for the current block is derived based on the selected candidate motion vector.
  • the selected candidate motion vector is directly derived as a motion vector for the current block.
  • the motion vector for the current block may be derived by performing pattern matching in the peripheral region at the position in the reference picture corresponding to the selected candidate motion vector.
  • the evaluation value is calculated by pattern matching between an area in the reference picture corresponding to the motion vector and a predetermined area.
  • the first pattern matching and the second pattern matching may be referred to as bilateral matching and template matching, respectively.
  • pattern matching is performed between two blocks in two different reference pictures that follow the motion trajectory of the current block. Therefore, in the first pattern matching, a region in another reference picture along the motion trajectory of the current block is used as the predetermined region for calculating the candidate evaluation value described above.
  • FIG. 6 is a diagram for explaining pattern matching (bilateral matching) between two blocks along a motion trajectory.
  • pattern matching bilateral matching
  • two blocks along the motion trajectory of the current block (Cur block) and two blocks in two different reference pictures (Ref0, Ref1) are used.
  • Ref0, Ref1 two blocks in two different reference pictures
  • the motion vectors (MV0, MV1) pointing to the two reference blocks are temporal distances between the current picture (Cur Pic) and the two reference pictures (Ref0, Ref1). It is proportional to (TD0, TD1).
  • the first pattern matching uses a mirror-symmetric bi-directional motion vector Is derived.
  • pattern matching is performed between a template in the current picture (a block adjacent to the current block in the current picture (for example, an upper and / or left adjacent block)) and a block in the reference picture. Therefore, in the second pattern matching, a block adjacent to the current block in the current picture is used as the predetermined region for calculating the candidate evaluation value described above.
  • FIG. 7 is a diagram for explaining pattern matching (template matching) between a template in the current picture and a block in the reference picture.
  • the current block is searched by searching the reference picture (Ref0) for the block that most closely matches the block adjacent to the current block (Cur block) in the current picture (Cur Pic).
  • Ref0 the reference picture
  • FRUC flag Information indicating whether or not to apply such FRUC mode
  • FRUC flag information indicating whether or not to apply such FRUC mode
  • the FRUC mode is applied (for example, when the FRUC flag is true)
  • information indicating the pattern matching method (first pattern matching or second pattern matching) (for example, called the FRUC mode flag) is signaled at the CU level. It becomes. Note that the signalization of these pieces of information need not be limited to the CU level, but may be other levels (for example, sequence level, picture level, slice level, tile level, CTU level, or sub-block level). .
  • motion information may be derived on the decoding device side by a method different from motion search.
  • the motion vector correction amount may be calculated using a peripheral pixel value for each pixel based on a model assuming constant velocity linear motion.
  • BIO bi-directional optical flow
  • FIG. 8 is a diagram for explaining a model assuming constant velocity linear motion.
  • (v x , v y ) indicates a velocity vector
  • ⁇ 0 and ⁇ 1 are the time between the current picture (Cur Pic) and two reference pictures (Ref 0 , Ref 1 ), respectively.
  • the distance. (MVx 0 , MVy 0 ) indicates a motion vector corresponding to the reference picture Ref 0
  • (MVx 1 , MVy 1 ) indicates a motion vector corresponding to the reference picture Ref 1 .
  • This optical flow equation consists of (i) the product of the time derivative of the luminance value, (ii) the horizontal component of the horizontal velocity and the spatial gradient of the reference image, and (iii) the vertical velocity and the spatial gradient of the reference image. Indicates that the sum of the products of the vertical components of is equal to zero. Based on a combination of this optical flow equation and Hermite interpolation, a block-based motion vector obtained from a merge list or the like is corrected in pixel units.
  • the motion vector may be derived on the decoding device side by a method different from the derivation of the motion vector based on the model assuming constant velocity linear motion.
  • a motion vector may be derived for each subblock based on the motion vectors of a plurality of adjacent blocks.
  • This mode may be referred to as an affine motion compensation prediction mode.
  • FIG. 9 is a diagram for explaining the derivation of motion vectors in units of sub-blocks based on the motion vectors of a plurality of adjacent blocks.
  • the current block includes 16 4 ⁇ 4 sub-blocks.
  • the motion vector v 0 of the upper left corner control point of the current block is derived based on the motion vector of the adjacent block
  • the motion vector v 1 of the upper right corner control point of the current block is derived based on the motion vector of the adjacent sub block. Is done.
  • the motion vector (v x , v y ) of each sub-block in the current block is derived by the following equation (2).
  • x and y indicate the horizontal position and vertical position of the sub-block, respectively, and w indicates a predetermined weight coefficient.
  • Such an affine motion compensation prediction mode may include several modes in which the motion vector derivation methods of the upper left and upper right corner control points are different.
  • Information indicating such an affine motion compensation prediction mode (for example, called an affine flag) is signaled at the CU level. Note that the information indicating the affine motion compensation prediction mode need not be limited to the CU level, but other levels (for example, sequence level, picture level, slice level, tile level, CTU level, or sub-block level). ).
  • the prediction control unit 128 selects either the intra prediction signal or the inter prediction signal, and outputs the selected signal to the subtraction unit 104 and the addition unit 116 as a prediction signal.
  • FIG. 10 is a block diagram showing a functional configuration of decoding apparatus 200 according to Embodiment 1.
  • the decoding device 200 is a moving image / image decoding device that decodes moving images / images in units of blocks.
  • the decoding device 200 includes an entropy decoding unit 202, an inverse quantization unit 204, an inverse transformation unit 206, an addition unit 208, a block memory 210, a loop filter unit 212, and a frame memory 214. And an intra prediction unit 216, an inter prediction unit 218, and a prediction control unit 220.
  • the decoding device 200 is realized by, for example, a general-purpose processor and a memory.
  • the processor executes the entropy decoding unit 202, the inverse quantization unit 204, the inverse transformation unit 206, the addition unit 208, the loop filter unit 212, and the intra prediction unit. 216, the inter prediction unit 218, and the prediction control unit 220.
  • the decoding apparatus 200 is dedicated to the entropy decoding unit 202, the inverse quantization unit 204, the inverse transformation unit 206, the addition unit 208, the loop filter unit 212, the intra prediction unit 216, the inter prediction unit 218, and the prediction control unit 220. It may be realized as one or more electronic circuits.
  • the entropy decoding unit 202 performs entropy decoding on the encoded bit stream. Specifically, the entropy decoding unit 202 performs arithmetic decoding from a coded bitstream to a binary signal, for example. Then, the entropy decoding unit 202 debinarizes the binary signal. As a result, the entropy decoding unit 202 outputs the quantized coefficient to the inverse quantization unit 204 in units of blocks.
  • the inverse quantization unit 204 inversely quantizes the quantization coefficient of a decoding target block (hereinafter referred to as a current block) that is an input from the entropy decoding unit 202. Specifically, the inverse quantization unit 204 inversely quantizes each quantization coefficient of the current block based on the quantization parameter corresponding to the quantization coefficient. Then, the inverse quantization unit 204 outputs the quantization coefficient (that is, the transform coefficient) obtained by inverse quantization of the current block to the inverse transform unit 206.
  • a decoding target block hereinafter referred to as a current block
  • the inverse quantization unit 204 inversely quantizes each quantization coefficient of the current block based on the quantization parameter corresponding to the quantization coefficient. Then, the inverse quantization unit 204 outputs the quantization coefficient (that is, the transform coefficient) obtained by inverse quantization of the current block to the inverse transform unit 206.
  • the inverse transform unit 206 restores the prediction error by inverse transforming the transform coefficient that is an input from the inverse quantization unit 204.
  • the inverse conversion unit 206 determines the current block based on the information indicating the read conversion type. Inverts the conversion coefficient of.
  • the inverse transform unit 206 applies inverse retransformation to the transform coefficient.
  • the adder 208 reconstructs the current block by adding the prediction error input from the inverse converter 206 and the prediction sample input from the prediction controller 220. Then, the adding unit 208 outputs the reconfigured block to the block memory 210 and the loop filter unit 212.
  • the block memory 210 is a storage unit for storing a block that is referred to in intra prediction and that is within a decoding target picture (hereinafter referred to as a current picture). Specifically, the block memory 210 stores the reconstructed block output from the adding unit 208.
  • the loop filter unit 212 applies a loop filter to the block reconstructed by the adding unit 208, and outputs the filtered reconstructed block to the frame memory 214, the display device, and the like.
  • one filter is selected from the plurality of filters based on the local gradient direction and activity, The selected filter is applied to the reconstruction block.
  • the frame memory 214 is a storage unit for storing a reference picture used for inter prediction, and is sometimes called a frame buffer. Specifically, the frame memory 214 stores the reconstructed block filtered by the loop filter unit 212.
  • the intra prediction unit 216 performs intra prediction with reference to the block in the current picture stored in the block memory 210 based on the intra prediction mode read from the encoded bitstream, so that a prediction signal (intra prediction Signal). Specifically, the intra prediction unit 216 generates an intra prediction signal by performing intra prediction with reference to a sample (for example, luminance value and color difference value) of a block adjacent to the current block, and performs prediction control on the intra prediction signal. Output to the unit 220.
  • a prediction signal for example, luminance value and color difference value
  • the intra prediction unit 216 may predict the color difference component of the current block based on the luminance component of the current block.
  • the intra prediction unit 216 corrects the pixel value after intra prediction based on the gradient of the reference pixel in the horizontal / vertical direction.
  • the inter prediction unit 218 refers to the reference picture stored in the frame memory 214 and predicts the current block. Prediction is performed in units of a current block or a sub-block (for example, 4 ⁇ 4 block) in the current block. For example, the inter prediction unit 218 generates an inter prediction signal of the current block or sub-block by performing motion compensation using motion information (for example, a motion vector) read from the encoded bitstream, and generates the inter prediction signal. The result is output to the prediction control unit 220.
  • motion information for example, a motion vector
  • the inter prediction unit 218 When the information read from the encoded bitstream indicates that the OBMC mode is to be applied, the inter prediction unit 218 includes not only the motion information of the current block obtained by motion search but also the motion information of adjacent blocks. To generate an inter prediction signal.
  • the inter prediction unit 218 follows the pattern matching method (bilateral matching or template matching) read from the encoded stream. Motion information is derived by performing motion search. Then, the inter prediction unit 218 performs motion compensation using the derived motion information.
  • the inter prediction unit 218 derives a motion vector based on a model assuming constant velocity linear motion. Also, when the information read from the encoded bitstream indicates that the affine motion compensated prediction mode is applied, the inter prediction unit 218 determines the motion vector in units of subblocks based on the motion vectors of a plurality of adjacent blocks. Is derived.
  • the prediction control unit 220 selects either the intra prediction signal or the inter prediction signal, and outputs the selected signal to the adding unit 208 as a prediction signal.
  • FIG. 11 is a block diagram showing a detailed functional configuration of entropy coding unit 110 in coding apparatus 100 according to Embodiment 1.
  • the entropy coding unit 110 generates a bit string by applying variable length coding to the quantized coefficient output from the quantization unit 108, and outputs the generated bit string.
  • This bit string corresponds to encoded image information and is also called an encoded signal, an encoded bit stream, or an encoded bit string.
  • the entropy encoding unit 110 includes a binarization unit 132, a switching unit 134, an intermediate buffer 136, an arithmetic encoding unit 138, a switching unit 140, and a multiplexing unit 142. . Then, the entropy encoding unit 110 stores the generated bit string in the output buffer 144 by generating a bit string and outputting the generated bit string. The bit string stored in the output buffer 144 is output from the output buffer 144 as appropriate.
  • the entropy encoding unit 110 may include an output buffer 144.
  • the binarization unit 132 binarizes the quantization coefficient and the like. Specifically, the binarization unit 132 converts the quantized frequency conversion coefficient or the like into a data string having a value expressed by, for example, 0 or 1, and outputs the obtained data string. Hereinafter, this data string is also referred to as a binarized data string.
  • the binarization performed by the binarization unit 132 is basically binarization for arithmetic coding, and more specifically binarization for performing binary arithmetic coding. . That is, the binarizing unit 132 derives a binarized data string of image information basically according to binarization for arithmetic coding.
  • binarization methods include unary binarization, truncated unary binarization, unary / kth-order exponent Golomb / joint binarization, fixed-length binarization, and table reference.
  • entropy coding of the context adaptive binary arithmetic coding scheme is performed by binarization in the binarization unit 132 and arithmetic coding in the arithmetic coding unit 138.
  • the context adaptive binary arithmetic coding scheme is also called CABAC.
  • the binarization performed by the binarization unit 132 can also be expressed as binarization for the context adaptive binary arithmetic coding scheme.
  • the switching units 134 and 140 operate in conjunction with the mode information, and switch whether to apply arithmetic coding to the binary data string. For example, the switching units 134 and 140 switch whether to apply arithmetic coding to the binarized data sequence according to mode information given from the outside of the encoding apparatus 100.
  • the mode information may be given as an instruction from the user or the host system.
  • this mode information selectively indicates the first mode and the second mode. That is, the mode information indicates one mode selected from the first mode and the second mode. For example, in the first mode, arithmetic coding is applied to the binarized data sequence, and in the second mode, arithmetic coding is not applied to the binarized data sequence.
  • the switching unit 134 outputs the binarized data sequence output from the binarizing unit 132 to the intermediate buffer 136, thereby converting the binarized data sequence.
  • the arithmetic encoding unit 138 applies arithmetic encoding to the binarized data sequence stored in the intermediate buffer 136, and outputs a binary data sequence to which arithmetic encoding is applied.
  • the switching unit 140 outputs the binary data sequence output from the arithmetic encoding unit 138 to the multiplexing unit 142.
  • the switching unit 134 when the mode information indicates the second mode, the switching unit 134 outputs the binarized data string output from the binarizing unit 132 to the switching unit 140 as it is. Then, the switching unit 140 outputs the binarized data sequence output from the switching unit 134 to the multiplexing unit 142. That is, arithmetic coding is bypassed. In order to avoid confusion with bypass arithmetic encoding, which is one mode of arithmetic encoding, bypassing arithmetic encoding may be expressed as skipping arithmetic encoding.
  • the mode information and mode can also be expressed as delay mode information and delay mode.
  • the first mode is a normal mode
  • the second mode is a low delay mode.
  • the processing delay is reduced compared to the first mode.
  • the intermediate buffer 136 is a storage unit for storing a binarized data string, and is also called an intermediate memory.
  • a delay occurs in the arithmetic coding performed by the arithmetic coding unit 138.
  • the delay amount fluctuates depending on the contents of the binarized data string.
  • the intermediate buffer 136 absorbs the fluctuation of the delay amount, and the subsequent processing is performed smoothly. Note that inputting data to a storage unit such as the intermediate buffer 136 corresponds to storing data in the storage unit, and outputting data from the storage unit corresponds to reading data from the storage unit.
  • the arithmetic encoding unit 138 performs arithmetic encoding. Specifically, the arithmetic coding unit 138 reads the binarized data sequence stored in the intermediate buffer 136 and applies arithmetic coding to the binarized data sequence. The arithmetic encoding unit 138 may apply arithmetic encoding corresponding to the context adaptive binary arithmetic encoding scheme to the binary data string.
  • the arithmetic encoding unit 138 selects the occurrence probability of the value according to the context such as the data type, performs arithmetic encoding according to the selected occurrence probability, and updates the occurrence probability according to the result of the arithmetic encoding. That is, the arithmetic encoding unit 138 performs arithmetic encoding according to a variable occurrence probability. Arithmetic coding performed according to a variable occurrence probability is also referred to as context adaptive arithmetic coding.
  • the arithmetic encoding unit 138 may perform arithmetic encoding according to a fixed occurrence probability for a specific data type or the like. Specifically, the arithmetic encoding unit 138 may perform arithmetic encoding according to an occurrence probability of 50% as an occurrence probability of 0 or 1. Arithmetic coding performed according to a fixed occurrence probability is also called bypass arithmetic coding.
  • the multiplexing unit 142 multiplexes the mode information and the binarized data string, and generates a bit string including the mode information and the binarized data string. Then, the multiplexing unit 142 stores the bit string in the output buffer 144 by outputting the bit string to the output buffer 144. The bit string stored in the output buffer 144 is output from the output buffer 144 as appropriate. That is, the multiplexing unit 142 outputs a bit string via the output buffer 144.
  • the mode information may be included in the bit string as an upper parameter.
  • the mode information may be included in an SPS (sequence parameter set) in the bit string, may be included in a PPS (picture parameter set) in the bit string, or a slice header in the bit string. May be included.
  • SPS sequence parameter set
  • PPS picture parameter set
  • the mode information included in the bit string is expressed by one or more bits.
  • the binarized data string may be included in the slice data.
  • the binarized data string may be a binarized data string to which arithmetic coding is applied, or may be a binarized data string to which arithmetic coding is not applied.
  • the mode information included in the bit string can also be expressed as application information indicating whether or not arithmetic coding is applied to the binary data string included in the bit string.
  • the mode information may be included in the bit string as application information indicating whether or not arithmetic coding is applied to the binarized data string. This application information may indicate whether the bit string includes a binary data string to which arithmetic coding is applied or whether the bit string includes a binary data string to which arithmetic coding is not applied.
  • the mode information may not be included in the bit string when the mode information is exchanged in the host system or when the mode information is predetermined. That is, in this case, multiplexing does not have to be performed.
  • the output buffer 144 is a storage unit for storing a bit string, and is also called a CPB (Coded Picture Buffer) or an output memory.
  • a bit string obtained by encoding image information by the encoding device 100 is stored in the output buffer 144.
  • the bit string stored in the output buffer 144 is output as appropriate, and is multiplexed with, for example, an encoded audio signal.
  • FIG. 12 is a block diagram showing a detailed functional configuration of entropy decoding section 202 in decoding apparatus 200 according to Embodiment 1.
  • the entropy decoding unit 202 performs entropy decoding on the bit string input via the input buffer 232 to derive a quantization coefficient and the like.
  • This bit string is, for example, a bit string generated by the encoding apparatus 100 and may have the above-described data configuration.
  • the entropy decoding unit 202 includes a separation unit 234, a switching unit 236, an arithmetic decoding unit 238, an intermediate buffer 240, a switching unit 242, and an inverse binarization unit 244.
  • the entropy decoding unit 202 may include an input buffer 232.
  • the input buffer 232 is a storage unit for storing a bit string, and is also called a CPB or an input memory.
  • the bit string decoded by the decoding device 200 is separated from, for example, an encoded audio signal and stored in the input buffer 232. Then, the decoding device 200 reads the bit string stored in the input buffer 232 and decodes the bit string.
  • the separation unit 234 acquires the bit string from the input buffer 232, separates the mode information and the binarized data string from the bit string, and outputs the mode information and the binarized data string. That is, the separation unit 234 acquires a bit string including the mode information and the binarized data string via the input buffer 232, and outputs the mode information and the binarized data string included in the bit string.
  • the binarized data string may be a binarized data string to which arithmetic coding is applied, or may be a binarized data string to which arithmetic coding is not applied.
  • the mode information can also be expressed as application information indicating whether or not arithmetic coding is applied to the binary data string included in the bit string.
  • the mode information may not be included in the bit string. In this case, separation and output of mode information may not be performed.
  • the mode information may be given as an instruction from the outside of the decoding apparatus 200, specifically, from a user or a host system.
  • the switching units 236 and 242 operate in conjunction with the mode information obtained from the separation unit 234 and the like, and switch whether to apply arithmetic decoding to the binarized data string. For example, of the first mode and the second mode selectively indicated by the mode information, in the first mode, arithmetic decoding is applied to the binarized data sequence, and in the second mode, the binarized data sequence is applied. Arithmetic decoding is not applied.
  • the switching unit 236 outputs the binarized data sequence output from the separation unit 234 to the arithmetic decoding unit 238. Then, the arithmetic decoding unit 238 applies arithmetic decoding to the binarized data sequence and outputs the binarized data sequence to which the arithmetic decoding is applied, so that the binarized data sequence to which the arithmetic decoding is applied Is stored in the intermediate buffer 240.
  • the switching unit 242 appropriately acquires the binarized data string stored in the intermediate buffer 240 and outputs the binarized data string acquired from the intermediate buffer 240 to the inverse binarization unit 244.
  • the switching unit 236 outputs the binarized data string output from the separation unit 234 to the switching unit 242 as it is. Then, the switching unit 242 outputs the binarized data string output from the switching unit 236 to the inverse binarization unit 244. That is, arithmetic decoding is bypassed.
  • bypassing arithmetic decoding may be expressed as skipping arithmetic decoding.
  • the arithmetic decoding unit 238 performs arithmetic decoding. Specifically, the arithmetic decoding unit 238 applies arithmetic decoding to the binarized data sequence to which arithmetic coding is applied, and outputs the binarized data sequence to which arithmetic decoding is applied.
  • the binarized data sequence to which decoding is applied is stored in the intermediate buffer 240.
  • the binarized data sequence to which arithmetic decoding is applied corresponds to the original binarized data sequence to which arithmetic coding is not applied.
  • the arithmetic decoding unit 238 may apply arithmetic decoding corresponding to the context adaptive binary arithmetic encoding scheme to the binary data string.
  • the arithmetic decoding unit 238 selects the occurrence probability of the value according to the context such as the data type, performs arithmetic decoding according to the selected occurrence probability, and updates the occurrence probability according to the result of the arithmetic decoding. That is, the arithmetic decoding unit 238 performs arithmetic decoding according to a variable occurrence probability. Arithmetic decoding performed according to a variable occurrence probability is also called context adaptive arithmetic decoding.
  • the arithmetic decoding unit 238 may perform arithmetic decoding according to a fixed occurrence probability for a specific data type or the like. Specifically, the arithmetic decoding unit 238 may perform arithmetic decoding according to the occurrence probability of 50% as the occurrence probability of 0 or 1. Arithmetic decoding performed according to a fixed occurrence probability is also called bypass arithmetic decoding.
  • the intermediate buffer 240 is a storage unit for storing an arithmetically decoded binary data string, and is also called an intermediate memory.
  • a delay occurs in the arithmetic decoding performed by the arithmetic decoding unit 238, a delay occurs.
  • the delay amount fluctuates depending on the contents of the binarized data string.
  • the intermediate buffer 240 absorbs the fluctuation of the delay amount, and the subsequent processing is performed smoothly.
  • the inverse binarization unit 244 derives a quantization coefficient and the like by performing inverse binarization on the binarized data string. Specifically, the inverse binarization unit 244 converts, for example, a binarized data string having a value represented by 0 or 1 into a quantized frequency conversion coefficient or the like, and converts the quantized frequency conversion coefficient or the like. Output to the inverse quantization unit 204. Further, the inverse binarization performed by the inverse binarization unit 244 is basically an inverse binarization corresponding to the binarization for arithmetic coding, and more specifically, a binary arithmetic code. It is inverse binarization corresponding to binarization for performing binarization.
  • entropy decoding of the context adaptive binary arithmetic coding scheme is performed by arithmetic decoding in the arithmetic decoding unit 238 and inverse binarization in the inverse binarization unit 244. That is, the inverse binarization unit 244 may perform inverse binarization according to the context adaptive binary arithmetic coding method. Inverse binarization is also called multi-value quantization.
  • the encoding device 100 and the decoding device 200 according to the present embodiment are particularly useful for a real-time communication system and the like that are required to perform encoding and decoding in a short time.
  • the encoding device 100 and the decoding device 200 are useful for a video conference system or an electronic mirror.
  • the second mode in which arithmetic coding and arithmetic decoding are not performed is used.
  • the application information indicates whether arithmetic coding is applied to the binarized data sequence included in the bit sequence comprehensively in units including one or more pictures. Then, whether or not to apply arithmetic coding is comprehensively switched in units including one or more pictures.
  • arithmetic coding and arithmetic decoding may be skipped in a specific data type. More specifically, instead of bypass arithmetic coding and bypass arithmetic decoding, arithmetic coding and arithmetic decoding may be skipped.
  • switching between context arithmetic coding, bypass arithmetic coding, and arithmetic coding skipping may be performed.
  • switching between context arithmetic decoding, bypass arithmetic decoding, and skipping arithmetic decoding may be performed.
  • the application information indicating whether or not arithmetic coding is applied to the binarized data string may be expressed by a 1-bit flag or may be expressed in another format. For example, information indicating that arithmetic coding is applied to the binary data string is added to the bit string, so that the bit string may include the added information as application information. Alternatively, information indicating that arithmetic coding is not applied to the binarized data sequence is added to the bit sequence, so that the bit sequence may include the added information as application information.
  • the application information may be included in the bit string as information common to other information.
  • the information indicating the picture type may be the application information.
  • the binarization unit 132 of the encoding device 100 has different binary values in the first mode in which arithmetic coding is applied and the second mode in which arithmetic coding is not applied with respect to frequency transform coefficient information in the image information. Binarization is performed in the digitized form.
  • the inverse binarization unit 244 of the decoding device 200 performs inverse binary that differs between the first mode in which arithmetic decoding is applied and the second mode in which arithmetic decoding is not applied with respect to frequency transform coefficient information in the image information. Inverse binarization is performed using the conversion form.
  • the mode information may be given to the binarization unit 132 of the encoding device 100 in the same manner as the switching units 134 and 140 of the encoding device 100. And the binarization part 132 of the encoding apparatus 100 may acquire the given mode information, and may switch the binarization format of frequency conversion coefficient information according to mode information.
  • the inverse binarization unit 244 of the decoding device 200 may be given mode information similarly to the switching units 236 and 242 of the decoding device 200. Then, the inverse binarization unit 244 of the decoding device 200 may acquire the given mode information and switch the inverse binarization format of the frequency transform coefficient information according to the mode information.
  • FIG. 13 is a flowchart showing the syntax structure according to the first embodiment.
  • the syntax structure corresponds to the binarization format and the inverse binarization format.
  • the binarization unit 132 converts the image information into a binarized data string by binarizing the image information according to the syntax structure shown in FIG.
  • the binarization unit 132 binarizes the header information of the picture layer (S101). Next, the binarization unit 132 binarizes the header information of the slice layer (S102). Next, the binarization unit 132 binarizes the block layer coding information (S103).
  • the binarization unit 132 binarizes the coding information of the block layer except for the frequency conversion coefficient information.
  • the frequency conversion coefficient information indicates a quantized frequency conversion coefficient.
  • the coding information of the block layer includes prediction parameter information.
  • the prediction parameter information indicates a prediction parameter related to an image prediction method.
  • the prediction parameter information may indicate an encoding mode of intra prediction or inter prediction. Further, the prediction parameter information may indicate a motion vector and a reference picture related to inter prediction. The prediction parameter information may indicate an in-plane prediction mode related to the prediction direction of the in-plane prediction.
  • the binarization unit 132 binarizes the frequency conversion coefficient information with the syntax structure for the first mode in the first mode (the first mode in S104) (S105). Then, in the second mode (the second mode in S104), the binarization unit 132 binarizes the frequency conversion coefficient information with the syntax structure for the second mode (S106).
  • the binarization unit 132 repeats the processing (S103 to S106) for each block included in the slice (S107). Then, the binarizing unit 132 repeats the processing (S102 to S107) for each slice included in the picture (S108). Then, the binarization unit 132 repeats the processing (S101 to S108) for each picture (S109).
  • the binarization unit 132 binarizes the frequency conversion coefficient information with a syntax structure that is different between the first mode and the second mode, and the other structure has a syntax structure common to the first mode and the second mode. Binarize information.
  • the inverse binarization unit 244 of the decoding device 200 converts the binarized data sequence into image information by inverse binarizing the binarized data sequence according to the syntax structure shown in FIG. .
  • the inverse binarization unit 244 inversely binarizes the binarized data string of the header information of the picture layer (S101). Next, the inverse binarization unit 244 inversely binarizes the binarized data string of the header information of the slice layer (S102). Next, the inverse binarization unit 244 inversely binarizes the binarized data string of the block layer coding information (S103). Specifically, the inverse binarization unit 244 performs inverse binarization on the binarized data sequence of the coding information of the block layer, excluding the binarized data sequence of the frequency conversion coefficient information.
  • the inverse binarization unit 244 inversely binarizes the binarized data string of the frequency conversion coefficient information with the syntax structure for the first mode (S105). .
  • the inverse binarization unit 244 inversely binarizes the binarized data string of the frequency conversion coefficient information with the syntax structure for the second mode (S106). .
  • the inverse binarization unit 244 repeats the block processing (S103 to S106) for each block included in the slice (S107). Then, the inverse binarization unit 244 repeats the processing (S102 to S107) for each slice included in the picture (S108). Then, the inverse binarization unit 244 repeats the process (S101 to S108) for each picture (S109).
  • the inverse binarization unit 244 inversely binarizes the binarized data string of the frequency conversion coefficient information with a syntax structure that is different between the first mode and the second mode, and performs the first mode and the second mode.
  • the binarized data string of other information is reverse binarized with a common syntax structure.
  • the syntax structure for the first mode may be a uniform syntax structure for reducing the code amount by arithmetic coding, or a simple syntax structure with a small processing load for binarization.
  • different syntax structures in the first mode and the second mode are applied only to the frequency conversion coefficient information indicating the frequency conversion coefficient related to the frequency component of the image in the image information.
  • a common syntax structure in the first mode and the second mode is applied to all information other than the frequency conversion coefficient information in the image information.
  • a common syntax structure in the first mode and the second mode is applied to prediction parameter information indicating a prediction parameter related to an image prediction method in the image information.
  • different syntax structures are applied to only the frequency conversion coefficient information in the first mode and the second mode, but the first mode and the second mode are also applied to other information.
  • Different syntax structures may be applied. That is, the first mode is a part of the information included in the image information, and includes the frequency conversion coefficient information and the partial information including the information to be applied with a different syntax structure other than the frequency conversion coefficient information.
  • Different syntax structures may be applied in the second mode. In this case, in addition to the frequency transform coefficient information, the frequency transform coefficient is used depending on whether the first mode to which arithmetic coding and arithmetic decoding are applied or the second mode to which arithmetic coding and arithmetic decoding is not applied.
  • the common syntax structure is applied to the prediction parameter information in the first mode and the second mode, but some prediction parameters included in the prediction parameter information are the first.
  • Different syntax structures may be applied in the first mode and the second mode. For example, one of information related to a coding mode, information related to a prediction direction of intra prediction, information related to a reference picture for inter prediction, and information related to a motion vector for inter prediction, included in prediction parameter information, or
  • a common syntax structure is applied to the first mode and the second mode, and parameters other than the prediction parameters to which a common syntax structure is applied to the first mode and the second mode are applied to the first mode and the second mode.
  • a different syntax structure may be applied to the two modes. In this case, compared with the case where the common syntax structure is applied to the entire prediction parameter information in the first mode and the second mode, the prediction parameter information in at least one of the first mode and the second mode is used. There is a possibility that the code amount can be reduced.
  • the binarization unit 132 of the encoding device 100 binarizes the frequency conversion block for each basic block. For example, the binarization unit 132 divides the frequency conversion block into a plurality of basic blocks, and performs binarization for each basic block.
  • the frequency conversion block is a block including a plurality of frequency conversion coefficients obtained by frequency conversion of the conversion unit. That is, the frequency conversion block corresponds to a conversion unit that has been subjected to frequency conversion, and can also be expressed as a frequency conversion coefficient block.
  • the conversion unit is a block composed of a plurality of pixel values of 16 ⁇ 16
  • a frequency conversion block composed of a plurality of frequency conversion coefficients of 16 ⁇ 16 is obtained by frequency conversion of the conversion unit.
  • the binarization unit 132 divides the frequency transform block having a size of 16 ⁇ 16 into a plurality of basic blocks each having a size of 4 ⁇ 4. Then, the binarization unit 132 binarizes the frequency conversion block having a size of 16 ⁇ 16 for each basic block having a size of 4 ⁇ 4.
  • the binarization unit 132 includes a plurality of frequency conversion blocks included in the frequency conversion block according to a predetermined scan order defined in descending order of frequency with respect to one or more basic blocks constituting the frequency conversion block.
  • the frequency conversion coefficient is binarized for each basic block.
  • the binarization unit 132 binarizes position information indicating the position of the specific basic block in the frequency conversion block in the second mode.
  • the specific basic block is a basic block that first includes a non-zero coefficient in the scan order among one or more basic blocks constituting the frequency conversion block, and is also expressed as last_sub_block.
  • a non-zero coefficient is a frequency conversion coefficient whose absolute value is not zero.
  • the binarizing unit 132 configures a plurality of basic blocks only for each basic block after the specific basic block in the scan order, out of one or more basic blocks configuring the frequency conversion block.
  • the block information indicating the frequency conversion coefficient is binarized. Note that, after the specific basic block in the scan order, the specific basic block and one or more basic blocks following the specific basic block in the scan order are included.
  • the encoding apparatus 100 can binarize position information and block information as frequency transform coefficient information in the second mode. And since the encoding apparatus 100 binarizes the block information for each basic block after the specific basic block in the scan order, it can support shortening the binarized data string of the frequency transform coefficient information. . Then, the encoding apparatus 100 can output a bit string including a binarized data string of frequency conversion coefficient information.
  • the binarization unit 132 does not binarize the position information of the specific basic block, and binarizes all of one or more basic blocks constituting the frequency conversion block. May be. Thereby, the binarization part 132 can binarize the frequency conversion coefficient information in a format different between the first mode and the second mode.
  • the inverse binarization unit 244 of the decoding device 200 debinarizes the binarized data string of the frequency conversion block for each basic block. Specifically, the inverse binarization unit 244 of the decoding device 200 performs the inverse binarization for each basic block of the binarized data sequence of a plurality of frequency transform coefficients included in the frequency transform block in the scan order described above. .
  • the inverse binarization unit 244 of the decoding device 200 performs an inverse binarization on the binarized data string of the position information indicating the position of the specific basic block in the frequency conversion block in the second mode. Then, in the second mode, the inverse binarization unit 244 selects a plurality of frequency transform coefficients constituting the basic block only for each basic block after the specific basic block in the scan order among the one or more basic blocks.
  • the binarized data string of the block information shown is reverse binarized.
  • the decoding device 200 can inverse binarize the binarized data sequence of the position information and the block information as the binarized data sequence of the frequency conversion coefficient information. Then, the decoding device 200 shortens the binarized data sequence of the frequency conversion coefficient information in order to inverse binarize the binarized data sequence of the block information for each basic block after the specific basic block in the scan order. Can help.
  • the inverse binarization unit 244 does not inverse binarize the binarized data string of the position information of the specific basic block, and all of one or more basic blocks constituting the frequency conversion block
  • the binarized data string for may be binarized in reverse. Accordingly, the inverse binarization unit 244 can inverse binarize the binarized data string of the frequency conversion coefficient information in a format different in the first mode and the second mode.
  • FIG. 14A to 14I are conceptual diagrams showing one or more basic blocks in the frequency conversion block according to Embodiment 1.
  • the size of the frequency transform block is between 4 ⁇ 4 and 16 ⁇ 16, and the size of the basic block is 4 ⁇ 4.
  • the size and shape of the frequency transform block depends on the size and shape of the transform unit.
  • the shape of the frequency conversion block may be a square whose vertical length and horizontal length are equal, or may be a rectangle whose vertical length and horizontal length are unequal.
  • FIG. 14A shows one basic block in a 4 ⁇ 4 frequency conversion block.
  • FIG. 14B shows four basic blocks in an 8 ⁇ 8 frequency conversion block.
  • FIG. 14C shows two basic blocks in an 8 ⁇ 4 frequency transform block.
  • FIG. 14D shows two basic blocks in a 4 ⁇ 8 frequency transform block.
  • FIG. 14E shows 16 basic blocks in a 16 ⁇ 16 frequency transform block.
  • FIG. 14F shows eight basic blocks in a 16 ⁇ 8 frequency conversion block.
  • FIG. 14G shows 8 basic blocks in an 8 ⁇ 16 frequency transform block.
  • FIG. 14H shows 12 basic blocks in a 16 ⁇ 12 frequency transform block.
  • FIG. 14I shows four basic blocks in a 4 ⁇ 16 frequency conversion block.
  • the numbers described in each of the one or more basic blocks indicate the positions of the basic blocks in the frequency conversion block.
  • the numbers indicating the positions of the basic blocks in the frequency conversion block are defined in order of increasing frequency. That is, the number indicating the position of the basic block is specified to be smaller as the frequency of the basic block is lower.
  • a portion near the upper left corner indicates a low frequency
  • a portion near the lower right corner indicates a high frequency
  • a portion near the lower left corner shows a low frequency in the horizontal direction and a high frequency in the vertical direction
  • a portion near the upper right corner shows a high frequency in the horizontal direction and a low frequency in the vertical direction.
  • each frequency transform coefficient constituting the two-dimensional frequency transform block indicates a higher frequency component value in the horizontal direction as it is closer to the right end.
  • each frequency transform coefficient constituting the two-dimensional frequency transform block indicates a higher frequency component value in the vertical direction as it is closer to the lower end.
  • the frequency levels are considered to be the same in the basic blocks arranged in the diagonal direction toward the lower left or upper right.
  • numbers indicating the positions of the basic blocks are defined in order of decreasing frequency in the horizontal direction.
  • the scan order is specified in order of frequency.
  • the scan order is defined in descending order of the number indicating the position of the basic block. Then, the basic block having the largest number indicating the position of the basic block is assigned to the head in the scanning order, and the basic block having the smallest number indicating the position of the basic block is assigned to the last in the scanning order.
  • the scan order for a plurality of basic blocks having the same frequency level is defined in order of increasing frequency in the horizontal direction.
  • the specific basic block is a basic block that first includes a non-zero coefficient in the scan order among one or more basic blocks constituting the frequency conversion block.
  • the binarization unit 132 of the encoding device 100 binarizes the position information of the specific basic block.
  • the binarization unit 132 binarizes the number indicating the position of the specific basic block.
  • the binarization unit 132 binarizes the block information only for each basic block after the specific basic block in the scan order among one or more basic blocks constituting the frequency conversion block.
  • the binarization unit 132 binarizes the block information of the specific basic block, and binarizes the block information of the basic block having a smaller number than the specific basic block.
  • the inverse binarization unit 244 of the decoding device 200 performs inverse binarization on the binarized data string of the position information of the specific basic block.
  • the inverse binarization unit 244 inversely binarizes a binarized data string having a number indicating the position of a specific basic block.
  • the inverse binarization unit 244 inversely binarizes the binarized data string of the block information only for each basic block after the specific basic block in the scan order among one or more basic blocks constituting the frequency conversion block.
  • the inverse binarization unit 244 reverse-binarizes the binarized data string of the block information of the specific basic block, and converts the binarized data string of the block information of the basic block having a smaller number than the specific basic block. Inverse binarization.
  • the encoding device 100 and the decoding device 200 can shorten the binarized data string of the frequency conversion coefficient information in the second mode. Therefore, the encoding device 100 and the decoding device 200 can suppress an increase in code amount in the second mode in which arithmetic encoding and arithmetic decoding are not applied.
  • the binarization unit 132 may binarize the position information of the specific basic block.
  • the binarization unit 132 may binarize block information only for each block after the specific basic block in the scan order among one or more basic blocks constituting the frequency conversion block. .
  • the inverse binarization unit 244 may inverse binarize the binarized data string of the position information of the specific basic block. Then, in the first mode, the inverse binarization unit 244 performs binarization data of block information only for each basic block after the specific basic block in the scan order among one or more basic blocks constituting the frequency conversion block.
  • the column may be inverse binarized.
  • the encoding device 100 and the decoding device 200 can shorten the binarized data string of the frequency conversion coefficient information even in the first mode. Therefore, this may further reduce the code amount in the first mode to which arithmetic coding and arithmetic decoding are applied.
  • the same syntax structure may be applied to the frequency conversion coefficient information in the first mode and the second mode.
  • different syntax structures in the first mode and the second mode may be applied to the frequency conversion coefficient information by another method.
  • the size of the frequency conversion block is not limited to the example of FIGS. 14A to 14I, and may be other sizes.
  • a plurality of sizes may be used for a plurality of frequency transform blocks of one picture.
  • the size of the basic block is not limited to 4 ⁇ 4, and may be other sizes.
  • One type of size may be used for a plurality of basic blocks of one picture, or a plurality of types of sizes may be used.
  • position information indicating the position of the basic block numbers indicating the positions of the basic blocks are shown in FIGS. 14A to 14I.
  • the numbers shown in FIGS. 14A to 14I are examples, and other numbers given by other criteria may be used as the numbers indicating the positions of the basic blocks. Alternatively, other information different from the number may be used as the position information indicating the position of the basic block.
  • the frequency transform coefficient information may not include the position information of the specific basic block. That is, when the number of basic blocks included in the frequency conversion block is 1, the frequency conversion coefficient information may not include the position information of the specific basic block. When the number of basic blocks included in the frequency conversion block is two or more, the frequency conversion coefficient information may include position information of the specific basic block.
  • the frequency transform coefficient information may not include the position information of the specific basic block in the frequency transform block.
  • the frequency conversion coefficient information does not need to include block information indicating a plurality of frequency conversion coefficients constituting each basic block after the specific basic block.
  • the frequency transform coefficient information for the frequency transform block that does not include the non-zero coefficient may not be binarized or encoded.
  • the binarization unit 132 may not binarize the frequency conversion block for each basic block in the first mode. That is, the binarization unit 132 may binarize a plurality of frequency conversion coefficients included in the frequency conversion block regardless of the basic block in the first mode.
  • the inverse binarization unit 244 does not have to inverse binarize the binarized data string of the frequency conversion block for each basic block in the first mode. That is, the inverse binarization unit 244 may inverse binarize a binarized data string of a plurality of frequency transform coefficients included in the frequency transform block in the first mode regardless of the basic block.
  • the binarization unit 132 of the encoding apparatus 100 binarizes a data value indicating the number of non-zero coefficients included in the basic block as part of the frequency transform coefficient information. Also, the inverse binarization unit 244 of the decoding device 200 performs binarization in which the data value indicating the number of non-zero coefficients included in the basic block is binarized as part of the frequency transform coefficient information in the second mode. Reverse binarize the data string. Thereby, a plurality of frequency conversion coefficients constituting the basic block can be efficiently expressed.
  • the binarization unit 132 uses a conversion table in which a plurality of data values and a plurality of binarized values are associated with each other in binarization of data values indicating the number of non-zero coefficients.
  • the inverse binarization unit 244 performs conversion in which a plurality of data values and a plurality of binarized values are associated in the inverse binarization of the binarized value of the data value indicating the number of non-zero coefficients.
  • This conversion table can also be expressed as a variable length coding table.
  • the conversion table includes a plurality of tables including a table including association of data values indicating 0 as the number of nonzero coefficients and a table not including association of data values indicating 0 as the number of nonzero coefficients. You may choose from. Thereby, the code amount of frequency conversion coefficient information can be reduced.
  • FIG. 15 is a conceptual diagram showing two types of tables A1 and A2 according to the first embodiment.
  • a plurality of data values and a plurality of binarized values are associated with each other.
  • Each of the plurality of data values corresponds to a combination of trailing_ones and total_coef.
  • Trailing_ones has an absolute value of 1 that is the first consecutive in the scan order defined by the highest frequency, except for the frequency conversion coefficient whose absolute value is 0, in the plurality of frequency conversion coefficients included in the basic block. Indicates the number of non-zero coefficients.
  • total_coef indicates the number of non-zero coefficients among a plurality of frequency transform coefficients included in the basic block. The combination of trailing_ones and total_coef is an example of a data value indicating the number of non-zero coefficients.
  • Table A1 includes a correspondence between a data value indicating 0 as the number of non-zero coefficients and a binarized value. That is, the table A1 includes data values where trailing_ones is 0 and total_coef is 0.
  • the table A2 does not include a correspondence between a data value indicating 0 as the number of non-zero coefficients and a binarized value. That is, the table A2 does not include a data value in which trailing_ones is 0 and total_coef is 0.
  • the binarized value associated with the data value in the table A2 is defined with a bit length shorter than the bit length of the binarized value associated with the same data value in the table A1.
  • total_coef is 3 and trailing_ones is 2. This data value is associated with “0000101” that is a 7-bit binarized value in the table A1, and “000011” that is a 6-bit binarized value in the table A2. ing.
  • the binarization unit 132 binarizes a data value indicating the number of non-zero coefficients of a basic block in which the number of non-zero coefficients may be zero according to the table A1. Then, the binarization unit 132 binarizes the data value indicating the number of non-zero coefficients of the basic block that is unlikely to have zero number of non-zero coefficients according to the table A2.
  • the inverse binarization unit 244 converts a binarized value obtained by binarizing a data value indicating the number of non-zero coefficients of a basic block that may have zero number of non-zero coefficients according to the table A1. Inverse binarization. Then, the inverse binarization unit 244 reverses the binarized value obtained by binarizing the data value indicating the number of non-zero coefficients of the basic block that is unlikely to have zero non-zero coefficients according to the table A2. Binarize.
  • the encoding device 100 and the decoding device 200 can suppress an increase in the code amount.
  • a basic block having a size of 4 ⁇ 4 is shown, but the size of the basic block may be different from 4 ⁇ 4.
  • the size of the basic block may be the same size as the frequency transform block or may be smaller than the frequency transform block.
  • a combination of trailing_ones and total_coef is used as a data value indicating the number of non-zero coefficients, but the data value indicating the number of non-zero coefficients may be other information.
  • FIG. 16 is a flowchart showing selection of a table according to the first embodiment. Specifically, FIG. 16 is a flowchart for selecting a conversion table from the table A1 and the table A2 shown in FIG.
  • the binarization unit 132 selects a conversion table from the table A1 and the table A2 for each basic block, and sets a data value indicating the number of non-zero coefficients included in the basic block according to the selected conversion block. Convert to value. Further, the inverse binarization unit 244 selects a conversion table from the table A1 and the table A2 for each basic block, and generates a data value indicating the number of non-zero coefficients included in the basic block according to the selected conversion block. Inverse binarization of the binarized value.
  • a basic block to be processed when binarization or inverse binarization processing is performed for each basic block is called a current basic block.
  • the binarization unit 132 binarizes a data value indicating the number of non-zero coefficients for each basic block after the specific basic block in the scan order only when the frequency conversion block includes the specific basic block.
  • the inverse binarization unit 244 binarizes the data value indicating the number of non-zero coefficients for each basic block after the specific basic block in the scan order only when the frequency conversion block includes the specific basic block. Is binarized.
  • a specific basic block is a basic block that initially contains non-zero coefficients in scan order.
  • the encoding apparatus 100 encodes the frequency conversion block when the frequency conversion block includes a non-zero coefficient, and does not encode the frequency conversion block when the frequency conversion block does not include a non-zero coefficient. Accordingly, the decoding apparatus 200 decodes the frequency conversion block when the frequency conversion block includes a non-zero coefficient, and does not decode the frequency conversion block when the frequency conversion block does not include a non-zero coefficient.
  • whether the data value of the current basic block is binarized depends on whether the current basic block includes a non-zero coefficient. In this case, if the current basic block includes a non-zero coefficient, the data value of the current basic block is binarized. If the current basic block does not include a non-zero coefficient, the data value of the current basic block is not binarized.
  • the current basic block includes a non-zero coefficient. Therefore, when the current basic block is the same as the frequency conversion block, the table A2 that does not include the association of zero non-zero coefficients is selected.
  • the specific basic block includes a non-zero coefficient. Therefore, when the current basic block is a specific basic block, the table A2 that does not include the association of zero non-zero coefficients is selected.
  • whether or not the current basic block is the same as the frequency transform block corresponds to whether or not the size of the frequency transform block is the same as the size of the current basic block. For example, when the size of each basic block is 4 ⁇ 4, whether or not the size of the frequency transform block is 4 ⁇ 4 is determined instead of whether or not the current basic block is the same as the frequency transform block. May be.
  • the above selection method is an example, and other selection methods may be used. Further, only one of the two case classifications in the selection method described above may be used.
  • the conversion table is selected from the two tables A1 and A2. However, the conversion table may be selected from three or more tables including these tables A1 and A2.
  • the binarization unit 132 determines the number of non-zero coefficients in the first mode according to the conversion table selected from the table A2 or the like that does not include the association of zero non-zero coefficients.
  • the data value indicating may be binarized.
  • the binarization unit 132 does not use the table A2 or the like that does not include the association of 0 nonzero coefficients, but uses the table A1 or the like that includes the association of 0 nonzero coefficients.
  • the data value indicating the number of non-zero coefficients may be binarized.
  • the binarization unit 132 may not binarize the data value indicating the number of non-zero coefficients in the first mode. For example, the binarization unit 132 may binarize each of the plurality of frequency conversion coefficients regardless of the number of non-zero coefficients in the first mode. In the first mode, even if the number of non-zero coefficients is not used, suppression of an increase in code amount is supported by application of arithmetic coding.
  • the inverse binarization unit 244 also applies the non-zero coefficient according to the conversion table selected from the table A2 or the like that does not include the association of zero non-zero coefficients in the first mode.
  • the binarized value of the data value indicating the number may be inversely binarized.
  • the inverse binarization unit 244 does not use the table A2 or the like that does not include the association of 0 nonzero coefficients, but uses the table A1 or the like that includes the association of 0 nonzero coefficients.
  • the binarized value of the data value indicating the number of non-zero coefficients may be inversely binarized.
  • the inverse binarization unit 244 does not need to inverse binarize the binarized value of the data value indicating the number of non-zero coefficients in the first mode.
  • the inverse binarization unit 244 may inverse binarize each binarized value of a plurality of frequency conversion coefficients regardless of the number of non-zero coefficients. In the first mode, even if the number of non-zero coefficients is not used, suppression of an increase in code amount is supported by application of arithmetic decoding.
  • the conversion table for binarization or inverse binarization includes two or more tables in which the difference between the longest bit length and the shortest bit length of a plurality of binarized values associated with a plurality of data values is different from each other. You may select from several tables. Thereby, the code amount of frequency conversion coefficient information can be reduced.
  • FIG. 17 is a conceptual diagram showing four types of tables B1 to B4 according to the first embodiment.
  • a plurality of data values and a plurality of binarized values are associated with each other.
  • Each of the plurality of data values corresponds to a combination of trailing_ones and total_coef. Note that the table B1 in FIG. 17 is the same as the table A1 in FIG.
  • total_coef is 3 and trailing_ones is 2.
  • This data value is associated with “0000101” that is a 7-bit binarized value in the table B1, and “01110” that is a 5-bit binarized value in the table B3. ing.
  • the binarization unit 132 of the encoding apparatus 100 selects a conversion table from the tables B1 to B4, and the binarization unit 132 binarizes the data value according to the selected conversion table.
  • the inverse binarization unit 244 of the decoding device 200 selects a conversion table from the tables B1 to B4, and generates a binarized value of the data value indicating the number of non-zero coefficients according to the selected conversion table. Inverse binarization.
  • the inverse binarization unit 244 of the decoding device 200 is selected by the binarization unit 132 of the encoding device 100 from the tables B1 to B4 based on the same selection criteria as the binarization unit 132 of the encoding device 100. Select the same table as the conversion table.
  • the bit length of the binarized value associated with the data value indicating the number of non-zero coefficients is specified to be shorter as the number of non-zero coefficients is smaller.
  • this tendency is strongest in the table B1, and this tendency is weakest in the table B3. That is, among the tables B1 to B3, the bit length variation in the plurality of binarized values is the largest in the table B1, and the bit length variation in the plurality of binarized values is the smallest in the table B3.
  • the bit length of the binarized value associated with the data value indicating the number of non-zero coefficients is constant regardless of the number of non-zero coefficients. That is, in the table B4, a plurality of binarized values associated with a plurality of data values are defined with the same bit length. Therefore, the difference between the longest bit length and the shortest bit length is the largest in table B1, the next largest in table B2, the next largest in table B3, and the smallest in table B4.
  • the larger the number estimated as the number of non-zero coefficients the more the tables B1 to B4 that have the smaller difference between the longest bit length and the shortest bit length are selected. This reduces the possibility that a binary value having a long bit length is assigned to a data value indicating the number of non-zero coefficients.
  • the binarization unit 132 of the encoding apparatus 100 may select a conversion table from the tables B1 to B4 according to the position of the current basic block in the frequency conversion block. Then, the binarization unit 132 may binarize the data value indicating the number of non-zero coefficients according to the selected conversion table.
  • the inverse binarization unit 244 of the decoding device 200 may select a conversion table from the tables B1 to B4 according to the position of the current basic block in the frequency conversion block. Then, the inverse binarization unit 244 may inverse binarize the binarized value of the data value indicating the number of non-zero coefficients according to the selected conversion table. Thereby, the encoding apparatus 100 and the decoding apparatus 200 can suppress an increase in code amount.
  • bit length of the binarized value is specified to be shorter as the trailing_ones is larger. This tendency is also strongest in the table B1 among the tables B1 to B3 and weakest in the table B3. Table B4 does not have this tendency.
  • FIG. 17 four types of tables B1 to B4 are shown. However, two types of tables in which the difference between the longest bit length and the shortest bit length are different from each other may be used. It may be used, and five or more types of tables may be used.
  • the plurality of tables for selecting the conversion table are not limited to two or more types of tables in which the difference between the longest bit length and the shortest bit length is different from each other, but the difference between the longest bit length and the shortest bit length is mutually different. Two or more types of tables that are equal may be included. That is, the plurality of tables for selecting the conversion table include two or more types of tables in which the difference between the longest bit length and the shortest bit length is different from each other, and the difference between the longest bit length and the shortest bit length is Two or more types of tables that are equal to each other may be included.
  • the tables A1 and A2 shown in FIG. 15 and the tables B1 to B4 shown in FIG. 17 may be combined.
  • the conversion table may be selected from a plurality of tables B1 to B4 and A2.
  • a new table obtained by removing the association of zero non-zero coefficients from the tables B2 to B4 may be included in a plurality of tables for selecting the conversion table.
  • the encoding device 100 and the decoding device 200 may select a conversion table from the tables B1 to B4 according to the position of the basic block in the frequency conversion block. At that time, the encoding device 100 and the decoding device 200 may use a hierarchy of basic blocks.
  • FIG. 18A to FIG. 18I are conceptual diagrams showing the hierarchies of one or more basic blocks in the frequency conversion block according to Embodiment 1, respectively.
  • the numbers described in each of the one or more basic blocks indicate the hierarchy of the basic blocks in the frequency conversion block.
  • the number indicating the hierarchy of the basic block in the frequency conversion block is defined in ascending order of frequency. That is, the number indicating the hierarchy of the basic block is specified to be smaller as the frequency level corresponding to the basic block is lower. That is, the hierarchy corresponds to the frequency level.
  • the frequency levels are considered to be the same in the basic blocks arranged in the diagonal direction toward the lower left or upper right.
  • the numbers indicating the hierarchy of the basic blocks are defined by the same value.
  • FIG. 18A shows a hierarchy of one basic block in a 4 ⁇ 4 frequency conversion block.
  • FIG. 18B shows each hierarchy of the four basic blocks in the 8 ⁇ 8 frequency conversion block.
  • FIG. 18C shows respective layers of two basic blocks in an 8 ⁇ 4 frequency transform block.
  • FIG. 18D shows each layer of two basic blocks in a 4 ⁇ 8 frequency transform block.
  • FIG. 18E shows the hierarchy of each of the 16 basic blocks in the 16 ⁇ 16 frequency transform block.
  • FIG. 18F shows the hierarchy of each of the eight basic blocks in the 16 ⁇ 8 frequency conversion block.
  • FIG. 18G shows the hierarchy of each of the 8 basic blocks in the 8 ⁇ 16 frequency transform block.
  • FIG. 18H shows the hierarchy of each of the 12 basic blocks in the 16 ⁇ 12 frequency conversion block.
  • FIG. 18I shows the hierarchy of each of the four basic blocks in the 4 ⁇ 16 frequency transform block.
  • FIGS. 18A to 18I are examples, and other numbers may be used as numbers indicating the hierarchy of the basic block. Or the information which shows the hierarchy of a basic block in the format different from a number may be used.
  • FIG. 19 is a flowchart showing a pattern determination process according to the first embodiment.
  • the binarization unit 132 of the encoding apparatus 100 determines a pattern according to the position of the current basic block in the frequency conversion block, and selects a conversion table according to the determined pattern. This pattern corresponds to the position of the current basic block in the frequency conversion block and also corresponds to a selection method for selecting a conversion table.
  • the binarization unit 132 of the encoding device 100 determines whether or not a preceding basic block exists in the same hierarchy as the current basic block (S301).
  • the preceding basic block is a basic block preceding the current basic block in the scan order.
  • the binarization unit 132 determines the pattern as the first pattern (S302).
  • the binarization unit 132 determines whether a specific basic block exists in a hierarchy higher than the current basic block. (S303).
  • the specific basic block is a basic block that first includes a non-zero coefficient in the scan order among one or more basic blocks constituting the frequency conversion block.
  • the binarization unit 132 determines that the pattern is the second pattern when it is determined that the specific basic block exists in a layer higher than the current basic block (Yes in S303) (S304). If the binarization unit 132 determines that the specific basic block does not exist in a hierarchy higher than the current basic block (No in S303), the binarization unit 132 determines that the pattern is the third pattern (S305).
  • the first pattern, the second pattern, and the third pattern are examples of patterns. Only some of the first pattern, the second pattern, and the third pattern may be used, or other patterns may be used.
  • the inverse binarization unit 244 of the decoding device 200 determines a pattern and selects a conversion table in the same manner as the binarization unit 132 of the encoding device 100. Therefore, the operations of the encoding device 100 and the binarization unit 132 can be replaced with the operations of the decoding device 200 and the inverse binarization unit 244 for pattern determination and conversion table selection. The following description is also the same.
  • FIG. 20A is a conceptual diagram showing a current basic block of the first pattern according to the first embodiment.
  • the pattern corresponding to the position of the current basic block is determined as the first pattern.
  • the pattern is determined as the first pattern. For example, when the current basic block is located in the hatched portion in FIG. 20A, the pattern corresponding to the position of the current basic block is determined as the first pattern.
  • FIG. 20B is a conceptual diagram showing a current basic block of the second pattern according to the first embodiment. If a preceding basic block does not exist in the same hierarchy as the current basic block, and a specific basic block exists in a hierarchy higher than the current basic block, the pattern corresponding to the position of the current basic block is determined as the second pattern. .
  • the pattern is It is determined as the second pattern. For example, when the current basic block is located in the hatched portion in FIG. 20B, the pattern corresponding to the position of the current basic block is determined as the second pattern.
  • FIG. 20C is a conceptual diagram showing a current basic block of the third pattern according to Embodiment 1. If a preceding basic block does not exist in the same hierarchy as the current basic block, and a specific basic block does not exist in a hierarchy higher than the current basic block, the pattern corresponding to the position of the current basic block is determined as the third pattern. .
  • the pattern is It is determined as the third pattern. For example, when the current basic block is located in the hatched portion in FIG. 20C, the pattern corresponding to the position of the current basic block is determined as the third pattern.
  • FIG. 21 is a relation diagram showing a table selected in the first pattern according to the first embodiment.
  • the binarization unit 132 of the encoding apparatus 100 predicts the number of non-zero coefficients included in the current basic block, and according to the predicted values of the number of non-zero coefficients included in the current basic block, the tables B1 to B4 Select a conversion table from the list. This predicted value is also expressed as nC.
  • the binarization unit 132 selects the table B1 having the largest difference between the longest bit length and the shortest bit length as the conversion table.
  • the binarization unit 132 selects the table B2 having the next largest difference between the longest bit length and the shortest bit length as the conversion table. Further, when the predicted value is 4 to 7, the binarization unit 132 selects the table B3 having the next largest difference between the longest bit length and the shortest bit length as the conversion table. Further, when the predicted value is 8 to 16, the binarization unit 132 selects the table B4 having the smallest difference between the longest bit length and the shortest bit length as the conversion table.
  • the binarization unit 132 predicts the number of non-zero coefficients included in the current basic block according to the number of non-zero coefficients included in the preceding basic block in the same hierarchy as the current basic block. Specifically, the binarization unit 132 predicts the number of non-zero coefficients included in the preceding basic block in the same hierarchy as the current basic block as the number of non-zero coefficients included in the current basic block.
  • the binarization unit 132 predicts 0 as the number of non-zero coefficients included in the current basic block.
  • the binarizing unit 132 is included in the current basic block according to the number of non-zero coefficients included in the immediately preceding preceding basic block in the scan order.
  • the number of non-zero coefficients may be predicted.
  • the binarization unit 132 predicts the number of non-zero coefficients of the basic block according to the number of non-zero coefficients of the preceding basic block, and converts from the tables B1 to B4 according to the predicted value of the number of non-zero coefficients. Select a table. That is, the binarizing unit 132 selects a conversion table from the tables B1 to B4 according to the number of non-zero coefficients of the preceding basic block.
  • FIG. 21 shows an example of a predicted value range and a selected table.
  • the range of predicted values and the selected table are not limited to the example shown in FIG.
  • the binarization unit 132 may select the conversion table according to a combination of not only the predicted value of the number of non-zero coefficients but also the predicted value of the number of non-zero coefficients and other information. The same applies to other patterns as well as the first pattern.
  • FIG. 22 is a relationship diagram showing a table selected in the second pattern according to the first embodiment.
  • the binarization unit 132 predicts that the number of non-zero coefficients included in the current basic block is large, and increases the predicted value of the number of non-zero coefficients included in the current basic block. And the binarization part 132 selects a conversion table according to the enlarged predicted value.
  • the binarization unit 132 determines the predicted value of the number of nonzero coefficients included in the current basic block as the maximum value of the number of nonzero coefficients. Then, the binarization unit 132 selects a conversion table according to the predicted value determined as the maximum value of the number of non-zero coefficients.
  • the binarization unit 132 determines the predicted value of the number of non-zero coefficients included in the current basic block as 16 which is the maximum value of the number of non-zero coefficients. Then, the binarization unit 132 selects a conversion table according to the predicted value determined as 16 which is the maximum value of the number of non-zero coefficients. As a result, the binarization unit 132 selects the table B4 having the smallest difference between the longest bit length and the shortest bit length as the conversion table.
  • the binarization unit 132 does not have to determine the predicted value as the maximum value, but determines the predicted value to be a predetermined value larger than the average value of the number of non-zero coefficients. Also good. Then, the binarizing unit 132 may select, as the conversion table, a table in which the difference between the longest bit length and the shortest bit length is smaller than the average difference from the tables B1 to B4.
  • FIG. 23 is a relationship diagram showing a table selected by the peripheral frequency conversion block in the third pattern according to the first embodiment.
  • the binarization unit 132 of the encoding apparatus 100 selects a conversion table according to the number of non-zero coefficients included in the surrounding frequency conversion blocks in the third pattern.
  • the binarization unit 132 predicts the number of non-zero coefficients included in the current basic block according to the number of non-zero coefficients included in the surrounding frequency transform blocks.
  • the binarization unit 132 may predict the number of non-zero coefficients included in the surrounding frequency transform blocks as the number of non-zero coefficients included in the current basic block.
  • the binarization unit 132 selects a conversion table from the tables B1 to B4 according to the predicted value of the number of non-zero coefficients included in the current basic block. That is, the binarizing unit 132 selects a conversion table from the tables B1 to B4 according to the number of non-zero coefficients that can be included in the surrounding frequency conversion blocks.
  • the peripheral frequency transform block is a frequency transform block spatially close to the frequency transform block including the current basic block, and has already been encoded.
  • the peripheral transform block including the current basic block is referred to as a current frequency transform block
  • the peripheral frequency transform block is referred to as a peripheral frequency transform block.
  • the peripheral frequency conversion block may be a frequency conversion block in a predetermined range spatially from the current frequency conversion block.
  • the peripheral frequency conversion block may be a frequency conversion block adjacent to the left or above the current frequency conversion block. Accordingly, the binarization unit 132 can predict the number of non-zero coefficients with high accuracy according to the number of non-zero coefficients included in the frequency conversion block close to the current frequency conversion block.
  • the peripheral frequency transform block may be the current frequency transform block immediately before in the encoding order. This makes it possible to simply predict the number of non-zero coefficients and to reduce the memory capacity for storing information related to the number of non-zero coefficients.
  • the peripheral frequency conversion block may be a frequency conversion block in a predetermined range from the current frequency conversion block, and the encoding mode may be the same frequency conversion block as the current frequency conversion block.
  • the binarization unit 132 can predict the number of non-zero coefficients with high accuracy according to the frequency transform block in which the non-zero coefficient generation tendency is estimated to be similar to that of the current frequency transform block.
  • the predetermined range may be a range of a coding tree unit including a current frequency conversion block.
  • the number of non-zero coefficients included in the peripheral frequency transform block is the number of non-zero coefficients included in the basic block whose relative position with respect to the peripheral frequency transform block is equal to the relative position of the current basic block with respect to the current frequency transform block. May be used. Accordingly, the binarization unit 132 can predict the number of non-zero coefficients with high accuracy according to the basic block having a strong correlation with the current basic block with respect to the number of non-zero coefficients.
  • the number of non-zero coefficients of the entire peripheral frequency transform block may be used as the number of non-zero coefficients included in the peripheral frequency transform block.
  • the binarization unit 132 derives the number of non-zero coefficients per basic block according to the number of non-zero coefficients of the entire peripheral frequency transform block, and sets the current basic block according to the number of non-zero coefficients per basic block.
  • the number of non-zero coefficients included may be predicted. Accordingly, the binarization unit 132 can appropriately predict the number of non-zero coefficients regardless of the difference in the size of the frequency transform block.
  • the binarization part 132 can select a conversion table according to a suitable prediction value.
  • FIG. 24 is a relation diagram showing a table selected in the encoding mode in the third pattern according to the first embodiment.
  • the binarization unit 132 replaces the number of non-zero coefficients included in the surrounding frequency conversion blocks with the conversion table according to the encoding mode of inter prediction or intra prediction. select.
  • This encoding mode corresponds to whether inter prediction or intra prediction is used for encoding and decoding of the current basic block.
  • the binarization unit 132 selects the table B1 having a large difference between the longest bit length and the shortest bit length.
  • the binarizing unit 132 selects the table B2 in which the difference between the longest bit length and the shortest bit length is smaller than the table B1.
  • FIG. 24 shows an example of a selected table.
  • the selected table is not limited to the example shown in FIG.
  • the binarizing unit 132 may select a conversion table according to a combination of not only the encoding mode but also the encoding mode and other information.
  • FIG. 25 is a relationship diagram illustrating a table selected by the quantization parameter in the third pattern according to the first embodiment.
  • the binarization unit 132 replaces the number of non-zero coefficients included in the surrounding frequency transform blocks and the coding mode of inter prediction or intra prediction with the QP value.
  • This QP value is a value of a quantization parameter used for encoding and decoding of the current basic block. The larger the QP value, the larger the quantization width.
  • the binarization unit 132 selects a table having a larger difference between the longest bit length and the shortest bit length from the tables B1 to B4 as the QP value is larger.
  • the binarization unit 132 selects a table having a smaller difference between the longest bit length and the shortest bit length from the tables B1 to B4 as the QP value is smaller.
  • the binarization unit 132 selects the table B4 having the smallest difference between the longest bit length and the shortest bit length as the conversion table.
  • the binarization unit 132 selects the table B3 having the next smallest difference between the longest bit length and the shortest bit length as the conversion table. Further, when the QP value is 32 to 41, the binarization unit 132 selects the table B2 having the next smallest difference between the longest bit length and the shortest bit length as the conversion table. Further, when the QP value is 42 to 51, the binarization unit 132 selects the table B1 having the largest difference between the longest bit length and the shortest bit length as the conversion table.
  • FIG. 25 shows an example of a range of QP values and a table to be selected.
  • the range of the QP value and the selected table are not limited to the example shown in FIG.
  • the binarization unit 132 may select the conversion table according to a combination of not only the QP value but also the QP value and other information.
  • the binarization unit 132 determines a table selection method according to the position of the current basic block, and selects a conversion table according to the determined table selection method. As a result, the binarization unit 132 selects a conversion table according to the position of the current basic block.
  • the binarization unit 132 converts a table having a smaller difference between the longest bit length and the shortest bit length from the tables B1 to B4 and the like as the position of the current basic block is closer to the upper left corner of the frequency conversion block. It may be selected as a table. Thereby, the binarization unit 132 may select the conversion table according to the position of the current basic block.
  • the expression “prediction” is used for the number of non-zero coefficients, but in order to distinguish it from image prediction such as in-plane prediction and inter-plane prediction, instead of the expression “prediction”,
  • the expression estimation may be used.
  • FIG. 26 is a data diagram showing a syntax structure according to the first embodiment.
  • the binarization unit 132 of the encoding apparatus 100 binarizes the frequency conversion coefficient information according to the syntax structure shown in FIG.
  • the inverse binarization unit 244 of the decoding device 200 performs inverse binarization on the binarized data string of the frequency transform coefficient information according to the syntax structure shown in FIG.
  • the basic block size is 4 ⁇ 4, but the basic block size is not limited to 4 ⁇ 4.
  • the size of the basic block may be the same size as the frequency transform block or may be smaller than the frequency transform block.
  • parameters indicated by bold characters are parameters described in the binarized data string.
  • Last_sub_block_pos is information indicating the position of a specific basic block.
  • the specific basic block is a basic block that first includes a non-zero coefficient in a scan order that is defined in the descending order of frequency with respect to one or more basic blocks constituting the frequency conversion block.
  • the last_sub_block_pos may be information indicating the position of the specific basic block by a number as shown in FIGS. 14A to 14I, for example.
  • the binarized data string includes a maximum of one last_sub_block_pos for each frequency conversion block.
  • Coef_token is information indicating the number of non-zero coefficients included in the basic block. Specifically, coef_token corresponds to both total_coef and trailing_ones. More specifically, coef_token may be a binarized value corresponding to a data value in which total_coef and trailing_ones are combined as shown in FIGS. 15 and 17, for example. The binarized data string includes a maximum of one coef_token for each basic block.
  • Total_zeros is information indicating the total number of zero coefficients appearing after the first non-zero coefficient appearing in the scan order defined in the descending order of frequency with respect to the plurality of frequency conversion coefficients included in the basic block.
  • the zero coefficient is a frequency conversion coefficient whose value is zero.
  • the binarized data string includes a maximum of one total_zeros for each basic block.
  • run_before is the number of zero coefficients that appear consecutively after the non-zero coefficient for each non-zero coefficient that appears in the scan order defined by the highest frequency for the plurality of frequency transform coefficients included in the basic block. It is information which shows.
  • the binarized data string includes a maximum number of run_befores obtained by subtracting 1 from the number of non-zero coefficients for each basic block.
  • Coeff_sign_flag is information indicating the sign of each non-zero coefficient included in the basic block.
  • the binarized data string includes the same number of coeff_sign_flags as the maximum number of non-zero coefficients for each basic block.
  • Coeff_abs_level_remaining is information indicating the absolute value of each non-zero coefficient included in the basic block.
  • the binarized data sequence includes the same number of coeff_abs_level_remaining as the number of non-zero coefficients for each basic block.
  • the syntax structure shown in FIG. 26 is an example. A syntax structure that is different from the syntax structure shown in FIG. 26 and that shows the same information as the syntax structure shown in FIG. 26 may be used.
  • FIG. 27 is a block diagram illustrating an implementation example of the encoding device 100 according to Embodiment 1.
  • the encoding device 100 includes a circuit 160 and a memory 162.
  • a plurality of components of the encoding device 100 shown in FIGS. 1 and 11 are implemented by the circuit 160 and the memory 162 shown in FIG.
  • the circuit 160 is a circuit that performs information processing and is a circuit that can access the memory 162.
  • the circuit 160 is a dedicated or general-purpose electronic circuit that encodes image information.
  • the circuit 160 may be a processor such as a CPU.
  • the circuit 160 may be an aggregate of a plurality of electronic circuits. Further, for example, the circuit 160 may serve as a plurality of constituent elements excluding the constituent elements for storing information among the plurality of constituent elements of the encoding device 100 illustrated in FIGS. 1 and 11. .
  • the memory 162 is a general purpose or dedicated memory in which information for the circuit 160 to encode image information is stored.
  • the memory 162 may be an electronic circuit or may be connected to the circuit 160.
  • the memory 162 may be an aggregate of a plurality of electronic circuits. Further, the memory 162 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium.
  • the memory 162 may be a non-volatile memory or a volatile memory.
  • the memory 162 may store image information to be encoded, or may store a bit string corresponding to the encoded image information.
  • the memory 162 may store a program for the circuit 160 to encode image information.
  • the circuit 160 may serve as a component for storing information among a plurality of components of the encoding device 100 illustrated in FIGS. 1 and 11.
  • the memory 162 may serve as the block memory 118 and the frame memory 122 illustrated in FIG. 1, or may serve as the intermediate buffer 136 illustrated in FIG.
  • not all of the plurality of components shown in FIG. 1 and FIG. 11 or the like may be mounted, or all of the plurality of processes described above may not be performed. Some of the plurality of components shown in FIG. 1 and FIG. 11 and the like may be included in another device, and some of the plurality of processes described above may be executed by another device. Good.
  • a part of the plurality of components shown in FIG. 1 and FIG. 11 and the like are mounted, and a part of the plurality of processes described above is performed, so that the frequency conversion coefficient information Can be appropriately encoded.
  • FIG. 28 is a flowchart illustrating a first encoding operation example of the encoding apparatus 100 according to Embodiment 1.
  • the circuit 160 of the encoding device 100 shown in FIG. 27 performs the operation shown in FIG. 28, thereby encoding the image information and outputting a bit string in which the image information is encoded.
  • the circuit 160 binarizes the image information (S401).
  • the image information includes frequency conversion coefficient information regarding the frequency component of the image, prediction parameter information regarding the image prediction method, and the like.
  • the circuit 160 switches whether to apply arithmetic coding to the binarized data string obtained by binarizing the image information (S402).
  • the circuit 160 applies arithmetic coding to the binarized data string, and the binary to which arithmetic coding is applied.
  • a bit string including the digitized data string is output (S403).
  • the circuit 160 When the arithmetic coding is not applied to the binarized data string (No in S402), the circuit 160 does not apply the arithmetic coding to the binarized data string, and the arithmetic coding is not applied.
  • a bit string including the binarized data string is output (S404).
  • the encoding apparatus 100 can skip arithmetic encoding. Therefore, the encoding apparatus 100 can assist in reducing processing delay caused by arithmetic encoding.
  • FIG. 29 is a flowchart showing a binarization process in the first encoding operation example of the encoding apparatus 100 according to the first embodiment. That is, FIG. 29 shows a specific example of the binarization process (S401) in FIG.
  • the circuit 160 follows the common binarization format between the case where arithmetic coding is applied to the binarized data sequence and the case where arithmetic coding is not applied to the binarized data sequence.
  • other information different from the frequency conversion coefficient information is binarized (S411). This other information includes, for example, part or all of the prediction parameter information.
  • the circuit 160 performs image information according to different binarization formats when the arithmetic coding is applied to the binarized data string and when the arithmetic coding is not applied to the binarized data string.
  • the frequency conversion coefficient information is binarized (S412). More specifically, the circuit 160 has different binarization formats when arithmetic coding is applied to a binary data string and when arithmetic coding is not applied to a binary data string. Accordingly, information including frequency conversion coefficient information in the image information may be binarized.
  • the encoding apparatus 100 can appropriately binarize the frequency transform coefficient information that greatly affects the overall code amount according to whether or not arithmetic encoding is applied. Therefore, the encoding apparatus 100 can appropriately encode the frequency conversion coefficient information, and can suppress an increase in the overall code amount.
  • the prediction parameter information includes information on the encoding mode included in the prediction parameter information, information on the prediction direction of intra prediction, information on a reference picture for inter prediction, and information on a motion vector for inter prediction. Including.
  • the circuit 160 applies a case where arithmetic coding is applied to the binarized data sequence and a case where arithmetic coding is not applied to the binarized data sequence for the information included in the prediction parameter information. And binarization according to a common binarization format. Alternatively, the circuit 160 may apply a case where arithmetic coding is applied to the binarized data sequence and a case where arithmetic coding is not applied to the binarized data sequence to at least one of them. The binarization may be performed according to a common binarization format.
  • the circuit 160 may binarize only the frequency conversion coefficient information in the image information according to a binarization format that differs depending on whether or not arithmetic coding is applied. Then, the circuit 160 may binarize all the information other than the frequency conversion coefficient information in the image information according to a common binarization format regardless of whether or not arithmetic coding is applied.
  • the encoding apparatus 100 can binarize all other information except the frequency conversion coefficient information according to a common binarization format. Therefore, the process is simplified.
  • FIG. 30 is a flowchart showing binarization processing of frequency transform coefficient information in the first encoding operation example of the encoding apparatus 100 according to Embodiment 1. That is, FIG. 30 shows a specific example of binarization processing (S412) of frequency conversion coefficient information in FIG.
  • the circuit 160 binarizes the frequency conversion coefficient information in the first binarization format (S422).
  • the circuit 160 binarizes the frequency conversion coefficient information in the second binarization format (S423). Then, the circuit 160 has a frequency with a smaller number of generated bits when arithmetic coding is not applied to the binarized data string than when arithmetic coding is applied to the binarized data string.
  • the conversion coefficient information is binarized.
  • the encoding apparatus 100 can assist in reducing the code amount of the frequency conversion coefficient information when arithmetic encoding is not applied.
  • FIG. 31 is a flowchart showing a second encoding operation example of the encoding apparatus 100 according to the first embodiment.
  • the circuit 160 of the encoding device 100 shown in FIG. 27 encodes image information by performing the operation shown in FIG.
  • the circuit 160 encodes position information indicating the position of the specific basic block (S501).
  • the specific basic block is a basic having first a non-zero coefficient as a frequency conversion coefficient in a predetermined scan order defined in order of frequency higher than one or more basic blocks constituting a frequency conversion block having a plurality of frequency conversion coefficients. It is a block.
  • the circuit 160 indicates block information indicating a plurality of frequency conversion coefficients constituting the basic block only for each basic block after the specific basic block in a predetermined scan order among one or more basic blocks constituting the frequency conversion block. Is encoded (S502).
  • the encoding apparatus 100 can encode position information and block information as frequency conversion coefficient information. Since the encoding apparatus 100 encodes block information for each basic block after the specific basic block in a predetermined scan order, the encoding apparatus 100 can assist in reducing the code amount of the frequency transform coefficient information.
  • the circuit 160 may encode the position information only when the number of one or more basic blocks constituting the frequency conversion block is two or more. Thereby, the encoding apparatus 100 can assist in making the code amount of the frequency transform coefficient information smaller, for example, when the size of the frequency transform block and the size of each basic block are the same.
  • the circuit 160 may encode the position information and the block information only when the specific basic block exists in the frequency conversion block. Thereby, the encoding apparatus 100 can assist in making the code amount of the frequency transform coefficient information smaller, for example, when the non-zero coefficient is not included in the frequency transform block.
  • the circuit 160 may encode the image information and output a bit string in which the image information is encoded, as in the first encoding operation example. For example, as shown in FIG. 28, the circuit 160 binarizes the image information (S401). Then, the circuit 160 switches whether to apply arithmetic coding to the binarized data string obtained by binarizing the image information (S402).
  • the circuit 160 When arithmetic coding is applied to the binarized data string (Yes in S402), the circuit 160 applies arithmetic coding to the binarized data string and applies arithmetic coding. A bit string including the binarized data string is output (S403). On the other hand, when arithmetic coding is not applied to the binarized data string (No in S402), the circuit 160 applies arithmetic coding to the binarized data string without applying arithmetic coding. A bit string including the binarized data string that has not been output is output (S404).
  • the circuit 160 has two common cases when arithmetic coding is applied to a binarized data sequence and when arithmetic coding is not applied to a binarized data sequence.
  • Other information in the image information is binarized according to the binarization format (S411). This other information includes, for example, part or all of the prediction parameter information.
  • the circuit 160 performs image information in accordance with different binarization formats when the arithmetic coding is applied to the binarized data string and when the arithmetic coding is not applied to the binarized data string.
  • the frequency conversion coefficient information is binarized (S412).
  • the circuit 160 When arithmetic coding is not applied to the binarized data sequence, the circuit 160 encodes the position information and the block information by binarizing the frequency transform coefficient information including the position information and the block information.
  • the block information to be encoded is block information after the specific basic block in a predetermined scan order. Thereby, the encoding apparatus 100 can assist in reducing the code amount of the frequency transform coefficient information when arithmetic encoding is not applied.
  • FIG. 32 is a flowchart showing a third encoding operation example of the encoding device 100 according to the first embodiment.
  • the circuit 160 of the encoding device 100 illustrated in FIG. 27 encodes image information by performing the operation illustrated in FIG.
  • the circuit 160 binarizes a data value indicating the number of non-zero coefficients included in the current basic block according to a conversion table in which a plurality of data values and a plurality of binarized values are associated, Image information including data values is encoded (S601).
  • the current basic block is one of one or more basic blocks constituting a frequency conversion block having a plurality of frequency conversion coefficients.
  • the encoding apparatus 100 can appropriately encode significant information used for efficient expression of a plurality of frequency transform coefficients constituting the basic block.
  • FIG. 33 is a flowchart showing a binarization process in the third encoding operation example of the encoding apparatus 100 according to the first embodiment. That is, FIG. 33 shows a specific example of the binarization process in FIG.
  • the circuit 160 includes a plurality of first tables including association of data values indicating 0 as the number of non-zero coefficients, and a second table not including association of data values indicating 0 as the number of non-zero coefficients.
  • a conversion table is selected from the table (S611). Then, the circuit 160 binarizes the data value according to the selected conversion table (S612).
  • the encoding apparatus 100 can use a table with a reduced amount of information as a conversion table for binarization. Therefore, the encoding apparatus 100 can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit 160 outputs two data values indicating the number of non-zero coefficients included in the basic block only for each basic block after the specific basic block in a predetermined scan order among one or more basic blocks constituting the frequency conversion block. It may be converted into a value. That is, the circuit 160 may binarize a data value indicating the number of non-zero coefficients of each basic block after the specific basic block in a predetermined scan order as a data value indicating the number of non-zero coefficients of the current basic block. .
  • the specific basic block is a basic block that first has a non-zero coefficient as a frequency conversion coefficient in a predetermined scan order that is defined in order of frequency with respect to one or more basic blocks constituting the frequency conversion block.
  • the circuit 160 may binarize a data value indicating the number of non-zero coefficients of the current basic block only when a specific basic block exists in one or more basic blocks constituting the frequency conversion block. Then, when the frequency conversion block and the current basic block are the same, the circuit 160 may select the second table that does not include the association of data values indicating 0 as the number of non-zero coefficients as the conversion table.
  • the encoding apparatus 100 uses the second table that does not include the association of 0 non-zero coefficients to perform the frequency transform. It is possible to assist in reducing the code amount of the coefficient information.
  • the circuit 160 may select the second table that does not include the association of the data value indicating 0 as the number of non-zero coefficients as the conversion table.
  • the encoding apparatus 100 reduces the code amount of the frequency transform coefficient information using the second table that does not include the association of zero non-zero coefficients. Can help you.
  • the circuit 160 may encode the image information and output a bit string in which the image information is encoded, as in the first encoding operation example. For example, as shown in FIG. 28, the circuit 160 binarizes the image information (S401). Then, the circuit 160 switches whether to apply arithmetic coding to the binarized data string obtained by binarizing the image information (S402).
  • the circuit 160 When arithmetic coding is applied to the binarized data string (Yes in S402), the circuit 160 applies arithmetic coding to the binarized data string and applies arithmetic coding. A bit string including the binarized data string is output (S403). On the other hand, when arithmetic coding is not applied to the binarized data string (No in S402), the circuit 160 applies arithmetic coding to the binarized data string without applying arithmetic coding. A bit string including the binarized data string that has not been output is output (S404).
  • the circuit 160 has two common cases when arithmetic coding is applied to a binarized data sequence and when arithmetic coding is not applied to a binarized data sequence.
  • Other information in the image information is binarized according to the binarization format (S411). This other information includes, for example, part or all of the prediction parameter information.
  • the circuit 160 performs image information in accordance with different binarization formats when the arithmetic coding is applied to the binarized data string and when the arithmetic coding is not applied to the binarized data string.
  • the frequency conversion coefficient information is binarized (S412).
  • the circuit 160 converts the frequency conversion coefficient information into frequency conversion coefficient information according to a conversion table selected from a plurality of tables including the first table and the second table. Binarize contained data values.
  • the first table includes association of data values indicating 0 as the number of non-zero coefficients
  • the second table does not include association of data values indicating 0 as the number of non-zero coefficients.
  • the encoding device 100 uses a conversion table selected from a plurality of tables including a second table that does not include the association of zero non-zero coefficients when arithmetic encoding is not applied, It is possible to assist in reducing the code amount of the frequency conversion coefficient information.
  • the data value indicating the number of non-zero coefficients is binarized.
  • the circuit 160 binarizes a data value indicating the number of non-zero coefficients included in the current basic block according to a conversion table in which a plurality of data values and a plurality of binarized values are associated, Image information including data values is encoded (S601).
  • FIG. 34 is a flowchart showing a binarization process in the fourth encoding operation example of the encoding apparatus 100 according to the first embodiment. That is, FIG. 34 shows a specific example of the binarization process in FIG.
  • the circuit 160 selects a conversion table from a plurality of tables according to the position of the current basic block in the current frequency conversion block (S661).
  • the current frequency conversion block is a frequency conversion block including a current basic block.
  • the plurality of tables include two or more tables in which the difference between the longest bit length and the shortest bit length of the plurality of binarized values associated with the plurality of data values is different from each other. Then, the circuit 160 binarizes the data value according to the selected conversion table (S662).
  • the encoding apparatus 100 can select a conversion table for binarizing the data value indicating the number of non-zero coefficients according to the position of the current basic block.
  • the characteristic of the number of non-zero coefficients varies depending on the position of the current basic block. Therefore, the encoding apparatus 100 can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table using the position of the current basic block.
  • the encoding apparatus 100 can appropriately select the conversion table and can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit 160 selects the conversion table according to the number of non-zero coefficients included in the preceding basic block when the preceding basic block exists at the same level as the frequency level at the position of the current basic block according to the position of the current basic block. May be.
  • the preceding basic block is a basic block preceding the current basic block in a predetermined scan order defined in order of frequency with respect to one or more basic blocks constituting the current frequency conversion block.
  • the frequency level at the position of the current basic block is the frequency level corresponding to the position of the current basic block.
  • the encoding apparatus 100 can select the conversion table according to the number of non-zero coefficients of the preceding basic block estimated that the number of non-zero coefficients is similar to the current basic block.
  • the circuit 160 has a conversion table when the preceding basic block exists at the same level as the frequency level at the position of the current basic block and the number of non-zero coefficients included in the preceding basic block is the first number.
  • the first table may be selected.
  • the circuit 160 uses the conversion table as the conversion table.
  • the second table may be selected.
  • the second number is larger than the first number.
  • the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the second table is smaller than the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the first table. That is, when the number of non-zero coefficients included in the preceding basic block is large, the circuit 160 may select a table having a small difference between the longest bit length and the shortest bit length of a plurality of binarized values as the conversion table. .
  • the encoding apparatus 100 selects a table having a small bit length difference as a conversion table, It is possible to support the suppression of the increase in code amount.
  • the preceding basic block may not exist at the same level as the frequency level at the current basic block position, and the specific basic block may exist at a higher level than the frequency level at the current basic block position.
  • the specific basic block is a basic block that first includes a non-zero coefficient in a predetermined scan order.
  • the circuit 160 may select a table in which the difference between the longest bit length and the shortest bit length is smaller than a predetermined difference from the plurality of tables as the conversion table.
  • the encoding apparatus 100 selects a table with a small bit length difference as the conversion table, and increases the code amount. Can be suppressed.
  • the predetermined difference is not limited to a fixed value.
  • the predetermined difference may be relatively determined such as a difference between the longest bit length and the shortest bit length in a table having the second smallest bit length difference among a plurality of tables. Good.
  • the circuit 160 may select a table having the smallest difference between the longest bit length and the shortest bit length as a conversion table from a plurality of tables.
  • the encoding apparatus 100 selects a table with a small bit length difference as the conversion table, and increases the code amount. Can be further suppressed.
  • the preceding basic block may not exist at the same level as the frequency level at the current basic block position, and the specific basic block may not exist at a higher level than the frequency level at the current basic block position.
  • the circuit 160 may select the conversion table according to the number estimated as the number of non-zero coefficients from the peripheral frequency conversion block that is a frequency conversion block around the current frequency conversion block.
  • the encoding apparatus 100 can select a transform table using a peripheral frequency transform block estimated that the number of non-zero coefficients is similar to the current basic block.
  • the circuit 160 selects the first table if the number estimated from the peripheral frequency transform block is the first number, and if the number estimated from the peripheral frequency transform block is the second number.
  • the second table may be selected.
  • the second number is larger than the first number.
  • the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the second table is smaller than the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the first table.
  • the circuit 160 may select a table having a small difference between the longest bit length and the shortest bit length of a plurality of binarized values as the conversion table. Accordingly, when it is estimated that the number of non-zero coefficients of the current basic block is large according to the peripheral frequency transform block, the encoding apparatus 100 selects a table with a small bit length difference as the transform table, and increases the code amount. Can help control.
  • the peripheral frequency conversion block may be a frequency conversion block adjacent to the left or above the current frequency conversion block.
  • the encoding apparatus 100 can predict the number of non-zero coefficients with high accuracy according to the number of non-zero coefficients included in the frequency transform block close to the current frequency transform block.
  • the peripheral frequency conversion block may be a frequency conversion block encoded immediately before the current frequency conversion block. This makes it possible to simply predict the number of non-zero coefficients and to reduce the memory capacity for storing information related to the number of non-zero coefficients.
  • the peripheral frequency transform block is a frequency transform block that is located within a predetermined range from the current frequency transform block, and is a frequency transform block that has the same coding mode as the current frequency transform block in the inter-plane prediction or the in-plane prediction. There may be.
  • the encoding apparatus 100 can predict the number of non-zero coefficients with high accuracy according to the frequency transform block in which it is estimated that the non-zero coefficient generation tendency is similar to that of the current frequency transform block.
  • the number of non-zero coefficients included in the current basic block may be estimated from the number of non-zero coefficients included in one basic block among one or more basic blocks included in the peripheral frequency transform block.
  • This one basic block is a basic block whose relative position with respect to the peripheral frequency transform block is equal to the relative position of the current basic block with respect to the current frequency transform block.
  • the encoding apparatus 100 can select a conversion table according to a basic block in which the number of non-zero coefficients is estimated to be similar to the current basic block among one or more basic blocks of the peripheral frequency conversion block.
  • the number estimated from the peripheral frequency transform block may be estimated from the number of non-zero coefficients included in the entire peripheral frequency transform block.
  • the circuit 160 may select the conversion table according to whether the encoding mode of the current basic block is inter prediction or intra prediction.
  • the encoding apparatus 100 can select the conversion table according to the encoding mode of inter prediction or intra prediction. It is estimated that the characteristics of the number of non-zero coefficients differ depending on the encoding mode. Therefore, the encoding apparatus 100 can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table using the encoding mode. Therefore, the encoding apparatus 100 can appropriately select the conversion table and can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit 160 may select the first table if the coding mode is inter-frame prediction, and may select the second table if the coding mode is intra-frame prediction.
  • the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the second table is smaller than the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the first table. .
  • the circuit 160 may select a table having a small difference between the longest bit length and the shortest bit length of a plurality of binarized values as the conversion table.
  • the encoding apparatus 100 uses a table with a small bit length difference as a conversion table when the prediction accuracy is low and the number of non-zero coefficients is estimated to be large. It is possible to select and support the suppression of the increase in the code amount.
  • the circuit 160 may select the conversion table according to the quantization parameter used for encoding the current basic block.
  • the encoding apparatus 100 can select the conversion table according to the quantization parameter used for encoding the current basic block. It is estimated that the characteristics of the number of non-zero coefficients differ depending on the quantization parameter. Therefore, the encoding apparatus 100 can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table using the quantization parameter. Therefore, the encoding apparatus 100 can appropriately select the conversion table and can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit 160 may select the first table if the quantization parameter is the first value, and may select the second table if the quantization parameter is the second value.
  • the second value is smaller than the first value.
  • the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the second table is smaller than the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the first table.
  • the circuit 160 may select a table having a small difference between the longest bit length and the shortest bit length of a plurality of binarized values as the conversion table.
  • the encoding apparatus 100 selects a table with a small bit length difference as a conversion table, and suppresses an increase in code amount. Can help.
  • the circuit 160 may encode the image information and output a bit string in which the image information is encoded, as in the first encoding operation example. For example, as shown in FIG. 28, the circuit 160 binarizes the image information (S401). Then, the circuit 160 switches whether to apply arithmetic coding to the binarized data string obtained by binarizing the image information (S402).
  • the circuit 160 When arithmetic coding is applied to the binarized data string (Yes in S402), the circuit 160 applies arithmetic coding to the binarized data string and applies arithmetic coding. A bit string including the binarized data string is output (S403). On the other hand, when arithmetic coding is not applied to the binarized data string (No in S402), the circuit 160 applies arithmetic coding to the binarized data string without applying arithmetic coding. A bit string including the binarized data string that has not been output is output (S404).
  • the circuit 160 has two common cases when arithmetic coding is applied to a binarized data sequence and when arithmetic coding is not applied to a binarized data sequence.
  • Other information in the image information is binarized according to the binarization format (S411). This other information includes, for example, part or all of the prediction parameter information.
  • the circuit 160 performs image information in accordance with different binarization formats when the arithmetic coding is applied to the binarized data string and when the arithmetic coding is not applied to the binarized data string.
  • the frequency conversion coefficient information is binarized (S412).
  • the circuit 160 When arithmetic coding is not applied to the binarized data string, the circuit 160 includes data values included in the frequency conversion coefficient information according to a conversion table selected from a plurality of tables according to the position of the current basic block. Is binarized. Thereby, the encoding apparatus 100 reduces the code amount of the frequency conversion coefficient information by using the conversion table selected according to the position of the current basic block from the plurality of tables when arithmetic encoding is not applied. Can help.
  • the difference between the longest bit length and the shortest bit length is that the binarized value associated with the data value indicating the number of non-zero coefficients of the current basic block increases as the number of non-zero coefficients of the current basic block increases.
  • the difference between the longest bit length and the shortest bit length is that the binarized value associated with the data value indicating the number of non-zero coefficients of the current basic block increases as the number of non-zero coefficients of the current basic block increases.
  • the bit length may be replaced with a longer rate.
  • this ratio is 0 or more.
  • this ratio is an average in which the bit length of the binarized value associated with the data value indicating the number of non-zero coefficients of the current basic block increases as the number of non-zero coefficients of the current basic block increases. Percentage may be used.
  • FIG. 35 is a block diagram illustrating an implementation example of the decoding device 200 according to the first embodiment.
  • the decoding device 200 includes a circuit 260 and a memory 262.
  • a plurality of components of the decoding device 200 shown in FIGS. 10 and 12 are implemented by the circuit 260 and the memory 262 shown in FIG.
  • the circuit 260 is a circuit that performs information processing and is a circuit that can access the memory 262.
  • the circuit 260 is a general-purpose or dedicated electronic circuit that decodes image information.
  • the circuit 260 may be a processor such as a CPU.
  • the circuit 260 may be an aggregate of a plurality of electronic circuits. Further, for example, the circuit 260 may serve as a plurality of constituent elements excluding the constituent elements for storing information among the plurality of constituent elements of the decoding device 200 illustrated in FIGS. 10 and 12.
  • the memory 262 is a general purpose or dedicated memory in which information for the circuit 260 to decode the image information is stored.
  • the memory 262 may be an electronic circuit or may be connected to the circuit 260.
  • the memory 262 may be an aggregate of a plurality of electronic circuits.
  • the memory 262 may be a magnetic disk or an optical disk, or may be expressed as a storage or a recording medium. Further, the memory 262 may be a nonvolatile memory or a volatile memory.
  • the memory 262 may store a bit string corresponding to the encoded image information, or may store image information corresponding to the decoded bit string.
  • the memory 262 may store a program for the circuit 260 to decode the image information.
  • the circuit 260 may serve as a component for storing information among a plurality of components of the decoding device 200 illustrated in FIGS. 10 and 12.
  • the memory 262 may serve as the block memory 210 and the frame memory 214 illustrated in FIG. 10, or may serve as the intermediate buffer 240 illustrated in FIG.
  • the decoding device 200 not all of the plurality of constituent elements shown in FIGS. 10 and 12 or the like may be implemented, or all of the plurality of processes described above may not be performed. Some of the plurality of components shown in FIG. 10 and FIG. 12 may be included in another device, and some of the plurality of processes described above may be executed by another device. Good.
  • the decoding device 200 a part of the plurality of components shown in FIG. 10 and FIG. 12 and the like are mounted, and part of the plurality of processes described above is performed, whereby the frequency conversion coefficient information is obtained. It can be decoded properly.
  • FIG. 36 is a flowchart showing a first decoding operation example of the decoding device 200 according to the first embodiment.
  • the circuit 260 of the decoding device 200 shown in FIG. 35 performs the operation shown in FIG. 36 to acquire a bit string in which the image information is encoded, and decodes the image information.
  • the circuit 260 acquires a bit string including a binarized data string obtained by binarizing image information (S701).
  • the image information includes frequency conversion coefficient information regarding the frequency component of the image, prediction parameter information regarding the image prediction method, and the like.
  • the circuit 260 switches whether to apply arithmetic decoding to the binarized data sequence included in the bit sequence (S702).
  • the circuit 260 applies arithmetic decoding to the binarized data string and binarized data to which arithmetic decoding is applied.
  • Image information is decoded by inverse binarizing the column (S703).
  • the circuit 260 does not apply arithmetic decoding to the binarized data string, and binarization to which arithmetic decoding has not been applied.
  • the image information is decoded by inverse binarizing the data string (S704).
  • the decoding apparatus 200 can skip arithmetic decoding. Therefore, the decoding device 200 can assist in reducing processing delay caused by arithmetic decoding.
  • FIG. 37 is a flowchart showing an inverse binarization process in the first decoding operation example of the decoding apparatus 200 according to the first embodiment. That is, FIG. 37 shows a specific example of the inverse binarization processing (S703 and S704) in FIG.
  • the circuit 260 follows a first inverse binarization format described later according to a common inverse binarization format when arithmetic decoding is applied to a binarized data sequence and when arithmetic decoding is not applied to a binarized data sequence.
  • a second part different from the part is subjected to inverse binarization (S711).
  • the second part is a part in which other information different from the frequency conversion coefficient information is binarized in the binarized data string. This other information includes, for example, part or all of the prediction parameter information.
  • the circuit 260 has the first part according to the inverse binarization format that is different when arithmetic decoding is applied to the binarized data sequence and when arithmetic decoding is not applied to the binarized data sequence.
  • the first part is a part in which the frequency conversion coefficient information is binarized in the binarized data string. More specifically, the first portion may be a portion obtained by binarizing information including frequency conversion coefficient information in the binarized data string.
  • the decoding apparatus 200 can appropriately binarize the first part corresponding to the frequency transform coefficient information that greatly affects the entire code amount according to whether or not arithmetic decoding is applied. Therefore, the decoding apparatus 200 can appropriately decode the frequency transform coefficient information, and can suppress an increase in the overall code amount.
  • the processing order of the inverse binarization (S711) of the second part in which other information is binarized and the inverse binarization (S712) of the first part in which the frequency conversion coefficient information is binarized is Or vice versa.
  • the prediction parameter information includes information on the encoding mode included in the prediction parameter information, information on the prediction direction of intra prediction, information on a reference picture for inter prediction, and information on a motion vector for inter prediction. Including.
  • the circuit 260 applies a case where arithmetic decoding is applied to the binarized data sequence to the binarized data sequence for the second part obtained by binarizing these pieces of information included in the prediction parameter information.
  • inverse binarization may be performed according to a common inverse binarization format when arithmetic decoding is not applied.
  • the circuit 260 is common to at least one of these cases when arithmetic decoding is applied to the binarized data sequence and when arithmetic decoding is not applied to the binarized data sequence.
  • the inverse binarization may be performed according to the inverse binarization format.
  • the circuit 260 may inverse binarize only the first part of the binarized data string in which the frequency conversion coefficient information is binarized according to an inverse binarization format that differs depending on whether or not arithmetic decoding is applied. Then, the circuit 260 follows the common inverse binarization format for all other parts of the binarized data string except the first part in which the frequency conversion coefficient information is binarized regardless of whether or not arithmetic decoding is applied. Inverse binarization may be used.
  • the decoding apparatus 200 can debinarize all the parts other than the first part corresponding to the frequency conversion coefficient information according to a common inverse binarization format. Therefore, the process is simplified.
  • FIG. 38 is a flowchart showing inverse binarization processing of the first part corresponding to frequency transform coefficient information in the first decoding operation example of the decoding device 200 according to Embodiment 1. That is, FIG. 38 shows a specific example of the first portion inverse binarization processing (S712) corresponding to the frequency conversion coefficient information in FIG.
  • the circuit 260 converts the first part in which the frequency conversion coefficient information is binarized into the first inverse binarization format. The value is converted (S722). Then, when arithmetic decoding is not applied to the binarized data sequence (No in S721), the circuit 260 reverses the first portion in which the frequency transform coefficient information is binarized in the second inverse binarization format. Binarization is performed (S723).
  • the circuit 260 when the arithmetic decoding is not applied to the binarized data sequence, the circuit 260 generates the frequency conversion coefficient in a form in which the number of generated bits is smaller than when the arithmetic decoding is applied to the binarized data sequence.
  • the first part in which the information is binarized is reverse binarized. Thereby, the decoding apparatus 200 can assist in reducing the code amount of the frequency transform coefficient information when arithmetic decoding is not applied.
  • FIG. 39 is a flowchart showing a second decoding operation example of the decoding device 200 according to the first embodiment.
  • the circuit 260 of the decoding device 200 shown in FIG. 35 decodes the image information by performing the operation shown in FIG.
  • the circuit 260 decodes position information indicating the position of the specific basic block (S801).
  • the specific basic block is a basic having first a non-zero coefficient as a frequency conversion coefficient in a predetermined scan order defined in order of frequency higher than one or more basic blocks constituting a frequency conversion block having a plurality of frequency conversion coefficients. It is a block.
  • the circuit 260 indicates block information indicating a plurality of frequency conversion coefficients constituting the basic block only for each basic block after the specific basic block in a predetermined scan order among one or more basic blocks constituting the frequency conversion block. Is decrypted (S802).
  • the decoding apparatus 200 can decode position information and block information as frequency conversion coefficient information. And since the decoding apparatus 200 decodes block information about each basic block after the specific basic block in a predetermined scan order, it can assist in reducing the code amount of the frequency transform coefficient information.
  • the circuit 260 may decode the position information only when the number of one or more basic blocks constituting the frequency conversion block is two or more. Thereby, the decoding apparatus 200 can assist in reducing the code amount of the frequency transform coefficient information when the size of the frequency transform block and the size of each basic block are the same, for example.
  • the circuit 260 may decode the position information and the block information only when the specific basic block exists in the frequency conversion block. Thereby, the decoding apparatus 200 can assist in reducing the code amount of the frequency transform coefficient information, for example, when the non-zero coefficient is not included in the frequency transform block.
  • the circuit 260 may acquire the bit string in which the image information is encoded and decode the image information, as in the first decoding operation example. For example, as shown in FIG. 36, the circuit 260 acquires a bit string including a binarized data string obtained by binarizing image information (S701). Then, the circuit 260 switches whether to apply arithmetic decoding to the binarized data sequence included in the bit sequence (S702).
  • the circuit 260 When arithmetic decoding is applied to the binarized data sequence (Yes in S702), the circuit 260 applies arithmetic decoding to the binarized data sequence and applies the binary to which arithmetic decoding is applied.
  • the image information is decoded by inverse binarizing the digitized data string (S703).
  • the circuit 260 does not apply the arithmetic decoding to the binarized data sequence, and the arithmetic decoding is not applied.
  • Image information is decoded by debinarizing the binarized data string (S704).
  • the circuit 260 is an inverse binary common to the case where arithmetic decoding is applied to a binarized data sequence and the case where arithmetic decoding is not applied to a binarized data sequence.
  • the second part is binarized according to the conversion format (S711).
  • the second part is a part in which other information is binarized in the binarized data string. This other information includes, for example, part or all of the prediction parameter information.
  • the circuit 260 performs the first part according to the inverse binarization format that is different when arithmetic decoding is applied to the binarized data sequence and when arithmetic decoding is not applied to the binarized data sequence.
  • the first part is a part in which the frequency conversion coefficient information is binarized in the binarized data string.
  • the circuit 260 performs inverse binarization on the first portion in which the frequency transform coefficient information including the position information and the block information is binarized.
  • the position information and block information are decoded.
  • the block information to be decoded is block information after the specific basic block in a predetermined scan order. Accordingly, the decoding device 200 can assist in reducing the code amount of the frequency transform coefficient information when arithmetic decoding is not applied.
  • FIG. 40 is a flowchart showing a third decoding operation example of the decoding device 200 according to the first embodiment.
  • the circuit 260 of the decoding device 200 shown in FIG. 35 decodes the image information by performing the operation shown in FIG.
  • the circuit 260 associates a binarized value obtained by binarizing a data value indicating the number of non-zero coefficients included in the current basic block with a plurality of data values and a plurality of binarized values. Inverse binarization according to the conversion table. Then, the circuit 260 decodes the image information including the data value (S901).
  • the current basic block is one of one or more basic blocks constituting a frequency conversion block having a plurality of frequency conversion coefficients.
  • the decoding apparatus 200 can appropriately decode significant information used for efficient expression of a plurality of frequency transform coefficients constituting the basic block.
  • FIG. 41 is a flowchart showing inverse binarization processing in the third decoding operation example of the decoding device 200 according to the first embodiment. That is, FIG. 41 shows a specific example of the inverse binarization process in FIG.
  • the circuit 260 includes a plurality of first tables including association of data values indicating 0 as the number of non-zero coefficients, and a second table not including association of data values indicating 0 as the number of non-zero coefficients.
  • a conversion table is selected from the table (S911). Then, the circuit 260 reverse-binarizes the binarized value according to the selected conversion table (S912).
  • the decoding apparatus 200 can use the table with the reduced amount of information as a conversion table for inverse binarization. Therefore, the decoding apparatus 200 can assist in reducing the code amount of the frequency transform coefficient information.
  • the circuit 260 has two data values indicating the number of non-zero coefficients included in the basic block only for each basic block after the specific basic block in a predetermined scan order among one or more basic blocks constituting the frequency conversion block.
  • the binarized value that has been binarized may be inverse binarized.
  • the circuit 260 converts the binarized value obtained by binarizing the data value indicating the number of non-zero coefficients of each basic block after the specific basic block in a predetermined scan order to the number of non-zero coefficients of the current basic block. You may reverse-binarize as a binarized value by which the data value shown was binarized.
  • the specific basic block is a basic block that first has a non-zero coefficient as a frequency conversion coefficient in a predetermined scan order that is defined in order of frequency with respect to one or more basic blocks constituting the frequency conversion block.
  • the circuit 260 is a binarized value obtained by binarizing a data value indicating the number of non-zero coefficients of the current basic block only when a specific basic block exists in one or more basic blocks constituting the frequency conversion block. May be binarized inversely. Then, when the frequency conversion block and the current basic block are the same, the circuit 260 may select the second table that does not include the data value association indicating 0 as the number of non-zero coefficients as the conversion table.
  • the decoding device 200 uses the second table that does not include the association of zero non-zero coefficients, for example, when the size of the frequency transform block and the size of each basic block are the same, for example, It is possible to assist in reducing the code amount of information.
  • the circuit 260 may select the second table that does not include the association of the data value indicating 0 as the number of non-zero coefficients as the conversion table.
  • the decoding apparatus 200 reduces the code amount of the frequency transform coefficient information using the second table that does not include the association of zero nonzero coefficients. Can help.
  • the circuit 260 may acquire the bit string in which the image information is encoded and decode the image information, as in the first decoding operation example. For example, as shown in FIG. 36, the circuit 260 acquires a bit string including a binarized data string obtained by binarizing image information (S701). Then, the circuit 260 switches whether to apply arithmetic decoding to the binarized data sequence included in the bit sequence (S702).
  • the circuit 260 When arithmetic decoding is applied to the binarized data sequence (Yes in S702), the circuit 260 applies arithmetic decoding to the binarized data sequence and applies the binary to which arithmetic decoding is applied.
  • the image information is decoded by inverse binarizing the digitized data string (S703).
  • the circuit 260 does not apply the arithmetic decoding to the binarized data sequence, and the arithmetic decoding is not applied.
  • Image information is decoded by debinarizing the binarized data string (S704).
  • the circuit 260 is an inverse binary common to the case where arithmetic decoding is applied to a binarized data sequence and the case where arithmetic decoding is not applied to a binarized data sequence.
  • the second part is binarized according to the conversion format (S711).
  • the second part is a part in which other information is binarized in the binarized data string. This other information includes, for example, part or all of the prediction parameter information.
  • the circuit 260 performs the first part according to the inverse binarization format that is different when arithmetic decoding is applied to the binarized data sequence and when arithmetic decoding is not applied to the binarized data sequence.
  • the first part is a part in which the frequency conversion coefficient information is binarized in the binarized data string.
  • the circuit 260 has the frequency conversion coefficient information as binary according to a conversion table selected from a plurality of tables including the first table and the second table.
  • the binarized value included in the first part that has been binarized is inverse binarized.
  • the first table includes association of data values indicating 0 as the number of non-zero coefficients
  • the second table does not include association of data values indicating 0 as the number of non-zero coefficients.
  • the decoding device 200 uses the conversion table selected from the plurality of tables including the second table not including the association of the zero non-zero coefficients to perform the frequency conversion. It is possible to assist in reducing the code amount of the coefficient information.
  • the data value indicating the number of non-zero coefficients is binarized.
  • the circuit 260 associates a binarized value obtained by binarizing a data value indicating the number of non-zero coefficients included in the current basic block with a plurality of data values and a plurality of binarized values. Inverse binarization is performed in accordance with the conversion table thus obtained, and image information including data values is decoded (S901).
  • FIG. 42 is a flowchart showing an inverse binarization process in the fourth decoding operation example of the decoding apparatus 200 according to the first embodiment. That is, FIG. 42 shows a specific example of the inverse binarization process in FIG.
  • the circuit 260 selects a conversion table from a plurality of tables according to the position of the current basic block in the current frequency conversion block (S961).
  • the current frequency conversion block is a frequency conversion block including a current basic block.
  • the plurality of tables include two or more tables in which the difference between the longest bit length and the shortest bit length of the plurality of binarized values associated with the plurality of data values is different from each other. Then, the circuit 260 reverse-binarizes the binarized value according to the selected conversion table (S962).
  • the decoding apparatus 200 can select a conversion table for de-binarizing the binarized value of the data value indicating the number of non-zero coefficients according to the position of the current basic block.
  • the characteristic of the number of non-zero coefficients varies depending on the position of the current basic block. Therefore, the decoding apparatus 200 can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table using the position of the current basic block.
  • the decoding apparatus 200 can appropriately select the conversion table and can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit 260 selects the conversion table according to the number of non-zero coefficients included in the preceding basic block when the preceding basic block exists at the same level as the frequency level at the position of the current basic block according to the position of the current basic block. May be.
  • the preceding basic block is a basic block preceding the current basic block in a predetermined scan order defined in order of frequency with respect to one or more basic blocks constituting the current frequency conversion block.
  • the frequency level at the position of the current basic block is the frequency level corresponding to the position of the current basic block.
  • the decoding apparatus 200 can select the conversion table according to the number of non-zero coefficients of the preceding basic block estimated that the number of non-zero coefficients is similar to the current basic block.
  • the circuit 260 when the preceding basic block exists at the same level as the frequency level at the position of the current basic block and the number of non-zero coefficients included in the preceding basic block is the first number, The first table may be selected.
  • the circuit 260 uses the conversion table as the conversion table. The second table may be selected.
  • the second number is larger than the first number.
  • the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the second table is smaller than the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the first table. That is, when the number of non-zero coefficients included in the preceding basic block is large, the circuit 260 may select a table having a small difference between the longest bit length and the shortest bit length of a plurality of binarized values as the conversion table. .
  • the decoding apparatus 200 selects a table with a small bit length difference as a conversion table, It can help control the increase in the amount.
  • the preceding basic block may not exist at the same level as the frequency level at the current basic block position, and the specific basic block may exist at a higher level than the frequency level at the current basic block position.
  • the specific basic block is a basic block that first includes a non-zero coefficient in a predetermined scan order.
  • the circuit 260 may select a table in which the difference between the longest bit length and the shortest bit length is smaller than a predetermined difference from the plurality of tables as the conversion table.
  • the decoding apparatus 200 selects a table with a small bit length difference as the conversion table, and increases the code amount. Can help control.
  • the predetermined difference is not limited to a fixed value.
  • the predetermined difference may be relatively determined such as a difference between the longest bit length and the shortest bit length in a table having the second smallest bit length difference among a plurality of tables. Good.
  • the circuit 260 may select a table having the smallest difference between the longest bit length and the shortest bit length as a conversion table from a plurality of tables. Accordingly, when it is estimated that the number of non-zero coefficients is large according to the relationship between the current basic block and the specific basic block, the decoding apparatus 200 selects a table with a small bit length difference as the conversion table, and increases the code amount. It is possible to support further suppression.
  • the preceding basic block may not exist at the same level as the frequency level at the current basic block position, and the specific basic block may not exist at a higher level than the frequency level at the current basic block position.
  • the circuit 260 may select the conversion table according to the number estimated as the number of non-zero coefficients from the peripheral frequency conversion block that is a frequency conversion block around the current frequency conversion block.
  • the decoding apparatus 200 can select a conversion table using a peripheral frequency conversion block estimated to have a similar number of non-zero coefficients to the current basic block.
  • the circuit 260 selects the first table if the number estimated from the peripheral frequency transform block is the first number, and if the number estimated from the peripheral frequency transform block is the second number.
  • the second table may be selected.
  • the second number is larger than the first number.
  • the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the second table is smaller than the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the first table.
  • the circuit 260 may select a table having a small difference between the longest bit length and the shortest bit length of a plurality of binarized values as the conversion table. Accordingly, when it is estimated that the number of non-zero coefficients of the current basic block is large according to the peripheral frequency transform block, the decoding apparatus 200 selects a table with a small bit length difference as the transform table, and suppresses an increase in code amount. Can help.
  • the peripheral frequency conversion block may be a frequency conversion block adjacent to the left or above the current frequency conversion block.
  • the decoding apparatus 200 can predict the number of non-zero coefficients with high accuracy according to the number of non-zero coefficients included in the frequency transform block close to the current frequency transform block.
  • the peripheral frequency conversion block may be a frequency conversion block decoded immediately before the current frequency conversion block. This makes it possible to simply predict the number of non-zero coefficients and to reduce the memory capacity for storing information related to the number of non-zero coefficients.
  • the peripheral frequency transform block is a frequency transform block that is located within a predetermined range from the current frequency transform block, and is a frequency transform block that has the same coding mode as the current frequency transform block in the inter-plane prediction or the in-plane prediction. There may be.
  • the decoding apparatus 200 can predict the number of non-zero coefficients with high accuracy according to the frequency transform block in which the generation tendency of non-zero coefficients is estimated to be similar to that of the current frequency transform block.
  • the number of non-zero coefficients included in the current basic block may be estimated from the number of non-zero coefficients included in one basic block among one or more basic blocks included in the peripheral frequency transform block.
  • This one basic block is a basic block whose relative position with respect to the peripheral frequency transform block is equal to the relative position of the current basic block with respect to the current frequency transform block.
  • the decoding apparatus 200 can select a transform table according to a basic block in which the number of non-zero coefficients is estimated to be similar to the current basic block among one or more basic blocks of the peripheral frequency transform block.
  • the number estimated from the peripheral frequency transform block may be estimated from the number of non-zero coefficients included in the entire peripheral frequency transform block.
  • the circuit 260 may select the conversion table according to whether the encoding mode of the current basic block is inter prediction or intra prediction.
  • the decoding apparatus 200 can select the conversion table according to the encoding mode of inter prediction or intra prediction. It is estimated that the characteristics of the number of non-zero coefficients differ depending on the encoding mode. Therefore, the decoding apparatus 200 can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table using the encoding mode. Therefore, the decoding apparatus 200 can appropriately select the conversion table, and can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit 260 may select the first table if the coding mode is inter-frame prediction, and may select the second table if the coding mode is intra-frame prediction.
  • the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the second table is smaller than the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the first table. .
  • the circuit 260 may select a table having a small difference between the longest bit length and the shortest bit length of a plurality of binarized values as the conversion table.
  • the decoding apparatus 200 selects a table with a small bit length difference as the conversion table when it is estimated that the encoding mode is in-plane prediction and the prediction accuracy is low and the number of non-zero coefficients is large.
  • the circuit 260 may select the conversion table according to the quantization parameter used for decoding the current basic block.
  • the decoding apparatus 200 can select the conversion table according to the quantization parameter used for decoding the current basic block. It is estimated that the characteristics of the number of non-zero coefficients differ depending on the quantization parameter. Therefore, the decoding apparatus 200 can reflect the characteristics of the number of non-zero coefficients in the selection of the conversion table using the quantization parameter. Therefore, the decoding apparatus 200 can appropriately select the conversion table, and can assist in reducing the code amount of the frequency conversion coefficient information.
  • the circuit 260 may select the first table if the quantization parameter is the first value, and may select the second table if the quantization parameter is the second value.
  • the second value is smaller than the first value.
  • the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the second table is smaller than the difference between the longest bit length and the shortest bit length of the plurality of binarized values in the first table.
  • the circuit 260 may select a table having a small difference between the longest bit length and the shortest bit length of a plurality of binarized values as the conversion table. Accordingly, when it is estimated that the number of non-zero coefficients is large due to a small quantization parameter, the decoding apparatus 200 selects a table with a small bit length difference as a conversion table, and suppresses an increase in code amount. Can help.
  • the circuit 260 may acquire the bit string in which the image information is encoded and decode the image information, as in the first decoding operation example. For example, as shown in FIG. 36, the circuit 260 acquires a bit string including a binarized data string obtained by binarizing image information (S701). Then, the circuit 260 switches whether to apply arithmetic decoding to the binarized data sequence included in the bit sequence (S702).
  • the circuit 260 When arithmetic decoding is applied to the binarized data sequence (Yes in S702), the circuit 260 applies arithmetic decoding to the binarized data sequence and applies the binary to which arithmetic decoding is applied.
  • the image information is decoded by inverse binarizing the digitized data string (S703).
  • the circuit 260 does not apply the arithmetic decoding to the binarized data sequence, and the arithmetic decoding is not applied.
  • Image information is decoded by debinarizing the binarized data string (S704).
  • the circuit 260 is an inverse binary common to the case where arithmetic decoding is applied to a binarized data sequence and the case where arithmetic decoding is not applied to a binarized data sequence.
  • the second part is binarized according to the conversion format (S711).
  • the second part is a part in which other information is binarized in the binarized data string. This other information includes, for example, part or all of the prediction parameter information.
  • the circuit 260 performs the first part according to the inverse binarization format that is different when arithmetic decoding is applied to the binarized data sequence and when arithmetic decoding is not applied to the binarized data sequence.
  • the first part is a part in which the frequency conversion coefficient information is binarized in the binarized data string.
  • the circuit 260 binarizes the frequency conversion coefficient information according to the conversion table selected from the plurality of tables according to the position of the current basic block.
  • the binarized value included in the first part is inverse binarized.
  • the decoding device 200 assists in reducing the code amount of the frequency conversion coefficient information using a conversion table selected according to the position of the current basic block from a plurality of tables when arithmetic decoding is not applied. can do.
  • the difference between the longest bit length and the shortest bit length is that the binarized value associated with the data value indicating the number of non-zero coefficients of the current basic block increases as the number of non-zero coefficients of the current basic block increases.
  • the difference between the longest bit length and the shortest bit length is that the binarized value associated with the data value indicating the number of non-zero coefficients of the current basic block increases as the number of non-zero coefficients of the current basic block increases.
  • the bit length may be replaced with a longer rate.
  • this ratio is 0 or more.
  • this ratio is an average in which the bit length of the binarized value associated with the data value indicating the number of non-zero coefficients of the current basic block increases as the number of non-zero coefficients of the current basic block increases. Percentage may be used.
  • Encoding apparatus 100 and decoding apparatus 200 in the present embodiment can be used as an image encoding apparatus and an image decoding apparatus, respectively.
  • the encoding device 100 and the decoding device 200 can be used as an entropy encoding device and an entropy decoding device, respectively. That is, the encoding device 100 and the decoding device 200 may correspond only to the entropy encoding unit 110 and the entropy decoding unit 202, respectively.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • each of the encoding device 100 and the decoding device 200 includes a processing circuit (Processing Circuit) and a storage device (Storage) electrically connected to the processing circuit and accessible from the processing circuit. You may have.
  • the processing circuit corresponds to the circuit 160 or 260
  • the storage device corresponds to the memory 162 or 262.
  • the processing circuit includes at least one of dedicated hardware and a program execution unit, and executes processing using a storage device. Further, when the processing circuit includes a program execution unit, the storage device stores a software program executed by the program execution unit.
  • the software that realizes the encoding apparatus 100 or the decoding apparatus 200 of the present embodiment is the following program.
  • this program is an encoding method for encoding image information to a computer and outputting a bit string in which the image information is encoded.
  • the image information is binarized and the image information is binarized.
  • Switching whether or not to apply arithmetic coding to the binarized data string, and when arithmetic coding is applied to the binarized data string, arithmetic to the binarized data string When the encoding is applied to output the bit string including the binary data string to which the arithmetic encoding is applied, and the arithmetic encoding is not applied to the binary data string, the binary data is output Output the bit sequence including the binarized data sequence to which the arithmetic encoding has not been applied without applying the arithmetic encoding to the sequence, and in the binarization of the image information, the binarized data sequence Arithmetic coding is applied to And binarizing frequency conversion coefficient information related to the frequency component of the image among the image information according to a
  • this program is a decoding method for acquiring a bit sequence in which image information is encoded and decoding the image information in a computer, and includes a binarized data sequence in which the image information is binarized.
  • the inverse binarization format is different between the case where arithmetic decoding is applied to the binarized data string and the case where arithmetic decoding is not applied to the binarized data string.
  • the first portion in which the frequency conversion coefficient information related to the frequency component of the image is binarized is binarized, and the binarized data sequence is binarized.
  • a decoding method for inverse binarizing the second part in which part or all of the prediction parameter information regarding the image prediction method is binarized is executed.
  • this program is an encoding method for encoding image information in a computer, and is defined in descending order of frequency with respect to one or more basic blocks in a frequency conversion block composed of a plurality of frequency conversion coefficients.
  • Encode position information indicating the position of a specific basic block that is a basic block including a non-zero coefficient first in a predetermined scan order, and after the specific basic block in the predetermined scan order among the one or more basic blocks Only for each basic block, an encoding method for encoding block information indicating a plurality of frequency transform coefficients constituting the basic block is executed.
  • this program is a decoding method for decoding image information on a computer, and is a predetermined method defined in order of frequency from one or more basic blocks in a frequency conversion block composed of a plurality of frequency conversion coefficients.
  • Position information indicating the position of a specific basic block that is a basic block including a non-zero coefficient first in the scan order is decoded, and each of the one or more basic blocks after the specific basic block in the predetermined scan order Only for a block, a decoding method for decoding block information indicating a plurality of frequency transform coefficients constituting the basic block is executed.
  • this program is an encoding method for encoding image information in a computer, and is included in a current basic block which is one of one or more basic blocks in a frequency conversion block configured by a plurality of frequency conversion coefficients. And binarizing a data value indicating the number of non-zero coefficients according to a conversion table in which a plurality of data values and a plurality of binarized values are associated, and encoding the image information including the data values, In the binarization of values, a first table including association of data values indicating 0 as the number of nonzero coefficients and a second table not including association of data values indicating 0 as the number of nonzero coefficients Encoding method for selecting the conversion table from a plurality of tables including: and binarizing the data value according to the selected conversion table To be executed.
  • this program is a decoding method for decoding image information on a computer, and is included in a current basic block that is one of one or more basic blocks in a frequency conversion block composed of a plurality of frequency conversion coefficients.
  • a binarized value obtained by binarizing a data value indicating the number of zero coefficients is inversely binarized according to a conversion table in which a plurality of data values and a plurality of binarized values are associated with each other, and includes the data value
  • a first table including an association of data values indicating 0 as the number of nonzero coefficients, and 0 as the number of nonzero coefficients
  • the conversion table is selected from a plurality of tables including a second table that does not include the association of the data value to be indicated, and the binarized value is determined according to the selected conversion table.
  • this program is an encoding method for encoding image information in a computer, and is included in a current basic block which is one of one or more basic blocks in a frequency conversion block configured by a plurality of frequency conversion coefficients. And binarizing a data value indicating the number of non-zero coefficients according to a conversion table in which a plurality of data values and a plurality of binarized values are associated, and encoding the image information including the data values, In the binarization of values, the longest bits of a plurality of binarized values associated with a plurality of data values according to the position of the current basic block in the current frequency conversion block which is the frequency conversion block including the current basic block The conversion from among a plurality of tables including two or more tables in which the difference between the length and the shortest bit length is different from each other Select Buru, in accordance with the conversion table selected, to execute the encoding method for binarizing the data value.
  • this program is a decoding method for decoding image information on a computer, and is included in a current basic block that is one of one or more basic blocks in a frequency conversion block composed of a plurality of frequency conversion coefficients.
  • a binarized value obtained by binarizing a data value indicating the number of zero coefficients is inversely binarized according to a conversion table in which a plurality of data values and a plurality of binarized values are associated with each other, and includes the data value Decoding the image information and corresponding to a plurality of data values according to the position of the current basic block in the current frequency conversion block which is the frequency conversion block including the current basic block in the inverse binarization of the binarized value
  • a plurality of tables including two or more tables in which the difference between the longest bit length and the shortest bit length of the plurality of binarized values is different from each other. Select the conversion table from the Le, in accordance with the conversion table selected to perform the decoding process for reverse binarizing the binarized value.
  • Each component may be a circuit as described above. These circuits may constitute one circuit as a whole, or may be separate circuits. Each component may be realized by a general-purpose processor or a dedicated processor.
  • the encoding / decoding device may include the encoding device 100 and the decoding device 200.
  • the first and second ordinal numbers used in the description may be replaced as appropriate.
  • an ordinal number may be newly given to a component or the like, or may be removed.
  • each of the functional blocks can usually be realized by an MPU, a memory, and the like. Further, the processing by each functional block is usually realized by a program execution unit such as a processor reading and executing software (program) recorded on a recording medium such as a ROM. The software may be distributed by downloading or the like, or may be distributed by being recorded on a recording medium such as a semiconductor memory. Naturally, each functional block can be realized by hardware (dedicated circuit).
  • each embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good.
  • the number of processors that execute the program may be one or more. That is, centralized processing may be performed, or distributed processing may be performed.
  • the system includes an image encoding device using an image encoding method, an image decoding device using an image decoding method, and an image encoding / decoding device including both.
  • Other configurations in the system can be appropriately changed according to circumstances.
  • FIG. 43 is a diagram showing an overall configuration of a content supply system ex100 that implements a content distribution service.
  • the communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • devices such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 via the Internet ex101, the Internet service provider ex102 or the communication network ex104, and the base stations ex106 to ex110.
  • the content supply system ex100 may be connected by combining any of the above elements.
  • Each device may be directly or indirectly connected to each other via a telephone network or a short-range wireless communication without using the base stations ex106 to ex110 which are fixed wireless stations.
  • the streaming server ex103 is connected to each device such as a computer ex111, a game machine ex112, a camera ex113, a home appliance ex114, and a smartphone ex115 via the Internet ex101.
  • the streaming server ex103 is connected to a terminal in a hot spot in the airplane ex117 via the satellite ex116.
  • the streaming server ex103 may be directly connected to the communication network ex104 without going through the Internet ex101 or the Internet service provider ex102, or may be directly connected to the airplane ex117 without going through the satellite ex116.
  • the camera ex113 is a device that can shoot still images and moving images such as a digital camera.
  • the smartphone ex115 is a smartphone, a cellular phone, or a PHS (Personal Handyphone System) that is compatible with a mobile communication system generally called 2G, 3G, 3.9G, 4G, and 5G in the future.
  • a mobile communication system generally called 2G, 3G, 3.9G, 4G, and 5G in the future.
  • the home appliance ex118 is a device included in a refrigerator or a household fuel cell cogeneration system.
  • a terminal having a photographing function is connected to the streaming server ex103 through the base station ex106 or the like, thereby enabling live distribution or the like.
  • the terminal (computer ex111, game machine ex112, camera ex113, home appliance ex114, smartphone ex115, terminal in airplane ex117, etc.) is used for the still image or video content captured by the user using the terminal.
  • the encoding process described in each embodiment is performed, and the video data obtained by the encoding and the sound data obtained by encoding the sound corresponding to the video are multiplexed, and the obtained data is transmitted to the streaming server ex103. That is, each terminal functions as an image encoding device according to an aspect of the present invention.
  • the streaming server ex103 streams the content data transmitted to the requested client.
  • the client is a computer or the like in the computer ex111, the game machine ex112, the camera ex113, the home appliance ex114, the smart phone ex115, or the airplane ex117 that can decode the encoded data.
  • Each device that has received the distributed data decrypts and reproduces the received data. That is, each device functions as an image decoding device according to an aspect of the present invention.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the streaming server ex103 may be realized by a CDN (Contents Delivery Network), and content distribution may be realized by a network connecting a large number of edge servers and edge servers distributed all over the world.
  • CDN Contents Delivery Network
  • edge servers that are physically close to each other are dynamically allocated according to clients. Then, the content can be cached and distributed to the edge server, thereby reducing the delay.
  • the processing is distributed among multiple edge servers, the distribution subject is switched to another edge server, or the part of the network where the failure has occurred Since detouring can be continued, high-speed and stable distribution can be realized.
  • the captured data may be encoded at each terminal, may be performed on the server side, or may be shared with each other.
  • a processing loop is performed twice.
  • the first loop the complexity of the image or the code amount in units of frames or scenes is detected.
  • the second loop processing for maintaining the image quality and improving the coding efficiency is performed.
  • the terminal performs the first encoding process
  • the server receiving the content performs the second encoding process, thereby improving the quality and efficiency of the content while reducing the processing load on each terminal. it can.
  • the encoded data of the first time performed by the terminal can be received and reproduced by another terminal, enabling more flexible real-time distribution.
  • the camera ex113 or the like extracts a feature amount from an image, compresses data relating to the feature amount as metadata, and transmits the metadata to the server.
  • the server performs compression according to the meaning of the image, for example, by determining the importance of the object from the feature amount and switching the quantization accuracy.
  • the feature data is particularly effective for improving the accuracy and efficiency of motion vector prediction at the time of re-compression on the server.
  • simple coding such as VLC (variable length coding) may be performed at the terminal, and coding with a large processing load such as CABAC (context adaptive binary arithmetic coding) may be performed at the server.
  • a plurality of video data in which almost the same scene is captured by a plurality of terminals.
  • a GOP Group of Picture
  • a picture unit or a tile obtained by dividing a picture using a plurality of terminals that have performed shooting and other terminals and servers that have not performed shooting as necessary.
  • Distributed processing is performed by assigning encoding processing in units or the like. Thereby, delay can be reduced and real-time property can be realized.
  • the server may manage and / or instruct the video data captured by each terminal to refer to each other.
  • the encoded data from each terminal may be received by the server and the reference relationship may be changed among a plurality of data, or the picture itself may be corrected or replaced to be encoded again. This makes it possible to generate a stream with improved quality and efficiency of each piece of data.
  • the server may distribute the video data after performing transcoding to change the encoding method of the video data.
  • the server may convert the MPEG encoding system to the VP encoding. 264. It may be converted into H.265.
  • the encoding process can be performed by a terminal or one or more servers. Therefore, in the following, description such as “server” or “terminal” is used as the subject performing processing, but part or all of processing performed by the server may be performed by the terminal, or processing performed by the terminal may be performed. Some or all may be performed at the server. The same applies to the decoding process.
  • the server not only encodes a two-dimensional moving image, but also encodes a still image automatically based on a scene analysis of the moving image or at a time specified by the user and transmits it to the receiving terminal. Also good.
  • the server can acquire the relative positional relationship between the photographing terminals, the server obtains the three-dimensional shape of the scene based on not only the two-dimensional moving image but also the video obtained by photographing the same scene from different angles. Can be generated.
  • the server may separately encode the three-dimensional data generated by the point cloud or the like, and the video to be transmitted to the receiving terminal based on the result of recognizing or tracking the person or the object using the three-dimensional data.
  • the images may be selected or reconstructed from videos captured by a plurality of terminals.
  • the user can arbitrarily select each video corresponding to each photographing terminal and enjoy a scene, or can display a video of an arbitrary viewpoint from three-dimensional data reconstructed using a plurality of images or videos. You can also enjoy the clipped content.
  • sound is collected from a plurality of different angles, and the server may multiplex and transmit sound from a specific angle or space according to the video.
  • the server may create viewpoint images for the right eye and the left eye, respectively, and perform encoding that allows reference between each viewpoint video by Multi-View Coding (MVC) or the like. You may encode as another stream, without referring. At the time of decoding another stream, it is preferable to reproduce in synchronization with each other so that a virtual three-dimensional space is reproduced according to the viewpoint of the user.
  • MVC Multi-View Coding
  • the server superimposes virtual object information in the virtual space on the camera information in the real space based on the three-dimensional position or the movement of the user's viewpoint.
  • the decoding device may acquire or hold virtual object information and three-dimensional data, generate a two-dimensional image according to the movement of the user's viewpoint, and create superimposition data by connecting them smoothly.
  • the decoding device transmits the movement of the user's viewpoint to the server in addition to the request for the virtual object information, and the server creates superimposition data according to the movement of the viewpoint received from the three-dimensional data held in the server,
  • the superimposed data may be encoded and distributed to the decoding device.
  • the superimposed data has an ⁇ value indicating transparency in addition to RGB
  • the server sets the ⁇ value of a portion other than the object created from the three-dimensional data to 0 or the like, and the portion is transparent. May be encoded.
  • the server may generate data in which a RGB value of a predetermined value is set as the background, such as a chroma key, and the portion other than the object is set to the background color.
  • the decryption processing of the distributed data may be performed at each terminal as a client, may be performed on the server side, or may be performed in a shared manner.
  • a terminal may once send a reception request to the server, receive content corresponding to the request at another terminal, perform a decoding process, and transmit a decoded signal to a device having a display.
  • a part of a region such as a tile in which a picture is divided may be decoded and displayed on a viewer's personal terminal while receiving large-size image data on a TV or the like. Accordingly, it is possible to confirm at hand the area in which the person is responsible or the area to be confirmed in more detail while sharing the whole image.
  • access to encoded data on the network such as when the encoded data is cached in a server that can be accessed from the receiving terminal in a short time, or copied to the edge server in the content delivery service. It is also possible to switch the bit rate of received data based on ease.
  • the content switching will be described using a scalable stream that is compression-encoded by applying the moving image encoding method shown in each of the above embodiments shown in FIG.
  • the server may have a plurality of streams of the same content and different quality as individual streams, but the temporal / spatial scalable implementation realized by dividing into layers as shown in the figure.
  • the configuration may be such that the content is switched by utilizing the characteristics of the stream.
  • the decoding side decides which layer to decode according to internal factors such as performance and external factors such as the state of communication bandwidth, so that the decoding side can combine low-resolution content and high-resolution content. You can switch freely and decrypt. For example, when the user wants to continue watching the video that was viewed on the smartphone ex115 while moving on a device such as an Internet TV after returning home, the device only has to decode the same stream to a different layer, so the load on the server side Can be reduced.
  • the enhancement layer includes meta information based on image statistical information, etc., in addition to the configuration in which the picture is encoded for each layer and the enhancement layer exists above the base layer.
  • the decoding side may generate content with high image quality by super-resolution of the base layer picture based on the meta information.
  • Super-resolution may be either improvement of the SN ratio at the same resolution or enlargement of the resolution.
  • the meta information includes information for specifying a linear or non-linear filter coefficient used for super-resolution processing, or information for specifying a parameter value in filter processing, machine learning, or least square calculation used for super-resolution processing. .
  • the picture may be divided into tiles or the like according to the meaning of the object in the image, and the decoding side may select only a part of the region by selecting the tile to be decoded.
  • the decoding side can determine the position of the desired object based on the meta information. Can be identified and the tile containing the object can be determined.
  • the meta information is stored using a data storage structure different from the pixel data such as the SEI message in HEVC. This meta information indicates, for example, the position, size, or color of the main object.
  • meta information may be stored in units composed of a plurality of pictures, such as streams, sequences, or random access units.
  • the decoding side can acquire the time when the specific person appears in the video, etc., and can match the picture in which the object exists and the position of the object in the picture by combining with the information in units of pictures.
  • FIG. 46 is a diagram showing an example of a web page display screen on the computer ex111 or the like.
  • FIG. 47 is a diagram illustrating a display screen example of a web page on the smartphone ex115 or the like.
  • the web page may include a plurality of link images that are links to the image content, and the appearance differs depending on the browsing device. When a plurality of link images are visible on the screen, the display device until the user explicitly selects the link image, or until the link image approaches the center of the screen or the entire link image enters the screen.
  • the (decoding device) displays a still image or an I picture included in each content as a link image, displays a video like a gif animation with a plurality of still images or I pictures, or receives only a base layer to receive a video. Are decoded and displayed.
  • the display device When the link image is selected by the user, the display device decodes the base layer with the highest priority. If there is information indicating that the HTML constituting the web page is scalable content, the display device may decode up to the enhancement layer. Also, in order to ensure real-time properties, the display device only decodes forward reference pictures (I picture, P picture, forward reference only B picture) before being selected or when the communication band is very strict. In addition, the delay between the decoding time of the first picture and the display time (delay from the start of content decoding to the start of display) can be reduced by displaying. Further, the display device may intentionally ignore the reference relationship of pictures and roughly decode all B pictures and P pictures with forward reference, and perform normal decoding as the number of received pictures increases over time.
  • forward reference pictures I picture, P picture, forward reference only B picture
  • the receiving terminal when transmitting and receiving still image or video data such as two-dimensional or three-dimensional map information for automatic driving or driving support of a car, the receiving terminal adds meta data to image data belonging to one or more layers. Weather or construction information may also be received and decoded in association with each other. The meta information may belong to a layer or may be simply multiplexed with image data.
  • the receiving terminal since the car, drone, airplane, or the like including the receiving terminal moves, the receiving terminal transmits the position information of the receiving terminal at the time of the reception request, thereby seamless reception and decoding while switching the base stations ex106 to ex110. Can be realized.
  • the receiving terminal can dynamically switch how much meta-information is received or how much map information is updated according to the user's selection, the user's situation, or the communication band state. become.
  • the encoded information transmitted by the user can be received, decoded and reproduced in real time by the client.
  • the content supply system ex100 can perform not only high-quality and long-time content by a video distributor but also unicast or multicast distribution of low-quality and short-time content by an individual. Moreover, such personal contents are expected to increase in the future.
  • the server may perform the encoding process after performing the editing process. This can be realized, for example, with the following configuration.
  • the server After shooting, the server performs recognition processing such as shooting error, scene search, semantic analysis, and object detection from the original image or encoded data. Then, the server manually or automatically corrects out-of-focus or camera shake based on the recognition result, or selects a less important scene such as a scene whose brightness is lower than that of other pictures or is out of focus. Edit such as deleting, emphasizing the edge of an object, and changing the hue.
  • the server encodes the edited data based on the editing result. It is also known that if the shooting time is too long, the audience rating will decrease, and the server will move not only in the less important scenes as described above, but also in motion according to the shooting time. A scene with few images may be automatically clipped based on the image processing result. Alternatively, the server may generate and encode a digest based on the result of the semantic analysis of the scene.
  • the server may change and encode the face of the person in the periphery of the screen or the inside of the house into an unfocused image.
  • the server recognizes whether or not a face of a person different from the person registered in advance is shown in the encoding target image, and if so, performs processing such as applying a mosaic to the face part. May be.
  • the user designates a person or background area that the user wants to process an image from the viewpoint of copyright, etc., and the server replaces the designated area with another video or blurs the focus. It is also possible to perform such processing. If it is a person, the face image can be replaced while tracking the person in the moving image.
  • the decoding device first receives the base layer with the highest priority and performs decoding and reproduction, depending on the bandwidth.
  • the decoding device may receive the enhancement layer during this time, and may play back high-quality video including the enhancement layer when played back twice or more, such as when playback is looped.
  • a stream that is scalable in this way can provide an experience in which the stream becomes smarter and the image is improved gradually, although it is a rough moving picture when it is not selected or at the beginning of viewing.
  • the same experience can be provided even if the coarse stream played back the first time and the second stream coded with reference to the first video are configured as one stream. .
  • these encoding or decoding processes are generally processed in the LSI ex500 included in each terminal.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding or decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111 and the like, and encoding or decoding processing is performed using the software. Also good.
  • moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the smartphone ex115.
  • the LSI ex500 may be configured to download and activate application software.
  • the terminal first determines whether the terminal is compatible with the content encoding method or has a specific service execution capability. If the terminal does not support the content encoding method or does not have the capability to execute a specific service, the terminal downloads a codec or application software, and then acquires and reproduces the content.
  • the content supply system ex100 via the Internet ex101, but also a digital broadcasting system, at least the moving image encoding device (image encoding device) or the moving image decoding device (image decoding device) of the above embodiments. Any of these can be incorporated.
  • the unicasting of the content supply system ex100 is suitable for multicasting because it uses a satellite or the like to transmit and receive multiplexed data in which video and sound are multiplexed on broadcasting radio waves.
  • the same application is possible for the encoding process and the decoding process.
  • FIG. 48 is a diagram illustrating the smartphone ex115.
  • FIG. 49 is a diagram illustrating a configuration example of the smartphone ex115.
  • the smartphone ex115 receives the antenna ex450 for transmitting / receiving radio waves to / from the base station ex110, the camera unit ex465 capable of taking video and still images, the video captured by the camera unit ex465, and the antenna ex450.
  • a display unit ex458 for displaying data obtained by decoding the video or the like.
  • the smartphone ex115 further includes an operation unit ex466 that is a touch panel or the like, a voice output unit ex457 that is a speaker or the like for outputting voice or sound, a voice input unit ex456 that is a microphone or the like for inputting voice, and photographing.
  • Memory unit ex467 that can store encoded video or still image, recorded audio, received video or still image, encoded data such as mail, or decoded data, and a user, and network
  • An external memory may be used instead of the memory unit ex467.
  • a main control unit ex460 that comprehensively controls the display unit ex458, the operation unit ex466, and the like, a power supply circuit unit ex461, an operation input control unit ex462, a video signal processing unit ex455, a camera interface unit ex463, a display control unit ex459, a modulation / Demodulation unit ex452, multiplexing / demultiplexing unit ex453, audio signal processing unit ex454, slot unit ex464, and memory unit ex467 are connected via bus ex470.
  • the power supply circuit unit ex461 starts up the smartphone ex115 in an operable state by supplying power from the battery pack to each unit.
  • the smartphone ex115 performs processing such as calling and data communication based on the control of the main control unit ex460 having a CPU, a ROM, a RAM, and the like.
  • the voice signal picked up by the voice input unit ex456 is converted into a digital voice signal by the voice signal processing unit ex454, spread spectrum processing is performed by the modulation / demodulation unit ex452, and digital / analog conversion is performed by the transmission / reception unit ex451.
  • the data is transmitted via the antenna ex450.
  • the received data is amplified and subjected to frequency conversion processing and analog-digital conversion processing, spectrum despreading processing is performed by the modulation / demodulation unit ex452, and converted to analog audio signal by the audio signal processing unit ex454, and then this is output to the audio output unit ex457.
  • text, still image, or video data is sent to the main control unit ex460 via the operation input control unit ex462 by the operation of the operation unit ex466 of the main body unit, and transmission / reception processing is performed similarly.
  • the video signal processing unit ex455 uses the video signal stored in the memory unit ex467 or the video signal input from the camera unit ex465 as described above.
  • the video data is compressed and encoded by the moving image encoding method shown in the form, and the encoded video data is sent to the multiplexing / demultiplexing unit ex453.
  • the audio signal processing unit ex454 encodes the audio signal picked up by the audio input unit ex456 while the camera unit ex465 captures a video or a still image, and sends the encoded audio data to the multiplexing / separating unit ex453. To do.
  • the multiplexing / demultiplexing unit ex453 multiplexes the encoded video data and the encoded audio data by a predetermined method, and the modulation / demodulation unit (modulation / demodulation circuit unit) ex452 and the modulation / demodulation unit ex451 perform modulation processing and conversion.
  • the data is processed and transmitted via the antenna ex450.
  • the multiplexing / demultiplexing unit ex453 performs multiplexing By separating the data, the multiplexed data is divided into a bit stream of video data and a bit stream of audio data, and the encoded video data is supplied to the video signal processing unit ex455 via the synchronization bus ex470. The converted audio data is supplied to the audio signal processing unit ex454.
  • the video signal processing unit ex455 decodes the video signal by the video decoding method corresponding to the video encoding method shown in each of the above embodiments, and is linked from the display unit ex458 via the display control unit ex459.
  • a video or still image included in the moving image file is displayed.
  • the audio signal processing unit ex454 decodes the audio signal, and the audio is output from the audio output unit ex457. Since real-time streaming is widespread, depending on the user's situation, there may be occasions where audio playback is not socially appropriate. Therefore, it is desirable that the initial value is a configuration in which only the video data is reproduced without reproducing the audio signal. Audio may be synchronized and played back only when the user performs an operation such as clicking on video data.
  • the smartphone ex115 has been described here as an example, in addition to a transmission / reception terminal having both an encoder and a decoder as a terminal, a transmission terminal having only an encoder and a reception having only a decoder There are three possible mounting formats: terminals.
  • terminals In the digital broadcasting system, it has been described as receiving or transmitting multiplexed data in which audio data or the like is multiplexed with video data.
  • multiplexed data includes character data related to video in addition to audio data. Multiplexing may be performed, and video data itself may be received or transmitted instead of multiplexed data.
  • the terminal often includes a GPU. Therefore, a configuration may be adopted in which a wide area is processed in a lump by utilizing the performance of the GPU by using a memory shared by the CPU and the GPU or a memory whose addresses are managed so as to be used in common. As a result, the encoding time can be shortened, real-time performance can be ensured, and low delay can be realized. In particular, it is efficient to perform motion search, deblocking filter, SAO (Sample Adaptive Offset), and transformation / quantization processing in batches in units of pictures or the like instead of the CPU.
  • SAO Sample Adaptive Offset
  • the present invention can be used for, for example, a television receiver, a digital video recorder, a car navigation system, a mobile phone, a digital camera, a digital video camera, a video conference system, or an electronic mirror.

Abstract

符号化装置(100)は、メモリ(162)と、メモリ(162)にアクセス可能な回路(160)とを備え、メモリ(162)にアクセス可能な回路(160)は、周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を変換テーブルに従って二値化して、データ値を含む画像情報を符号化し、データ値の二値化において、カレント基本ブロックを含む周波数変換ブロックであるカレント周波数変換ブロックにおけるカレント基本ブロックの位置に従って、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む複数のテーブルの中から変換テーブルを選択して、選択された変換テーブルに従って、データ値を二値化する。

Description

符号化装置、復号装置、符号化方法及び復号方法
 本発明は、画像情報を符号化する符号化装置等に関する。
 従来の符号化方式であるH.265では、画像の周波数成分に関する周波数変換係数情報を含む画像情報が符号化される。
H.265(ISO/IEC 23008-2 HEVC(High Efficiency Video Coding))
 しかしながら、周波数変換係数情報の符号量は、大きく、画像情報の全体の符号量に大きな影響を与える。したがって、周波数変換係数情報が適切に処理されなければ、画像情報の全体の符号量が増加する可能性がある。
 そこで、本発明は、周波数変換係数情報を適切に処理することができる符号化装置等を提供する。
 本発明の一態様に係る符号化装置は、画像情報を符号化する符号化装置であって、メモリと、前記メモリにアクセス可能な回路とを備え、前記メモリにアクセス可能な前記回路は、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って二値化して、前記データ値を含む前記画像情報を符号化し、前記データ値の二値化において、前記カレント基本ブロックを含む前記周波数変換ブロックであるカレント周波数変換ブロックにおける前記カレント基本ブロックの位置に従って、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記データ値を二値化する。
 なお、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、又は、コンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。
 本発明の一態様に係る符号化装置等は、周波数変換係数情報を適切に処理することができる。
図1は、実施の形態1に係る符号化装置の機能構成を示すブロック図である。 図2は、実施の形態1におけるブロック分割の一例を示す図である。 図3は、各変換タイプに対応する変換基底関数を示す表である。 図4Aは、ALFで用いられるフィルタの形状の一例を示す図である。 図4Bは、ALFで用いられるフィルタの形状の他の一例を示す図である。 図4Cは、ALFで用いられるフィルタの形状の他の一例を示す図である。 図5は、イントラ予測における67個のイントラ予測モードを示す図である。 図6は、動き軌道に沿う2つのブロック間でのパターンマッチング(バイラテラルマッチング)を説明するための図である。 図7は、カレントピクチャ内のテンプレートと参照ピクチャ内のブロックとの間でのパターンマッチング(テンプレートマッチング)を説明するための図である。 図8は、等速直線運動を仮定したモデルを説明するための図である。 図9は、複数の隣接ブロックの動きベクトルに基づくサブブロック単位の動きベクトルの導出を説明するための図である。 図10は、実施の形態1に係る復号装置の機能構成を示すブロック図である。 図11は、実施の形態1に係る符号化装置におけるエントロピー符号化部の詳細な機能構成を示すブロック図である。 図12は、実施の形態1に係る復号装置におけるエントロピー復号部の詳細な機能構成を示すブロック図である。 図13は、実施の形態1に係るシンタックス構造を示すフローチャートである。 図14Aは、実施の形態1に係る4×4の周波数変換ブロックにおける基本ブロックを示す概念図である。 図14Bは、実施の形態1に係る8×8の周波数変換ブロックにおける基本ブロックを示す概念図である。 図14Cは、実施の形態1に係る8×4の周波数変換ブロックにおける基本ブロックを示す概念図である。 図14Dは、実施の形態1に係る4×8の周波数変換ブロックにおける基本ブロックを示す概念図である。 図14Eは、実施の形態1に係る16×16の周波数変換ブロックにおける基本ブロックを示す概念図である。 図14Fは、実施の形態1に係る16×8の周波数変換ブロックにおける基本ブロックを示す概念図である。 図14Gは、実施の形態1に係る8×16の周波数変換ブロックにおける基本ブロックを示す概念図である。 図14Hは、実施の形態1に係る16×12の周波数変換ブロックにおける基本ブロックを示す概念図である。 図14Iは、実施の形態1に係る4×16の周波数変換ブロックにおける基本ブロックを示す概念図である。 図15は、実施の形態1に係る2種類のテーブルを示す概念図である。 図16は、実施の形態1に係るテーブルの選択を示すフローチャートである。 図17は、実施の形態1に係る4種類のテーブルを示す概念図である。 図18Aは、実施の形態1に係る4×4の周波数変換ブロックにおける基本ブロックの階層を示す概念図である。 図18Bは、実施の形態1に係る8×8の周波数変換ブロックにおける基本ブロックの階層を示す概念図である。 図18Cは、実施の形態1に係る8×4の周波数変換ブロックにおける基本ブロックの階層を示す概念図である。 図18Dは、実施の形態1に係る4×8の周波数変換ブロックにおける基本ブロックの階層を示す概念図である。 図18Eは、実施の形態1に係る16×16の周波数変換ブロックにおける基本ブロックの階層を示す概念図である。 図18Fは、実施の形態1に係る16×8の周波数変換ブロックにおける基本ブロックの階層を示す概念図である。 図18Gは、実施の形態1に係る8×16の周波数変換ブロックにおける基本ブロックの階層を示す概念図である。 図18Hは、実施の形態1に係る16×12の周波数変換ブロックにおける基本ブロックの階層を示す概念図である。 図18Iは、実施の形態1に係る4×16の周波数変換ブロックにおける基本ブロックの階層を示す概念図である。 図19は、実施の形態1に係るパターンの判定処理を示すフローチャートである。 図20Aは、実施の形態1に係る第1パターンのカレント基本ブロックを示す概念図である。 図20Bは、実施の形態1に係る第2パターンのカレント基本ブロックを示す概念図である。 図20Cは、実施の形態1に係る第3パターンのカレント基本ブロックを示す概念図である。 図21は、実施の形態1に係る第1パターンにおいて選択されるテーブルを示す関係図である。 図22は、実施の形態1に係る第2パターンにおいて選択されるテーブルを示す関係図である。 図23は、実施の形態1に係る第3パターンにおいて周辺の周波数変換ブロックで選択されるテーブルを示す関係図である。 図24は、実施の形態1に係る第3パターンにおいて符号化モードで選択されるテーブルを示す関係図である。 図25は、実施の形態1に係る第3パターンにおいて量子化パラメータで選択されるテーブルを示す関係図である。 図26は、実施の形態1に係るシンタックス構造を示すデータ図である。 図27は、実施の形態1に係る符号化装置の実装例を示すブロック図である。 図28は、実施の形態1に係る符号化装置の第1符号化動作例を示すフローチャートである。 図29は、実施の形態1に係る符号化装置の第1符号化動作例における二値化処理を示すフローチャートである。 図30は、実施の形態1に係る符号化装置の第1符号化動作例における周波数変換係数情報の二値化処理を示すフローチャートである。 図31は、実施の形態1に係る符号化装置の第2符号化動作例を示すフローチャートである。 図32は、実施の形態1に係る符号化装置の第3符号化動作例を示すフローチャートである。 図33は、実施の形態1に係る符号化装置の第3符号化動作例における二値化処理を示すフローチャートである。 図34は、実施の形態1に係る符号化装置の第4符号化動作例における二値化処理を示すフローチャートである。 図35は、実施の形態1に係る復号装置の実装例を示すブロック図である。 図36は、実施の形態1に係る復号装置の第1復号動作例を示すフローチャートである。 図37は、実施の形態1に係る復号装置の第1復号動作例における逆二値化処理を示すフローチャートである。 図38は、実施の形態1に係る復号装置の第1復号動作例における周波数変換係数情報の二値化データ列の逆二値化処理を示すフローチャートである。 図39は、実施の形態1に係る復号装置の第2復号動作例を示すフローチャートである。 図40は、実施の形態1に係る復号装置の第3復号動作例を示すフローチャートである。 図41は、実施の形態1に係る復号装置の第3復号動作例における逆二値化処理を示すフローチャートである。 図42は、実施の形態1に係る復号装置の第4復号動作例における逆二値化処理を示すフローチャートである。 図43は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。 図44は、スケーラブル符号化時の符号化構造の一例を示す図である。 図45は、スケーラブル符号化時の符号化構造の一例を示す図である。 図46は、webページの表示画面例を示す図である。 図47は、webページの表示画面例を示す図である。 図48は、スマートフォンの一例を示す図である。 図49は、スマートフォンの構成例を示すブロック図である。
 (本発明の基礎となった知見)
 従来の符号化方式であるH.265では、画像情報を効率的に符号化するため、算術符号化が用いられている。具体的には、CABACと呼ばれるコンテキスト適応型二値算術符号化方式が採用されている。
 例えば、コンテキスト適応型二値算術符号化方式では、二値化によって、多値信号が、0又は1で表現される値のデータ列である二値化データ列に変換される。そして、データ種別等のコンテキストに従って0又は1の発生確率が所定の複数の発生確率の中から選択され、選択された発生確率に従って二値化データ列に対して二値算術符号化が適用される。そして、二値化データ列に含まれる0又は1の値に従って発生確率が更新される。
 すなわち、コンテキスト適応型二値算術符号化方式では、可変の発生確率に従って二値算術符号化が行われる。また、コンテキスト適応型二値算術符号化方式では、特定のデータ種別等について、固定の発生確率に従って二値算術符号化が行われる。
 さらに、H.265では、周波数変換係数情報を含む画像情報が符号化される。周波数変換係数情報は、画像の周波数成分に関する情報であり、画像の符号化及び復号等の処理に適している。一方で、周波数変換係数情報の符号量は、画像情報の全体の符号量に大きな影響を与える。したがって、周波数変換係数情報が適切に符号化されなければ、画像情報の全体の符号量が増加する可能性がある。
 そこで、本発明の一態様に係る符号化装置は、画像情報を符号化して、前記画像情報が符号化されたビット列を出力する符号化装置であって、メモリと、前記メモリにアクセス可能な回路とを備え、前記メモリにアクセス可能な前記回路は、前記画像情報を二値化し、前記画像情報が二値化された二値化データ列に対して算術符号化を適用するか否かを切り替え、前記二値化データ列に対して算術符号化が適用される場合、前記二値化データ列に対して算術符号化を適用して、算術符号化が適用された前記二値化データ列を含む前記ビット列を出力し、前記二値化データ列に対して算術符号化が適用されない場合、前記二値化データ列に対して算術符号化を適用せずに、算術符号化が適用されなかった前記二値化データ列を含む前記ビット列を出力し、前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで異なる二値化形式に従って、前記画像情報のうち、画像の周波数成分に関する周波数変換係数情報を二値化し、前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って、前記画像情報のうち、画像の予測方法に関する予測パラメータ情報の一部または全部を二値化する。
 これにより、符号化装置は、算術符号化をスキップすることができる。したがって、符号化装置は、算術符号化によって発生する処理遅延の削減を支援することができる。また、符号化装置は、全体の符号量に大きな影響を与える周波数変換係数情報を算術符号化の適用有無によって異なる二値化形式に従って適切に二値化することができる。したがって、符号化装置は、周波数変換係数情報を適切に符号化することができ、全体の符号量の増加を抑制することができる。
 例えば、前記回路は、前記予測パラメータ情報に含まれる、符号化モードに関する情報、画面内予測の予測方向に関する情報、画面間予測の参照ピクチャに関する情報、及び、画面間予測の動きベクトルに関する情報のうち、少なくとも1つに対して、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って二値化を施してもよい。
 これにより、符号化装置は、予測パラメータ情報に含まれる少なくとも一部の情報を共通の二値化形式に従って効率的に二値化することができる。
 例えば、前記回路は、前記予測パラメータ情報に含まれる、符号化モードに関する情報、画面内予測の予測方向に関する情報、画面間予測の参照ピクチャに関する情報、及び、画面間予測の動きベクトルに関する情報に対して、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って二値化を施してもよい。
 これにより、符号化装置は、予測パラメータ情報に含まれる各種情報を共通の二値化形式に従って効率的に二値化することができる。
 また、例えば、前記回路は、前記画像情報の二値化において、前記画像情報のうち前記周波数変換係数情報のみを前記異なる二値化形式に従って二値化し、前記画像情報のうち前記周波数変換係数情報を除く他の全ての情報を前記共通の二値化形式に従って二値化してもよい。
 これにより、符号化装置は、周波数変換係数情報を除く他の全ての情報を共通の二値化形式に従って二値化することができる。したがって、処理が簡素化される。
 また、例えば、前記回路は、前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用されない場合に、前記二値化データ列に対して算術符号化が適用される場合よりも、発生ビット数が少ない形式で前記周波数変換係数情報を二値化してもよい。
 これにより、符号化装置は、算術符号化が適用されない場合において、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、本発明の一態様に係る復号装置は、画像情報が符号化されたビット列を取得して、前記画像情報を復号する復号装置であって、メモリと、前記メモリにアクセス可能な回路とを備え、前記メモリにアクセス可能な前記回路は、前記画像情報が二値化された二値化データ列を含む前記ビット列を取得し、前記ビット列に含まれる前記二値化データ列に対して算術復号を適用するか否かを切り替え、前記二値化データ列に対して算術復号が適用される場合、前記二値化データ列に対して算術復号を適用して、算術復号が適用された前記二値化データ列を逆二値化することにより、前記画像情報を復号し、前記二値化データ列に対して算術復号が適用されない場合、前記二値化データ列に対して算術復号を適用せずに、算術復号が適用されなかった前記二値化データ列を逆二値化することにより、前記画像情報を復号し、前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで異なる逆二値化形式に従って、前記二値化データ列のうち、画像の周波数成分に関する周波数変換係数情報が二値化された第1部分を逆二値化し、前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って、前記二値化データ列のうち、画像の予測方法に関する予測パラメータ情報の一部または全部が二値化された第2部分を逆二値化する。
 これにより、復号装置は、算術復号をスキップすることができる。したがって、復号装置は、算術復号によって発生する処理遅延の削減を支援することができる。また、復号装置は、全体の符号量に大きな影響を与える周波数変換係数情報が二値化された第1部分を算術復号の適用有無に従って適切に逆二値化することができる。したがって、復号装置は、周波数変換係数情報を適切に復号することができ、全体の符号量の増加を抑制することができる。
 例えば、前記回路は、前記予測パラメータ情報に含まれる、符号化モードに関する情報、画面内予測の予測方向に関する情報、画面間予測の参照ピクチャに関する情報、及び、画面間予測の動きベクトルに関する情報のうち、少なくとも1つが二値化された前記第2部分に対して、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って、逆二値化を施してもよい。
 これにより、復号装置は、予測パラメータ情報に含まれる少なくとも一部の情報が二値化された部分を共通の逆二値化形式に従って効率的に逆二値化することができる。
 また、例えば、前記回路は、前記予測パラメータ情報に含まれる、符号化モードに関する情報、画面内予測の予測方向に関する情報、画面間予測の参照ピクチャに関する情報、及び、画面間予測の動きベクトルに関する情報が二値化された前記第2部分に対して、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って、逆二値化を施してもよい。
 これにより、復号装置は、予測パラメータ情報に含まれる各種情報が二値化された部分を共通の逆二値化形式に従って効率的に二値化することができる。
 また、例えば、前記回路は、前記二値化データ列の逆二値化において、前記二値化データ列のうち前記第1部分のみを前記異なる逆二値化形式に従って逆二値化し、前記二値化データ列のうち前記第1部分を除く他の全ての部分を前記共通の逆二値化形式に従って逆二値化してもよい。
 これにより、復号装置は、周波数変換係数情報が二値化された第1部分を除く他の全ての部分を共通の逆二値化形式に従って逆二値化することができる。したがって、処理が簡素化される。
 また、例えば、前記回路は、前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用されない場合に、前記二値化データ列に対して算術復号が適用される場合よりも、発生ビット数が少ない形式で前記周波数変換係数情報が二値化された前記第1部分を逆二値化してもよい。
 これにより、復号装置は、算術復号が適用されない場合において、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、本発明の一態様に係る符号化方法は、画像情報を符号化して、前記画像情報が符号化されたビット列を出力する符号化方法であって、前記画像情報を二値化し、前記画像情報が二値化された二値化データ列に対して算術符号化を適用するか否かを切り替え、前記二値化データ列に対して算術符号化が適用される場合、前記二値化データ列に対して算術符号化を適用して、算術符号化が適用された前記二値化データ列を含む前記ビット列を出力し、前記二値化データ列に対して算術符号化が適用されない場合、前記二値化データ列に対して算術符号化を適用せずに、算術符号化が適用されなかった前記二値化データ列を含む前記ビット列を出力し、前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで異なる二値化形式に従って、前記画像情報のうち、画像の周波数成分に関する周波数変換係数情報を二値化し、前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って、前記画像情報のうち、画像の予測方法に関する予測パラメータ情報の一部または全部を二値化する。
 これにより、符号化方法を用いる装置等は、算術符号化をスキップすることができる。したがって、符号化方法を用いる装置等は、算術符号化によって発生する処理遅延の削減を支援することができる。また、符号化方法を用いる装置等は、全体の符号量に大きな影響を与える周波数変換係数情報を算術符号化の適用有無によって異なる二値化形式に従って適切に二値化することができる。したがって、符号化方法を用いる装置等は、周波数変換係数情報を適切に符号化することができ、全体の符号量の増加を抑制することができる。
 また、本発明の一態様に係る復号方法は、画像情報が符号化されたビット列を取得して、前記画像情報を復号する復号方法であって、前記画像情報が二値化された二値化データ列を含む前記ビット列を取得し、前記ビット列に含まれる前記二値化データ列に対して算術復号を適用するか否かを切り替え、前記二値化データ列に対して算術復号が適用される場合、前記二値化データ列に対して算術復号を適用して、算術復号が適用された前記二値化データ列を逆二値化することにより、前記画像情報を復号し、前記二値化データ列に対して算術復号が適用されない場合、前記二値化データ列に対して算術復号を適用せずに、算術復号が適用されなかった前記二値化データ列を逆二値化することにより、前記画像情報を復号し、前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで異なる逆二値化形式に従って、前記二値化データ列のうち、画像の周波数成分に関する周波数変換係数情報が二値化された第1部分を逆二値化し、前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って、前記二値化データ列のうち、画像の予測方法に関する予測パラメータ情報の一部または全部が二値化された第2部分を逆二値化する。
 これにより、この復号方法を用いる装置等は、算術復号をスキップすることができる。したがって、この復号方法を用いる装置等は、算術復号によって発生する処理遅延の削減を支援することができる。また、この復号方法を用いる装置等は、全体の符号量に大きな影響を与える周波数変換係数情報が二値化された第1部分を算術復号の適用有無に従って適切に逆二値化することができる。したがって、この復号方法を用いる装置等は、周波数変換係数情報を適切に復号することができ、全体の符号量の増加を抑制することができる。
 また、本発明の一態様に係る符号化装置は、画像情報を符号化する符号化装置であって、メモリと、前記メモリにアクセス可能な回路とを備え、前記メモリにアクセス可能な前記回路は、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックの位置を示す位置情報を符号化し、前記1以上の基本ブロックのうち、前記所定のスキャン順で前記特定基本ブロック以降の各基本ブロックについてのみ、当該基本ブロックを構成する複数の周波数変換係数を示すブロック情報を符号化する符号化装置であってもよい。
 これにより、符号化装置は、位置情報及びブロック情報を周波数変換係数情報として符号化することができる。そして、符号化装置は、所定のスキャン順で特定基本ブロック以降の各基本ブロックについて、ブロック情報を符号化するため、周波数変換係数情報の符号量を小さくすることを支援することができる。
 例えば、前記回路は、前記1以上の基本ブロックの個数が2以上である場合のみ、前記位置情報を符号化してもよい。
 これにより、符号化装置は、例えば周波数変換ブロックのサイズと各基本ブロックのサイズとが同じである場合に、周波数変換係数情報の符号量をより小さくすることを支援することができる。
 また、例えば、前記回路は、前記周波数変換ブロックに前記特定基本ブロックが存在する場合のみ、前記位置情報及び前記ブロック情報を符号化してもよい。
 これにより、符号化装置は、例えば周波数変換ブロックに非ゼロ係数が含まれない場合に、周波数変換係数情報の符号量をより小さくすることを支援することができる。
 また、例えば、前記回路は、前記画像情報を符号化して、前記画像情報が符号化されたビット列を出力し、前記画像情報の符号化、及び、前記ビット列の出力において、前記画像情報を二値化し、前記画像情報が二値化された二値化データ列に対して算術符号化を適用するか否かを切り替え、前記二値化データ列に対して算術符号化が適用される場合、前記二値化データ列に対して算術符号化を適用して、算術符号化が適用された前記二値化データ列を含む前記ビット列を出力し、前記二値化データ列に対して算術符号化が適用されない場合、前記二値化データ列に対して算術符号化を適用せずに、算術符号化が適用されなかった前記二値化データ列を含む前記ビット列を出力し、前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで異なる二値化形式に従って、前記画像情報のうち、画像の周波数成分に関する周波数変換係数情報を二値化し、前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って、前記画像情報のうち、画像の予測方法に関する予測パラメータ情報の一部または全部を二値化し、前記二値化データ列に対して算術符号化が適用されない場合、前記周波数変換係数情報の二値化において、前記位置情報及び前記ブロック情報を含む前記周波数変換係数情報を二値化することにより、前記位置情報及び前記ブロック情報を符号化してもよい。
 これにより、符号化装置は、算術符号化が適用されない場合に、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、本発明の一態様に係る復号装置は、画像情報を復号する復号装置であって、メモリと、前記メモリにアクセス可能な回路とを備え、前記メモリにアクセス可能な前記回路は、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックの位置を示す位置情報を復号し、前記1以上の基本ブロックのうち、前記所定のスキャン順で前記特定基本ブロック以降の各基本ブロックについてのみ、当該基本ブロックを構成する複数の周波数変換係数を示すブロック情報を復号する復号装置であってもよい。
 これにより、復号装置は、位置情報及びブロック情報を周波数変換係数情報として復号することができる。そして、復号装置は、所定のスキャン順で特定基本ブロック以降の各基本ブロックについて、ブロック情報を復号するため、周波数変換係数情報の符号量を小さくすることを支援することができる。
 例えば、前記回路は、前記1以上の基本ブロックの個数が2以上である場合のみ、前記位置情報を復号してもよい。
 これにより、復号装置は、例えば周波数変換ブロックのサイズと各基本ブロックのサイズとが同じである場合に、周波数変換係数情報の符号量をより小さくすることを支援することができる。
 また、例えば、前記回路は、前記周波数変換ブロックに前記特定基本ブロックが存在する場合のみ、前記位置情報及び前記ブロック情報を復号してもよい。
 これにより、復号装置は、例えば周波数変換ブロックに非ゼロ係数が含まれない場合に、周波数変換係数情報の符号量をより小さくすることを支援することができる。
 また、例えば、前記回路は、前記画像情報が符号化されたビット列を取得して、前記画像情報を復号し、前記ビット列の取得、及び、前記画像情報の復号において、前記画像情報が二値化された二値化データ列を含む前記ビット列を取得し、前記ビット列に含まれる前記二値化データ列に対して算術復号を適用するか否かを切り替え、前記二値化データ列に対して算術復号が適用される場合、前記二値化データ列に対して算術復号を適用して、算術復号が適用された前記二値化データ列を逆二値化することにより、前記画像情報を復号し、前記二値化データ列に対して算術復号が適用されない場合、前記二値化データ列に対して算術復号を適用せずに、算術復号が適用されなかった前記二値化データ列を逆二値化することにより、前記画像情報を復号し、前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで異なる逆二値化形式に従って、前記二値化データ列のうち、画像の周波数成分に関する周波数変換係数情報が二値化された第1部分を逆二値化し、前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って、前記二値化データ列のうち、画像の予測方法に関する予測パラメータ情報の一部または全部が二値化された第2部分を逆二値化し、前記二値化データ列に対して算術復号が適用されない場合、前記第1部分の逆二値化において、前記位置情報及び前記ブロック情報を含む前記周波数変換係数情報が二値化された前記第1部分を逆二値化することにより、前記位置情報及び前記ブロック情報を復号してもよい。
 これにより、復号装置は、算術復号が適用されない場合に、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、本発明の一態様に係る符号化方法は、画像情報を符号化する符号化方法であって、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックの位置を示す位置情報を符号化し、前記1以上の基本ブロックのうち、前記所定のスキャン順で前記特定基本ブロック以降の各基本ブロックについてのみ、当該基本ブロックを構成する複数の周波数変換係数を示すブロック情報を符号化する符号化方法であってもよい。
 これにより、この符号化方法を用いる装置等は、位置情報及びブロック情報を周波数変換係数情報として符号化することができる。そして、この符号化方法を用いる装置等は、所定のスキャン順で特定基本ブロック以降の各基本ブロックについて、ブロック情報を符号化するため、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、本発明の一態様に係る復号方法は、画像情報を復号する復号方法であって、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックの位置を示す位置情報を復号し、前記1以上の基本ブロックのうち、前記所定のスキャン順で前記特定基本ブロック以降の各基本ブロックについてのみ、当該基本ブロックを構成する複数の周波数変換係数を示すブロック情報を復号する復号方法であってもよい。
 これにより、この復号方法を用いる装置等は、位置情報及びブロック情報を周波数変換係数情報として復号することができる。そして、この復号方法を用いる装置等は、所定のスキャン順で特定基本ブロック以降の各基本ブロックについて、ブロック情報を復号するため、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、本発明の一態様に係る符号化装置は、画像情報を符号化する符号化装置であって、メモリと、前記メモリにアクセス可能な回路とを備え、前記メモリにアクセス可能な前記回路は、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って二値化して、前記データ値を含む前記画像情報を符号化し、前記データ値の二値化において、前記非ゼロ係数の個数として0を示すデータ値の対応付けを含む第1テーブルと、前記非ゼロ係数の個数として0を示すデータ値の対応付けを含まない第2テーブルとを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記データ値を二値化する符号化装置であってもよい。
 これにより、符号化装置は、基本ブロックを構成する複数の周波数変換係数を効率的に示すための情報を適切に符号化することができる。また、符号化装置は、情報量が削減されたテーブルを二値化のための変換テーブルとして用いることができる。したがって、符号化装置は、周波数変換係数情報の符号量を小さくすることを支援することができる。
 例えば、前記回路は、前記データ値の二値化において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で、前記1以上の基本ブロックのうち最初に非ゼロ係数を含む基本ブロックである特定基本ブロック以降の各基本ブロックについてのみ、当該基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を前記カレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値として二値化してもよい。
 これにより、符号化装置は、周波数変換係数情報の符号量をより小さくすることを支援することができる。
 また、例えば、前記回路は、前記データ値の二値化において、前記1以上の基本ブロックに前記特定基本ブロックが存在する場合のみ、前記データ値を二値化し、前記変換テーブルの選択において、前記周波数変換ブロックと前記カレント基本ブロックとが同じである場合、前記第2テーブルを前記変換テーブルとして選択してもよい。
 これにより、符号化装置は、例えば周波数変換ブロックのサイズと各基本ブロックのサイズとが同じである場合に、0個の非ゼロ係数の対応付けを含まない第2テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記カレント基本ブロックが前記特定基本ブロックである場合、前記第2テーブルを前記変換テーブルとして選択してもよい。
 これにより、符号化装置は、例えばカレント基本ブロックが特定基本ブロックである場合に、0個の非ゼロ係数の対応付けを含まない第2テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、例えば、前記回路は、前記画像情報を符号化して、前記画像情報が符号化されたビット列を出力し、前記画像情報の符号化、及び、前記ビット列の出力において、前記画像情報を二値化し、前記画像情報が二値化された二値化データ列に対して算術符号化を適用するか否かを切り替え、前記二値化データ列に対して算術符号化が適用される場合、前記二値化データ列に対して算術符号化を適用して、算術符号化が適用された前記二値化データ列を含む前記ビット列を出力し、前記二値化データ列に対して算術符号化が適用されない場合、前記二値化データ列に対して算術符号化を適用せずに、算術符号化が適用されなかった前記二値化データ列を含む前記ビット列を出力し、前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで異なる二値化形式に従って、前記画像情報のうち、画像の周波数成分に関する周波数変換係数情報を二値化し、前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って、前記画像情報のうち、画像の予測方法に関する予測パラメータ情報の一部または全部を二値化し、前記二値化データ列に対して算術符号化が適用されない場合、前記周波数変換係数情報の二値化において、前記第1テーブルと前記第2テーブルとを含む前記複数のテーブルの中から選択された前記変換テーブルに従って、前記周波数変換係数情報に含まれる前記データ値を二値化してもよい。
 これにより、符号化装置は、算術符号化が適用されない場合に、0個の非ゼロ係数の対応付けを含まない第2テーブルを含む複数のテーブルの中から選択される変換テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、本発明の一態様に係る復号装置は、画像情報を復号する復号装置であって、メモリと、前記メモリにアクセス可能な回路とを備え、前記メモリにアクセス可能な前記回路は、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が二値化された二値化値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って逆二値化して、前記データ値を含む前記画像情報を復号し、前記二値化値の逆二値化において、前記非ゼロ係数の個数として0を示すデータ値の対応付けを含む第1テーブルと、前記非ゼロ係数の個数として0を示すデータ値の対応付けを含まない第2テーブルとを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記二値化値を逆二値化する復号装置であってもよい。
 これにより、復号装置は、基本ブロックを構成する複数の周波数変換係数を効率的に示すための情報を適切に復号することができる。また、復号装置は、情報量が削減されたテーブルを逆二値化のための変換テーブルとして用いることができる。したがって、復号装置は、周波数変換係数情報の符号量を小さくすることを支援することができる。
 例えば、前記回路は、前記二値化値の逆二値化において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で、前記1以上の基本ブロックのうち最初に非ゼロ係数を含む基本ブロックである特定基本ブロック以降の各基本ブロックについてのみ、当該基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が二値化された二値化値を前記カレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が二値化された二値化値として逆二値化してもよい。
 これにより、復号装置は、周波数変換係数情報の符号量をより小さくすることを支援することができる。
 また、例えば、前記回路は、前記二値化値の逆二値化において、前記1以上の基本ブロックに前記特定基本ブロックが存在する場合のみ、前記二値化値を逆二値化し、前記変換テーブルの選択において、前記周波数変換ブロックと前記カレント基本ブロックとが同じである場合、前記第2テーブルを前記変換テーブルとして選択してもよい。
 これにより、復号装置は、例えば周波数変換ブロックのサイズと各基本ブロックのサイズとが同じである場合に、0個の非ゼロ係数の対応付けを含まない第2テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記カレント基本ブロックが前記特定基本ブロックである場合、前記第2テーブルを前記変換テーブルとして選択してもよい。
 これにより、復号装置は、例えばカレント基本ブロックが特定基本ブロックである場合に、0個の非ゼロ係数の対応付けを含まない第2テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、例えば、前記回路は、前記画像情報が符号化されたビット列を取得して、前記画像情報を復号し、前記ビット列の取得、及び、前記画像情報の復号において、前記画像情報が二値化された二値化データ列を含む前記ビット列を取得し、前記ビット列に含まれる前記二値化データ列に対して算術復号を適用するか否かを切り替え、前記二値化データ列に対して算術復号が適用される場合、前記二値化データ列に対して算術復号を適用して、算術復号が適用された前記二値化データ列を逆二値化することにより、前記画像情報を復号し、前記二値化データ列に対して算術復号が適用されない場合、前記二値化データ列に対して算術復号を適用せずに、算術復号が適用されなかった前記二値化データ列を逆二値化することにより、前記画像情報を復号し、前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで異なる逆二値化形式に従って、前記二値化データ列のうち、画像の周波数成分に関する周波数変換係数情報が二値化された第1部分を逆二値化し、前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って、前記二値化データ列のうち、画像の予測方法に関する予測パラメータ情報の一部または全部が二値化された第2部分を逆二値化し、前記二値化データ列に対して算術復号が適用されない場合、前記第1部分の逆二値化において、前記第1テーブルと前記第2テーブルとを含む前記複数のテーブルの中から選択された前記変換テーブルに従って、前記第1部分に含まれる前記二値化値を逆二値化してもよい。
 これにより、復号装置は、算術復号が適用されない場合に、0個の非ゼロ係数の対応付けを含まない第2テーブルを含む複数のテーブルの中から選択される変換テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、本発明の一態様に係る符号化方法は、画像情報を符号化する符号化方法であって、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って二値化して、前記データ値を含む前記画像情報を符号化し、前記データ値の二値化において、前記非ゼロ係数の個数として0を示すデータ値の対応付けを含む第1テーブルと、前記非ゼロ係数の個数として0を示すデータ値の対応付けを含まない第2テーブルとを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記データ値を二値化する符号化方法であってもよい。
 これにより、この符号化方法を用いる装置等は、基本ブロックを構成する複数の周波数変換係数を効率的に示すための情報を適切に符号化することができる。また、この符号化方法を用いる装置等は、情報量が削減されたテーブルを二値化のための変換テーブルとして用いることができる。したがって、この符号化方法を用いる装置等は、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、本発明の一態様に係る復号方法は、画像情報を復号する復号方法であって、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が二値化された二値化値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って逆二値化して、前記データ値を含む前記画像情報を復号し、前記二値化値の逆二値化において、前記非ゼロ係数の個数として0を示すデータ値の対応付けを含む第1テーブルと、前記非ゼロ係数の個数として0を示すデータ値の対応付けを含まない第2テーブルとを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記二値化値を逆二値化する復号方法であってもよい。
 これにより、この復号方法を用いる装置等は、基本ブロックを構成する複数の周波数変換係数を効率的に示すための情報を適切に復号することができる。また、この復号方法を用いる装置等は、情報量が削減されたテーブルを逆二値化のための変換テーブルとして用いることができる。したがって、この復号方法を用いる装置等は、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、本発明の一態様に係る符号化装置は、画像情報を符号化する符号化装置であって、メモリと、前記メモリにアクセス可能な回路とを備え、前記メモリにアクセス可能な前記回路は、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って二値化して、前記データ値を含む前記画像情報を符号化し、前記データ値の二値化において、前記カレント基本ブロックを含む前記周波数変換ブロックであるカレント周波数変換ブロックにおける前記カレント基本ブロックの位置に従って、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記データ値を二値化する符号化装置であってもよい。
 これにより、符号化装置は、基本ブロックを構成する複数の周波数変換係数を効率的に示すための情報を適切に符号化することができる。また、符号化装置は、非ゼロ係数の個数を示すデータ値を二値化するための変換テーブルをカレント基本ブロックの位置に従って選択することができる。非ゼロ係数の個数の特性は、カレント基本ブロックの位置により異なる。したがって、符号化装置は、カレント基本ブロックの位置を用いて、非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。よって、符号化装置は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 例えば、前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在する場合、前記先行基本ブロックに含まれる非ゼロ係数の個数に従って、前記変換テーブルを選択してもよい。
 これにより、符号化装置は、カレント基本ブロックに非ゼロ係数の個数が類似すると推定される先行基本ブロックの非ゼロ係数の個数に従って、変換テーブルを選択することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記先行基本ブロックが前記同じレベルに存在し、かつ、前記先行基本ブロックに含まれる非ゼロ係数の個数が第1個数である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、前記先行基本ブロックが前記同じレベルに存在し、かつ、前記先行基本ブロックに含まれる非ゼロ係数の個数が前記第1個数よりも多い第2個数である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択してもよい。
 これにより、符号化装置は、先行基本ブロックの非ゼロ係数の個数に従ってカレント基本ブロックの非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在する場合、前記複数のテーブルの中から前記差が所定の差よりも小さいテーブルを前記変換テーブルとして選択してもよい。
 これにより、符号化装置は、カレント基本ブロック及び特定基本ブロックの関係に従って非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在する場合、前記複数のテーブルの中から前記差が最も小さいテーブルを前記変換テーブルとして選択してもよい。
 これにより、符号化装置は、カレント基本ブロック及び特定基本ブロックの関係に従って非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加をより抑制することを支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合、前記カレント周波数変換ブロックの周辺の周波数変換ブロックである周辺周波数変換ブロックから前記カレント基本ブロックに含まれる非ゼロ係数の個数として推定される個数に従って、前記変換テーブルを選択してもよい。
 これにより、符号化装置は、カレント基本ブロックに非ゼロ係数の個数が類似すると推定される周辺周波数変換ブロックを用いて、変換テーブルを選択することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記周辺周波数変換ブロックから推定される個数が第1個数である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記周辺周波数変換ブロックから推定される個数が前記第1個数よりも多い第2個数である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択してもよい。
 これにより、符号化装置は、周辺周波数変換ブロックに従ってカレント基本ブロックの非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、前記周辺周波数変換ブロックは、(i)前記カレント周波数変換ブロックの左又は上に隣接する周波数変換ブロック、(ii)前記カレント周波数変換ブロックの直前に符号化された周波数変換ブロック、又は、(iii)前記カレント周波数変換ブロックから所定の範囲内に位置し、面間予測か面内予測かの符号化モードが前記カレント周波数変換ブロックと同じ周波数変換ブロックであってもよい。
 これにより、符号化装置は、適切な周辺周波数変換ブロックを用いて、変換テーブルを選択することができる。
 また、例えば、前記周辺周波数変換ブロックから推定される個数は、(i)前記周辺周波数変換ブロックにおける1以上の基本ブロックのうち、前記周辺周波数変換ブロックに対する相対的な位置が、前記カレント周波数変換ブロックに対する前記カレント基本ブロックの相対的な位置に等しい基本ブロックに含まれる非ゼロ係数の個数、又は、(ii)前記周辺周波数変換ブロックの全体に含まれる非ゼロ係数の個数から推定されてもよい。
 これにより、符号化装置は、周辺周波数変換ブロックから適切に推定される個数に従って、変換テーブルを選択することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合、前記カレント基本ブロックの符号化モードが面間予測か面内予測かに従って、前記変換テーブルを選択してもよい。
 これにより、符号化装置は、面間予測か面内予測かの符号化モードに従って、変換テーブルを選択することができる。非ゼロ係数の個数の特性は、符号化モードにより異なると推定される。したがって、符号化装置は、符号化モードを用いて、非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。よって、符号化装置は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記カレント基本ブロックの符号化モードが面間予測である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記カレント基本ブロックの符号化モードが面内予測である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択してもよい。
 これにより、符号化装置は、符号化モードが面内予測であるため、予測精度が低く、非ゼロ係数の個数が多いと推定される場合に、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合、前記カレント基本ブロックの符号化に用いられる量子化パラメータに従って、前記変換テーブルを選択してもよい。
 これにより、符号化装置は、カレント基本ブロックの符号化に用いられる量子化パラメータに従って、変換テーブルを選択することができる。非ゼロ係数の個数の特性は、量子化パラメータにより異なると推定される。したがって、符号化装置は、量子化パラメータを用いて、非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。よって、符号化装置は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記量子化パラメータが第1の値である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記量子化パラメータが第1の値よりも小さい第2の値である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択してもよい。
 これにより、符号化装置は、量子化パラメータが小さいことによって非ゼロ係数の個数が多いと推定される場合に、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、前記回路は、前記画像情報を符号化して、前記画像情報が符号化されたビット列を出力し、前記画像情報の符号化、及び、前記ビット列の出力において、前記画像情報を二値化し、前記画像情報が二値化された二値化データ列に対して算術符号化を適用するか否かを切り替え、前記二値化データ列に対して算術符号化が適用される場合、前記二値化データ列に対して算術符号化を適用して、算術符号化が適用された前記二値化データ列を含む前記ビット列を出力し、前記二値化データ列に対して算術符号化が適用されない場合、前記二値化データ列に対して算術符号化を適用せずに、算術符号化が適用されなかった前記二値化データ列を含む前記ビット列を出力し、前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで異なる二値化形式に従って、前記画像情報のうち、画像の周波数成分に関する周波数変換係数情報を二値化し、前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って、前記画像情報のうち、画像の予測方法に関する予測パラメータ情報の一部または全部を二値化し、前記二値化データ列に対して算術符号化が適用されない場合、前記周波数変換係数情報の二値化において、前記複数のテーブルの中から前記カレント基本ブロックの位置に従って選択された前記変換テーブルに従って、前記周波数変換係数情報に含まれる前記データ値を二値化してもよい。
 これにより、符号化装置は、算術符号化が適用されない場合に、複数のテーブルの中からカレント基本ブロックの位置に従って選択される変換テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、本発明の一態様に係る復号装置は、画像情報を復号する復号装置であって、メモリと、前記メモリにアクセス可能な回路とを備え、前記メモリにアクセス可能な前記回路は、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が二値化された二値化値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って逆二値化して、前記データ値を含む前記画像情報を復号し、前記二値化値の逆二値化において、前記カレント基本ブロックを含む前記周波数変換ブロックであるカレント周波数変換ブロックにおける前記カレント基本ブロックの位置に従って、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記二値化値を逆二値化する復号装置であってもよい。
 これにより、復号装置は、基本ブロックを構成する複数の周波数変換係数を効率的に示すための情報を適切に復号することができる。また、復号装置は、非ゼロ係数の個数を示すデータ値の二値化値を逆二値化するための変換テーブルをカレント基本ブロックの位置に従って選択することができる。非ゼロ係数の個数の特性は、カレント基本ブロックの位置により異なる。したがって、復号装置は、カレント基本ブロックの位置を用いて、非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。よって、復号装置は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 例えば、前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在する場合、前記先行基本ブロックに含まれる非ゼロ係数の個数に従って、前記変換テーブルを選択してもよい。
 これにより、復号装置は、カレント基本ブロックに非ゼロ係数の個数が類似すると推定される先行基本ブロックの非ゼロ係数の個数に従って、変換テーブルを選択することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記先行基本ブロックが前記同じレベルに存在し、かつ、前記先行基本ブロックに含まれる非ゼロ係数の個数が第1個数である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、前記先行基本ブロックが前記同じレベルに存在し、かつ、前記先行基本ブロックに含まれる非ゼロ係数の個数が前記第1個数よりも多い第2個数である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択してもよい。
 これにより、復号装置は、先行基本ブロックの非ゼロ係数の個数に従ってカレント基本ブロックの非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在する場合、前記複数のテーブルの中から前記差が所定の差よりも小さいテーブルを前記変換テーブルとして選択してもよい。
 これにより、復号装置は、カレント基本ブロック及び特定基本ブロックの関係に従って非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在する場合、前記複数のテーブルの中から前記差が最も小さいテーブルを前記変換テーブルとして選択してもよい。
 これにより、復号装置は、カレント基本ブロック及び特定基本ブロックの関係に従って非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加をより抑制することを支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合、前記カレント周波数変換ブロックの周辺の周波数変換ブロックである周辺周波数変換ブロックから前記カレント基本ブロックに含まれる非ゼロ係数の個数として推定される個数に従って、前記変換テーブルを選択してもよい。
 これにより、復号装置は、カレント基本ブロックに非ゼロ係数の個数が類似すると推定される周辺周波数変換ブロックを用いて、変換テーブルを選択することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記周辺周波数変換ブロックから推定される個数が第1個数である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記周辺周波数変換ブロックから推定される個数が前記第1個数よりも多い第2個数である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択してもよい。
 これにより、復号装置は、周辺周波数変換ブロックに従ってカレント基本ブロックの非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、前記周辺周波数変換ブロックは、(i)前記カレント周波数変換ブロックの左又は上に隣接する周波数変換ブロック、(ii)前記カレント周波数変換ブロックの直前に復号された周波数変換ブロック、又は、(iii)前記カレント周波数変換ブロックから所定の範囲内に位置し、面間予測か面内予測かの符号化モードが前記カレント周波数変換ブロックと同じ周波数変換ブロックであってもよい。
 これにより、復号装置は、適切な周辺周波数変換ブロックを用いて、変換テーブルを選択することができる。
 また、例えば、前記周辺周波数変換ブロックから推定される個数は、(i)前記周辺周波数変換ブロックにおける1以上の基本ブロックのうち、前記周辺周波数変換ブロックに対する相対的な位置が、前記カレント周波数変換ブロックに対する前記カレント基本ブロックの相対的な位置に等しい基本ブロックに含まれる非ゼロ係数の個数、又は、(ii)前記周辺周波数変換ブロックの全体に含まれる非ゼロ係数の個数から推定されてもよい。
 これにより、復号装置は、周辺周波数変換ブロックから適切に推定される個数に従って、変換テーブルを選択することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合、前記カレント基本ブロックの符号化モードが面間予測か面内予測かに従って、前記変換テーブルを選択してもよい。
 これにより、復号装置は、面間予測か面内予測かの符号化モードに従って、変換テーブルを選択することができる。非ゼロ係数の個数の特性は、符号化モードにより異なると推定される。したがって、復号装置は、符号化モードを用いて、非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。よって、復号装置は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記カレント基本ブロックの符号化モードが面間予測である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記カレント基本ブロックの符号化モードが面内予測である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択してもよい。
 これにより、復号装置は、符号化モードが面内予測であるため、予測精度が低く、非ゼロ係数の個数が多いと推定される場合に、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合、前記カレント基本ブロックの復号に用いられる量子化パラメータに従って、前記変換テーブルを選択してもよい。
 これにより、復号装置は、カレント基本ブロックの復号に用いられる量子化パラメータに従って、変換テーブルを選択することができる。非ゼロ係数の個数の特性は、量子化パラメータにより異なると推定される。したがって、復号装置は、量子化パラメータにより非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。よって、復号装置は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、例えば、前記回路は、前記変換テーブルの選択において、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記量子化パラメータが第1の値である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記量子化パラメータが第1の値よりも小さい第2の値である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択してもよい。
 これにより、復号装置は、量子化パラメータが小さいことによって非ゼロ係数の個数が多いと推定される場合に、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、前記回路は、前記画像情報が符号化されたビット列を取得して、前記画像情報を復号し、前記ビット列の取得、及び、前記画像情報の復号において、前記画像情報が二値化された二値化データ列を含む前記ビット列を取得し、前記ビット列に含まれる前記二値化データ列に対して算術復号を適用するか否かを切り替え、前記二値化データ列に対して算術復号が適用される場合、前記二値化データ列に対して算術復号を適用して、算術復号が適用された前記二値化データ列を逆二値化することにより、前記画像情報を復号し、前記二値化データ列に対して算術復号が適用されない場合、前記二値化データ列に対して算術復号を適用せずに、算術復号が適用されなかった前記二値化データ列を逆二値化することにより、前記画像情報を復号し、前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで異なる逆二値化形式に従って、前記二値化データ列のうち、画像の周波数成分に関する周波数変換係数情報が二値化された第1部分を逆二値化し、前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って、前記二値化データ列のうち、画像の予測方法に関する予測パラメータ情報の一部または全部が二値化された第2部分を逆二値化し、前記二値化データ列に対して算術復号が適用されない場合、前記第1部分の逆二値化において、前記複数のテーブルの中から前記カレント基本ブロックの位置に従って選択された前記変換テーブルに従って、前記第1部分に含まれる前記二値化値を逆二値化してもよい。
 これにより、復号装置は、算術復号が適用されない場合に、複数のテーブルの中からカレント基本ブロックの位置に従って選択される変換テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、本発明の一態様に係る符号化方法は、画像情報を符号化する符号化方法であって、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って二値化して、前記データ値を含む前記画像情報を符号化し、前記データ値の二値化において、前記カレント基本ブロックを含む前記周波数変換ブロックであるカレント周波数変換ブロックにおける前記カレント基本ブロックの位置に従って、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記データ値を二値化する符号化方法であってもよい。
 これにより、この符号化方法を用いる装置等は、基本ブロックを構成する複数の周波数変換係数を効率的に示すための情報を適切に符号化することができる。また、この符号化方法を用いる装置等は、非ゼロ係数の個数を示すデータ値を二値化するための変換テーブルをカレント基本ブロックの位置に従って選択することができる。非ゼロ係数の個数の特性は、カレント基本ブロックの位置により異なる。したがって、この符号化方法を用いる装置等は、カレント基本ブロックの位置を用いて、非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。よって、この符号化方法を用いる装置等は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、本発明の一態様に係る復号方法は、画像情報を復号する復号方法であって、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が二値化された二値化値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って逆二値化して、前記データ値を含む前記画像情報を復号し、前記二値化値の逆二値化において、前記カレント基本ブロックを含む前記周波数変換ブロックであるカレント周波数変換ブロックにおける前記カレント基本ブロックの位置に従って、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記二値化値を逆二値化する復号方法であってもよい。
 これにより、この復号方法を用いる装置等は、基本ブロックを構成する複数の周波数変換係数を効率的に示すための情報を適切に復号することができる。また、この復号方法を用いる装置等は、非ゼロ係数の個数を示すデータ値の二値化値を逆二値化するための変換テーブルをカレント基本ブロックの位置に従って選択することができる。非ゼロ係数の個数の特性は、カレント基本ブロックの位置により異なる。したがって、この復号方法を用いる装置等は、カレント基本ブロックの位置を用いて、非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。よって、この復号方法を用いる装置等は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 さらに、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、又は、コンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。
 以下、実施の形態について図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 [符号化装置の概要]
 まず、実施の形態1に係る符号化装置の概要を説明する。図1は、実施の形態1に係る符号化装置100の機能構成を示すブロック図である。符号化装置100は、動画像/画像をブロック単位で符号化する動画像/画像符号化装置である。
 図1に示すように、符号化装置100は、画像をブロック単位で符号化する装置であって、分割部102と、減算部104と、変換部106と、量子化部108と、エントロピー符号化部110と、逆量子化部112と、逆変換部114と、加算部116と、ブロックメモリ118と、ループフィルタ部120と、フレームメモリ122と、イントラ予測部124と、インター予測部126と、予測制御部128と、を備える。
 符号化装置100は、例えば、汎用プロセッサ及びメモリにより実現される。この場合、メモリに格納されたソフトウェアプログラムがプロセッサにより実行されたときに、プロセッサは、分割部102、減算部104、変換部106、量子化部108、エントロピー符号化部110、逆量子化部112、逆変換部114、加算部116、ループフィルタ部120、イントラ予測部124、インター予測部126及び予測制御部128として機能する。また、符号化装置100は、分割部102、減算部104、変換部106、量子化部108、エントロピー符号化部110、逆量子化部112、逆変換部114、加算部116、ループフィルタ部120、イントラ予測部124、インター予測部126及び予測制御部128に対応する専用の1以上の電子回路として実現されてもよい。
 以下に、符号化装置100に含まれる各構成要素について説明する。
 [分割部]
 分割部102は、入力動画像に含まれる各ピクチャを複数のブロックに分割し、各ブロックを減算部104に出力する。例えば、分割部102は、まず、ピクチャを固定サイズ(例えば128x128)のブロックに分割する。この固定サイズのブロックは、符号化ツリーユニット(CTU)と呼ばれることがある。そして、分割部102は、再帰的な四分木(quadtree)及び/又は二分木(binary tree)ブロック分割に基づいて、固定サイズのブロックの各々を可変サイズ(例えば64x64以下)のブロックに分割する。この可変サイズのブロックは、符号化ユニット(CU)、予測ユニット(PU)あるいは変換ユニット(TU)と呼ばれることがある。なお、本実施の形態では、CU、PU及びTUは区別される必要はなく、ピクチャ内の一部又はすべてのブロックがCU、PU、TUの処理単位となってもよい。
 図2は、実施の形態1におけるブロック分割の一例を示す図である。図2において、実線は四分木ブロック分割によるブロック境界を表し、破線は二分木ブロック分割によるブロック境界を表す。
 ここでは、ブロック10は、128x128画素の正方形ブロック(128x128ブロック)である。この128x128ブロック10は、まず、4つの正方形の64x64ブロックに分割される(四分木ブロック分割)。
 左上の64x64ブロックは、さらに2つの矩形の32x64ブロックに垂直に分割され、左の32x64ブロックはさらに2つの矩形の16x64ブロックに垂直に分割される(二分木ブロック分割)。その結果、左上の64x64ブロックは、2つの16x64ブロック11、12と、32x64ブロック13とに分割される。
 右上の64x64ブロックは、2つの矩形の64x32ブロック14、15に水平に分割される(二分木ブロック分割)。
 左下の64x64ブロックは、4つの正方形の32x32ブロックに分割される(四分木ブロック分割)。4つの32x32ブロックのうち左上のブロック及び右下のブロックはさらに分割される。左上の32x32ブロックは、2つの矩形の16x32ブロックに垂直に分割され、右の16x32ブロックはさらに2つの16x16ブロックに水平に分割される(二分木ブロック分割)。右下の32x32ブロックは、2つの32x16ブロックに水平に分割される(二分木ブロック分割)。その結果、左下の64x64ブロックは、16x32ブロック16と、2つの16x16ブロック17、18と、2つの32x32ブロック19、20と、2つの32x16ブロック21、22とに分割される。
 右下の64x64ブロック23は分割されない。
 以上のように、図2では、ブロック10は、再帰的な四分木及び二分木ブロック分割に基づいて、13個の可変サイズのブロック11~23に分割される。このような分割は、QTBT(quad-tree plus binary tree)分割と呼ばれることがある。
 なお、図2では、1つのブロックが4つ又は2つのブロックに分割されていたが(四分木又は二分木ブロック分割)、分割はこれに限定されない。例えば、1つのブロックが3つのブロックに分割されてもよい(三分木ブロック分割)。このような三分木ブロック分割を含む分割は、MBT(multi type tree)分割と呼ばれることがある。
 [減算部]
 減算部104は、分割部102によって分割されたブロック単位で原信号(原サンプル)から予測信号(予測サンプル)を減算する。つまり、減算部104は、符号化対象ブロック(以下、カレントブロックという)の予測誤差(残差ともいう)を算出する。そして、減算部104は、算出された予測誤差を変換部106に出力する。
 原信号は、符号化装置100の入力信号であり、動画像を構成する各ピクチャの画像を表す信号(例えば輝度(luma)信号及び2つの色差(chroma)信号)である。以下において、画像を表す信号をサンプルともいうこともある。
 [変換部]
 変換部106は、空間領域の予測誤差を周波数領域の変換係数に変換し、変換係数を量子化部108に出力する。具体的には、変換部106は、例えば空間領域の予測誤差に対して予め定められた離散コサイン変換(DCT)又は離散サイン変換(DST)を行う。
 なお、変換部106は、複数の変換タイプの中から適応的に変換タイプを選択し、選択された変換タイプに対応する変換基底関数(transform basis function)を用いて、予測誤差を変換係数に変換してもよい。このような変換は、EMT(explicit multiple core transform)又はAMT(adaptive multiple transform)と呼ばれることがある。
 複数の変換タイプは、例えば、DCT-II、DCT-V、DCT-VIII、DST-I及びDST-VIIを含む。図3は、各変換タイプに対応する変換基底関数を示す表である。図3においてNは入力画素の数を示す。これらの複数の変換タイプの中からの変換タイプの選択は、例えば、予測の種類(イントラ予測及びインター予測)に依存してもよいし、イントラ予測モードに依存してもよい。
 このようなEMT又はAMTを適用するか否かを示す情報(例えばAMTフラグと呼ばれる)及び選択された変換タイプを示す情報は、CUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。
 また、変換部106は、変換係数(変換結果)を再変換してもよい。このような再変換は、AST(adaptive secondary transform)又はNSST(non-separable secondary transform)と呼ばれることがある。例えば、変換部106は、イントラ予測誤差に対応する変換係数のブロックに含まれるサブブロック(例えば4x4サブブロック)ごとに再変換を行う。NSSTを適用するか否かを示す情報及びNSSTに用いられる変換行列に関する情報は、CUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。
 [量子化部]
 量子化部108は、変換部106から出力された変換係数を量子化する。具体的には、量子化部108は、カレントブロックの変換係数を所定の走査順序で走査し、走査された変換係数に対応する量子化パラメータ(QP)に基づいて当該変換係数を量子化する。そして、量子化部108は、カレントブロックの量子化された変換係数(以下、量子化係数という)をエントロピー符号化部110及び逆量子化部112に出力する。
 所定の順序は、変換係数の量子化/逆量子化のための順序である。例えば、所定の走査順序は、周波数の昇順(低周波から高周波の順)又は降順(高周波から低周波の順)で定義される。
 量子化パラメータとは、量子化ステップ(量子化幅)を定義するパラメータである。例えば、量子化パラメータの値が増加すれば量子化ステップも増加する。つまり、量子化パラメータの値が増加すれば量子化誤差が増大する。
 [エントロピー符号化部]
 エントロピー符号化部110は、量子化部108から入力である量子化係数を可変長符号化することにより符号化信号(符号化ビットストリーム)を生成する。具体的には、エントロピー符号化部110は、例えば、量子化係数を二値化し、二値信号を算術符号化する。
 [逆量子化部]
 逆量子化部112は、量子化部108からの入力である量子化係数を逆量子化する。具体的には、逆量子化部112は、カレントブロックの量子化係数を所定の走査順序で逆量子化する。そして、逆量子化部112は、カレントブロックの逆量子化された変換係数を逆変換部114に出力する。
 [逆変換部]
 逆変換部114は、逆量子化部112からの入力である変換係数を逆変換することにより予測誤差を復元する。具体的には、逆変換部114は、変換係数に対して、変換部106による変換に対応する逆変換を行うことにより、カレントブロックの予測誤差を復元する。そして、逆変換部114は、復元された予測誤差を加算部116に出力する。
 なお、復元された予測誤差は、量子化により情報が失われているので、減算部104が算出した予測誤差と一致しない。すなわち、復元された予測誤差には、量子化誤差が含まれている。
 [加算部]
 加算部116は、逆変換部114からの入力である予測誤差と予測制御部128からの入力である予測サンプルとを加算することによりカレントブロックを再構成する。そして、加算部116は、再構成されたブロックをブロックメモリ118及びループフィルタ部120に出力する。再構成ブロックは、ローカル復号ブロックと呼ばれることもある。
 [ブロックメモリ]
 ブロックメモリ118は、イントラ予測で参照されるブロックであって符号化対象ピクチャ(以下、カレントピクチャという)内のブロックを格納するための記憶部である。具体的には、ブロックメモリ118は、加算部116から出力された再構成ブロックを格納する。
 [ループフィルタ部]
 ループフィルタ部120は、加算部116によって再構成されたブロックにループフィルタを施し、フィルタされた再構成ブロックをフレームメモリ122に出力する。ループフィルタとは、符号化ループ内で用いられるフィルタ(インループフィルタ)であり、例えば、デブロッキング・フィルタ(DF)、サンプルアダプティブオフセット(SAO)及びアダプティブループフィルタ(ALF)などを含む。
 ALFでは、符号化歪みを除去するための最小二乗誤差フィルタが適用され、例えばカレントブロック内の2x2サブブロックごとに、局所的な勾配(gradient)の方向及び活性度(activity)に基づいて複数のフィルタの中から選択された1つのフィルタが適用される。
 具体的には、まず、サブブロック(例えば2x2サブブロック)が複数のクラス(例えば15又は25クラス)に分類される。サブブロックの分類は、勾配の方向及び活性度に基づいて行われる。例えば、勾配の方向値D(例えば0~2又は0~4)と勾配の活性値A(例えば0~4)とを用いて分類値C(例えばC=5D+A)が算出される。そして、分類値Cに基づいて、サブブロックが複数のクラス(例えば15又は25クラス)に分類される。
 勾配の方向値Dは、例えば、複数の方向(例えば水平、垂直及び2つの対角方向)の勾配を比較することにより導出される。また、勾配の活性値Aは、例えば、複数の方向の勾配を加算し、加算結果を量子化することにより導出される。
 このような分類の結果に基づいて、複数のフィルタの中からサブブロックのためのフィルタが決定される。
 ALFで用いられるフィルタの形状としては例えば円対称形状が利用される。図4A~図4Cは、ALFで用いられるフィルタの形状の複数の例を示す図である。図4Aは、5x5ダイヤモンド形状フィルタを示し、図4Bは、7x7ダイヤモンド形状フィルタを示し、図4Cは、9x9ダイヤモンド形状フィルタを示す。フィルタの形状を示す情報は、ピクチャレベルで信号化される。なお、フィルタの形状を示す情報の信号化は、ピクチャレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル、CTUレベル又はCUレベル)であってもよい。
 ALFのオン/オフは、例えば、ピクチャレベル又はCUレベルで決定される。例えば、輝度についてはCUレベルでALFを適用するか否かが決定され、色差についてはピクチャレベルでALFを適用するか否かが決定される。ALFのオン/オフを示す情報は、ピクチャレベル又はCUレベルで信号化される。なお、ALFのオン/オフを示す情報の信号化は、ピクチャレベル又はCUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。
 選択可能な複数のフィルタ(例えば15又は25までのフィルタ)の係数セットは、ピクチャレベルで信号化される。なお、係数セットの信号化は、ピクチャレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、スライスレベル、タイルレベル、CTUレベル、CUレベル又はサブブロックレベル)であってもよい。
 [フレームメモリ]
 フレームメモリ122は、インター予測に用いられる参照ピクチャを格納するための記憶部であり、フレームバッファと呼ばれることもある。具体的には、フレームメモリ122は、ループフィルタ部120によってフィルタされた再構成ブロックを格納する。
 [イントラ予測部]
 イントラ予測部124は、ブロックメモリ118に格納されたカレントピクチャ内のブロックを参照してカレントブロックのイントラ予測(画面内予測ともいう)を行うことで、予測信号(イントラ予測信号)を生成する。具体的には、イントラ予測部124は、カレントブロックに隣接するブロックのサンプル(例えば輝度値、色差値)を参照してイントラ予測を行うことでイントラ予測信号を生成し、イントラ予測信号を予測制御部128に出力する。
 例えば、イントラ予測部124は、予め規定された複数のイントラ予測モードのうちの1つを用いてイントラ予測を行う。複数のイントラ予測モードは、1以上の非方向性予測モードと、複数の方向性予測モードと、を含む。
 1以上の非方向性予測モードは、例えばH.265/HEVC(High-Efficiency Video Coding)規格(非特許文献1)で規定されたPlanar予測モード及びDC予測モードを含む。
 複数の方向性予測モードは、例えばH.265/HEVC規格で規定された33方向の予測モードを含む。なお、複数の方向性予測モードは、33方向に加えてさらに32方向の予測モード(合計で65個の方向性予測モード)を含んでもよい。図5は、イントラ予測における67個のイントラ予測モード(2個の非方向性予測モード及び65個の方向性予測モード)を示す図である。実線矢印は、H.265/HEVC規格で規定された33方向を表し、破線矢印は、追加された32方向を表す。
 なお、色差ブロックのイントラ予測において、輝度ブロックが参照されてもよい。つまり、カレントブロックの輝度成分に基づいて、カレントブロックの色差成分が予測されてもよい。このようなイントラ予測は、CCLM(cross-component linear model)予測と呼ばれることがある。このような輝度ブロックを参照する色差ブロックのイントラ予測モード(例えばCCLMモードと呼ばれる)は、色差ブロックのイントラ予測モードの1つとして加えられてもよい。
 イントラ予測部124は、水平/垂直方向の参照画素の勾配に基づいてイントラ予測後の画素値を補正してもよい。このような補正をともなうイントラ予測は、PDPC(position dependent intra prediction combination)と呼ばれることがある。PDPCの適用の有無を示す情報(例えばPDPCフラグと呼ばれる)は、例えばCUレベルで信号化される。なお、この情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル又はCTUレベル)であってもよい。
 [インター予測部]
 インター予測部126は、フレームメモリ122に格納された参照ピクチャであってカレントピクチャとは異なる参照ピクチャを参照してカレントブロックのインター予測(画面間予測ともいう)を行うことで、予測信号(インター予測信号)を生成する。インター予測は、カレントブロック又はカレントブロック内のサブブロック(例えば4x4ブロック)の単位で行われる。例えば、インター予測部126は、カレントブロック又はサブブロックについて参照ピクチャ内で動き探索(motion estimation)を行う。そして、インター予測部126は、動き探索により得られた動き情報(例えば動きベクトル)を用いて動き補償を行うことでカレントブロック又はサブブロックのインター予測信号を生成する。そして、インター予測部126は、生成されたインター予測信号を予測制御部128に出力する。
 動き補償に用いられた動き情報は信号化される。動きベクトルの信号化には、予測動きベクトル(motion vector predictor)が用いられてもよい。つまり、動きベクトルと予測動きベクトルとの間の差分が信号化されてもよい。
 なお、動き探索により得られたカレントブロックの動き情報だけでなく、隣接ブロックの動き情報も用いて、インター予測信号が生成されてもよい。具体的には、動き探索により得られた動き情報に基づく予測信号と、隣接ブロックの動き情報に基づく予測信号と、を重み付け加算することにより、カレントブロック内のサブブロック単位でインター予測信号が生成されてもよい。このようなインター予測(動き補償)は、OBMC(overlapped block motion compensation)と呼ばれることがある。
 このようなOBMCモードでは、OBMCのためのサブブロックのサイズを示す情報(例えばOBMCブロックサイズと呼ばれる)は、シーケンスレベルで信号化される。また、OBMCモードを適用するか否かを示す情報(例えばOBMCフラグと呼ばれる)は、CUレベルで信号化される。なお、これらの情報の信号化のレベルは、シーケンスレベル及びCUレベルに限定される必要はなく、他のレベル(例えばピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。
 なお、動き情報は信号化されずに、復号装置側で導出されてもよい。例えば、H.265/HEVC規格で規定されたマージモードが用いられてもよい。また例えば、復号装置側で動き探索を行うことにより動き情報が導出されてもよい。この場合、カレントブロックの画素値を用いずに動き探索が行われる。
 ここで、復号装置側で動き探索を行うモードについて説明する。この復号装置側で動き探索を行うモードは、PMMVD(pattern matched motion vector derivation)モード又はFRUC(frame rate up-conversion)モードと呼ばれることがある。
 まず、カレントブロックに空間的又は時間的に隣接する符号化済みブロックの動きベクトルを参照して、各々が予測動きベクトルを有する複数の候補のリスト(マージリストと共通であってもよい)が生成される。そして、候補リストに含まれる各候補の評価値が算出され、評価値に基づいて1つの候補が選択される。
 そして、選択された候補の動きベクトルに基づいて、カレントブロックのための動きベクトルが導出される。具体的には、例えば、選択された候補の動きベクトルがそのままカレントブロックのための動きベクトルとして導出される。また例えば、選択された候補の動きベクトルに対応する参照ピクチャ内の位置の周辺領域において、パターンマッチングを行うことにより、カレントブロックのための動きベクトルが導出されてもよい。
 なお、評価値は、動きベクトルに対応する参照ピクチャ内の領域と、所定の領域との間のパターンマッチングによって算出される。
 パターンマッチングとしては、第1パターンマッチング又は第2パターンマッチングが用いられる。第1パターンマッチング及び第2パターンマッチングは、それぞれ、バイラテラルマッチング(bilateral matching)及びテンプレートマッチング(template matching)と呼ばれることがある。
 第1パターンマッチングでは、異なる2つの参照ピクチャ内の2つのブロックであってカレントブロックの動き軌道(motion trajectory)に沿う2つのブロックの間でパターンマッチングが行われる。したがって、第1パターンマッチングでは、上述した候補の評価値の算出のための所定の領域として、カレントブロックの動き軌道に沿う他の参照ピクチャ内の領域が用いられる。
 図6は、動き軌道に沿う2つのブロック間でのパターンマッチング(バイラテラルマッチング)を説明するための図である。図6に示すように、第1パターンマッチングでは、カレントブロック(Cur block)の動き軌道に沿う2つのブロックであって異なる2つの参照ピクチャ(Ref0、Ref1)内の2つのブロックのペアの中で最もマッチするペアを探索することにより2つの動きベクトル(MV0、MV1)が導出される。
 連続的な動き軌道の仮定の下では、2つの参照ブロックを指し示す動きベクトル(MV0、MV1)は、カレントピクチャ(Cur Pic)と2つの参照ピクチャ(Ref0、Ref1)との間の時間的な距離(TD0、TD1)に対して比例する。例えば、カレントピクチャが時間的に2つの参照ピクチャの間に位置し、カレントピクチャから2つの参照ピクチャへの時間的な距離が等しい場合、第1パターンマッチングでは、鏡映対称な双方向の動きベクトルが導出される。
 第2パターンマッチングでは、カレントピクチャ内のテンプレート(カレントピクチャ内でカレントブロックに隣接するブロック(例えば上及び/又は左隣接ブロック))と参照ピクチャ内のブロックとの間でパターンマッチングが行われる。したがって、第2パターンマッチングでは、上述した候補の評価値の算出のための所定の領域として、カレントピクチャ内のカレントブロックに隣接するブロックが用いられる。
 図7は、カレントピクチャ内のテンプレートと参照ピクチャ内のブロックとの間でのパターンマッチング(テンプレートマッチング)を説明するための図である。図7に示すように、第2パターンマッチングでは、カレントピクチャ(Cur Pic)内でカレントブロック(Cur block)に隣接するブロックと最もマッチするブロックを参照ピクチャ(Ref0)内で探索することによりカレントブロックの動きベクトルが導出される。
 このようなFRUCモードを適用するか否かを示す情報(例えばFRUCフラグと呼ばれる)は、CUレベルで信号化される。また、FRUCモードが適用される場合(例えばFRUCフラグが真の場合)、パターンマッチングの方法(第1パターンマッチング又は第2パターンマッチング)を示す情報(例えばFRUCモードフラグと呼ばれる)がCUレベルで信号化される。なお、これらの情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。
 なお、動き探索とは異なる方法で、復号装置側で動き情報が導出されてもよい。例えば、等速直線運動を仮定したモデルに基づき、画素単位で周辺画素値を用いて動きベクトルの補正量が算出されてもよい。
 ここで、等速直線運動を仮定したモデルに基づいて動きベクトルを導出するモードについて説明する。このモードは、BIO(bi-directional optical flow)モードと呼ばれることがある。
 図8は、等速直線運動を仮定したモデルを説明するための図である。図8において、(v,v)は、速度ベクトルを示し、τ、τは、それぞれ、カレントピクチャ(Cur Pic)と2つの参照ピクチャ(Ref,Ref)との間の時間的な距離を示す。(MVx,MVy)は、参照ピクチャRefに対応する動きベクトルを示し、(MVx、MVy)は、参照ピクチャRefに対応する動きベクトルを示す。
 このとき速度ベクトル(v,v)の等速直線運動の仮定の下では、(MVx,MVy)及び(MVx,MVy)は、それぞれ、(vτ,vτ)及び(-vτ,-vτ)と表され、以下のオプティカルフロー等式(1)が成り立つ。
Figure JPOXMLDOC01-appb-M000001
 ここで、I(k)は、動き補償後の参照画像k(k=0,1)の輝度値を示す。このオプティカルフロー等式は、(i)輝度値の時間微分と、(ii)水平方向の速度及び参照画像の空間勾配の水平成分の積と、(iii)垂直方向の速度及び参照画像の空間勾配の垂直成分の積と、の和が、ゼロと等しいことを示す。このオプティカルフロー等式とエルミート補間(Hermite interpolation)との組み合わせに基づいて、マージリスト等から得られるブロック単位の動きベクトルが画素単位で補正される。
 なお、等速直線運動を仮定したモデルに基づく動きベクトルの導出とは異なる方法で、復号装置側で動きベクトルが導出されてもよい。例えば、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルが導出されてもよい。
 ここで、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルを導出するモードについて説明する。このモードは、アフィン動き補償予測(affine motion compensation prediction)モードと呼ばれることがある。
 図9は、複数の隣接ブロックの動きベクトルに基づくサブブロック単位の動きベクトルの導出を説明するための図である。図9において、カレントブロックは、16の4x4サブブロックを含む。ここでは、隣接ブロックの動きベクトルに基づいてカレントブロックの左上角制御ポイントの動きベクトルvが導出され、隣接サブブロックの動きベクトルに基づいてカレントブロックの右上角制御ポイントの動きベクトルvが導出される。そして、2つの動きベクトルv及びvを用いて、以下の式(2)により、カレントブロック内の各サブブロックの動きベクトル(v,v)が導出される。
Figure JPOXMLDOC01-appb-M000002
 ここで、x及びyは、それぞれ、サブブロックの水平位置及び垂直位置を示し、wは、予め定められた重み係数を示す。
 このようなアフィン動き補償予測モードでは、左上及び右上角制御ポイントの動きベクトルの導出方法が異なるいくつかのモードを含んでもよい。このようなアフィン動き補償予測モードを示す情報(例えばアフィンフラグと呼ばれる)は、CUレベルで信号化される。なお、このアフィン動き補償予測モードを示す情報の信号化は、CUレベルに限定される必要はなく、他のレベル(例えば、シーケンスレベル、ピクチャレベル、スライスレベル、タイルレベル、CTUレベル又はサブブロックレベル)であってもよい。
 [予測制御部]
 予測制御部128は、イントラ予測信号及びインター予測信号のいずれかを選択し、選択した信号を予測信号として減算部104及び加算部116に出力する。
 [復号装置の概要]
 次に、上記の符号化装置100から出力された符号化信号(符号化ビットストリーム)を復号可能な復号装置の概要について説明する。図10は、実施の形態1に係る復号装置200の機能構成を示すブロック図である。復号装置200は、動画像/画像をブロック単位で復号する動画像/画像復号装置である。
 図10に示すように、復号装置200は、エントロピー復号部202と、逆量子化部204と、逆変換部206と、加算部208と、ブロックメモリ210と、ループフィルタ部212と、フレームメモリ214と、イントラ予測部216と、インター予測部218と、予測制御部220と、を備える。
 復号装置200は、例えば、汎用プロセッサ及びメモリにより実現される。この場合、メモリに格納されたソフトウェアプログラムがプロセッサにより実行されたときに、プロセッサは、エントロピー復号部202、逆量子化部204、逆変換部206、加算部208、ループフィルタ部212、イントラ予測部216、インター予測部218及び予測制御部220として機能する。また、復号装置200は、エントロピー復号部202、逆量子化部204、逆変換部206、加算部208、ループフィルタ部212、イントラ予測部216、インター予測部218及び予測制御部220に対応する専用の1以上の電子回路として実現されてもよい。
 以下に、復号装置200に含まれる各構成要素について説明する。
 [エントロピー復号部]
 エントロピー復号部202は、符号化ビットストリームをエントロピー復号する。具体的には、エントロピー復号部202は、例えば、符号化ビットストリームから二値信号に算術復号する。そして、エントロピー復号部202は、二値信号を多値化(debinarize)する。これにより、エントロピー復号部202は、ブロック単位で量子化係数を逆量子化部204に出力する。
 [逆量子化部]
 逆量子化部204は、エントロピー復号部202からの入力である復号対象ブロック(以下、カレントブロックという)の量子化係数を逆量子化する。具体的には、逆量子化部204は、カレントブロックの量子化係数の各々について、当該量子化係数に対応する量子化パラメータに基づいて当該量子化係数を逆量子化する。そして、逆量子化部204は、カレントブロックの逆量子化された量子化係数(つまり変換係数)を逆変換部206に出力する。
 [逆変換部]
 逆変換部206は、逆量子化部204からの入力である変換係数を逆変換することにより予測誤差を復元する。
 例えば符号化ビットストリームから読み解かれた情報がEMT又はAMTを適用することを示す場合(例えばAMTフラグが真)、逆変換部206は、読み解かれた変換タイプを示す情報に基づいてカレントブロックの変換係数を逆変換する。
 また例えば、符号化ビットストリームから読み解かれた情報がNSSTを適用することを示す場合、逆変換部206は、変換係数に逆再変換を適用する。
 [加算部]
 加算部208は、逆変換部206からの入力である予測誤差と予測制御部220からの入力である予測サンプルとを加算することによりカレントブロックを再構成する。そして、加算部208は、再構成されたブロックをブロックメモリ210及びループフィルタ部212に出力する。
 [ブロックメモリ]
 ブロックメモリ210は、イントラ予測で参照されるブロックであって復号対象ピクチャ(以下、カレントピクチャという)内のブロックを格納するための記憶部である。具体的には、ブロックメモリ210は、加算部208から出力された再構成ブロックを格納する。
 [ループフィルタ部]
 ループフィルタ部212は、加算部208によって再構成されたブロックにループフィルタを施し、フィルタされた再構成ブロックをフレームメモリ214及び表示装置等に出力する。
 符号化ビットストリームから読み解かれたALFのオン/オフを示す情報がALFのオンを示す場合、局所的な勾配の方向及び活性度に基づいて複数のフィルタの中から1つのフィルタが選択され、選択されたフィルタが再構成ブロックに適用される。
 [フレームメモリ]
 フレームメモリ214は、インター予測に用いられる参照ピクチャを格納するための記憶部であり、フレームバッファと呼ばれることもある。具体的には、フレームメモリ214は、ループフィルタ部212によってフィルタされた再構成ブロックを格納する。
 [イントラ予測部]
 イントラ予測部216は、符号化ビットストリームから読み解かれたイントラ予測モードに基づいて、ブロックメモリ210に格納されたカレントピクチャ内のブロックを参照してイントラ予測を行うことで、予測信号(イントラ予測信号)を生成する。具体的には、イントラ予測部216は、カレントブロックに隣接するブロックのサンプル(例えば輝度値、色差値)を参照してイントラ予測を行うことでイントラ予測信号を生成し、イントラ予測信号を予測制御部220に出力する。
 なお、色差ブロックのイントラ予測において輝度ブロックを参照するイントラ予測モードが選択されている場合は、イントラ予測部216は、カレントブロックの輝度成分に基づいて、カレントブロックの色差成分を予測してもよい。
 また、符号化ビットストリームから読み解かれた情報がPDPCの適用を示す場合、イントラ予測部216は、水平/垂直方向の参照画素の勾配に基づいてイントラ予測後の画素値を補正する。
 [インター予測部]
 インター予測部218は、フレームメモリ214に格納された参照ピクチャを参照して、カレントブロックを予測する。予測は、カレントブロック又はカレントブロック内のサブブロック(例えば4x4ブロック)の単位で行われる。例えば、インター予測部218は、符号化ビットストリームから読み解かれた動き情報(例えば動きベクトル)を用いて動き補償を行うことでカレントブロック又はサブブロックのインター予測信号を生成し、インター予測信号を予測制御部220に出力する。
 なお、符号化ビットストリームから読み解かれた情報がOBMCモードを適用することを示す場合、インター予測部218は、動き探索により得られたカレントブロックの動き情報だけでなく、隣接ブロックの動き情報も用いて、インター予測信号を生成する。
 また、符号化ビットストリームから読み解かれた情報がFRUCモードを適用することを示す場合、インター予測部218は、符号化ストリームから読み解かれたパターンマッチングの方法(バイラテラルマッチング又はテンプレートマッチング)に従って動き探索を行うことにより動き情報を導出する。そして、インター予測部218は、導出された動き情報を用いて動き補償を行う。
 また、インター予測部218は、BIOモードが適用される場合に、等速直線運動を仮定したモデルに基づいて動きベクトルを導出する。また、符号化ビットストリームから読み解かれた情報がアフィン動き補償予測モードを適用することを示す場合には、インター予測部218は、複数の隣接ブロックの動きベクトルに基づいてサブブロック単位で動きベクトルを導出する。
 [予測制御部]
 予測制御部220は、イントラ予測信号及びインター予測信号のいずれかを選択し、選択した信号を予測信号として加算部208に出力する。
 [符号化装置におけるエントロピー符号化部の詳細]
 図11は、実施の形態1に係る符号化装置100におけるエントロピー符号化部110の詳細な機能構成を示すブロック図である。エントロピー符号化部110は、量子化部108から出力される量子化係数に対して可変長符号化を適用することにより、ビット列を生成し、生成されたビット列を出力する。このビット列は、符号化された画像情報に対応し、符号化信号、符号化ビットストリーム又は符号化ビット列とも呼ばれる。
 図11の例において、エントロピー符号化部110は、二値化部132と、切り替え部134と、中間バッファ136と、算術符号化部138と、切り替え部140と、多重化部142と、を備える。そして、エントロピー符号化部110は、ビット列を生成し、生成されたビット列を出力することにより、生成されたビット列を出力バッファ144へ格納する。出力バッファ144へ格納されたビット列は、適宜、出力バッファ144から出力される。エントロピー符号化部110は、出力バッファ144を含んでいてもよい。
 [エントロピー符号化部における二値化部]
 二値化部132は、量子化係数等を二値化する。具体的には、二値化部132は、量子化された周波数変換係数等を例えば0又は1で表現される値のデータ列に変換し、得られたデータ列を出力する。以下、このデータ列を二値化データ列とも呼ぶ。また、二値化部132によって行われる二値化は、基本的には算術符号化のための二値化であり、より具体的には二値算術符号化を行うための二値化である。すなわち、二値化部132は、基本的には算術符号化のための二値化に従って画像情報の二値化データ列を導出する。
 なお、二値化の方式として、ユーナリー・バイナライゼーション、トランケーティッド・ユーナリー・バイナライゼーション、ユーナリー/k次指数ゴロム・結合バイナライゼーション、固定長バイナライゼーション、及び、表参照等がある。
 また、例えば、二値化部132における二値化、及び、算術符号化部138における算術符号化によって、コンテキスト適応型二値算術符号化方式のエントロピー符号化が行われる。コンテキスト適応型二値算術符号化方式は、CABACとも呼ばれる。二値化部132によって行われる二値化は、コンテキスト適応型二値算術符号化方式のための二値化とも表現され得る。
 [エントロピー符号化部における切り替え部]
 切り替え部134及び140は、モード情報に従って連動して動作し、二値化データ列に対して算術符号化を適用するか否かを切り替える。例えば、切り替え部134及び140は、符号化装置100の外部から与えられるモード情報に従って、二値化データ列に対して算術符号化を適用するか否かを切り替える。モード情報は、ユーザ又は上位システム等から指示として与えられてもよい。
 例えば、このモード情報は、第1モード及び第2モードを選択的に示す。すなわち、モード情報は、第1モード及び第2モードの中から選択される一方のモードを示す。そして、例えば、第1モードでは、二値化データ列に対して算術符号化が適用され、第2モードでは、二値化データ列に対して算術符号化が適用されない。
 具体的には、モード情報が第1モードを示す場合、切り替え部134は、二値化部132から出力される二値化データ列を中間バッファ136に出力することにより、二値化データ列を中間バッファ136に格納する。そして、算術符号化部138は、中間バッファ136に格納された二値化データ列に対して、算術符号化を適用し、算術符号化が適用された二値化データ列を出力する。切り替え部140は、算術符号化部138から出力された二値化データ列を多重化部142へ出力する。
 一方、モード情報が第2モードを示す場合、切り替え部134は、二値化部132から出力される二値化データ列をそのまま切り替え部140へ出力する。そして、切り替え部140は、切り替え部134から出力された二値化データ列を多重化部142へ出力する。すなわち、算術符号化がバイパスされる。なお、算術符号化の一態様であるバイパス算術符号化との混同を避けるため、算術符号化をバイパスすることを、算術符号化をスキップすると表現する場合がある。
 モード情報及びモードは、遅延モード情報及び遅延モードとも表現され得る。具体的には、第1モードは、通常モードであり、第2モードは、低遅延モードである。そして、第2モードでは、第1モードよりも、処理遅延が削減される。
 [エントロピー符号化部における中間バッファ]
 中間バッファ136は、二値化データ列を格納するための記憶部であり、中間メモリとも呼ばれる。算術符号化部138で行われる算術符号化では、遅延が発生する。また、遅延量は、二値化データ列の内容によって揺らぐ。中間バッファ136によって、遅延量の揺らぎが吸収され、後続の処理が円滑に行われる。なお、中間バッファ136等の記憶部にデータを入力することは、記憶部にデータを格納することに対応し、記憶部からデータを出力することは、記憶部からデータを読み出すことに対応する。
 [エントロピー符号化部における算術符号化部]
 算術符号化部138は、算術符号化を行う。具体的には、算術符号化部138は、中間バッファ136に格納された二値化データ列を読み出して、二値化データ列に対して算術符号化を適用する。算術符号化部138は、コンテキスト適応型二値算術符号化方式に対応する算術符号化を二値化データ列に対して適用してもよい。
 例えば、算術符号化部138は、データ種別等のコンテキストに従って値の発生確率を選択し、選択された発生確率に従って算術符号化を行い、算術符号化の結果に従って発生確率を更新する。つまり、算術符号化部138は、可変の発生確率に従って、算術符号化を行う。可変の発生確率に従って行われる算術符号化は、コンテキスト適応算術符号化とも呼ばれる。
 また、算術符号化部138は、特定のデータ種別等について、固定の発生確率に従って算術符号化を行ってもよい。具体的には、算術符号化部138は、0又は1の発生確率として50%の発生確率に従って算術符号化を行ってもよい。固定の発生確率に従って行われる算術符号化は、バイパス算術符号化とも呼ばれる。
 [エントロピー符号化部における多重化部]
 多重化部142は、モード情報と、二値化データ列とを多重化し、モード情報及び二値化データ列を含むビット列を生成する。そして、多重化部142は、ビット列を出力バッファ144に出力することにより、ビット列を出力バッファ144に格納する。出力バッファ144に格納されたビット列は、適宜、出力バッファ144から出力される。すなわち、多重化部142は、出力バッファ144を介して、ビット列を出力する。
 例えば、モード情報は、上位のパラメータとしてビット列に含まれていてもよい。具体的には、モード情報は、ビット列におけるSPS(シーケンス・パラメータ・セット)に含まれてもよいし、ビット列におけるPPS(ピクチャ・パラメータ・セット)に含まれていてもよいし、ビット列におけるスライスヘッダに含まれていてもよい。ビット列に含まれるモード情報は、1以上のビットで表現される。
 そして、二値化データ列は、スライスデータに含まれていてもよい。ここで、二値化データ列は、算術符号化が適用された二値化データ列であってもよいし、算術符号化が適用されていない二値化データ列であってもよい。
 また、ビット列に含まれるモード情報は、ビット列に含まれる二値化データ列に対して算術符号化が適用されているか否かを示す適用情報とも表現され得る。言い換えれば、モード情報が、二値化データ列に対して算術符号化が適用されているか否かを示す適用情報として、ビット列に含まれてもよい。この適用情報は、算術符号化が適用されている二値化データ列をビット列が含むか、算術符号化が適用されていない二値化データ列をビット列が含むかを示し得る。
 なお、上位システムでモード情報が交換される場合、又は、モード情報が予め定められている場合等において、モード情報がビット列に含められなくてもよい。つまり、この場合、多重化が行われなくてもよい。
 [出力バッファ]
 出力バッファ144は、ビット列を格納するための記憶部であり、CPB(Coded Picture Buffer:符号化ピクチャバッファ)、又は、出力メモリとも呼ばれる。符号化装置100が画像情報を符号化することで得られるビット列は、出力バッファ144に格納される。そして、出力バッファ144に格納されたビット列は、適宜出力され、例えば符号化オーディオ信号等と多重化される。
 [復号装置におけるエントロピー復号部の詳細]
 図12は、実施の形態1に係る復号装置200におけるエントロピー復号部202の詳細な機能構成を示すブロック図である。エントロピー復号部202は、入力バッファ232を介して入力されるビット列に対してエントロピー復号を行うことにより、量子化係数等を導出する。このビット列は、例えば、符号化装置100によって生成されたビット列であって、上述したデータ構成を有し得る。
 図12の例において、エントロピー復号部202は、分離部234と、切り替え部236と、算術復号部238と、中間バッファ240と、切り替え部242と、逆二値化部244と、を備える。エントロピー復号部202は、入力バッファ232を含んでいてもよい。
 [入力バッファ]
 入力バッファ232は、ビット列を格納するための記憶部であり、CPB、又は、入力メモリとも呼ばれる。復号装置200によって復号されるビット列は、例えば符号化オーディオ信号等から分離されて、入力バッファ232に格納される。そして、復号装置200は、入力バッファ232に格納されたビット列を読み出して、ビット列を復号する。
 [エントロピー復号部における分離部]
 分離部234は、入力バッファ232からビット列を取得し、ビット列からモード情報と二値化データ列とを分離し、モード情報と二値化データ列とを出力する。つまり、分離部234は、入力バッファ232を介して、モード情報と二値化データ列とを含むビット列を取得し、ビット列に含まれるモード情報と二値化データ列とを出力する。二値化データ列は、算術符号化が適用された二値化データ列であってもよいし、算術符号化が適用されていない二値化データ列であってもよい。
 上述したように、モード情報は、ビット列に含まれる二値化データ列に対して算術符号化が適用されているか否かを示す適用情報とも表現され得る。そして、上位システムでモード情報が交換される場合、又は、モード情報が予め定められている場合等において、モード情報がビット列に含められなくてもよい。この場合、モード情報の分離及び出力が行われなくてもよい。また、モード情報は、復号装置200の外部から、具体的にはユーザ又は上位システム等から指示として与えられてもよい。
 [エントロピー復号部における切り替え部]
 切り替え部236及び242は、分離部234等から得られるモード情報に従って連動して動作し、二値化データ列に対して算術復号を適用するか否かを切り替える。例えば、モード情報が選択的に示す第1モード及び第2モードのうち、第1モードでは、二値化データ列に対して算術復号が適用され、第2モードでは、二値化データ列に対して算術復号が適用されない。
 具体的には、モード情報が第1モードを示す場合、切り替え部236は、分離部234から出力される二値化データ列を算術復号部238に出力する。そして、算術復号部238は、二値化データ列に対して算術復号を適用し、算術復号が適用された二値化データ列を出力することにより、算術復号が適用された二値化データ列を中間バッファ240に格納する。切り替え部242は、中間バッファ240に格納された二値化データ列を適宜取得し、中間バッファ240から取得された二値化データ列を逆二値化部244へ出力する。
 一方、モード情報が第2モードを示す場合、切り替え部236は、分離部234から出力される二値化データ列をそのまま切り替え部242へ出力する。そして、切り替え部242は、切り替え部236から出力された二値化データ列を逆二値化部244へ出力する。つまり、算術復号がバイパスされる。なお、算術復号の一態様であるバイパス算術復号との混同を避けるため、算術復号をバイパスすることを、算術復号をスキップすると表現する場合がある。
 [エントロピー復号部における算術復号部]
 算術復号部238は、算術復号を行う。具体的には、算術復号部238は、算術符号化が適用された二値化データ列に対して算術復号を適用し、算術復号が適用された二値化データ列を出力することにより、算術復号が適用された二値化データ列を中間バッファ240に格納する。算術復号が適用された二値化データ列は、算術符号化が適用されていない元の二値化データ列に対応する。算術復号部238は、コンテキスト適応型二値算術符号化方式に対応する算術復号を二値化データ列に対して適用してもよい。
 例えば、算術復号部238は、データ種別等のコンテキストに従って値の発生確率を選択し、選択された発生確率に従って算術復号を行い、算術復号の結果に従って発生確率を更新する。つまり、算術復号部238は、可変の発生確率に従って、算術復号を行う。可変の発生確率に従って行われる算術復号は、コンテキスト適応算術復号とも呼ばれる。
 また、算術復号部238は、特定のデータ種別等について、固定の発生確率に従って算術復号を行ってもよい。具体的には、算術復号部238は、0又は1の発生確率として50%の発生確率に従って算術復号を行ってもよい。固定の発生確率に従って行われる算術復号は、バイパス算術復号とも呼ばれる。
 [エントロピー復号部における中間バッファ]
 中間バッファ240は、算術復号された二値化データ列を格納するための記憶部であり、中間メモリとも呼ばれる。算術復号部238で行われる算術復号では、遅延が発生する。また、遅延量は、二値化データ列の内容によって揺らぐ。中間バッファ240によって、遅延量の揺らぎが吸収され、後続の処理が円滑に行われる。
 [エントロピー復号部における逆二値化部]
 逆二値化部244は、二値化データ列に対して逆二値化を行うことにより、量子化係数等を導出する。具体的には、逆二値化部244は、例えば0又は1で表現される値の二値化データ列を量子化された周波数変換係数等に変換し、量子化された周波数変換係数等を逆量子化部204へ出力する。また、逆二値化部244によって行われる逆二値化は、基本的には、算術符号化のための二値化に対応する逆二値化であり、より具体的には二値算術符号化を行うための二値化に対応する逆二値化である。
 また、例えば、算術復号部238における算術復号、及び、逆二値化部244における逆二値化によって、コンテキスト適応型二値算術符号化方式のエントロピー復号が行われる。すなわち、逆二値化部244は、コンテキスト適応型二値算術符号化方式に従う逆二値化を行ってもよい。また、逆二値化は、多値化とも呼ばれる。
 [算術符号化及び算術復号の適用有無]
 本実施の形態における符号化装置100及び復号装置200は、特に、短時間で符号化及び復号を行うことが求められるリアルタイム通信システム等に有用である。具体的には、符号化装置100及び復号装置200は、テレビ会議システム又は電子ミラー等に有用である。例えば、これらのシステム環境において、算術符号化及び算術復号が行われない第2モードが用いられる。
 また、基本的に、適用情報は、1以上のピクチャを含む単位で包括的に、ビット列に含まれる二値化データ列に対して算術符号化が適用されているか否かを示す。そして、1以上のピクチャを含む単位で包括的に、算術符号化の適用有無の切り替えが行われる。
 しかしながら、より細かい単位で、算術符号化の適用有無の切り替えが行われてもよい。例えば、特定のデータ種別において、算術符号化及び算術復号がスキップされてもよい。より具体的には、バイパス算術符号化及びバイパス算術復号に代えて、算術符号化及び算術復号のスキップが行われてもよい。
 また、例えば、コンテキスト算術符号化と、バイパス算術符号化と、算術符号化のスキップとの切り替えが行われてもよい。同様に、コンテキスト算術復号と、バイパス算術復号と、算術復号のスキップとの切り替えが行われてもよい。
 また、二値化データ列に対して算術符号化が適用されているか否かを示す適用情報は、1ビットのフラグによって表現されてもよいし、他の形式で表現されてもよい。例えば、二値化データ列に対して算術符号化が適用されていることを示す情報が、ビット列に追加されることによって、ビット列は、追加された情報を適用情報として含み得る。あるいは、二値化データ列に対して算術符号化が適用されていないことを示す情報が、ビット列に追加されることによって、ビット列は、追加された情報を適用情報として含み得る。
 また、適用情報は、他の情報と共通の情報として、ビット列に含まれてもよい。例えば、ピクチャの種別を示す情報がビット列に含まれ、かつ、ピクチャの種別によって算術符号化の適用有無が切り替えられる場合、ピクチャの種別を示す情報が適用情報であってもよい。
 [シンタックス構造の切り替え]
 算術符号化及び算術復号が適用されるか否かによって、符号量が大きく異なる可能性がある。特に、画像の周波数成分に関する周波数変換係数情報の情報量は大きい。したがって、周波数変換係数情報について算術符号化及び算術復号が用いられない場合、符号量が非常に大きくなる可能性がある。
 そこで、符号化装置100の二値化部132は、画像情報のうち周波数変換係数情報に関して、算術符号化が適用される第1モードと、算術符号化が適用されない第2モードとで異なる二値化形式で二値化を行う。同様に、復号装置200の逆二値化部244は、画像情報のうち周波数変換係数情報に関して、算術復号が適用される第1モードと、算術復号が適用されない第2モードとで異なる逆二値化形式を用いて逆二値化を行う。
 符号化装置100の二値化部132には、符号化装置100の切り替え部134及び140と同様にモード情報が与えられてもよい。そして、符号化装置100の二値化部132は、与えられたモード情報を取得して、モード情報に従って周波数変換係数情報の二値化形式を切り替えてもよい。
 同様に、復号装置200の逆二値化部244は、復号装置200の切り替え部236及び242と同様にモード情報が与えられてもよい。そして、復号装置200の逆二値化部244は、与えられたモード情報を取得して、モード情報に従って周波数変換係数情報の逆二値化形式を切り替えてもよい。
 例えば、周波数変換係数情報に対して、第1モードと第2モードとで異なるシンタックス構造が適用される。
 図13は、実施の形態1に係るシンタックス構造を示すフローチャートである。シンタックス構造は、二値化形式及び逆二値化形式に対応する。二値化部132は、図13に示されたシンタックス構造に従って、画像情報を二値化することにより、画像情報を二値化データ列に変換する。
 具体的には、二値化部132は、ピクチャ層のヘッダ情報を二値化する(S101)。次に、二値化部132は、スライス層のヘッダ情報を二値化する(S102)。次に、二値化部132は、ブロック層の符号化情報を二値化する(S103)。
 具体的には、二値化部132は、周波数変換係数情報を除いて、ブロック層の符号化情報を二値化する。例えば、周波数変換係数情報は、量子化された周波数変換係数を示す。また、例えば、ブロック層の符号化情報は、予測パラメータ情報を含む。予測パラメータ情報は、画像の予測方法に関する予測パラメータを示す。
 予測パラメータ情報は、面内予測か面間予測かの符号化モードを示していてもよい。また、予測パラメータ情報は、面間予測に関する動きベクトル及び参照ピクチャを示していてもよい。また、予測パラメータ情報は、面内予測の予測方向に関する面内予測モードを示していてもよい。
 そして、二値化部132は、第1モードにおいて(S104で第1モード)、第1モード用のシンタックス構造で周波数変換係数情報を二値化する(S105)。そして、二値化部132は、第2モードにおいて(S104で第2モード)、第2モード用のシンタックス構造で周波数変換係数情報を二値化する(S106)。
 そして、二値化部132は、スライスに含まれる各ブロックについて、ブロックに対する処理(S103~S106)を繰り返す(S107)。そして、二値化部132は、ピクチャに含まれる各スライスについて、スライスに対する処理(S102~S107)を繰り返す(S108)。そして、二値化部132は、各ピクチャについて、ピクチャに対する処理(S101~S108)を繰り返す(S109)。
 これにより、二値化部132は、第1モードと第2モードとで異なるシンタックス構造で周波数変換係数情報を二値化し、第1モードと第2モードとで共通のシンタックス構造でその他の情報を二値化する。
 また、復号装置200の逆二値化部244は、図13に示されたシンタックス構造に従って、二値化データ列を逆二値化することにより、二値化データ列を画像情報に変換する。
 具体的には、逆二値化部244は、ピクチャ層のヘッダ情報の二値化データ列を逆二値化する(S101)。次に、逆二値化部244は、スライス層のヘッダ情報の二値化データ列を逆二値化する(S102)。次に、逆二値化部244は、ブロック層の符号化情報の二値化データ列を逆二値化する(S103)。具体的には、逆二値化部244は、周波数変換係数情報の二値化データ列を除いて、ブロック層の符号化情報の二値化データ列を逆二値化する。
 そして、逆二値化部244は、第1モードにおいて(S104で第1モード)、第1モード用のシンタックス構造で周波数変換係数情報の二値化データ列を逆二値化する(S105)。そして、逆二値化部244は、第2モードにおいて(S104で第2モード)、第2モード用のシンタックス構造で周波数変換係数情報の二値化データ列を逆二値化する(S106)。
 そして、逆二値化部244は、スライスに含まれる各ブロックについて、ブロックに対する処理(S103~S106)を繰り返す(S107)。そして、逆二値化部244は、ピクチャに含まれる各スライスについて、スライスに対する処理(S102~S107)を繰り返す(S108)。そして、逆二値化部244は、各ピクチャについて、ピクチャに対する処理(S101~S108)を繰り返す(S109)。
 これにより、逆二値化部244は、第1モードと第2モードとで異なるシンタックス構造で周波数変換係数情報の二値化データ列を逆二値化し、第1モードと第2モードとで共通のシンタックス構造でその他の情報の二値化データ列を逆二値化する。
 第1モードでは、算術符号化及び算術復号が適用される。したがって、算術符号化及び算術復号の適用に適したシンタックス構造が、第1モード用のシンタックス構造として用いられる。例えば、第1モード用のシンタックス構造は、算術符号化で符号量を小さくするための画一的なシンタックス構造でもよいし、二値化の処理負荷の小さいシンプルなシンタックス構造でもよい。
 第2モードでは、算術符号化及び算術復号が適用されない。したがって、二値化そのもので発生する符号量を小さくするためのシンタックス構造が、第2モード用のシンタックス構造として用いられる。
 図13の例では、画像情報のうち画像の周波数成分に関する周波数変換係数を示す周波数変換係数情報のみに対して、第1モードと第2モードとで異なるシンタックス構造が適用される。そして、画像情報のうち周波数変換係数情報を除く他の全ての情報に対して、第1モードと第2モードとで共通のシンタックス構造が適用される。例えば、画像情報のうち画像の予測方法に関する予測パラメータを示す予測パラメータ情報に対して、第1モードと第2モードとで共通のシンタックス構造が適用される。
 なお、図13の例では、周波数変換係数情報のみに第1モードと第2モードとで異なるシンタックス構造が適用されるとしたが、その他の情報に対しても、第1モードと第2モードとで異なるシンタックス構造が適用されてもよい。つまり、画像情報に含まれる一部の情報であり、周波数変換係数情報、及び、周波数変換係数情報以外の異なるシンタックス構造の適用対象となる情報を含む一部の情報に対して、第1モードと第2モードとで異なるシンタックス構造が適用されてもよい。この場合、算術符号化及び算術復号が適用される第1モードであるか、算術符号化及び算術復号が適用されない第2モードであるかに応じて、周波数変換係数情報に加えて、周波数変換係数情報以外の異なるシンタックス構造の適用対象となる情報に対しても、異なるシンタックス構造が適用されるため、第1モードと第2モードで共通のシンタックス構造を適用する場合と比較して、第1モードまたは第2モードの少なくとも一方において周波数変換係数情報以外の異なるシンタックス構造の適用対象となる情報についても符号量を小さくできる可能性がある。
 また、図13の例では、予測パラメータ情報に対して第1モードと第2モードとで共通のシンタックス構造が適用されるとしたが、予測パラメータ情報に含まれる一部の予測パラメータについては第1モードと第2モードとで異なるシンタックス構造が適用されてもよい。例えば、予測パラメータ情報に含まれる、符号化モードに関する情報、画面内予測の予測方向に関する情報、画面間予測の参照ピクチャに関する情報、及び、画面間予測の動きベクトルに関する情報のうちのいずれか、または全部については第1モードと第2モードとで共通のシンタックス構造を適用し、第1モードと第2モードとで共通のシンタックス構造を適用した予測パラメータ以外のパラメータについては第1モードと第2モードとで異なるシンタックス構造を適用してもよい。この場合、予測パラメータ情報全体に対して、第1モードと第2モードとで共通のシンタックス構造が適用される場合と比較して、第1モードまたは第2モードの少なくとも一方において予測パラメータ情報の符号量を小さくできる可能性がある。
 [基本ブロック]
 符号化装置100の二値化部132は、周波数変換ブロックを基本ブロック毎に二値化する。例えば、二値化部132は、周波数変換ブロックを複数の基本ブロックに分割し、基本ブロック毎に二値化を行う。周波数変換ブロックは、変換ユニットの周波数変換で得られる複数の周波数変換係数を含むブロックである。つまり、周波数変換ブロックは、周波数変換が施された変換ユニットに相当し、周波数変換係数ブロックとも表現され得る。
 例えば、変換ユニットが16×16の複数の画素値で構成されるブロックである場合、16×16の複数の周波数変換係数で構成される周波数変換ブロックが変換ユニットの周波数変換によって得られる。そして、例えば、二値化部132は、サイズが16×16である周波数変換ブロックを各サイズが4×4である複数の基本ブロックに分割する。そして、二値化部132は、サイズが16×16である周波数変換ブロックをサイズが4×4である基本ブロック毎に二値化する。
 また、具体的には、二値化部132は、周波数変換ブロックを構成する1以上の基本ブロックに対して周波数の高い順で規定される所定のスキャン順に従って、周波数変換ブロックに含まれる複数の周波数変換係数を基本ブロック毎に二値化する。
 また、二値化部132は、第2モードにおいて、周波数変換ブロックにおける特定基本ブロックの位置を示す位置情報を二値化する。特定基本ブロックは、周波数変換ブロックを構成する1以上の基本ブロックのうち、上記のスキャン順で最初に非ゼロ係数を含む基本ブロックであり、last_sub_blockとも表現される。非ゼロ係数は、絶対値が0ではない周波数変換係数である。
 そして、二値化部132は、第2モードにおいて、周波数変換ブロックを構成する1以上の基本ブロックのうち、上記のスキャン順で特定基本ブロック以降の各基本ブロックについてのみ、基本ブロックを構成する複数の周波数変換係数を示すブロック情報を二値化する。なお、スキャン順で特定基本ブロック以降には、特定基本ブロック、及び、スキャン順で特定基本ブロックに後続する1以上の基本ブロックが含まれる。
 これにより、符号化装置100は、第2モードにおいて、位置情報及びブロック情報を周波数変換係数情報として二値化することができる。そして、符号化装置100は、スキャン順で特定基本ブロック以降の各基本ブロックについて、ブロック情報を二値化するため、周波数変換係数情報の二値化データ列を短くすることを支援することができる。そして、符号化装置100は、周波数変換係数情報の二値化データ列を含むビット列を出力することができる。
 また、例えば、第1モードにおいて、二値化部132は、特定基本ブロックの位置情報を二値化せず、周波数変換ブロックを構成する1以上の基本ブロックの全てに対して二値化を行ってもよい。これにより、二値化部132は、第1モードと第2モードとで異なる形式で周波数変換係数情報を二値化することができる。
 同様に、復号装置200の逆二値化部244は、周波数変換ブロックの二値化データ列を基本ブロック毎に逆二値化する。具体的には、復号装置200の逆二値化部244は、上記のスキャン順で、周波数変換ブロックに含まれる複数の周波数変換係数の二値化データ列を基本ブロック毎に逆二値化する。
 また、復号装置200の逆二値化部244は、第2モードにおいて、周波数変換ブロックにおける特定基本ブロックの位置を示す位置情報の二値化データ列を逆二値化する。そして、逆二値化部244は、第2モードにおいて、1以上の基本ブロックのうち、上記のスキャン順で特定基本ブロック以降の各基本ブロックについてのみ、基本ブロックを構成する複数の周波数変換係数を示すブロック情報の二値化データ列を逆二値化する。
 これにより、復号装置200は、第2モードにおいて、位置情報及びブロック情報の二値化データ列を周波数変換係数情報の二値化データ列として逆二値化することができる。そして、復号装置200は、スキャン順で特定基本ブロック以降の各基本ブロックについて、ブロック情報の二値化データ列を逆二値化するため、周波数変換係数情報の二値化データ列を短くすることを支援することができる。
 また、例えば、第1モードにおいて、逆二値化部244は、特定基本ブロックの位置情報の二値化データ列を逆二値化せず、周波数変換ブロックを構成する1以上の基本ブロックの全てに対する二値化データ列を逆二値化してもよい。これにより、逆二値化部244は、第1モードと第2モードとで異なる形式で周波数変換係数情報の二値化データ列を逆二値化することができる。
 図14A~図14Iは、それぞれ、実施の形態1に係る周波数変換ブロックにおける1以上の基本ブロックを示す概念図である。ここでは、周波数変換ブロックのサイズは、4×4から16×16までの間であり、基本ブロックのサイズは、4×4である。周波数変換ブロックのサイズ及び形状は、変換ユニットのサイズ及び形状に依存する。周波数変換ブロックの形状は、縦の長さと横の長さとが均等な正方形でもよいし、縦の長さと横の長さとが不均等な長方形でもよい。
 具体的には、図14Aは、4×4の周波数変換ブロックにおける1個の基本ブロックを示す。また、図14Bは、8×8の周波数変換ブロックにおける4個の基本ブロックを示す。図14Cは、8×4の周波数変換ブロックにおける2個の基本ブロックを示す。図14Dは、4×8の周波数変換ブロックにおける2個の基本ブロックを示す。図14Eは、16×16の周波数変換ブロックにおける16個の基本ブロックを示す。
 また、図14Fは、16×8の周波数変換ブロックにおける8個の基本ブロックを示す。図14Gは、8×16の周波数変換ブロックにおける8個の基本ブロックを示す。図14Hは、16×12の周波数変換ブロックにおける12個の基本ブロックを示す。図14Iは、4×16の周波数変換ブロックにおける4個の基本ブロックを示す。
 図14A~図14Iにおいて、1以上の基本ブロックのそれぞれの中に記載された番号は、周波数変換ブロックにおける基本ブロックの位置を示す。この例では、周波数変換ブロックにおける基本ブロックの位置を示す番号が、周波数の低い順で規定されている。つまり、基本ブロックの位置を示す番号は、その基本ブロックの周波数が低いほど、より小さく規定されている。
 なお、周波数変換ブロックにおいて、左上の隅に近い部分は低い周波数を示し、右下の隅に近い部分は高い周波数を示す。また、周波数変換ブロックにおいて、左下の隅に近い部分は、水平方向に低く垂直方向に高い周波数を示し、右上の隅に近い部分は、水平方向に高く垂直方向に低い周波数を示す。
 すなわち、2次元の周波数変換ブロックを構成する各周波数変換係数は、右端に近いほど、水平方向に高い周波数成分の値を示す。また、2次元の周波数変換ブロックを構成する各周波数変換係数は、下端に近いほど、垂直方向に高い周波数成分の値を示す。
 左下又は右上に向かう斜め方向に並ぶ複数の基本ブロックにおいて、周波数のレベルは同じであるとみなされる。ここでは、周波数のレベルが同じ複数の基本ブロックに対して、基本ブロックの位置を示す番号が、水平方向に対する周波数の低い順で規定されている。
 スキャン順は、周波数の高い順で規定される。例えば、スキャン順は、基本ブロックの位置を示す番号の大きい順で規定される。そして、基本ブロックの位置を示す番号が最も大きい基本ブロックがスキャン順の先頭に割り当てられ、基本ブロックの位置を示す番号が最も小さい基本ブロックがスキャン順の最後に割り当てられる。なお、この例では、周波数のレベルが同じ複数の基本ブロックに対するスキャン順は、水平方向に対する周波数の高い順で規定される。
 図14A~図14Iにおいて、特定基本ブロックが斜線のハッチングで示されている。特定基本ブロックは、周波数変換ブロックを構成する1以上の基本ブロックのうち、スキャン順で最初に非ゼロ係数を含む基本ブロックである。
 第2モードにおいて、符号化装置100の二値化部132は、特定基本ブロックの位置情報を二値化する。この例において、二値化部132は、特定基本ブロックの位置を示す番号を二値化する。
 そして、二値化部132は、周波数変換ブロックを構成する1以上の基本ブロックのうち、スキャン順で特定基本ブロック以降の各基本ブロックについてのみ、ブロック情報を二値化する。この例において、二値化部132は、特定基本ブロックのブロック情報を二値化し、特定基本ブロックよりも番号が小さい基本ブロックのブロック情報を二値化する。
 また、第2モードにおいて、復号装置200の逆二値化部244は、特定基本ブロックの位置情報の二値化データ列を逆二値化する。この例において、逆二値化部244は、特定基本ブロックの位置を示す番号の二値化データ列を逆二値化する。
 そして、逆二値化部244は、周波数変換ブロックを構成する1以上の基本ブロックのうち、スキャン順で特定基本ブロック以降の各基本ブロックについてのみ、ブロック情報の二値化データ列を逆二値化する。この例において、逆二値化部244は、特定基本ブロックのブロック情報の二値化データ列を逆二値化し、特定基本ブロックよりも番号が小さい基本ブロックのブロック情報の二値化データ列を逆二値化する。
 これにより、符号化装置100及び復号装置200は、第2モードにおいて、周波数変換係数情報の二値化データ列を短くすることができる。したがって、符号化装置100及び復号装置200は、算術符号化及び算術復号が適用されない第2モードにおいて、符号量が増大することを抑制することができる。
 なお、第2モードに限らず、第1モードにおいて、二値化部132は、特定基本ブロックの位置情報を二値化してもよい。そして、第1モードにおいて、二値化部132は、周波数変換ブロックを構成する1以上の基本ブロックのうち、スキャン順で特定基本ブロック以降の各ブロックについてのみ、ブロック情報を二値化してもよい。
 また、第2モードに限らず、第1モードにおいて、逆二値化部244は、特定基本ブロックの位置情報の二値化データ列を逆二値化してもよい。そして、逆二値化部244は、第1モードにおいて、周波数変換ブロックを構成する1以上の基本ブロックのうち、スキャン順で特定基本ブロック以降の各基本ブロックについてのみ、ブロック情報の二値化データ列を逆二値化してもよい。
 これにより、符号化装置100及び復号装置200は、第1モードにおいても、周波数変換係数情報の二値化データ列を短くすることができる。したがって、これにより、算術符号化及び算術復号が適用される第1モードにおいて、符号量がより削減される可能性がある。なお、この場合、周波数変換係数情報に対して、第1モードと第2モードとで同じシンタックス構造が適用されてもよい。あるいは、別の方法で、周波数変換係数情報に対して、第1モードと第2モードとで異なるシンタックス構造が適用されてもよい。
 また、周波数変換ブロックのサイズは、図14A~図14Iの例に限られず、その他のサイズであってもよい。1つのピクチャの複数の周波数変換ブロックに対して、複数種のサイズが用いられてもよい。また、基本ブロックのサイズは、4×4に限られず、その他のサイズであってもよい。1つのピクチャの複数の基本ブロックに対して、1種類のサイズが用いられてもよいし、複数種のサイズが用いられてもよい。
 また、基本ブロックの位置を示す位置情報として、基本ブロックの位置を示す番号が、図14A~図14Iに示されている。図14A~図14Iに示されている番号は一例であり、基本ブロックの位置を示す番号として、他の基準で与えられる他の番号が用いられてもよい。あるいは、基本ブロックの位置を示す位置情報として、番号とは異なる他の情報が用いられてもよい。
 また、周波数変換ブロックのサイズと基本ブロックのサイズとが同じである場合、周波数変換係数情報は、特定基本ブロックの位置情報を含まなくてもよい。すなわち、周波数変換ブロックに含まれる基本ブロックの個数が1である場合、周波数変換係数情報は、特定基本ブロックの位置情報を含まなくてもよい。そして、周波数変換ブロックに含まれる基本ブロックの個数が2以上である場合、周波数変換係数情報は、特定基本ブロックの位置情報を含んでもよい。
 また、周波数変換ブロックが非ゼロ係数を含まない場合、周波数変換係数情報は、その周波数変換ブロックにおける特定基本ブロックの位置情報を含まなくてもよい。そして、この場合、周波数変換係数情報は、特定基本ブロック以降の各基本ブロックを構成する複数の周波数変換係数を示すブロック情報を含まなくてもよい。そして、非ゼロ係数を含まない周波数変換ブロックに対する周波数変換係数情報は、二値化されなくてもよく、符号化されなくてもよい。
 また、二値化部132は、第1モードにおいて、周波数変換ブロックを基本ブロック毎に二値化しなくてもよい。つまり、二値化部132は、第1モードにおいて、周波数変換ブロックに含まれる複数の周波数変換係数を基本ブロックによらず二値化してもよい。
 同様に、逆二値化部244は、第1モードにおいて、周波数変換ブロックの二値化データ列を基本ブロック毎に逆二値化しなくてもよい。つまり、逆二値化部244は、第1モードにおいて、周波数変換ブロックに含まれる複数の周波数変換係数の二値化データ列を基本ブロックによらず逆二値化してもよい。
 [非ゼロ係数の個数として0を含まないテーブルの利用]
 符号化装置100の二値化部132は、第2モードにおいて、基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を周波数変換係数情報の一部として二値化する。また、復号装置200の逆二値化部244は、第2モードにおいて、基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が周波数変換係数情報の一部として二値化された二値化データ列を逆二値化する。これにより、基本ブロックを構成する複数の周波数変換係数が効率的に表現され得る。
 また、二値化部132は、非ゼロ係数の個数を示すデータ値の二値化において、複数のデータ値と複数の二値化値とが対応付けられた変換テーブルを用いる。同様に、逆二値化部244は、非ゼロ係数の個数を示すデータ値の二値化値の逆二値化において、複数のデータ値と複数の二値化値とが対応付けられた変換テーブルを用いる。この変換テーブルは、可変長符号化テーブルとも表現され得る。
 例えば、変換テーブルは、非ゼロ係数の個数として0を示すデータ値の対応付けを含むテーブルと、非ゼロ係数の個数として0を示すデータ値の対応付けを含まないテーブルとを含む複数のテーブルの中から選択されてもよい。これにより、周波数変換係数情報の符号量が削減され得る。
 図15は、実施の形態1に係る2種類のテーブルA1、A2を示す概念図である。2種類のテーブルA1、A2のそれぞれにおいて、複数のデータ値と複数の二値化値とが対応付けられている。複数のデータ値のそれぞれは、trailing_onesとtotal_coefとの組み合わせに対応する。
 trailing_onesは、基本ブロックに含まれる複数の周波数変換係数において、絶対値が0である周波数変換係数を除いて、周波数の高い順で規定されるスキャン順で最初に連続する、絶対値が1である非ゼロ係数の個数を示す。total_coefは、基本ブロックに含まれる複数の周波数変換係数のうち、非ゼロ係数の個数を示す。trailing_onesとtotal_coefとの組み合わせは、非ゼロ係数の個数を示すデータ値の一例である。
 テーブルA1は、非ゼロ係数の個数として0を示すデータ値と二値化値との対応付けを含む。つまり、テーブルA1は、trailing_onesが0でありtotal_coefが0であるデータ値を含む。テーブルA2は、非ゼロ係数の個数として0を示すデータ値と二値化値との対応付けを含まない。つまり、テーブルA2は、trailing_onesが0でありtotal_coefが0であるデータ値を含まない。
 これにより、テーブルA2でデータ値に対応付けられる二値化値が、テーブルA1で同じデータ値に対応付けられる二値化値のビット長よりも短いビット長で規定される。
 図15の例では、total_coefは3であり、trailing_onesは2である。このデータ値に対して、テーブルA1では、7ビットの二値化値である「0000101」が対応付けられており、テーブルA2では、6ビットの二値化値である「000011」が対応付けられている。
 例えば、二値化部132は、非ゼロ係数の個数が0である可能性のある基本ブロックの非ゼロ係数の個数を示すデータ値をテーブルA1に従って二値化する。そして、二値化部132は、非ゼロ係数の個数が0である可能性のない基本ブロックの非ゼロ係数の個数を示すデータ値をテーブルA2に従って二値化する。
 同様に、逆二値化部244は、非ゼロ係数の個数が0である可能性のある基本ブロックの非ゼロ係数の個数を示すデータ値が二値化された二値化値をテーブルA1に従って逆二値化する。そして、逆二値化部244は、非ゼロ係数の個数が0である可能性のない基本ブロックの非ゼロ係数の個数を示すデータ値が二値化された二値化値をテーブルA2に従って逆二値化する。
 これにより、符号化装置100及び復号装置200は、符号量が増大することを抑制することができる。
 なお、図15の例では、サイズが4×4である基本ブロックが示されているが、基本ブロックのサイズは、4×4とは異なるサイズでもよい。また、基本ブロックのサイズは、周波数変換ブロックと同じサイズでもよいし、周波数変換ブロックよりも小さいサイズでもよい。また、この例では、非ゼロ係数の個数を示すデータ値として、trailing_onesとtotal_coefとの組み合わせが用いられているが、非ゼロ係数の個数を示すデータ値は、別の情報でもよい。
 図16は、実施の形態1に係るテーブルの選択を示すフローチャートである。具体的には、図16は、図15に示されたテーブルA1及びテーブルA2の中から変換テーブルを選択するためのフローチャートである。
 例えば、二値化部132は、基本ブロック毎に、テーブルA1及びテーブルA2の中から変換テーブルを選択し、選択された変換ブロックに従って基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を二値化する。また、逆二値化部244は、基本ブロック毎に、テーブルA1及びテーブルA2の中から変換テーブルを選択し、選択された変換ブロックに従って基本ブロックに含まれる非ゼロ係数の個数を示すデータ値の二値化値を逆二値化する。
 ここでは、基本ブロック毎に二値化又は逆二値化の処理を行う際における処理対象の基本ブロックは、カレント基本ブロックと呼ばれる。
 また、前提として、二値化部132は、周波数変換ブロックに特定基本ブロックが含まれる場合のみ、スキャン順で特定基本ブロック以降の各基本ブロックについて、非ゼロ係数の個数を示すデータ値を二値化する。そして、逆二値化部244は、周波数変換ブロックに特定基本ブロックが含まれる場合のみ、スキャン順で特定基本ブロック以降の各基本ブロックについて、非ゼロ係数の個数を示すデータ値の二値化値を逆二値化する。特定基本ブロックは、スキャン順で最初に非ゼロ係数を含む基本ブロックである。
 つまり、符号化装置100は、周波数変換ブロックが非ゼロ係数を含む場合に周波数変換ブロックを符号化し、周波数変換ブロックが非ゼロ係数を含まない場合に周波数変換ブロックを符号化しない。これに伴って、復号装置200は、周波数変換ブロックが非ゼロ係数を含む場合に周波数変換ブロックを復号し、周波数変換ブロックが非ゼロ係数を含まない場合に周波数変換ブロックを復号しない。
 上記の前提において、カレント基本ブロックが周波数変換ブロックと同じではなく(S201でNo)、かつ、カレント基本ブロックが特定基本ブロックではない場合(S202でNo)、0個の非ゼロ係数の対応付けを含むテーブルA1が選択される(S203)。また、カレント基本ブロックが周波数変換ブロックと同じである場合(S201でYes)、又は、カレント基本ブロックが特定基本ブロックである場合(S202でYes)、0個の非ゼロ係数の対応付けを含まないテーブルA2が選択される(S204)。
 カレント基本ブロックが周波数変換ブロックと同じである場合、カレント基本ブロックのデータ値が二値化されるか否かは、カレント基本ブロックが非ゼロ係数を含むか否かに従う。この場合、カレント基本ブロックが非ゼロ係数を含むなら、カレント基本ブロックのデータ値が二値化され、カレント基本ブロックが非ゼロ係数を含まないなら、カレント基本ブロックのデータ値が二値化されない。
 したがって、この場合、カレント基本ブロックのデータ値が二値化されるなら、カレント基本ブロックが非ゼロ係数を含む。そのため、カレント基本ブロックが周波数変換ブロックと同じである場合、0個の非ゼロ係数の対応付けを含まないテーブルA2が選択される。
 また、特定基本ブロックは、非ゼロ係数を含む。したがって、カレント基本ブロックが特定基本ブロックである場合、0個の非ゼロ係数の対応付けを含まないテーブルA2が選択される。
 なお、カレント基本ブロックが周波数変換ブロックと同じであるか否かは、周波数変換ブロックのサイズがカレント基本ブロックのサイズと同じであるか否かに対応する。例えば、各基本ブロックのサイズが4×4である場合、カレント基本ブロックが周波数変換ブロックと同じであるか否かに代えて、周波数変換ブロックのサイズが4×4であるか否かが判定されてもよい。
 また、上記の選択方法は、一例であって、その他の選択方法が用いられてもよい。また、上記の選択方法における2つの場合分けの一方のみが用いられてもよい。また、上記の例では、2つのテーブルA1及びA2から変換テーブルが選択されているが、これらのテーブルA1及びA2を含む3つ以上のテーブルの中から変換テーブルが選択されてもよい。
 また、二値化部132は、第2モードと同様に、第1モードにおいても、0個の非ゼロ係数の対応付けを含まないテーブルA2等から選択された変換テーブルに従って、非ゼロ係数の個数を示すデータ値を二値化してもよい。あるいは、二値化部132は、第1モードにおいて、0個の非ゼロ係数の対応付けを含まないテーブルA2等を用いず、0個の非ゼロ係数の対応付けを含むテーブルA1等を用いて、非ゼロ係数の個数を示すデータ値を二値化してもよい。
 あるいは、二値化部132は、第1モードにおいて、非ゼロ係数の個数を示すデータ値を二値化しなくてもよい。例えば、二値化部132は、第1モードにおいて、非ゼロ係数の個数によらず、複数の周波数変換係数のそれぞれを二値化してもよい。第1モードでは、非ゼロ係数の個数が用いられなくても、算術符号化の適用によって符号量の増加の抑制が支援される。
 また、逆二値化部244は、第2モードと同様に、第1モードにおいても、0個の非ゼロ係数の対応付けを含まないテーブルA2等から選択された変換テーブルに従って、非ゼロ係数の個数を示すデータ値の二値化値を逆二値化してもよい。あるいは、逆二値化部244は、第1モードにおいて、0個の非ゼロ係数の対応付けを含まないテーブルA2等を用いず、0個の非ゼロ係数の対応付けを含むテーブルA1等を用いて、非ゼロ係数の個数を示すデータ値の二値化値を逆二値化してもよい。
 あるいは、逆二値化部244は、第1モードにおいて、非ゼロ係数の個数を示すデータ値の二値化値を逆二値化しなくてもよい。例えば、逆二値化部244は、第1モードにおいて、非ゼロ係数の個数によらず、複数の周波数変換係数のそれぞれの二値化値を逆二値化してもよい。第1モードでは、非ゼロ係数の個数が用いられなくても、算術復号の適用によって符号量の増加の抑制が支援される。
 [基本ブロックの位置に基づくテーブル選択]
 二値化又は逆二値化のための変換テーブルは、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む複数のテーブルの中から選択されてもよい。これにより、周波数変換係数情報の符号量が削減され得る。
 図17は、実施の形態1に係る4種類のテーブルB1~B4を示す概念図である。4種類のテーブルB1~B4のそれぞれにおいて、複数のデータ値と複数の二値化値とが対応付けられている。複数のデータ値のそれぞれは、trailing_onesとtotal_coefとの組み合わせに対応する。なお、図17のテーブルB1は、図15のテーブルA1と同じである。
 具体的には、図17の例において、total_coefは3であり、trailing_onesは2である。このデータ値に対して、テーブルB1では、7ビットの二値化値である「0000101」が対応付けられており、テーブルB3では、5ビットの二値化値である「01110」が対応付けられている。
 符号化装置100の二値化部132は、テーブルB1~B4の中から変換テーブルを選択し、二値化部132は、選択された変換テーブルに従って、データ値を二値化する。同様に、復号装置200の逆二値化部244は、テーブルB1~B4の中から変換テーブルを選択し、選択された変換テーブルに従って、非ゼロ係数の個数を示すデータ値の二値化値を逆二値化する。
 なお、復号装置200の逆二値化部244は、符号化装置100の二値化部132と同じ選択基準で、テーブルB1~B4の中から符号化装置100の二値化部132によって選択されたテーブルと同じテーブルを変換テーブルとして選択する。
 また、テーブルB1~B3のそれぞれにおいて、非ゼロ係数の個数が少ないほど、非ゼロ係数の個数を示すデータ値に対応付けられた二値化値のビット長がより短く規定されている。テーブルB1~B3のうち、テーブルB1において、この傾向が最も強く、テーブルB3において、この傾向が最も弱い。すなわち、テーブルB1~B3のうち、テーブルB1において、複数の二値化値におけるビット長の変動が最も大きく、テーブルB3において、複数の二値化値におけるビット長の変動が最も小さい。
 テーブルB4において、非ゼロ係数の個数によらず、非ゼロ係数の個数を示すデータ値に対応付けられた二値化値のビット長は一定である。つまり、テーブルB4において、複数のデータ値に対応付けられた複数の二値化値は、同じビット長で規定されている。したがって、最長ビット長と最短ビット長との差は、テーブルB1において最も大きく、テーブルB2において次に大きく、テーブルB3において次に大きく、テーブルB4において最も小さい。
 例えば、非ゼロ係数の個数として推定される個数が少ないほど、テーブルB1~B4のうち、最長ビット長と最短ビット長との差がより大きいテーブルが選択される。これにより、非ゼロ係数の個数を示すデータ値に、ビット長が短い二値化値が割り当てられる可能性が大きくなる。
 逆に、非ゼロ係数の個数として推定される個数が多いほど、テーブルB1~B4のうち、最長ビット長と最短ビット長との差がより小さいテーブルが選択される。これにより、非ゼロ係数の個数を示すデータ値に、ビット長が長い二値化値が割り当てられる可能性が小さくなる。
 また、カレント基本ブロックにおける非ゼロ係数の個数は、周波数変換ブロックにおけるカレント基本ブロックの位置に影響されると推定される。そこで、例えば、符号化装置100の二値化部132は、周波数変換ブロックにおけるカレント基本ブロックの位置に従って、テーブルB1~B4の中から変換テーブルを選択してもよい。そして、二値化部132は、選択された変換テーブルに従って、非ゼロ係数の個数を示すデータ値を二値化してもよい。
 同様に、復号装置200の逆二値化部244は、周波数変換ブロックにおけるカレント基本ブロックの位置に従って、テーブルB1~B4の中から変換テーブルを選択してもよい。そして、逆二値化部244は、選択された変換テーブルに従って、非ゼロ係数の個数を示すデータ値の二値化値を逆二値化してもよい。これにより、符号化装置100及び復号装置200は、符号量が増大することを抑制することができる。
 なお、テーブルB1~B3のそれぞれにおいて、trailing_onesが大きいほど、二値化値のビット長がより短く規定される。この傾向も、テーブルB1~B3のうち、テーブルB1において最も強く、テーブルB3において最も弱い。テーブルB4には、この傾向がない。
 基本ブロックにおける各周波数変換係数の絶対値が小さいことと、trailing_onesが大きいこととの間に相関があると推定される。そこで、周波数変換係数の絶対値として推定される値が小さいほど、テーブルB1~B4のうち、この傾向がより強いテーブルが選択されてもよい。これにより、trailing_onesとtotal_coefとの組み合わせに、ビット長が短い二値化値が割り当てられる可能性が大きくなる。
 また、図17において、4種類のテーブルB1~B4が示されているが、最長ビット長と最短ビット長との差が互いに異なる2種類のテーブルが用いられてもよいし、3種類のテーブルが用いられてもよいし、5種類以上のテーブルが用いられてもよい。
 また、変換テーブルを選択するための複数のテーブルには、最長ビット長と最短ビット長との差が互いに異なる2種類以上のテーブルのみに限らず、最長ビット長と最短ビット長との差が互いに等しい2種類以上のテーブルが含まれていてもよい。すなわち、変換テーブルを選択するための複数のテーブルには、最長ビット長と最短ビット長との差が互いに異なる2種類以上のテーブルが含まれ、かつ、最長ビット長と最短ビット長との差が互いに等しい2種類以上のテーブルが含まれていてもよい。
 また、図15に示されたテーブルA1及びA2と、図17に示されたテーブルB1~B4とが組み合わされてもよい。例えば、変換テーブルは、複数のテーブルB1~B4及びA2の中から選択されてもよい。さらに、テーブルB2~B4から0個の非ゼロ係数の対応付けを除いた新たなテーブルが、変換テーブルを選択するための複数のテーブルに含まれてもよい。
 また、符号化装置100及び復号装置200は、周波数変換ブロックにおける基本ブロックの位置に従って、テーブルB1~B4の中から変換テーブルを選択してもよい。その際、符号化装置100及び復号装置200は、基本ブロックの階層を利用してもよい。
 図18A~図18Iは、それぞれ、実施の形態1に係る周波数変換ブロックにおける1以上の基本ブロックのそれぞれの階層を示す概念図である。
 図18A~図18Iにおいて、1以上の基本ブロックのそれぞれの中に記載された番号は、周波数変換ブロックにおける基本ブロックの階層を示す。この例では、周波数変換ブロックにおける基本ブロックの階層を示す番号が、周波数の低い順で規定されている。つまり、基本ブロックの階層を示す番号は、その基本ブロックが対応する周波数のレベルが低いほど、より小さく規定されている。つまり、階層は、周波数のレベルに対応する。
 左下又は右上に向かう斜め方向に並ぶ複数の基本ブロックにおいて、周波数のレベルは同じであるとみなされる。ここでは、周波数のレベルが同じ複数の基本ブロックに対して、基本ブロックの階層を示す番号が、同じ値で規定されている。
 具体的には、図18Aは、4×4の周波数変換ブロックにおける1個の基本ブロックの階層を示す。また、図18Bは、8×8の周波数変換ブロックにおける4個の基本ブロックのそれぞれの階層を示す。図18Cは、8×4の周波数変換ブロックにおける2個の基本ブロックのそれぞれの階層を示す。図18Dは、4×8の周波数変換ブロックにおける2個の基本ブロックのそれぞれの階層を示す。図18Eは、16×16の周波数変換ブロックにおける16個の基本ブロックのそれぞれの階層を示す。
 また、図18Fは、16×8の周波数変換ブロックにおける8個の基本ブロックのそれぞれの階層を示す。図18Gは、8×16の周波数変換ブロックにおける8個の基本ブロックのそれぞれの階層を示す。図18Hは、16×12の周波数変換ブロックにおける12個の基本ブロックのそれぞれの階層を示す。図18Iは、4×16の周波数変換ブロックにおける4個の基本ブロックのそれぞれの階層を示す。
 また、図18A~図18Iに示されている番号は一例であり、基本ブロックの階層を示す番号として他の番号が用いられてもよい。あるいは、番号とは異なる形式で基本ブロックの階層を示す情報が用いられてもよい。
 図19は、実施の形態1に係るパターンの判定処理を示すフローチャートである。例えば、符号化装置100の二値化部132は、周波数変換ブロックにおけるカレント基本ブロックの位置に従ってパターンを決定し、決定されたパターンに従って変換テーブルを選択する。このパターンは、周波数変換ブロックにおけるカレント基本ブロックの位置に対応し、かつ、変換テーブルを選択するための選択方法に対応する。
 そのため、符号化装置100の二値化部132は、カレント基本ブロックと同じ階層に先行基本ブロックが存在するか否かを判定する(S301)。ここで、先行基本ブロックは、スキャン順でカレント基本ブロックよりも前の基本ブロックである。二値化部132は、カレント基本ブロックと同じ階層に先行基本ブロックが存在すると判定される場合(S301でYes)、パターンを第1パターンと判定する(S302)。
 二値化部132は、カレント基本ブロックと同じ階層に先行基本ブロックが存在しないと判定される場合(S301でNo)、カレント基本ブロックよりも高い階層に特定基本ブロックが存在するか否かを判定する(S303)。ここで、特定基本ブロックは、周波数変換ブロックを構成する1以上の基本ブロックのうち、スキャン順で最初に非ゼロ係数を含む基本ブロックである。
 二値化部132は、カレント基本ブロックよりも高い階層に特定基本ブロックが存在すると判定される場合(S303でYes)、パターンを第2パターンと判定する(S304)。二値化部132は、カレント基本ブロックよりも高い階層に特定基本ブロックが存在しないと判定される場合(S303でNo)、パターンを第3パターンと判定する(S305)。
 なお、第1パターン、第2パターン及び第3パターンは、それぞれ、パターンの一例である。第1パターン、第2パターン及び第3パターンのうち一部のみが利用されてもよいし、その他のパターンが利用されてもよい。
 また、復号装置200の逆二値化部244も、符号化装置100の二値化部132と同様に、パターンを決定し、変換テーブルを選択する。したがって、パターンの決定、及び、変換テーブルの選択について、符号化装置100及び二値化部132の動作は、復号装置200及び逆二値化部244の動作に置き換えられ得る。以降の説明も同様である。
 図20Aは、実施の形態1に係る第1パターンのカレント基本ブロックを示す概念図である。カレント基本ブロックと同じ階層に先行基本ブロックが存在する場合、カレント基本ブロックの位置に対応するパターンが第1パターンとして決定される。
 言い換えれば、カレント基本ブロックの位置が、カレント基本ブロックと同じ階層に先行基本ブロックが存在するような位置である場合、パターンが第1パターンとして決定される。例えば、図20Aにおける斜線のハッチング部分に、カレント基本ブロックが位置する場合、カレント基本ブロックの位置に対応するパターンが第1パターンとして決定される。
 図20Bは、実施の形態1に係る第2パターンのカレント基本ブロックを示す概念図である。カレント基本ブロックと同じ階層に先行基本ブロックが存在せず、かつ、カレント基本ブロックよりも高い階層に特定基本ブロックが存在する場合、カレント基本ブロックの位置に対応するパターンが第2パターンとして決定される。
 言い換えれば、カレント基本ブロックの位置が、カレント基本ブロックと同じ階層に先行基本ブロックが存在せず、かつ、カレント基本ブロックよりも高い階層に特定基本ブロックが存在するような位置である場合、パターンが第2パターンとして決定される。例えば、図20Bにおける斜線のハッチング部分に、カレント基本ブロックが位置する場合、カレント基本ブロックの位置に対応するパターンが第2パターンとして決定される。
 図20Cは、実施の形態1に係る第3パターンのカレント基本ブロックを示す概念図である。カレント基本ブロックと同じ階層に先行基本ブロックが存在せず、かつ、カレント基本ブロックよりも高い階層に特定基本ブロックが存在しない場合、カレント基本ブロックの位置に対応するパターンが第3パターンとして決定される。
 言い換えれば、カレント基本ブロックの位置が、カレント基本ブロックと同じ階層に先行基本ブロックが存在せず、かつ、カレント基本ブロックよりも高い階層に特定基本ブロックが存在しないような位置である場合、パターンが第3パターンとして決定される。例えば、図20Cにおける斜線のハッチング部分に、カレント基本ブロックが位置する場合、カレント基本ブロックの位置に対応するパターンが第3パターンとして決定される。
 図21は、実施の形態1に係る第1パターンにおいて選択されるテーブルを示す関係図である。例えば、符号化装置100の二値化部132は、カレント基本ブロックに含まれる非ゼロ係数の個数を予測し、カレント基本ブロックに含まれる非ゼロ係数の個数の予測値に従って、テーブルB1~B4の中から変換テーブルを選択する。この予測値は、nCとも表現される。
 図21の例では、二値化部132は、予測値が0~1である場合、最長ビット長と最短ビット長との差が最も大きいテーブルB1を変換テーブルとして選択する。
 また、二値化部132は、予測値が2~3である場合、最長ビット長と最短ビット長との差が次に大きいテーブルB2を変換テーブルとして選択する。また、二値化部132は、予測値が4~7である場合、最長ビット長と最短ビット長との差が次に大きいテーブルB3を変換テーブルとして選択する。また、二値化部132は、予測値が8~16である場合、最長ビット長と最短ビット長との差が最も小さいテーブルB4を変換テーブルとして選択する。
 第1パターンでは、カレント基本ブロックと同じ階層に先行基本ブロックが存在する。したがって、二値化部132は、カレント基本ブロックと同じ階層の先行基本ブロックに含まれる非ゼロ係数の個数に従って、カレント基本ブロックに含まれる非ゼロ係数の個数を予測する。具体的には、二値化部132は、カレント基本ブロックと同じ階層の先行基本ブロックに含まれる非ゼロ係数の個数をカレント基本ブロックに含まれる非ゼロ係数の個数として予測する。
 第1パターンにおいて、カレント基本ブロックが、スキャン順で最初に非ゼロ係数を含む特定基本ブロックである場合、先行基本ブロックに含まれる非ゼロ係数の個数は、0である。したがって、二値化部132は、0をカレント基本ブロックに含まれる非ゼロ係数の個数として予測する。
 また、二値化部132は、カレント基本ブロックと同じ階層に複数の先行基本ブロックが存在する場合、スキャン順で直前の先行基本ブロックに含まれる非ゼロ係数の個数に従って、カレント基本ブロックに含まれる非ゼロ係数の個数を予測してもよい。
 そして、二値化部132は、先行基本ブロックの非ゼロ係数の個数に従って、基本ブロックの非ゼロ係数の個数を予測し、非ゼロ係数の個数の予測値に従って、テーブルB1~B4の中から変換テーブルを選択する。すなわち、二値化部132は、先行基本ブロックの非ゼロ係数の個数に従って、テーブルB1~B4の中から変換テーブルを選択する。
 なお、図21は、予測値の範囲、及び、選択されるテーブルの例を示している。予測値の範囲、及び、選択されるテーブルは、図21に示された例に限られない。また、二値化部132は、非ゼロ係数の個数の予測値のみではなく、非ゼロ係数の個数の予測値と、他の情報との組み合わせに従って、変換テーブルを選択してもよい。第1パターンに限らず、他のパターンについても同様である。
 図22は、実施の形態1に係る第2パターンにおいて選択されるテーブルを示す関係図である。
 第2パターンでは、カレント基本ブロックと同じ階層に先行基本ブロックが存在しない。一方、カレント基本ブロックよりも高い階層、つまり、カレント基本ブロックの位置における周波数のレベルよりも高いレベルに非ゼロ係数を含む基本ブロックが存在する。この場合、二値化部132は、カレント基本ブロックに含まれる非ゼロ係数の個数は多いと予測し、カレント基本ブロックに含まれる非ゼロ係数の個数の予測値を大きくする。そして、二値化部132は、大きくした予測値に従って、変換テーブルを選択する。
 例えば、二値化部132は、カレント基本ブロックに含まれる非ゼロ係数の個数の予測値を非ゼロ係数の個数の最大値として決定する。そして、二値化部132は、非ゼロ係数の個数の最大値として決定された予測値に従って、変換テーブルを選択する。
 具体的には、二値化部132は、カレント基本ブロックに含まれる非ゼロ係数の個数の予測値を非ゼロ係数の個数の最大値である16として決定する。そして、二値化部132は、非ゼロ係数の個数の最大値である16として決定された予測値に従って、変換テーブルを選択する。これにより、二値化部132は、最長ビット長と最短ビット長との差が最も小さいテーブルB4を変換テーブルとして選択する。
 なお、第2パターンにおいて、二値化部132は、予測値を最大値として決定しなくてもよく、予測値を非ゼロ係数の個数の平均的な値よりも大きい所定の値に決定してもよい。そして、二値化部132は、テーブルB1~B4の中から、最長ビット長と最短ビット長との差が平均的な差よりも小さいテーブルを変換テーブルとして選択してもよい。
 図23は、実施の形態1に係る第3パターンにおいて周辺の周波数変換ブロックで選択されるテーブルを示す関係図である。この例では、符号化装置100の二値化部132は、第3パターンにおいて、周辺の周波数変換ブロックに含まれる非ゼロ係数の個数に従って、変換テーブルを選択する。
 第3パターンでは、カレント基本ブロックと同じ階層に先行基本ブロックが存在しない。また、カレント基本ブロックよりも高い階層に特定基本ブロックが存在しない。そこで、二値化部132は、周辺の周波数変換ブロックに含まれる非ゼロ係数の個数に従って、カレント基本ブロックに含まれる非ゼロ係数の個数を予測する。二値化部132は、周辺の周波数変換ブロックに含まれる非ゼロ係数の個数をカレント基本ブロックに含まれる非ゼロ係数の個数として予測してもよい。
 そして、二値化部132は、カレント基本ブロックに含まれる非ゼロ係数の個数の予測値に従って、テーブルB1~B4の中から変換テーブルを選択する。すなわち、二値化部132は、周辺の周波数変換ブロックに含まれ得る非ゼロ係数の個数に従って、テーブルB1~B4の中から変換テーブルを選択する。
 例えば、周辺の周波数変換ブロックは、カレント基本ブロックを含む周波数変換ブロックから空間的に近い周波数変換ブロックであって、既に符号化が完了している周波数変換ブロックである。以下、カレント基本ブロックを含む周辺変換ブロックをカレント周波数変換ブロックと呼び、周辺の周波数変換ブロックを周辺周波数変換ブロックと呼ぶ。周辺周波数変換ブロックは、空間的に、カレント周波数変換ブロックから所定の範囲における周波数変換ブロックであってもよい。
 また、周辺周波数変換ブロックは、カレント周波数変換ブロックの左又は上に隣接する周波数変換ブロックであってもよい。これにより、二値化部132は、カレント周波数変換ブロックに近い周波数変換ブロックに含まれる非ゼロ係数の個数に従って、高精度に非ゼロ係数の個数を予測することができる。
 また、周辺周波数変換ブロックは、符号化順で直前のカレント周波数変換ブロックでもよい。これにより、非ゼロ係数の個数のシンプルな予測、及び、非ゼロ係数の個数に関する情報を記憶するためのメモリ容量の削減が可能である。
 また、周辺周波数変換ブロックは、カレント周波数変換ブロックから所定の範囲における周波数変換ブロックであって、符号化モードがカレント周波数変換ブロックと同じ周波数変換ブロックであってもよい。これにより、二値化部132は、非ゼロ係数の発生傾向がカレント周波数変換ブロックと似ていると推定される周波数変換ブロックに従って、非ゼロ係数の個数を高精度に予測することができる。なお、所定の範囲は、カレント周波数変換ブロックを含む符号化ツリーユニットの範囲でもよい。
 周辺周波数変換ブロックに含まれる非ゼロ係数の個数として、カレント周波数変換ブロックに対するカレント基本ブロックの相対的な位置に周辺周波数変換ブロックに対する相対的な位置が等しい基本ブロックに含まれる非ゼロ係数の個数が用いられてもよい。これにより、二値化部132は、非ゼロ係数の個数に関し、カレント基本ブロックに対して相関の強い基本ブロックに従って、非ゼロ係数の個数を高精度に予測することができる。
 周辺周波数変換ブロックに含まれる非ゼロ係数の個数として、周辺周波数変換ブロック全体の非ゼロ係数の個数が用いられてもよい。これにより、周波数変換ブロックのサイズによらず情報が統合されるため、非ゼロ係数の個数のシンプルな予測、及び、非ゼロ係数の個数に関する情報を記憶するためのメモリ容量の削減が可能である。
 また、二値化部132は、周辺周波数変換ブロック全体の非ゼロ係数の個数に従って、基本ブロックあたりの非ゼロ係数の個数を導出し、基本ブロックあたりの非ゼロ係数の個数に従って、カレント基本ブロックに含まれる非ゼロ係数の個数を予測してもよい。これにより、二値化部132は、周波数変換ブロックのサイズの違いによらず、非ゼロ係数の個数を適切に予測することができる。そして、二値化部132は、適切な予測値に従って、変換テーブルを選択することができる。
 図24は、実施の形態1に係る第3パターンにおいて符号化モードで選択されるテーブルを示す関係図である。この例では、二値化部132は、第3パターンにおいて、周辺の周波数変換ブロックに含まれる非ゼロ係数の個数に代えて、面間予測か面内予測かの符号化モードに従って、変換テーブルを選択する。この符号化モードは、カレント基本ブロックの符号化及び復号に、面間予測が用いられるか、面内予測が用いられるかに対応する。
 例えば、カレントブロックの符号化モードが面間予測である場合、面内予測に比べて、予測精度が高く、非ゼロ係数の個数が少ないと推定される。したがって、二値化部132は、最長ビット長と最短ビット長との差が大きいテーブルB1を選択する。一方、カレントブロックの符号化モードが面内予測である場合、面間予測に比べて、予測精度が低く、非ゼロ係数の個数が多いと推定される。したがって、二値化部132は、最長ビット長と最短ビット長との差がテーブルB1よりも小さいテーブルB2を選択する。
 なお、図24は、選択されるテーブルの例を示している。選択されるテーブルは、図24に示された例に限られない。また、二値化部132は、符号化モードのみではなく、符号化モードと、他の情報との組み合わせに従って、変換テーブルを選択してもよい。
 図25は、実施の形態1に係る第3パターンにおいて量子化パラメータで選択されるテーブルを示す関係図である。この例では、二値化部132は、第3パターンにおいて、周辺の周波数変換ブロックに含まれる非ゼロ係数の個数、及び、面間予測か面内予測かの符号化モードに代えて、QP値に従って、変換テーブルを選択する。このQP値は、カレント基本ブロックの符号化及び復号に用いられる量子化パラメータの値であって、QP値が大きいほど、量子化幅が大きい。
 例えば、QP値が大きいほど、周波数変換係数の値が0に量子化される可能性が高く、量子化によって発生する非ゼロ係数が少ないと推定される。したがって、二値化部132は、QP値が大きいほど、テーブルB1~B4の中から、最長ビット長と最短ビット長との差がより大きいテーブルを選択する。
 一方、QP値が小さいほど、周波数変換係数の値が0に量子化される可能性が低く、量子化によって発生する非ゼロ係数が多いと推定される。したがって、二値化部132は、QP値が小さいほど、テーブルB1~B4の中から、最長ビット長と最短ビット長との差がより小さいテーブルを選択する。
 この例では、二値化部132は、QP値が0~21である場合、最長ビット長と最短ビット長との差が最も小さいテーブルB4を変換テーブルとして選択する。
 また、二値化部132は、QP値が22~31である場合、最長ビット長と最短ビット長との差が次に小さいテーブルB3を変換テーブルとして選択する。また、二値化部132は、QP値が32~41である場合、最長ビット長と最短ビット長との差が次に小さいテーブルB2を変換テーブルとして選択する。また、二値化部132は、QP値が42~51である場合、最長ビット長と最短ビット長との差が最も大きいテーブルB1を変換テーブルとして選択する。
 なお、図25は、QP値の範囲、及び、選択されるテーブルの例を示している。QP値の範囲、及び、選択されるテーブルは、図25に示された例に限られない。また、二値化部132は、QP値のみではなく、QP値と、他の情報との組み合わせに従って、変換テーブルを選択してもよい。
 また、上記の例において、二値化部132は、カレント基本ブロックの位置に従って、テーブル選択方法を決定し、決定されたテーブル選択方法に従って、変換テーブルを選択する。これにより、二値化部132は、カレント基本ブロックの位置に従って、変換テーブルを選択する。
 一方で、カレント基本ブロックの位置が周波数変換ブロックの左上隅に近いほど、カレント基本ブロックに含まれる非ゼロ係数がより多いと推定される。したがって、二値化部132は、カレント基本ブロックの位置が周波数変換ブロックの左上隅に近いほど、テーブルB1~B4等の中から、最長ビット長と最短ビット長との差がより小さいテーブルを変換テーブルとして選択してもよい。これにより、二値化部132は、カレント基本ブロックの位置に従って、変換テーブルを選択してもよい。
 また、上記の説明では、非ゼロ係数の個数に関し、予測という表現が用いられているが、面内予測及び面間予測等のような画像の予測と区別するため、予測という表現の代わりに、推定という表現が用いられてもよい。
 [周波数変換係数情報のシンタックス構造]
 図26は、実施の形態1に係るシンタックス構造を示すデータ図である。符号化装置100の二値化部132は、図26に示されたシンタックス構造に従って、周波数変換係数情報を二値化する。復号装置200の逆二値化部244は、図26に示されたシンタックス構造に従って、周波数変換係数情報の二値化データ列を逆二値化する。
 図26の例は、基本ブロックのサイズが4×4である場合の例であるが、基本ブロックのサイズは、4×4に限られない。基本ブロックのサイズは、周波数変換ブロックと同じサイズでもよいし、周波数変換ブロックよりも小さいサイズでもよい。また、図26において太文字で示されたパラメータが、二値化データ列に記述されるパラメータである。
 last_sub_block_posは、特定基本ブロックの位置を示す情報である。特定基本ブロックは、周波数変換ブロックを構成する1以上の基本ブロックに対して周波数の高い順で規定されるスキャン順で最初に非ゼロ係数を含む基本ブロックである。last_sub_block_posは、特定基本ブロックの位置を例えば図14A~図14Iのように番号で示す情報であってもよい。二値化データ列には、周波数変換ブロック毎に最大で1つのlast_sub_block_posが含まれる。
 coef_tokenは、基本ブロックに含まれる非ゼロ係数の個数を示す情報である。具体的には、coef_tokenは、total_coef及びtrailing_onesの両方に対応する。より具体的には、coef_tokenは、例えば図15及び図17のようにtotal_coef及びtrailing_onesが組み合わされたデータ値に対応する二値化値であってもよい。二値化データ列には、基本ブロック毎に最大で1つのcoef_tokenが含まれる。
 total_zerosは、基本ブロックに含まれる複数の周波数変換係数に対して周波数の高い順で規定されるスキャン順で最初に出現した非ゼロ係数よりも後に出現したゼロ係数の総数を示す情報である。ここで、ゼロ係数は、値が0である周波数変換係数である。二値化データ列には、基本ブロック毎に最大で1つのtotal_zerosが含まれる。
 run_beforeは、基本ブロックに含まれる複数の周波数変換係数に対して周波数の高い順で規定されるスキャン順で出現した各非ゼロ係数について、非ゼロ係数よりも後に連続して出現したゼロ係数の個数を示す情報である。二値化データ列には、基本ブロック毎に最大で、非ゼロ係数の個数から1を引いた数のrun_beforeが含まれる。
 coeff_sign_flagは、基本ブロックに含まれる各非ゼロ係数の値の正負を示す情報である。二値化データ列には、基本ブロック毎に最大で、非ゼロ係数の個数と同じ数のcoeff_sign_flagが含まれる。
 coeff_abs_level_remainingは、基本ブロックに含まれる各非ゼロ係数の絶対値を示す情報である。二値化データ列には、基本ブロック毎に最大で、非ゼロ係数の個数と同じ数のcoeff_abs_level_remainingが含まれる。
 図26に示されたシンタックス構造は一例である。図26に示されたシンタックス構造とは異なるシンタックス構造であって、図26に示されたシンタックス構造と同じような情報を示すシンタックス構造が用いられてもよい。
 [符号化装置の実装例]
 図27は、実施の形態1に係る符号化装置100の実装例を示すブロック図である。符号化装置100は、回路160及びメモリ162を備える。例えば、図1及び図11に示された符号化装置100の複数の構成要素は、図27に示された回路160及びメモリ162によって実装される。
 回路160は、情報処理を行う回路であり、メモリ162にアクセス可能な回路である。例えば、回路160は、画像情報を符号化する専用又は汎用の電子回路である。回路160は、CPUのようなプロセッサであってもよい。また、回路160は、複数の電子回路の集合体であってもよい。また、例えば、回路160は、図1及び図11に示された符号化装置100の複数の構成要素のうち、情報を記憶するための構成要素を除く、複数の構成要素の役割を果たしてもよい。
 メモリ162は、回路160が画像情報を符号化するための情報が記憶される汎用又は専用のメモリである。メモリ162は、電子回路であってもよく、回路160に接続されていてもよい。また、メモリ162は、複数の電子回路の集合体であってもよい。また、メモリ162は、磁気ディスク又は光ディスク等であってもよいし、ストレージ又は記録媒体等と表現されてもよい。また、メモリ162は、不揮発性メモリでもよいし、揮発性メモリでもよい。
 例えば、メモリ162には、符号化される画像情報が記憶されてもよいし、符号化された画像情報に対応するビット列が記憶されてもよい。また、メモリ162には、回路160が画像情報を符号化するためのプログラムが記憶されていてもよい。
 また、例えば、回路160は、図1及び図11に示された符号化装置100の複数の構成要素のうち、情報を記憶するための構成要素の役割を果たしてもよい。具体的には、メモリ162は、図1に示されたブロックメモリ118及びフレームメモリ122の役割を果たしてもよいし、図11に示された中間バッファ136の役割を果たしてもよい。
 なお、符号化装置100において、図1及び図11等に示された複数の構成要素の全てが実装されなくてもよいし、上述された複数の処理の全てが行われなくてもよい。図1及び図11等に示された複数の構成要素の一部は、他の装置に含まれていてもよいし、上述された複数の処理の一部は、他の装置によって実行されてもよい。
 そして、符号化装置100において、図1及び図11等に示された複数の構成要素のうちの一部が実装され、上述された複数の処理の一部が行われることによって、周波数変換係数情報が適切に符号化され得る。
 [符号化装置の第1符号化動作例]
 図28は、実施の形態1に係る符号化装置100の第1符号化動作例を示すフローチャートである。例えば、図27に示された符号化装置100の回路160は、図28に示された動作を行うことにより、画像情報を符号化し、画像情報が符号化されたビット列を出力する。
 具体的には、まず、回路160は、画像情報を二値化する(S401)。例えば、画像情報は、画像の周波数成分に関する周波数変換係数情報、及び、画像の予測方法に関する予測パラメータ情報等を含む。そして、回路160は、画像情報が二値化された二値化データ列に対して算術符号化を適用するか否かを切り替える(S402)。
 二値化データ列に対して算術符号化が適用される場合(S402でYes)、回路160は、二値化データ列に対して算術符号化を適用し、算術符号化が適用された二値化データ列を含むビット列を出力する(S403)。
 二値化データ列に対して算術符号化が適用されない場合(S402でNo)、回路160は、二値化データ列に対して算術符号化を適用せずに、算術符号化が適用されなかった二値化データ列を含むビット列を出力する(S404)。
 これにより、符号化装置100は、算術符号化をスキップすることができる。したがって、符号化装置100は、算術符号化によって発生する処理遅延の削減を支援することができる。
 図29は、実施の形態1に係る符号化装置100の第1符号化動作例における二値化処理を示すフローチャートである。つまり、図29は、図28における二値化処理(S401)の具体的な例を示す。
 回路160は、二値化データ列に対して算術符号化が適用される場合と、二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って、画像情報のうち、周波数変換係数情報とは異なる他の情報を二値化する(S411)。この他の情報は、例えば、予測パラメータ情報の一部または全部を含む。
 また、回路160は、二値化データ列に対して算術符号化が適用される場合と、二値化データ列に対して算術符号化が適用されない場合とで異なる二値化形式に従って、画像情報のうち周波数変換係数情報を二値化する(S412)。より具体的には、回路160は、二値化データ列に対して算術符号化が適用される場合と、二値化データ列に対して算術符号化が適用されない場合とで異なる二値化形式に従って、画像情報のうち、周波数変換係数情報を含む情報を二値化してもよい。
 これにより、符号化装置100は、全体の符号量に大きな影響を与える周波数変換係数情報を算術符号化の適用有無に従って適切に二値化することができる。したがって、符号化装置100は、周波数変換係数情報を適切に符号化することができ、全体の符号量の増加を抑制することができる。
 なお、他の情報の二値化(S411)と、周波数変換係数情報の二値化(S412)との処理順序は、逆であってもよい。
 また、例えば、予測パラメータ情報は、予測パラメータ情報に含まれる符号化モードに関する情報、画面内予測の予測方向に関する情報、画面間予測の参照ピクチャに関する情報、及び、画面間予測の動きベクトルに関する情報を含む。
 回路160は、予測パラメータ情報に含まれるこれらの情報に対して、二値化データ列に対して算術符号化が適用される場合と、二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って二値化を施してもよい。あるいは、回路160は、これらのうち少なくとも1つに対して、二値化データ列に対して算術符号化が適用される場合と、二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って二値化を施してもよい。
 また、回路160は、画像情報のうち周波数変換係数情報のみを算術符号化の適用有無によって異なる二値化形式に従って二値化してもよい。そして、回路160は、画像情報のうち周波数変換係数情報を除く他の全ての情報を算術符号化の適用有無によらず共通の二値化形式に従って二値化してもよい。
 これにより、符号化装置100は、周波数変換係数情報を除く他の全ての情報を共通の二値化形式に従って二値化することができる。したがって、処理が簡素化される。
 図30は、実施の形態1に係る符号化装置100の第1符号化動作例における周波数変換係数情報の二値化処理を示すフローチャートである。つまり、図30は、図29における周波数変換係数情報の二値化処理(S412)の具体的な例を示す。
 回路160は、二値化データ列に対して算術符号化が適用される場合(S421でYes)、周波数変換係数情報を第1の二値化形式で二値化する(S422)。そして、回路160は、二値化データ列に対して算術符号化が適用されない場合(S421でNo)、周波数変換係数情報を第2の二値化形式で二値化する(S423)。そして、回路160は、二値化データ列に対して算術符号化が適用されない場合に、二値化データ列に対して算術符号化が適用される場合よりも、発生ビット数が少ない形式で周波数変換係数情報を二値化する。
 これにより、符号化装置100は、算術符号化が適用されない場合において、周波数変換係数情報の符号量を小さくすることを支援することができる。
 [符号化装置の第2符号化動作例]
 図31は、実施の形態1に係る符号化装置100の第2符号化動作例を示すフローチャートである。例えば、図27に示された符号化装置100の回路160は、図31に示された動作を行うことにより、画像情報を符号化する。
 具体的には、回路160は、特定基本ブロックの位置を示す位置情報を符号化する(S501)。特定基本ブロックは、複数の周波数変換係数を有する周波数変換ブロックを構成する1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で最初に非ゼロ係数を周波数変換係数として有する基本ブロックである。
 そして、回路160は、周波数変換ブロックを構成する1以上の基本ブロックのうち、所定のスキャン順で特定基本ブロック以降の各基本ブロックについてのみ、基本ブロックを構成する複数の周波数変換係数を示すブロック情報を符号化する(S502)。
 これにより、符号化装置100は、位置情報及びブロック情報を周波数変換係数情報として符号化することができる。そして、符号化装置100は、所定のスキャン順で特定基本ブロック以降の各基本ブロックについて、ブロック情報を符号化するため、周波数変換係数情報の符号量を小さくすることを支援することができる。
 なお、回路160は、周波数変換ブロックを構成する1以上の基本ブロックの個数が2以上である場合のみ、位置情報を符号化してもよい。これにより、符号化装置100は、例えば周波数変換ブロックのサイズと各基本ブロックのサイズとが同じである場合に、周波数変換係数情報の符号量をより小さくすることを支援することができる。
 また、回路160は、周波数変換ブロックに特定基本ブロックが存在する場合のみ、位置情報及びブロック情報を符号化してもよい。これにより、符号化装置100は、例えば周波数変換ブロックに非ゼロ係数が含まれない場合に、周波数変換係数情報の符号量をより小さくすることを支援することができる。
 また、回路160は、第1符号化動作例と同様に、画像情報を符号化して、画像情報が符号化されたビット列を出力してもよい。例えば、図28のように、回路160は、画像情報を二値化する(S401)。そして、回路160は、画像情報が二値化された二値化データ列に対して算術符号化を適用するか否かを切り替える(S402)。
 そして、二値化データ列に対して算術符号化が適用される場合(S402でYes)、回路160は、二値化データ列に対して算術符号化を適用して、算術符号化が適用された二値化データ列を含むビット列を出力する(S403)。一方、二値化データ列に対して算術符号化が適用されない場合(S402でNo)、回路160は、二値化データ列に対して算術符号化を適用せずに、算術符号化が適用されなかった二値化データ列を含むビット列を出力する(S404)。
 また、図29のように、回路160は、二値化データ列に対して算術符号化が適用される場合と、二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って、画像情報のうち他の情報を二値化する(S411)。この他の情報は、例えば、予測パラメータ情報の一部または全部を含む。
 そして、回路160は、二値化データ列に対して算術符号化が適用される場合と、二値化データ列に対して算術符号化が適用されない場合とで異なる二値化形式に従って、画像情報のうち周波数変換係数情報を二値化する(S412)。
 また、二値化データ列に対して算術符号化が適用されない場合、回路160は、位置情報及びブロック情報を含む周波数変換係数情報を二値化することにより、位置情報及びブロック情報を符号化する。ここで、符号化されるブロック情報は、所定のスキャン順で特定基本ブロック以降のブロック情報である。これにより、符号化装置100は、算術符号化が適用されない場合に、周波数変換係数情報の符号量を小さくすることを支援することができる。
 [符号化装置の第3符号化動作例]
 図32は、実施の形態1に係る符号化装置100の第3符号化動作例を示すフローチャートである。例えば、図27に示された符号化装置100の回路160は、図32に示された動作を行うことにより、画像情報を符号化する。
 具体的には、回路160は、カレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って二値化して、データ値を含む画像情報を符号化する(S601)。ここで、カレント基本ブロックは、複数の周波数変換係数を有する周波数変換ブロックを構成する1以上の基本ブロックの1つである。
 これにより、符号化装置100は、基本ブロックを構成する複数の周波数変換係数の効率的な表現に用いられる有意な情報を適切に符号化することができる。
 図33は、実施の形態1に係る符号化装置100の第3符号化動作例における二値化処理を示すフローチャートである。つまり、図33は、図32における二値化処理の具体的な例を示す。
 回路160は、非ゼロ係数の個数として0を示すデータ値の対応付けを含む第1テーブルと、非ゼロ係数の個数として0を示すデータ値の対応付けを含まない第2テーブルとを含む複数のテーブルの中から変換テーブルを選択する(S611)。そして、回路160は、選択された変換テーブルに従って、データ値を二値化する(S612)。
 これにより、符号化装置100は、情報量が削減されたテーブルを二値化のための変換テーブルとして用いることができる。したがって、符号化装置100は、周波数変換係数情報の符号量を小さくすることを支援することができる。
 回路160は、周波数変換ブロックを構成する1以上の基本ブロックのうち、所定のスキャン順で特定基本ブロック以降の各基本ブロックについてのみ、基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を二値化してもよい。つまり、回路160は、所定のスキャン順で特定基本ブロック以降の各基本ブロックの非ゼロ係数の個数を示すデータ値をカレント基本ブロックの非ゼロ係数の個数を示すデータ値として二値化してもよい。
 これにより、符号化装置100は、周波数変換係数情報の符号量をより小さくすることを支援することができる。なお、特定基本ブロックは、周波数変換ブロックを構成する1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で最初に非ゼロ係数を周波数変換係数として有する基本ブロックである。
 また、回路160は、周波数変換ブロックを構成する1以上の基本ブロックに特定基本ブロックが存在する場合のみ、カレント基本ブロックの非ゼロ係数の個数を示すデータ値を二値化してもよい。そして、回路160は、周波数変換ブロックとカレント基本ブロックとが同じである場合、非ゼロ係数の個数として0を示すデータ値の対応付けを含まない第2テーブルを変換テーブルとして選択してもよい。
 これにより、符号化装置100は、例えば周波数変換ブロックのサイズと各基本ブロックのサイズとが同じである場合に、0個の非ゼロ係数の対応付けを含まない第2テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、回路160は、カレント基本ブロックが特定基本ブロックである場合、非ゼロ係数の個数として0を示すデータ値の対応付けを含まない第2テーブルを変換テーブルとして選択してもよい。
 これにより、符号化装置100は、例えばカレント基本ブロックが特定基本ブロックである場合に、0個の非ゼロ係数の対応付けを含まない第2テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、回路160は、第1符号化動作例と同様に、画像情報を符号化して、画像情報が符号化されたビット列を出力してもよい。例えば、図28のように、回路160は、画像情報を二値化する(S401)。そして、回路160は、画像情報が二値化された二値化データ列に対して算術符号化を適用するか否かを切り替える(S402)。
 そして、二値化データ列に対して算術符号化が適用される場合(S402でYes)、回路160は、二値化データ列に対して算術符号化を適用して、算術符号化が適用された二値化データ列を含むビット列を出力する(S403)。一方、二値化データ列に対して算術符号化が適用されない場合(S402でNo)、回路160は、二値化データ列に対して算術符号化を適用せずに、算術符号化が適用されなかった二値化データ列を含むビット列を出力する(S404)。
 また、図29のように、回路160は、二値化データ列に対して算術符号化が適用される場合と、二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って、画像情報のうち他の情報を二値化する(S411)。この他の情報は、例えば、予測パラメータ情報の一部または全部を含む。
 そして、回路160は、二値化データ列に対して算術符号化が適用される場合と、二値化データ列に対して算術符号化が適用されない場合とで異なる二値化形式に従って、画像情報のうち周波数変換係数情報を二値化する(S412)。
 また、二値化データ列に対して算術符号化が適用されない場合、回路160は、第1テーブルと第2テーブルとを含む複数のテーブルの中から選択された変換テーブルに従って、周波数変換係数情報に含まれるデータ値を二値化する。ここで、第1テーブルは、非ゼロ係数の個数として0を示すデータ値の対応付けを含み、第2テーブルは、非ゼロ係数の個数として0を示すデータ値の対応付けを含まない。
 これにより、符号化装置100は、算術符号化が適用されない場合に、0個の非ゼロ係数の対応付けを含まない第2テーブルを含む複数のテーブルの中から選択される変換テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 [符号化装置の第4符号化動作例]
 第4符号化動作例において、図32に示された第3符号化動作例と同様に、非ゼロ係数の個数を示すデータ値が二値化される。具体的には、回路160は、カレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って二値化して、データ値を含む画像情報を符号化する(S601)。
 図34は、実施の形態1に係る符号化装置100の第4符号化動作例における二値化処理を示すフローチャートである。つまり、図34は、図32における二値化処理の具体的な例を示す。
 回路160は、カレント周波数変換ブロックにおけるカレント基本ブロックの位置に従って、複数のテーブルの中から変換テーブルを選択する(S661)。カレント周波数変換ブロックは、カレント基本ブロックを含む周波数変換ブロックである。複数のテーブルは、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む。そして、回路160は、選択された変換テーブルに従って、データ値を二値化する(S662)。
 これにより、符号化装置100は、非ゼロ係数の個数を示すデータ値を二値化するための変換テーブルをカレント基本ブロックの位置に従って選択することができる。非ゼロ係数の個数の特性は、カレント基本ブロックの位置により異なる。したがって、符号化装置100は、カレント基本ブロックの位置を用いて、非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。
 よって、符号化装置100は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 回路160は、カレント基本ブロックの位置に従って、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在する場合、先行基本ブロックに含まれる非ゼロ係数の個数に従って、変換テーブルを選択してもよい。
 ここで、先行基本ブロックは、カレント周波数変換ブロックを構成する1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順でカレント基本ブロックよりも前の基本ブロックである。また、カレント基本ブロックの位置における周波数のレベルは、カレント基本ブロックの位置に対応する周波数のレベルである。
 これにより、符号化装置100は、カレント基本ブロックに非ゼロ係数の個数が類似すると推定される先行基本ブロックの非ゼロ係数の個数に従って、変換テーブルを選択することができる。
 また、回路160は、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在し、かつ、先行基本ブロックに含まれる非ゼロ係数の個数が第1個数である場合、変換テーブルとして第1テーブルを選択してもよい。そして、回路160は、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在し、かつ、先行基本ブロックに含まれる非ゼロ係数の個数が第2個数である場合、変換テーブルとして第2テーブルを選択してもよい。
 ここで、第2個数は、第1個数よりも多い。また、第2テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差は、第1テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差よりも小さい。つまり、回路160は、先行基本ブロックに含まれる非ゼロ係数の個数が多い場合、複数の二値化値の最長ビット長と最短ビット長との差が小さいテーブルを変換テーブルとして選択してもよい。
 これにより、符号化装置100は、先行基本ブロックの非ゼロ係数の個数に従ってカレント基本ブロックの非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、特定基本ブロックがカレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在する場合がある。ここで、特定基本ブロックは、所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである。この場合、回路160は、複数のテーブルの中から最長ビット長と最短ビット長との差が所定の差よりも小さいテーブルを変換テーブルとして選択してもよい。
 これにより、符号化装置100は、カレント基本ブロック及び特定基本ブロックの関係に従って非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。所定の差は、固定の値に限られず、例えば複数のテーブルのうちビット長の差が2番目に小さいテーブルにおける最長ビット長と最短ビット長との差のように、相対的に定められてもよい。
 具体的には、上記の場合において、回路160は、複数のテーブルの中から最長ビット長と最短ビット長との差が最も小さいテーブルを変換テーブルとして選択してもよい。これにより、符号化装置100は、カレント基本ブロック及び特定基本ブロックの関係に従って非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加をより抑制することを支援することができる。
 また、例えば、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、特定基本ブロックがカレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合がある。この場合、回路160は、カレント周波数変換ブロックの周辺の周波数変換ブロックである周辺周波数変換ブロックから非ゼロ係数の個数として推定される個数に従って、変換テーブルを選択してもよい。
 これにより、符号化装置100は、カレント基本ブロックに非ゼロ係数の個数が類似すると推定される周辺周波数変換ブロックを用いて、変換テーブルを選択することができる。
 また、上記の場合、回路160は、周辺周波数変換ブロックから推定される個数が第1個数であれば、第1テーブルを選択し、周辺周波数変換ブロックから推定される個数が第2個数であれば、第2テーブルを選択してもよい。ここで、第2個数は、第1個数よりも多い。また、第2テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差は、第1テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差よりも小さい。
 つまり、回路160は、周辺周波数変換ブロックから推定される個数が多い場合、複数の二値化値の最長ビット長と最短ビット長との差が小さいテーブルを変換テーブルとして選択してもよい。これにより、符号化装置100は、周辺周波数変換ブロックに従ってカレント基本ブロックの非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、周辺周波数変換ブロックは、カレント周波数変換ブロックの左又は上に隣接する周波数変換ブロックであってもよい。これにより、符号化装置100は、カレント周波数変換ブロックに近い周波数変換ブロックに含まれる非ゼロ係数の個数に従って、高精度に非ゼロ係数の個数を予測することができる。
 あるいは、周辺周波数変換ブロックは、カレント周波数変換ブロックの直前に符号化された周波数変換ブロックであってもよい。これにより、非ゼロ係数の個数のシンプルな予測、及び、非ゼロ係数の個数に関する情報を記憶するためのメモリ容量の削減が可能である。
 あるいは、周辺周波数変換ブロックは、カレント周波数変換ブロックから所定の範囲内に位置する周波数変換ブロックであって、面間予測か面内予測かの符号化モードがカレント周波数変換ブロックと同じ周波数変換ブロックであってもよい。これにより、符号化装置100は、非ゼロ係数の発生傾向がカレント周波数変換ブロックと似ていると推定される周波数変換ブロックに従って、非ゼロ係数の個数を高精度に予測することができる。
 また、カレント基本ブロックに含まれる非ゼロ係数の個数は、周辺周波数変換ブロックに含まれる1以上の基本ブロックのうちの1つの基本ブロックに含まれる非ゼロ係数の個数から推定されてもよい。この1つの基本ブロックは、周辺周波数変換ブロックに対する相対的な位置が、カレント周波数変換ブロックに対するカレント基本ブロックの相対的な位置に等しい基本ブロックである。
 これにより、符号化装置100は、周辺周波数変換ブロックの1以上の基本ブロックのうち、非ゼロ係数の個数がカレント基本ブロックに類似すると推定される基本ブロックに従って、変換テーブルを選択することができる。
 あるいは、周辺周波数変換ブロックから推定される個数は、周辺周波数変換ブロックの全体に含まれる非ゼロ係数の個数から推定されてもよい。これにより、周波数変換ブロックのサイズによらず情報が統合されるため、非ゼロ係数の個数のシンプルな予測、及び、非ゼロ係数の個数に関する情報を記憶するためのメモリ容量の削減が可能である。
 また、例えば、上述したように、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、特定基本ブロックがカレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合がある。この場合、回路160は、カレント基本ブロックの符号化モードが面間予測か面内予測かに従って、変換テーブルを選択してもよい。
 これにより、符号化装置100は、面間予測か面内予測かの符号化モードに従って、変換テーブルを選択することができる。非ゼロ係数の個数の特性は、符号化モードにより異なると推定される。したがって、符号化装置100は、符号化モードを用いて、非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。よって、符号化装置100は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、上記の場合、回路160は、符号化モードが面間予測であれば、第1テーブルを選択し、符号化モードが面内予測であれば、第2テーブルを選択してもよい。ここで、第2テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差は、第1テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差よりも小さい。
 つまり、回路160は、符号化モードが面内予測である場合、複数の二値化値の最長ビット長と最短ビット長との差が小さいテーブルを変換テーブルとして選択してもよい。これにより、符号化装置100は、符号化モードが面内予測であるため、予測精度が低く、非ゼロ係数の個数が多いと推定される場合に、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、上述したように、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、特定基本ブロックがカレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合がある。この場合、回路160は、カレント基本ブロックの符号化に用いられる量子化パラメータに従って、変換テーブルを選択してもよい。
 これにより、符号化装置100は、カレント基本ブロックの符号化に用いられる量子化パラメータに従って、変換テーブルを選択することができる。非ゼロ係数の個数の特性は、量子化パラメータにより異なると推定される。したがって、符号化装置100は、量子化パラメータを用いて、非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。よって、符号化装置100は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、上記の場合、回路160は、量子化パラメータが第1の値であれば、第1テーブルを選択し、量子化パラメータが第2の値であれば、第2テーブルを選択してもよい。ここで、第2の値は、第1の値よりも小さい。また、第2テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差は、第1テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差よりも小さい。
 つまり、回路160は、量子化パラメータが小さい場合、複数の二値化値の最長ビット長と最短ビット長との差が小さいテーブルを変換テーブルとして選択してもよい。これにより、符号化装置100は、量子化パラメータが小さいことによって非ゼロ係数の個数が多いと推定される場合に、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、回路160は、第1符号化動作例と同様に、画像情報を符号化して、画像情報が符号化されたビット列を出力してもよい。例えば、図28のように、回路160は、画像情報を二値化する(S401)。そして、回路160は、画像情報が二値化された二値化データ列に対して算術符号化を適用するか否かを切り替える(S402)。
 そして、二値化データ列に対して算術符号化が適用される場合(S402でYes)、回路160は、二値化データ列に対して算術符号化を適用して、算術符号化が適用された二値化データ列を含むビット列を出力する(S403)。一方、二値化データ列に対して算術符号化が適用されない場合(S402でNo)、回路160は、二値化データ列に対して算術符号化を適用せずに、算術符号化が適用されなかった二値化データ列を含むビット列を出力する(S404)。
 また、図29のように、回路160は、二値化データ列に対して算術符号化が適用される場合と、二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って、画像情報のうち他の情報を二値化する(S411)。この他の情報は、例えば、予測パラメータ情報の一部または全部を含む。
 そして、回路160は、二値化データ列に対して算術符号化が適用される場合と、二値化データ列に対して算術符号化が適用されない場合とで異なる二値化形式に従って、画像情報のうち周波数変換係数情報を二値化する(S412)。
 また、二値化データ列に対して算術符号化が適用されない場合、回路160は、複数のテーブルの中からカレント基本ブロックの位置に従って選択された変換テーブルに従って、周波数変換係数情報に含まれるデータ値を二値化する。これにより、符号化装置100は、算術符号化が適用されない場合に、複数のテーブルの中からカレント基本ブロックの位置に従って選択される変換テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 なお、最長ビット長と最短ビット長との差は、カレント基本ブロックの非ゼロ係数の個数が多くなるほど、カレント基本ブロックの非ゼロ係数の個数を示すデータ値に対応付けられた二値化値のビット長が長くなる割合に対応する。したがって、最長ビット長と最短ビット長との差は、カレント基本ブロックの非ゼロ係数の個数が多くなるほど、カレント基本ブロックの非ゼロ係数の個数を示すデータ値に対応付けられた二値化値のビット長が長くなる割合に置き換えられてもよい。
 例えば、この割合は、0以上である。この割合が0であるテーブルでは、カレント基本ブロックの非ゼロ係数の個数が多くなっても、カレント基本ブロックの非ゼロ係数の個数を示すデータ値に対応付けられた二値化値のビット長が増加しない。また、この割合は、カレント基本ブロックの非ゼロ係数の個数が多くなるほど、カレント基本ブロックの非ゼロ係数の個数を示すデータ値に対応付けられた二値化値のビット長が長くなる平均的な割合でもよい。
 [復号装置の実装例]
 図35は、実施の形態1に係る復号装置200の実装例を示すブロック図である。復号装置200は、回路260及びメモリ262を備える。例えば、図10及び図12に示された復号装置200の複数の構成要素は、図35に示された回路260及びメモリ262によって実装される。
 回路260は、情報処理を行う回路であり、メモリ262にアクセス可能な回路である。例えば、回路260は、画像情報を復号する汎用又は専用の電子回路である。回路260は、CPUのようなプロセッサであってもよい。また、回路260は、複数の電子回路の集合体であってもよい。また、例えば、回路260は、図10及び図12に示された復号装置200の複数の構成要素のうち、情報を記憶するための構成要素を除く、複数の構成要素の役割を果たしてもよい。
 メモリ262は、回路260が画像情報を復号するための情報が記憶される汎用又は専用のメモリである。メモリ262は、電子回路であってもよく、回路260に接続されていてもよい。また、メモリ262は、複数の電子回路の集合体であってもよい。また、メモリ262は、磁気ディスク又は光ディスク等であってもよいし、ストレージ又は記録媒体等と表現されてもよい。また、メモリ262は、不揮発性メモリでもよいし、揮発性メモリでもよい。
 例えば、メモリ262には、符号化された画像情報に対応するビット列が記憶されてもよいし、復号されたビット列に対応する画像情報が記憶されてもよい。また、メモリ262には、回路260が画像情報を復号するためのプログラムが記憶されていてもよい。
 また、例えば、回路260は、図10及び図12に示された復号装置200の複数の構成要素のうち、情報を記憶するための構成要素の役割を果たしてもよい。具体的には、メモリ262は、図10に示されたブロックメモリ210及びフレームメモリ214の役割を果たしてもよいし、図12に示された中間バッファ240の役割を果たしてもよい。
 なお、復号装置200において、図10及び図12等に示された複数の構成要素の全てが実装されなくてもよいし、上述された複数の処理の全てが行われなくてもよい。図10及び図12等に示された複数の構成要素の一部は、他の装置に含まれていてもよいし、上述された複数の処理の一部は、他の装置によって実行されてもよい。
 そして、復号装置200において、図10及び図12等に示された複数の構成要素のうちの一部が実装され、上述された複数の処理の一部が行われることによって、周波数変換係数情報が適切に復号され得る。
 [復号装置の第1復号動作例]
 図36は、実施の形態1に係る復号装置200の第1復号動作例を示すフローチャートである。例えば、図35に示された復号装置200の回路260は、図36に示された動作を行うことにより、画像情報が符号化されたビット列を取得し、画像情報を復号する。
 具体的には、まず、回路260は、画像情報が二値化された二値化データ列を含むビット列を取得する(S701)。例えば、画像情報は、画像の周波数成分に関する周波数変換係数情報、及び、画像の予測方法に関する予測パラメータ情報等を含む。そして、回路260は、ビット列に含まれる二値化データ列に対して算術復号を適用するか否かを切り替える(S702)。
 二値化データ列に対して算術復号が適用される場合(S702でYes)、回路260は、二値化データ列に対して算術復号を適用して、算術復号が適用された二値化データ列を逆二値化することにより、画像情報を復号する(S703)。
 二値化データ列に対して算術復号が適用されない場合(S702でNo)、回路260は、二値化データ列に対して算術復号を適用せずに、算術復号が適用されなかった二値化データ列を逆二値化することにより、画像情報を復号する(S704)。
 これにより、復号装置200は、算術復号をスキップすることができる。したがって、復号装置200は、算術復号によって発生する処理遅延の削減を支援することができる。
 図37は、実施の形態1に係る復号装置200の第1復号動作例における逆二値化処理を示すフローチャートである。つまり、図37は、図36における逆二値化処理(S703及びS704)の具体的な例を示す。
 回路260は、二値化データ列に対して算術復号が適用される場合と、二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って、後述の第1部分とは異なる第2部分を逆二値化する(S711)。第2部分は、二値化データ列のうち、周波数変換係数情報とは異なる他の情報が二値化された部分である。この他の情報は、例えば、予測パラメータ情報の一部または全部を含む。
 また、回路260は、二値化データ列に対して算術復号が適用される場合と、二値化データ列に対して算術復号が適用されない場合とで異なる逆二値化形式に従って、第1部分を逆二値化する(S712)。第1部分は、二値化データ列のうち周波数変換係数情報が二値化された部分である。より具体的には、第1部分は、二値化データ列のうち周波数変換係数情報を含む情報が二値化された部分であってもよい。
 これにより、復号装置200は、全体の符号量に大きな影響を与える周波数変換係数情報に対応する第1部分を算術復号の適用有無に従って適切に逆二値化することができる。したがって、復号装置200は、周波数変換係数情報を適切に復号することができ、全体の符号量の増加を抑制することができる。
 なお、他の情報が二値化された第2部分の逆二値化(S711)と、周波数変換係数情報が二値化された第1部分の逆二値化(S712)との処理順序は、逆であってもよい。
 また、例えば、予測パラメータ情報は、予測パラメータ情報に含まれる符号化モードに関する情報、画面内予測の予測方向に関する情報、画面間予測の参照ピクチャに関する情報、及び、画面間予測の動きベクトルに関する情報を含む。
 回路260は、予測パラメータ情報に含まれるこれらの情報が二値化された第2部分に対して、二値化データ列に対して算術復号が適用される場合と、二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って逆二値化を施してもよい。あるいは、回路260は、これらのうち少なくとも1つに対して、二値化データ列に対して算術復号が適用される場合と、二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って逆二値化を施してもよい。
 また、回路260は、二値化データ列のうち周波数変換係数情報が二値化された第1部分のみを算術復号の適用有無によって異なる逆二値化形式に従って逆二値化してもよい。そして、回路260は、二値化データ列のうち周波数変換係数情報が二値化された第1部分を除く他の全ての部分を算術復号の適用有無によらず共通の逆二値化形式に従って逆二値化してもよい。
 これにより、復号装置200は、周波数変換係数情報に対応する第1部分を除く他の全ての部分を共通の逆二値化形式に従って逆二値化することができる。したがって、処理が簡素化される。
 図38は、実施の形態1に係る復号装置200の第1復号動作例における周波数変換係数情報に対応する第1部分の逆二値化処理を示すフローチャートである。つまり、図38は、図37における周波数変換係数情報に対応する第1部分の逆二値化処理(S712)の具体的な例を示す。
 回路260は、二値化データ列に対して算術復号が適用される場合(S721でYes)、周波数変換係数情報が二値化された第1部分を第1の逆二値化形式で逆二値化する(S722)。そして、回路260は、二値化データ列に対して算術復号が適用されない場合(S721でNo)、周波数変換係数情報が二値化された第1部分を第2の逆二値化形式で逆二値化する(S723)。
 そして、回路260は、二値化データ列に対して算術復号が適用されない場合に、二値化データ列に対して算術復号が適用される場合よりも、発生ビット数が少ない形式で周波数変換係数情報が二値化された第1部分を逆二値化する。これにより、復号装置200は、算術復号が適用されない場合において、周波数変換係数情報の符号量を小さくすることを支援することができる。
 [復号装置の第2復号動作例]
 図39は、実施の形態1に係る復号装置200の第2復号動作例を示すフローチャートである。例えば、図35に示された復号装置200の回路260は、図39に示された動作を行うことにより、画像情報を復号する。
 具体的には、回路260は、特定基本ブロックの位置を示す位置情報を復号する(S801)。特定基本ブロックは、複数の周波数変換係数を有する周波数変換ブロックを構成する1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で最初に非ゼロ係数を周波数変換係数として有する基本ブロックである。
 そして、回路260は、周波数変換ブロックを構成する1以上の基本ブロックのうち、所定のスキャン順で特定基本ブロック以降の各基本ブロックについてのみ、基本ブロックを構成する複数の周波数変換係数を示すブロック情報を復号する(S802)。
 これにより、復号装置200は、位置情報及びブロック情報を周波数変換係数情報として復号することができる。そして、復号装置200は、所定のスキャン順で特定基本ブロック以降の各基本ブロックについて、ブロック情報を復号するため、周波数変換係数情報の符号量を小さくすることを支援することができる。
 なお、回路260は、周波数変換ブロックを構成する1以上の基本ブロックの個数が2以上である場合のみ、位置情報を復号してもよい。これにより、復号装置200は、例えば周波数変換ブロックのサイズと各基本ブロックのサイズとが同じである場合に、周波数変換係数情報の符号量をより小さくすることを支援することができる。
 また、回路260は、周波数変換ブロックに特定基本ブロックが存在する場合のみ、位置情報及びブロック情報を復号してもよい。これにより、復号装置200は、例えば周波数変換ブロックに非ゼロ係数が含まれない場合に、周波数変換係数情報の符号量をより小さくすることを支援することができる。
 また、回路260は、第1復号動作例と同様に、画像情報が符号化されたビット列を取得して、画像情報を復号してもよい。例えば、図36のように、回路260は、画像情報が二値化された二値化データ列を含むビット列を取得する(S701)。そして、回路260は、ビット列に含まれる二値化データ列に対して算術復号を適用するか否かを切り替える(S702)。
 そして、二値化データ列に対して算術復号が適用される場合(S702でYes)、回路260は、二値化データ列に対して算術復号を適用して、算術復号が適用された二値化データ列を逆二値化することにより、画像情報を復号する(S703)。一方、二値化データ列に対して算術復号が適用されない場合(S702でNo)、回路260は、二値化データ列に対して算術復号を適用せずに、算術復号が適用されなかった二値化データ列を逆二値化することにより、画像情報を復号する(S704)。
 また、図37のように、回路260は、二値化データ列に対して算術復号が適用される場合と、二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って、第2部分を逆二値化する(S711)。第2部分は、二値化データ列のうち他の情報が二値化された部分である。この他の情報は、例えば、予測パラメータ情報の一部または全部を含む。
 そして、回路260は、二値化データ列に対して算術復号が適用される場合と、二値化データ列に対して算術復号が適用されない場合とで異なる逆二値化形式に従って、第1部分を逆二値化する(S712)。第1部分は、二値化データ列のうち周波数変換係数情報が二値化された部分である。
 また、二値化データ列に対して算術復号が適用されない場合、回路260は、位置情報及びブロック情報を含む周波数変換係数情報が二値化された第1部分を逆二値化することにより、位置情報及びブロック情報を復号する。ここで、復号されるブロック情報は、所定のスキャン順で特定基本ブロック以降のブロック情報である。これにより、復号装置200は、算術復号が適用されない場合に、周波数変換係数情報の符号量を小さくすることを支援することができる。
 [復号装置の第3復号動作例]
 図40は、実施の形態1に係る復号装置200の第3復号動作例を示すフローチャートである。例えば、図35に示された復号装置200の回路260は、図40に示された動作を行うことにより、画像情報を復号する。
 具体的には、回路260は、カレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が二値化された二値化値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って逆二値化する。そして、回路260は、データ値を含む画像情報を復号する(S901)。ここで、カレント基本ブロックは、複数の周波数変換係数を有する周波数変換ブロックを構成する1以上の基本ブロックの1つである。
 これにより、復号装置200は、基本ブロックを構成する複数の周波数変換係数の効率的な表現に用いられる有意な情報を適切に復号することができる。
 図41は、実施の形態1に係る復号装置200の第3復号動作例における逆二値化処理を示すフローチャートである。つまり、図41は、図40における逆二値化処理の具体的な例を示す。
 回路260は、非ゼロ係数の個数として0を示すデータ値の対応付けを含む第1テーブルと、非ゼロ係数の個数として0を示すデータ値の対応付けを含まない第2テーブルとを含む複数のテーブルの中から変換テーブルを選択する(S911)。そして、回路260は、選択された変換テーブルに従って、二値化値を逆二値化する(S912)。
 これにより、復号装置200は、情報量が削減されたテーブルを逆二値化のための変換テーブルとして用いることができる。したがって、復号装置200は、周波数変換係数情報の符号量を小さくすることを支援することができる。
 回路260は、周波数変換ブロックを構成する1以上の基本ブロックのうち、所定のスキャン順で特定基本ブロック以降の各基本ブロックについてのみ、基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が二値化された二値化値を逆二値化してもよい。つまり、回路260は、所定のスキャン順で特定基本ブロック以降の各基本ブロックの非ゼロ係数の個数を示すデータ値が二値化された二値化値をカレント基本ブロックの非ゼロ係数の個数を示すデータ値が二値化された二値化値として逆二値化してもよい。
 これにより、復号装置200は、周波数変換係数情報の符号量をより小さくすることを支援することができる。なお、特定基本ブロックは、周波数変換ブロックを構成する1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で最初に非ゼロ係数を周波数変換係数として有する基本ブロックである。
 また、回路260は、周波数変換ブロックを構成する1以上の基本ブロックに特定基本ブロックが存在する場合のみ、カレント基本ブロックの非ゼロ係数の個数を示すデータ値が二値化された二値化値を逆二値化してもよい。そして、回路260は、周波数変換ブロックとカレント基本ブロックとが同じである場合、非ゼロ係数の個数として0を示すデータ値の対応付けを含まない第2テーブルを変換テーブルとして選択してもよい。
 これにより、復号装置200は、例えば周波数変換ブロックのサイズと各基本ブロックのサイズとが同じである場合に、0個の非ゼロ係数の対応付けを含まない第2テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、回路260は、カレント基本ブロックが特定基本ブロックである場合、非ゼロ係数の個数として0を示すデータ値の対応付けを含まない第2テーブルを変換テーブルとして選択してもよい。
 これにより、復号装置200は、例えばカレント基本ブロックが特定基本ブロックである場合に、0個の非ゼロ係数の対応付けを含まない第2テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、回路260は、第1復号動作例と同様に、画像情報が符号化されたビット列を取得して、画像情報を復号してもよい。例えば、図36のように、回路260は、画像情報が二値化された二値化データ列を含むビット列を取得する(S701)。そして、回路260は、ビット列に含まれる二値化データ列に対して算術復号を適用するか否かを切り替える(S702)。
 そして、二値化データ列に対して算術復号が適用される場合(S702でYes)、回路260は、二値化データ列に対して算術復号を適用して、算術復号が適用された二値化データ列を逆二値化することにより、画像情報を復号する(S703)。一方、二値化データ列に対して算術復号が適用されない場合(S702でNo)、回路260は、二値化データ列に対して算術復号を適用せずに、算術復号が適用されなかった二値化データ列を逆二値化することにより、画像情報を復号する(S704)。
 また、図37のように、回路260は、二値化データ列に対して算術復号が適用される場合と、二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って、第2部分を逆二値化する(S711)。第2部分は、二値化データ列のうち他の情報が二値化された部分である。この他の情報は、例えば、予測パラメータ情報の一部または全部を含む。
 そして、回路260は、二値化データ列に対して算術復号が適用される場合と、二値化データ列に対して算術復号が適用されない場合とで異なる逆二値化形式に従って、第1部分を逆二値化する(S712)。第1部分は、二値化データ列のうち周波数変換係数情報が二値化された部分である。
 また、二値化データ列に対して算術復号が適用されない場合、回路260は、第1テーブルと第2テーブルとを含む複数のテーブルの中から選択された変換テーブルに従って、周波数変換係数情報が二値化された第1部分に含まれる二値化値を逆二値化する。ここで、第1テーブルは、非ゼロ係数の個数として0を示すデータ値の対応付けを含み、第2テーブルは、非ゼロ係数の個数として0を示すデータ値の対応付けを含まない。
 これにより、復号装置200は、算術復号が適用されない場合に、0個の非ゼロ係数の対応付けを含まない第2テーブルを含む複数のテーブルの中から選択される変換テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 [復号装置の第4復号動作例]
 第4復号動作例において、図40に示された第3復号動作例と同様に、非ゼロ係数の個数を示すデータ値が逆二値化される。具体的には、回路260は、カレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が二値化された二値化値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って逆二値化して、データ値を含む画像情報を復号する(S901)。
 図42は、実施の形態1に係る復号装置200の第4復号動作例における逆二値化処理を示すフローチャートである。つまり、図42は、図40における逆二値化処理の具体的な例を示す。
 回路260は、カレント周波数変換ブロックにおけるカレント基本ブロックの位置に従って、複数のテーブルの中から変換テーブルを選択する(S961)。カレント周波数変換ブロックは、カレント基本ブロックを含む周波数変換ブロックである。複数のテーブルは、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む。そして、回路260は、選択された変換テーブルに従って、二値化値を逆二値化する(S962)。
 これにより、復号装置200は、非ゼロ係数の個数を示すデータ値の二値化値を逆二値化するための変換テーブルをカレント基本ブロックの位置に従って選択することができる。非ゼロ係数の個数の特性は、カレント基本ブロックの位置により異なる。したがって、復号装置200は、カレント基本ブロックの位置を用いて、非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。
 よって、復号装置200は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 回路260は、カレント基本ブロックの位置に従って、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在する場合、先行基本ブロックに含まれる非ゼロ係数の個数に従って、変換テーブルを選択してもよい。
 ここで、先行基本ブロックは、カレント周波数変換ブロックを構成する1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順でカレント基本ブロックよりも前の基本ブロックである。また、カレント基本ブロックの位置における周波数のレベルは、カレント基本ブロックの位置に対応する周波数のレベルである。
 これにより、復号装置200は、カレント基本ブロックに非ゼロ係数の個数が類似すると推定される先行基本ブロックの非ゼロ係数の個数に従って、変換テーブルを選択することができる。
 また、回路260は、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在し、かつ、先行基本ブロックに含まれる非ゼロ係数の個数が第1個数である場合、変換テーブルとして第1テーブルを選択してもよい。そして、回路260は、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在し、かつ、先行基本ブロックに含まれる非ゼロ係数の個数が第2個数である場合、変換テーブルとして第2テーブルを選択してもよい。
 ここで、第2個数は、第1個数よりも多い。また、第2テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差は、第1テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差よりも小さい。つまり、回路260は、先行基本ブロックに含まれる非ゼロ係数の個数が多い場合、複数の二値化値の最長ビット長と最短ビット長との差が小さいテーブルを変換テーブルとして選択してもよい。
 これにより、復号装置200は、先行基本ブロックの非ゼロ係数の個数に従ってカレント基本ブロックの非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、特定基本ブロックがカレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在する場合がある。ここで、特定基本ブロックは、所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである。この場合、回路260は、複数のテーブルの中から最長ビット長と最短ビット長との差が所定の差よりも小さいテーブルを変換テーブルとして選択してもよい。
 これにより、復号装置200は、カレント基本ブロック及び特定基本ブロックの関係に従って非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。所定の差は、固定の値に限られず、例えば複数のテーブルのうちビット長の差が2番目に小さいテーブルにおける最長ビット長と最短ビット長との差のように、相対的に定められてもよい。
 具体的には、上記の場合において、回路260は、複数のテーブルの中から最長ビット長と最短ビット長との差が最も小さいテーブルを変換テーブルとして選択してもよい。これにより、復号装置200は、カレント基本ブロック及び特定基本ブロックの関係に従って非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加をより抑制することを支援することができる。
 また、例えば、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、特定基本ブロックがカレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合がある。この場合、回路260は、カレント周波数変換ブロックの周辺の周波数変換ブロックである周辺周波数変換ブロックから非ゼロ係数の個数として推定される個数に従って、変換テーブルを選択してもよい。
 これにより、復号装置200は、カレント基本ブロックに非ゼロ係数の個数が類似すると推定される周辺周波数変換ブロックを用いて、変換テーブルを選択することができる。
 また、上記の場合、回路260は、周辺周波数変換ブロックから推定される個数が第1個数であれば、第1テーブルを選択し、周辺周波数変換ブロックから推定される個数が第2個数であれば、第2テーブルを選択してもよい。ここで、第2個数は、第1個数よりも多い。また、第2テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差は、第1テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差よりも小さい。
 つまり、回路260は、周辺周波数変換ブロックから推定される個数が多い場合、複数の二値化値の最長ビット長と最短ビット長との差が小さいテーブルを変換テーブルとして選択してもよい。これにより、復号装置200は、周辺周波数変換ブロックに従ってカレント基本ブロックの非ゼロ係数の個数が多いと推定される場合、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、周辺周波数変換ブロックは、カレント周波数変換ブロックの左又は上に隣接する周波数変換ブロックであってもよい。これにより、復号装置200は、カレント周波数変換ブロックに近い周波数変換ブロックに含まれる非ゼロ係数の個数に従って、高精度に非ゼロ係数の個数を予測することができる。
 あるいは、周辺周波数変換ブロックは、カレント周波数変換ブロックの直前に復号された周波数変換ブロックであってもよい。これにより、非ゼロ係数の個数のシンプルな予測、及び、非ゼロ係数の個数に関する情報を記憶するためのメモリ容量の削減が可能である。
 あるいは、周辺周波数変換ブロックは、カレント周波数変換ブロックから所定の範囲内に位置する周波数変換ブロックであって、面間予測か面内予測かの符号化モードがカレント周波数変換ブロックと同じ周波数変換ブロックであってもよい。これにより、復号装置200は、非ゼロ係数の発生傾向がカレント周波数変換ブロックと似ていると推定される周波数変換ブロックに従って、非ゼロ係数の個数を高精度に予測することができる。
 また、カレント基本ブロックに含まれる非ゼロ係数の個数は、周辺周波数変換ブロックに含まれる1以上の基本ブロックのうちの1つの基本ブロックに含まれる非ゼロ係数の個数から推定されてもよい。この1つの基本ブロックは、周辺周波数変換ブロックに対する相対的な位置が、カレント周波数変換ブロックに対するカレント基本ブロックの相対的な位置に等しい基本ブロックである。
 これにより、復号装置200は、周辺周波数変換ブロックの1以上の基本ブロックのうち、非ゼロ係数の個数がカレント基本ブロックに類似すると推定される基本ブロックに従って、変換テーブルを選択することができる。
 あるいは、周辺周波数変換ブロックから推定される個数は、周辺周波数変換ブロックの全体に含まれる非ゼロ係数の個数から推定されてもよい。これにより、周波数変換ブロックのサイズによらず情報が統合されるため、非ゼロ係数の個数のシンプルな予測、及び、非ゼロ係数の個数に関する情報を記憶するためのメモリ容量の削減が可能である。
 また、例えば、上述したように、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、特定基本ブロックがカレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合がある。この場合、回路260は、カレント基本ブロックの符号化モードが面間予測か面内予測かに従って、変換テーブルを選択してもよい。
 これにより、復号装置200は、面間予測か面内予測かの符号化モードに従って、変換テーブルを選択することができる。非ゼロ係数の個数の特性は、符号化モードにより異なると推定される。したがって、復号装置200は、符号化モードを用いて、非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。よって、復号装置200は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、上記の場合、回路260は、符号化モードが面間予測であれば、第1テーブルを選択し、符号化モードが面内予測であれば、第2テーブルを選択してもよい。ここで、第2テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差は、第1テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差よりも小さい。
 つまり、回路260は、符号化モードが面内予測である場合、複数の二値化値の最長ビット長と最短ビット長との差が小さいテーブルを変換テーブルとして選択してもよい。これにより、復号装置200は、符号化モードが面内予測であるため、予測精度が低く、非ゼロ係数の個数が多いと推定される場合に、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、例えば、上述したように、先行基本ブロックがカレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、特定基本ブロックがカレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合がある。この場合、回路260は、カレント基本ブロックの復号に用いられる量子化パラメータに従って、変換テーブルを選択してもよい。
 これにより、復号装置200は、カレント基本ブロックの復号に用いられる量子化パラメータに従って、変換テーブルを選択することができる。非ゼロ係数の個数の特性は、量子化パラメータにより異なると推定される。したがって、復号装置200は、量子化パラメータを用いて、非ゼロ係数の個数の特性を変換テーブルの選択に反映させることができる。よって、復号装置200は、変換テーブルを適切に選択することができ、周波数変換係数情報の符号量を小さくすることを支援することができる。
 また、上記の場合、回路260は、量子化パラメータが第1の値であれば、第1テーブルを選択し、量子化パラメータが第2の値であれば、第2テーブルを選択してもよい。ここで、第2の値は、第1の値よりも小さい。また、第2テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差は、第1テーブルにおける複数の二値化値の最長ビット長と最短ビット長との差よりも小さい。
 つまり、回路260は、量子化パラメータが小さい場合、複数の二値化値の最長ビット長と最短ビット長との差が小さいテーブルを変換テーブルとして選択してもよい。これにより、復号装置200は、量子化パラメータが小さいことによって非ゼロ係数の個数が多いと推定される場合に、ビット長の差が小さいテーブルを変換テーブルとして選択し、符号量の増加の抑制を支援することができる。
 また、回路260は、第1復号動作例と同様に、画像情報が符号化されたビット列を取得して、画像情報を復号してもよい。例えば、図36のように、回路260は、画像情報が二値化された二値化データ列を含むビット列を取得する(S701)。そして、回路260は、ビット列に含まれる二値化データ列に対して算術復号を適用するか否かを切り替える(S702)。
 そして、二値化データ列に対して算術復号が適用される場合(S702でYes)、回路260は、二値化データ列に対して算術復号を適用して、算術復号が適用された二値化データ列を逆二値化することにより、画像情報を復号する(S703)。一方、二値化データ列に対して算術復号が適用されない場合(S702でNo)、回路260は、二値化データ列に対して算術復号を適用せずに、算術復号が適用されなかった二値化データ列を逆二値化することにより、画像情報を復号する(S704)。
 また、図37のように、回路260は、二値化データ列に対して算術復号が適用される場合と、二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って、第2部分を逆二値化する(S711)。第2部分は、二値化データ列のうち他の情報が二値化された部分である。この他の情報は、例えば、予測パラメータ情報の一部または全部を含む。
 そして、回路260は、二値化データ列に対して算術復号が適用される場合と、二値化データ列に対して算術復号が適用されない場合とで異なる逆二値化形式に従って、第1部分を逆二値化する(S712)。第1部分は、二値化データ列のうち周波数変換係数情報が二値化された部分である。
 また、二値化データ列に対して算術復号が適用されない場合、回路260は、複数のテーブルの中からカレント基本ブロックの位置に従って選択された変換テーブルに従って、周波数変換係数情報が二値化された第1部分に含まれる二値化値を逆二値化する。これにより、復号装置200は、算術復号が適用されない場合に、複数のテーブルの中からカレント基本ブロックの位置に従って選択される変換テーブルを用いて、周波数変換係数情報の符号量を小さくすることを支援することができる。
 なお、最長ビット長と最短ビット長との差は、カレント基本ブロックの非ゼロ係数の個数が多くなるほど、カレント基本ブロックの非ゼロ係数の個数を示すデータ値に対応付けられた二値化値のビット長が長くなる割合に対応する。したがって、最長ビット長と最短ビット長との差は、カレント基本ブロックの非ゼロ係数の個数が多くなるほど、カレント基本ブロックの非ゼロ係数の個数を示すデータ値に対応付けられた二値化値のビット長が長くなる割合に置き換えられてもよい。
 例えば、この割合は、0以上である。この割合が0であるテーブルでは、カレント基本ブロックの非ゼロ係数の個数が多くなっても、カレント基本ブロックの非ゼロ係数の個数を示すデータ値に対応付けられた二値化値のビット長は増加しない。また、この割合は、カレント基本ブロックの非ゼロ係数の個数が多くなるほど、カレント基本ブロックの非ゼロ係数の個数を示すデータ値に対応付けられた二値化値のビット長が長くなる平均的な割合でもよい。
 [補足]
 本実施の形態における符号化装置100及び復号装置200は、それぞれ、画像符号化装置及び画像復号装置として利用され得る。あるいは、符号化装置100及び復号装置200は、それぞれ、エントロピー符号化装置及びエントロピー復号装置として利用され得る。すなわち、符号化装置100及び復号装置200は、それぞれ、エントロピー符号化部110及びエントロピー復号部202のみに対応していてもよい。
 また、本実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 具体的には、符号化装置100及び復号装置200のそれぞれは、処理回路(Processing Circuitry)と、当該処理回路に電気的に接続された、当該処理回路からアクセス可能な記憶装置(Storage)とを備えていてもよい。例えば、処理回路は回路160又は260に対応し、記憶装置はメモリ162又は262に対応する。
 処理回路は、専用のハードウェア及びプログラム実行部の少なくとも一方を含み、記憶装置を用いて処理を実行する。また、記憶装置は、処理回路がプロラグム実行部を含む場合には、当該プログラム実行部により実行されるソフトウェアプログラムを記憶する。
 ここで、本実施の形態の符号化装置100又は復号装置200などを実現するソフトウェアは、次のようなプログラムである。
 すなわち、このプログラムは、コンピュータに、画像情報を符号化して、前記画像情報が符号化されたビット列を出力する符号化方法であって、前記画像情報を二値化し、前記画像情報が二値化された二値化データ列に対して算術符号化を適用するか否かを切り替え、前記二値化データ列に対して算術符号化が適用される場合、前記二値化データ列に対して算術符号化を適用して、算術符号化が適用された前記二値化データ列を含む前記ビット列を出力し、前記二値化データ列に対して算術符号化が適用されない場合、前記二値化データ列に対して算術符号化を適用せずに、算術符号化が適用されなかった前記二値化データ列を含む前記ビット列を出力し、前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで異なる二値化形式に従って、前記画像情報のうち、画像の周波数成分に関する周波数変換係数情報を二値化し、前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って、前記画像情報のうち、画像の予測方法に関する予測パラメータ情報の一部または全部を二値化する符号化方法を実行させる。
 あるいは、このプログラムは、コンピュータに、画像情報が符号化されたビット列を取得して、前記画像情報を復号する復号方法であって、前記画像情報が二値化された二値化データ列を含む前記ビット列を取得し、前記ビット列に含まれる前記二値化データ列に対して算術復号を適用するか否かを切り替え、前記二値化データ列に対して算術復号が適用される場合、前記二値化データ列に対して算術復号を適用して、算術復号が適用された前記二値化データ列を逆二値化することにより、前記画像情報を復号し、前記二値化データ列に対して算術復号が適用されない場合、前記二値化データ列に対して算術復号を適用せずに、算術復号が適用されなかった前記二値化データ列を逆二値化することにより、前記画像情報を復号し、前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで異なる逆二値化形式に従って、前記二値化データ列のうち、画像の周波数成分に関する周波数変換係数情報が二値化された第1部分を逆二値化し、前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って、前記二値化データ列のうち、画像の予測方法に関する予測パラメータ情報の一部または全部が二値化された第2部分を逆二値化する復号方法を実行させる。
 あるいは、このプログラムは、コンピュータに、画像情報を符号化する符号化方法であって、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックの位置を示す位置情報を符号化し、前記1以上の基本ブロックのうち、前記所定のスキャン順で前記特定基本ブロック以降の各基本ブロックについてのみ、当該基本ブロックを構成する複数の周波数変換係数を示すブロック情報を符号化する符号化方法を実行させる。
 あるいは、このプログラムは、コンピュータに、画像情報を復号する復号方法であって、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックの位置を示す位置情報を復号し、前記1以上の基本ブロックのうち、前記所定のスキャン順で前記特定基本ブロック以降の各基本ブロックについてのみ、当該基本ブロックを構成する複数の周波数変換係数を示すブロック情報を復号する復号方法を実行させる。
 あるいは、このプログラムは、コンピュータに、画像情報を符号化する符号化方法であって、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って二値化して、前記データ値を含む前記画像情報を符号化し、前記データ値の二値化において、前記非ゼロ係数の個数として0を示すデータ値の対応付けを含む第1テーブルと、前記非ゼロ係数の個数として0を示すデータ値の対応付けを含まない第2テーブルとを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記データ値を二値化する符号化方法を実行させる。
 あるいは、このプログラムは、コンピュータに、画像情報を復号する復号方法であって、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が二値化された二値化値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って逆二値化して、前記データ値を含む前記画像情報を復号し、前記二値化値の逆二値化において、前記非ゼロ係数の個数として0を示すデータ値の対応付けを含む第1テーブルと、前記非ゼロ係数の個数として0を示すデータ値の対応付けを含まない第2テーブルとを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記二値化値を逆二値化する復号方法を実行させる。
 あるいは、このプログラムは、コンピュータに、画像情報を符号化する符号化方法であって、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って二値化して、前記データ値を含む前記画像情報を符号化し、前記データ値の二値化において、前記カレント基本ブロックを含む前記周波数変換ブロックであるカレント周波数変換ブロックにおける前記カレント基本ブロックの位置に従って、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記データ値を二値化する符号化方法を実行させる。
 あるいは、このプログラムは、コンピュータに、画像情報を復号する復号方法であって、複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が二値化された二値化値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って逆二値化して、前記データ値を含む前記画像情報を復号し、前記二値化値の逆二値化において、前記カレント基本ブロックを含む前記周波数変換ブロックであるカレント周波数変換ブロックにおける前記カレント基本ブロックの位置に従って、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記二値化値を逆二値化する復号方法を実行させる。
 また、各構成要素は、上述の通り、回路であってもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路であってもよい。また、各構成要素は、汎用的なプロセッサで実現されてもよいし、専用のプロセッサで実現されてもよい。
 また、特定の構成要素が実行する処理を別の構成要素が実行してもよい。また、処理を実行する順番が変更されてもよいし、複数の処理が並行して実行されてもよい。また、符号化復号装置が、符号化装置100及び復号装置200を備えていてもよい。
 説明に用いられた第1及び第2等の序数は、適宜、付け替えられてもよい。また、構成要素などに対して、序数が新たに与えられてもよいし、取り除かれてもよい。
 以上、一つ又は複数の態様に係る符号化装置100及び復号装置200について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つ又は複数の態様の範囲内に含まれてもよい。
 (実施の形態2)
 以上の各実施の形態において、機能ブロックの各々は、通常、MPU及びメモリ等によって実現可能である。また、機能ブロックの各々による処理は、通常、プロセッサなどのプログラム実行部が、ROM等の記録媒体に記録されたソフトウェア(プログラム)を読み出して実行することで実現される。当該ソフトウェアはダウンロード等により配布されてもよいし、半導体メモリなどの記録媒体に記録して配布されてもよい。なお、各機能ブロックをハードウェア(専用回路)によって実現することも、当然、可能である。
 また、各実施の形態において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。
 本発明は、以上の実施例に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含される。
 さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)又は動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、画像復号方法を用いた画像復号装置、及び両方を備える画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。
 [使用例]
 図43は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。
 このコンテンツ供給システムex100では、インターネットex101に、インターネットサービスプロバイダex102又は通信網ex104、及び基地局ex106~ex110を介して、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、及びスマートフォンex115などの各機器が接続される。当該コンテンツ供給システムex100は、上記のいずれかの要素を組合せて接続するようにしてもよい。固定無線局である基地局ex106~ex110を介さずに、各機器が電話網又は近距離無線等を介して直接的又は間接的に相互に接続されていてもよい。また、ストリーミングサーバex103は、インターネットex101等を介して、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、及びスマートフォンex115などの各機器と接続される。また、ストリーミングサーバex103は、衛星ex116を介して、飛行機ex117内のホットスポット内の端末等と接続される。
 なお、基地局ex106~ex110の代わりに、無線アクセスポイント又はホットスポット等が用いられてもよい。また、ストリーミングサーバex103は、インターネットex101又はインターネットサービスプロバイダex102を介さずに直接通信網ex104と接続されてもよいし、衛星ex116を介さず直接飛行機ex117と接続されてもよい。
 カメラex113はデジタルカメラ等の静止画撮影、及び動画撮影が可能な機器である。また、スマートフォンex115は、一般に2G、3G、3.9G、4G、そして今後は5Gと呼ばれる移動通信システムの方式に対応したスマートフォン機、携帯電話機、又はPHS(Personal Handyphone System)等である。
 家電ex118は、冷蔵庫、又は家庭用燃料電池コージェネレーションシステムに含まれる機器等である。
 コンテンツ供給システムex100では、撮影機能を有する端末が基地局ex106等を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、端末(コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、スマートフォンex115、及び飛行機ex117内の端末等)は、ユーザが当該端末を用いて撮影した静止画又は動画コンテンツに対して上記各実施の形態で説明した符号化処理を行い、符号化により得られた映像データと、映像に対応する音を符号化した音データと多重化し、得られたデータをストリーミングサーバex103に送信する。即ち、各端末は、本発明の一態様に係る画像符号化装置として機能する。
 一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントは、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、ゲーム機ex112、カメラex113、家電ex114、スマートフォンex115、又は飛行機ex117内の端末等である。配信されたデータを受信した各機器は、受信したデータを復号化処理して再生する。即ち、各機器は、本発明の一態様に係る画像復号装置として機能する。
 [分散処理]
 また、ストリーミングサーバex103は複数のサーバ又は複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。例えば、ストリーミングサーバex103は、CDN(Contents Delivery Network)により実現され、世界中に分散された多数のエッジサーバとエッジサーバ間をつなぐネットワークによりコンテンツ配信が実現されていてもよい。CDNでは、クライアントに応じて物理的に近いエッジサーバが動的に割り当てられる。そして、当該エッジサーバにコンテンツがキャッシュ及び配信されることで遅延を減らすことができる。また、何らかのエラーが発生した場合又はトラフィックの増加などにより通信状態が変わる場合に複数のエッジサーバで処理を分散したり、他のエッジサーバに配信主体を切り替えたり、障害が生じたネットワークの部分を迂回して配信を続けることができるので、高速かつ安定した配信が実現できる。
 また、配信自体の分散処理にとどまらず、撮影したデータの符号化処理を各端末で行ってもよいし、サーバ側で行ってもよいし、互いに分担して行ってもよい。一例として、一般に符号化処理では、処理ループが2度行われる。1度目のループでフレーム又はシーン単位での画像の複雑さ、又は、符号量が検出される。また、2度目のループでは画質を維持して符号化効率を向上させる処理が行われる。例えば、端末が1度目の符号化処理を行い、コンテンツを受け取ったサーバ側が2度目の符号化処理を行うことで、各端末での処理負荷を減らしつつもコンテンツの質と効率を向上させることができる。この場合、ほぼリアルタイムで受信して復号する要求があれば、端末が行った一度目の符号化済みデータを他の端末で受信して再生することもできるので、より柔軟なリアルタイム配信も可能になる。
 他の例として、カメラex113等は、画像から特徴量抽出を行い、特徴量に関するデータをメタデータとして圧縮してサーバに送信する。サーバは、例えば特徴量からオブジェクトの重要性を判断して量子化精度を切り替えるなど、画像の意味に応じた圧縮を行う。特徴量データはサーバでの再度の圧縮時の動きベクトル予測の精度及び効率向上に特に有効である。また、端末でVLC(可変長符号化)などの簡易的な符号化を行い、サーバでCABAC(コンテキスト適応型二値算術符号化方式)など処理負荷の大きな符号化を行ってもよい。
 さらに他の例として、スタジアム、ショッピングモール、又は工場などにおいては、複数の端末によりほぼ同一のシーンが撮影された複数の映像データが存在する場合がある。この場合には、撮影を行った複数の端末と、必要に応じて撮影をしていない他の端末及びサーバを用いて、例えばGOP(Group of Picture)単位、ピクチャ単位、又はピクチャを分割したタイル単位などで符号化処理をそれぞれ割り当てて分散処理を行う。これにより、遅延を減らし、よりリアルタイム性を実現できる。
 また、複数の映像データはほぼ同一シーンであるため、各端末で撮影された映像データを互いに参照し合えるように、サーバで管理及び/又は指示をしてもよい。または、各端末からの符号化済みデータを、サーバが受信し複数のデータ間で参照関係を変更、又はピクチャ自体を補正或いは差し替えて符号化しなおしてもよい。これにより、一つ一つのデータの質と効率を高めたストリームを生成できる。
 また、サーバは、映像データの符号化方式を変更するトランスコードを行ったうえで映像データを配信してもよい。例えば、サーバは、MPEG系の符号化方式をVP系に変換してもよいし、H.264をH.265に変換してもよい。
 このように、符号化処理は、端末、又は1以上のサーバにより行うことが可能である。よって、以下では、処理を行う主体として「サーバ」又は「端末」等の記載を用いるが、サーバで行われる処理の一部又は全てが端末で行われてもよいし、端末で行われる処理の一部又は全てがサーバで行われてもよい。また、これらに関しては、復号処理についても同様である。
 [3D、マルチアングル]
 近年では、互いにほぼ同期した複数のカメラex113及び/又はスマートフォンex115などの端末により撮影された異なるシーン、又は、同一シーンを異なるアングルから撮影した画像或いは映像を統合して利用することも増えてきている。各端末で撮影した映像は、別途取得した端末間の相対的な位置関係、又は、映像に含まれる特徴点が一致する領域などに基づいて統合される。
 サーバは、2次元の動画像を符号化するだけでなく、動画像のシーン解析などに基づいて自動的に、又は、ユーザが指定した時刻において、静止画を符号化し、受信端末に送信してもよい。サーバは、さらに、撮影端末間の相対的な位置関係を取得できる場合には、2次元の動画像だけでなく、同一シーンが異なるアングルから撮影された映像に基づき、当該シーンの3次元形状を生成できる。なお、サーバは、ポイントクラウドなどにより生成した3次元のデータを別途符号化してもよいし、3次元データを用いて人物又はオブジェクトを認識或いは追跡した結果に基づいて、受信端末に送信する映像を、複数の端末で撮影した映像から選択、又は、再構成して生成してもよい。
 このようにして、ユーザは、各撮影端末に対応する各映像を任意に選択してシーンを楽しむこともできるし、複数画像又は映像を用いて再構成された3次元データから任意視点の映像を切り出したコンテンツを楽しむこともできる。さらに、映像と同様に音も複数の相異なるアングルから収音され、サーバは、映像に合わせて特定のアングル又は空間からの音を映像と多重化して送信してもよい。
 また、近年ではVirtual Reality(VR)及びAugmented Reality(AR)など、現実世界と仮想世界とを対応付けたコンテンツも普及してきている。VRの画像の場合、サーバは、右目用及び左目用の視点画像をそれぞれ作成し、Multi-View Coding(MVC)などにより各視点映像間で参照を許容する符号化を行ってもよいし、互いに参照せずに別ストリームとして符号化してもよい。別ストリームの復号時には、ユーザの視点に応じて仮想的な3次元空間が再現されるように互いに同期させて再生するとよい。
 ARの画像の場合には、サーバは、現実空間のカメラ情報に、仮想空間上の仮想物体情報を、3次元的位置又はユーザの視点の動きに基づいて重畳する。復号装置は、仮想物体情報及び3次元データを取得又は保持し、ユーザの視点の動きに応じて2次元画像を生成し、スムーズにつなげることで重畳データを作成してもよい。または、復号装置は仮想物体情報の依頼に加えてユーザの視点の動きをサーバに送信し、サーバは、サーバに保持される3次元データから受信した視点の動きに合わせて重畳データを作成し、重畳データを符号化して復号装置に配信してもよい。なお、重畳データは、RGB以外に透過度を示すα値を有し、サーバは、3次元データから作成されたオブジェクト以外の部分のα値が0などに設定し、当該部分が透過する状態で、符号化してもよい。もしくは、サーバは、クロマキーのように所定の値のRGB値を背景に設定し、オブジェクト以外の部分は背景色にしたデータを生成してもよい。
 同様に配信されたデータの復号処理はクライアントである各端末で行っても、サーバ側で行ってもよいし、互いに分担して行ってもよい。一例として、ある端末が、一旦サーバに受信リクエストを送り、そのリクエストに応じたコンテンツを他の端末で受信し復号処理を行い、ディスプレイを有する装置に復号済みの信号が送信されてもよい。通信可能な端末自体の性能によらず処理を分散して適切なコンテンツを選択することで画質のよいデータを再生することができる。また、他の例として大きなサイズの画像データをTV等で受信しつつ、鑑賞者の個人端末にピクチャが分割されたタイルなど一部の領域が復号されて表示されてもよい。これにより、全体像を共有化しつつ、自身の担当分野又はより詳細に確認したい領域を手元で確認することができる。
 また今後は、屋内外にかかわらず近距離、中距離、又は長距離の無線通信が複数使用可能な状況下で、MPEG-DASHなどの配信システム規格を利用して、接続中の通信に対して適切なデータを切り替えながらシームレスにコンテンツを受信することが予想される。これにより、ユーザは、自身の端末のみならず屋内外に設置されたディスプレイなどの復号装置又は表示装置を自由に選択しながらリアルタイムで切り替えられる。また、自身の位置情報などに基づいて、復号する端末及び表示する端末を切り替えながら復号を行うことができる。これにより、目的地への移動中に、表示可能なデバイスが埋め込まれた隣の建物の壁面又は地面の一部に地図情報を表示させながら移動することも可能になる。また、符号化データが受信端末から短時間でアクセスできるサーバにキャッシュされている、又は、コンテンツ・デリバリー・サービスにおけるエッジサーバにコピーされている、などの、ネットワーク上での符号化データへのアクセス容易性に基づいて、受信データのビットレートを切り替えることも可能である。
 [スケーラブル符号化]
 コンテンツの切り替えに関して、図44に示す、上記各実施の形態で示した動画像符号化方法を応用して圧縮符号化されたスケーラブルなストリームを用いて説明する。サーバは、個別のストリームとして内容は同じで質の異なるストリームを複数有していても構わないが、図示するようにレイヤに分けて符号化を行うことで実現される時間的/空間的スケーラブルなストリームの特徴を活かして、コンテンツを切り替える構成であってもよい。つまり、復号側が性能という内的要因と通信帯域の状態などの外的要因とに応じてどのレイヤまで復号するかを決定することで、復号側は、低解像度のコンテンツと高解像度のコンテンツとを自由に切り替えて復号できる。例えば移動中にスマートフォンex115で視聴していた映像の続きを、帰宅後にインターネットTV等の機器で視聴したい場合には、当該機器は、同じストリームを異なるレイヤまで復号すればよいので、サーバ側の負担を軽減できる。
 さらに、上記のように、レイヤ毎にピクチャが符号化されており、ベースレイヤの上位にエンハンスメントレイヤが存在するスケーラビリティを実現する構成以外に、エンハンスメントレイヤが画像の統計情報などに基づくメタ情報を含み、復号側が、メタ情報に基づきベースレイヤのピクチャを超解像することで高画質化したコンテンツを生成してもよい。超解像とは、同一解像度におけるSN比の向上、及び、解像度の拡大のいずれであってもよい。メタ情報は、超解像処理に用いる線形或いは非線形のフィルタ係数を特定するため情報、又は、超解像処理に用いるフィルタ処理、機械学習或いは最小2乗演算におけるパラメータ値を特定する情報などを含む。
 または、画像内のオブジェクトなどの意味合いに応じてピクチャがタイル等に分割されており、復号側が、復号するタイルを選択することで一部の領域だけを復号する構成であってもよい。また、オブジェクトの属性(人物、車、ボールなど)と映像内の位置(同一画像における座標位置など)とをメタ情報として格納することで、復号側は、メタ情報に基づいて所望のオブジェクトの位置を特定し、そのオブジェクトを含むタイルを決定できる。例えば、図45に示すように、メタ情報は、HEVCにおけるSEIメッセージなど画素データとは異なるデータ格納構造を用いて格納される。このメタ情報は、例えば、メインオブジェクトの位置、サイズ、又は色彩などを示す。
 また、ストリーム、シーケンス又はランダムアクセス単位など、複数のピクチャから構成される単位でメタ情報が格納されてもよい。これにより、復号側は、特定人物が映像内に出現する時刻などが取得でき、ピクチャ単位の情報と合わせることで、オブジェクトが存在するピクチャ、及び、ピクチャ内でのオブジェクトの位置を特定できる。
 [Webページの最適化]
 図46は、コンピュータex111等におけるwebページの表示画面例を示す図である。図47は、スマートフォンex115等におけるwebページの表示画面例を示す図である。図46及び図47に示すようにwebページが、画像コンテンツへのリンクであるリンク画像を複数含む場合があり、閲覧するデバイスによってその見え方は異なる。画面上に複数のリンク画像が見える場合には、ユーザが明示的にリンク画像を選択するまで、又は画面の中央付近にリンク画像が近付く或いはリンク画像の全体が画面内に入るまでは、表示装置(復号装置)は、リンク画像として各コンテンツが有する静止画又はIピクチャを表示したり、複数の静止画又はIピクチャ等でgifアニメのような映像を表示したり、ベースレイヤのみ受信して映像を復号及び表示したりする。
 ユーザによりリンク画像が選択された場合、表示装置は、ベースレイヤを最優先にして復号する。なお、webページを構成するHTMLにスケーラブルなコンテンツであることを示す情報があれば、表示装置は、エンハンスメントレイヤまで復号してもよい。また、リアルタイム性を担保するために、選択される前又は通信帯域が非常に厳しい場合には、表示装置は、前方参照のピクチャ(Iピクチャ、Pピクチャ、前方参照のみのBピクチャ)のみを復号及び表示することで、先頭ピクチャの復号時刻と表示時刻との間の遅延(コンテンツの復号開始から表示開始までの遅延)を低減できる。また、表示装置は、ピクチャの参照関係を敢えて無視して全てのBピクチャ及びPピクチャを前方参照にして粗く復号し、時間が経ち受信したピクチャが増えるにつれて正常の復号を行ってもよい。
 [自動走行]
 また、車の自動走行又は走行支援のため2次元又は3次元の地図情報などの静止画又は映像データを送受信する場合、受信端末は、1以上のレイヤに属する画像データに加えて、メタ情報として天候又は工事の情報なども受信し、これらを対応付けて復号してもよい。なお、メタ情報は、レイヤに属してもよいし、単に画像データと多重化されてもよい。
 この場合、受信端末を含む車、ドローン又は飛行機などが移動するため、受信端末は、当該受信端末の位置情報を受信要求時に送信することで、基地局ex106~ex110を切り替えながらシームレスな受信及び復号を実現できる。また、受信端末は、ユーザの選択、ユーザの状況又は通信帯域の状態に応じて、メタ情報をどの程度受信するか、又は地図情報をどの程度更新していくかを動的に切り替えることが可能になる。
 以上のようにして、コンテンツ供給システムex100では、ユーザが送信した符号化された情報をリアルタイムでクライアントが受信して復号し、再生することができる。
 [個人コンテンツの配信]
 また、コンテンツ供給システムex100では、映像配信業者による高画質で長時間のコンテンツのみならず、個人による低画質で短時間のコンテンツのユニキャスト、又はマルチキャスト配信が可能である。また、このような個人のコンテンツは今後も増加していくと考えられる。個人コンテンツをより優れたコンテンツにするために、サーバは、編集処理を行ってから符号化処理を行ってもよい。これは例えば、以下のような構成で実現できる。
 撮影時にリアルタイム又は蓄積して撮影後に、サーバは、原画又は符号化済みデータから撮影エラー、シーン探索、意味の解析、及びオブジェクト検出などの認識処理を行う。そして、サーバは、認識結果に基いて手動又は自動で、ピントずれ又は手ブレなどを補正したり、明度が他のピクチャに比べて低い又は焦点が合っていないシーンなどの重要性の低いシーンを削除したり、オブジェクトのエッジを強調したり、色合いを変化させるなどの編集を行う。サーバは、編集結果に基いて編集後のデータを符号化する。また撮影時刻が長すぎると視聴率が下がることも知られており、サーバは、撮影時間に応じて特定の時間範囲内のコンテンツになるように上記のように重要性が低いシーンのみならず動きが少ないシーンなどを、画像処理結果に基き自動でクリップしてもよい。または、サーバは、シーンの意味解析の結果に基づいてダイジェストを生成して符号化してもよい。
 なお、個人コンテンツには、そのままでは著作権、著作者人格権、又は肖像権等の侵害となるものが写り込んでいるケースもあり、共有する範囲が意図した範囲を超えてしまうなど個人にとって不都合な場合もある。よって、例えば、サーバは、画面の周辺部の人の顔、又は家の中などを敢えて焦点が合わない画像に変更して符号化してもよい。また、サーバは、符号化対象画像内に、予め登録した人物とは異なる人物の顔が映っているかどうかを認識し、映っている場合には、顔の部分にモザイクをかけるなどの処理を行ってもよい。または、符号化の前処理又は後処理として、著作権などの観点からユーザが画像を加工したい人物又は背景領域を指定し、サーバは、指定された領域を別の映像に置き換える、又は焦点をぼかすなどの処理を行うことも可能である。人物であれば、動画像において人物をトラッキングしながら、顔の部分の映像を置き換えることができる。
 また、データ量の小さい個人コンテンツの視聴はリアルタイム性の要求が強いため、帯域幅にもよるが、復号装置は、まずベースレイヤを最優先で受信して復号及び再生を行う。復号装置は、この間にエンハンスメントレイヤを受信し、再生がループされる場合など2回以上再生される場合に、エンハンスメントレイヤも含めて高画質の映像を再生してもよい。このようにスケーラブルな符号化が行われているストリームであれば、未選択時又は見始めた段階では粗い動画だが、徐々にストリームがスマートになり画像がよくなるような体験を提供することができる。スケーラブル符号化以外にも、1回目に再生される粗いストリームと、1回目の動画を参照して符号化される2回目のストリームとが1つのストリームとして構成されていても同様の体験を提供できる。
 [その他の使用例]
 また、これらの符号化又は復号処理は、一般的に各端末が有するLSIex500において処理される。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化又は復号用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、又はハードディスクなど)に組み込み、そのソフトウェアを用いて符号化又は復号処理を行ってもよい。さらに、スマートフォンex115がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データはスマートフォンex115が有するLSIex500で符号化処理されたデータである。
 なお、LSIex500は、アプリケーションソフトをダウンロードしてアクティベートする構成であってもよい。この場合、端末は、まず、当該端末がコンテンツの符号化方式に対応しているか、又は、特定サービスの実行能力を有するかを判定する。端末がコンテンツの符号化方式に対応していない場合、又は、特定サービスの実行能力を有さない場合、端末は、コーデック又はアプリケーションソフトをダウンロードし、その後、コンテンツ取得及び再生する。
 また、インターネットex101を介したコンテンツ供給システムex100に限らず、デジタル放送用システムにも上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)又は動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。衛星などを利用して放送用の電波に映像と音が多重化された多重化データを載せて送受信するため、コンテンツ供給システムex100のユニキャストがし易い構成に対してマルチキャスト向きであるという違いがあるが符号化処理及び復号処理に関しては同様の応用が可能である。
 [ハードウェア構成]
 図48は、スマートフォンex115を示す図である。また、図49は、スマートフォンex115の構成例を示す図である。スマートフォンex115は、基地局ex110との間で電波を送受信するためのアンテナex450と、映像及び静止画を撮ることが可能なカメラ部ex465と、カメラ部ex465で撮像した映像、及びアンテナex450で受信した映像等が復号されたデータを表示する表示部ex458とを備える。スマートフォンex115は、さらに、タッチパネル等である操作部ex466と、音声又は音響を出力するためのスピーカ等である音声出力部ex457と、音声を入力するためのマイク等である音声入力部ex456と、撮影した映像或いは静止画、録音した音声、受信した映像或いは静止画、メール等の符号化されたデータ、又は、復号化されたデータを保存可能なメモリ部ex467と、ユーザを特定し、ネットワークをはじめ各種データへのアクセスの認証をするためのSIMex468とのインタフェース部であるスロット部ex464とを備える。なお、メモリ部ex467の代わりに外付けメモリが用いられてもよい。
 また、表示部ex458及び操作部ex466等を統括的に制御する主制御部ex460と、電源回路部ex461、操作入力制御部ex462、映像信号処理部ex455、カメラインタフェース部ex463、ディスプレイ制御部ex459、変調/復調部ex452、多重/分離部ex453、音声信号処理部ex454、スロット部ex464、及びメモリ部ex467とがバスex470を介して接続されている。
 電源回路部ex461は、ユーザの操作により電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することによりスマートフォンex115を動作可能な状態に起動する。
 スマートフォンex115は、CPU、ROM及びRAM等を有する主制御部ex460の制御に基づいて、通話及データ通信等の処理を行う。通話時は、音声入力部ex456で収音した音声信号を音声信号処理部ex454でデジタル音声信号に変換し、これを変調/復調部ex452でスペクトラム拡散処理し、送信/受信部ex451でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex450を介して送信する。また受信データを増幅して周波数変換処理及びアナログデジタル変換処理を施し、変調/復調部ex452でスペクトラム逆拡散処理し、音声信号処理部ex454でアナログ音声信号に変換した後、これを音声出力部ex457から出力する。データ通信モード時は、本体部の操作部ex466等の操作によってテキスト、静止画、又は映像データが操作入力制御部ex462を介して主制御部ex460に送出され、同様に送受信処理が行われる。データ通信モード時に映像、静止画、又は映像と音声を送信する場合、映像信号処理部ex455は、メモリ部ex467に保存されている映像信号又はカメラ部ex465から入力された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し、符号化された映像データを多重/分離部ex453に送出する。また、音声信号処理部ex454は、映像又は静止画等をカメラ部ex465で撮像中に音声入力部ex456で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex453に送出する。多重/分離部ex453は、符号化済み映像データと符号化済み音声データを所定の方式で多重化し、変調/復調部(変調/復調回路部)ex452、及び送信/受信部ex451で変調処理及び変換処理を施してアンテナex450を介して送信する。
 電子メール又はチャットに添付された映像、又はウェブページ等にリンクされた映像を受信した場合、アンテナex450を介して受信された多重化データを復号するために、多重/分離部ex453は、多重化データを分離することにより、多重化データを映像データのビットストリームと音声データのビットストリームとに分け、同期バスex470を介して符号化された映像データを映像信号処理部ex455に供給するとともに、符号化された音声データを音声信号処理部ex454に供給する。映像信号処理部ex455は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって映像信号を復号し、ディスプレイ制御部ex459を介して表示部ex458から、リンクされた動画像ファイルに含まれる映像又は静止画が表示される。また音声信号処理部ex454は、音声信号を復号し、音声出力部ex457から音声が出力される。なおリアルタイムストリーミングが普及しているため、ユーザの状況によっては音声の再生が社会的にふさわしくない場も起こりえる。そのため、初期値としては、音声信号は再生せず映像データのみを再生する構成の方が望ましい。ユーザが映像データをクリックするなど操作を行った場合にのみ音声を同期して再生してもよい。
 またここではスマートフォンex115を例に説明したが、端末としては符号化器及び復号化器を両方持つ送受信型端末の他に、符号化器のみを有する送信端末、及び、復号化器のみを有する受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムにおいて、映像データに音声データなどが多重化された多重化データを受信又は送信するとして説明したが、多重化データには、音声データ以外に映像に関連する文字データなどが多重化されてもよいし、多重化データではなく映像データ自体が受信又は送信されてもよい。
 なお、CPUを含む主制御部ex460が符号化又は復号処理を制御するとして説明したが、端末はGPUを備えることも多い。よって、CPUとGPUで共通化されたメモリ、又は共通に使用できるようにアドレスが管理されているメモリにより、GPUの性能を活かして広い領域を一括して処理する構成でもよい。これにより符号化時間を短縮でき、リアルタイム性を確保し、低遅延を実現できる。特に動き探索、デブロックフィルタ、SAO(Sample Adaptive Offset)、及び変換・量子化の処理を、CPUではなく、GPUでピクチャなどの単位で一括して行うと効率的である。
 本発明は、例えば、テレビジョン受像機、デジタルビデオレコーダー、カーナビゲーション、携帯電話、デジタルカメラ、デジタルビデオカメラ、テレビ会議システム、又は、電子ミラー等に利用可能である。
 100 符号化装置
 102 分割部
 104 減算部
 106 変換部
 108 量子化部
 110 エントロピー符号化部
 112、204 逆量子化部
 114、206 逆変換部
 116、208 加算部
 118、210 ブロックメモリ
 120、212 ループフィルタ部
 122、214 フレームメモリ
 124、216 イントラ予測部
 126、218 インター予測部
 128、220 予測制御部
 132 二値化部
 134、140、236、242 切り替え部
 136、240 中間バッファ
 138 算術符号化部
 142 多重化部
 144 出力バッファ
 160、260 回路
 162、262 メモリ
 200 復号装置
 202 エントロピー復号部
 232 入力バッファ
 234 分離部
 238 算術復号部
 244 逆二値化部

Claims (30)

  1.  画像情報を符号化する符号化装置であって、
     メモリと、
     前記メモリにアクセス可能な回路とを備え、
     前記メモリにアクセス可能な前記回路は、
     複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って二値化して、前記データ値を含む前記画像情報を符号化し、
     前記データ値の二値化において、前記カレント基本ブロックを含む前記周波数変換ブロックであるカレント周波数変換ブロックにおける前記カレント基本ブロックの位置に従って、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記データ値を二値化する
     符号化装置。
  2.  前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在する場合、前記先行基本ブロックに含まれる非ゼロ係数の個数に従って、前記変換テーブルを選択する
     請求項1に記載の符号化装置。
  3.  前記回路は、前記変換テーブルの選択において、
     前記先行基本ブロックが前記同じレベルに存在し、かつ、前記先行基本ブロックに含まれる非ゼロ係数の個数が第1個数である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、
     前記先行基本ブロックが前記同じレベルに存在し、かつ、前記先行基本ブロックに含まれる非ゼロ係数の個数が前記第1個数よりも多い第2個数である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択する
     請求項2に記載の符号化装置。
  4.  前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在する場合、前記複数のテーブルの中から前記差が所定の差よりも小さいテーブルを前記変換テーブルとして選択する
     請求項1~3のいずれか1項に記載の符号化装置。
  5.  前記回路は、前記変換テーブルの選択において、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在する場合、前記複数のテーブルの中から前記差が最も小さいテーブルを前記変換テーブルとして選択する
     請求項4に記載の符号化装置。
  6.  前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合、前記カレント周波数変換ブロックの周辺の周波数変換ブロックである周辺周波数変換ブロックから前記カレント基本ブロックに含まれる非ゼロ係数の個数として推定される個数に従って、前記変換テーブルを選択する
     請求項1~5のいずれか1項に記載の符号化装置。
  7.  前記回路は、前記変換テーブルの選択において、
     前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記周辺周波数変換ブロックから推定される個数が第1個数である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、
     前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記周辺周波数変換ブロックから推定される個数が前記第1個数よりも多い第2個数である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択する
     請求項6に記載の符号化装置。
  8.  前記周辺周波数変換ブロックは、(i)前記カレント周波数変換ブロックの左又は上に隣接する周波数変換ブロック、(ii)前記カレント周波数変換ブロックの直前に符号化された周波数変換ブロック、又は、(iii)前記カレント周波数変換ブロックから所定の範囲内に位置し、面間予測か面内予測かの符号化モードが前記カレント周波数変換ブロックと同じ周波数変換ブロックである
     請求項6又は7に記載の符号化装置。
  9.  前記周辺周波数変換ブロックから推定される個数は、(i)前記周辺周波数変換ブロックにおける1以上の基本ブロックのうち、前記周辺周波数変換ブロックに対する相対的な位置が、前記カレント周波数変換ブロックに対する前記カレント基本ブロックの相対的な位置に等しい基本ブロックに含まれる非ゼロ係数の個数、又は、(ii)前記周辺周波数変換ブロックの全体に含まれる非ゼロ係数の個数から推定される
     請求項6~8のいずれか1項に記載の符号化装置。
  10.  前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合、前記カレント基本ブロックの符号化モードが面間予測か面内予測かに従って、前記変換テーブルを選択する
     請求項1~5のいずれか1項に記載の符号化装置。
  11.  前記回路は、前記変換テーブルの選択において、
     前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記カレント基本ブロックの符号化モードが面間予測である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、
     前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記カレント基本ブロックの符号化モードが面内予測である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択する
     請求項10に記載の符号化装置。
  12.  前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合、前記カレント基本ブロックの符号化に用いられる量子化パラメータに従って、前記変換テーブルを選択する
     請求項1~5のいずれか1項に記載の符号化装置。
  13.  前記回路は、前記変換テーブルの選択において、
     前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記量子化パラメータが第1の値である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、
     前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記量子化パラメータが第1の値よりも小さい第2の値である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択する
     請求項12に記載の符号化装置。
  14.  前記回路は、
     前記画像情報を符号化して、前記画像情報が符号化されたビット列を出力し、
     前記画像情報の符号化、及び、前記ビット列の出力において、
     前記画像情報を二値化し、
     前記画像情報が二値化された二値化データ列に対して算術符号化を適用するか否かを切り替え、
     前記二値化データ列に対して算術符号化が適用される場合、前記二値化データ列に対して算術符号化を適用して、算術符号化が適用された前記二値化データ列を含む前記ビット列を出力し、
     前記二値化データ列に対して算術符号化が適用されない場合、前記二値化データ列に対して算術符号化を適用せずに、算術符号化が適用されなかった前記二値化データ列を含む前記ビット列を出力し、
     前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで異なる二値化形式に従って、前記画像情報のうち、画像の周波数成分に関する周波数変換係数情報を二値化し、
     前記画像情報の二値化において、前記二値化データ列に対して算術符号化が適用される場合と、前記二値化データ列に対して算術符号化が適用されない場合とで共通の二値化形式に従って、前記画像情報のうち、画像の予測方法に関する予測パラメータ情報の一部または全部を二値化し、
     前記二値化データ列に対して算術符号化が適用されない場合、前記周波数変換係数情報の二値化において、前記複数のテーブルの中から前記カレント基本ブロックの位置に従って選択された前記変換テーブルに従って、前記周波数変換係数情報に含まれる前記データ値を二値化する
     請求項1~13のいずれか1項に記載の符号化装置。
  15.  画像情報を復号する復号装置であって、
     メモリと、
     前記メモリにアクセス可能な回路とを備え、
     前記メモリにアクセス可能な前記回路は、
     複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が二値化された二値化値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って逆二値化して、前記データ値を含む前記画像情報を復号し、
     前記二値化値の逆二値化において、前記カレント基本ブロックを含む前記周波数変換ブロックであるカレント周波数変換ブロックにおける前記カレント基本ブロックの位置に従って、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記二値化値を逆二値化する
     復号装置。
  16.  前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在する場合、前記先行基本ブロックに含まれる非ゼロ係数の個数に従って、前記変換テーブルを選択する
     請求項15に記載の復号装置。
  17.  前記回路は、前記変換テーブルの選択において、
     前記先行基本ブロックが前記同じレベルに存在し、かつ、前記先行基本ブロックに含まれる非ゼロ係数の個数が第1個数である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、
     前記先行基本ブロックが前記同じレベルに存在し、かつ、前記先行基本ブロックに含まれる非ゼロ係数の個数が前記第1個数よりも多い第2個数である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択する
     請求項16に記載の復号装置。
  18.  前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在する場合、前記複数のテーブルの中から前記差が所定の差よりも小さいテーブルを前記変換テーブルとして選択する
     請求項15~17のいずれか1項に記載の復号装置。
  19.  前記回路は、前記変換テーブルの選択において、前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在する場合、前記複数のテーブルの中から前記差が最も小さいテーブルを前記変換テーブルとして選択する
     請求項18に記載の復号装置。
  20.  前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合、前記カレント周波数変換ブロックの周辺の周波数変換ブロックである周辺周波数変換ブロックから前記カレント基本ブロックに含まれる非ゼロ係数の個数として推定される個数に従って、前記変換テーブルを選択する
     請求項15~19のいずれか1項に記載の復号装置。
  21.  前記回路は、前記変換テーブルの選択において、
     前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記周辺周波数変換ブロックから推定される個数が第1個数である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、
     前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記周辺周波数変換ブロックから推定される個数が前記第1個数よりも多い第2個数である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択する
     請求項20に記載の復号装置。
  22.  前記周辺周波数変換ブロックは、(i)前記カレント周波数変換ブロックの左又は上に隣接する周波数変換ブロック、(ii)前記カレント周波数変換ブロックの直前に復号された周波数変換ブロック、又は、(iii)前記カレント周波数変換ブロックから所定の範囲内に位置し、面間予測か面内予測かの符号化モードが前記カレント周波数変換ブロックと同じ周波数変換ブロックである
     請求項20又は21に記載の復号装置。
  23.  前記周辺周波数変換ブロックから推定される個数は、(i)前記周辺周波数変換ブロックにおける1以上の基本ブロックのうち、前記周辺周波数変換ブロックに対する相対的な位置が、前記カレント周波数変換ブロックに対する前記カレント基本ブロックの相対的な位置に等しい基本ブロックに含まれる非ゼロ係数の個数、又は、(ii)前記周辺周波数変換ブロックの全体に含まれる非ゼロ係数の個数から推定される
     請求項20~22のいずれか1項に記載の復号装置。
  24.  前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合、前記カレント基本ブロックの符号化モードが面間予測か面内予測かに従って、前記変換テーブルを選択する
     請求項15~19のいずれか1項に記載の復号装置。
  25.  前記回路は、前記変換テーブルの選択において、
     前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記カレント基本ブロックの符号化モードが面間予測である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、
     前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記カレント基本ブロックの符号化モードが面内予測である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択する
     請求項24に記載の復号装置。
  26.  前記回路は、前記変換テーブルの選択において、前記1以上の基本ブロックに対して周波数の高い順に規定される所定のスキャン順で前記カレント基本ブロックよりも前の基本ブロックである先行基本ブロックが、前記カレント基本ブロックの位置における周波数のレベルと同じレベルに存在せず、かつ、前記所定のスキャン順で最初に非ゼロ係数を含む基本ブロックである特定基本ブロックが前記カレント基本ブロックの位置における周波数のレベルよりも高いレベルに存在しない場合、前記カレント基本ブロックの復号に用いられる量子化パラメータに従って、前記変換テーブルを選択する
     請求項15~19のいずれか1項に記載の復号装置。
  27.  前記回路は、前記変換テーブルの選択において、
     前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記量子化パラメータが第1の値である場合、前記複数のテーブルの中から第1テーブルを前記変換テーブルとして選択し、
     前記先行基本ブロックが前記同じレベルに存在せず、かつ、前記特定基本ブロックが前記高いレベルに存在せず、かつ、前記量子化パラメータが第1の値よりも小さい第2の値である場合、前記複数のテーブルの中から前記第1テーブルよりも前記差が小さい第2テーブルを前記変換テーブルとして選択する
     請求項26に記載の復号装置。
  28.  前記回路は、
     前記画像情報が符号化されたビット列を取得して、前記画像情報を復号し、
     前記ビット列の取得、及び、前記画像情報の復号において、
     前記画像情報が二値化された二値化データ列を含む前記ビット列を取得し、
     前記ビット列に含まれる前記二値化データ列に対して算術復号を適用するか否かを切り替え、
     前記二値化データ列に対して算術復号が適用される場合、前記二値化データ列に対して算術復号を適用して、算術復号が適用された前記二値化データ列を逆二値化することにより、前記画像情報を復号し、
     前記二値化データ列に対して算術復号が適用されない場合、前記二値化データ列に対して算術復号を適用せずに、算術復号が適用されなかった前記二値化データ列を逆二値化することにより、前記画像情報を復号し、
     前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで異なる逆二値化形式に従って、前記二値化データ列のうち、画像の周波数成分に関する周波数変換係数情報が二値化された第1部分を逆二値化し、
     前記二値化データ列の逆二値化において、前記二値化データ列に対して算術復号が適用される場合と、前記二値化データ列に対して算術復号が適用されない場合とで共通の逆二値化形式に従って、前記二値化データ列のうち、画像の予測方法に関する予測パラメータ情報の一部または全部が二値化された第2部分を逆二値化し、
     前記二値化データ列に対して算術復号が適用されない場合、前記第1部分の逆二値化において、前記複数のテーブルの中から前記カレント基本ブロックの位置に従って選択された前記変換テーブルに従って、前記第1部分に含まれる前記二値化値を逆二値化する
     請求項15~27のいずれか1項に記載の復号装置。
  29.  画像情報を符号化する符号化方法であって、
     複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って二値化して、前記データ値を含む前記画像情報を符号化し、
     前記データ値の二値化において、前記カレント基本ブロックを含む前記周波数変換ブロックであるカレント周波数変換ブロックにおける前記カレント基本ブロックの位置に従って、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記データ値を二値化する
     符号化方法。
  30.  画像情報を復号する復号方法であって、
     複数の周波数変換係数で構成される周波数変換ブロックにおける1以上の基本ブロックの1つであるカレント基本ブロックに含まれる非ゼロ係数の個数を示すデータ値が二値化された二値化値を複数のデータ値と複数の二値化値とが対応付けられた変換テーブルに従って逆二値化して、前記データ値を含む前記画像情報を復号し、
     前記二値化値の逆二値化において、前記カレント基本ブロックを含む前記周波数変換ブロックであるカレント周波数変換ブロックにおける前記カレント基本ブロックの位置に従って、複数のデータ値に対応付けられた複数の二値化値の最長ビット長と最短ビット長との差が互いに異なる2以上のテーブルを含む複数のテーブルの中から前記変換テーブルを選択して、選択された前記変換テーブルに従って、前記二値化値を逆二値化する
     復号方法。
PCT/JP2017/028397 2016-08-10 2017-08-04 符号化装置、復号装置、符号化方法及び復号方法 WO2018030293A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/268,979 US10742978B2 (en) 2016-08-10 2019-02-06 Encoder, decoder, encoding method, and decoding method
US16/911,834 US10904527B2 (en) 2016-08-10 2020-06-25 Encoder, decoder, encoding method, and decoding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662373010P 2016-08-10 2016-08-10
US62/373010 2016-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/268,979 Continuation US10742978B2 (en) 2016-08-10 2019-02-06 Encoder, decoder, encoding method, and decoding method

Publications (1)

Publication Number Publication Date
WO2018030293A1 true WO2018030293A1 (ja) 2018-02-15

Family

ID=61162982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028397 WO2018030293A1 (ja) 2016-08-10 2017-08-04 符号化装置、復号装置、符号化方法及び復号方法

Country Status (3)

Country Link
US (2) US10742978B2 (ja)
TW (1) TW201811026A (ja)
WO (1) WO2018030293A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030291A1 (ja) * 2016-08-10 2018-02-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 符号化装置、復号装置、符号化方法及び復号方法
KR102440329B1 (ko) * 2016-10-24 2022-09-02 삼성에스디에스 주식회사 영상 선택 방법 및 그 장치
JP7422757B2 (ja) 2018-11-06 2024-01-26 北京字節跳動網絡技術有限公司 位置ベースのイントラ予測
WO2020108591A1 (en) 2018-12-01 2020-06-04 Beijing Bytedance Network Technology Co., Ltd. Parameter derivation for intra prediction
CN117336503A (zh) 2018-12-07 2024-01-02 北京字节跳动网络技术有限公司 基于上下文的帧内预测
JP2022521698A (ja) * 2019-02-22 2022-04-12 北京字節跳動網絡技術有限公司 イントラ予測のための隣接サンプル選択
SG11202108289PA (en) 2019-02-24 2021-08-30 Beijing Bytedance Network Technology Co Ltd Parameter derivation for intra prediction
CN117880494A (zh) 2019-03-24 2024-04-12 北京字节跳动网络技术有限公司 用于帧内预测的参数推导的条件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237448A (ja) * 1993-02-12 1994-08-23 Toshiba Corp 可変長符号化及び復号化装置
JP2004007506A (ja) * 2002-04-15 2004-01-08 Matsushita Electric Ind Co Ltd 画像符号化方法および画像復号化方法
JP2004064725A (ja) * 2002-06-06 2004-02-26 Matsushita Electric Ind Co Ltd 可変長符号化方法および可変長復号化方法
JP2006054846A (ja) * 2004-07-12 2006-02-23 Sony Corp 符号化方法、符号化装置、復号方法、復号装置およびそれらのプログラム
JP2011024066A (ja) * 2009-07-17 2011-02-03 Sony Corp 画像処理装置および方法
JP2015504256A (ja) * 2012-01-19 2015-02-05 シャープ株式会社 Hevcにおけるcabacの高スループット符号化

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736086B1 (ko) * 2005-09-06 2007-07-06 삼성전자주식회사 엔트로피 코딩의 성능 향상 방법 및 장치, 상기 방법을이용한 비디오 코딩 방법 및 장치
RS64604B1 (sr) * 2011-06-16 2023-10-31 Ge Video Compression Llc Entropijsko kodiranje razlika vektora kretanja

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237448A (ja) * 1993-02-12 1994-08-23 Toshiba Corp 可変長符号化及び復号化装置
JP2004007506A (ja) * 2002-04-15 2004-01-08 Matsushita Electric Ind Co Ltd 画像符号化方法および画像復号化方法
JP2004064725A (ja) * 2002-06-06 2004-02-26 Matsushita Electric Ind Co Ltd 可変長符号化方法および可変長復号化方法
JP2006054846A (ja) * 2004-07-12 2006-02-23 Sony Corp 符号化方法、符号化装置、復号方法、復号装置およびそれらのプログラム
JP2011024066A (ja) * 2009-07-17 2011-02-03 Sony Corp 画像処理装置および方法
JP2015504256A (ja) * 2012-01-19 2015-02-05 シャープ株式会社 Hevcにおけるcabacの高スループット符号化

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKAE OKUBO ET AL.: "revised 3rd edition H.264/AVC Kyokasho", KABUSHIKI KAISHA IMPRESS R&D MASANOBU ISERI, 1 January 2009 (2009-01-01), pages 148 - 162 *

Also Published As

Publication number Publication date
US10742978B2 (en) 2020-08-11
US10904527B2 (en) 2021-01-26
US20190191160A1 (en) 2019-06-20
TW201811026A (zh) 2018-03-16
US20200329243A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
JP7199221B2 (ja) 符号化装置、復号装置、符号化方法及び復号方法
JP6994868B2 (ja) 符号化装置、復号装置、符号化方法、および復号方法
WO2018030292A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
JP7239600B2 (ja) 符号化装置および符号化方法
WO2018030293A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2018030294A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
JP7214846B2 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2019155971A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
JP6998874B2 (ja) 符号化装置、復号装置、符号化方法及び復号方法
JP7161636B2 (ja) 符号化装置及び符号化方法
WO2018097115A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2019221103A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
JP7149995B2 (ja) 復号装置及び復号方法
CN113678442A (zh) 用于视频编码的系统和方法
JP2023068203A (ja) 復号装置及び復号方法
JP2023029589A (ja) 符号化装置及び復号装置
KR20220047757A (ko) 부호화 장치, 복호 장치, 부호화 방법, 및 복호 방법
WO2019163794A1 (ja) 符号化装置及び符号化方法
JP2023053378A (ja) 符号化方法および復号方法
JP2023001298A (ja) 復号装置及び復号方法
JP2022168052A (ja) 復号装置及び符号化装置
JP2022171983A (ja) 符号化方法及び復号方法
WO2018097117A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法
WO2019163795A1 (ja) 符号化装置及び符号化方法
WO2018097077A1 (ja) 符号化装置、復号装置、符号化方法及び復号方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839364

Country of ref document: EP

Kind code of ref document: A1