WO2018029955A1 - Method for manufacturing optical film - Google Patents

Method for manufacturing optical film Download PDF

Info

Publication number
WO2018029955A1
WO2018029955A1 PCT/JP2017/020867 JP2017020867W WO2018029955A1 WO 2018029955 A1 WO2018029955 A1 WO 2018029955A1 JP 2017020867 W JP2017020867 W JP 2017020867W WO 2018029955 A1 WO2018029955 A1 WO 2018029955A1
Authority
WO
WIPO (PCT)
Prior art keywords
stirring
resin
jig
optical film
blade
Prior art date
Application number
PCT/JP2017/020867
Other languages
French (fr)
Japanese (ja)
Inventor
西村 浩
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018533437A priority Critical patent/JP6911863B2/en
Priority to CN201780049107.7A priority patent/CN109641374B/en
Priority to KR1020187028465A priority patent/KR102136476B1/en
Publication of WO2018029955A1 publication Critical patent/WO2018029955A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/85Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with two or more stirrers on separate shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/91Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/44Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with paddles or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films

Definitions

  • the present invention relates to an optical film manufacturing method in which an optical film is formed by a solution-flow casting method, and more particularly to stirring of a dope cast on a support.
  • Patent Document 1 Conventionally, as a stirring device for stirring a solution, for example, there is one disclosed in Patent Document 1.
  • the first flat plate blade member and the second flat plate blade member are arranged side by side along the rotation axis direction on the rotation shaft extending in the vertical direction in the stirring tank into which the solution is charged.
  • the first flat plate blade member and the second flat plate blade member are attached to the rotary shaft at an inclination angle that raises the solution based on the rotation of the rotary shaft.
  • the circulation flow of the solution is generated without being divided in the vertical direction of the stirring tank, and the vertical circulation of the solution is efficiently performed. Mixing can be performed.
  • JP 2010-42337 A see claim 1, paragraphs [0001], [0004], [0007], FIG. 1, FIG. 2, etc.
  • Patent Document 1 is applied to the stirring of the resin and the solvent when preparing the dope used in the solution casting film forming method, and an optical film is formed using the dope prepared by stirring.
  • this inventor estimates as follows.
  • both the first flat plate blade member and the second flat plate blade member of the stirring device are composed of the stirring blades that generate upstream and downstream, even if stirring by vertical circulation can be performed, Stirring in the vertical direction (horizontal direction, shear direction) cannot be performed efficiently.
  • unevenness occurs in stirring in the stirring tank, and the viscosity of the dope becomes unstable due to the unevenness in stirring, and unevenness in film thickness occurs in an optical film formed using such a dope.
  • poor dissolution occurs such that the resin aggregates in the stirring tank to form an aggregate (undissolved material).
  • an optical film is formed using a dope containing an undissolved material, the undissolved material appears as a bright spot foreign material in the optical film.
  • a pellet-like resin for example, an acrylic resin
  • a solvent having a high specific gravity for example, methylene chloride
  • the resin tends to float on the liquid surface, and spatter is generated.
  • the spatter remaining as an undissolved product due to uneven stirring, bright spot foreign matter tends to be generated in the formed optical film.
  • the present invention has been made to solve the above-mentioned problems, and its purpose is to reduce the unevenness of stirring in the stirring tank, and thereby the film thickness unevenness of the optical film formed and the bright spot foreign matter. It is providing the manufacturing method of the optical film which can reduce generation
  • the method for producing an optical film according to one aspect of the present invention is a method for producing an optical film by a solution casting method, A stirring preparation step of preparing a dope by stirring at least a resin and a solvent in a stirring tank; A casting step of casting the dope prepared in the stirring preparation step on a support,
  • the resin is any one of an acrylic resin, a cycloolefin resin, and a polyarylate resin, When the specific gravity of the resin is A, the specific gravity of the solvent is B, and the specific gravity difference (BA) is ⁇ , 0.1 ⁇ ⁇ 0.5
  • the stirring tank is provided with a first stirring jig and a second stirring jig,
  • the first stirring jig includes a first rotating shaft located on a vertical axis passing through the center of the bottom surface of the stirring tank, and a lowermost portion of the first rotating shaft, and the first stirring jig is moved in the stirring tank.
  • the second agitating jig is arranged such that the second agitation jig is aligned along the vertical direction with the second rotation axis extending in the vertical direction so as to pass through the space between the first rotation axis and the arm portion.
  • the length along the vertical direction of the arm portion of the first stirring jig is L, and among the at least two stirring blades of the second stirring jig, the uppermost stirring blade and one lower side thereof
  • the first stirring blade is located above and including a position vertically lowered by (1/3) L from the uppermost portion of the arm portion of the first stirring jig
  • the second stirring blade It is composed of a stirring blade that causes a vertical flow of the resin by rotation about the rotation axis of
  • the second agitating blade is located below a position vertically lowered by (1/3) L from the uppermost part of the arm portion of the first agitating jig
  • the second rotating shaft is It is composed of an agitating blade that causes the resin drawn vertically downward by the first agitating blade to flow in a direction perpendicular to the second rotation axis by rotation around the center.
  • the unevenness of stirring in the stirring tank can be reduced, and thereby the film thickness unevenness of the optical film to be formed and the generation of bright spot foreign matter can be reduced.
  • the numerical value range includes the values of the lower limit A and the upper limit B.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of an optical film manufacturing apparatus 1 according to the present embodiment.
  • FIG. 2 is a flowchart which shows the flow of the manufacturing process of an optical film.
  • the manufacturing method of the optical film of this embodiment is a method of manufacturing an optical film by a solution casting film forming method. As shown in FIG. 2, a stirring preparation step (S1), a casting step (S2), and a peeling step. (S3), stretching step (S4), drying step (S5), cutting step (S6), embossing step (S7), winding step (S8) are included.
  • S1 stirring preparation step
  • S2 a casting step
  • S3 a peeling step.
  • S4 stretching step
  • drying step (S5) drying step
  • cutting step (S6) embossing step
  • S7 embossing step
  • winding step S8
  • the dope prepared in the stirring preparation step is fed to the casting die 2 by a conduit through a pressurized metering gear pump or the like, and transferred onto the support 3 made of a rotationally driven stainless steel endless belt for infinite transfer.
  • the dope is cast from the casting die 2 at the casting position, thereby forming the web 5 as a casting film on the support 3.
  • the support 3 is held by a pair of rolls 3a and 3b and a plurality of rolls (not shown) positioned therebetween.
  • One or both of the rolls 3a and 3b are provided with a driving device (not shown) for applying tension to the support 3 so that the support 3 is used in a tensioned state.
  • the web 5 formed by the dope cast on the support 3 is heated on the support 3, and the solvent is evaporated until the web 5 can be peeled from the support 3 by the peeling roll 4.
  • the solvent is evaporated until the web 5 can be peeled from the support 3 by the peeling roll 4.
  • the residual solvent amount of the web 5 on the support 3 at the time of peeling is preferably in the range of 50 to 120% by mass depending on the strength of the drying conditions, the length of the support 3 and the like.
  • the amount of solvent is determined.
  • the residual solvent amount is defined by the following formula.
  • Residual solvent amount (% by mass) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100
  • the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the web 5 peeled from the support 3 is stretched by the tenter 6.
  • the stretching direction at this time is one of a film transport direction (MD direction; Machine Direction), a lateral direction (TD direction; Transverse Direction) perpendicular to the transport direction in the film plane, and both of these directions.
  • MD direction film transport direction
  • TD direction lateral direction
  • Transverse Direction lateral direction perpendicular to the transport direction in the film plane
  • both side edges of the web 5 are fixed with a clip or the like and stretched is preferable in order to improve the flatness and dimensional stability of the film.
  • the stretching step by stretching the web 5 in both the MD direction and the TD direction, the web 5 can also be stretched (obliquely stretched) in a direction that obliquely intersects the MD direction and the TD direction.
  • the web 5 stretched by the tenter 6 is dried by a drying device 7.
  • the drying device 7 the web 5 is transported by a plurality of transport rolls arranged in a staggered manner as viewed from the side, and the web 5 is dried in the meantime.
  • the web 5 is dried using a hot air, infrared rays, a heating roll, a microwave. From the viewpoint of simplicity, a method of drying the web 5 with hot air is preferable.
  • the web 5 is transported toward the winding device 10 as the optical film F after being dried by the drying device 7.
  • a cutting unit 8 and an embossing unit 9 are arranged in this order between the drying device 7 and the winding device 10.
  • disconnects the both ends of the width direction with a slitter is performed, conveying the optical film F formed into a film.
  • the part remaining after the cutting of both ends constitutes a product part to be a film product.
  • disconnected from the optical film F is collect
  • embossing is performed by the embossing part 9 at both ends in the width direction of the optical film F.
  • Embossing is performed by pressing a heated embossing roller against both ends of the optical film F. Fine irregularities are formed on the surface of the embossing roller, and by pressing the embossing roller against both ends of the optical film F, the irregularities are formed at both ends.
  • the optical film F that has been embossed is wound up by the winding device 10 to obtain the original roll (film roll) of the optical film F. That is, in the winding process, the film roll is manufactured by winding the optical film F around the core while transporting the optical film F.
  • the winding method of the optical film F may be a commonly used winder, and there are methods for controlling tension such as a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like. You can use them properly.
  • the winding length of the optical film F is preferably 1000 to 7200 m. Further, the width at that time is desirably 1000 to 3200 mm, and the film thickness is desirably 10 to 60 ⁇ m.
  • FIG. 3 is a cross-sectional view schematically showing an example of the stirring device 100.
  • a stirring tank 101 of the stirring device 100 is provided with a first stirring jig 111 and a second stirring jig 121.
  • the bottom surface 101a side of the stirring tank 101 is “lower” and the top surface 101b side is “upper”.
  • a direction in which the bottom surface 101a and the top surface 101b face each other is a vertical direction (up and down direction), and a direction perpendicular to the vertical direction is a horizontal direction.
  • the first stirring jig 111 has a first rotating shaft 112 and an arm portion 113, and only one is provided in the stirring tank 101.
  • the first rotation shaft 112 is located on a vertical axis AX that passes through the center O of the bottom surface 101 a of the stirring vessel 101.
  • the first rotating shaft 112 is connected to a driving source (not shown) (for example, a motor) and rotates by driving the driving source.
  • the arm portion 113 is located at a position higher than the lowermost portion 112a in the stirring tank 101 from the lowermost portion 112a, which is the lower end portion of the first rotating shaft 112, and in the rotational radius direction from the first rotating shaft 112 ( It is attached to the first rotating shaft 112 so as to extend to the uppermost portion 113a at a position separated in a direction (perpendicular to the first rotating shaft 112).
  • two arm portions 113 are attached to the first rotation shaft 112 so as to be positioned symmetrically in a direction perpendicular to the first rotation shaft 112.
  • the 1st rotating shaft 112 and each arm part 113 may be comprised integrally, and may be comprised by joining of another member.
  • Each arm portion 113 is configured to have a U-shaped cross section that protrudes downward as a whole as a result of extending upward in a curved and monotonous manner from the lowermost portion 112 a of the first rotating shaft 112.
  • the first stirring jig 111 having the above-described configuration is also referred to as an anchor type because it looks like an anchor in the appearance.
  • FIG. 4 is a cross-sectional view showing another configuration of the first stirring jig 111.
  • Each arm portion 113 of the first stirring jig 111 may be configured with a W-shaped cross section as a whole. That is, each arm portion 113 may have a shape that once falls downward from the lowermost portion 112a of the first rotating shaft 112 toward the outer side in the rotational radius direction and extends toward the uppermost portion 113a therefrom.
  • Such a first stirring jig 111 is also a kind of anchor type.
  • FIG. 5 to 7 are perspective views showing still another configuration of the first stirring jig 111.
  • the first stirring jig 111 includes an arm portion 113 having a shape that extends from the lowermost portion of the first rotating shaft 112 outward in the rotational radial direction and then bends upward. May be.
  • Such a first stirring jig 111 is also a kind of anchor type.
  • the first stirring jig 111 is configured as a so-called anchor paddle type in which the area of the arm portion 113 is increased to improve the efficiency of stirring (watering). It may be.
  • two second agitation jigs 121 are provided in the agitation tank 101 and are positioned on opposite sides of the first rotation axis 112 of the first agitation jig 111. Yes.
  • the second rotating shaft 122 of the second stirring jig 121 extends in the vertical direction so as to pass through the space between the first rotating shaft 112 of the first stirring jig 111 and the arm portion 113. That is, the first rotating shaft 112 and the second rotating shaft 122 are parallel to each other.
  • the second rotating shaft 122 is connected to a driving source (not shown) (for example, a motor) and rotates by driving the driving source.
  • the at least two stirring blades 123 are attached to the second rotating shaft 122 so as to be aligned along the vertical direction.
  • the uppermost stirring blade 123 is referred to as a first stirring blade 123a
  • the stirring blade located one below the first stirring blade 123a is referred to as a second stirring blade 123b.
  • the length along the vertical direction from the lowermost part of the arm part 113 of the first stirring jig 111 to the uppermost part 113a is defined as L (mm). That is, the length L of the arm portion 113 is from the position Q corresponding to the lowermost portion of the arm portion 113 (equivalent to the lowermost portion 112a of the first rotating shaft 112 in FIG. 3) to the position P of the uppermost portion 113a. It is the length along the vertical direction.
  • the arm portion 113 is curved to a position R further below the lowermost portion 112a of the first rotating shaft 112 and then extends upward toward the uppermost portion 113a.
  • the length L of 113 is a length along the vertical direction from the position R to the position P.
  • the length L of the arm portion 113 is preferably 1/4 or more of the vertical length (depth) of the stirring tank 101, more preferably 1/3 or more, and 1/2 or more. It is further desirable that
  • a position that is vertically lowered by (1/3) L from the uppermost portion 113a (equal to the position P) of the arm portion 113 of the first stirring jig 111 is defined as a position A.
  • the first stirring blade 123a of the second stirring jig 121 is positioned above and including the position A, and the resin is rotated by rotation about the second rotating shaft 122. It consists of stirring blades that cause the vertical flow of As the stirring blade, a paddle type stirring blade shown in FIG. 8 or a propeller type stirring blade shown in FIG. 9 can be used.
  • the second stirring blade 123b of the second stirring jig 121 is positioned below the position A, and is vertically driven by the first stirring blade 123a by the rotation about the second rotation shaft 122. It is composed of stirring blades that cause the resin drawn downward to flow in a direction perpendicular to the second rotation shaft 122.
  • the agitating blade is composed of a turbine type agitating blade shown in FIG. 10 or a disk type (dissolving) agitating blade shown in FIG.
  • the dope composition is put into the stirring tank 101 of the stirring device 100 having the above configuration.
  • the dope composition includes a resin, a solvent, and an additive.
  • a pellet-shaped resin such as an acrylic resin, a cycloolefin resin, or a polyarylate resin is used as the resin.
  • the solvent methylene chloride, chloroform or the like is used.
  • fine particles (mat agent), a plasticizer, or the like is used. Since the specific gravity of the pellet-shaped resin is smaller than the specific gravity of the solvent (that is, the resin is lighter than the solvent), even if a part of the resin is dissolved in the solvent at the beginning of adding the resin, Most of the water floats on the solvent level.
  • the resin and solvent in the agitation tank 101 are uniform. And it stirs efficiently and stirring nonuniformity is reduced. Thereby, since the viscosity of the dope prepared by stirring is stabilized, film thickness unevenness can be reduced when an optical film is formed using the dope.
  • the resin can be uniformly stirred in the stirring tank 101, it becomes difficult to cause poor dissolution such as aggregation of the resin in the stirring tank 101 to form an aggregate (undissolved material), which is caused by the undissolved material. The generation of bright spot foreign matter can also be reduced.
  • the dope viscosity is unstable, it is necessary to adjust the dope viscosity (thickness adjustment) in order to reduce the film thickness unevenness, and the productivity of the optical film is lowered by the amount of such adjustment time.
  • the dope viscosity is stabilized by uniform stirring, it is possible to avoid the reduction in productivity of the optical film described above.
  • the specific gravity of the resin is A
  • the specific gravity of the solvent is B
  • the specific gravity difference (BA) is ⁇
  • the resin floats on the liquid surface of the solvent due to the specific gravity difference.
  • spalling is likely to occur.
  • the unevenness of stirring is reduced as described above, and the inside of the stirring tank 101 can be uniformly stirred. Therefore, even if the condition of ⁇ > 0.1, the generated spatter is reduced by stirring. , Generation of undissolved substances can be suppressed. As a result, in the optical film formed, the bright spot foreign matter resulting from the undissolved material can be reduced.
  • is less than 0.5. That is, it can be said that the stirring method of the present embodiment is particularly effective when a resin and a solvent satisfying 0.1 ⁇ ⁇ 0.5 are selected to prepare a dope and form an optical film.
  • the specific gravity of polymethyl methacrylate resin (PMMA; PolymethylPomethacrylate), which is an acrylic resin, is 1.17, the specific gravity of cycloolefin resin is 1.01, and the specific gravity of polyarylate resin is 1.21. .
  • the specific gravity of methylene chloride is 1.32 and the specific gravity of chloroform is 1.48. Therefore, since any of the above resins satisfies 0.1 ⁇ ⁇ 0.5 with any of the above solvents, the resin and the solvent are used to stir by the method of this embodiment. In this way, by forming a dope and forming an optical film, it is possible to reduce film thickness unevenness and bright spot foreign matter caused by uneven stirring. It can be said that the more desirable range of the specific gravity difference ⁇ is 0.1 ⁇ ⁇ 0.31 from the minimum value and the maximum value of the specific gravity difference in the combination of each resin and each solvent.
  • the momentum of the resin flowing from the upper side to the lower side becomes strong, and the reaction at the bottom of the stirring tank causes the resin to flow from the lower side to the upper side.
  • the resin may flow vigorously and the resin may adhere to the top surface (lid portion) of the stirring tank.
  • the agitating blade (first agitating blade 123a) that generates the upstream and downstream and the agitating blade (second agitating blade 123b) that generates the horizontal flow are used,
  • the resin and the solvent can be uniformly stirred in the stirring tank 101 while moderately suppressing the flow of the resin. Therefore, the resin hardly adheres to the top surface 101b of the stirring tank 101.
  • the 1st stirring blade 123a located in the uppermost part among the several stirring blades of the 2nd stirring jig 121 is located above it including the position A, and 2nd Since the first agitating blade 123b is positioned below the position A, the first agitating blade 123a is rotated between the second agitating blade 123b and the arm portion 113 of the first agitating jig 111.
  • the resin can be reliably drawn, and the drawn resin and solvent can be reliably stirred in the horizontal direction and the shearing direction by the rotation of the second stirring blade 123b and the rotation of the arm portion 113.
  • the first stirring blade 123a located at the top of the plurality of stirring blades of the second stirring jig 121 is a paddle-type or propeller-type stirring blade, and therefore the first stirring blade 123a rotates.
  • the flow in the vertical direction in the stirring tank 101, in particular, the flow of the resin from the upper side to the lower side can be reliably generated.
  • the second stirring blade 123b located below the first stirring blade 123a is a turbine-type or disk-type stirring blade, so that the rotation of the second stirring blade 123b causes the horizontal resin flow to flow. It can surely occur.
  • the first stirring jig 111 is composed of an anchor type or anchor paddle type stirring blade (bottom blade), a space is formed between the first rotating shaft 112 and the arm portion 113. . Therefore, the second stirring jig 121 can be positioned in a part of the space as in the present embodiment. And it becomes possible to implement
  • FIG. 12 is a cross-sectional view showing another configuration of the second stirring jig 121.
  • the second stirring jig 121 may further include a third stirring blade 123c in addition to the first stirring blade 123a and the second stirring blade 123b described above.
  • the third agitating blade 123c is located one lower than the second agitating blade 123b, and, like the second agitating blade 123b, the turbine-type agitating blade shown in FIG. 10 or the disk-type agitating blade shown in FIG. Consists of.
  • the second stirring jig 121 has three stirring blades (a first stirring blade 123a, a second stirring blade 123b, and a third stirring blade 123c).
  • the third stirring blade 123b and the third stirring blade 123c) are turbine-type or disk-type stirring blades, so that the resin drawn downward by the rotation of the first stirring blade 123a is used as the second stirring blade 123b.
  • the third stirring blade 123c is rotated to flow in the horizontal direction in a wide range in the vertical direction (depth direction) in the stirring tank 101, and the resin and the solvent are moved in the vertical direction by the rotation of the arm portion 113. It can be stirred in the shear direction over a wide range.
  • the rotation of the third agitating blade 123 c causes a horizontal resin flow even at a deeper position in the agitation tank 101, and the agitation in the shearing direction due to the rotation of the arm portion 113 can be performed. Thereby, uniform stirring in the stirring tank 101 can be efficiently performed in a shorter time.
  • the number of the arm parts 113 of the first stirring jig 111 is two has been described above, the number of the arm parts 113 may be one, or may be three or more. . However, in consideration of the efficiency of stirring, it is desirable that the number of arm portions 113 is plural.
  • the plurality of arm portions 113 are provided on the first rotation shaft 112
  • the plurality of arm portions 113 are equiangularly spaced around the first rotation shaft 112 in a plane perpendicular to the first rotation shaft 112. It is desirable from the viewpoint of further reducing the unevenness of stirring in the stirring tank 101.
  • each arm portion 113 is arranged around the first rotation shaft 112 at intervals of 180 °.
  • the arm portions 113 are arranged around the first rotation shaft 112 at 120 ° intervals.
  • the four arm portions 113 are provided on the first rotation shaft 112, it is desirable that the arm portions 113 are arranged around the first rotation shaft 112 at 90 ° intervals.
  • the number of the 2nd stirring jig 121 in the stirring tank 101 is two
  • the number of the 2nd stirring jig 121 may be one, There may be three or more.
  • the number of the second stirring jigs 121 is preferably plural.
  • the second stirring jig 121 is provided in the stirring tank 101 within a plane perpendicular to the first rotation shaft 112 of the first stirring jig 111.
  • a plurality of equiangular intervals around the first rotating shaft 112 is desirable from the viewpoint of further reducing unevenness in stirring in the stirring tank 101.
  • the second stirring jigs 121 are arranged around the first rotation shaft 112 at intervals of 180 °. It is desirable.
  • the second stirring jigs 121 are arranged around the first rotation shaft 112 at intervals of 120 °. Further, when four second stirring jigs 121 are provided in the stirring tank 101, it is desirable that the second stirring jigs 121 are arranged around the first rotation shaft 112 at 90 ° intervals. Note that the number of the second stirring jigs 121 may be the same as or different from the number of the arm portions 113 of the first stirring jig 111.
  • any of acrylic resins, cycloolefin resins, and polyarylate resins can be used as the resin used for manufacturing the optical film, that is, the resin that is added to the stirring tank 101 and stirred and mixed with the solvent. .
  • the (meth) acrylic resin preferably has a Tg (glass transition temperature) of 115 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 125 ° C. or higher, and particularly preferably 130 ° C. or higher.
  • Tg glass transition temperature
  • the upper limit of Tg of the (meth) acrylic resin is not particularly limited, it is preferably 170 ° C. or less from the viewpoint of moldability.
  • any appropriate (meth) acrylic resin can be adopted as long as the effects of the present embodiment are not impaired.
  • poly (meth) acrylic acid ester such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester- (Meth) acrylic acid copolymer, (meth) methyl acrylate-styrene copolymer (MS resin, etc.), a polymer having an alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer, Methyl methacrylate- (meth) acrylate norbornyl copolymer, etc.).
  • Preferable examples include C1-6 alkyl poly (meth) acrylates such as poly (meth) acrylate methyl. More preferred is a methyl methacrylate-based resin containing methyl methacrylate as a main component (in the range of 50 to 100% by mass, preferably 70 to 100% by mass).
  • the acrylic resin includes not only the acrylic resin itself but also a copolymer of the acrylic resin and another resin (compound).
  • the (meth) acrylic resin examples include, for example, Acrypet VH and Acrypet VRL20A, Dianal BR52, BR80, BR83, BR85, BR88 (manufactured by Mitsubishi Rayon Co., Ltd.), KT75 (manufactured by Electrochemical Industry Co., Ltd.) ), Delpet 60N, 80N (manufactured by Asahi Kasei Chemicals Corporation), (meth) acrylic resin having a ring structure in the molecule described in JP-A-2004-70296, by intramolecular crosslinking or intramolecular cyclization reaction. Examples include the obtained high Tg (meth) acrylic resin system.
  • the (meth) acrylic resin it is also preferable to use a (meth) acrylic resin having a lactone ring structure.
  • examples of the (meth) acrylic resin having a lactone ring structure include JP 2000-230016, JP 2001-151814, JP 2002-120326, JP 2002-254544, and JP 2005. No. 146084 and the like.
  • an acrylic resin having an unsaturated carboxylic acid alkyl ester structural unit and a glutaric anhydride structural unit can be used as the (meth) acrylic resin.
  • the acrylic resin include JP-A-2004-70290, JP-A-2004-70296, JP-A-2004-163924, JP-A-2004-292812, JP-A-2005-314534, JP-A-2006-. Examples described in JP-A-131898, JP-A-2006-206881, JP-A-2006-265532, JP-A-2006-283013, JP-A-2006-299905, JP-A-2006-335902, and the like. It is done.
  • thermoplastic resin having a glutarimide unit, a (meth) acrylic acid ester unit, and an aromatic vinyl unit
  • thermoplastic resin examples include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, JP-A-2006-328334, JP-A-2006-337491, and JP-A-2006. -337374, JP-A-2006-337493, JP-A-2006-337569, and the like.
  • cycloolefin resin examples include a polymer or copolymer of a monomer having a structure represented by the following general formula (S).
  • each of R 1 to R 4 independently represents a hydrogen atom, a hydrocarbon group, a halogen atom, a hydroxy group, a carboxy group, an acyloxy group, an aryloxycarbonyl group, an alkoxycarbonyl group, an alkoxy group, a cyano group, or an amide group.
  • an imide group a silyl group, or a polar group (that is, a halogen atom, a hydroxy group, an acyloxy group, an aryloxycarbonyl group, an alkoxycarbonyl group, an alkoxy group, a cyano group, an amide group, an imide group, or a silyl group) Hydrocarbon group.
  • a polar group that is, a halogen atom, a hydroxy group, an acyloxy group, an aryloxycarbonyl group, an alkoxycarbonyl group, an alkoxy group, a cyano group, an amide group, an imide group, or a silyl group
  • R 1 to R 4 may be bonded to each other to form an unsaturated bond, monocycle or polycycle, and this monocycle or polycycle has a double bond.
  • an aromatic ring may be formed.
  • R 1 and R 2 , or R 3 and R 4 may form an alkylidene group.
  • p and m are integers of 0 or more.
  • the hydrocarbon group represented by R 1 and R 3 is preferably a hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
  • R 2 and R 4 are each a hydrogen atom or a monovalent organic group, and at least one of R 2 and R 4 preferably represents a polar group having a polarity other than a hydrogen atom or a hydrocarbon group, and m is 0
  • the glass transition temperature here is a value obtained by a method based on JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
  • Examples of the polar group of the specific monomer include a carboxy group, a hydroxy group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amide group, and a cyano group. These polar groups have a linking group such as a methylene group. It may be bonded via.
  • a hydrocarbon group in which a divalent organic group having polarity such as a carbonyl group, an ether group, a silyl ether group, a thioether group, or an imino group is bonded as a linking group can also be mentioned as a polar group.
  • a carboxy group, a hydroxy group, an alkoxycarbonyl group or an allyloxycarbonyl group is preferable, and an alkoxycarbonyl group or an allyloxycarbonyl group is particularly preferable.
  • a monomer in which at least one of R 2 and R 4 is a polar group represented by the formula — (CH 2 ) n COOR is obtained by using a cycloolefin resin having a high glass transition temperature, a low hygroscopic property, and various materials. It is preferable at the point from which it has the outstanding adhesiveness.
  • R is a hydrocarbon group having 1 to 12 carbon atoms, more preferably 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms, and preferably an alkyl group.
  • copolymerizable monomer examples include cycloolefin resins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, and dicyclopentadiene.
  • the number of carbon atoms of the cycloolefin is preferably 4-20, and more preferably 5-12.
  • the cycloolefin resin can be used alone or in combination of two or more.
  • a preferred molecular weight of the cycloolefin resin is an intrinsic viscosity [ ⁇ ] inh of 0.2 to 5 cm 3 / g, more preferably 0.3 to 3 cm 3 / g, particularly preferably 0.4 to 1.5 cm 3 / g.
  • the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC) is 8000 to 100,000, more preferably 10,000 to 80,000, particularly preferably 12,000 to 50,000, and the weight average molecular weight (Mw). Is from 20,000 to 300,000, more preferably from 30,000 to 250,000, particularly preferably from 40,000 to 200,000.
  • Inherent viscosity [ ⁇ ] inh , number average molecular weight and weight average molecular weight are within the above ranges, so that heat resistance, water resistance, chemical resistance, mechanical properties of the cycloolefin resin, and molding of the optical film of the present embodiment And is good.
  • the glass transition temperature (Tg) of the cycloolefin resin is usually 110 ° C. or higher, preferably 110 to 350 ° C., more preferably 120 to 250 ° C., and particularly preferably 120 to 220 ° C.
  • Tg is 110 ° C. or higher because deformation is unlikely to occur due to use under high temperature conditions or secondary processing such as coating or printing.
  • Tg is 350 ° C. or lower, the case where the molding process becomes difficult can be avoided, and the possibility that the resin deteriorates due to heat during the molding process can be reduced.
  • cycloolefin resin a specific hydrocarbon resin described in, for example, Japanese Patent Application Laid-Open No. 9-221577 and Japanese Patent Application Laid-Open No. 10-287732, or a known heat can be used without departing from the effect of the present embodiment.
  • Plastic resins, thermoplastic elastomers, rubbery polymers, organic fine particles, inorganic fine particles, etc. may be blended.
  • An additive such as an absorbent may be included.
  • cycloolefin resin a commercially available product can be preferably used as the cycloolefin resin.
  • examples of commercially available products are sold under the trade names Arton (registered trademark) G, Arton F, Arton R, and Arton RX by JSR Corporation.
  • ZEONOR (registered trademark) ZF14, ZF16, ZEONEX (registered trademark) 250 or ZEONEX 280 is commercially available from ZEON Corporation, and these can be used.
  • the polyarylate resin contains at least an aromatic dialcohol component unit and an aromatic dicarboxylic acid component unit.
  • the aromatic dialcohol for obtaining the aromatic dialcohol component unit is preferably a bisphenol represented by the following formula (1), more preferably a bisphenol represented by the following formula (1 ′).
  • L in the general formulas (1) and (1 ′) is a divalent organic group.
  • the divalent organic group is preferably a single bond, an alkylene group, —S—, —SO—, —SO 2 —, —O—, —CO— or —CR 1 R 2 — (R 1 and R 2 are To form an aliphatic ring or an aromatic ring.
  • the alkylene group is preferably an alkylene group having 1 to 10 carbon atoms, and examples thereof include a methylene group, an ethylene group, and an isopropylidene group.
  • the alkylene group may further have a substituent such as a halogen atom or an aryl group.
  • R 1 and R 2 of —CR 1 R 2 — are bonded to each other to form an aliphatic ring or an aromatic ring.
  • the aliphatic ring is preferably an aliphatic hydrocarbon ring having 5 to 20 carbon atoms, and preferably a cyclohexane ring which may have a substituent.
  • the aromatic ring is an aromatic hydrocarbon ring having 6 to 20 carbon atoms, preferably a fluorene ring which may have a substituent.
  • Examples of —CR 1 R 2 — that forms a cyclohexane ring which may have a substituent include cyclohexane-1,1-diyl group, 3,3,5-trimethylcyclohexane-1,1-diyl group and the like. included.
  • Examples of —CR 1 R 2 — forming a fluorene ring which may have a substituent include a fluorenediyl group represented by the following formula.
  • R in the general formulas (1) and (1 ′) may independently be an alkyl group having 1 to 5 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • n is independently an integer of 0 to 4, preferably an integer of 0 to 3.
  • Examples of bisphenols in which L is an alkylene group include 1,1-bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-methyl-2 -Hydroxyphenyl) methane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 2,2-bis (4- Hydroxyphenyl) propane (BPA), 2,2-bis (3-methyl-4-hydroxyphenyl) propane (BPC), 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane (TMBPA), etc. Is included.
  • BPA 2,2-bis (4-hydroxyphenyl) propane
  • BPC 2,2-bis (3-methyl-4-hydroxyphenyl) propane
  • TMBPA isopropylidene-containing bisphenols such as 4-hydroxyphenyl) propane
  • Examples of bisphenols where L is —S—, —SO— or —SO 2 — include bis (4-hydroxyphenyl) sulfone, bis (2-hydroxyphenyl) sulfone, bis (3,5-dimethyl-4 -Hydroxyphenyl) sulfone (TMBPS), bis (3,5-diethyl-4-hydroxyphenyl) sulfone, bis (3-methyl-4-hydroxyphenyl) sulfone, bis (3-ethyl-4-hydroxyphenyl) sulfone, Bis (4-hydroxyphenyl) sulfide, bis (3,5-dimethyl-4-hydroxyphenyl) sulfide, bis (3,5-diethyl-4-hydroxyphenyl) sulfide, bis (3-methyl-4-hydroxyphenyl) Sulfide, bis (3-ethyl-4-hydroxyphenyl) sulfide, 2,4-dihydro Shi diphenyl sulfone and the
  • Examples of bisphenols in which L is —CR 1 R 2 — and R 1 and R 2 are bonded to form an aliphatic ring include 1,1-bis (4-hydroxyphenyl) cyclohexane (BPZ) And bisphenols having a cyclohexane skeleton such as 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BPTMC).
  • BPZ 1,1-bis (4-hydroxyphenyl) cyclohexane
  • BPTMC 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
  • Examples of bisphenols in which L is —CR 1 R 2 — and R 1 and R 2 are bonded to each other to form an aromatic ring include 9,9-bis (3-methyl-4-hydroxyphenyl) Bisphenols having a fluorene skeleton such as fluorene (BCF) and 9,9-bis (3,5-dimethyl-4-hydroxyphenyl) fluorene (BXF) are included.
  • BCF fluorene
  • BXF 9,9-bis (3,5-dimethyl-4-hydroxyphenyl) fluorene
  • the aromatic dialcohol component constituting the polyarylate may be one kind or two or more kinds.
  • a sulfur atom (—S—, —SO— or —SO 2 —) is present in the main chain.
  • Bisphenols contained are preferred.
  • bisphenols containing a sulfur atom in the main chain and bisphenols having a cycloalkylene skeleton are preferred.
  • bisphenols having a fluorene skeleton are preferred.
  • Bisphenols having a cyclohexane skeleton and bisphenols having a fluorene skeleton are preferably used in combination with bisphenols containing an isopropylidene group.
  • the content ratio of the bisphenol having a cyclohexane skeleton or the bisphenol having a fluorene skeleton to the bisphenol having an isopropylidene group is 10/90 to 90/10 (molar ratio), preferably 20/80 to 80/20 (molar ratio).
  • the polyarylate may further contain an aromatic polyhydric alcohol component unit other than the aromatic dialcohol component as long as the effects of the present embodiment are not impaired.
  • aromatic polyhydric alcohol component examples include the compounds described in paragraph [0015] of Japanese Patent No. 4551503. Specifically, tris (4-hydroxyphenyl) methane, 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene] bisphenol, 2,3, 4,4′-tetrahydroxybenzophenone, 4- [bis (4-hydroxyphenyl) methyl] -2-methoxyphenol, tris (3-methyl-4-hydroxyphenyl) methane and the like are included.
  • the content ratio of these aromatic polyhydric alcohol component units can be appropriately set according to the required characteristics, but is 5 for example with respect to the total of the aromatic dialcohol component unit and the other aromatic polyhydric alcohol component units. It may be less than mol%.
  • the aromatic dicarboxylic acid constituting the aromatic dicarboxylic acid component unit may be terephthalic acid, isophthalic acid or a mixture thereof.
  • a mixture of terephthalic acid and isophthalic acid is preferable.
  • terephthalic acid / isophthalic acid 90/10 to 10/90 (molar ratio), more preferably 70/30 to 30/70, and still more preferably 50/50.
  • the polyarylate may further contain an aromatic dicarboxylic acid component unit other than terephthalic acid and isophthalic acid as long as the effects of the present embodiment are not impaired.
  • aromatic dicarboxylic acid components include orthophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenic acid, 4,4′-dicarboxydiphenyl ether, bis (p-carboxyphenyl) alkane, 4,4′- Dicarboxyphenyl sulfone and the like are included.
  • the content ratio of aromatic dicarboxylic acid component units other than terephthalic acid and isophthalic acid can be appropriately set according to the required properties, but the total of terephthalic acid component, isophthalic acid component unit and other aromatic dicarboxylic acid component units For example, it may be 5 mol% or less.
  • the glass transition temperature of the polyarylate is preferably 260 ° C. or higher and 350 ° C. or lower, more preferably 265 ° C. or higher and lower than 300 ° C., further preferably 270 ° C. or higher and lower than 300 ° C.
  • the glass transition temperature of polyarylate can be measured according to JIS K7121 (1987). Specifically, using a DSC 6220 manufactured by Seiko Instruments Inc. as a measuring device, it can be measured under the conditions of a 10 mg polyarylate sample and a heating rate of 20 ° C./min.
  • the glass transition temperature of polyarylate can be adjusted by the type of aromatic dialcohol component constituting polyarylate.
  • aromatic dialcohol component units For example, it is preferable to include “units derived from bisphenols containing a sulfur atom in the main chain” as aromatic dialcohol component units.
  • the intrinsic viscosity of the polyarylate is preferably from 0.3 to 1.0 dl / g, more preferably from 0.4 to 0.9 dl / g, still more preferably from 0.45 to 0.8 dl / g. More preferably, it is 5 to 0.7 dl / g.
  • the intrinsic viscosity of polyarylate is 0.3 dl / g or more, the molecular weight of the resin composition tends to be a certain level or more, and a film having sufficient mechanical properties and heat resistance is easily obtained.
  • the intrinsic viscosity of the polyarylate is 1.0 dl / g or less, an excessive increase in the solution viscosity during film formation can be suppressed.
  • the intrinsic viscosity can be measured in accordance with ISO1628-1. Specifically, a solution in which a polyarylate sample is dissolved in 1,1,2,2-tetrachloroethane so as to have a concentration of 1 g / dl is prepared. The intrinsic viscosity of this solution at 25 ° C. is measured using an Ubbelohde type viscosity tube.
  • the polyarylate production method may be a known method, preferably an interface in which an aromatic dicarboxylic acid halide dissolved in an organic solvent incompatible with water and an aromatic dialcohol dissolved in an alkaline aqueous solution are mixed. It may be a polymerization method (W. M. EARECKSON, J. Poly. Sci. XL 399, 1959, Japanese Patent Publication No. 40-1959).
  • the content of polyarylate may be 50% by mass or more, preferably 60% by mass or more, more preferably 80% by mass or more with respect to the entire polyarylate film.
  • a solvent used for manufacturing an optical film that is, a solvent for dissolving the above-described resin in a stirring tank of a stirring device
  • a solvent used for manufacturing an optical film for example, dichloromethane (methylene chloride, methylene chloride), chloroform, ethanol, butanol, isopropanol N-methyl-2-pyrrolidone, 1,3-dimethylimidazolidinone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylcaprolactam , Hexamethylphosphoramide, tetramethylene sulfone, dimethyl sulfoxide, m-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, ⁇ -buty Lactone, 1,3-d
  • additives to be contained in the dope fine particles, plasticizer, ultraviolet absorber, antioxidant, sugar ester compound, retardation adjusting agent, light stabilizer, antistatic agent, release agent A thickener or the like may be used.
  • plasticizer ultraviolet absorber
  • antioxidant antioxidant
  • sugar ester compound sugar ester compound
  • retardation adjusting agent retardation adjusting agent
  • light stabilizer antioxidant
  • antistatic agent antistatic agent
  • release agent A thickener or the like
  • the optical film of this embodiment preferably contains a matting agent in order to impart irregularities to the film surface during film formation, ensure slipperiness, and achieve a stable winding shape.
  • a matting agent By containing the matting agent, when the produced optical film is handled, it is possible to suppress damage and deterioration of transportability.
  • Examples of the matting agent include fine particles of inorganic compounds and fine particles of resin.
  • Examples of fine particles of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, silicic acid Examples thereof include magnesium and calcium phosphate. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
  • the average primary particle size of the fine particles is preferably in the range of 5 to 400 nm, and more preferably in the range of 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 ⁇ m. If the particles have an average particle size of 80 to 400 nm, the primary particles are not aggregated. It is also preferable that it is contained as.
  • the content of these fine particles in the optical film is preferably in the range of 0.01 to 3.0% by mass, and particularly preferably in the range of 0.01 to 2.0% by mass.
  • Silicon dioxide fine particles are commercially available under the trade names of, for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). .
  • Zirconium oxide fine particles are commercially available, for example, under the trade names Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
  • resin fine particles examples include silicone resin, fluororesin and acrylic resin.
  • Silicone resins are preferred, and those having a three-dimensional network structure are particularly preferred. For example, these are commercially available under the trade names of Tospearl 103, 105, 108, 120, 145, 3120 and 240 (manufactured by Toshiba Silicone Co., Ltd.), and these can be used.
  • Aerosil 200V, Aerosil R972V, and Aerosil R812 are particularly preferably used because they have a large effect of reducing the friction coefficient while keeping the haze of the optical film low.
  • a polyester resin can be used as a plasticizer to be added to the optical film.
  • the polyester resin is obtained by polymerizing a dicarboxylic acid and a diol, and 70% or more of the dicarboxylic acid structural unit (the structural unit derived from the dicarboxylic acid) is derived from the aromatic dicarboxylic acid, and the diol structural unit (derived from the diol). 70% or more of the structural unit is derived from an aliphatic diol.
  • the proportion of the structural unit derived from the aromatic dicarboxylic acid is 70% or more, preferably 80% or more, and more preferably 90% or more.
  • the proportion of the structural unit derived from the aliphatic diol is 70% or more, preferably 80% or more, and more preferably 90% or more.
  • Two or more polyester resins may be used in combination.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, naphthalenedicarboxylic acid such as 2,7-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, Examples include 3,4'-biphenyldicarboxylic acid and the like, and ester-forming derivatives thereof.
  • polyester resin aliphatic dicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid, and monocarboxylic acids such as benzoic acid, propionic acid, and butyric acid can be used without departing from the object of the present invention.
  • Examples of the aliphatic diol include ethylene glycol, 1,3-propylene diol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, and ester-forming derivatives thereof.
  • polyester resin monoalcohols such as butyl alcohol, hexyl alcohol, and octyl alcohol, and polyhydric alcohols such as trimethylolpropane, glycerin, and pentaerythritol can be used as long as the object of the present embodiment is not impaired. .
  • a known esterification method or transesterification method can be applied to the production of the polyester resin.
  • the polycondensation catalyst used in the production of the polyester resin include known antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds such as germanium oxide, titanium compounds such as titanium acetate, and aluminum compounds such as aluminum chloride. Although it can, it is not limited to these.
  • Preferred polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polyethylene-2,6-naphthalene dicarboxylate resin, polyethylene-2, 6-naphthalene dicarboxylate-terephthalate copolymer resin, polyethylene-terephthalate-4,4'-biphenyldicarboxylate resin, poly-1,3-propylene-terephthalate resin, polybutylene terephthalate resin, polybutylene-2,6-naphthalene There are dicarboxylate resins and the like.
  • polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polybutylene terephthalate resin, and polyethylene-2,6-naphthalene dicarboxylate. Resin.
  • the intrinsic viscosity is 0.7 cm 3 / g or more
  • a molded product made of the polyester resin composition obtained by using the polyester resin has mechanical properties necessary as the molded product. And has good transparency.
  • the intrinsic viscosity is 2.0 cm 3 / g or less, the moldability is good.
  • compounds described in the general formulas (PEI) and (PEII) in paragraphs [0056] to [0080] of JP2013-97279A may be used.
  • stirring devices A to I satisfying the conditions shown in Table 1 were prepared.
  • the width of the stirring tank 101 (diameter of the bottom surface 101a) is 2100 mm, and the height of the liquid level when the resin and the solvent are put into the stirring tank 101 is the first stirring speed. It is a position 500 mm above the uppermost portion 113a of the arm portion 113 of the jig 111, the height from the bottom surface 101a of the uppermost portion 113a of the arm portion 113 is 2000 mm, and the length L of the arm portion 113 is 1800 mm.
  • the distance between the uppermost portions 113a of the two arm portions 113 is 2050 mm, and the distance between the first rotation shaft 112 and the second rotation shaft 122 is The distance was 750 mm.
  • each of the stirring inversions A to I is schematically shown in FIGS. 13 to 18.
  • the position of the central portion in the height direction of the arm portion 113 of the first stirring jig 111 is indicated by a position B.
  • the polymer solution continuously discharged from the polymerization reactor is supplied to a vent type screw type extruder having a reduced pressure of 2.7 to 4.0 kPa to remove volatile matter, and the pellet-shaped copolymer A1 is removed.
  • the constituent ratio of the monomer unit in the copolymer A1 was 90 mol% for the styrene monomer, 10 mol% for the acrylic acid monomer, and the weight average molecular weight was 300,000.
  • the following components were stirred using the stirrer A prepared above and dissolved sufficiently with heating to prepare a dope 1.
  • the stirring speed (rotation speed) of the first stirring jig of the stirring device A was 50 rpm
  • the stirring speed (rotation speed) of the second stirring jig was 500 rpm.
  • the stirring time in the stirring apparatus A was 5 hours.
  • composition of dope 1 (styrene: 90 mol%, acrylic acid: 10 mol%, weight average molecular weight: 300,000) 100 parts by mass Matting agent R812 (manufactured by Nippon Aerosil Co., Ltd., silica particles, average particle size 8 nm) 0.30 parts by mass Methylene chloride 150 parts by mass Ethanol 5 parts by mass
  • the prepared dope 1 was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus.
  • the solvent was evaporated on the stainless steel band support until the residual solvent amount reached 50%, and the obtained film-like material was peeled off from the stainless steel band support with a peeling tension of 162 N / m.
  • the peeled film-like product was dried at a drying temperature of 135 ° C. while evaporating the solvent at 35 ° C. and stretching it 1.25 times in the width direction (TD direction) by tenter stretching.
  • the residual solvent amount at the start of stretching by zone stretching was 20.0%, and the residual solvent amount at the start of stretching by tenter was 8.0%.
  • the obtained film was slit to a width of 1.5 m and subjected to a knurling process having a width of 10 mm and a height of 5 ⁇ m at both ends of the film, and then wound around a core to prepare an optical film 1 as an acrylic film.
  • the produced optical film 1 had a film thickness of 40 ⁇ m and a winding length of 4000 m.
  • Optical films 2 to 6 were respectively prepared in the same manner as the optical film 1 except that the stirrers B to F were used instead of the stirrer A to stir the resin and prepare dope.
  • the obtained ring-opening copolymer solution was put in an autoclave, and 100 g of toluene was further added.
  • a hydrogenation catalyst, RuHCl (CO) [P (C 6 H 5 )] 3 was added at 2500 ppm based on the monomer charge, the hydrogen gas pressure was adjusted to 9-10 MPa, and the reaction was carried out at 160-165 ° C. for 3 hours. went. After completion of the reaction, a hydrogenated product was obtained by precipitation in a large amount of methanol solution.
  • a main dope having the following composition was prepared. First, dichloromethane and ethanol were added to the stirrer A. The cycloolefin resin COP1 and the fine particle addition liquid were added to the stirring apparatus A containing dichloromethane while stirring. The resin was dissolved while heating and stirring, and this was dissolved in Azumi Filter Paper No. The main dope was prepared by filtration using 244. In addition, the stirring conditions in the stirring apparatus A are the same as the production of the optical film 1.
  • the prepared dope 1 was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. The solvent was evaporated on the stainless steel band support until the residual solvent amount was 30%, and the obtained film-like material was peeled off from the stainless steel band support with a peeling tension of 162 N / m.
  • the peeled film-like material was dried at a drying temperature of 160 ° C. while evaporating the solvent at 35 ° C. and stretching it 1.25 times in the width direction (TD direction) by tenter stretching.
  • the residual solvent amount when starting stretching by zone stretching was 10.0%, and the residual solvent amount when starting stretching by a tenter was 5.0%.
  • the obtained film was slit to a width of 1.5 m and subjected to a knurling process having a width of 10 mm and a height of 5 ⁇ m at both ends of the film, and then wound on a core to prepare an optical film 7 as a cycloolefin.
  • the produced optical film 7 had a film thickness of 40 ⁇ m and a winding length of 4000 m.
  • optical film 8 was prepared in the same manner as optical film 1 except that the dope was prepared by stirring using chloroform in the same amount as methylene chloride instead of methylene chloride.
  • An optical film 9 was produced in the same manner as the production of the optical film 1 except that the dope 2 having the following composition including the acrylic resin 2 was used instead of the dope 1.
  • Composition of dope 2 Acrylic resin 2 (Dianar BR85, manufactured by Mitsubishi Rayon Co., Ltd.) 100 parts by mass Matting agent R812 (manufactured by Nippon Aerosil Co., Ltd., silica particles, average particle size 8 nm) 0.30 parts by mass Methylene chloride 150 parts by mass Ethanol 5 parts by mass
  • the obtained organic phase was washed with twice the amount of ion-exchanged water of the organic phase for each washing, and then the operation of separating the organic phase and the aqueous phase was repeated.
  • the washing was terminated when the electric conductivity of the washing water became less than 50 ⁇ S / cm.
  • the organic phase after washing was put into a hot water tank equipped with a homomixer at 50 ° C., and methylene chloride was evaporated to obtain a powdery polymer. Furthermore, dehydration and drying were performed to obtain polyarylate.
  • the obtained polymer solution was uniformly cast on a stainless belt of a belt casting apparatus.
  • a stainless steel belt having a length of 20 m was used.
  • the surface temperature of the stainless steel belt is 35 ° C. and 35 ° C. wind is applied to the casting film to evaporate the solvent until the residual solvent amount is 38%, and then the film is peeled off from the stainless steel belt to obtain a film-like material. It was.
  • the obtained film-like material was stretched 1.2 times at 170 ° C. in the MD direction using the peripheral speed difference between the rolls, and then stretched 1.2 times at 230 ° C. in the TD direction with a tenter.
  • the stretched film is dried for 30 minutes while being transported in a drying apparatus at 125 ° C. by a number of rolls, and then subjected to knurling with a width of 15 mm and a height of 10 ⁇ m at both ends in the width direction of the film. As a result, an optical film 10 having a film thickness of 40 ⁇ m was obtained.
  • Optical films 11 to 13 were respectively produced in the same manner as the optical film 1 except that the stirrers G to I were used instead of the stirrer A to stir the resin and prepare dope.
  • optical film 14 was prepared in the same manner as optical film 1 except that instead of methylene chloride, the same amount of THF (tetrahydrofuran) as methylene chloride was used for stirring to prepare a dope.
  • THF tetrahydrofuran
  • ⁇ Evaluation> Evaluation of film thickness unevenness
  • the film thickness ( ⁇ m) was measured using a micrometer at intervals of 10 mm in the width direction of the film, and the difference between the maximum value and the minimum value of each film thickness ( ⁇ m) was defined as film thickness unevenness.
  • the film thickness unevenness is 1.0 ⁇ m or less, there is no problem in actual use, and if it exceeds 1.0 ⁇ m, the level is problematic in actual use.
  • Evaluation criteria A: The number of foreign matters is 0.15 or less per 1 cm 2 . ⁇ The number of foreign matters is larger than 0.15 per 1 cm 2 and equal to or smaller than 0.20. ⁇ : The number of foreign matters is greater than 0.20 and less than or equal to 0.25 per cm 2 . X: The number of foreign matters is larger than 0.25 per 1 cm 2 and not larger than 0.35, but there is a problem in actual use. XX: The number of foreign matters is larger than 0.35 per cm 2 , which is a considerable problem in actual use.
  • Table 2 shows the resin, solvent, stirring device used for the production of each of the optical films 1 to 14, and the results of each evaluation.
  • the film thickness unevenness and the evaluation of foreign matters are poor. This is because the dope used for forming the optical film 11 was prepared using the stirring device G. However, in the stirring device G, as shown in FIG. Since the uppermost first stirring blade 123a is located at a position lower than the position A, which is vertically lowered by (1/3) L from the uppermost portion 113a of the arm portion 113 of the first stirring jig 111, It is considered that the resin having a small specific gravity and floating above the solvent could not be efficiently drawn downward by the first stirring blade 123a, resulting in uneven stirring.
  • the film thickness unevenness and the evaluation of foreign matters are poor.
  • the dope used for forming the optical film 12 was prepared by using the stirring device H.
  • the outermost portion of the second stirring jig 121 was used. Since the upper first stirring blade 123a is composed of a disk-type stirring blade that creates a flow in a direction perpendicular to the second rotating shaft 122, the resin having a small specific gravity and floating above the solvent is also used. This is probably because the first agitating blade 123a could not efficiently draw downward, and as a result, uneven stirring occurred.
  • the film thickness unevenness and the evaluation of foreign matters are poor.
  • the dope used for forming the optical film 13 was prepared by using the stirring device I.
  • the stirring blade is composed only of the first stirring blade 123a, and the resin drawn downward by the first stirring blade 123a cannot be stirred in the shear direction with the arm portion 113, and as a result, This is thought to be due to large unevenness in stirring.
  • the film thickness unevenness and the evaluation of the foreign matter are poor. This is because the resin used in the formation of the optical film 13 has a specific gravity greater than that of the solvent and is heavier. Therefore, even if the resin is stirred in the stirring tank 101, the resin does not flow upward, resulting in uneven stirring. It is done.
  • the dope used in the production of the optical films 1 to 10 was prepared by using any of the stirring devices A to F.
  • the second stirring treatment was performed.
  • the first stirring blade 123a of the tool 121 includes a position A and is positioned above this, and is configured with a stirring blade (propeller type, paddle type) that causes the resin to flow in the vertical direction.
  • the second stirring blade 123b is configured by a stirring blade (disk type, turbine type) that is positioned below the position B and causes a flow in a direction perpendicular to the second rotation shaft 122. This is considered to be because uniform stirring is achieved in the stirring tank 101.
  • the vertical stirring by the first stirring blade 123a and the shearing stirring by the second stirring blade 123b and the arm portion 113 are performed, so that the solvent and the resin Even if the specific gravity difference ⁇ is 0.1 ⁇ ⁇ 0.5, it is considered that the resin and the solvent in the stirring tank 101 were uniformly and efficiently stirred, and the stirring unevenness was reduced.
  • the stirring device F since the second stirring jig 121 has three stirring blades and stirring is performed more efficiently, the evaluation of film thickness unevenness and foreign matter is further improved by further reducing stirring unevenness. It is considered that.
  • stirring devices J to L satisfying the conditions shown in Table 3 were prepared.
  • the stirring device J has the same configuration as the stirring device A except that the number of arms of the first stirring jig of the stirring device A is changed from two to one.
  • the stirring device K has the same configuration as the stirring device A except that the number of arms of the first stirring jig of the stirring device A is changed from two to three. At this time, it is assumed that the three arm portions are provided at equal intervals of 120 degrees around the first rotation axis.
  • the stirring device L has the same configuration as the stirring device A except that the number of arms of the first stirring jig of the stirring device A is changed from two to four. At this time, it is assumed that the four arm portions are provided at equal intervals of 90 degrees around the first rotation axis.
  • Optical films 15 to 17 were respectively prepared in the same manner as the optical film 1 except that the stirrers J to L were used instead of the stirrer A to stir the resin and prepare dope.
  • stirring devices M to O satisfying the conditions shown in Table 4 were prepared.
  • the stirring device M has the same configuration as the stirring device A except that the number of second stirring jigs of the stirring device A is changed from two to one.
  • the stirring device N has the same configuration as the stirring device A except that the number of second stirring jigs of the stirring device A is changed from two to three. At this time, it is assumed that the three second stirring jigs are provided at equal intervals of 120 degrees around the second rotation axis.
  • the stirring device O has the same configuration as the stirring device A except that the number of second stirring jigs of the stirring device A is changed from two to four. At this time, it is assumed that the four second stirring jigs are provided at equal intervals of 90 degrees around the second rotation axis.
  • Optical films 18 to 20 were respectively prepared in the same manner as the optical film 1 except that the dope was prepared by stirring the resin and the like using the stirring devices M to O instead of the stirring device A.
  • optical films 15 to 20 produced above were evaluated for film thickness unevenness and foreign matter in the same manner as the optical film 1 and the like. The evaluation results are shown in Table 5.
  • the stirring device J used for forming the optical film 15 has fewer arm portions than the stirring device A. Further, the stirring device M used for forming the optical film 18 has a smaller number of second stirring jigs than the stirring device A. However, these stirring devices J and M are not substitute for satisfying the above conditions (1) and (2). Therefore, in the optical films 15 and 18, the film thickness unevenness and the evaluation of foreign matters are lower than those of the optical film 1, but the level is not problematic in actual use, and the stirring unevenness J and M are also reduced. It can be said that the effect is obtained.
  • the stirring devices K and L used in the production of the optical films 16 to 17 have more arms than the stirring device A, the stirring efficiency is further improved compared to the stirring device A, and uneven stirring is caused. It is considered that the film thickness was further reduced, and the evaluation of film thickness unevenness and foreign matter was further improved.
  • the stirring devices N and O used in the production of the optical films 19 to 20 have more second stirring jigs than the stirring device A, so that the stirring efficiency is further improved compared to the stirring device A. It is considered that the unevenness of stirring was further reduced, and the evaluation of unevenness of film thickness and foreign matters was further improved.
  • the manufacturing method of the optical film of the present embodiment described above can be expressed as follows.
  • a method for producing an optical film by a solution casting method A stirring preparation step of preparing a dope by stirring at least a resin and a solvent in a stirring tank; A casting step of casting the dope prepared in the stirring preparation step on a support,
  • the resin is any one of an acrylic resin, a cycloolefin resin, and a polyarylate resin, When the specific gravity of the resin is A, the specific gravity of the solvent is B, and the specific gravity difference (BA) is ⁇ , 0.1 ⁇ ⁇ 0.5
  • the stirring tank is provided with a first stirring jig and a second stirring jig,
  • the first stirring jig includes a first rotating shaft located on a vertical axis passing through the center of the bottom surface of the stirring tank, and a lowermost portion of the first rotating shaft, and the first stirring jig is moved in the stirring tank.
  • the second agitating jig is arranged such that the second agitation jig is aligned along the vertical direction with the second rotation axis extending in the vertical direction so as to pass through the space between the first rotation axis and the arm portion.
  • the length along the vertical direction of the arm portion of the first stirring jig is L, and among the at least two stirring blades of the second stirring jig, the uppermost stirring blade and one lower side thereof
  • the first stirring blade is located above and including a position vertically lowered by (1/3) L from the uppermost portion of the arm portion of the first stirring jig
  • the second stirring blade It is composed of a stirring blade that causes a vertical flow of the resin by rotation about the rotation axis of
  • the second agitating blade is located below a position vertically lowered by (1/3) L from the uppermost part of the arm portion of the first agitating jig
  • the second rotating shaft is
  • An optical system comprising: an agitating blade that causes a flow of the resin drawn vertically downward by the first agitating blade in a direction perpendicular to the second rotation axis by rotation about the center.
  • the second stirring jig further includes a third stirring blade positioned one lower than the second stirring blade, The method for producing an optical film as described in any one of 1 to 6, wherein the third stirring blade is a turbine-type or disk-type stirring blade.
  • the first stirring jig has a plurality of the arm portions at equiangular intervals around the first rotation axis in a plane perpendicular to the first rotation axis.
  • the manufacturing method of the optical film in any one of 1-7.
  • a plurality of the second stirring jigs are provided at equal angular intervals around the first rotation axis in a plane perpendicular to the first rotation axis of the first stirring jig in the stirring tank.
  • the present invention can be used for the production of an optical film by a solution casting film forming method.

Abstract

A method for manufacturing an optical film comprises an agitation preparation step and a flow expanding step. When a specific gravity of agitated resin is expressed as A, a specific gravity of a solvent is expressed as B, and a gravity difference (B - A) is expressed as ∆, 0.1 < ∆ < 0.5 is satisfied. A first agitation jig (111) has a first rotation shaft (112) and an arm part (113). A second agitation jig (121) has a second rotation shaft (122), a first agitation blade (123a), and a second agitation blade (123b). When a length of the arm part (113) in a vertical direction is expressed as L, the first agitation blade (123a) is placed in a position including or above a position A which is lower than a top part (113a) of the arm part (113) by (1/3) L in the vertical direction. The second agitation blade (123b) is placed below the position A.

Description

光学フィルムの製造方法Manufacturing method of optical film
 本発明は、溶液流涎製膜法によって光学フィルムを製膜する光学フィルムの製造方法に関するものであり、特に、支持体上に流延するドープの攪拌に関するものである。 The present invention relates to an optical film manufacturing method in which an optical film is formed by a solution-flow casting method, and more particularly to stirring of a dope cast on a support.
 従来から、溶液を攪拌する攪拌装置として、例えば特許文献1に開示されたものがある。この攪拌装置では、溶液が投入される攪拌槽内で、鉛直方向に延びる回転軸に、第1平板翼部材および第2平板翼部材を回転軸方向に沿って並べて取り付けている。第1平板翼部材および第2平板翼部材は、回転軸の回転に基づき溶液を上昇させる傾斜角度で回転軸に取り付けられている。このような第1平板翼部材および第2平板翼部材を、回転軸を中心として回転させることにより、溶液の循環流が撹拌槽の上下方向に分断されることなく生じ、効率良く溶液の上下循環混合を行うことが可能となっている。 Conventionally, as a stirring device for stirring a solution, for example, there is one disclosed in Patent Document 1. In this stirrer, the first flat plate blade member and the second flat plate blade member are arranged side by side along the rotation axis direction on the rotation shaft extending in the vertical direction in the stirring tank into which the solution is charged. The first flat plate blade member and the second flat plate blade member are attached to the rotary shaft at an inclination angle that raises the solution based on the rotation of the rotary shaft. By rotating the first flat plate blade member and the second flat plate blade member about the rotation axis, the circulation flow of the solution is generated without being divided in the vertical direction of the stirring tank, and the vertical circulation of the solution is efficiently performed. Mixing can be performed.
特開2010-42337号公報(請求項1、段落〔0001〕、〔0004〕、〔0007〕、図1、図2等参照)JP 2010-42337 A (see claim 1, paragraphs [0001], [0004], [0007], FIG. 1, FIG. 2, etc.)
 ところが、上記特許文献1の攪拌装置を、溶液流延製膜法で用いるドープを調製する際の樹脂と溶媒との攪拌に適用し、攪拌して調製したドープを用いて光学フィルムを製膜したところ、光学フィルムに膜厚ムラおよび輝点異物が生じることが確認された。これらの原因について、本願発明者らは以下のように推測している。 However, the stirring device of Patent Document 1 is applied to the stirring of the resin and the solvent when preparing the dope used in the solution casting film forming method, and an optical film is formed using the dope prepared by stirring. However, it has been confirmed that film thickness unevenness and bright spot foreign matter are generated in the optical film. About these causes, this inventor estimates as follows.
 上記攪拌装置の第1の平板翼部材および第2の平板翼部材は、両方とも、上下流を発生させる攪拌翼で構成されているため、上下方向の循環による攪拌はできても、上下方向に垂直な方向(水平方向、せん断方向)の攪拌を効率よく行うことができない。その結果、攪拌槽内での攪拌にムラが生じ、この攪拌ムラによってドープ粘度が不安定となり、そのようなドープを用いて製膜される光学フィルムに膜厚ムラが生じる。また、攪拌ムラが生じると、攪拌槽内で樹脂が凝集して凝集物(未溶解物)を形成するなどの溶解不良が生じる。未溶解物を含むドープを用いて光学フィルムを製膜すると、光学フィルムでは上記の未溶解物が輝点異物となって現れる。 Since both the first flat plate blade member and the second flat plate blade member of the stirring device are composed of the stirring blades that generate upstream and downstream, even if stirring by vertical circulation can be performed, Stirring in the vertical direction (horizontal direction, shear direction) cannot be performed efficiently. As a result, unevenness occurs in stirring in the stirring tank, and the viscosity of the dope becomes unstable due to the unevenness in stirring, and unevenness in film thickness occurs in an optical film formed using such a dope. Further, when uneven stirring occurs, poor dissolution occurs such that the resin aggregates in the stirring tank to form an aggregate (undissolved material). When an optical film is formed using a dope containing an undissolved material, the undissolved material appears as a bright spot foreign material in the optical film.
 特に、比重の大きい溶媒(例えば塩化メチレン)に対して、比重の小さいペレット状の樹脂(例えばアクリル系樹脂)を溶解させる場合、樹脂が液面に浮きやすくなって継粉が発生し、上記の攪拌ムラによって継粉が未溶解物として残る結果、製膜された光学フィルムに輝点異物が生じやすくなる。 In particular, when a pellet-like resin (for example, an acrylic resin) having a low specific gravity is dissolved in a solvent having a high specific gravity (for example, methylene chloride), the resin tends to float on the liquid surface, and spatter is generated. As a result of the spatter remaining as an undissolved product due to uneven stirring, bright spot foreign matter tends to be generated in the formed optical film.
 本発明は、上記の問題を解決するためになされたものであって、その目的は、攪拌槽内での攪拌ムラを低減し、これによって製膜される光学フィルムの膜厚ムラおよび輝点異物の発生を低減することができる光学フィルムの製造方法を提供することにある。 The present invention has been made to solve the above-mentioned problems, and its purpose is to reduce the unevenness of stirring in the stirring tank, and thereby the film thickness unevenness of the optical film formed and the bright spot foreign matter. It is providing the manufacturing method of the optical film which can reduce generation | occurrence | production of this.
 本発明の上記目的は、以下の製造方法によって達成される。 The above object of the present invention is achieved by the following manufacturing method.
 すなわち、本発明の一側面に係る光学フィルムの製造方法は、溶液流延製膜法による光学フィルムの製造方法であって、
 少なくとも樹脂および溶媒を攪拌槽にて攪拌してドープを調製する攪拌調製工程と、
 前記攪拌調製工程にて調製されたドープを支持体上に流延する流延工程とを含み、
 前記樹脂は、アクリル系樹脂、シクロオレフィン樹脂、ポリアリレート樹脂のいずれかであり、
 前記樹脂の比重をAとし、前記溶媒の比重をBとし、比重差(B-A)をΔとしたとき、
   0.1<Δ<0.5
であり、
 前記攪拌槽には、第1の攪拌治具および第2の攪拌治具が設けられており、
 前記第1の攪拌治具は、前記攪拌槽の底面の中心を通る鉛直方向の軸上に位置する第1の回転軸と、前記第1の回転軸の最下部から、前記攪拌槽内で前記最下部よりも上方位置であって前記第1の回転軸から回転半径方向に離れた位置まで延びる腕部とを有し、
 前記第2の攪拌治具は、前記第1の回転軸と前記腕部との間のスペースを通るように鉛直方向に延びる前記第2の回転軸と、鉛直方向に沿って並ぶように前記第2の回転軸に取り付けられる少なくとも2つの攪拌翼とを有し、
 前記第1の攪拌治具の前記腕部の鉛直方向に沿った長さをLとし、前記第2の攪拌治具の前記少なくとも2つの攪拌翼のうち、最上部の攪拌翼およびその1つ下方に位置する攪拌翼を、それぞれ第1の攪拌翼および第2の攪拌翼としたとき、
 前記第1の攪拌翼は、前記第1の攪拌治具の前記腕部の最上部から(1/3)Lだけ鉛直下方に下がった位置を含んでそれよりも上方に位置し、前記第2の回転軸を中心とする回転により、前記樹脂の鉛直方向の流れを引き起こす攪拌翼で構成されており、
 前記第2の攪拌翼は、前記第1の攪拌治具の前記腕部の最上部から(1/3)Lだけ鉛直下方に下がった位置よりも下方に位置し、前記第2の回転軸を中心とする回転により、前記第1の攪拌翼によって鉛直下方に引き込まれた前記樹脂の、前記第2の回転軸に垂直な方向の流れを引き起こす攪拌翼で構成されている。
That is, the method for producing an optical film according to one aspect of the present invention is a method for producing an optical film by a solution casting method,
A stirring preparation step of preparing a dope by stirring at least a resin and a solvent in a stirring tank;
A casting step of casting the dope prepared in the stirring preparation step on a support,
The resin is any one of an acrylic resin, a cycloolefin resin, and a polyarylate resin,
When the specific gravity of the resin is A, the specific gravity of the solvent is B, and the specific gravity difference (BA) is Δ,
0.1 <Δ <0.5
And
The stirring tank is provided with a first stirring jig and a second stirring jig,
The first stirring jig includes a first rotating shaft located on a vertical axis passing through the center of the bottom surface of the stirring tank, and a lowermost portion of the first rotating shaft, and the first stirring jig is moved in the stirring tank. An arm portion extending from the first rotation axis to a position away from the first rotation axis in a rotational radius direction above the lowermost portion;
The second agitating jig is arranged such that the second agitation jig is aligned along the vertical direction with the second rotation axis extending in the vertical direction so as to pass through the space between the first rotation axis and the arm portion. Having at least two stirring blades attached to two rotating shafts,
The length along the vertical direction of the arm portion of the first stirring jig is L, and among the at least two stirring blades of the second stirring jig, the uppermost stirring blade and one lower side thereof When the stirring blades located at 1 are respectively the first stirring blade and the second stirring blade,
The first stirring blade is located above and including a position vertically lowered by (1/3) L from the uppermost portion of the arm portion of the first stirring jig, and the second stirring blade It is composed of a stirring blade that causes a vertical flow of the resin by rotation about the rotation axis of
The second agitating blade is located below a position vertically lowered by (1/3) L from the uppermost part of the arm portion of the first agitating jig, and the second rotating shaft is It is composed of an agitating blade that causes the resin drawn vertically downward by the first agitating blade to flow in a direction perpendicular to the second rotation axis by rotation around the center.
 上記の製造方法によれば、攪拌槽内での攪拌ムラを低減することができ、これによって製膜される光学フィルムの膜厚ムラおよび輝点異物の発生を低減することができる。 According to the above manufacturing method, the unevenness of stirring in the stirring tank can be reduced, and thereby the film thickness unevenness of the optical film to be formed and the generation of bright spot foreign matter can be reduced.
本発明の実施の形態に係る光学フィルムの製造装置の概略の構成を示す説明図である。It is explanatory drawing which shows the structure of the outline of the manufacturing apparatus of the optical film which concerns on embodiment of this invention. 上記光学フィルムの製造工程の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing process of the said optical film. 第1の攪拌治具を有する攪拌装置の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the stirring apparatus which has a 1st stirring jig. 上記第1の攪拌治具の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the said 1st stirring jig. 上記第1の攪拌治具のさらに他の構成を示す斜視図である。It is a perspective view which shows other structure of the said 1st stirring jig. 上記第1の攪拌治具のさらに他の構成を示す斜視図である。It is a perspective view which shows other structure of the said 1st stirring jig. 上記第1の攪拌治具のさらに他の構成を示す斜視図である。It is a perspective view which shows other structure of the said 1st stirring jig. 上記攪拌装置が有する第2の攪拌治具の第1の攪拌翼の構成例を示す斜視図である。It is a perspective view which shows the structural example of the 1st stirring blade of the 2nd stirring jig which the said stirring apparatus has. 上記第1の攪拌翼の他の構成例を示す斜視図である。It is a perspective view which shows the other structural example of the said 1st stirring blade. 上記第2の攪拌治具の第2の攪拌翼の構成例を示す斜視図である。It is a perspective view which shows the structural example of the 2nd stirring blade of the said 2nd stirring jig. 上記第2の攪拌翼の他の構成例を示す斜視図である。It is a perspective view which shows the other structural example of the said 2nd stirring blade. 上記第2の攪拌治具の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the said 2nd stirring jig. 実施例で用いた攪拌装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the stirring apparatus used in the Example. 上記攪拌装置の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the said stirring apparatus. 上記攪拌装置のさらに他の構成例を示す断面図である。It is sectional drawing which shows the further another structural example of the said stirring apparatus. 上記攪拌装置のさらに他の構成例を示す断面図である。It is sectional drawing which shows the further another structural example of the said stirring apparatus. 上記攪拌装置のさらに他の構成例を示す断面図である。It is sectional drawing which shows the further another structural example of the said stirring apparatus. 上記攪拌装置のさらに他の構成例を示す断面図である。It is sectional drawing which shows the further another structural example of the said stirring apparatus.
 本発明の実施の一形態について、図面に基づいて説明すれば以下の通りである。なお、本明細書において、数値範囲をA~Bと表記した場合、その数値範囲に下限Aおよび上限Bの値は含まれるものとする。 An embodiment of the present invention will be described below with reference to the drawings. In this specification, when the numerical range is expressed as A to B, the numerical value range includes the values of the lower limit A and the upper limit B.
 〔光学フィルムの製造方法〕
 図1は、本実施形態の光学フィルムの製造装置1の概略の構成を示す説明図である。また、図2は、光学フィルムの製造工程の流れを示すフローチャートである。本実施形態の光学フィルムの製造方法は、溶液流延製膜法によって光学フィルムを製造する方法であり、図2に示すように、攪拌調製工程(S1)、流延工程(S2)、剥離工程(S3)、延伸工程(S4)、乾燥工程(S5)、切断工程(S6)、エンボス加工工程(S7)、巻取工程(S8)を含む。以下、図1および図2を参照しながら、各工程について説明する。
[Method for producing optical film]
FIG. 1 is an explanatory diagram illustrating a schematic configuration of an optical film manufacturing apparatus 1 according to the present embodiment. Moreover, FIG. 2 is a flowchart which shows the flow of the manufacturing process of an optical film. The manufacturing method of the optical film of this embodiment is a method of manufacturing an optical film by a solution casting film forming method. As shown in FIG. 2, a stirring preparation step (S1), a casting step (S2), and a peeling step. (S3), stretching step (S4), drying step (S5), cutting step (S6), embossing step (S7), winding step (S8) are included. Hereinafter, each process is demonstrated, referring FIG. 1 and FIG.
 <攪拌調製工程>
 攪拌調製工程では、攪拌装置100の攪拌槽101にて、少なくとも樹脂および溶媒を攪拌し、支持体3(エンドレスベルト)上に流延するドープを調製する。なお、攪拌装置100の詳細については後述する。
<Stirring preparation process>
In the stirring preparation step, at least the resin and the solvent are stirred in the stirring tank 101 of the stirring device 100 to prepare a dope that is cast on the support 3 (endless belt). The details of the stirring device 100 will be described later.
 <流延工程>
 流延工程では、攪拌調製工程で調製されたドープを、加圧型定量ギヤポンプ等を通して、導管によって流延ダイ2に送液し、無限に移送する回転駆動ステンレス鋼製エンドレスベルトよりなる支持体3上の流延位置に、流延ダイ2からドープを流延し、これにより支持体3上に流延膜としてのウェブ5を形成する。
<Casting process>
In the casting step, the dope prepared in the stirring preparation step is fed to the casting die 2 by a conduit through a pressurized metering gear pump or the like, and transferred onto the support 3 made of a rotationally driven stainless steel endless belt for infinite transfer. The dope is cast from the casting die 2 at the casting position, thereby forming the web 5 as a casting film on the support 3.
 支持体3は、一対のロール3a・3bおよびこれらの間に位置する複数のロール(不図示)によって保持されている。ロール3a・3bの一方または両方には、支持体3に張力を付与する駆動装置(不図示)が設けられており、これによって支持体3は張力が掛けられて張った状態で使用される。 The support 3 is held by a pair of rolls 3a and 3b and a plurality of rolls (not shown) positioned therebetween. One or both of the rolls 3a and 3b are provided with a driving device (not shown) for applying tension to the support 3 so that the support 3 is used in a tensioned state.
 流延工程では、支持体3上に流延されたドープにより形成されたウェブ5を、支持体3上で加熱し、支持体3から剥離ロール4によってウェブ5が剥離可能になるまで溶媒を蒸発させる。溶媒を蒸発させるには、ウェブ側から風を吹かせる方法や、支持体3の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があり、適宜、単独であるいは組み合わせて用いればよい。 In the casting step, the web 5 formed by the dope cast on the support 3 is heated on the support 3, and the solvent is evaporated until the web 5 can be peeled from the support 3 by the peeling roll 4. Let In order to evaporate the solvent, there are a method of blowing air from the web side, a method of transferring heat from the back surface of the support 3 by a liquid, a method of transferring heat from the front and back by radiant heat, and the like. That's fine.
 <剥離工程>
 上記の流延工程にて、支持体3上でウェブ5が剥離可能な膜強度となるまで乾燥固化あるいは冷却凝固させた後、剥離工程では、ウェブ5を、自己支持性を持たせたまま剥離ロール4によって剥離する。
<Peeling process>
In the above casting process, after drying and solidifying or cooling and solidifying until the web 5 has a peelable film strength on the support 3, the web 5 is peeled with self-supporting property in the peeling process. Peel off by roll 4.
 なお、剥離時点での支持体3上でのウェブ5の残留溶媒量は、乾燥の条件の強弱、支持体3の長さ等により、50~120質量%の範囲であることが望ましい。残留溶媒量がより多い時点で剥離する場合、ウェブ5が柔らか過ぎると剥離時平面性を損ね、剥離張力によるシワや縦スジが発生しやすいため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。なお、残留溶媒量は、下記式で定義される。 The residual solvent amount of the web 5 on the support 3 at the time of peeling is preferably in the range of 50 to 120% by mass depending on the strength of the drying conditions, the length of the support 3 and the like. When peeling at a time when the amount of residual solvent is larger, if the web 5 is too soft, the flatness at the time of peeling is impaired, and wrinkles and vertical lines due to the peeling tension are likely to occur. Therefore, the residual at the time of peeling due to the balance between economic speed and quality. The amount of solvent is determined. The residual solvent amount is defined by the following formula.
 残留溶媒量(質量%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 ここで、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
Residual solvent amount (% by mass) = (mass before web heat treatment−mass after web heat treatment) / (mass after web heat treatment) × 100
Here, the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
 <延伸工程>
 延伸工程では、支持体3から剥離されたウェブ5を、テンター6によって延伸する。このときの延伸方向としては、フィルム搬送方向(MD方向;Machine Direction)、フィルム面内で上記搬送方向に垂直な幅手方向(TD方向;Transverse Direction)、これらの両方向、のいずれかである。延伸工程では、ウェブ5の両側縁部をクリップ等で固定して延伸するテンター方式が、フィルムの平面性や寸法安定性を向上させるために好ましい。なお、テンター6内では、延伸に加えて乾燥を行ってもよい。延伸工程において、ウェブ5をMD方向およびTD方向の両方向に延伸することにより、ウェブ5をMD方向およびTD方向に対して斜めに交差する方向に延伸(斜め延伸)することもできる。
<Extension process>
In the stretching step, the web 5 peeled from the support 3 is stretched by the tenter 6. The stretching direction at this time is one of a film transport direction (MD direction; Machine Direction), a lateral direction (TD direction; Transverse Direction) perpendicular to the transport direction in the film plane, and both of these directions. In the stretching step, a tenter method in which both side edges of the web 5 are fixed with a clip or the like and stretched is preferable in order to improve the flatness and dimensional stability of the film. In addition, in the tenter 6, you may dry in addition to extending | stretching. In the stretching step, by stretching the web 5 in both the MD direction and the TD direction, the web 5 can also be stretched (obliquely stretched) in a direction that obliquely intersects the MD direction and the TD direction.
 (乾燥工程)
 テンター6にて延伸されたウェブ5は、乾燥装置7にて乾燥される。乾燥装置7内では、側面から見て千鳥状に配置された複数の搬送ロールによってウェブ5が搬送され、その間にウェブ5が乾燥される。乾燥装置7での乾燥方法は、特に制限はなく、一般的に熱風、赤外線、加熱ロール、マイクロ波等を用いてウェブ5を乾燥させる。簡便さの点から、熱風でウェブ5を乾燥させる方法が好ましい。
(Drying process)
The web 5 stretched by the tenter 6 is dried by a drying device 7. In the drying device 7, the web 5 is transported by a plurality of transport rolls arranged in a staggered manner as viewed from the side, and the web 5 is dried in the meantime. There is no restriction | limiting in particular in the drying method in the drying apparatus 7, Generally the web 5 is dried using a hot air, infrared rays, a heating roll, a microwave. From the viewpoint of simplicity, a method of drying the web 5 with hot air is preferable.
 ウェブ5は、乾燥装置7にて乾燥後、光学フィルムFとして巻取装置10に向かって搬送される。 The web 5 is transported toward the winding device 10 as the optical film F after being dried by the drying device 7.
 (切断工程、エンボス加工工程)
 乾燥装置7と巻取装置10との間には、切断部8およびエンボス加工部9がこの順で配置されている。切断部8では、製膜された光学フィルムFを搬送しながら、その幅手方向の両端部を、スリッターによって切断する切断工程が行われる。光学フィルムFにおいて、両端部の切断後に残った部分は、フィルム製品となる製品部を構成する。一方、光学フィルムFから切断された部分は、シュータにて回収され、再び原材料の一部としてフィルムの製膜に再利用される。
(Cutting process, embossing process)
A cutting unit 8 and an embossing unit 9 are arranged in this order between the drying device 7 and the winding device 10. In the cutting part 8, the cutting process which cut | disconnects the both ends of the width direction with a slitter is performed, conveying the optical film F formed into a film. In the optical film F, the part remaining after the cutting of both ends constitutes a product part to be a film product. On the other hand, the part cut | disconnected from the optical film F is collect | recovered with a shooter, and is reused for film forming of a film again as a part of raw material.
 切断工程の後、光学フィルムFの幅手方向の両端部には、エンボス加工部9により、エンボス加工(ナーリング加工)が施される。エンボス加工は、加熱されたエンボスローラーを光学フィルムFの両端部に押し当てることにより行われる。エンボスローラーの表面には細かな凹凸が形成されており、エンボスローラーを光学フィルムFの両端部に押し当てることで、上記両端部に凹凸が形成される。このようなエンボス加工により、次の巻取工程での巻きズレやブロッキング(フィルム同士の貼り付き)を極力抑えることができる。 After the cutting step, embossing (knurling) is performed by the embossing part 9 at both ends in the width direction of the optical film F. Embossing is performed by pressing a heated embossing roller against both ends of the optical film F. Fine irregularities are formed on the surface of the embossing roller, and by pressing the embossing roller against both ends of the optical film F, the irregularities are formed at both ends. By such embossing, winding deviation and blocking (attachment between films) in the next winding process can be suppressed as much as possible.
 (巻取工程)
 最後に、エンボス加工が終了した光学フィルムFを、巻取装置10によって巻き取り、光学フィルムFの元巻(フィルムロール)を得る。すなわち、巻取工程では、光学フィルムFを搬送しながら巻芯に巻き取ることにより、フィルムロールが製造される。光学フィルムFの巻き取り方法は、一般に使用されているワインダーを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の張力をコントロールする方法があり、それらを使い分ければよい。光学フィルムFの巻長は、1000~7200mであることが好ましい。また、その際の幅は1000~3200mm幅であることが望ましく、膜厚は10~60μmであることが望ましい。
(Winding process)
Finally, the optical film F that has been embossed is wound up by the winding device 10 to obtain the original roll (film roll) of the optical film F. That is, in the winding process, the film roll is manufactured by winding the optical film F around the core while transporting the optical film F. The winding method of the optical film F may be a commonly used winder, and there are methods for controlling tension such as a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like. You can use them properly. The winding length of the optical film F is preferably 1000 to 7200 m. Further, the width at that time is desirably 1000 to 3200 mm, and the film thickness is desirably 10 to 60 μm.
 〔攪拌装置について〕
 次に、上述した攪拌調製工程で用いる攪拌装置100について説明する。図3は、攪拌装置100の一例を模式的に示す断面図である。攪拌装置100の攪拌槽101には、第1の攪拌治具111および第2の攪拌治具121が設けられている。なお、以下での説明の便宜上、攪拌槽101の底面101a側を「下」とし、天面101b側を「上」とする。そして、底面101aと天面101bとが対向する方向を鉛直方向(上下方向)とし、鉛直方向に垂直な方向を水平方向とする。
[About the stirring device]
Next, the stirring apparatus 100 used in the stirring preparation process mentioned above is demonstrated. FIG. 3 is a cross-sectional view schematically showing an example of the stirring device 100. A stirring tank 101 of the stirring device 100 is provided with a first stirring jig 111 and a second stirring jig 121. For convenience of explanation below, the bottom surface 101a side of the stirring tank 101 is “lower” and the top surface 101b side is “upper”. A direction in which the bottom surface 101a and the top surface 101b face each other is a vertical direction (up and down direction), and a direction perpendicular to the vertical direction is a horizontal direction.
 第1の攪拌治具111は、第1の回転軸112と、腕部113とを有しており、攪拌槽101内に1つのみ設けられている。第1の回転軸112は、攪拌槽101の底面101aの中心Oを通る鉛直方向の軸AX上に位置している。第1の回転軸112は、図示しない駆動源(例えばモータ)と連結されており、駆動源の駆動によって回転する。第1の回転軸112の回転速度(=第1の攪拌治具111の回転速度)は、例えば5~100rpmの範囲で適宜調整される。 The first stirring jig 111 has a first rotating shaft 112 and an arm portion 113, and only one is provided in the stirring tank 101. The first rotation shaft 112 is located on a vertical axis AX that passes through the center O of the bottom surface 101 a of the stirring vessel 101. The first rotating shaft 112 is connected to a driving source (not shown) (for example, a motor) and rotates by driving the driving source. The rotation speed of the first rotating shaft 112 (= the rotation speed of the first stirring jig 111) is appropriately adjusted within a range of 5 to 100 rpm, for example.
 腕部113は、第1の回転軸112の下方の先端部分である最下部112aから、攪拌槽101内で最下部112aよりも上方の位置であって第1の回転軸112から回転半径方向(第1の回転軸112に垂直な方向)に離れた位置にある最上部113aまで延びるように、第1の回転軸112に取り付けられている。また、腕部113は、第1の回転軸112に垂直な方向に対称に位置するように、第1の回転軸112に2つ取り付けられている。なお、第1の回転軸112と各腕部113とは、一体的に構成されていてもよいし、別部材の接合によって構成されていてもよい。各腕部113は、第1の回転軸112の最下部112aから曲線状かつ単調に上方に延びている結果、全体として、下方に凸となる断面U字型で構成されている。上記構成の第1の攪拌治具111は、外観的にアンカー(錨)に似ていることから、アンカー型とも呼ばれる。 The arm portion 113 is located at a position higher than the lowermost portion 112a in the stirring tank 101 from the lowermost portion 112a, which is the lower end portion of the first rotating shaft 112, and in the rotational radius direction from the first rotating shaft 112 ( It is attached to the first rotating shaft 112 so as to extend to the uppermost portion 113a at a position separated in a direction (perpendicular to the first rotating shaft 112). In addition, two arm portions 113 are attached to the first rotation shaft 112 so as to be positioned symmetrically in a direction perpendicular to the first rotation shaft 112. In addition, the 1st rotating shaft 112 and each arm part 113 may be comprised integrally, and may be comprised by joining of another member. Each arm portion 113 is configured to have a U-shaped cross section that protrudes downward as a whole as a result of extending upward in a curved and monotonous manner from the lowermost portion 112 a of the first rotating shaft 112. The first stirring jig 111 having the above-described configuration is also referred to as an anchor type because it looks like an anchor in the appearance.
 図4は、第1の攪拌治具111の他の構成を示す断面図である。第1の攪拌治具111の各腕部113は、全体として断面W字型で構成されていてもよい。つまり、各腕部113は、第1の回転軸112の最下部112aから、回転半径方向外側に向かうにつれて一旦下方に下がり、そこから最上部113aに向かって延びる形状であってもよい。このような第1の攪拌治具111もアンカー型の一種である。 FIG. 4 is a cross-sectional view showing another configuration of the first stirring jig 111. Each arm portion 113 of the first stirring jig 111 may be configured with a W-shaped cross section as a whole. That is, each arm portion 113 may have a shape that once falls downward from the lowermost portion 112a of the first rotating shaft 112 toward the outer side in the rotational radius direction and extends toward the uppermost portion 113a therefrom. Such a first stirring jig 111 is also a kind of anchor type.
 図5~図7は、第1の攪拌治具111のさらに他の構成を示す斜視図である。図5に示すように、第1の攪拌治具111は、第1の回転軸112の最下部から回転半径方向外側に伸びた後、上方に屈曲する形状の腕部113を有して構成されてもよい。このような第1の攪拌治具111もアンカー型の一種である。また、図6および図7に示すように、第1の攪拌治具111は、腕部113の面積を増大させて攪拌(水かき)の効率を向上させるようにした、いわゆるアンカーパドル型で構成されていてもよい。 5 to 7 are perspective views showing still another configuration of the first stirring jig 111. FIG. As shown in FIG. 5, the first stirring jig 111 includes an arm portion 113 having a shape that extends from the lowermost portion of the first rotating shaft 112 outward in the rotational radial direction and then bends upward. May be. Such a first stirring jig 111 is also a kind of anchor type. Further, as shown in FIGS. 6 and 7, the first stirring jig 111 is configured as a so-called anchor paddle type in which the area of the arm portion 113 is increased to improve the efficiency of stirring (watering). It may be.
 図3で示した第2の攪拌治具121は、第2の回転軸122と、少なくとも2つの攪拌翼123とを有している。本実施形態では、第2の攪拌治具121は、攪拌槽101内に2つ設けられており、第1の攪拌治具111の第1の回転軸112を挟んで互いに反対側に位置している。 3 has a second rotating shaft 122 and at least two stirring blades 123. The second stirring jig 121 shown in FIG. In the present embodiment, two second agitation jigs 121 are provided in the agitation tank 101 and are positioned on opposite sides of the first rotation axis 112 of the first agitation jig 111. Yes.
 第2の攪拌治具121の第2の回転軸122は、第1の攪拌治具111の第1の回転軸112と腕部113との間のスペースを通るように鉛直方向に延びている。つまり、第1の回転軸112と第2の回転軸122とは互いに平行である。第2の回転軸122は、図示しない駆動源(例えばモータ)と連結されており、駆動源の駆動によって回転する。第2の回転軸122の回転速度(=第2の攪拌治具121の回転速度)は、例えば200~2000rpmの間で適宜調整され、第1の回転軸112よりも速い速度で回転する。 The second rotating shaft 122 of the second stirring jig 121 extends in the vertical direction so as to pass through the space between the first rotating shaft 112 of the first stirring jig 111 and the arm portion 113. That is, the first rotating shaft 112 and the second rotating shaft 122 are parallel to each other. The second rotating shaft 122 is connected to a driving source (not shown) (for example, a motor) and rotates by driving the driving source. The rotation speed of the second rotating shaft 122 (= the rotating speed of the second stirring jig 121) is appropriately adjusted, for example, between 200 and 2000 rpm, and rotates at a speed higher than that of the first rotating shaft 112.
 少なくとも2つの攪拌翼123は、鉛直方向に沿って並ぶように第2の回転軸122に取り付けられている。2つの攪拌翼123を区別する場合、最上部の攪拌翼を第1の攪拌翼123aとし、第1の攪拌翼123aの1つ下方に位置する攪拌翼を第2の攪拌翼123bとする。 The at least two stirring blades 123 are attached to the second rotating shaft 122 so as to be aligned along the vertical direction. When distinguishing the two stirring blades 123, the uppermost stirring blade 123 is referred to as a first stirring blade 123a, and the stirring blade located one below the first stirring blade 123a is referred to as a second stirring blade 123b.
 ここで、第1の攪拌治具111の腕部113の最下部から最上部113aまでの鉛直方向に沿った長さをL(mm)とする。すなわち、腕部113の長さLは、腕部113の最下部(図3では、第1の回転軸112の最下部112aに等しい)に相当する位置Qから、最上部113aの位置Pまでの鉛直方向に沿った長さである。一方、図4の構成では、腕部113は、第1の回転軸112の最下部112aよりもさらに下方の位置Rまで湾曲した後、最上部113aに向かって上方に延びているため、腕部113の長さLは、位置Rから位置Pまでの鉛直方向に沿った長さである。なお、腕部113の長さLは、攪拌槽101の上下方向の長さ(深さ)の1/4以上であることが望ましく、1/3以上であることがより望ましく、1/2以上であることがさらに望ましい。 Here, the length along the vertical direction from the lowermost part of the arm part 113 of the first stirring jig 111 to the uppermost part 113a is defined as L (mm). That is, the length L of the arm portion 113 is from the position Q corresponding to the lowermost portion of the arm portion 113 (equivalent to the lowermost portion 112a of the first rotating shaft 112 in FIG. 3) to the position P of the uppermost portion 113a. It is the length along the vertical direction. On the other hand, in the configuration of FIG. 4, the arm portion 113 is curved to a position R further below the lowermost portion 112a of the first rotating shaft 112 and then extends upward toward the uppermost portion 113a. The length L of 113 is a length along the vertical direction from the position R to the position P. The length L of the arm portion 113 is preferably 1/4 or more of the vertical length (depth) of the stirring tank 101, more preferably 1/3 or more, and 1/2 or more. It is further desirable that
 また、図3および図4において、第1の攪拌治具111の腕部113の最上部113a(位置Pに等しい)から、(1/3)Lだけ鉛直下方に下がった位置を、位置Aとする。本実施形態では、第2の攪拌治具121の第1の攪拌翼123aは、上記の位置Aを含んでそれよりも上方に位置し、第2の回転軸122を中心とする回転により、樹脂の鉛直方向の流れを引き起こす攪拌翼で構成されている。上記攪拌翼としては、図8に示すパドル型または図9に示すプロペラ型の攪拌翼を用いることができる。 3 and 4, a position that is vertically lowered by (1/3) L from the uppermost portion 113a (equal to the position P) of the arm portion 113 of the first stirring jig 111 is defined as a position A. To do. In the present embodiment, the first stirring blade 123a of the second stirring jig 121 is positioned above and including the position A, and the resin is rotated by rotation about the second rotating shaft 122. It consists of stirring blades that cause the vertical flow of As the stirring blade, a paddle type stirring blade shown in FIG. 8 or a propeller type stirring blade shown in FIG. 9 can be used.
 また、第2の攪拌治具121の第2の攪拌翼123bは、上記の位置Aよりも下方に位置し、第2の回転軸122を中心とする回転により、第1の攪拌翼123aによって鉛直下方に引き込まれた樹脂の、第2の回転軸122に垂直な方向の流れを引き起こす攪拌翼で構成されている。上記攪拌翼としては、図10に示すタービン型の攪拌翼または図11に示すディスク型(溶解型)の攪拌翼で構成されている。 Further, the second stirring blade 123b of the second stirring jig 121 is positioned below the position A, and is vertically driven by the first stirring blade 123a by the rotation about the second rotation shaft 122. It is composed of stirring blades that cause the resin drawn downward to flow in a direction perpendicular to the second rotation shaft 122. The agitating blade is composed of a turbine type agitating blade shown in FIG. 10 or a disk type (dissolving) agitating blade shown in FIG.
 攪拌調製工程では、上記構成の攪拌装置100の攪拌槽101内に、ドープ組成物を投入する。ドープ組成物には、樹脂、溶媒および添加剤が含まれる。ここでは、上記樹脂として、アクリル系樹脂、シクロオレフィン樹脂、ポリアリレート樹脂などのペレット状の樹脂を用いる。また、溶媒としては、塩化メチレン、クロロホルムなどを用いる。添加剤としては、微粒子(マット剤)や可塑剤などを用いる。ペレット状の樹脂の比重は、溶媒の比重に対して小さいため(つまり溶媒よりも樹脂のほうが軽いため)、樹脂を溶媒に添加した当初において、樹脂の一部は溶媒に溶解したとしても、残りの大部分は溶媒の液面に浮く。 In the stirring preparation step, the dope composition is put into the stirring tank 101 of the stirring device 100 having the above configuration. The dope composition includes a resin, a solvent, and an additive. Here, a pellet-shaped resin such as an acrylic resin, a cycloolefin resin, or a polyarylate resin is used as the resin. As the solvent, methylene chloride, chloroform or the like is used. As the additive, fine particles (mat agent), a plasticizer, or the like is used. Since the specific gravity of the pellet-shaped resin is smaller than the specific gravity of the solvent (that is, the resin is lighter than the solvent), even if a part of the resin is dissolved in the solvent at the beginning of adding the resin, Most of the water floats on the solvent level.
 第1の攪拌治具111および第2の攪拌治具121をそれぞれ回転させて、樹脂および溶媒を攪拌すると、まず、第2の攪拌治具121の第1の攪拌翼123aの回転により、溶媒中で樹脂の鉛直方向(図3で上下方向)の流れ、つまり、上方から下方に樹脂を引き込む流れが生じる。そして、第2の攪拌翼123bの回転により、第1の攪拌翼123aによって鉛直下方に引き込まれた樹脂の、第2の回転軸122に垂直な方向の流れ、つまり、上下方向と垂直な水平方向(図3で左右方向)の流れが生じる。このとき、第1の攪拌治具111の腕部113は、第1の回転軸112を中心として回転しているため、第2の攪拌翼123bによって水平方向に流れる樹脂と溶媒とをせん断方向(図3で奥行方向)に攪拌することができる。 When the first stirring jig 111 and the second stirring jig 121 are respectively rotated to stir the resin and the solvent, first, the first stirring blade 123a of the second stirring jig 121 rotates to rotate in the solvent. Thus, a flow of the resin in the vertical direction (vertical direction in FIG. 3), that is, a flow of drawing the resin from the upper side to the lower side occurs. The flow of the resin drawn vertically downward by the first stirring blade 123a by the rotation of the second stirring blade 123b in the direction perpendicular to the second rotation shaft 122, that is, the horizontal direction perpendicular to the vertical direction A flow in the left-right direction in FIG. 3 occurs. At this time, since the arm portion 113 of the first stirring jig 111 rotates around the first rotation shaft 112, the resin and solvent flowing in the horizontal direction are sheared by the second stirring blade 123b ( It can be stirred in the depth direction in FIG.
 このような第1の攪拌翼123aによる攪拌(上下方向)と、第2の攪拌翼123bおよび腕部113による攪拌(水平方向、せん断方向)とで、攪拌槽101内の樹脂および溶媒が均一にかつ効率よく攪拌され、攪拌ムラが低減される。これにより、攪拌によって調製されたドープの粘度が安定するため、上記ドープを用いて光学フィルムを製膜したときに、膜厚ムラを低減することができる。また、攪拌槽101内で樹脂を均一に攪拌できるため、攪拌槽101内で樹脂が凝集して凝集物(未溶解物)を形成するなどの溶解不良が生じにくくなり、未溶解物に起因する輝点異物の発生を低減することもできる。 With such agitation by the first agitating blade 123a (vertical direction) and agitation by the second agitating blade 123b and the arm portion 113 (horizontal direction, shear direction), the resin and solvent in the agitation tank 101 are uniform. And it stirs efficiently and stirring nonuniformity is reduced. Thereby, since the viscosity of the dope prepared by stirring is stabilized, film thickness unevenness can be reduced when an optical film is formed using the dope. In addition, since the resin can be uniformly stirred in the stirring tank 101, it becomes difficult to cause poor dissolution such as aggregation of the resin in the stirring tank 101 to form an aggregate (undissolved material), which is caused by the undissolved material. The generation of bright spot foreign matter can also be reduced.
 また、ドープ粘度が不安定であると、膜厚ムラを低減すべく、ドープ粘度の調整(膜厚調整)が必要となり、そのような調整時間を要する分、光学フィルムの生産性が低下する。しかし、本実施形態では、均一な攪拌によってドープ粘度が安定するため、上記した光学フィルムの生産性の低下を回避することができる。 Also, if the dope viscosity is unstable, it is necessary to adjust the dope viscosity (thickness adjustment) in order to reduce the film thickness unevenness, and the productivity of the optical film is lowered by the amount of such adjustment time. However, in this embodiment, since the dope viscosity is stabilized by uniform stirring, it is possible to avoid the reduction in productivity of the optical film described above.
 また、樹脂の比重をAとし、溶媒の比重をBとし、比重差(B-A)をΔとしたときに、Δ>0.1であると、比重差によって樹脂が溶媒の液面に浮いて継粉が発生しやすくなる。しかし、本実施形態では、上述のように攪拌ムラを低減するとともに、攪拌槽101内を均一に攪拌できるため、Δ>0.1の条件であっても、発生した継粉を攪拌によって低減し、未溶解物の発生を抑えることができる。その結果、製膜された光学フィルムにおいて、上記未溶解物に起因する輝点異物を低減することができる。なお、溶媒と樹脂との比重差が大きすぎると、上下方向の攪拌によっても樹脂が溶媒下方に流動しにくくなり、攪拌ムラを低減する効果が少なくなることが懸念される。このため、Δは0.5未満であることが望ましい。つまり、本実施形態の攪拌方法は、0.1<Δ<0.5となるような樹脂および溶媒を選定してドープを調製し、光学フィルムを製膜する場合に特に有効であると言える。 Further, when the specific gravity of the resin is A, the specific gravity of the solvent is B, and the specific gravity difference (BA) is Δ, if Δ> 0.1, the resin floats on the liquid surface of the solvent due to the specific gravity difference. As a result, spalling is likely to occur. However, in the present embodiment, the unevenness of stirring is reduced as described above, and the inside of the stirring tank 101 can be uniformly stirred. Therefore, even if the condition of Δ> 0.1, the generated spatter is reduced by stirring. , Generation of undissolved substances can be suppressed. As a result, in the optical film formed, the bright spot foreign matter resulting from the undissolved material can be reduced. If the specific gravity difference between the solvent and the resin is too large, the resin is less likely to flow below the solvent even when stirring in the vertical direction, and there is a concern that the effect of reducing stirring unevenness will be reduced. For this reason, it is desirable that Δ is less than 0.5. That is, it can be said that the stirring method of the present embodiment is particularly effective when a resin and a solvent satisfying 0.1 <Δ <0.5 are selected to prepare a dope and form an optical film.
 ちなみに、アクリル系樹脂であるポリメタクリル酸メチル樹脂(PMMA;Polymethyl methacrylate)の比重は1.17であり、シクロオレフィン樹脂の比重は1.01であり、ポリアリレート樹脂の比重は1.21である。また、塩化メチレンの比重は1.32であり、クロロホルムの比重は1.48である。したがって、上記いずれの樹脂についても、上記いずれの溶媒との間で、0.1<Δ<0.5を満足しているため、これらの樹脂および溶媒を用いて本実施形態の手法で攪拌してドープを作製し、光学フィルムを製膜することにより、攪拌ムラに起因する膜厚ムラおよび輝点異物の発生を低減することができる。比重差Δのより望ましい範囲は、上記各樹脂と上記各溶媒との組み合わせにおける比重差の最小値および最大値から、0.1<Δ<0.31であると言える。 Incidentally, the specific gravity of polymethyl methacrylate resin (PMMA; PolymethylPomethacrylate), which is an acrylic resin, is 1.17, the specific gravity of cycloolefin resin is 1.01, and the specific gravity of polyarylate resin is 1.21. . The specific gravity of methylene chloride is 1.32 and the specific gravity of chloroform is 1.48. Therefore, since any of the above resins satisfies 0.1 <Δ <0.5 with any of the above solvents, the resin and the solvent are used to stir by the method of this embodiment. In this way, by forming a dope and forming an optical film, it is possible to reduce film thickness unevenness and bright spot foreign matter caused by uneven stirring. It can be said that the more desirable range of the specific gravity difference Δ is 0.1 <Δ <0.31 from the minimum value and the maximum value of the specific gravity difference in the combination of each resin and each solvent.
 また、従来の攪拌装置のように、上下流を発生させる攪拌翼を2つ用いる構成では、上方から下方へ流れる樹脂の勢いがきつくなり、攪拌槽底部での反作用によって、下方から上方に樹脂が勢いよく流れて、攪拌槽の天面(蓋部)に樹脂が付着する場合がある。この点、本実施形態では、上下流を発生させる攪拌翼(第1の攪拌翼123a)と、水平流を発生させる攪拌翼(第2の攪拌翼123b)とを用いているため、上下方向の樹脂の流れを適度に抑えて攪拌槽101内で樹脂と溶媒とを均一に攪拌することができる。したがって、攪拌槽101の天面101bに樹脂が付着することはほとんどない。 In addition, in the configuration using two stirring blades that generate the upstream and downstream as in the conventional stirring device, the momentum of the resin flowing from the upper side to the lower side becomes strong, and the reaction at the bottom of the stirring tank causes the resin to flow from the lower side to the upper side. The resin may flow vigorously and the resin may adhere to the top surface (lid portion) of the stirring tank. In this respect, in the present embodiment, since the agitating blade (first agitating blade 123a) that generates the upstream and downstream and the agitating blade (second agitating blade 123b) that generates the horizontal flow are used, The resin and the solvent can be uniformly stirred in the stirring tank 101 while moderately suppressing the flow of the resin. Therefore, the resin hardly adheres to the top surface 101b of the stirring tank 101.
 また、本実施形態では、第2の攪拌治具121の複数の攪拌翼のうち、最上部に位置する第1の攪拌翼123aが、位置Aを含んでそれよりも上方に位置し、第2の攪拌翼123bが上記位置Aよりも下方に位置しているため、第1の攪拌翼123aの回転によって、第2の攪拌翼123bと第1の攪拌治具111の腕部113との間に樹脂を確実に引き込み、引き込んだ樹脂と溶媒とを、第2の攪拌翼123bの回転と腕部113の回転によって水平方向およびせん断方向に確実に攪拌することができる。 Moreover, in this embodiment, the 1st stirring blade 123a located in the uppermost part among the several stirring blades of the 2nd stirring jig 121 is located above it including the position A, and 2nd Since the first agitating blade 123b is positioned below the position A, the first agitating blade 123a is rotated between the second agitating blade 123b and the arm portion 113 of the first agitating jig 111. The resin can be reliably drawn, and the drawn resin and solvent can be reliably stirred in the horizontal direction and the shearing direction by the rotation of the second stirring blade 123b and the rotation of the arm portion 113.
 さらに、第2の攪拌治具121の複数の攪拌翼のうち、最上部に位置する第1の攪拌翼123aは、パドル型またはプロペラ型の攪拌翼であるため、第1の攪拌翼123aの回転により、攪拌槽101内で上下方向の流れ、特に、上方から下方への樹脂の流れを確実に生じさせることができる。一方、第1の攪拌翼123aの下方に位置する第2の攪拌翼123bは、タービン型またはディスク型の攪拌翼であるため、第2の攪拌翼123bの回転により、水平方向の樹脂の流れを確実に生じさせることができる。 Further, the first stirring blade 123a located at the top of the plurality of stirring blades of the second stirring jig 121 is a paddle-type or propeller-type stirring blade, and therefore the first stirring blade 123a rotates. Thus, the flow in the vertical direction in the stirring tank 101, in particular, the flow of the resin from the upper side to the lower side can be reliably generated. On the other hand, the second stirring blade 123b located below the first stirring blade 123a is a turbine-type or disk-type stirring blade, so that the rotation of the second stirring blade 123b causes the horizontal resin flow to flow. It can surely occur.
 また、第1の攪拌治具111は、アンカー型またはアンカーパドル型の攪拌翼(ボトム翼)で構成されているため、第1の回転軸112と腕部113との間にスペースが形成される。したがって、本実施形態のように、上記スペースの一部に、第2の攪拌治具121を位置させることができる。そして、第1の攪拌治具111の回転と第2の攪拌治具121の回転とによって攪拌槽101内の樹脂および溶媒を均一に攪拌する構成を実現することが可能となる。 Further, since the first stirring jig 111 is composed of an anchor type or anchor paddle type stirring blade (bottom blade), a space is formed between the first rotating shaft 112 and the arm portion 113. . Therefore, the second stirring jig 121 can be positioned in a part of the space as in the present embodiment. And it becomes possible to implement | achieve the structure which stirs resin and a solvent in the stirring tank 101 uniformly by rotation of the 1st stirring jig 111 and rotation of the 2nd stirring jig 121. FIG.
 ところで、図12は、第2の攪拌治具121の他の構成を示す断面図である。第2の攪拌治具121は、上記した第1の攪拌翼123aおよび第2の攪拌翼123bに加えて、第3の攪拌翼123cをさらに有していてもよい。第3の攪拌翼123cは、第2の攪拌翼123bの1つ下方に位置し、第2の攪拌翼123bと同様に、図10で示したタービン型または図11で示したディスク型の攪拌翼で構成される。 Incidentally, FIG. 12 is a cross-sectional view showing another configuration of the second stirring jig 121. The second stirring jig 121 may further include a third stirring blade 123c in addition to the first stirring blade 123a and the second stirring blade 123b described above. The third agitating blade 123c is located one lower than the second agitating blade 123b, and, like the second agitating blade 123b, the turbine-type agitating blade shown in FIG. 10 or the disk-type agitating blade shown in FIG. Consists of.
 第2の攪拌治具121が、3つの攪拌翼(第1の攪拌翼123a、第2の攪拌翼123b、第3の攪拌翼123c)を有し、そのうち、最上部以外の攪拌翼(第2の攪拌翼123b、第3の攪拌翼123c)が、タービン型またはディスク型の攪拌翼であることで、第1の攪拌翼123aの回転によって下方に引き込まれた樹脂を、第2の攪拌翼123bおよび第3の攪拌翼123cの回転により、攪拌槽101内で上下方向(深さ方向)の広い範囲で水平方向に流動させ、その樹脂と溶媒とを、腕部113の回転により、上下方向の広い範囲でせん断方向に攪拌することができる。つまり、第3の攪拌翼123cの回転により、攪拌槽101内のより深い位置でも水平方向の樹脂の流れを生じさせて、腕部113の回転によるせん断方向の攪拌を行うことができる。これにより、攪拌槽101内での均一な攪拌をより短時間で効率よく行うことができる。 The second stirring jig 121 has three stirring blades (a first stirring blade 123a, a second stirring blade 123b, and a third stirring blade 123c). The third stirring blade 123b and the third stirring blade 123c) are turbine-type or disk-type stirring blades, so that the resin drawn downward by the rotation of the first stirring blade 123a is used as the second stirring blade 123b. And the third stirring blade 123c is rotated to flow in the horizontal direction in a wide range in the vertical direction (depth direction) in the stirring tank 101, and the resin and the solvent are moved in the vertical direction by the rotation of the arm portion 113. It can be stirred in the shear direction over a wide range. That is, the rotation of the third agitating blade 123 c causes a horizontal resin flow even at a deeper position in the agitation tank 101, and the agitation in the shearing direction due to the rotation of the arm portion 113 can be performed. Thereby, uniform stirring in the stirring tank 101 can be efficiently performed in a shorter time.
 以上では、第1の攪拌治具111の腕部113の数が2つである場合について説明したが、腕部113の数は1つであってもよいし、3つ以上であってもよい。ただし、攪拌の効率を考慮すると、腕部113の数は複数であることが望ましい。 Although the case where the number of the arm parts 113 of the first stirring jig 111 is two has been described above, the number of the arm parts 113 may be one, or may be three or more. . However, in consideration of the efficiency of stirring, it is desirable that the number of arm portions 113 is plural.
 また、複数の腕部113を第1の回転軸112に設ける場合、複数の腕部113は、第1の回転軸112に垂直な面内で、第1の回転軸112の周りに等角度間隔で配置されることが、攪拌槽101内での攪拌ムラをより低減する観点から望ましい。例えば図3のように2つの腕部113を第1の回転軸112に設ける場合、各腕部113は、第1の回転軸112の周りに180°間隔で配置されることが望ましい。また、3つの腕部113を第1の回転軸112に設ける場合、各腕部113は、第1の回転軸112の周りに120°間隔で配置されることが望ましい。さらに、4つの腕部113を第1の回転軸112に設ける場合、各腕部113は、第1の回転軸112の周りに90°間隔で配置されることが望ましい。 Further, when the plurality of arm portions 113 are provided on the first rotation shaft 112, the plurality of arm portions 113 are equiangularly spaced around the first rotation shaft 112 in a plane perpendicular to the first rotation shaft 112. It is desirable from the viewpoint of further reducing the unevenness of stirring in the stirring tank 101. For example, when two arm portions 113 are provided on the first rotation shaft 112 as shown in FIG. 3, it is desirable that each arm portion 113 is arranged around the first rotation shaft 112 at intervals of 180 °. In addition, when the three arm portions 113 are provided on the first rotation shaft 112, it is desirable that the arm portions 113 are arranged around the first rotation shaft 112 at 120 ° intervals. Further, when the four arm portions 113 are provided on the first rotation shaft 112, it is desirable that the arm portions 113 are arranged around the first rotation shaft 112 at 90 ° intervals.
 また、以上では、攪拌槽101内での第2の攪拌治具121の数が2つである場合について説明したが、第2の攪拌治具121の数は1つであってもよいし、3つ以上であってもよい。ただし、攪拌の効率を考慮すると、第2の攪拌治具121の数は複数であることが望ましい。 Moreover, although the case where the number of the 2nd stirring jig 121 in the stirring tank 101 is two was demonstrated above, the number of the 2nd stirring jig 121 may be one, There may be three or more. However, in consideration of the efficiency of stirring, the number of the second stirring jigs 121 is preferably plural.
 さらに、第2の攪拌治具121を複数設ける場合、第2の攪拌治具121は、攪拌槽101内において、第1の攪拌治具111の第1の回転軸112に垂直な面内で、第1の回転軸112周りに等角度間隔で複数設けられていることが、攪拌槽101内での攪拌ムラをより低減する観点から望ましい。例えば図3のように2つの第2の攪拌治具121を攪拌槽101内に設ける場合、各第2の攪拌治具121は、第1の回転軸112の周りに180°間隔で配置されることが望ましい。また、3つの第2の攪拌治具121を攪拌槽101内に設ける場合、各第2の攪拌治具121は、第1の回転軸112の周りに120°間隔で配置されることが望ましい。さらに、4つの第2の攪拌治具121を攪拌槽101内に設ける場合、各第2の攪拌治具121は、第1の回転軸112の周りに90°間隔で配置されることが望ましい。なお、第2の攪拌治具121の数と、第1の攪拌治具111の腕部113の数とは、同じであってもよいし、異なっていてもよい。 Further, when a plurality of second stirring jigs 121 are provided, the second stirring jig 121 is provided in the stirring tank 101 within a plane perpendicular to the first rotation shaft 112 of the first stirring jig 111. A plurality of equiangular intervals around the first rotating shaft 112 is desirable from the viewpoint of further reducing unevenness in stirring in the stirring tank 101. For example, when two second stirring jigs 121 are provided in the stirring tank 101 as shown in FIG. 3, the second stirring jigs 121 are arranged around the first rotation shaft 112 at intervals of 180 °. It is desirable. Further, when the three second stirring jigs 121 are provided in the stirring tank 101, it is desirable that the second stirring jigs 121 are arranged around the first rotation shaft 112 at intervals of 120 °. Further, when four second stirring jigs 121 are provided in the stirring tank 101, it is desirable that the second stirring jigs 121 are arranged around the first rotation shaft 112 at 90 ° intervals. Note that the number of the second stirring jigs 121 may be the same as or different from the number of the arm portions 113 of the first stirring jig 111.
 〔樹脂〕
 本実施形態において、光学フィルムの製造に用いる樹脂、すなわち、攪拌槽101に投入して溶媒と攪拌混合する樹脂としては、アクリル系樹脂、シクロオレフィン樹脂、ポリアリレート樹脂のいずれかを用いることができる。
〔resin〕
In the present embodiment, any of acrylic resins, cycloolefin resins, and polyarylate resins can be used as the resin used for manufacturing the optical film, that is, the resin that is added to the stirring tank 101 and stirred and mixed with the solvent. .
 <アクリル系樹脂>
 (メタ)アクリル系樹脂としては、Tg(ガラス転移温度)が好ましくは115℃以上、より好ましくは120℃以上、さらに好ましくは125℃以上、特に好ましくは130℃以上である。Tgが115℃以上であることにより、光学フィルムの耐久性が向上する。上記(メタ)アクリル系樹脂のTgの上限値は特に限定きれないが、成形性当の観点から、好ましくは170℃以下である。
<Acrylic resin>
The (meth) acrylic resin preferably has a Tg (glass transition temperature) of 115 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 125 ° C. or higher, and particularly preferably 130 ° C. or higher. When Tg is 115 ° C. or higher, the durability of the optical film is improved. Although the upper limit of Tg of the (meth) acrylic resin is not particularly limited, it is preferably 170 ° C. or less from the viewpoint of moldability.
 (メタ)アクリル系樹脂としては、本実施形態の効果を損なわない範囲内で、任意の適切な(メタ)アクリル系樹脂を採用し得る。例えば、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル-スチレン共重合体(MS樹脂など)、脂環族炭化水素基を有する重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体など)が挙げられる。好ましくは、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸C1-6アルキルが挙げられる。より好ましくはメタクリル酸メチルを主成分(50~100質量%、好ましくは70~100質量%の範囲)とするメタクリル酸メチル系樹脂が挙げられる。このように、アクリル系樹脂には、アクリル樹脂そのもののほか、アクリル樹脂と他の樹脂(化合物)との共重合体も含まれる。 As the (meth) acrylic resin, any appropriate (meth) acrylic resin can be adopted as long as the effects of the present embodiment are not impaired. For example, poly (meth) acrylic acid ester such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester- (Meth) acrylic acid copolymer, (meth) methyl acrylate-styrene copolymer (MS resin, etc.), a polymer having an alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer, Methyl methacrylate- (meth) acrylate norbornyl copolymer, etc.). Preferable examples include C1-6 alkyl poly (meth) acrylates such as poly (meth) acrylate methyl. More preferred is a methyl methacrylate-based resin containing methyl methacrylate as a main component (in the range of 50 to 100% by mass, preferably 70 to 100% by mass). As described above, the acrylic resin includes not only the acrylic resin itself but also a copolymer of the acrylic resin and another resin (compound).
 (メタ)アクリル系樹脂の具体例として、例えば、アクリペットVHやアクリペットVRL20A、ダイヤナールBR52、BR80、BR83、BR85、BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)、デルペット60N、80N(旭化成ケミカルズ(株)製)、特開2004-70296号公報に記載の分子内に環構造を有する(メタ)アクリル系樹脂、分子内架橋や分子内環化反応により得られる高Tg(メタ)アクリル樹脂系が挙げられる。 Specific examples of the (meth) acrylic resin include, for example, Acrypet VH and Acrypet VRL20A, Dianal BR52, BR80, BR83, BR85, BR88 (manufactured by Mitsubishi Rayon Co., Ltd.), KT75 (manufactured by Electrochemical Industry Co., Ltd.) ), Delpet 60N, 80N (manufactured by Asahi Kasei Chemicals Corporation), (meth) acrylic resin having a ring structure in the molecule described in JP-A-2004-70296, by intramolecular crosslinking or intramolecular cyclization reaction. Examples include the obtained high Tg (meth) acrylic resin system.
 (メタ)アクリル系樹脂としては、ラクトン環構造を有する(メタ)アクリル系樹脂を用いることも好ましい。ラクトン環構造を有する(メタ)アクリル系樹脂としては、特開2000-230016号公報、特開2001-151814号公報、特開2002-120326号公報、特開2002-254544号公報、特開2005-146084号公報などに記載のものが挙げられる。 As the (meth) acrylic resin, it is also preferable to use a (meth) acrylic resin having a lactone ring structure. Examples of the (meth) acrylic resin having a lactone ring structure include JP 2000-230016, JP 2001-151814, JP 2002-120326, JP 2002-254544, and JP 2005. No. 146084 and the like.
 また、(メタ)アクリル系樹脂としては、不飽和カルボン酸アルキルエステルの構造単位及びグルタル酸無水物の構造単位を有するアクリル樹脂を用いることができる。前記アクリル樹脂としては、特開2004-70290号公報、特開2004-70296号公報、特開2004-163924号公報、特開2004-292812号公報、特開2005-314534号公報、特開2006-131898号公報、特開2006-206881号公報、特開2006-265532号公報、特開2006-283013号公報、特開2006-299005号公報、特開2006-335902号公報などに記載のものが挙げられる。 Also, as the (meth) acrylic resin, an acrylic resin having an unsaturated carboxylic acid alkyl ester structural unit and a glutaric anhydride structural unit can be used. Examples of the acrylic resin include JP-A-2004-70290, JP-A-2004-70296, JP-A-2004-163924, JP-A-2004-292812, JP-A-2005-314534, JP-A-2006-. Examples described in JP-A-131898, JP-A-2006-206881, JP-A-2006-265532, JP-A-2006-283013, JP-A-2006-299905, JP-A-2006-335902, and the like. It is done.
 また、(メタ)アクリル系樹脂としては、グルタルイミド単位、(メタ)アクリル酸エステル単位、及び芳香族ビニル単位を有する熱可塑性樹脂を用いることができる。当該熱可塑性樹脂としては、特開2006-309033号公報、特開2006-317560号公報、特開2006-328329号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報などに記載のものが挙げられる。 Further, as the (meth) acrylic resin, a thermoplastic resin having a glutarimide unit, a (meth) acrylic acid ester unit, and an aromatic vinyl unit can be used. Examples of the thermoplastic resin include JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, JP-A-2006-328334, JP-A-2006-337491, and JP-A-2006. -337374, JP-A-2006-337493, JP-A-2006-337569, and the like.
 <シクロオレフィン樹脂>
 シクロオレフィン樹脂(シクロオレフィンポリマー)としては、下記一般式(S)に示す構造を有する単量体の重合体又は共重合体が挙げられる。
<Cycloolefin resin>
Examples of the cycloolefin resin (cycloolefin polymer) include a polymer or copolymer of a monomer having a structure represented by the following general formula (S).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、R1~R4は、それぞれ独立に、水素原子、炭化水素基、ハロゲン原子、ヒドロキシ基、カルボキシ基、アシルオキシ基、アリールオキシカルボニル基、アルコキシカルボニル基、アルコキシ基、シアノ基、アミド基、イミド基、シリル基、又は極性基(すなわち、ハロゲン原子、ヒドロキシ基、アシルオキシ基、アリールオキシカルボニル基、アルコキシカルボニル基、アルコキシ基、シアノ基、アミド基、イミド基、若しくはシリル基)で置換された炭化水素基である。 In the formula, each of R 1 to R 4 independently represents a hydrogen atom, a hydrocarbon group, a halogen atom, a hydroxy group, a carboxy group, an acyloxy group, an aryloxycarbonyl group, an alkoxycarbonyl group, an alkoxy group, a cyano group, or an amide group. Substituted with an imide group, a silyl group, or a polar group (that is, a halogen atom, a hydroxy group, an acyloxy group, an aryloxycarbonyl group, an alkoxycarbonyl group, an alkoxy group, a cyano group, an amide group, an imide group, or a silyl group) Hydrocarbon group.
 ただし、R1~R4は、二つ以上が互いに結合して、不飽和結合、単環又は多環を形成していてもよく、この単環又は多環は、二重結合を有していても、芳香環を形成してもよい。R1とR2とで、又はR3とR4とで、アルキリデン基を形成していてもよい。p及びmは0以上の整数である。 However, two or more of R 1 to R 4 may be bonded to each other to form an unsaturated bond, monocycle or polycycle, and this monocycle or polycycle has a double bond. Alternatively, an aromatic ring may be formed. R 1 and R 2 , or R 3 and R 4 may form an alkylidene group. p and m are integers of 0 or more.
 上記一般式(S)中、R1及びR3が表す炭化水素基は、炭素数1~10が好ましく、さらに好ましくは1~4、特に好ましくは1~2の炭化水素基である。 In the general formula (S), the hydrocarbon group represented by R 1 and R 3 is preferably a hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
 R2及びR4が水素原子又は1価の有機基であって、R2及びR4の少なくとも一つは水素原子及び炭化水素基以外の極性を有する極性基を示すことが好ましく、mは0~3の整数、pは0~3の整数であり、より好ましくはm+p=0~4、さらに好ましくは0~2、特に好ましくはm=1、p=0である。 R 2 and R 4 are each a hydrogen atom or a monovalent organic group, and at least one of R 2 and R 4 preferably represents a polar group having a polarity other than a hydrogen atom or a hydrocarbon group, and m is 0 An integer of ˜3, p is an integer of 0 to 3, more preferably m + p = 0 to 4, more preferably 0 to 2, particularly preferably m = 1 and p = 0.
 m=1、p=0である特定単量体は、得られるシクロオレフィン樹脂のガラス転移温度が高く、かつ、機械強度も優れたものとなる点で好ましい。なお、ここでいうガラス転移温度とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠した方法により求められる値である。 The specific monomer with m = 1 and p = 0 is preferable in that the resulting cycloolefin resin has a high glass transition temperature and excellent mechanical strength. The glass transition temperature here is a value obtained by a method based on JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
 上記特定単量体の極性基としては、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリルオキシカルボニル基、アミノ基、アミド基、シアノ基などが挙げられ、これら極性基はメチレン基などの連結基を介して結合していてもよい。 Examples of the polar group of the specific monomer include a carboxy group, a hydroxy group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amide group, and a cyano group. These polar groups have a linking group such as a methylene group. It may be bonded via.
 また、カルボニル基、エーテル基、シリルエーテル基、チオエーテル基、イミノ基など極性を有する2価の有機基が連結基となって結合している炭化水素基なども極性基として挙げられる。 In addition, a hydrocarbon group in which a divalent organic group having polarity such as a carbonyl group, an ether group, a silyl ether group, a thioether group, or an imino group is bonded as a linking group can also be mentioned as a polar group.
 これらの中では、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基又はアリルオキシカルボニル基が好ましく、特にアルコキシカルボニル基又はアリルオキシカルボニル基が好ましい。 Among these, a carboxy group, a hydroxy group, an alkoxycarbonyl group or an allyloxycarbonyl group is preferable, and an alkoxycarbonyl group or an allyloxycarbonyl group is particularly preferable.
 さらに、R2及びR4の少なくとも一つが式-(CH2nCOORで表される極性基である単量体は、得られるシクロオレフィン樹脂が、高いガラス転移温度と低い吸湿性、各種材料との優れた密着性を有するものとなる点で好ましい。 Furthermore, a monomer in which at least one of R 2 and R 4 is a polar group represented by the formula — (CH 2 ) n COOR is obtained by using a cycloolefin resin having a high glass transition temperature, a low hygroscopic property, and various materials. It is preferable at the point from which it has the outstanding adhesiveness.
 上記の特定の極性基にかかる式において、Rは炭素原子数1~12、さらに好ましくは1~4、特に好ましくは1~2の炭化水素基、好ましくはアルキル基である。 In the above formula relating to the specific polar group, R is a hydrocarbon group having 1 to 12 carbon atoms, more preferably 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms, and preferably an alkyl group.
 共重合性単量体の具体例としては、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン、ジシクロペンタジエンなどのシクロオレフィン樹脂を挙げることができる。 Specific examples of the copolymerizable monomer include cycloolefin resins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, and dicyclopentadiene.
 シクロオレフィンの炭素数としては、4~20が好ましく、さらに好ましいのは5~12である。 The number of carbon atoms of the cycloolefin is preferably 4-20, and more preferably 5-12.
 本実施形態において、シクロオレフィン樹脂は、1種単独で、又は2種以上を併用することができる。 In this embodiment, the cycloolefin resin can be used alone or in combination of two or more.
 シクロオレフィン樹脂の好ましい分子量は、固有粘度〔η〕inhで0.2~5cm3/g、さらに好ましくは0.3~3cm3/g、特に好ましくは0.4~1.5cm3/gであり、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量(Mn)は、8000~100000、さらに好ましくは10000~80000、特に好ましくは12000~50000であり、重量平均分子量(Mw)は20000~300000、さらに好ましくは30000~250000、特に好ましくは40000~200000である。 A preferred molecular weight of the cycloolefin resin is an intrinsic viscosity [η] inh of 0.2 to 5 cm 3 / g, more preferably 0.3 to 3 cm 3 / g, particularly preferably 0.4 to 1.5 cm 3 / g. The number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC) is 8000 to 100,000, more preferably 10,000 to 80,000, particularly preferably 12,000 to 50,000, and the weight average molecular weight (Mw). Is from 20,000 to 300,000, more preferably from 30,000 to 250,000, particularly preferably from 40,000 to 200,000.
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあることにより、シクロオレフィン樹脂の耐熱性、耐水性、耐薬品性、機械的特性と、本実施形態の光学フィルムの成形加工性とが良好となる。 Inherent viscosity [η] inh , number average molecular weight and weight average molecular weight are within the above ranges, so that heat resistance, water resistance, chemical resistance, mechanical properties of the cycloolefin resin, and molding of the optical film of the present embodiment And is good.
 シクロオレフィン樹脂のガラス転移温度(Tg)としては、通常、110℃以上、好ましくは110~350℃、さらに好ましくは120~250℃、特に好ましくは120~220℃である。Tgが110℃以上の場合が、高温条件下での使用、又はコーティング、印刷などの二次加工により変形が起こりにくいため、好ましい。 The glass transition temperature (Tg) of the cycloolefin resin is usually 110 ° C. or higher, preferably 110 to 350 ° C., more preferably 120 to 250 ° C., and particularly preferably 120 to 220 ° C. The case where Tg is 110 ° C. or higher is preferable because deformation is unlikely to occur due to use under high temperature conditions or secondary processing such as coating or printing.
 一方、Tgが350℃以下とすることで、成形加工が困難になる場合を回避し、成形加工時の熱によって樹脂が劣化する可能性を低くすることができる。 On the other hand, when Tg is 350 ° C. or lower, the case where the molding process becomes difficult can be avoided, and the possibility that the resin deteriorates due to heat during the molding process can be reduced.
 シクロオレフィン樹脂には、本実施形態の効果を損なわない範囲で、例えば特開平9-221577号公報、特開平10-287732号公報に記載されている、特定の炭化水素系樹脂、又は公知の熱可塑性樹脂、熱可塑性エラストマー、ゴム質重合体、有機微粒子、無機微粒子などを配合してもよく、特定の波長分散剤、糖エステル化合物、酸化防止剤、剥離促進剤、ゴム粒子、可塑剤、紫外線吸収剤などの添加剤を含んでもよい。 For the cycloolefin resin, a specific hydrocarbon resin described in, for example, Japanese Patent Application Laid-Open No. 9-221577 and Japanese Patent Application Laid-Open No. 10-287732, or a known heat can be used without departing from the effect of the present embodiment. Plastic resins, thermoplastic elastomers, rubbery polymers, organic fine particles, inorganic fine particles, etc. may be blended. Specific wavelength dispersing agents, sugar ester compounds, antioxidants, peeling accelerators, rubber particles, plasticizers, ultraviolet rays An additive such as an absorbent may be included.
 また、シクロオレフィン樹脂としては、市販品を好ましく用いることができる。市販品の例としては、JSR(株)からアートン(ARTON:登録商標)G、アートンF、アートンR、及びアートンRXという商品名で発売されている。また、日本ゼオン(株)からゼオノア(ZEONOR:登録商標)ZF14、ZF16、ゼオネックス(ZEONEX:登録商標)250又はゼオネックス280という商品名で市販されており、これらを使用することができる。 Moreover, as the cycloolefin resin, a commercially available product can be preferably used. Examples of commercially available products are sold under the trade names Arton (registered trademark) G, Arton F, Arton R, and Arton RX by JSR Corporation. Moreover, ZEONOR (registered trademark) ZF14, ZF16, ZEONEX (registered trademark) 250 or ZEONEX 280 is commercially available from ZEON Corporation, and these can be used.
 <ポリアリレート樹脂>
 ポリアリレート樹脂は、少なくとも芳香族ジアルコール成分単位と芳香族ジカルボン酸成分単位とを含む。
<Polyarylate resin>
The polyarylate resin contains at least an aromatic dialcohol component unit and an aromatic dicarboxylic acid component unit.
 (芳香族ジアルコール成分単位)
 芳香族ジアルコール成分単位を得るための芳香族ジアルコールは、好ましくは下記式(1)で表されるビスフェノール類、より好ましくは下記式(1’)で表されるビスフェノール類である。
(Aromatic dialcohol component unit)
The aromatic dialcohol for obtaining the aromatic dialcohol component unit is preferably a bisphenol represented by the following formula (1), more preferably a bisphenol represented by the following formula (1 ′).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(1)及び(1’)のLは、2価の有機基である。2価の有機基は、好ましくは単結合、アルキレン基、-S-、-SO-、-SO2-、-O-、-CO-又は-CR12-(R1とR2は互いに結合して脂肪族環又は芳香族環を形成する)である。 L in the general formulas (1) and (1 ′) is a divalent organic group. The divalent organic group is preferably a single bond, an alkylene group, —S—, —SO—, —SO 2 —, —O—, —CO— or —CR 1 R 2 — (R 1 and R 2 are To form an aliphatic ring or an aromatic ring.
 アルキレン基は、好ましくは炭素数1~10のアルキレン基であり、その例には、メチレン基、エチレン基、イソプロピリデン基等が含まれる。アルキレン基は、ハロゲン原子やアリール基等の置換基をさらに有してもよい。 The alkylene group is preferably an alkylene group having 1 to 10 carbon atoms, and examples thereof include a methylene group, an ethylene group, and an isopropylidene group. The alkylene group may further have a substituent such as a halogen atom or an aryl group.
 -CR12-のR1及びR2は、それぞれ互いに結合して脂肪族環又は芳香族環を形成している。脂肪族環は、好ましくは炭素数5~20の脂肪族炭化水素環であり、好ましくは置換基を有してもよいシクロヘキサン環である。芳香族環は、炭素数6~20の芳香族炭化水素環であり、好ましくは置換基を有してもよいフルオレン環である。置換基を有してもよいシクロヘキサン環を形成する-CR12-の例には、シクロヘキサン-1,1-ジイル基、3,3,5-トリメチルシクロヘキサン-1,1-ジイル基等が含まれる。置換基を有してもよいフルオレン環を形成する-CR12-の例には、下記式で表されるフルオレンジイル基が含まれる。 R 1 and R 2 of —CR 1 R 2 — are bonded to each other to form an aliphatic ring or an aromatic ring. The aliphatic ring is preferably an aliphatic hydrocarbon ring having 5 to 20 carbon atoms, and preferably a cyclohexane ring which may have a substituent. The aromatic ring is an aromatic hydrocarbon ring having 6 to 20 carbon atoms, preferably a fluorene ring which may have a substituent. Examples of —CR 1 R 2 — that forms a cyclohexane ring which may have a substituent include cyclohexane-1,1-diyl group, 3,3,5-trimethylcyclohexane-1,1-diyl group and the like. included. Examples of —CR 1 R 2 — forming a fluorene ring which may have a substituent include a fluorenediyl group represented by the following formula.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)及び(1’)のRは、独立して炭素数1~5のアルキル基又は炭素数6~10のアリール基でありうる。nは、独立して0~4の整数、好ましくは0~3の整数である。 R in the general formulas (1) and (1 ′) may independently be an alkyl group having 1 to 5 carbon atoms or an aryl group having 6 to 10 carbon atoms. n is independently an integer of 0 to 4, preferably an integer of 0 to 3.
 Lがアルキレン基であるビスフェノール類の例には、1,1-ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-メチル-2-ヒドロキシフェニル)メタン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(BPA)、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン(BPC)、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン(TMBPA)等が含まれる。中でも、2,2-ビス(4-ヒドロキシフェニル)プロパン(BPA)、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン(BPC)、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン(TMBPA)等のイソプロピリデン含有ビスフェノール類が好ましい。 Examples of bisphenols in which L is an alkylene group include 1,1-bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-methyl-2 -Hydroxyphenyl) methane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 2,2-bis (4- Hydroxyphenyl) propane (BPA), 2,2-bis (3-methyl-4-hydroxyphenyl) propane (BPC), 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane (TMBPA), etc. Is included. Among them, 2,2-bis (4-hydroxyphenyl) propane (BPA), 2,2-bis (3-methyl-4-hydroxyphenyl) propane (BPC), 2,2-bis (3,5-dimethyl- Preferred are isopropylidene-containing bisphenols such as 4-hydroxyphenyl) propane (TMBPA).
 Lが-S-、-SO-又は-SO2-であるビスフェノール類の例には、ビス(4-ヒドロキシフェニル)スルホン、ビス(2-ヒドロキシフェニル)スルホン、ビス(3,5-ジメチル-4-ヒドロキシフェニル)スルホン(TMBPS)、ビス(3,5-ジエチル-4-ヒドロキシフェニル)スルホン、ビス(3-メチル-4-ヒドロキシフェニル)スルホン、ビス(3-エチル-4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(3,5-ジメチル-4-ヒドロキシフェニル)スルフィド、ビス(3,5-ジエチル-4-ヒドロキシフェニル)スルフィド、ビス(3-メチル-4-ヒドロキシフェニル)スルフィド、ビス(3-エチル-4-ヒドロキシフェニル)スルフィド、2,4-ジヒドロキシジフェニルスルホン等が含まれる。Lが-O-であるビスフェノール類の例には、4,4’-ジヒドロキシジフェニルエーテルが含まれる。Lが-CO-であるビスフェノール類の例には、4,4’-ジヒドロキシジフェニルケトンが含まれる。 Examples of bisphenols where L is —S—, —SO— or —SO 2 — include bis (4-hydroxyphenyl) sulfone, bis (2-hydroxyphenyl) sulfone, bis (3,5-dimethyl-4 -Hydroxyphenyl) sulfone (TMBPS), bis (3,5-diethyl-4-hydroxyphenyl) sulfone, bis (3-methyl-4-hydroxyphenyl) sulfone, bis (3-ethyl-4-hydroxyphenyl) sulfone, Bis (4-hydroxyphenyl) sulfide, bis (3,5-dimethyl-4-hydroxyphenyl) sulfide, bis (3,5-diethyl-4-hydroxyphenyl) sulfide, bis (3-methyl-4-hydroxyphenyl) Sulfide, bis (3-ethyl-4-hydroxyphenyl) sulfide, 2,4-dihydro Shi diphenyl sulfone and the like. Examples of bisphenols in which L is —O— include 4,4′-dihydroxydiphenyl ether. Examples of bisphenols in which L is —CO— include 4,4′-dihydroxydiphenyl ketone.
 Lが-CR12-であり、かつR1とR2が互いに結合して脂肪族環を形成するビスフェノール類の例には、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(BPZ)、及び1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(BPTMC)等のシクロヘキサン骨格を有するビスフェノール類が含まれる。 Examples of bisphenols in which L is —CR 1 R 2 — and R 1 and R 2 are bonded to form an aliphatic ring include 1,1-bis (4-hydroxyphenyl) cyclohexane (BPZ) And bisphenols having a cyclohexane skeleton such as 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BPTMC).
 Lが-CR12-であり、かつR1とR2が互いに結合して芳香族環を形成するビスフェノール類の例には、9,9-ビス(3-メチル-4-ヒドロキシフェニル)フルオレン(BCF)、9,9-ビス(3,5-ジメチル-4-ヒドロキシフェニル)フルオレン(BXF)等のフルオレン骨格を有するビスフェノール類が含まれる。 Examples of bisphenols in which L is —CR 1 R 2 — and R 1 and R 2 are bonded to each other to form an aromatic ring include 9,9-bis (3-methyl-4-hydroxyphenyl) Bisphenols having a fluorene skeleton such as fluorene (BCF) and 9,9-bis (3,5-dimethyl-4-hydroxyphenyl) fluorene (BXF) are included.
 ポリアリレートを構成する芳香族ジアルコール成分は、1種類であってもよいし、2種類以上であってもよい。 The aromatic dialcohol component constituting the polyarylate may be one kind or two or more kinds.
 これらの中でも、樹脂の溶剤に対する溶解性を高めたり、フィルムの金属との密着性を高めたりする観点では、例えば主鎖中に硫黄原子(-S-、-SO-又は-SO2-)を含有するビスフェノール類が好ましい。フィルムの耐熱性を高める観点では、例えば主鎖中に硫黄原子を含有するビスフェノール類や、シクロアルキレン骨格を有するビスフェノール類が好ましい。フィルムの複屈折を低減したり、耐摩耗性を高めたりする観点では、フルオレン骨格を有するビスフェノール類が好ましい。 Among these, from the viewpoint of increasing the solubility of the resin in the solvent or improving the adhesion of the film to the metal, for example, a sulfur atom (—S—, —SO— or —SO 2 —) is present in the main chain. Bisphenols contained are preferred. From the viewpoint of enhancing the heat resistance of the film, for example, bisphenols containing a sulfur atom in the main chain and bisphenols having a cycloalkylene skeleton are preferred. From the viewpoint of reducing the birefringence of the film or improving the wear resistance, bisphenols having a fluorene skeleton are preferred.
 シクロヘキサン骨格を有するビスフェノール類やフルオレン骨格を有するビスフェノール類は、イソプロピリデン基を含有するビスフェノール類と併用することが好ましい。その場合、シクロヘキサン骨格を有するビスフェノール類又はフルオレン骨格を有するビスフェノール類と、イソプロピリデン基を含有するビスフェノール類との含有比率は、10/90~90/10(モル比)、好ましくは20/80~80/20(モル比)としうる。 Bisphenols having a cyclohexane skeleton and bisphenols having a fluorene skeleton are preferably used in combination with bisphenols containing an isopropylidene group. In that case, the content ratio of the bisphenol having a cyclohexane skeleton or the bisphenol having a fluorene skeleton to the bisphenol having an isopropylidene group is 10/90 to 90/10 (molar ratio), preferably 20/80 to 80/20 (molar ratio).
 ポリアリレートは、本実施形態の効果を損なわない範囲で、芳香族ジアルコール成分以外の芳香族多価アルコール成分単位をさらに含んでもよい。芳香族多価アルコール成分の例には、特許4551503号公報の段落〔0015〕に記載の化合物が含まれる。具体的には、トリス(4-ヒドロキシフェニル)メタン、4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール、2,3,4,4’-テトラヒドロキシベンゾフェノン、4-[ビス(4-ヒドロキシフェニル)メチル]-2-メトキシフェノール、トリス(3-メチル-4-ヒドロキシフェニル)メタン等が含まれる。これらの芳香族多価アルコール成分単位の含有割合は、求められる特性に応じて適宜設定されうるが、芳香族ジアルコール成分単位及びそれ以外の芳香族多価アルコール成分単位の合計に対して例えば5モル%以下としうる。 The polyarylate may further contain an aromatic polyhydric alcohol component unit other than the aromatic dialcohol component as long as the effects of the present embodiment are not impaired. Examples of the aromatic polyhydric alcohol component include the compounds described in paragraph [0015] of Japanese Patent No. 4551503. Specifically, tris (4-hydroxyphenyl) methane, 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene] bisphenol, 2,3, 4,4′-tetrahydroxybenzophenone, 4- [bis (4-hydroxyphenyl) methyl] -2-methoxyphenol, tris (3-methyl-4-hydroxyphenyl) methane and the like are included. The content ratio of these aromatic polyhydric alcohol component units can be appropriately set according to the required characteristics, but is 5 for example with respect to the total of the aromatic dialcohol component unit and the other aromatic polyhydric alcohol component units. It may be less than mol%.
 (芳香族ジカルボン酸成分単位)
 芳香族ジカルボン酸成分単位を構成する芳香族ジカルボン酸は、テレフタル酸、イソフタル酸又はそれらの混合物でありうる。
(Aromatic dicarboxylic acid component unit)
The aromatic dicarboxylic acid constituting the aromatic dicarboxylic acid component unit may be terephthalic acid, isophthalic acid or a mixture thereof.
 フィルムの機械特性を高める等の観点から、テレフタル酸とイソフタル酸の混合物が好ましい。テレフタル酸とイソフタル酸の含有比率は、好ましくはテレフタル酸/イソフタル酸=90/10~10/90(モル比)、より好ましくは70/30~30/70、さらに好ましくは50/50である。テレフタル酸の含有比率が上記範囲であると、十分な重合度を有するポリアリレートが得られやすく、十分な機械的特性を有するフィルムが得られやすい。 From the viewpoint of enhancing the mechanical properties of the film, a mixture of terephthalic acid and isophthalic acid is preferable. The content ratio of terephthalic acid and isophthalic acid is preferably terephthalic acid / isophthalic acid = 90/10 to 10/90 (molar ratio), more preferably 70/30 to 30/70, and still more preferably 50/50. When the content ratio of terephthalic acid is in the above range, a polyarylate having a sufficient degree of polymerization is easily obtained, and a film having sufficient mechanical properties is easily obtained.
 ポリアリレートは、本実施形態の効果を損なわない範囲で、テレフタル酸及びイソフタル酸以外の芳香族ジカルボン酸成分単位をさらに含んでもよい。そのような芳香族ジカルボン酸成分の例には、オルトフタル酸、2,6-ナフタレンジカルボン酸、ジフェン酸、4、4’-ジカルボキシジフェニルエーテル、ビス(p-カルボキシフェニル)アルカン、4,4’-ジカルボキシフェニルスルホン等が含まれる。テレフタル酸及びイソフタル酸以外の芳香族ジカルボン酸成分単位の含有割合は、求められる特性に応じて適宜設定されうるが、テレフタル酸成分、イソフタル酸成分単位及びそれら以外の芳香族ジカルボン酸成分単位の合計に対して例えば5モル%以下としうる。 The polyarylate may further contain an aromatic dicarboxylic acid component unit other than terephthalic acid and isophthalic acid as long as the effects of the present embodiment are not impaired. Examples of such aromatic dicarboxylic acid components include orthophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenic acid, 4,4′-dicarboxydiphenyl ether, bis (p-carboxyphenyl) alkane, 4,4′- Dicarboxyphenyl sulfone and the like are included. The content ratio of aromatic dicarboxylic acid component units other than terephthalic acid and isophthalic acid can be appropriately set according to the required properties, but the total of terephthalic acid component, isophthalic acid component unit and other aromatic dicarboxylic acid component units For example, it may be 5 mol% or less.
 (ガラス転移温度)
 ポリアリレートのガラス転移温度は、260℃以上350℃以下であることが好ましく、265℃以上300℃未満であることがより好ましく、270℃以上300℃未満であることがさらに好ましい。
(Glass-transition temperature)
The glass transition temperature of the polyarylate is preferably 260 ° C. or higher and 350 ° C. or lower, more preferably 265 ° C. or higher and lower than 300 ° C., further preferably 270 ° C. or higher and lower than 300 ° C.
 ポリアリレートのガラス転移温度は、JIS K7121(1987)に準拠して測定されうる。具体的には、測定装置としてセイコーインスツル(株)製DSC6220を用いて、ポリアリレートの試料10mg、昇温速度20℃/分の条件で測定することができる。 The glass transition temperature of polyarylate can be measured according to JIS K7121 (1987). Specifically, using a DSC 6220 manufactured by Seiko Instruments Inc. as a measuring device, it can be measured under the conditions of a 10 mg polyarylate sample and a heating rate of 20 ° C./min.
 ポリアリレートのガラス転移温度は、ポリアリレートを構成する芳香族ジアルコール成分の種類等によって調整されうる。ガラス転移温度を高めるためには、例えば芳香族ジアルコール成分単位として「主鎖に硫黄原子を含有するビスフェノール類由来の単位」を含むことが好ましい。 The glass transition temperature of polyarylate can be adjusted by the type of aromatic dialcohol component constituting polyarylate. In order to increase the glass transition temperature, for example, it is preferable to include “units derived from bisphenols containing a sulfur atom in the main chain” as aromatic dialcohol component units.
 (固有粘度)
 ポリアリレートの固有粘度は、0.3~1.0dl/gであることが好ましく、0.4~0.9dl/gがより好ましく、0.45~0.8dl/gがさらに好ましく、0.5~0.7dl/gであることがさらに好ましい。ポリアリレートの固有粘度が0.3dl/g以上であると、樹脂組成物の分子量が一定以上となりやすく、十分な機械的特性や耐熱性を有するフィルムが得られやすい。ポリアリレートの固有粘度が1.0dl/g以下であると、製膜時の溶液粘度が過剰に高まるのを抑制しうる。
(Intrinsic viscosity)
The intrinsic viscosity of the polyarylate is preferably from 0.3 to 1.0 dl / g, more preferably from 0.4 to 0.9 dl / g, still more preferably from 0.45 to 0.8 dl / g. More preferably, it is 5 to 0.7 dl / g. When the intrinsic viscosity of polyarylate is 0.3 dl / g or more, the molecular weight of the resin composition tends to be a certain level or more, and a film having sufficient mechanical properties and heat resistance is easily obtained. When the intrinsic viscosity of the polyarylate is 1.0 dl / g or less, an excessive increase in the solution viscosity during film formation can be suppressed.
 固有粘度は、ISO1628-1に準拠して測定されうる。具体的には、1,1,2,2-テトラクロロエタンに対し、ポリアリレート試料を濃度1g/dlとなるように溶解させた溶液を調製する。この溶液の25℃における固有粘度を、ウベローデ型粘度管を用いて測定する。 The intrinsic viscosity can be measured in accordance with ISO1628-1. Specifically, a solution in which a polyarylate sample is dissolved in 1,1,2,2-tetrachloroethane so as to have a concentration of 1 g / dl is prepared. The intrinsic viscosity of this solution at 25 ° C. is measured using an Ubbelohde type viscosity tube.
 ポリアリレートの製造方法としては、公知の方法であってよく、好ましくは水と相溶しない有機溶剤に溶解させた芳香族ジカルボン酸ハライドとアルカリ水溶液に溶解させた芳香族ジアルコールとを混合する界面重合法(W.M.EARECKSON,J.Poly.Sci.XL399,1959年、特公昭40-1959号公報)でありうる。 The polyarylate production method may be a known method, preferably an interface in which an aromatic dicarboxylic acid halide dissolved in an organic solvent incompatible with water and an aromatic dialcohol dissolved in an alkaline aqueous solution are mixed. It may be a polymerization method (W. M. EARECKSON, J. Poly. Sci. XL 399, 1959, Japanese Patent Publication No. 40-1959).
 ポリアリレートの含有量は、ポリアリレートフィルム全体に対して50質量%以上、好ましくは60質量%以上、より好ましくは80質量%以上でありうる。 The content of polyarylate may be 50% by mass or more, preferably 60% by mass or more, more preferably 80% by mass or more with respect to the entire polyarylate film.
 〔溶媒〕
 本実施形態において、光学フィルムの製造に用いる溶媒、すなわち、上述した樹脂を攪拌装置の攪拌槽内で溶解させる溶媒としては、例えば、ジクロロメタン(塩化メチレン、メチレンクロライド)、クロロホルム、エタノール、ブタノール、イソプロパノール、N-メチル-2-ピロリドン、1,3-ジメチルイミダゾリジノン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m-クレゾール、フェノール、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、1,3-ジオキソラン、シクロヘキサノン、シクロペンタノン、1,4-ジオキサン、イプシロンカプロラクタム、テトラヒドロフラン(THF)等が使用可能であり、これらを1種または2種以上混合して用いることができる。また、これらの溶媒と併せて、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クロロベンゼン、o-ジクロロベンゼン等の貧溶媒を使用してもよい。
〔solvent〕
In the present embodiment, as a solvent used for manufacturing an optical film, that is, a solvent for dissolving the above-described resin in a stirring tank of a stirring device, for example, dichloromethane (methylene chloride, methylene chloride), chloroform, ethanol, butanol, isopropanol N-methyl-2-pyrrolidone, 1,3-dimethylimidazolidinone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylcaprolactam , Hexamethylphosphoramide, tetramethylene sulfone, dimethyl sulfoxide, m-cresol, phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, γ-buty Lactone, 1,3-dioxolane, cyclohexanone, cyclopentanone, 1,4-dioxane, epsilon-caprolactam, tetrahydrofuran (THF) or the like can be used, can be used by mixing one or more of them. In addition to these solvents, a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, o-dichlorobenzene may be used.
 〔添加剤〕
 本実施形態の光学フィルムの製造において、ドープに含有させる添加剤として、微粒子、可塑剤、紫外線吸収剤、酸化防止剤、糖エステル化合物、位相差調整剤、光安定剤、帯電防止剤、剥離剤、増粘剤などを用いてもよい。以下、主要な添加剤についてのみ説明する。
〔Additive〕
In the production of the optical film of the present embodiment, as additives to be contained in the dope, fine particles, plasticizer, ultraviolet absorber, antioxidant, sugar ester compound, retardation adjusting agent, light stabilizer, antistatic agent, release agent A thickener or the like may be used. Hereinafter, only main additives will be described.
 <微粒子(マット剤)>
 本実施形態の光学フィルムには、製膜時にフィルム表面に凹凸を付与し、すべり性を確保し、安定な巻取り形状を達成するためにマット剤を含有させることが望ましい。マット剤を含有することにより、作製された光学フィルムがハンドリングされる際に、傷が付いたり、搬送性が悪化するのを抑制することもできる。
<Fine particles (matting agent)>
The optical film of this embodiment preferably contains a matting agent in order to impart irregularities to the film surface during film formation, ensure slipperiness, and achieve a stable winding shape. By containing the matting agent, when the produced optical film is handled, it is possible to suppress damage and deterioration of transportability.
 マット剤としては、無機化合物の微粒子や樹脂の微粒子が挙げられる。無機化合物の微粒子の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等を挙げることができる。微粒子はケイ素を含むものが、濁度が低くなる点で好ましく、特に二酸化ケイ素が好ましい。 Examples of the matting agent include fine particles of inorganic compounds and fine particles of resin. Examples of fine particles of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, silicic acid Examples thereof include magnesium and calcium phosphate. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
 微粒子の一次粒子の平均粒径は、5~400nmの範囲内が好ましく、さらに好ましいのは10~300nmの範囲内である。これらは主に粒径0.05~0.3μmの範囲内の二次凝集体として含有されていてもよく、平均粒径80~400nmの範囲内の粒子であれば、凝集せずに一次粒子として含まれていることも好ましい。 The average primary particle size of the fine particles is preferably in the range of 5 to 400 nm, and more preferably in the range of 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 μm. If the particles have an average particle size of 80 to 400 nm, the primary particles are not aggregated. It is also preferable that it is contained as.
 光学フィルム中のこれらの微粒子の含有量は、0.01~3.0質量%の範囲内であることが好ましく、特に0.01~2.0質量%の範囲内であることが好ましい。 The content of these fine particles in the optical film is preferably in the range of 0.01 to 3.0% by mass, and particularly preferably in the range of 0.01 to 2.0% by mass.
 二酸化ケイ素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル株式会社製)の商品名で市販されており、使用することができる。 Silicon dioxide fine particles are commercially available under the trade names of, for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). .
 酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル株式会社製)の商品名で市販されており、使用することができる。 Zirconium oxide fine particles are commercially available, for example, under the trade names Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
 樹脂の微粒子の例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましい。例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン株式会社製)の商品名で市販されており、これらを使用することができる。 Examples of resin fine particles include silicone resin, fluororesin and acrylic resin. Silicone resins are preferred, and those having a three-dimensional network structure are particularly preferred. For example, these are commercially available under the trade names of Tospearl 103, 105, 108, 120, 145, 3120 and 240 (manufactured by Toshiba Silicone Co., Ltd.), and these can be used.
 これらの中でも、アエロジル200V、アエロジルR972V、アエロジルR812が、光学フィルムのヘイズを低く保ちながら、摩擦係数を下げる効果が大きいため、特に好ましく用いられる。 Among these, Aerosil 200V, Aerosil R972V, and Aerosil R812 are particularly preferably used because they have a large effect of reducing the friction coefficient while keeping the haze of the optical film low.
 <可塑剤>
 光学フィルムに添加する可塑剤として、ポリエステル樹脂を用いることができる。ポリエステル樹脂は、ジカルボン酸とジオールを重合することにより得られ、ジカルボン酸構成単位(ジカルボン酸に由来する構成単位)の70%以上が芳香族ジカルボン酸に由来し、かつジオール構成単位(ジオールに由来する構成単位)の70%以上が脂肪族ジオールに由来する。
<Plasticizer>
A polyester resin can be used as a plasticizer to be added to the optical film. The polyester resin is obtained by polymerizing a dicarboxylic acid and a diol, and 70% or more of the dicarboxylic acid structural unit (the structural unit derived from the dicarboxylic acid) is derived from the aromatic dicarboxylic acid, and the diol structural unit (derived from the diol). 70% or more of the structural unit is derived from an aliphatic diol.
 芳香族ジカルボン酸に由来する構成単位の割合は70%以上、好ましくは80%以上、さらに好ましくは90%以上である。脂肪族ジオールに由来する構成単位の割合は70%以上、好ましくは80%以上、さらに好ましくは90%以上である。ポリエステル樹脂は、2種以上を併用してもよい。 The proportion of the structural unit derived from the aromatic dicarboxylic acid is 70% or more, preferably 80% or more, and more preferably 90% or more. The proportion of the structural unit derived from the aliphatic diol is 70% or more, preferably 80% or more, and more preferably 90% or more. Two or more polyester resins may be used in combination.
 芳香族ジカルボン酸として、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等のナフタレンジカルボン酸、4,4′-ビフェニルジカルボン酸、3,4′-ビフェニルジカルボン酸等及びこれらのエステル形成性誘導体が例示できる。 Examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, naphthalenedicarboxylic acid such as 2,7-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, Examples include 3,4'-biphenyldicarboxylic acid and the like, and ester-forming derivatives thereof.
 ポリエステル樹脂には、本発明の目的を損なわない範囲で、アジピン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸や安息香酸、プロピオン酸、酪酸等のモノカルボン酸を用いることができる。 As the polyester resin, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid, and monocarboxylic acids such as benzoic acid, propionic acid, and butyric acid can be used without departing from the object of the present invention.
 脂肪族ジオールとして、エチレングリコール、1,3-プロピレンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、1,6-ヘキサンジオール等及びこれらのエステル形成性誘導体が例示できる。 Examples of the aliphatic diol include ethylene glycol, 1,3-propylene diol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, and ester-forming derivatives thereof.
 ポリエステル樹脂には、本実施形態の目的を損なわない範囲で、ブチルアルコール、ヘキシルアルコール、オクチルアルコール等のモノアルコール類や、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価アルコール類を用いることもできる。 As the polyester resin, monoalcohols such as butyl alcohol, hexyl alcohol, and octyl alcohol, and polyhydric alcohols such as trimethylolpropane, glycerin, and pentaerythritol can be used as long as the object of the present embodiment is not impaired. .
 ポリエステル樹脂の製造には、公知の方法である直接エステル化法やエステル交換法を適用することができる。ポリエステル樹脂の製造時に使用する重縮合触媒としては、公知の三酸化アンチモン、五酸化アンチモン等のアンチモン化合物、酸化ゲルマニウム等のゲルマニウム化合物、酢酸チタン等のチタン化合物、塩化アルミニウム等のアルミニウム化合物等が例示できるが、これらに限定されない。 A known esterification method or transesterification method can be applied to the production of the polyester resin. Examples of the polycondensation catalyst used in the production of the polyester resin include known antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds such as germanium oxide, titanium compounds such as titanium acetate, and aluminum compounds such as aluminum chloride. Although it can, it is not limited to these.
 好ましいポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート-イソフタレート共重合樹脂、ポリエチレン-1,4-シクロヘキサンジメチレン-テレフタレート共重合樹脂、ポリエチレン-2,6-ナフタレンジカルボキレート樹脂、ポリエチレン-2,6-ナフタレンジカルボキシレート-テレフタレート共重合樹脂、ポリエチレン-テレフタレート-4,4′-ビフェニルジカルボキシレート樹脂、ポリ-1,3-プロピレン-テレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリブチレン-2,6-ナフタレンジカルボキシレート樹脂等がある。 Preferred polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polyethylene-2,6-naphthalene dicarboxylate resin, polyethylene-2, 6-naphthalene dicarboxylate-terephthalate copolymer resin, polyethylene-terephthalate-4,4'-biphenyldicarboxylate resin, poly-1,3-propylene-terephthalate resin, polybutylene terephthalate resin, polybutylene-2,6-naphthalene There are dicarboxylate resins and the like.
 より好ましいポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート-イソフタレート共重合樹脂、ポリエチレン-1,4-シクロヘキサンジメチレン-テレフタレート共重合樹脂、ポリブチレンテレフタレート樹脂及びポリエチレン-2,6-ナフタレンジカルボキシレート樹脂が挙げられる。 More preferable polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polybutylene terephthalate resin, and polyethylene-2,6-naphthalene dicarboxylate. Resin.
 ポリエステル樹脂の固有粘度(フェノール/1,1,2,2-テトラクロロエタン=60/40質量比混合溶媒中、25℃で測定した値)は、0.7~2.0cm3/gの範囲内が好ましく、より好ましくは0.8~1.5cm3/gの範囲内である。固有粘度が0.7cm3/g以上であると、ポリエステル樹脂の分子量が充分に高いために、これを使用して得られるポリエステル樹脂組成物からなる成形物が、成形物として必要な機械的性質を有するとともに、透明性が良好となる。固有粘度が2.0cm3/g以下の場合、成形性が良好となる。他の可塑剤としては、特開2013-97279号公報の段落〔0056〕~〔0080〕の一般式(PEI)及び一般式(PEII)に記載の化合物を用いてよい。 The intrinsic viscosity of the polyester resin (phenol / 1,1,2,2-tetrachloroethane = value measured at 25 ° C. in a 60/40 mass ratio mixed solvent) is within a range of 0.7 to 2.0 cm 3 / g. Is preferable, and more preferably in the range of 0.8 to 1.5 cm 3 / g. When the intrinsic viscosity is 0.7 cm 3 / g or more, since the molecular weight of the polyester resin is sufficiently high, a molded product made of the polyester resin composition obtained by using the polyester resin has mechanical properties necessary as the molded product. And has good transparency. When the intrinsic viscosity is 2.0 cm 3 / g or less, the moldability is good. As other plasticizers, compounds described in the general formulas (PEI) and (PEII) in paragraphs [0056] to [0080] of JP2013-97279A may be used.
 〔実施例〕
 以下、本発明の具体的な実施例について説明するが、本発明はこれらの実施例に限定されるわけではない。
〔Example〕
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited to these examples.
 <攪拌装置A~Iの用意>
 まず、表1に示す条件を満足する攪拌装置A~Iを用意した。なお、各攪拌装置A~Iにおいて、攪拌槽101の幅(底面101aの直径)は2100mmであり、攪拌槽101内に樹脂および溶媒を投入したときの液面の高さは、第1の攪拌治具111の腕部113の最上部113aから500mm上方の位置であり、腕部113の最上部113aの底面101aからの高さは、2000mmであり、腕部113の長さLは1800mmであり、2本の腕部113の最上部113a同士の距離(第1の回転軸112に垂直な方向の離間距離)は、2050mmであり、第1の回転軸112と第2の回転軸122との距離は、750mmとした。
<Preparation of stirring devices A to I>
First, stirring devices A to I satisfying the conditions shown in Table 1 were prepared. In each of the stirring apparatuses A to I, the width of the stirring tank 101 (diameter of the bottom surface 101a) is 2100 mm, and the height of the liquid level when the resin and the solvent are put into the stirring tank 101 is the first stirring speed. It is a position 500 mm above the uppermost portion 113a of the arm portion 113 of the jig 111, the height from the bottom surface 101a of the uppermost portion 113a of the arm portion 113 is 2000 mm, and the length L of the arm portion 113 is 1800 mm. The distance between the uppermost portions 113a of the two arm portions 113 (separation distance in the direction perpendicular to the first rotation shaft 112) is 2050 mm, and the distance between the first rotation shaft 112 and the second rotation shaft 122 is The distance was 750 mm.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、各攪拌倒置A~Iの構成を模式的に示すと、図13~図18の通りである。これらの図では、第1の攪拌治具111の腕部113の高さ方向の中央部の位置を、位置Bで示している。 The configuration of each of the stirring inversions A to I is schematically shown in FIGS. 13 to 18. In these drawings, the position of the central portion in the height direction of the arm portion 113 of the first stirring jig 111 is indicated by a position B.
 <光学フィルム1の作製>
 (アクリル系樹脂1(共重合体A1)の合成)
 単量体として、スチレンを93.6質量部(90mol%)とアクリル酸7.2質量部(10mol%)と、エチルベンゼンを29.4質量部、2-エチルヘキサノールを3.3質量部の混合液に対し、2,2-ビス(4,4-ジターシャリーブチルパーオキサイド)プロパンを0.04質量部添加し、この重合液を、5.0Lの完全混合型反応器を有する重合装置に、1.67L/時で連続的に仕込んだ。この時、完全混合型反応器の温度は135℃に調整した。次いで、重合反応器より連続して排出される重合体溶液を2.7~4.0kPaに減圧されたベントタイプスクリュー式押出機に供給し、揮発分を除去してペレット状の共重合体A1を得た。共重合体A1における単量体単位の構成比率は、スチレン単量体が90mol%、アクリル酸単量体が10mol%であり、重量平均分子量は、30万であった。
<Preparation of optical film 1>
(Synthesis of acrylic resin 1 (copolymer A1))
As monomers, 93.6 parts by mass (90 mol%) of styrene, 7.2 parts by mass (10 mol%) of acrylic acid, 29.4 parts by mass of ethylbenzene, and 3.3 parts by mass of 2-ethylhexanol are mixed. 0.04 parts by mass of 2,2-bis (4,4-ditertiary butyl peroxide) propane was added to the liquid, and this polymerization liquid was added to a polymerization apparatus having a 5.0 L complete mixing reactor. Charged continuously at 1.67 L / hr. At this time, the temperature of the complete mixing reactor was adjusted to 135 ° C. Next, the polymer solution continuously discharged from the polymerization reactor is supplied to a vent type screw type extruder having a reduced pressure of 2.7 to 4.0 kPa to remove volatile matter, and the pellet-shaped copolymer A1 is removed. Got. The constituent ratio of the monomer unit in the copolymer A1 was 90 mol% for the styrene monomer, 10 mol% for the acrylic acid monomer, and the weight average molecular weight was 300,000.
 下記成分を、上記で用意した攪拌装置Aを用いて撹拌し、加熱しながら十分に溶解させて、ドープ1を調製した。このとき、攪拌装置Aの第1の攪拌治具の攪拌速度(回転速度)は50rpmであり、第2の攪拌治具の攪拌速度(回転速度)は500rpmであった。また、攪拌装置Aでの攪拌時間は、5時間であった。
 (ドープ1の組成)
 共重合体A1(スチレン:90mol%、アクリル酸:10mol%、重量平均分子量:30万)
                            100質量部
 マット剤 R812(日本アエロジル社製、シリカ粒子、平均粒径8nm)
                           0.30質量部
 塩化メチレン                     150質量部
 エタノール                        5質量部
The following components were stirred using the stirrer A prepared above and dissolved sufficiently with heating to prepare a dope 1. At this time, the stirring speed (rotation speed) of the first stirring jig of the stirring device A was 50 rpm, and the stirring speed (rotation speed) of the second stirring jig was 500 rpm. Moreover, the stirring time in the stirring apparatus A was 5 hours.
(Composition of dope 1)
Copolymer A1 (styrene: 90 mol%, acrylic acid: 10 mol%, weight average molecular weight: 300,000)
100 parts by mass Matting agent R812 (manufactured by Nippon Aerosil Co., Ltd., silica particles, average particle size 8 nm)
0.30 parts by mass Methylene chloride 150 parts by mass Ethanol 5 parts by mass
 調製したドープ1を、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が50%になるまで溶媒を蒸発させ、得られた膜状物を剥離張力162N/mでステンレスバンド支持体上から剥離した。 The prepared dope 1 was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. The solvent was evaporated on the stainless steel band support until the residual solvent amount reached 50%, and the obtained film-like material was peeled off from the stainless steel band support with a peeling tension of 162 N / m.
 次いで、剥離した膜状物を35℃で溶媒を蒸発させ、テンター延伸で幅手方向(TD方向)に1.25倍延伸しながら、135℃の乾燥温度で乾燥させた。ゾーン延伸による延伸を開始したときの残留溶媒量は20.0%、テンターによる延伸を開始したときの残留溶媒量は8.0%であった。 Next, the peeled film-like product was dried at a drying temperature of 135 ° C. while evaporating the solvent at 35 ° C. and stretching it 1.25 times in the width direction (TD direction) by tenter stretching. The residual solvent amount at the start of stretching by zone stretching was 20.0%, and the residual solvent amount at the start of stretching by tenter was 8.0%.
 テンターで延伸した後、130℃で5分間の緩和処理を施した後、120℃、140℃の乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させた。得られたフィルムを1.5m幅にスリットし、フィルム両端に幅10mm、高さ5μmのナーリング加工を施した後、コアに巻取り、アクリルフィルムとしての光学フィルム1を作製した。作製した光学フィルム1の膜厚は40μm、巻長は4000mであった。 After stretching with a tenter, a relaxation treatment was performed at 130 ° C. for 5 minutes, and then drying was completed while conveying a drying zone at 120 ° C. and 140 ° C. with a number of rollers. The obtained film was slit to a width of 1.5 m and subjected to a knurling process having a width of 10 mm and a height of 5 μm at both ends of the film, and then wound around a core to prepare an optical film 1 as an acrylic film. The produced optical film 1 had a film thickness of 40 μm and a winding length of 4000 m.
 <光学フィルム2~6の作製>
 攪拌装置Aの代わりに、攪拌装置B~Fを用いて樹脂等を攪拌し、ドープを調製した以外は、光学フィルム1の作製と同様にして、光学フィルム2~6をそれぞれ作製した。
<Preparation of optical films 2 to 6>
Optical films 2 to 6 were respectively prepared in the same manner as the optical film 1 except that the stirrers B to F were used instead of the stirrer A to stir the resin and prepare dope.
 <光学フィルム7の作製>
 (シクロオレフィン樹脂COP1の合成)
 シクロオレフィン樹脂として、以下のようにして合成したシクロオレフィン樹脂COP1を用意した。
<Preparation of optical film 7>
(Synthesis of cycloolefin resin COP1)
As the cycloolefin resin, a cycloolefin resin COP1 synthesized as follows was prepared.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 まず、上記構造式で表される8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン50g、分子量調節剤の1-へキセン2.3g及びトルエン100gを、窒素置換した反応容器に仕込み、80℃に加熱した。これにトリエチルアルミニウム(0.6モル/L)のトルエン溶液0.09ml、メタノール変性WCl6のトルエン溶液(0.025モル/L)0.29mlを加え、80℃で3時間反応させることにより重合体を得た。次いで、得られた開環共重合体溶液をオートクレーブに入れ、さらにトルエンを100g加えた。水添触媒であるRuHCl(CO)[P(C65)]3をモノマー仕込み量に対して2500ppm添加し、水素ガス圧を9~10MPaとし、160~165℃にて3時間の反応を行った。反応終了後、多量のメタノール溶液に沈殿させることにより水素添加物を得た。得られた開環重合体の水素添加物であるシクロオレフィン樹脂COP1は、ガラス転移温度(Tg)=167℃、重量平均分子量(Mw)=13.5×104、分子量分布(Mw/Mn)=3.06であった。 First, 50 g of 8-methoxycarbonyl-8-methyltetracyclo [4.4.0.12, 5.17,10] -3-dodecene represented by the above structural formula, 1-hexene as a molecular weight regulator, and 2. 3 g and 100 g of toluene were charged into a nitrogen-substituted reaction vessel and heated to 80 ° C. To this was added 0.09 ml of a toluene solution of triethylaluminum (0.6 mol / L) and 0.29 ml of a toluene solution of methanol-modified WCl 6 (0.025 mol / L), and the mixture was reacted at 80 ° C. for 3 hours. Coalescence was obtained. Next, the obtained ring-opening copolymer solution was put in an autoclave, and 100 g of toluene was further added. A hydrogenation catalyst, RuHCl (CO) [P (C 6 H 5 )] 3, was added at 2500 ppm based on the monomer charge, the hydrogen gas pressure was adjusted to 9-10 MPa, and the reaction was carried out at 160-165 ° C. for 3 hours. went. After completion of the reaction, a hydrogenated product was obtained by precipitation in a large amount of methanol solution. Cycloolefin resin COP1, which is a hydrogenated product of the obtained ring-opening polymer, has a glass transition temperature (Tg) = 167 ° C., a weight average molecular weight (Mw) = 13.5 × 10 4 , and a molecular weight distribution (Mw / Mn). = 3.06.
 (微粒子分散液の調製)
 12質量部の微粒子(アエロジル R972V、日本アエロジル(株)製)と、88質量部のエタノールとを、ディゾルバーで50分間撹拌混合した後、マントンゴーリーで分散し、微粒子分散液を調製した。
(Preparation of fine particle dispersion)
12 parts by mass of fine particles (Aerosil R972V, manufactured by Nippon Aerosil Co., Ltd.) and 88 parts by mass of ethanol were stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorey to prepare a fine particle dispersion.
 次に、攪拌装置A内で撹拌されているジクロロメタン(100質量部)に、100質量部の微粒子分散液を、ゆっくりと添加した。さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。 Next, 100 parts by mass of the fine particle dispersion was slowly added to dichloromethane (100 parts by mass) stirred in the stirrer A. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
 (主ドープの調製)
 下記組成の主ドープを調製した。まず、攪拌装置Aにジクロロメタン及びエタノールを添加した。ジクロロメタンの入った攪拌装置Aに、シクロオレフィン樹脂COP1、微粒子添加液を撹拌しながら投入した。これを加熱し、撹拌しながら樹脂を溶解し、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過して、主ドープを調製した。なお、攪拌装置Aでの攪拌条件は、光学フィルム1の作製と同様である。
 〈主ドープの組成〉
 シクロオレフィン樹脂COP1            100質量部
 塩化メチレン                    200質量部
 エタノール                      10質量部
 微粒子添加液                     10質量部
(Preparation of main dope)
A main dope having the following composition was prepared. First, dichloromethane and ethanol were added to the stirrer A. The cycloolefin resin COP1 and the fine particle addition liquid were added to the stirring apparatus A containing dichloromethane while stirring. The resin was dissolved while heating and stirring, and this was dissolved in Azumi Filter Paper No. The main dope was prepared by filtration using 244. In addition, the stirring conditions in the stirring apparatus A are the same as the production of the optical film 1.
<Composition of main dope>
Cycloolefin resin COP1 100 parts by mass Methylene chloride 200 parts by mass Ethanol 10 parts by mass Fine particle additive solution 10 parts by mass
 (光学フィルムの製膜)
 調製したドープ1を、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が30%になるまで溶媒を蒸発させ、得られた膜状物を剥離張力162N/mでステンレスバンド支持体上から剥離した。
(Optical film formation)
The prepared dope 1 was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. The solvent was evaporated on the stainless steel band support until the residual solvent amount was 30%, and the obtained film-like material was peeled off from the stainless steel band support with a peeling tension of 162 N / m.
 次いで、剥離した膜状物を35℃で溶媒を蒸発させ、テンター延伸で幅手方向(TD方向)に1.25倍延伸しながら、160℃の乾燥温度で乾燥させた。ゾーン延伸による延伸を開始したときの残留溶媒量は10.0%、テンターによる延伸を開始したときの残留溶媒量は5.0%であった。 Next, the peeled film-like material was dried at a drying temperature of 160 ° C. while evaporating the solvent at 35 ° C. and stretching it 1.25 times in the width direction (TD direction) by tenter stretching. The residual solvent amount when starting stretching by zone stretching was 10.0%, and the residual solvent amount when starting stretching by a tenter was 5.0%.
 テンターで延伸した後、160℃で5分間の緩和処理を施した後、120℃の乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させた。得られたフィルムを1.5m幅にスリットし、フィルム両端に幅10mm、高さ5μmのナーリング加工を施した後、コアに巻取り、シクロオレフィンとしての光学フィルム7を作製した。作製した光学フィルム7の膜厚は40μm、巻長は4000mであった。 After stretching with a tenter, a relaxation treatment was performed at 160 ° C. for 5 minutes, and then drying was completed while a 120 ° C. drying zone was conveyed by a number of rollers. The obtained film was slit to a width of 1.5 m and subjected to a knurling process having a width of 10 mm and a height of 5 μm at both ends of the film, and then wound on a core to prepare an optical film 7 as a cycloolefin. The produced optical film 7 had a film thickness of 40 μm and a winding length of 4000 m.
 <光学フィルム8の作製>
 用いる溶媒として、塩化メチレンの代わりに、塩化メチレンと同量のクロロホルムを用いて攪拌し、ドープを調製した以外は、光学フィルム1の作製と同様にして、光学フィルム8を作製した。
<Preparation of optical film 8>
As a solvent to be used, optical film 8 was prepared in the same manner as optical film 1 except that the dope was prepared by stirring using chloroform in the same amount as methylene chloride instead of methylene chloride.
 <光学フィルム9の作製>
 ドープ1の代わりに、アクリル系樹脂2を含む下記組成のドープ2を用いた以外は、光学フィルム1の作製と同様にして、光学フィルム9を作製した。
 (ドープ2の組成)
 アクリル系樹脂2(ダイヤナールBR85、三菱レイヨン(株)製)
                            100質量部
 マット剤 R812(日本アエロジル社製、シリカ粒子、平均粒径8nm)
                           0.30質量部
 塩化メチレン                     150質量部
 エタノール                        5質量部
<Preparation of optical film 9>
An optical film 9 was produced in the same manner as the production of the optical film 1 except that the dope 2 having the following composition including the acrylic resin 2 was used instead of the dope 1.
(Composition of dope 2)
Acrylic resin 2 (Dianar BR85, manufactured by Mitsubishi Rayon Co., Ltd.)
100 parts by mass Matting agent R812 (manufactured by Nippon Aerosil Co., Ltd., silica particles, average particle size 8 nm)
0.30 parts by mass Methylene chloride 150 parts by mass Ethanol 5 parts by mass
 <光学フィルム10の作製>
 (ポリアリレートの作製)
 反応容器中に、水2514重量部を添加した後、水酸化ナトリウム22.7重量部、芳香族ジアルコール成分として9,9-ビス(3,5-ジメチル-4-ヒドロキシフェニル)フルオレン(BCF)35.6重量部、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン(TMBPA)18.5重量部、分子量調節剤としてp-tert-ブチルフェノール(PTBP)0.049重量部を溶解させ、0.34重量部の重合触媒(トリブチルベンジルアンモニウムクロライド)を添加し、撹拌した。
<Preparation of optical film 10>
(Production of polyarylate)
After adding 2514 parts by weight of water to the reaction vessel, 22.7 parts by weight of sodium hydroxide and 9,9-bis (3,5-dimethyl-4-hydroxyphenyl) fluorene (BCF) as the aromatic dialcohol component 35.6 parts by weight, 1,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane (TMBPA) 18.5 parts by weight, p-tert-butylphenol (PTBP) 0.049 parts by weight as a molecular weight regulator Was dissolved, and 0.34 parts by weight of a polymerization catalyst (tributylbenzylammonium chloride) was added and stirred.
 一方、芳香族ジカルボン酸成分としてテレフタル酸クロライドとイソフタル酸クロライドの等量混合物26.8重量部を秤量し、945重量部の塩化メチレンに溶解させた。この塩化メチレン溶液を、前述で調製したアルカリ水溶液に撹拌下に添加し、重合を開始させた。重合反応温度は15℃以上20℃以下になるように調整した。重合は2時間行い、その後、系内に酢酸を添加して重合反応を停止させ、有機相と水相を分離した。 Meanwhile, 26.8 parts by weight of an equal mixture of terephthalic acid chloride and isophthalic acid chloride as an aromatic dicarboxylic acid component was weighed and dissolved in 945 parts by weight of methylene chloride. This methylene chloride solution was added to the alkaline aqueous solution prepared above with stirring to initiate polymerization. The polymerization reaction temperature was adjusted to be 15 ° C. or higher and 20 ° C. or lower. The polymerization was carried out for 2 hours, and then acetic acid was added to the system to stop the polymerization reaction, and the organic phase and the aqueous phase were separated.
 得られた有機相を、1回の洗浄毎に有機相の2倍量のイオン交換水で洗浄した後、有機相と水相に分離する操作を繰り返した。洗浄水の電気伝導度が50μS/cm未満となった時点で洗浄を終了した。50℃でホモミキサーを装着した温水槽中に洗浄後の有機相を投入して塩化メチレンを蒸発させて、粉末状のポリマーを得た。さらに脱水・乾燥を行い、ポリアリレートを得た。 The obtained organic phase was washed with twice the amount of ion-exchanged water of the organic phase for each washing, and then the operation of separating the organic phase and the aqueous phase was repeated. The washing was terminated when the electric conductivity of the washing water became less than 50 μS / cm. The organic phase after washing was put into a hot water tank equipped with a homomixer at 50 ° C., and methylene chloride was evaporated to obtain a powdery polymer. Furthermore, dehydration and drying were performed to obtain polyarylate.
 上記で作製したポリアリレート14質量部と、塩化メチレン100質量部とを攪拌装置Aに入れ、攪拌しながら徐々に45℃まで昇温し、完全に溶解させた。得られた溶液を、安積濾紙(株)製の安積濾紙No.244を使用して濾過して、ポリマー溶液を得た。 14 parts by mass of the polyarylate prepared above and 100 parts by mass of methylene chloride were put into a stirrer A and gradually heated to 45 ° C. with stirring to be completely dissolved. The obtained solution was used as Azumi filter paper No. manufactured by Azumi Filter Paper Co., Ltd. Filtration using 244 gave a polymer solution.
 得られたポリマー溶液を、ベルト流延装置のステンレスベルト上に均一に流延した。ステンレスベルトの長さは20mのものを用いた。ステンレスベルトの表面温度は35℃とし、かつ流延膜に35℃の風を当てて、残留溶媒量が38%となるまで溶剤を蒸発させた後、ステンレスベルトから剥離して膜状物を得た。 The obtained polymer solution was uniformly cast on a stainless belt of a belt casting apparatus. A stainless steel belt having a length of 20 m was used. The surface temperature of the stainless steel belt is 35 ° C. and 35 ° C. wind is applied to the casting film to evaporate the solvent until the residual solvent amount is 38%, and then the film is peeled off from the stainless steel belt to obtain a film-like material. It was.
 得られた膜状物を、ロール間の周速差を利用してMD方向に170℃で1.2倍に延伸した後、テンターでTD方向に230℃で1.2倍に延伸した。 The obtained film-like material was stretched 1.2 times at 170 ° C. in the MD direction using the peripheral speed difference between the rolls, and then stretched 1.2 times at 230 ° C. in the TD direction with a tenter.
 延伸後のフィルムを、125℃の乾燥装置内を多数のロールで搬送させながら30分間乾燥させた後、フィルムの幅方向両端部に幅15mm、高さ10μmのナーリング加工を施して、ポリアリレートフィルムとして膜厚40μmの光学フィルム10を得た。 The stretched film is dried for 30 minutes while being transported in a drying apparatus at 125 ° C. by a number of rolls, and then subjected to knurling with a width of 15 mm and a height of 10 μm at both ends in the width direction of the film. As a result, an optical film 10 having a film thickness of 40 μm was obtained.
 <光学フィルム11~13の作製>
 攪拌装置Aの代わりに、攪拌装置G~Iを用いて樹脂等を攪拌し、ドープを調製した以外は、光学フィルム1の作製と同様にして、光学フィルム11~13をそれぞれ作製した。
<Preparation of optical films 11-13>
Optical films 11 to 13 were respectively produced in the same manner as the optical film 1 except that the stirrers G to I were used instead of the stirrer A to stir the resin and prepare dope.
 <光学フィルム14の作製>
 用いる溶媒として、塩化メチレンの代わりに、塩化メチレンと同量のTHF(テトラヒドロフラン)を用いて攪拌し、ドープを調製した以外は、光学フィルム1の作製と同様にして、光学フィルム14を作製した。
<Preparation of optical film 14>
As a solvent to be used, optical film 14 was prepared in the same manner as optical film 1 except that instead of methylene chloride, the same amount of THF (tetrahydrofuran) as methylene chloride was used for stirring to prepare a dope.
 <評価>
 (膜厚ムラの評価)
 上記で作製した光学フィルム1~14のそれぞれについて、フィルムの幅手方向に10mm間隔で、マイクロメーターを用いて膜厚(μm)を測定し、各膜厚の最大値と最小値との差(μm)を膜厚ムラとした。なお、膜厚ムラが1.0μm以下であれば、実使用上問題がなく、1.0μmを超えると、実使用上問題があるレベルとなる。
<Evaluation>
(Evaluation of film thickness unevenness)
For each of the optical films 1 to 14 produced above, the film thickness (μm) was measured using a micrometer at intervals of 10 mm in the width direction of the film, and the difference between the maximum value and the minimum value of each film thickness ( μm) was defined as film thickness unevenness. In addition, if the film thickness unevenness is 1.0 μm or less, there is no problem in actual use, and if it exceeds 1.0 μm, the level is problematic in actual use.
 (輝点異物の評価)
 直交状態(クロスニコル)で配置した2枚の偏光板の間に、サンプル(作製した光学フィルム)を置き、一方の偏光板の外側から光を当てて、他方の偏光板の外側を透過型顕微鏡にて50倍の倍率で観察し、25cm2の面積で光って見える異物(輝点異物)の数をカウントし、1cm2あたりの個数に変換した。そして、上記観察を1サンプルあたり10か所行い、異物の数を測定し、その平均値を最終的な異物の数とした。そして、以下の評価基準に基づいて、異物について評価した。
 《評価基準》
  ◎・・・異物の個数が1cm2あたり0.15個以下である。
  ○・・・異物の個数が1cm2あたり0.15個よりも大きく、0.20個以下である。
  △・・・異物の個数が1cm2あたり0.20個よりも大きく、0.25個以下である。
  ×・・・異物の個数が1cm2あたり0.25個よりも大きく、0.35個以下であるが、実使用上問題がある。
  ××・・・異物の個数が1cm2あたり0.35個よりも大きく、実使用上かなり問題がある。
(Evaluation of bright spot foreign matter)
A sample (produced optical film) is placed between two polarizing plates arranged in an orthogonal state (crossed Nicols), light is applied from the outside of one polarizing plate, and the outside of the other polarizing plate is observed with a transmission microscope. Observation was performed at a magnification of 50 times, and the number of foreign matters (bright spot foreign matter) that appeared to shine in an area of 25 cm 2 was counted and converted to the number per 1 cm 2 . And the said observation was performed 10 places per sample, the number of foreign materials was measured, and the average value was made into the number of final foreign materials. And the foreign material was evaluated based on the following evaluation criteria.
"Evaluation criteria"
A: The number of foreign matters is 0.15 or less per 1 cm 2 .
○ The number of foreign matters is larger than 0.15 per 1 cm 2 and equal to or smaller than 0.20.
Δ: The number of foreign matters is greater than 0.20 and less than or equal to 0.25 per cm 2 .
X: The number of foreign matters is larger than 0.25 per 1 cm 2 and not larger than 0.35, but there is a problem in actual use.
XX: The number of foreign matters is larger than 0.35 per cm 2 , which is a considerable problem in actual use.
 各光学フィルム1~14の製膜に用いた樹脂、溶媒、攪拌装置と、各評価の結果を表2に示す。 Table 2 shows the resin, solvent, stirring device used for the production of each of the optical films 1 to 14, and the results of each evaluation.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2より、光学フィルム11では、膜厚ムラおよび異物の評価が不良となっている。これは、光学フィルム11の製膜に用いたドープは、攪拌装置Gを用いて調製されたものであるが、攪拌装置Gでは、図17で示したように、第2の攪拌治具121の最上部の第1の攪拌翼123aが、第1の攪拌治具111の腕部113の最上部113aから(1/3)Lだけ鉛直下方に下がった位置Aよりもさらに低い位置にあるため、比重が小さく、溶媒の上方に浮いている樹脂を第1の攪拌翼123aによって効率よく下方に引き込むことができず、その結果、攪拌ムラが生じたためと考えられる。 From Table 2, in the optical film 11, the film thickness unevenness and the evaluation of foreign matters are poor. This is because the dope used for forming the optical film 11 was prepared using the stirring device G. However, in the stirring device G, as shown in FIG. Since the uppermost first stirring blade 123a is located at a position lower than the position A, which is vertically lowered by (1/3) L from the uppermost portion 113a of the arm portion 113 of the first stirring jig 111, It is considered that the resin having a small specific gravity and floating above the solvent could not be efficiently drawn downward by the first stirring blade 123a, resulting in uneven stirring.
 また、光学フィルム12においても、膜厚ムラおよび異物の評価が不良となっている。これは、光学フィルム12の製膜に用いたドープは、攪拌装置Hを用いて調製されたものであるが、攪拌装置Hでは、表1に示すように、第2の攪拌治具121の最上部の第1の攪拌翼123aが、第2の回転軸122に垂直な方向に流れを作るディスク型の攪拌翼で構成されているため、やはり、比重が小さくて溶媒の上方に浮いている樹脂を第1の攪拌翼123aによって効率よく下方に引き込むことができず、その結果、攪拌ムラが生じたためと考えられる。 Also, in the optical film 12, the film thickness unevenness and the evaluation of foreign matters are poor. This is because the dope used for forming the optical film 12 was prepared by using the stirring device H. However, as shown in Table 1, in the stirring device H, the outermost portion of the second stirring jig 121 was used. Since the upper first stirring blade 123a is composed of a disk-type stirring blade that creates a flow in a direction perpendicular to the second rotating shaft 122, the resin having a small specific gravity and floating above the solvent is also used. This is probably because the first agitating blade 123a could not efficiently draw downward, and as a result, uneven stirring occurred.
 また、光学フィルム13においても、膜厚ムラおよび異物の評価が不良となっている。これは、光学フィルム13の製膜に用いたドープは、攪拌装置Iを用いて調製されたものであるが、攪拌装置Iでは、図18で示したように、第2の攪拌治具121の攪拌翼が第1の攪拌翼123aのみで構成されており、第1の攪拌翼123aによって下方に引き込んだ樹脂を、腕部113との間でせん断方向に攪拌することができず、その結果、攪拌ムラが大きく生じたためと考えられる。 Also, in the optical film 13, the film thickness unevenness and the evaluation of foreign matters are poor. This is because the dope used for forming the optical film 13 was prepared by using the stirring device I. In the stirring device I, as shown in FIG. The stirring blade is composed only of the first stirring blade 123a, and the resin drawn downward by the first stirring blade 123a cannot be stirred in the shear direction with the arm portion 113, and as a result, This is thought to be due to large unevenness in stirring.
 また、光学フィルム14おいても、膜厚ムラおよび異物の評価が不良となっている。これは、光学フィルム13の製膜で用いた樹脂は溶媒よりも比重が大きく、重たいため、攪拌槽101内で攪拌しても樹脂が上方に流れず、その結果、攪拌ムラが生じたためと考えられる。 Also, in the optical film 14, the film thickness unevenness and the evaluation of the foreign matter are poor. This is because the resin used in the formation of the optical film 13 has a specific gravity greater than that of the solvent and is heavier. Therefore, even if the resin is stirred in the stirring tank 101, the resin does not flow upward, resulting in uneven stirring. It is done.
 これに対して、光学フィルム1~10においては、膜厚ムラおよび異物の評価がいずれも良好となっている。これは、光学フィルム1~10の製膜で用いたドープは、攪拌装置A~Fのいずれかを用いて調製されたものであるが、これらの攪拌装置では、(1)第2の攪拌治具121の第1の攪拌翼123aが、位置Aを含んでこれよりも上方に位置し、かつ、樹脂の鉛直方向の流れを引き起こす攪拌翼(プロペラ型、パドル型)で構成されていること、(2)第2の攪拌翼123bが、位置Bよりも下方に位置し、かつ、第2の回転軸122に垂直な方向の流れを引き起こす攪拌翼(ディスク型、タービン型)で構成されていることにより、攪拌槽101内で均一な攪拌ができているためと考えられる。つまり、上記(1)および(2)により、第1の攪拌翼123aによる上下方向の攪拌と、第2の攪拌翼123bおよび腕部113によるせん断方向の攪拌とが行われるため、溶媒と樹脂との比重差Δが、0.1<Δ<0.5であっても、攪拌槽101内の樹脂および溶媒が均一にかつ効率よく攪拌され、攪拌ムラが低減されたものと考えられる。 On the other hand, in the optical films 1 to 10, the film thickness unevenness and the evaluation of foreign matters are both good. This is because the dope used in the production of the optical films 1 to 10 was prepared by using any of the stirring devices A to F. In these stirring devices, (1) the second stirring treatment was performed. The first stirring blade 123a of the tool 121 includes a position A and is positioned above this, and is configured with a stirring blade (propeller type, paddle type) that causes the resin to flow in the vertical direction. (2) The second stirring blade 123b is configured by a stirring blade (disk type, turbine type) that is positioned below the position B and causes a flow in a direction perpendicular to the second rotation shaft 122. This is considered to be because uniform stirring is achieved in the stirring tank 101. That is, according to the above (1) and (2), the vertical stirring by the first stirring blade 123a and the shearing stirring by the second stirring blade 123b and the arm portion 113 are performed, so that the solvent and the resin Even if the specific gravity difference Δ is 0.1 <Δ <0.5, it is considered that the resin and the solvent in the stirring tank 101 were uniformly and efficiently stirred, and the stirring unevenness was reduced.
 特に、攪拌装置Fでは、第2の攪拌治具121が3つの攪拌翼を有しており、攪拌がさらに効率よく行われるため、攪拌ムラのさらなる低減によって膜厚ムラおよび異物の評価がさらに良好になっているものと考えられる。 In particular, in the stirring device F, since the second stirring jig 121 has three stirring blades and stirring is performed more efficiently, the evaluation of film thickness unevenness and foreign matter is further improved by further reducing stirring unevenness. It is considered that.
 <攪拌装置J~Lの用意>
 次に、表3に示す条件を満足する攪拌装置J~Lを用意した。攪拌装置Jは、攪拌装置Aの第1の攪拌治具の腕部の数を2個から1個に変更した以外は、攪拌装置Aと同様の構成である。攪拌装置Kは、攪拌装置Aの第1の攪拌治具の腕部の数を2個から3個に変更した以外は、攪拌装置Aと同様の構成である。このとき、3個の腕部は、第1の回転軸回りに、120度ずつ等間隔で設けられているものとする。攪拌装置Lは、攪拌装置Aの第1の攪拌治具の腕部の数を2個から4個に変更した以外は、攪拌装置Aと同様の構成である。このとき、4個の腕部は、第1の回転軸回りに、90度ずつ等間隔で設けられているものとする。
<Preparation of stirring devices J to L>
Next, stirring devices J to L satisfying the conditions shown in Table 3 were prepared. The stirring device J has the same configuration as the stirring device A except that the number of arms of the first stirring jig of the stirring device A is changed from two to one. The stirring device K has the same configuration as the stirring device A except that the number of arms of the first stirring jig of the stirring device A is changed from two to three. At this time, it is assumed that the three arm portions are provided at equal intervals of 120 degrees around the first rotation axis. The stirring device L has the same configuration as the stirring device A except that the number of arms of the first stirring jig of the stirring device A is changed from two to four. At this time, it is assumed that the four arm portions are provided at equal intervals of 90 degrees around the first rotation axis.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 <光学フィルム15~17の作製>
 攪拌装置Aの代わりに、攪拌装置J~Lを用いて樹脂等を攪拌し、ドープを調製した以外は、光学フィルム1の作製と同様にして、光学フィルム15~17をそれぞれ作製した。
<Preparation of optical films 15 to 17>
Optical films 15 to 17 were respectively prepared in the same manner as the optical film 1 except that the stirrers J to L were used instead of the stirrer A to stir the resin and prepare dope.
 <攪拌装置M~Oの用意>
 次に、表4に示す条件を満足する攪拌装置M~Oを用意した。攪拌装置Mは、攪拌装置Aの第2の攪拌治具の数を2個から1個に変更した以外は、攪拌装置Aと同様の構成である。攪拌装置Nは、攪拌装置Aの第2の攪拌治具の数を2個から3個に変更した以外は、攪拌装置Aと同様の構成である。このとき、3個の第2の攪拌治具は、第2の回転軸回りに、120度ずつ等間隔で設けられているものとする。攪拌装置Oは、攪拌装置Aの第2の攪拌治具の数を2個から4個に変更した以外は、攪拌装置Aと同様の構成である。このとき、4個の第2の攪拌治具は、第2の回転軸回りに、90度ずつ等間隔で設けられているものとする。
<Preparation of stirring devices M to O>
Next, stirring devices M to O satisfying the conditions shown in Table 4 were prepared. The stirring device M has the same configuration as the stirring device A except that the number of second stirring jigs of the stirring device A is changed from two to one. The stirring device N has the same configuration as the stirring device A except that the number of second stirring jigs of the stirring device A is changed from two to three. At this time, it is assumed that the three second stirring jigs are provided at equal intervals of 120 degrees around the second rotation axis. The stirring device O has the same configuration as the stirring device A except that the number of second stirring jigs of the stirring device A is changed from two to four. At this time, it is assumed that the four second stirring jigs are provided at equal intervals of 90 degrees around the second rotation axis.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 <光学フィルム18~20の作製>
 攪拌装置Aの代わりに、攪拌装置M~Oを用いて樹脂等を攪拌し、ドープを調製した以外は、光学フィルム1の作製と同様にして、光学フィルム18~20をそれぞれ作製した。
<Preparation of optical films 18-20>
Optical films 18 to 20 were respectively prepared in the same manner as the optical film 1 except that the dope was prepared by stirring the resin and the like using the stirring devices M to O instead of the stirring device A.
 上記で作製した光学フィルム15~20について、光学フィルム1等と同様に、膜厚ムラおよび異物について評価した。その評価の結果を表5に示す。 The optical films 15 to 20 produced above were evaluated for film thickness unevenness and foreign matter in the same manner as the optical film 1 and the like. The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 光学フィルム15の製膜で用いた攪拌装置Jは、攪拌装置Aに比べて腕部の数が少ない。また、光学フィルム18の製膜で用いた攪拌装置Mは、攪拌装置Aに比べて第2の攪拌治具の数が少ない。しかし、これらの攪拌装置JおよびMは、上記(1)および(2)の条件を満足していることに代わりはない。したがって、光学フィルム15および18では、光学フィルム1よりも膜厚ムラおよび異物の評価は低くなっているが、実使用上問題のないレベルであり、攪拌装置JおよびMによっても攪拌ムラを低減する効果は得られていると言える。 The stirring device J used for forming the optical film 15 has fewer arm portions than the stirring device A. Further, the stirring device M used for forming the optical film 18 has a smaller number of second stirring jigs than the stirring device A. However, these stirring devices J and M are not substitute for satisfying the above conditions (1) and (2). Therefore, in the optical films 15 and 18, the film thickness unevenness and the evaluation of foreign matters are lower than those of the optical film 1, but the level is not problematic in actual use, and the stirring unevenness J and M are also reduced. It can be said that the effect is obtained.
 また、光学フィルム16~17の製膜で用いた攪拌装置KおよびLは、攪拌装置Aに比べて腕部の数が多いため、攪拌装置Aに比べて攪拌効率がさらに向上して攪拌ムラがさらに低減され、膜厚ムラおよび異物の評価がさらに良好になったものと考えられる。 In addition, since the stirring devices K and L used in the production of the optical films 16 to 17 have more arms than the stirring device A, the stirring efficiency is further improved compared to the stirring device A, and uneven stirring is caused. It is considered that the film thickness was further reduced, and the evaluation of film thickness unevenness and foreign matter was further improved.
 また、光学フィルム19~20の製膜で用いた攪拌装置NおよびOは、攪拌装置Aに比べて第2の攪拌治具の数が多いため、攪拌装置Aに比べて攪拌効率がさらに向上して攪拌ムラがさらに低減され、膜厚ムラおよび異物の評価がさらに良好になったものと考えられる。 In addition, the stirring devices N and O used in the production of the optical films 19 to 20 have more second stirring jigs than the stirring device A, so that the stirring efficiency is further improved compared to the stirring device A. It is considered that the unevenness of stirring was further reduced, and the evaluation of unevenness of film thickness and foreign matters was further improved.
 〔補足〕
 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。
[Supplement]
Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.
 以上で説明した本実施形態の光学フィルムの製造方法は、以下のように表現することができる。 The manufacturing method of the optical film of the present embodiment described above can be expressed as follows.
 1.溶液流延製膜法による光学フィルムの製造方法であって、
 少なくとも樹脂および溶媒を攪拌槽にて攪拌してドープを調製する攪拌調製工程と、
 前記攪拌調製工程にて調製されたドープを支持体上に流延する流延工程とを含み、
 前記樹脂は、アクリル系樹脂、シクロオレフィン樹脂、ポリアリレート樹脂のいずれかであり、
 前記樹脂の比重をAとし、前記溶媒の比重をBとし、比重差(B-A)をΔとしたとき、
   0.1<Δ<0.5
であり、
 前記攪拌槽には、第1の攪拌治具および第2の攪拌治具が設けられており、
 前記第1の攪拌治具は、前記攪拌槽の底面の中心を通る鉛直方向の軸上に位置する第1の回転軸と、前記第1の回転軸の最下部から、前記攪拌槽内で前記最下部よりも上方位置であって前記第1の回転軸から回転半径方向に離れた位置まで延びる腕部とを有し、
 前記第2の攪拌治具は、前記第1の回転軸と前記腕部との間のスペースを通るように鉛直方向に延びる前記第2の回転軸と、鉛直方向に沿って並ぶように前記第2の回転軸に取り付けられる少なくとも2つの攪拌翼とを有し、
 前記第1の攪拌治具の前記腕部の鉛直方向に沿った長さをLとし、前記第2の攪拌治具の前記少なくとも2つの攪拌翼のうち、最上部の攪拌翼およびその1つ下方に位置する攪拌翼を、それぞれ第1の攪拌翼および第2の攪拌翼としたとき、
 前記第1の攪拌翼は、前記第1の攪拌治具の前記腕部の最上部から(1/3)Lだけ鉛直下方に下がった位置を含んでそれよりも上方に位置し、前記第2の回転軸を中心とする回転により、前記樹脂の鉛直方向の流れを引き起こす攪拌翼で構成されており、
 前記第2の攪拌翼は、前記第1の攪拌治具の前記腕部の最上部から(1/3)Lだけ鉛直下方に下がった位置よりも下方に位置し、前記第2の回転軸を中心とする回転により、前記第1の攪拌翼によって鉛直下方に引き込まれた前記樹脂の、前記第2の回転軸に垂直な方向の流れを引き起こす攪拌翼で構成されていることを特徴とする光学フィルムの製造方法。
1. A method for producing an optical film by a solution casting method,
A stirring preparation step of preparing a dope by stirring at least a resin and a solvent in a stirring tank;
A casting step of casting the dope prepared in the stirring preparation step on a support,
The resin is any one of an acrylic resin, a cycloolefin resin, and a polyarylate resin,
When the specific gravity of the resin is A, the specific gravity of the solvent is B, and the specific gravity difference (BA) is Δ,
0.1 <Δ <0.5
And
The stirring tank is provided with a first stirring jig and a second stirring jig,
The first stirring jig includes a first rotating shaft located on a vertical axis passing through the center of the bottom surface of the stirring tank, and a lowermost portion of the first rotating shaft, and the first stirring jig is moved in the stirring tank. An arm portion extending from the first rotation axis to a position away from the first rotation axis in a rotational radius direction above the lowermost portion;
The second agitating jig is arranged such that the second agitation jig is aligned along the vertical direction with the second rotation axis extending in the vertical direction so as to pass through the space between the first rotation axis and the arm portion. Having at least two stirring blades attached to two rotating shafts,
The length along the vertical direction of the arm portion of the first stirring jig is L, and among the at least two stirring blades of the second stirring jig, the uppermost stirring blade and one lower side thereof When the stirring blades located at 1 are respectively the first stirring blade and the second stirring blade,
The first stirring blade is located above and including a position vertically lowered by (1/3) L from the uppermost portion of the arm portion of the first stirring jig, and the second stirring blade It is composed of a stirring blade that causes a vertical flow of the resin by rotation about the rotation axis of
The second agitating blade is located below a position vertically lowered by (1/3) L from the uppermost part of the arm portion of the first agitating jig, and the second rotating shaft is An optical system comprising: an agitating blade that causes a flow of the resin drawn vertically downward by the first agitating blade in a direction perpendicular to the second rotation axis by rotation about the center. A method for producing a film.
 2.   0.1<Δ<0.31
であることを特徴とする前記1に記載の光学フィルムの製造方法。
2. 0.1 <Δ <0.31
2. The method for producing an optical film as described in 1 above, wherein
 3.前記溶媒は、塩化メチレンまたはクロロホルムを含むことを特徴とする前記1または2に記載の光学フィルムの製造方法。 3. 3. The method for producing an optical film as described in 1 or 2 above, wherein the solvent contains methylene chloride or chloroform.
 4.前記第1の攪拌翼は、パドル型またはプロペラ型の攪拌翼であることを特徴とする前記1から3のいずれかに記載の光学フィルムの製造方法。 4. 4. The method for producing an optical film according to any one of 1 to 3, wherein the first stirring blade is a paddle type or propeller type stirring blade.
 5.前記第2の攪拌翼は、タービン型またはディスク型の攪拌翼であることを特徴とする前記1から4のいずれかに記載の光学フィルムの製造方法。 5. 5. The method for producing an optical film as described in any one of 1 to 4, wherein the second stirring blade is a turbine-type or disk-type stirring blade.
 6.前記第1の攪拌治具は、アンカー型またはアンカーパドル型の攪拌翼で構成されていることを特徴とする前記1から5のいずれかに記載の光学フィルムの製造方法。 6. 6. The method of manufacturing an optical film as described in any one of 1 to 5, wherein the first stirring jig is configured by an anchor type or an anchor paddle type stirring blade.
 7.前記第2の攪拌治具は、前記第2の攪拌翼の1つ下方に位置する第3の攪拌翼をさらに有しており、
 前記第3の攪拌翼は、タービン型またはディスク型の攪拌翼であることを特徴とする前記1から6のいずれかに記載の光学フィルムの製造方法。
7). The second stirring jig further includes a third stirring blade positioned one lower than the second stirring blade,
The method for producing an optical film as described in any one of 1 to 6, wherein the third stirring blade is a turbine-type or disk-type stirring blade.
 8.前記第1の攪拌治具は、前記腕部を、前記第1の回転軸に垂直な面内で、前記第1の回転軸周りに等角度間隔で複数有していることを特徴とする前記1から7のいずれかに記載の光学フィルムの製造方法。 8. The first stirring jig has a plurality of the arm portions at equiangular intervals around the first rotation axis in a plane perpendicular to the first rotation axis. The manufacturing method of the optical film in any one of 1-7.
 9.前記第2の攪拌治具は、前記攪拌槽内で、前記第1の攪拌治具の前記第1の回転軸に垂直な面内で、前記第1の回転軸周りに等角度間隔で複数設けられていることを特徴とする前記1から8のいずれかに記載の光学フィルムの製造方法。 9. A plurality of the second stirring jigs are provided at equal angular intervals around the first rotation axis in a plane perpendicular to the first rotation axis of the first stirring jig in the stirring tank. 9. The method for producing an optical film as described in any one of 1 to 8 above, wherein
 10.前記等角度間隔は、180°間隔であることを特徴とする前記8または9に記載の光学フィルムの製造方法。 10. 10. The method for producing an optical film as described in 8 or 9, wherein the equiangular intervals are 180 ° intervals.
 本発明は、溶液流延製膜法による光学フィルムの製造に利用可能である。 The present invention can be used for the production of an optical film by a solution casting film forming method.
 101   攪拌槽
 101a  庭面
 111   第1の攪拌治具
 112   第1の回転軸
 112a  最下部
 113   腕部
 113a  最上部
 121   第2の攪拌治具
 122   第2の回転軸
 123   攪拌翼
 123a  第1の攪拌翼
 123b  第2の攪拌翼
 123c  第3の攪拌翼
   A   位置
   F   光学フィルム
   S1  攪拌調製工程
   S2  流延工程
DESCRIPTION OF SYMBOLS 101 Agitation tank 101a Garden surface 111 1st stirring jig 112 1st rotating shaft 112a Bottom part 113 Arm part 113a Top part 121 2nd stirring jig 122 2nd rotating shaft 123 Stirring blade 123a 1st stirring blade 123b 2nd stirring blade 123c 3rd stirring blade A position F optical film S1 stirring preparation process S2 casting process

Claims (10)

  1.  溶液流延製膜法による光学フィルムの製造方法であって、
     少なくとも樹脂および溶媒を攪拌槽にて攪拌してドープを調製する攪拌調製工程と、
     前記攪拌調製工程にて調製されたドープを支持体上に流延する流延工程とを含み、
     前記樹脂は、アクリル系樹脂、シクロオレフィン樹脂、ポリアリレート樹脂のいずれかであり、
     前記樹脂の比重をAとし、前記溶媒の比重をBとし、比重差(B-A)をΔとしたとき、
       0.1<Δ<0.5
    であり、
     前記攪拌槽には、第1の攪拌治具および第2の攪拌治具が設けられており、
     前記第1の攪拌治具は、前記攪拌槽の底面の中心を通る鉛直方向の軸上に位置する第1の回転軸と、前記第1の回転軸の最下部から、前記攪拌槽内で前記最下部よりも上方位置であって前記第1の回転軸から回転半径方向に離れた位置まで延びる腕部とを有し、
     前記第2の攪拌治具は、前記第1の回転軸と前記腕部との間のスペースを通るように鉛直方向に延びる前記第2の回転軸と、鉛直方向に沿って並ぶように前記第2の回転軸に取り付けられる少なくとも2つの攪拌翼とを有し、
     前記第1の攪拌治具の前記腕部の鉛直方向に沿った長さをLとし、前記第2の攪拌治具の前記少なくとも2つの攪拌翼のうち、最上部の攪拌翼およびその1つ下方に位置する攪拌翼を、それぞれ第1の攪拌翼および第2の攪拌翼としたとき、
     前記第1の攪拌翼は、前記第1の攪拌治具の前記腕部の最上部から(1/3)Lだけ鉛直下方に下がった位置を含んでそれよりも上方に位置し、前記第2の回転軸を中心とする回転により、前記樹脂の鉛直方向の流れを引き起こす攪拌翼で構成されており、
     前記第2の攪拌翼は、前記第1の攪拌治具の前記腕部の最上部から(1/3)Lだけ鉛直下方に下がった位置よりも下方に位置し、前記第2の回転軸を中心とする回転により、前記第1の攪拌翼によって鉛直下方に引き込まれた前記樹脂の、前記第2の回転軸に垂直な方向の流れを引き起こす攪拌翼で構成されていることを特徴とする光学フィルムの製造方法。
    A method for producing an optical film by a solution casting method,
    A stirring preparation step of preparing a dope by stirring at least a resin and a solvent in a stirring tank;
    A casting step of casting the dope prepared in the stirring preparation step on a support,
    The resin is any one of an acrylic resin, a cycloolefin resin, and a polyarylate resin,
    When the specific gravity of the resin is A, the specific gravity of the solvent is B, and the specific gravity difference (BA) is Δ,
    0.1 <Δ <0.5
    And
    The stirring tank is provided with a first stirring jig and a second stirring jig,
    The first stirring jig includes a first rotating shaft located on a vertical axis passing through the center of the bottom surface of the stirring tank, and a lowermost portion of the first rotating shaft, and the first stirring jig is moved in the stirring tank. An arm portion extending from the first rotation axis to a position away from the first rotation axis in a rotational radius direction above the lowermost portion;
    The second agitating jig is arranged such that the second agitation jig is aligned along the vertical direction with the second rotation axis extending in the vertical direction so as to pass through the space between the first rotation axis and the arm portion. Having at least two stirring blades attached to two rotating shafts,
    The length along the vertical direction of the arm portion of the first stirring jig is L, and among the at least two stirring blades of the second stirring jig, the uppermost stirring blade and one lower side thereof When the stirring blades located at 1 are respectively the first stirring blade and the second stirring blade,
    The first stirring blade is located above and including a position vertically lowered by (1/3) L from the uppermost portion of the arm portion of the first stirring jig, and the second stirring blade It is composed of a stirring blade that causes a vertical flow of the resin by rotation about the rotation axis of
    The second agitating blade is located below a position vertically lowered by (1/3) L from the uppermost part of the arm portion of the first agitating jig, and the second rotating shaft is An optical system comprising: an agitating blade that causes a flow of the resin drawn vertically downward by the first agitating blade in a direction perpendicular to the second rotation axis by rotation about the center. A method for producing a film.
  2.    0.1<Δ<0.31
    であることを特徴とする請求項1に記載の光学フィルムの製造方法。
    0.1 <Δ <0.31
    The method for producing an optical film according to claim 1, wherein:
  3.  前記溶媒は、塩化メチレンまたはクロロホルムを含むことを特徴とする請求項1または2に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1, wherein the solvent contains methylene chloride or chloroform.
  4.  前記第1の攪拌翼は、パドル型またはプロペラ型の攪拌翼であることを特徴とする請求項1から3のいずれかに記載の光学フィルムの製造方法。 4. The method for producing an optical film according to claim 1, wherein the first stirring blade is a paddle type or propeller type stirring blade.
  5.  前記第2の攪拌翼は、タービン型またはディスク型の攪拌翼であることを特徴とする請求項1から4のいずれかに記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 4, wherein the second stirring blade is a turbine-type or disk-type stirring blade.
  6.  前記第1の攪拌治具は、アンカー型またはアンカーパドル型の攪拌翼で構成されていることを特徴とする請求項1から5のいずれかに記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 5, wherein the first stirring jig includes an anchor type or an anchor paddle type stirring blade.
  7.  前記第2の攪拌治具は、前記第2の攪拌翼の1つ下方に位置する第3の攪拌翼をさらに有しており、
     前記第3の攪拌翼は、タービン型またはディスク型の攪拌翼であることを特徴とする請求項1から6のいずれかに記載の光学フィルムの製造方法。
    The second stirring jig further includes a third stirring blade positioned one lower than the second stirring blade,
    The method for producing an optical film according to claim 1, wherein the third stirring blade is a turbine-type or disk-type stirring blade.
  8.  前記第1の攪拌治具は、前記腕部を、前記第1の回転軸に垂直な面内で、前記第1の回転軸周りに等角度間隔で複数有していることを特徴とする請求項1から7のいずれかに記載の光学フィルムの製造方法。 The first agitating jig has a plurality of the arm portions at equiangular intervals around the first rotation axis in a plane perpendicular to the first rotation axis. Item 8. A method for producing an optical film according to any one of Items 1 to 7.
  9.  前記第2の攪拌治具は、前記攪拌槽内で、前記第1の攪拌治具の前記第1の回転軸に垂直な面内で、前記第1の回転軸周りに等角度間隔で複数設けられていることを特徴とする請求項1から8のいずれかに記載の光学フィルムの製造方法。 A plurality of the second stirring jigs are provided at equal angular intervals around the first rotation axis in a plane perpendicular to the first rotation axis of the first stirring jig in the stirring tank. 9. The method for producing an optical film according to claim 1, wherein the optical film is produced.
  10.  前記等角度間隔は、180°間隔であることを特徴とする請求項8または9に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 8 or 9, wherein the equiangular intervals are 180 ° intervals.
PCT/JP2017/020867 2016-08-10 2017-06-05 Method for manufacturing optical film WO2018029955A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018533437A JP6911863B2 (en) 2016-08-10 2017-06-05 Optical film manufacturing method
CN201780049107.7A CN109641374B (en) 2016-08-10 2017-06-05 Method for manufacturing optical film
KR1020187028465A KR102136476B1 (en) 2016-08-10 2017-06-05 Manufacturing method of optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016157676 2016-08-10
JP2016-157676 2016-08-10

Publications (1)

Publication Number Publication Date
WO2018029955A1 true WO2018029955A1 (en) 2018-02-15

Family

ID=61162119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020867 WO2018029955A1 (en) 2016-08-10 2017-06-05 Method for manufacturing optical film

Country Status (4)

Country Link
JP (1) JP6911863B2 (en)
KR (1) KR102136476B1 (en)
CN (1) CN109641374B (en)
WO (1) WO2018029955A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039326U (en) * 1983-08-26 1985-03-19 株式会社新潟鐵工所 solid liquid mixing tank
WO2007108323A1 (en) * 2006-03-22 2007-09-27 Konica Minolta Opto, Inc. Cellulose ester film and process for producing the same
JP2012081743A (en) * 2010-09-15 2012-04-26 Fujifilm Corp Mixing device, casting dope manufacturing method and solution casting method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677823U (en) * 1994-02-07 1994-11-01 株式会社日立製作所 Stirrer
JP3648279B2 (en) * 1995-01-09 2005-05-18 佐竹化学機械工業株式会社 Stirring blade for medium and high viscosity
CN2463040Y (en) * 2000-12-28 2001-12-05 上海理日科技发展有限公司 Special anchor-shape stirrer
KR100626613B1 (en) * 2005-04-06 2006-09-25 동양제강 주식회사 Manufacturing apparatus of high tenacity polyethylene fiber
JP2010042337A (en) 2008-08-11 2010-02-25 Sumitomo Electric Ind Ltd Fluororesin porous film, method of manufacturing the same and filter
JP5134468B2 (en) * 2008-08-18 2013-01-30 日東電工株式会社 Stirrer
DE102009002630B4 (en) * 2009-04-24 2019-12-24 Robert Bosch Gmbh Device for dosing powdery substances
JP2013094697A (en) * 2011-10-28 2013-05-20 Satake Chemical Equipment Mfg Ltd Agitator
CN202725176U (en) * 2012-08-09 2013-02-13 厦门路桥翔通建材科技有限公司 Stirring device for glass lining reaction tank
CN102861902B (en) * 2012-09-10 2014-05-07 北京科技大学 Continuous preparation device for composite stirred semi-solid slurry
CN203469998U (en) * 2013-09-09 2014-03-12 宿迁市永星化工有限公司 Reaction kettle with compound stirring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039326U (en) * 1983-08-26 1985-03-19 株式会社新潟鐵工所 solid liquid mixing tank
WO2007108323A1 (en) * 2006-03-22 2007-09-27 Konica Minolta Opto, Inc. Cellulose ester film and process for producing the same
JP2012081743A (en) * 2010-09-15 2012-04-26 Fujifilm Corp Mixing device, casting dope manufacturing method and solution casting method

Also Published As

Publication number Publication date
KR20180122659A (en) 2018-11-13
KR102136476B1 (en) 2020-07-21
CN109641374A (en) 2019-04-16
JPWO2018029955A1 (en) 2019-06-06
CN109641374B (en) 2020-10-30
JP6911863B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP2023033345A (en) Polyester film serving as surface protective film for foldable display and application thereof
TW201833198A (en) Polyester film and applications thereof
WO2006067978A1 (en) Optical biaxially oriented polyester film
TW201710093A (en) Heat-shrinkable polyester film, and production method therefor and package thereof
CN103890113B (en) Waterborne compositions, the blooming comprising which, the Polarizer using the blooming and the liquid crystal display device using the Polarizer
TW201347963A (en) The polyester film roll for optical retardation plate and the method for producing the same
JP5976435B2 (en) Film laminate, film roll layer, and method for producing the film roll layer
JP2004269766A (en) Biaxially oriented polyester film
JP2017040727A (en) Optical film and method for producing optical film
WO2018029955A1 (en) Method for manufacturing optical film
TWI423999B (en) Amorphous copolyesters and flexible substrates and optical films utilizing the same
JP3846024B2 (en) White film and method for producing white film
JP2018065259A (en) Manufacturing method of optical film
KR102411172B1 (en) Heat-shrinkable polyester-based label, package, and method for producing heat-shrinkable polyester-based label
JP4610224B2 (en) Support film for plastic film production by casting method
JP5331266B1 (en) Polyester film, solar battery back sheet, solar battery
JP5147470B2 (en) Laminated biaxially stretched polyester film
WO2017110399A1 (en) Optical film, polarizing plate and display device
JP2013164523A (en) Polyester film for optical functional film
JP2009214489A (en) Method of manufacturing laminated biaxially stretched polyester film
WO2011093222A1 (en) Optical control film and manufacturing method therefor
JP2005290332A (en) Film roll
WO2019234976A1 (en) Layered body
JP5793448B2 (en) Polyester film for optical function sheet
WO2011148504A1 (en) Light diffusing film, method for manufacturing same, and polarizing plate, roll-shaped polarizing plate, and liquid crystal display device which employ same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018533437

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187028465

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839030

Country of ref document: EP

Kind code of ref document: A1