WO2018029842A1 - Laser processing machine - Google Patents

Laser processing machine Download PDF

Info

Publication number
WO2018029842A1
WO2018029842A1 PCT/JP2016/073675 JP2016073675W WO2018029842A1 WO 2018029842 A1 WO2018029842 A1 WO 2018029842A1 JP 2016073675 W JP2016073675 W JP 2016073675W WO 2018029842 A1 WO2018029842 A1 WO 2018029842A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
thin wire
workpiece
cutting
processing
Prior art date
Application number
PCT/JP2016/073675
Other languages
French (fr)
Japanese (ja)
Inventor
直幸 中村
芳晴 黒崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018503604A priority Critical patent/JP6381849B2/en
Priority to PCT/JP2016/073675 priority patent/WO2018029842A1/en
Publication of WO2018029842A1 publication Critical patent/WO2018029842A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present invention relates to a laser processing machine for cutting a workpiece.
  • a laser processing machine that cuts a sheet metal by irradiating a laser beam
  • many means for speeding up the cutting process and improving the quality of the cutting process have been reported.
  • means for speeding up the cutting process and improving the quality of the cutting process means for adjusting the intensity distribution and beam shape of the irradiated laser beam is used.
  • means for realizing a double focus of the laser beam and adjusting a cuttable plate thickness by adjusting the intensity distribution and beam shape of the irradiated laser beam is also used.
  • the laser beam reflected from the front end of the cutting groove of the workpiece does not contribute to the cutting process.
  • the progress of the cutting process occurs mainly in the region where the workpiece and the laser beam interact, so the laser beam on the rear side in the cutting progress direction of the laser beam is cut and processed. Does not contribute. For this reason, in the laser processing machine mentioned above, there exists a subject that a laser beam cannot be fully utilized for a cutting process.
  • the laser processing machine disclosed in Patent Document 1 is not configured to inject auxiliary gas from a processing head in order to cut silicon that is an object to be processed.
  • the auxiliary gas when the auxiliary gas is ejected from the processing head during the cutting process, the reflector is sheet-like, so that the sheet-like reflector is warped by the pressure of the auxiliary gas. Therefore, there is a problem that the laser beam cannot be efficiently reflected toward the tip of the cutting groove, and it is difficult to speed up the cutting process.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a laser processing machine capable of increasing the cutting speed.
  • the present invention is a laser processing machine that irradiates a laser beam focused on a processing target to cut the processing target.
  • the laser processing machine includes a processing target support unit that supports the processing target, and a processing head that irradiates the processing target with the focused laser beam and injects auxiliary gas.
  • the laser processing machine includes a thin wire insertion portion that is attached to a processing head and can insert a thin wire that reflects laser light into a processing region formed on a processing target.
  • the laser processing machine controls the thin wire insertion part during the cutting process, and irradiates the laser beam on the processing object with respect to the cutting progress direction generated by moving at least one of the processing object support part and the processing head.
  • a control device is provided for inserting the thin line into the machining area from behind the point.
  • the laser beam machine according to the present invention has an effect that the cutting process can be speeded up.
  • FIG. 1 The figure which shows the structure of the laser beam machine which concerns on Embodiment 1.
  • FIG. Sectional view along line III-III in FIG. The perspective view which shows the state during the cutting process of the laser processing machine shown by FIG. Sectional view along line VV in FIG. Sectional drawing which shows the other state of the laser beam shown by FIG. Sectional drawing which shows the state during the cutting process of the laser processing machine of a comparative example Sectional drawing which shows the other state of the laser beam shown by FIG.
  • FIG. 14 is a perspective view for explaining a state in which the following mechanism shown in FIG. 14 adjusts the angle of the thin line.
  • line insertion part of the laser beam machine concerning Embodiment 6, an angle adjustment mechanism, and a follow-up mechanism The rear view which shows the some thin wire
  • the rear view which shows the state from which the other fine wire of the some thin wire insertion part shown by FIG. 18 was kept away from the workpiece Plan view of the workpiece shown in FIG.
  • the top view which shows the state by which the cutting groove was formed in the workpiece shown by FIG.
  • FIG. 1 is a diagram illustrating a configuration of a laser beam machine according to the first embodiment.
  • FIG. 2 is a diagram showing a configuration of a thin wire insertion portion of the laser beam machine shown in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • the laser beam machine 1 shown in FIG. 1 irradiates a laser beam L focused on the workpiece W to cut the workpiece W.
  • the laser beam machine 1 is an apparatus for irradiating the workpiece W with the laser light L and cutting the workpiece W into parts and remaining materials.
  • the workpiece W to be cut into parts and the remaining material by the laser processing machine 1 is made of metal and is formed in a flat plate shape. That is, the workpiece W is a sheet metal.
  • the metal which comprises the workpiece W is mild steel or stainless steel, it is not limited to this.
  • the part is cut from the workpiece W, and is assembled into a product by being subjected to at least one of bending, welding, and painting in a later process than the laser processing machine 1. .
  • the remaining material is discarded without being assembled into a product.
  • the laser processing machine 1 includes a processing target support unit 10 that supports the processing target W, a processing head 20 that irradiates the focused laser light L onto the processing target W, and a processing target.
  • a relative movement unit 30 capable of relatively moving the object support unit 10 and the processing head 20, a thin wire insertion unit 50, and a control device 40 are provided.
  • the processing object support unit 10 supports the processing object W on which the processing object W is placed.
  • the processing head 20 irradiates the processing target W with the laser light L while being moved relative to the processing target W by the relative moving unit 30 and injects the auxiliary gas AG.
  • the processing head 20 is supplied with the laser light L oscillated by the laser oscillator 21 via the transmission optical system 22 and supplied with the auxiliary gas AG from the auxiliary gas supply source 60.
  • the auxiliary gas AG is a gas used for removing the melt during the cutting process.
  • the auxiliary gas is composed of air, nitrogen, or argon gas.
  • the auxiliary gas AG is injected coaxially with the laser light L from the processing nozzle 23 that irradiates the laser light L.
  • the machining head 20 ejects the auxiliary gas AG to the irradiation point SP of the laser beam L on the workpiece W during the cutting process.
  • the relative movement unit 30 moves the machining head 20 and the workpiece support unit 10 relative to each other along at least one of the X direction and the Y direction along the surface of the workpiece W supported by the workpiece support unit 10. Move. In addition, the relative movement unit 30 relatively moves the machining head 20 and the workpiece support unit 10 in the direction Mz around the axis P parallel to the Z direction orthogonal to both the X direction and the Y direction. In the first embodiment, the relative movement unit 30 moves the machining head 20 along at least one of the X direction and the Y direction and rotates in the direction Mz around the axis P parallel to the Z direction.
  • the object support unit 10 may be moved along at least one of the X direction and the Y direction and may be rotated in a direction Mz around the axis P parallel to the Z direction. Both of them may be moved along at least one of the X direction and the Y direction and rotated in a direction Mz around the axis P parallel to the Z direction.
  • the relative moving unit 30 includes a motor, a lead screw that moves the machining head 20 by the rotational driving force of the motor, and a linear guide that guides the moving direction of the machining head 20.
  • the structure of the relative movement part 30 is not limited to the structure by a motor, a lead screw, and a linear guide.
  • the relative movement unit 30 is controlled by the control device 40.
  • the thin wire insertion portion 50 is attached to the machining head 20 and is to be machined with respect to the cutting progress direction MD generated by moving at least one of the workpiece support 10 and the machining head 20.
  • the thin wire 51 can be inserted into the piercing hole PH shown in FIG. 1 which is a processing region formed in the processing object W from behind the irradiation point SP of the laser beam L on the object W.
  • the thin wire 51 is formed in a columnar shape with a round cross section.
  • the thin line 51 reflects the laser light L.
  • the thin wire 51 is made of a metal having a melting point higher than the boiling point of the workpiece W.
  • line 51 is tungsten or molybdenum, it is not limited to these.
  • the thin wire insertion section 50 includes an insertion guide 52 attached to the processing head 20 and a feed / retraction mechanism 53.
  • the insertion guide 52 is formed in a cylindrical shape, and the thin wire 51 is passed through the inside thereof.
  • the insertion guide 52 is made of a material that can reflect the laser light L. Furthermore, the insertion guide 52 is gradually inclined with respect to the Z direction in a direction approaching the irradiation point SP of the laser light L on the processing target W as it approaches the processing target W.
  • the delivery / retraction mechanism 53 includes a pair of rollers 54 that sandwich the thin wire 51 therebetween, and a motor 55 that rotates one of the rollers 54.
  • the feed / draw-in mechanism 53 moves the fine wire 51 along the longitudinal direction of the fine wire 51 when the motor 55 rotates the one roller 54.
  • the feed-in / out mechanism 53 moves the thin wire 51 closer to the workpiece W or away from the workpiece W.
  • the fine wire insertion part 50 can fix the insertion direction of the fine wire 51 by passing the fine wire 51 through the insertion guide 52 and holding the fine wire 51. Further, since the insertion guide 52 is cylindrical, the auxiliary gas AG may flow simultaneously with the thin line 51. By flowing the auxiliary gas AG through the insertion guide 52, it is possible to prevent the thin wire 51 from being warped by losing the pressure of the auxiliary gas AG ejected from the processing nozzle 23. Further, when the auxiliary gas AG is caused to flow into the insertion guide 52, the auxiliary gas AG is also supplied from the insertion guide 52 into the cutting groove CD (see FIG. 4), so that the melt discharge capability is further improved. The insertion guide 52 also plays a role of scraping off the melt adhering to the thin wire 51 when the thin wire 51 is pulled out from the cutting groove CD.
  • the control device 40 is a computer.
  • the control device 40 cuts the workpiece W by controlling the relative movement unit 30 and the machining head 20.
  • the control device 40 controls the thin wire insertion portion 50 during the cutting process of the laser beam machine 1 so that the thin wire 51 is the piercing hole PH or the processing region from the rear of the irradiation point SP with respect to the cutting progress direction MD. It inserts in the cutting groove CD shown in FIG.
  • the processing region formed in the processing target W is the piercing hole PH or the cutting groove CD, but the processing region may be outside the outer edge of the processing target W.
  • the control device 40 is connected to an input device 41 for inputting position information of each part on the workpiece W, a program at the time of cutting, and cutting processing conditions.
  • the cutting process conditions are the output of the laser beam L, the frequency of the laser beam L, the duty of the laser beam L, the pressure of the auxiliary gas AG, and the focal position of the laser beam L.
  • the control device 40 is connected to a display device 42 that displays at least position information of each part on the workpiece W.
  • FIG. 4 is a perspective view showing a state during cutting of the laser beam machine shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG. 6 is a cross-sectional view showing another state of the laser beam shown in FIG.
  • FIG. 7 is a cross-sectional view showing a state during cutting of the laser processing machine of the comparative example.
  • FIG. 8 is a sectional view showing another state of the laser beam shown in FIG.
  • the control device 40 of the laser beam machine 1 starts cutting the workpiece W
  • the piercing hole that penetrates the workpiece W based on the position information of each part in the workpiece W. PH is formed.
  • the control device 40 positions the machining head 20 at a position calculated based on the position information of each part, and keeps the thin wire 51 away from the workpiece W, with the machining head While irradiating the laser beam L from 20, the auxiliary gas AG is injected.
  • the control device 40 stops the irradiation with the laser light L and the injection of the auxiliary gas AG.
  • the control device 40 controls the fine wire insertion portion 50 based on the position information of each part on the workpiece W, and the fine wire is arranged behind the laser beam irradiation point SP in the cutting progress direction MD in the piercing hole PH. 51 is inserted.
  • the control device 40 of the laser beam machine 1 irradiates the laser beam L from the machining head 20 while moving the machining head 20 relative to the workpiece W based on the position information of each part on the workpiece W, and assists. Gas AG is injected. Then, the control apparatus 40 of the laser beam machine 1 forms a cutting groove CD for cutting the workpiece W from the piercing hole PH as shown in FIG.
  • the thin wire 51 has the lower end 51a positioned below the workpiece W. Further, since the thin wire 51 has a melting point higher than the boiling point of the metal constituting the workpiece W, it is inserted into the cutting groove CD, but does not melt during the cutting process.
  • the thin wire 51 is directly irradiated with the laser light L from the processing head 20, and the front end of the cutting groove CD with respect to the processing target W of the processing head 20 in the cutting progress direction MD.
  • the laser beam L reflected from the inner surface CDB of the CDA is irradiated. Since the thin wire 51 is made of metal, the laser beam L emitted from the machining head 20 and the laser beam L reflected by the inner surface CDB of the front end CDA of the cutting groove CD are used as the inner surface CDB of the front end CDA of the cutting groove CD. Reflect towards
  • the laser beam machine 1 since the laser beam machine 1 has inserted the thin wire 51 into the cutting groove CD, the auxiliary gas AG is attracted to the thin wire 51 by the Coanda effect.
  • the laser processing machine 1 attaches a melt called dross generated by melting the workpiece W to the fine wire 51 by the jet of the auxiliary gas AG and the surface tension of the fine wire 51, and discharges it from the cut groove CD along the fine wire 51. To do.
  • the laser beam L is always irradiated with the laser beam L, the laser beam machine 1 can heat the thin wire 51, suppress the temperature drop of the melt, improve the discharge power of the melt, and cut Processing speed can be increased.
  • the laser beam machine 1 according to Embodiment 1 has a thin line 51 behind the piercing hole PH and the cutting progress direction MD in the cutting groove CD from the irradiation point SP of the laser beam L. Inserting.
  • the laser beam machine 1 according to the first embodiment can reflect the laser beam L reflected by the thin wire 51 toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 1 can increase the ratio of the laser beam L that contributes to the cutting process as compared with the comparative example shown in FIGS. Can be speeded up.
  • An important point of the laser processing machine 1 is how to prevent the temperature of the melt below the workpiece W from being lowered, especially for high-speed and high-quality cutting of the thick workpiece W. Since the viscosity of the melt has a negative correlation with the temperature, drastic discharge cannot be discharged as a result of a rapid increase in viscosity due to a decrease in the temperature of the melt, resulting in a defective cutting process. Further, since it takes time for the melt generated at the upper part of the workpiece W to escape from the lower part of the workpiece W, if the moving speed is increased from an appropriate cutting process condition, the inner surface CDB of the front end CDA of the cutting groove CD. The inclination with respect to the Z direction increases.
  • the laser beam L passes before the melted material passes through the lower end of the workpiece W, so that the laser beam machine 1 cannot be cut.
  • the laser beam machine 1 according to the first embodiment the laser beam L reflected from the inner surface CDB of the front end CDA of the cutting groove CD is reflected by the thin line 51 to the lower portion of the workpiece W as shown in FIGS. Therefore, it is possible to prevent the temperature of the melt from being lowered even at a moving speed that is normally impossible to cut, and it is possible to speed up the cutting process.
  • the laser beam machine 1 since the melting point of the thin wire 51 is higher than the boiling point of the workpiece W, the thin wire 51 is not melted during the cutting process.
  • the laser beam machine 1 according to Embodiment 1 keeps the thin wire 51 away from the workpiece W, and inserts the thin wire 51 after the piercing hole PH has penetrated. When forming PH, it can suppress that the thin wire
  • the laser beam machine 1 according to Embodiment 1 reflects the laser beam L from the cylindrical thin wire 51, the contact area with the melt is larger than that of the sheet-like reflector. For this reason, the laser processing machine 1 improves the discharge ability of the melt due to the surface tension and the Coanda effect.
  • the sheet-like reflector has no escape space for the auxiliary gas AG, the reflector itself is warped against the pressure of the auxiliary gas AG, and the laser beam L irradiated to the reflector is irradiated with the inner surface CDB of the front end CDA of the cutting groove CD. Can not be reflected. Since the laser beam machine 1 according to the first embodiment uses the cylindrical thin wire 51 to reflect the laser light L, the auxiliary gas AG can escape from the gap between the thin wire 51 and the cutting groove CD. 51 does not warp, and the laser beam L can be reflected to the inner surface CDB of the front end CDA of the cutting groove CD, so that the cutting process can be speeded up.
  • the laser processing machine 1 when the thin wire 51 is made of tungsten, the melting point of tungsten is 3000 ° C. or higher, which is higher than the boiling points of mild steel and stainless steel, and the wavelength at which the CO 2 (carbon dioxide) laser oscillator oscillates.
  • the reflectance of the laser beam L of 10.6 ⁇ m is as high as 90% or more, and the cutting speed can be increased.
  • the laser beam machine 1 may energize the thin wire 51 and maintain the temperature of the thin wire 51 by Joule heat generated in the thin wire 51.
  • FIG. 9 is a perspective view showing a state in which the laser beam machine according to Embodiment 2 is being cut.
  • FIG. 10 is a plan view of the object to be processed shown in FIG. In FIG. 9 and FIG. 10, the same parts as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the thin wire insertion unit 50 of the laser beam machine 1 according to Embodiment 2 can insert a plurality of thin wires 51 into the piercing hole PH and the cutting groove CD, and during the cutting process, A plurality of thin wires 51 are inserted into the piercing hole PH and the cutting groove CD.
  • the laser beam machine 1 according to the second embodiment inserts the thin wire 51 behind the irradiation point SP of the laser beam L into the piercing hole PH and the cutting groove CD in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to the second embodiment can increase the ratio of the laser light L that contributes to the cutting process as compared with the comparative example in which the thin wire 51 is not provided, and the cutting process can be speeded up. it can.
  • the laser beam machine 1 according to the second embodiment inserts the plurality of thin wires 51 into the piercing hole PH and the cutting groove CD, the surface area of the thin wire 51 itself is larger than that of the first embodiment, and The surface tension acting on the melt is increased, and the discharge power of the melt can be improved. Further, since the laser beam machine 1 according to the second embodiment inserts the plurality of thin wires 51 into the piercing holes PH and the cutting grooves CD, the thin wires 51 remain in contact with the inner side surface CDC of the cutting grooves CD during the cutting processing. Move and improve cutting quality.
  • FIG. 11 is a side view showing a thin wire insertion portion of the laser beam machine according to the third embodiment.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the thin wire insertion portion 50-3 of the laser beam machine 1 according to Embodiment 3 includes a pair of guide rollers 56 instead of the insertion guide 52.
  • the guide roller 56 is rotatably provided, and guides the moving direction to the fine line 51 with the fine line 51 interposed therebetween.
  • the laser beam machine 1 according to the third embodiment inserts the thin wire 51 behind the piercing hole PH and the cutting groove CD from the irradiation point SP of the laser beam L in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 3 can increase the speed of the cutting process.
  • FIG. 12 is a side view showing the thin wire insertion portion and the angle adjustment mechanism of the laser beam machine according to the fourth embodiment.
  • FIG. 13 is a side view for explaining a state in which the angle adjustment mechanism shown in FIG. 12 adjusts the angle of the thin line.
  • the same parts as those of the third embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the lower end 51a of the thin wire 51 inserted into the piercing hole PH and the cutting groove CD by the thin wire insertion portion 50-3 is cut in the cutting progress direction MD with respect to the workpiece W of the processing head 20.
  • the angle of the thin line 51 is set to an angle appropriate for the thickness and material of the workpiece W by the control device 40.
  • the angle adjustment mechanism 70 includes a linear actuator 71 that moves the guide roller 56 in the Z direction.
  • the angle adjusting mechanism 70 can adjust the angle of the thin line 51 between the angle indicated by the solid line and the angle indicated by the broken line in FIG. 13 by moving the guide roller 56 in the Z direction by the linear actuator 71.
  • the laser beam machine 1 according to the fourth embodiment inserts the thin wire 51 behind the irradiation point SP of the laser beam L in the piercing hole PH and the cutting groove CD in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 4 can increase the speed of the cutting process.
  • the angle adjustment mechanism 70 sets the angle of the thin wire 51 to an appropriate angle according to the thickness and material of the workpiece W, so that cutting suitable for the workpiece W is performed. It becomes possible.
  • FIG. 14 is a rear view showing the thin wire insertion portion and the follow-up mechanism of the laser beam machine according to the fifth embodiment.
  • FIG. 15 is a perspective view for explaining a state in which the follow-up mechanism shown in FIG. 14 adjusts the angle of the thin line.
  • the same parts as those of the third embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the lower end 51a of the thin wire 51 inserted into the piercing hole PH and the cutting groove CD by the thin wire insertion portion 50-5 is cut in the cutting progress direction MD with respect to the workpiece W of the processing head 20.
  • a follow-up mechanism 80 that is movable in a direction intersecting with respect to.
  • the angle of the thin line 51 is adjusted by the control device 40 so as to be in contact with one inner side surface CDC of the cutting groove CD constituting the part.
  • the axis of the roller 54-5 is orthogonal to the axis of the roller 54, and the axis of the guide roller 56-5 is aligned with the axis of the guide roller 56. Orthogonal.
  • the follow-up mechanism 80 includes a linear actuator 81 that moves the guide roller 56-5 in a direction parallel to the horizontal direction and perpendicular to the cutting progress direction MD.
  • the follow-up mechanism 80 moves the guide roller 56-5 by the linear actuator 81 in a direction parallel to the horizontal direction and perpendicular to the cutting progress direction MD, thereby changing the angle of the thin line 51 to the angle indicated by the solid line in FIG. It can adjust over the angle shown.
  • the laser beam machine 1 according to the fifth embodiment inserts the thin wire 51 behind the piercing hole PH and the cutting groove CD from the irradiation point SP of the laser beam L in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 5 can increase the cutting speed.
  • the laser beam machine 1 according to the fifth embodiment can move by moving the thin wire 51 in contact with one inner side surface CDC of the cutting groove CD constituting the part by the follow-up mechanism 80, the quality of the cut surface is improved.
  • FIG. 16 is a perspective view showing a thin wire insertion portion, an angle adjustment mechanism, and a follow-up mechanism of a laser beam machine according to the sixth embodiment.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the laser beam machine 1 moves the lower end 51a of the thin wire 51 inserted into the piercing hole PH and the cutting groove CD by the thin wire insertion portion 50 in the cutting progress direction MD with respect to the workpiece W of the processing head 20.
  • a possible angle adjustment mechanism 70-6 is provided. In the angle adjusting mechanism 70-6, the angle of the thin wire 51 is set to an angle appropriate for the thickness and material of the workpiece W by the control device 40.
  • the lower end 51a of the thin wire 51 inserted into the piercing hole PH and the cutting groove CD by the thin wire insertion portion 50 is cut with respect to the cutting progress direction MD with respect to the workpiece W of the processing head 20.
  • a follower mechanism 80-6 movable in the intersecting direction.
  • the angle of the thin line 51 is set to an angle at which the fine line 51 comes into contact with one inner surface CDC of the cutting groove CD constituting the part by the control device 40.
  • the follow-up mechanism 80-6 includes a rotary actuator 84 attached to the machining head 20 and provided with a slit 83 for inserting the insertion guide 52 of the thin wire insertion portion 50 in the drive shaft 82.
  • the drive shaft 82 is parallel to the cutting progress direction MD on a plane parallel to both the X direction and the Y direction.
  • the follow-up mechanism 80-6 rotates the drive shaft 82 to move the lower end 51a of the thin wire 51 in a direction intersecting the cutting progress direction MD with respect to the workpiece W of the processing head 20, thereby cutting the thin wire 51.
  • One inner surface CDC of the groove CD is brought into contact.
  • the angle adjustment mechanism 70-6 includes a rotary actuator 73 that is built in the drive shaft 82 and in which the drive shaft 72 attached to the insertion guide 52 is orthogonal to the drive shaft 82.
  • the drive shaft 72 intersects the cutting progress direction MD on a plane parallel to both the X direction and the Y direction.
  • the angle adjusting mechanism 70-6 rotates the drive shaft 72 to move the lower end 51a of the thin wire 51 in the cutting progress direction MD with respect to the workpiece W of the machining head 20, and the angle of the thin wire 51 is changed to the workpiece W.
  • the angle is appropriate for the thickness and material of the material.
  • the laser beam machine 1 according to the sixth embodiment inserts the thin wire 51 behind the piercing hole PH and the cutting groove CD from the irradiation point SP of the laser beam L in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 6 can increase the cutting speed.
  • the angle of the fine wire 51 is set to an appropriate angle according to the thickness and material of the workpiece W by the angle adjustment mechanism 70-6, so that the cutting suitable for the workpiece W is performed. Processing becomes possible. Since the laser beam machine 1 according to Embodiment 6 can be moved by bringing the thin wire 51 into contact with one inner side surface CDC of the cutting groove CD constituting the part by the follow-up mechanism 80-6, the quality of the cut surface is improved.
  • FIG. 17 is a rear view showing a plurality of thin wire insertion portions of the laser beam machine according to the seventh embodiment.
  • FIG. 18 is a rear view showing a state in which some fine wires of the plurality of fine wire insertion portions shown in FIG. 17 are inserted into the pierce holes.
  • FIG. 19 is a rear view showing a state in which other fine lines of the plurality of fine line insertion portions shown in FIG. 18 are kept away from the object to be processed.
  • FIG. 20 is a plan view of the object to be processed shown in FIG.
  • FIG. 21 is a plan view showing a state in which cutting grooves are formed in the object to be processed shown in FIG.
  • FIG. 22 is a plan view showing a state where the orientation of the cutting groove shown in FIG. 21 is changed. 17 to 22, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • a plurality of thin wire insertion portions 50 are arranged around the laser beam L irradiated to the workpiece W from the machining head 20.
  • a plurality of thin wire insertion portions 50 are arranged on a semicircle centered on the laser beam L on a plane parallel to both the X direction and the Y direction. Further, the central position in the direction parallel to the horizontal direction of the plurality of thin wire insertion portions 50 and perpendicular to the cutting progress direction MD is arranged behind the irradiation point SP of the laser light L in the cutting progress direction MD.
  • the plurality of fine wire insertion portions 50 are inclined with respect to the Z direction in the direction in which the lower ends 51 a of the thin wires 51 approach each other as they approach the workpiece W.
  • the plurality of thin wire insertion portions 50 are arranged at positions where the lower ends 51a of the thin wires 51 are in contact with each other below the workpiece W, but the lower ends 51a of the thin wires 51 are mutually connected to the workpiece W. Contact may be made inside, contact may be made on the upper surface of the workpiece W, or contact may be made above the upper surface of the workpiece W.
  • the ratio of the reflection of the laser light L by the thin wires 51 can be changed, and cutting according to the purpose can be performed.
  • the laser beam machine 1 includes a guide member 90 that guides the moving direction of all the thin wires 51.
  • the guide member 90 is formed in a ring shape centered on the laser beam L, and guides the thin line 51 around the irradiation point SP of the laser beam L. 20 to 22 show the portion of the guide member 90 that guides the thin line 51 with parallel oblique lines.
  • the laser beam machine 1 keeps the thin wire 51 away from the workpiece W as shown in FIG. 17 during the formation of the piercing hole PH, and after the formation of the piercing hole PH, as shown in FIG. All the thin wires 51 are brought close to the workpiece W by the thin wire insertion portion 50, and a part of the thin wires 51 is inserted into the piercing hole PH.
  • the laser beam machine 1 cuts away the thin wire 51 that has not been inserted into the piercing hole PH away from the workpiece W as shown in FIG. In the laser processing machine 1, as indicated by dense parallel oblique lines in FIGS.
  • the thin wire 51 inserted into the piercing hole PH and the cutting groove CD has a cutting progress direction MD from the irradiation point SP of the laser light L.
  • the laser beam machine 1 can measure whether or not the thin wire 51 has been inserted into the piercing hole PH by using a pressure sensor or a position sensor provided in the guide member 90.
  • At least one thin wire 51 may be inserted into the piercing hole PH and the cutting groove CD, and it is not always necessary to insert all the thin wires 51.
  • the thin wire 51 inserted into the piercing hole PH and the cutting groove CD can be adjusted by the thickness, material, and part shape of the workpiece W.
  • the laser beam machine 1 according to the seventh embodiment inserts the thin wire 51 behind the piercing hole PH and the cutting groove CD from the irradiation point SP of the laser beam L in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 7 can increase the speed of the cutting process.
  • the laser beam machine 1 according to the seventh embodiment can form the piercing hole PH without hindering the irradiation of the laser beam L by the thin wire 51, and can smoothly shift to the cutting process.
  • the laser beam machine 1 according to the seventh embodiment inserts the thin wire 51 behind the laser beam L in the cutting progress direction MD so that the laser beam L is irradiated onto the workpiece W by the thin wire 51 immediately after the start of the cutting process. Is not hindered.
  • FIG. 23 is a side view of the machining head of the laser beam machine according to the eighth embodiment.
  • FIG. 24 is a plan view of the object to be processed shown in FIG. 23 and 24, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the machining head 20 injects a purge gas PG from the periphery of the laser beam L onto the workpiece W as shown in FIG.
  • the injection range PGA of the purge gas PG on the workpiece W has a ring shape.
  • the machining head 20 is provided with an ejection port 25 that ejects the purge gas PG to the workpiece W around the machining nozzle 23 that irradiates the laser beam L and injects the auxiliary gas AG.
  • the ejection ports 25 are provided on the entire circumference around the processing nozzle 23.
  • the irradiation point SP of the laser beam L, the injection range AGA of the auxiliary gas AG, and the injection range PGA of the purge gas PG are arranged coaxially.
  • the laser beam machine 1 according to the eighth embodiment inserts the thin wire 51 behind the piercing hole PH and the cutting groove CD from the irradiation point SP of the laser beam L in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 8 can achieve high speed cutting.
  • the laser processing machine 1 according to the eighth embodiment since the thin wire 51 is inserted into the piercing hole PH and the cutting groove CD, the atmospheric pressure in the piercing hole PH and the cutting groove CD is increased, and the auxiliary gas AG is processed. It becomes easy to escape along the upper surface of the object W. Therefore, as shown in FIGS. 23 and 24, the laser processing machine 1 according to the eighth embodiment maintains a high pressure near the plane of the workpiece W by supplying the purge gas PG from the periphery of the auxiliary gas AG. In addition, the auxiliary gas AG can be easily supplied into the piercing hole PH and the cutting groove CD. Since the quality of the cutting process is greatly influenced by the amount and purity of the auxiliary gas AG supplied into the piercing hole PH and the cutting groove CD, the laser processing machine 1 according to the eighth embodiment has a high quality cutting process. It becomes possible.
  • FIG. 25 is a plan view of a processing object being cut by the laser beam machine according to the ninth embodiment.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the laser beam machine 1 according to the ninth embodiment arranges the thin wire 51A thicker than the thin wire 51 behind the cutting progress direction MD than the thin wire 51.
  • the laser beam machine 1 according to the ninth embodiment inserts the thin wire 51 behind the irradiation point SP of the laser beam L into the piercing hole PH and the cutting groove CD in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD.
  • the laser beam machine 1 according to the ninth embodiment can increase the ratio of the laser beam L that contributes to the cutting process as compared with the comparative example in which the thin wire 51 is not provided, and can increase the cutting process speed. it can.
  • the laser beam machine 1 according to Embodiment 9 is inserted by the pressure in the cutting groove CD when cutting the workpiece W made of stainless steel that requires an auxiliary gas AG having a pressure higher than that of mild steel.
  • the thin wire 51 may bend backward in the cutting progress direction MD. Therefore, the laser beam machine 1 according to Embodiment 9 disposes the thin wire 51A thicker than the thin wire 51 behind the cutting progress direction MD with respect to the thin wire 51, so that the thin wire 51 is in the cutting progress direction MD by the auxiliary gas AG. Bending backward can be suppressed.
  • the thin wires 51 and 51A have the same cross-sectional shape, but may have different shapes.
  • FIG. 26 is a cross-sectional view of a thin line according to the tenth embodiment.
  • the thin wire 51-10 according to the tenth embodiment has a square cross section.
  • FIG. 27 is a cross-sectional view of a thin line according to the eleventh embodiment.
  • the thin wire 51-11 according to the eleventh embodiment is formed in a round shape with a groove having a rectangular cross section.
  • FIG. 28 is a cross-sectional view of a thin line according to the twelfth embodiment.
  • the thin wire 51-12 according to the twelfth embodiment is formed in a round shape in which a groove having a V-shaped cross section is formed.
  • FIG. 29 is a cross-sectional view of a thin line according to the thirteenth embodiment.
  • the fine wire 51-13 according to the thirteenth embodiment has a crescent-shaped cross section.
  • FIG. 30 is a cross-sectional view of a thin line according to the fourteenth embodiment.
  • the thin wire 51-14 according to the fourteenth embodiment has a cross-sectional shape of an equilateral triangle.
  • FIG. 31 is a cross-sectional view of a thin line according to the fifteenth embodiment.
  • Thin wire 51-15 according to the fifteenth embodiment has a star-shaped cross section.
  • the thin wire 51 is inserted behind the laser beam irradiation point SP in the piercing hole PH and the cutting groove CD in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. Therefore, in the tenth to fifteenth embodiments, the ratio of the laser beam L contributing to the cutting process can be increased as compared with the comparative example in which the thin wire 51 is not provided, and the cutting process can be speeded up. .
  • the tenth to fifteenth embodiments vary according to the surface tension of the thin wires 51-10, 51-11, 51-12, 51-13, 51-14, and 51-15 and the purpose of flowing the melt.
  • the fine wires 51-10, 51-11, 51-12, 51-13, 51-14, 51-15 are increased by sandblasting. Concavities and convexities may be formed on the surfaces of ⁇ 10, 51-11, 51-12, 51-13, 51-14, and 51-15.
  • FIG. 32 is a side view of a fine line according to the sixteenth embodiment.
  • Thin wire 51-16 according to the sixteenth embodiment has a plurality of cuts having an arcuate cross section.
  • FIG. 33 is a side view of a thin line according to the seventeenth embodiment.
  • the fine wire 51-17 according to the seventeenth embodiment has a plurality of cuts with a V-shaped cross section.
  • the thin wire 51 is inserted behind the irradiation point SP of the laser beam L in the piercing hole PH and the cutting groove CD in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, in the sixteenth and seventeenth embodiments, the ratio of the laser light L contributing to the cutting process can be increased as compared with the comparative example in which the thin line 51 is not provided, and the cutting process can be speeded up. .
  • the laser light L reflected by the inner surface CDB of the front end CDA of the cutting groove CD is efficiently applied to the inner surface CDB of the front end CDA of the cutting groove CD.
  • the reflection angle of the laser beam L can be adjusted.
  • FIG. 34 is a diagram illustrating an example of a hardware configuration of a control device for a laser beam machine according to each embodiment.
  • the control device 40 receives position information of each part on the workpiece W and cutting processing conditions from an input device 41 connected to the input / output interface 441 shown in FIG.
  • the input device 41 is configured by a touch panel, a keyboard, a mouse, a trackball, or a combination thereof.
  • the control device 40 displays position information of each part on the workpiece W on the display device 42 connected to the input / output interface 441.
  • the display device 42 is a liquid crystal display device, but is not limited to a liquid crystal display device.
  • the control device 40 is a computer including a CPU (Central Processing Unit) 443, a memory 444, and an input / output interface 441.
  • the memory 444 stores software, firmware, or a combination of software and firmware as a program.
  • the memory 444 stores part position information on the workpiece W input from the input device 41 and cutting processing conditions.
  • the memory 444 is configured by a nonvolatile or volatile semiconductor memory, a magnetic disk, an optical disk, or a magneto-optical disk.
  • Non-volatile or volatile semiconductor memory uses RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (Electrically Erasable Programmable) Read-Only Memory) It is done.
  • the CPU 443 executes the program stored in the memory 444 to realize the function of the control device 40.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser processing machine (1) irradiates focused laser light (L) onto a workpiece (W) to cut the workpiece (W). The laser processing machine (1) is provided with: a workpiece supporting unit (10) which supports the workpiece (W); and a processing head (20) which irradiates the focused laser light (L) onto the workpiece (W) and emits an auxiliary gas (AG). The laser processing machine (1) is provided with: a thin wire inserting unit (50) which is attached to the processing head (20) and which is capable of inserting into a pierced hole (PH) or a cut groove formed in the workpiece (W) a thin wire (51) which reflects the laser light (L); and a control device (40). The control device (40) controls the thin wire inserting unit (50) during the cutting process, to insert the thin wire (51) into the pierced hole (PH) and the cut groove to the rear of an irradiation point (SP) with respect to a cutting progress direction (MD) resulting from movement of at least one of the workpiece supporting unit (10) and the processing head (20).

Description

レーザ加工機Laser processing machine
 本発明は、加工対象物を切断加工するレーザ加工機に関する。 The present invention relates to a laser processing machine for cutting a workpiece.
 レーザ光を照射して板金を切断加工するレーザ加工機において、切断加工の高速化及び切断加工の高品位化の手段が数多く報告されている。切断加工の高速化及び切断加工の高品位化の手段として、照射するレーザ光の強度分布及びビーム形状を調整する手段が用いられている。また、照射するレーザ光の強度分布及びビーム形状を調整することによって、レーザ光の二重焦点を実現し、切断可能な板厚を増大させる手段も用いられている。 In a laser processing machine that cuts a sheet metal by irradiating a laser beam, many means for speeding up the cutting process and improving the quality of the cutting process have been reported. As means for speeding up the cutting process and improving the quality of the cutting process, means for adjusting the intensity distribution and beam shape of the irradiated laser beam is used. In addition, means for realizing a double focus of the laser beam and adjusting a cuttable plate thickness by adjusting the intensity distribution and beam shape of the irradiated laser beam is also used.
 しかしながら、前述した照射するレーザ光の強度分布及びビーム形状を調整する手段が用いられたレーザ加工機では、加工対象物の切断溝の前端から反射したレーザ光が切断加工に寄与しない。また、前述したレーザ加工機では、切断加工の進展が主に加工対象物とレーザ光とが相互作用する領域で発生するため、レーザ光のうちの切断進行方向の後方側のレーザ光が切断加工に寄与していない。このため、前述したレーザ加工機では、レーザ光を切断加工に利用しきれていないという課題がある。 However, in the laser processing machine using the above-described means for adjusting the intensity distribution and beam shape of the irradiated laser beam, the laser beam reflected from the front end of the cutting groove of the workpiece does not contribute to the cutting process. Further, in the laser processing machine described above, the progress of the cutting process occurs mainly in the region where the workpiece and the laser beam interact, so the laser beam on the rear side in the cutting progress direction of the laser beam is cut and processed. Does not contribute. For this reason, in the laser processing machine mentioned above, there exists a subject that a laser beam cannot be fully utilized for a cutting process.
 このようなレーザ光を切断加工に利用しきれていないという課題を解決するために、レーザ光の加工対象物に対する相対的な切断進行方向の後方にシート状の反射体を挿入し、切断加工に寄与しないレーザ光を切断溝の前端に向けて反射する方法が提案されている(特許文献1参照)。 In order to solve the problem that such laser light cannot be used for cutting processing, a sheet-like reflector is inserted in the cutting direction relative to the processing target of the laser light, and cutting processing is performed. A method of reflecting non-contributing laser light toward the front end of the cutting groove has been proposed (see Patent Document 1).
特開2003-170289号公報JP 2003-170289 A
 特許文献1に示されたレーザ加工機は、加工対象物であるシリコンを切断加工するために、加工ヘッドから補助ガスを噴射する構成となっていない。特許文献1に示されたレーザ加工機において、切断加工中に加工ヘッドから補助ガスを噴射するようにすると、反射体がシート状であるために、補助ガスの圧力によってシート状の反射体が反ってしまい、レーザ光を効率良く切断溝の先端に向けて反射できず、切断加工の高速化を行うことが困難であるという課題があった。 The laser processing machine disclosed in Patent Document 1 is not configured to inject auxiliary gas from a processing head in order to cut silicon that is an object to be processed. In the laser processing machine disclosed in Patent Document 1, when the auxiliary gas is ejected from the processing head during the cutting process, the reflector is sheet-like, so that the sheet-like reflector is warped by the pressure of the auxiliary gas. Therefore, there is a problem that the laser beam cannot be efficiently reflected toward the tip of the cutting groove, and it is difficult to speed up the cutting process.
 本発明は、上記に鑑みてなされたものであって、切断加工の高速化を図ることができるレーザ加工機を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a laser processing machine capable of increasing the cutting speed.
 上述した課題を解決し、目的を達成するために、本発明は、加工対象物に集光されたレーザ光を照射して、加工対象物を切断加工するレーザ加工機である。レーザ加工機は、加工対象物を支持する加工対象物支持部と、集光されたレーザ光を加工対象物に照射すると共に補助ガスを噴射する加工ヘッドとを備える。レーザ加工機は、加工ヘッドに取り付けられ、加工対象物に形成された加工領域内に、レーザ光を反射する細線を挿入可能な細線挿入部を備える。レーザ加工機は、切断加工中に細線挿入部を制御して、加工対象物支持部と加工ヘッドとの少なくとも一方を移動させることにより生じる切断進行方向に対して、加工対象物におけるレーザ光の照射点よりも後方から、細線を加工領域内に挿入する制御装置を備える。 In order to solve the above-described problems and achieve the object, the present invention is a laser processing machine that irradiates a laser beam focused on a processing target to cut the processing target. The laser processing machine includes a processing target support unit that supports the processing target, and a processing head that irradiates the processing target with the focused laser beam and injects auxiliary gas. The laser processing machine includes a thin wire insertion portion that is attached to a processing head and can insert a thin wire that reflects laser light into a processing region formed on a processing target. The laser processing machine controls the thin wire insertion part during the cutting process, and irradiates the laser beam on the processing object with respect to the cutting progress direction generated by moving at least one of the processing object support part and the processing head. A control device is provided for inserting the thin line into the machining area from behind the point.
 本発明に係るレーザ加工機は、切断加工の高速化を行うことができる、という効果を奏する。 The laser beam machine according to the present invention has an effect that the cutting process can be speeded up.
実施の形態1に係るレーザ加工機の構成を示す図The figure which shows the structure of the laser beam machine which concerns on Embodiment 1. FIG. 図1に示されたレーザ加工機の細線挿入部の構成を示す図The figure which shows the structure of the thin wire | line insertion part of the laser processing machine shown by FIG. 図2中のIII-III線に沿う断面図Sectional view along line III-III in FIG. 図1に示されたレーザ加工機の切断加工中の状態を示す斜視図The perspective view which shows the state during the cutting process of the laser processing machine shown by FIG. 図4中のV-V線に沿う断面図Sectional view along line VV in FIG. 図5に示されたレーザ光の他の状態を示す断面図Sectional drawing which shows the other state of the laser beam shown by FIG. 比較例のレーザ加工機の切断加工中の状態を示す断面図Sectional drawing which shows the state during the cutting process of the laser processing machine of a comparative example 図7に示されたレーザ光の他の状態を示す断面図Sectional drawing which shows the other state of the laser beam shown by FIG. 実施の形態2に係るレーザ加工機の切断加工中の状態を示す斜視図The perspective view which shows the state during the cutting process of the laser beam machine which concerns on Embodiment 2. FIG. 図9に示された加工対象物の平面図Plan view of the workpiece shown in FIG. 実施の形態3に係るレーザ加工機の細線挿入部を示す側面図Side view showing a thin wire insertion portion of a laser beam machine according to Embodiment 3 実施の形態4に係るレーザ加工機の細線挿入部と角度調整機構を示す側面図The side view which shows the thin wire | line insertion part and angle adjustment mechanism of the laser beam machine concerning Embodiment 4. 図12に示された角度調整機構が細線の角度を調整する状態を説明する側面図The side view explaining the state in which the angle adjustment mechanism shown by FIG. 12 adjusts the angle of a thin wire | line 実施の形態5に係るレーザ加工機の細線挿入部と追従機構を示す背面図The rear view which shows the thin wire | line insertion part and tracking mechanism of the laser beam machine concerning Embodiment 5 図14に示された追従機構が細線の角度を調整する状態を説明する斜視図FIG. 14 is a perspective view for explaining a state in which the following mechanism shown in FIG. 14 adjusts the angle of the thin line. 実施の形態6に係るレーザ加工機の細線挿入部と角度調整機構と追従機構を示す斜視図The perspective view which shows the thin wire | line insertion part of the laser beam machine concerning Embodiment 6, an angle adjustment mechanism, and a follow-up mechanism 実施の形態7に係るレーザ加工機の複数の細線挿入部を示す背面図The rear view which shows the some thin wire | line insertion part of the laser beam machine concerning Embodiment 7. 図17に示された複数の細線挿入部の一部の細線がピアス孔に挿入された状態を示す背面図The rear view which shows the state by which some fine wires of the some thin wire insertion part shown by FIG. 17 were inserted in the pierced hole 図18に示された複数の細線挿入部の他の細線が加工対象物から遠ざけられた状態を示す背面図The rear view which shows the state from which the other fine wire of the some thin wire insertion part shown by FIG. 18 was kept away from the workpiece 図19に示された加工対象物の平面図Plan view of the workpiece shown in FIG. 図20に示された加工対象物に切断溝が形成された状態を示す平面図The top view which shows the state by which the cutting groove was formed in the workpiece shown by FIG. 図21に示された切断溝の向きが変更された状態を示す平面図The top view which shows the state from which the direction of the cutting groove shown by FIG. 21 was changed 実施の形態8に係るレーザ加工機の加工ヘッドの側面図Side view of machining head of laser beam machine according to Embodiment 8. 図23に示された加工対象物の平面図Plan view of the workpiece shown in FIG. 実施の形態9に係るレーザ加工機により切断加工中の加工対象物の平面図Plan view of workpiece to be cut by laser beam machine according to Embodiment 9 実施の形態10に係る細線の断面図Sectional drawing of the thin wire concerning Embodiment 10 実施の形態11に係る細線の断面図Sectional drawing of the thin wire concerning Embodiment 11 実施の形態12に係る細線の断面図Sectional drawing of the fine wire concerning Embodiment 12 実施の形態13に係る細線の断面図Sectional drawing of the thin wire concerning Embodiment 13 実施の形態14に係る細線の断面図Sectional drawing of the thin wire concerning Embodiment 14 実施の形態15に係る細線の断面図Sectional drawing of the fine wire concerning Embodiment 15 実施の形態16に係る細線の側面図Side view of fine wire according to embodiment 16 実施の形態17に係る細線の側面図Side view of fine wire according to embodiment 17 各実施の形態に係るレーザ加工機の制御装置のハードウェアの構成の一例を示す図The figure which shows an example of the structure of the hardware of the control apparatus of the laser beam machine which concerns on each embodiment
 以下に、本発明の実施の形態に係るレーザ加工機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a laser beam machine according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、実施の形態1に係るレーザ加工機の構成を示す図である。図2は、図1に示されたレーザ加工機の細線挿入部の構成を示す図である。図3は、図2中のIII-III線に沿う断面図である。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of a laser beam machine according to the first embodiment. FIG. 2 is a diagram showing a configuration of a thin wire insertion portion of the laser beam machine shown in FIG. FIG. 3 is a sectional view taken along line III-III in FIG.
 図1に示すレーザ加工機1は、加工対象物Wに集光されたレーザ光Lを照射して、加工対象物Wを切断加工するものである。実施の形態1において、レーザ加工機1は、加工対象物Wにレーザ光Lを照射して、加工対象物Wをパーツと残材とに切断するための装置である。実施の形態1において、レーザ加工機1によりパーツと残材とに切断される加工対象物Wは、金属により構成され、平板状に形成されている。即ち、加工対象物Wは、板金である。実施の形態1において、加工対象物Wを構成する金属は、軟鋼又はステンレス鋼であるが、これに限定されない。 The laser beam machine 1 shown in FIG. 1 irradiates a laser beam L focused on the workpiece W to cut the workpiece W. In the first embodiment, the laser beam machine 1 is an apparatus for irradiating the workpiece W with the laser light L and cutting the workpiece W into parts and remaining materials. In the first embodiment, the workpiece W to be cut into parts and the remaining material by the laser processing machine 1 is made of metal and is formed in a flat plate shape. That is, the workpiece W is a sheet metal. In Embodiment 1, although the metal which comprises the workpiece W is mild steel or stainless steel, it is not limited to this.
 パーツは、加工対象物Wから切断されて、レーザ加工機1よりも後工程において、曲げ加工、溶接加工、及び塗装加工のうちの少なくとも1つの加工が施されて、製品に組み立てられるものである。残材は、製品に組み立てられることなく、廃棄されるものである。 The part is cut from the workpiece W, and is assembled into a product by being subjected to at least one of bending, welding, and painting in a later process than the laser processing machine 1. . The remaining material is discarded without being assembled into a product.
 レーザ加工機1は、図1に示すように、加工対象物Wを支持する加工対象物支持部10と、集光されたレーザ光Lを加工対象物Wに照射する加工ヘッド20と、加工対象物支持部10と加工ヘッド20とを相対的に移動可能な相対移動部30と、細線挿入部50と、制御装置40とを備える。 As shown in FIG. 1, the laser processing machine 1 includes a processing target support unit 10 that supports the processing target W, a processing head 20 that irradiates the focused laser light L onto the processing target W, and a processing target. A relative movement unit 30 capable of relatively moving the object support unit 10 and the processing head 20, a thin wire insertion unit 50, and a control device 40 are provided.
 加工対象物支持部10は、加工対象物Wが置かれて、加工対象物Wを支持する。 The processing object support unit 10 supports the processing object W on which the processing object W is placed.
 加工ヘッド20は、相対移動部30により加工対象物Wに対して相対的に移動しながら加工対象物Wにレーザ光Lを照射すると共に補助ガスAGを噴射する。加工ヘッド20は、レーザ発振器21が発振したレーザ光Lが伝送光学系22を介して供給され、かつ補助ガス供給源60から補助ガスAGが供給される。補助ガスAGは、切断加工時の溶融物の除去のために用いられるガスである。補助ガスは、空気、窒素、又はアルゴンガスにより構成される。実施の形態1において、補助ガスAGは、レーザ光Lを照射する加工ノズル23からレーザ光Lと同軸上に噴射される。加工ヘッド20は、切断加工中に補助ガスAGを加工対象物Wにおけるレーザ光Lの照射点SPに噴出する。 The processing head 20 irradiates the processing target W with the laser light L while being moved relative to the processing target W by the relative moving unit 30 and injects the auxiliary gas AG. The processing head 20 is supplied with the laser light L oscillated by the laser oscillator 21 via the transmission optical system 22 and supplied with the auxiliary gas AG from the auxiliary gas supply source 60. The auxiliary gas AG is a gas used for removing the melt during the cutting process. The auxiliary gas is composed of air, nitrogen, or argon gas. In the first embodiment, the auxiliary gas AG is injected coaxially with the laser light L from the processing nozzle 23 that irradiates the laser light L. The machining head 20 ejects the auxiliary gas AG to the irradiation point SP of the laser beam L on the workpiece W during the cutting process.
 相対移動部30は、加工対象物支持部10に支持された加工対象物Wの表面に沿うX方向とY方向との少なくとも一方に沿って、加工ヘッド20と加工対象物支持部10とを相対的に移動させる。また、相対移動部30は、X方向とY方向との双方と直交するZ方向と平行な軸心P回りの方向Mzに加工ヘッド20と加工対象物支持部10とを相対的に移動させる。実施の形態1において、相対移動部30は、加工ヘッド20をX方向とY方向との少なくとも一方に沿って移動させるとともにZ方向と平行な軸心P回りの方向Mzに回転するが、加工対象物支持部10をX方向とY方向との少なくとも一方に沿って移動させるとともにZ方向と平行な軸心P回りの方向Mzに回転しても良く、加工ヘッド20と加工対象物支持部10との双方をX方向とY方向との少なくとも一方に沿って移動させるとともにZ方向と平行な軸心P回りの方向Mzに回転させても良い。相対移動部30は、モータ、モータの回転駆動力により加工ヘッド20を移動させるリードスクリュー、及び加工ヘッド20の移動方向を案内するリニアガイドにより構成される。相対移動部30の構成は、モータ、リードスクリュー、及びリニアガイドによる構成に限定されない。相対移動部30は、制御装置40により制御される。 The relative movement unit 30 moves the machining head 20 and the workpiece support unit 10 relative to each other along at least one of the X direction and the Y direction along the surface of the workpiece W supported by the workpiece support unit 10. Move. In addition, the relative movement unit 30 relatively moves the machining head 20 and the workpiece support unit 10 in the direction Mz around the axis P parallel to the Z direction orthogonal to both the X direction and the Y direction. In the first embodiment, the relative movement unit 30 moves the machining head 20 along at least one of the X direction and the Y direction and rotates in the direction Mz around the axis P parallel to the Z direction. The object support unit 10 may be moved along at least one of the X direction and the Y direction and may be rotated in a direction Mz around the axis P parallel to the Z direction. Both of them may be moved along at least one of the X direction and the Y direction and rotated in a direction Mz around the axis P parallel to the Z direction. The relative moving unit 30 includes a motor, a lead screw that moves the machining head 20 by the rotational driving force of the motor, and a linear guide that guides the moving direction of the machining head 20. The structure of the relative movement part 30 is not limited to the structure by a motor, a lead screw, and a linear guide. The relative movement unit 30 is controlled by the control device 40.
 細線挿入部50は、図2に示すように、加工ヘッド20に取り付けられ、加工対象物支持部10と加工ヘッド20との少なくとも一方を移動させることにより生じる切断進行方向MDに対して、加工対象物Wにおけるレーザ光Lの照射点SPよりも後方から、加工対象物Wに形成された加工領域である図1に示すピアス孔PH内に細線51を挿入可能なものである。細線51は、図3に示すように、断面丸型の円柱状に形成されている。細線51は、レーザ光Lを反射する。細線51は、加工対象物Wの沸点よりも融点が高い金属により構成される。実施の形態1において、細線51を構成する金属は、タングステン又はモリブデンであるが、これらに限定されない。 As shown in FIG. 2, the thin wire insertion portion 50 is attached to the machining head 20 and is to be machined with respect to the cutting progress direction MD generated by moving at least one of the workpiece support 10 and the machining head 20. The thin wire 51 can be inserted into the piercing hole PH shown in FIG. 1 which is a processing region formed in the processing object W from behind the irradiation point SP of the laser beam L on the object W. As shown in FIG. 3, the thin wire 51 is formed in a columnar shape with a round cross section. The thin line 51 reflects the laser light L. The thin wire 51 is made of a metal having a melting point higher than the boiling point of the workpiece W. In Embodiment 1, although the metal which comprises the thin wire | line 51 is tungsten or molybdenum, it is not limited to these.
 細線挿入部50は、図2に示すように、加工ヘッド20に取り付けられた挿入ガイド52と、送り出し引き込み機構53とを備える。挿入ガイド52は、円筒状に形成され、内側に細線51を通す。挿入ガイド52は、レーザ光Lを反射可能な素材により構成される。さらに、挿入ガイド52は、加工対象物Wに近付くにしたがって、徐々に加工対象物Wにおけるレーザ光Lの照射点SPに近付く方向にZ方向に対して傾斜している。 As shown in FIG. 2, the thin wire insertion section 50 includes an insertion guide 52 attached to the processing head 20 and a feed / retraction mechanism 53. The insertion guide 52 is formed in a cylindrical shape, and the thin wire 51 is passed through the inside thereof. The insertion guide 52 is made of a material that can reflect the laser light L. Furthermore, the insertion guide 52 is gradually inclined with respect to the Z direction in a direction approaching the irradiation point SP of the laser light L on the processing target W as it approaches the processing target W.
 送り出し引き込み機構53は、互いの間に細線51を挟む一対のローラ54と、一方のローラ54を回転するモータ55とを備える。送り出し引き込み機構53は、一方のローラ54をモータ55が回転することにより、細線51の長手方向に沿って、細線51を移動する。送り出し引き込み機構53は、細線51を加工対象物Wに近付け、又は加工対象物Wから遠ざける。 The delivery / retraction mechanism 53 includes a pair of rollers 54 that sandwich the thin wire 51 therebetween, and a motor 55 that rotates one of the rollers 54. The feed / draw-in mechanism 53 moves the fine wire 51 along the longitudinal direction of the fine wire 51 when the motor 55 rotates the one roller 54. The feed-in / out mechanism 53 moves the thin wire 51 closer to the workpiece W or away from the workpiece W.
 細線挿入部50は、挿入ガイド52内に細線51を通し、細線51を保持することで細線51の挿入方向を固定する事ができる。また、挿入ガイド52は筒状であるため、細線51と同時に補助ガスAGを流しても良い。挿入ガイド52内に補助ガスAGを流すことで、細線51が加工ノズル23から噴出される補助ガスAGの圧力に負けて反ってしまう事態を防ぐことができる。また、挿入ガイド52内に補助ガスAGを流す場合、切断溝CD(図4参照)内に対して挿入ガイド52からも補助ガスAGを供給するので、溶融物の排出能力が更に向上する。挿入ガイド52は、細線51を切断溝CD内から引き抜く際、細線51に付着した溶融物をそぎ落とす役割も果たす。 The fine wire insertion part 50 can fix the insertion direction of the fine wire 51 by passing the fine wire 51 through the insertion guide 52 and holding the fine wire 51. Further, since the insertion guide 52 is cylindrical, the auxiliary gas AG may flow simultaneously with the thin line 51. By flowing the auxiliary gas AG through the insertion guide 52, it is possible to prevent the thin wire 51 from being warped by losing the pressure of the auxiliary gas AG ejected from the processing nozzle 23. Further, when the auxiliary gas AG is caused to flow into the insertion guide 52, the auxiliary gas AG is also supplied from the insertion guide 52 into the cutting groove CD (see FIG. 4), so that the melt discharge capability is further improved. The insertion guide 52 also plays a role of scraping off the melt adhering to the thin wire 51 when the thin wire 51 is pulled out from the cutting groove CD.
 制御装置40は、コンピュータである。制御装置40は、相対移動部30と加工ヘッド20とを制御して加工対象物Wを切断する。制御装置40は、レーザ加工機1の切断加工中に細線挿入部50を制御して、切断進行方向MDに対して、照射点SPよりも後方から、細線51をピアス孔PH又は加工領域である図4に示す切断溝CD内に挿入する。なお、実施の形態1において、加工対象物Wに形成された加工領域は、ピアス孔PH又は切断溝CDであるが、加工領域は、加工対象物Wの外縁よりも外側でも良い。 The control device 40 is a computer. The control device 40 cuts the workpiece W by controlling the relative movement unit 30 and the machining head 20. The control device 40 controls the thin wire insertion portion 50 during the cutting process of the laser beam machine 1 so that the thin wire 51 is the piercing hole PH or the processing region from the rear of the irradiation point SP with respect to the cutting progress direction MD. It inserts in the cutting groove CD shown in FIG. In the first embodiment, the processing region formed in the processing target W is the piercing hole PH or the cutting groove CD, but the processing region may be outside the outer edge of the processing target W.
 制御装置40は、加工対象物Wにおける各パーツの位置情報、切断加工時のプログラム、及び切断加工条件を入力する入力装置41が接続している。切断加工条件は、レーザ光Lの出力、レーザ光Lの周波数、レーザ光Lのデューティ、補助ガスAGの圧力、及びレーザ光Lの焦点位置である。また、制御装置40は、加工対象物Wにおける各パーツの位置情報を少なくとも表示する表示装置42が接続している。 The control device 40 is connected to an input device 41 for inputting position information of each part on the workpiece W, a program at the time of cutting, and cutting processing conditions. The cutting process conditions are the output of the laser beam L, the frequency of the laser beam L, the duty of the laser beam L, the pressure of the auxiliary gas AG, and the focal position of the laser beam L. The control device 40 is connected to a display device 42 that displays at least position information of each part on the workpiece W.
 次に、実施の形態1に係るレーザ加工機1の切断加工中のレーザ光Lの状態を、図面を参照して説明する。図4は、図1に示されたレーザ加工機の切断加工中の状態を示す斜視図である。図5は、図4中のV-V線に沿う断面図である。図6は、図5に示されたレーザ光の他の状態を示す断面図である。図7は、比較例のレーザ加工機の切断加工中の状態を示す断面図である。図8は、図7に示されたレーザ光の他の状態を示す断面図である。 Next, the state of the laser beam L during the cutting process of the laser beam machine 1 according to Embodiment 1 will be described with reference to the drawings. FIG. 4 is a perspective view showing a state during cutting of the laser beam machine shown in FIG. FIG. 5 is a cross-sectional view taken along the line VV in FIG. 6 is a cross-sectional view showing another state of the laser beam shown in FIG. FIG. 7 is a cross-sectional view showing a state during cutting of the laser processing machine of the comparative example. FIG. 8 is a sectional view showing another state of the laser beam shown in FIG.
 実施の形態1に係るレーザ加工機1の制御装置40は、加工対象物Wの切断加工を開始すると、加工対象物Wにおける各パーツの位置情報に基づいて、加工対象物Wを貫通するピアス孔PHを形成する。ピアス孔PHを形成する際には、制御装置40は、各パーツの位置情報に基づいて算出された位置に加工ヘッド20を位置付けて、細線51を加工対象物Wから遠ざけた状態で、加工ヘッド20からレーザ光Lを照射するとともに、補助ガスAGを噴射する。制御装置40は、ピアス孔PHを形成すると、レーザ光Lの照射及び補助ガスAGの噴射を停止する。制御装置40は、加工対象物Wにおける各パーツの位置情報に基づいて、細線挿入部50を制御して、レーザ光Lの照射点SPよりもピアス孔PH内の切断進行方向MDの後方に細線51を挿入する。 When the control device 40 of the laser beam machine 1 according to Embodiment 1 starts cutting the workpiece W, the piercing hole that penetrates the workpiece W based on the position information of each part in the workpiece W. PH is formed. When forming the pierced hole PH, the control device 40 positions the machining head 20 at a position calculated based on the position information of each part, and keeps the thin wire 51 away from the workpiece W, with the machining head While irradiating the laser beam L from 20, the auxiliary gas AG is injected. When the piercing hole PH is formed, the control device 40 stops the irradiation with the laser light L and the injection of the auxiliary gas AG. The control device 40 controls the fine wire insertion portion 50 based on the position information of each part on the workpiece W, and the fine wire is arranged behind the laser beam irradiation point SP in the cutting progress direction MD in the piercing hole PH. 51 is inserted.
 レーザ加工機1の制御装置40は、加工対象物Wにおける各パーツの位置情報に基づいて、加工ヘッド20を加工対象物Wに対して移動させながら加工ヘッド20からレーザ光Lを照射するとともに補助ガスAGを噴射する。すると、レーザ加工機1の制御装置40は、図4に示すように、ピアス孔PHから加工対象物Wを切断する切断溝CDを形成する。実施の形態1において、細線51は、下端51aが加工対象物Wよりも下方に位置付けられる。また、細線51は、加工対象物Wを構成する金属の沸点よりも融点が高いので、切断溝CD内に挿入されているが、切断加工中に溶けることがない。また、細線51は、図4及び図5に示すように、加工ヘッド20からのレーザ光Lが直接照射されるとともに、切断溝CDの加工ヘッド20の加工対象物Wに対する切断進行方向MDの前端CDAの内面CDBから反射されたレーザ光Lが照射される。細線51は、金属により構成されているので、加工ヘッド20から照射されたレーザ光L及び切断溝CDの前端CDAの内面CDBにより反射されたレーザ光Lを、切断溝CDの前端CDAの内面CDBに向けて反射する。 The control device 40 of the laser beam machine 1 irradiates the laser beam L from the machining head 20 while moving the machining head 20 relative to the workpiece W based on the position information of each part on the workpiece W, and assists. Gas AG is injected. Then, the control apparatus 40 of the laser beam machine 1 forms a cutting groove CD for cutting the workpiece W from the piercing hole PH as shown in FIG. In the first embodiment, the thin wire 51 has the lower end 51a positioned below the workpiece W. Further, since the thin wire 51 has a melting point higher than the boiling point of the metal constituting the workpiece W, it is inserted into the cutting groove CD, but does not melt during the cutting process. 4 and 5, the thin wire 51 is directly irradiated with the laser light L from the processing head 20, and the front end of the cutting groove CD with respect to the processing target W of the processing head 20 in the cutting progress direction MD. The laser beam L reflected from the inner surface CDB of the CDA is irradiated. Since the thin wire 51 is made of metal, the laser beam L emitted from the machining head 20 and the laser beam L reflected by the inner surface CDB of the front end CDA of the cutting groove CD are used as the inner surface CDB of the front end CDA of the cutting groove CD. Reflect towards
 また、レーザ加工機1は、切断溝CD内に細線51を挿入しているので、補助ガスAGの噴流をコアンダ効果により細線51に引き付ける。レーザ加工機1は、加工対象物Wが溶けて発生したドロスともいう溶融物を補助ガスAGの噴流及び細線51の表面張力により細線51に付着させ、細線51に沿って切断溝CD内から排出する。また、レーザ加工機1は、細線51には常にレーザ光Lが照射されているため細線51が加熱され、溶融物の温度低下を抑制することができ、溶融物の排出力を向上でき、切断加工の高速化を図ることができる。 Moreover, since the laser beam machine 1 has inserted the thin wire 51 into the cutting groove CD, the auxiliary gas AG is attracted to the thin wire 51 by the Coanda effect. The laser processing machine 1 attaches a melt called dross generated by melting the workpiece W to the fine wire 51 by the jet of the auxiliary gas AG and the surface tension of the fine wire 51, and discharges it from the cut groove CD along the fine wire 51. To do. Further, since the laser beam L is always irradiated with the laser beam L, the laser beam machine 1 can heat the thin wire 51, suppress the temperature drop of the melt, improve the discharge power of the melt, and cut Processing speed can be increased.
 実施の形態1に係るレーザ加工機1は、図5及び図6に示すように、レーザ光Lの照射点SPよりもピアス孔PH及び切断溝CD内の切断進行方向MDの後方に細線51を挿入している。実施の形態1に係るレーザ加工機1は、細線51により反射したレーザ光Lを切断溝CDの前端CDAの内面CDBに向けて反射することができる。このために、実施の形態1に係るレーザ加工機1は、細線51を設けない図7及び図8に示す比較例よりも切断加工に寄与するレーザ光Lの割合を増やすことができ、切断加工の高速化を図ることができる。レーザ加工機1は、特に厚い加工対象物Wの切断の高速化、高品位化には加工対象物Wの下部の溶融物の温度低下を如何に防ぐかが重要なポイントとなる。溶融物の粘度は、温度と負の相関があるため、溶融物の温度低下によって急速に粘性が増大した結果ドロスが排出しきれず、切断加工不良が発生する。また、加工対象物Wの上部で発生した溶融物が加工対象物Wの下部から抜けるまでに時間がかかるため、適正な切断加工条件から移動速度を早めると、切断溝CDの前端CDAの内面CDBのZ方向に対する傾きが増大する。レーザ加工機1は、更に移動速度を早めると加工対象物Wの下端から溶融物が抜け切る前にレーザ光Lが通過してしまうため、切断不可能となる。実施の形態1に係るレーザ加工機1は、切断溝CDの前端CDAの内面CDBから反射されたレーザ光Lを細線51により図5及び図6に示すように、加工対象物Wの下部に反射するため、通常では切断不可能となる移動速度でも溶融物の温度低下を防ぐことができ、切断加工の高速化を図ることができる。 As shown in FIGS. 5 and 6, the laser beam machine 1 according to Embodiment 1 has a thin line 51 behind the piercing hole PH and the cutting progress direction MD in the cutting groove CD from the irradiation point SP of the laser beam L. Inserting. The laser beam machine 1 according to the first embodiment can reflect the laser beam L reflected by the thin wire 51 toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 1 can increase the ratio of the laser beam L that contributes to the cutting process as compared with the comparative example shown in FIGS. Can be speeded up. An important point of the laser processing machine 1 is how to prevent the temperature of the melt below the workpiece W from being lowered, especially for high-speed and high-quality cutting of the thick workpiece W. Since the viscosity of the melt has a negative correlation with the temperature, drastic discharge cannot be discharged as a result of a rapid increase in viscosity due to a decrease in the temperature of the melt, resulting in a defective cutting process. Further, since it takes time for the melt generated at the upper part of the workpiece W to escape from the lower part of the workpiece W, if the moving speed is increased from an appropriate cutting process condition, the inner surface CDB of the front end CDA of the cutting groove CD. The inclination with respect to the Z direction increases. If the moving speed of the laser beam machine 1 is further increased, the laser beam L passes before the melted material passes through the lower end of the workpiece W, so that the laser beam machine 1 cannot be cut. In the laser beam machine 1 according to the first embodiment, the laser beam L reflected from the inner surface CDB of the front end CDA of the cutting groove CD is reflected by the thin line 51 to the lower portion of the workpiece W as shown in FIGS. Therefore, it is possible to prevent the temperature of the melt from being lowered even at a moving speed that is normally impossible to cut, and it is possible to speed up the cutting process.
 実施の形態1に係るレーザ加工機1は、細線51の融点が加工対象物Wの沸点よりも高いために切断加工中に細線51が溶けることが無い。また、実施の形態1に係るレーザ加工機1は、ピアス孔PHを形成する際に、細線51を加工対象物Wから遠ざけ、ピアス孔PHが貫通した後に細線51を挿入することで、ピアス孔PHを形成する際に細線51が切断加工を妨げることを抑制することができる。 In the laser beam machine 1 according to the first embodiment, since the melting point of the thin wire 51 is higher than the boiling point of the workpiece W, the thin wire 51 is not melted during the cutting process. In addition, when forming the piercing hole PH, the laser beam machine 1 according to Embodiment 1 keeps the thin wire 51 away from the workpiece W, and inserts the thin wire 51 after the piercing hole PH has penetrated. When forming PH, it can suppress that the thin wire | line 51 prevents a cutting process.
 実施の形態1に係るレーザ加工機1は、レーザ光Lを反射するのが円柱状の細線51であるため、シート状の反射体に比べ溶融物との接触面積が広い。このため、レーザ加工機1は、表面張力及びコアンダ効果による溶融物の排出能力が向上する。 Since the laser beam machine 1 according to Embodiment 1 reflects the laser beam L from the cylindrical thin wire 51, the contact area with the melt is larger than that of the sheet-like reflector. For this reason, the laser processing machine 1 improves the discharge ability of the melt due to the surface tension and the Coanda effect.
 シート状の反射体は、補助ガスAGの逃げ場が無いため補助ガスAGの圧力に負けて反射体自体が反ってしまい、反射体に照射されたレーザ光Lを切断溝CDの前端CDAの内面CDBに反射することができない。実施の形態1に係るレーザ加工機1は、レーザ光Lを反射するために円柱状の細線51を用いるので、細線51と切断溝CDとの隙間から補助ガスAGを逃がすことができるため、細線51が反らず、レーザ光Lを切断溝CDの前端CDAの内面CDBに反射することができ、切断加工の高速化を図ることができる。 Since the sheet-like reflector has no escape space for the auxiliary gas AG, the reflector itself is warped against the pressure of the auxiliary gas AG, and the laser beam L irradiated to the reflector is irradiated with the inner surface CDB of the front end CDA of the cutting groove CD. Can not be reflected. Since the laser beam machine 1 according to the first embodiment uses the cylindrical thin wire 51 to reflect the laser light L, the auxiliary gas AG can escape from the gap between the thin wire 51 and the cutting groove CD. 51 does not warp, and the laser beam L can be reflected to the inner surface CDB of the front end CDA of the cutting groove CD, so that the cutting process can be speeded up.
 また、レーザ加工機1は、細線51がタングステンにより構成された場合、タングステンの融点が3000℃以上であり、軟鋼及びステンレス鋼の沸点よりも高く、CO(二酸化炭素)レーザ発振器が発振する波長が10.6μmのレーザ光Lの反射率が、90%以上と高く、切断加工の高速化を図ることができる。また、レーザ加工機1は、細線51の温度低下を防ぐため、細線51に通電し細線51で発生するジュール熱により細線51の温度を維持しても良い。 Further, in the laser processing machine 1, when the thin wire 51 is made of tungsten, the melting point of tungsten is 3000 ° C. or higher, which is higher than the boiling points of mild steel and stainless steel, and the wavelength at which the CO 2 (carbon dioxide) laser oscillator oscillates. The reflectance of the laser beam L of 10.6 μm is as high as 90% or more, and the cutting speed can be increased. Further, in order to prevent the temperature of the thin wire 51 from being lowered, the laser beam machine 1 may energize the thin wire 51 and maintain the temperature of the thin wire 51 by Joule heat generated in the thin wire 51.
実施の形態2.
 次に、実施の形態2に係るレーザ加工機1を図面に基づいて説明する。図9は、実施の形態2に係るレーザ加工機の切断加工中の状態を示す斜視図である。図10は、図9に示された加工対象物の平面図である。図9及び図10は、実施の形態1と同一部分に同一符号を付して説明を省略する。
Embodiment 2. FIG.
Next, the laser beam machine 1 according to Embodiment 2 will be described with reference to the drawings. FIG. 9 is a perspective view showing a state in which the laser beam machine according to Embodiment 2 is being cut. FIG. 10 is a plan view of the object to be processed shown in FIG. In FIG. 9 and FIG. 10, the same parts as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
 実施の形態2に係るレーザ加工機1の細線挿入部50は、図9及び図10に示すように、ピアス孔PH及び切断溝CD内に複数の細線51を挿入可能であり、切断加工中、ピアス孔PH及び切断溝CD内に複数の細線51を挿入する。 As shown in FIGS. 9 and 10, the thin wire insertion unit 50 of the laser beam machine 1 according to Embodiment 2 can insert a plurality of thin wires 51 into the piercing hole PH and the cutting groove CD, and during the cutting process, A plurality of thin wires 51 are inserted into the piercing hole PH and the cutting groove CD.
 実施の形態2に係るレーザ加工機1は、実施の形態1と同様に、レーザ光Lの照射点SPよりもピアス孔PH及び切断溝CD内に切断進行方向MDの後方に細線51を挿入しているために、細線51により反射したレーザ光Lを切断溝CDの前端CDAの内面CDBに向けて反射することができる。このために、実施の形態2に係るレーザ加工機1は、細線51を設けない比較例よりも切断加工に寄与するレーザ光Lの割合を増やすことができ、切断加工の高速化を図ることができる。 Similarly to the first embodiment, the laser beam machine 1 according to the second embodiment inserts the thin wire 51 behind the irradiation point SP of the laser beam L into the piercing hole PH and the cutting groove CD in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to the second embodiment can increase the ratio of the laser light L that contributes to the cutting process as compared with the comparative example in which the thin wire 51 is not provided, and the cutting process can be speeded up. it can.
 また、実施の形態2に係るレーザ加工機1は、複数の細線51をピアス孔PH及び切断溝CD内に挿入するので、実施の形態1に比べ細線51自体の表面積が広くなり、細線51と溶融物とに働く表面張力が強くなり、溶融物の排出力を向上できる。また、実施の形態2に係るレーザ加工機1は、複数の細線51をピアス孔PH及び切断溝CD内に挿入するので、切断加工中に細線51が切断溝CDの内側面CDCに接触したまま移動して、切断品質を向上できる。 Further, since the laser beam machine 1 according to the second embodiment inserts the plurality of thin wires 51 into the piercing hole PH and the cutting groove CD, the surface area of the thin wire 51 itself is larger than that of the first embodiment, and The surface tension acting on the melt is increased, and the discharge power of the melt can be improved. Further, since the laser beam machine 1 according to the second embodiment inserts the plurality of thin wires 51 into the piercing holes PH and the cutting grooves CD, the thin wires 51 remain in contact with the inner side surface CDC of the cutting grooves CD during the cutting processing. Move and improve cutting quality.
実施の形態3.
 次に、実施の形態3に係るレーザ加工機1を図面に基づいて説明する。図11は、実施の形態3に係るレーザ加工機の細線挿入部を示す側面図である。図11は、実施の形態1と同一部分に同一符号を付して説明を省略する。
Embodiment 3 FIG.
Next, the laser beam machine 1 according to Embodiment 3 will be described with reference to the drawings. FIG. 11 is a side view showing a thin wire insertion portion of the laser beam machine according to the third embodiment. In FIG. 11, the same parts as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 実施の形態3に係るレーザ加工機1の細線挿入部50-3は、挿入ガイド52の代わりに一対のガイドローラ56を備える。ガイドローラ56は、回転自在に設けられ、互いの間に細線51を挟んで細線51に移動方向を案内する。 The thin wire insertion portion 50-3 of the laser beam machine 1 according to Embodiment 3 includes a pair of guide rollers 56 instead of the insertion guide 52. The guide roller 56 is rotatably provided, and guides the moving direction to the fine line 51 with the fine line 51 interposed therebetween.
 実施の形態3に係るレーザ加工機1は、実施の形態1と同様に、レーザ光Lの照射点SPよりもピアス孔PH及び切断溝CD内に切断進行方向MDの後方に細線51を挿入しているために、細線51により反射したレーザ光Lを切断溝CDの前端CDAの内面CDBに向けて反射することができる。このために、実施の形態3に係るレーザ加工機1は、切断加工の高速化を図ることができる。 As in the first embodiment, the laser beam machine 1 according to the third embodiment inserts the thin wire 51 behind the piercing hole PH and the cutting groove CD from the irradiation point SP of the laser beam L in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 3 can increase the speed of the cutting process.
実施の形態4.
 次に、実施の形態4に係るレーザ加工機1を図面に基づいて説明する。図12は、実施の形態4に係るレーザ加工機の細線挿入部と角度調整機構を示す側面図である。図13は、図12に示された角度調整機構が細線の角度を調整する状態を説明する側面図である。図12及び図13は、実施の形態3と同一部分に同一符号を付して説明を省略する。
Embodiment 4 FIG.
Next, the laser beam machine 1 according to Embodiment 4 will be described with reference to the drawings. FIG. 12 is a side view showing the thin wire insertion portion and the angle adjustment mechanism of the laser beam machine according to the fourth embodiment. FIG. 13 is a side view for explaining a state in which the angle adjustment mechanism shown in FIG. 12 adjusts the angle of the thin line. In FIG. 12 and FIG. 13, the same parts as those of the third embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 実施の形態4に係るレーザ加工機1は、細線挿入部50-3によりピアス孔PH及び切断溝CD内に挿入される細線51の下端51aを加工ヘッド20の加工対象物Wに対する切断進行方向MDに移動可能な角度調整機構70を備える。角度調整機構70は、制御装置40により細線51の角度が、加工対象物Wの厚み及び材質に適切な角度にされる。 In the laser beam machine 1 according to the fourth embodiment, the lower end 51a of the thin wire 51 inserted into the piercing hole PH and the cutting groove CD by the thin wire insertion portion 50-3 is cut in the cutting progress direction MD with respect to the workpiece W of the processing head 20. Is provided with an angle adjusting mechanism 70 that is movable. In the angle adjustment mechanism 70, the angle of the thin line 51 is set to an angle appropriate for the thickness and material of the workpiece W by the control device 40.
 実施の形態4において、角度調整機構70は、ガイドローラ56をZ方向に移動するリニアアクチュエータ71を備える。角度調整機構70は、リニアアクチュエータ71によりガイドローラ56をZ方向に移動することで、細線51の角度を図13中の実線で示す角度と破線で示す角度とに亘って調整することができる。 In Embodiment 4, the angle adjustment mechanism 70 includes a linear actuator 71 that moves the guide roller 56 in the Z direction. The angle adjusting mechanism 70 can adjust the angle of the thin line 51 between the angle indicated by the solid line and the angle indicated by the broken line in FIG. 13 by moving the guide roller 56 in the Z direction by the linear actuator 71.
 実施の形態4に係るレーザ加工機1は、実施の形態1と同様に、レーザ光Lの照射点SPよりもピアス孔PH及び切断溝CD内に切断進行方向MDの後方に細線51を挿入しているために、細線51により反射したレーザ光Lを切断溝CDの前端CDAの内面CDBに向けて反射することができる。このために、実施の形態4に係るレーザ加工機1は、切断加工の高速化を図ることができる。 Similarly to the first embodiment, the laser beam machine 1 according to the fourth embodiment inserts the thin wire 51 behind the irradiation point SP of the laser beam L in the piercing hole PH and the cutting groove CD in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 4 can increase the speed of the cutting process.
 実施の形態4に係るレーザ加工機1は、角度調整機構70により加工対象物Wの厚み及び材質に応じて細線51の角度を適切な角度にするので、加工対象物Wに適した切断加工が可能となる。 In the laser beam machine 1 according to the fourth embodiment, the angle adjustment mechanism 70 sets the angle of the thin wire 51 to an appropriate angle according to the thickness and material of the workpiece W, so that cutting suitable for the workpiece W is performed. It becomes possible.
実施の形態5.
 次に、実施の形態5に係るレーザ加工機1を図面に基づいて説明する。図14は、実施の形態5に係るレーザ加工機の細線挿入部と追従機構を示す背面図である。図15は、図14に示された追従機構が細線の角度を調整する状態を説明する斜視図である。図14及び図15は、実施の形態3と同一部分に同一符号を付して説明を省略する。
Embodiment 5 FIG.
Next, the laser beam machine 1 according to Embodiment 5 will be described with reference to the drawings. FIG. 14 is a rear view showing the thin wire insertion portion and the follow-up mechanism of the laser beam machine according to the fifth embodiment. FIG. 15 is a perspective view for explaining a state in which the follow-up mechanism shown in FIG. 14 adjusts the angle of the thin line. In FIG. 14 and FIG. 15, the same parts as those of the third embodiment are denoted by the same reference numerals, and description thereof is omitted.
 実施の形態5に係るレーザ加工機1は、細線挿入部50-5によりピアス孔PH及び切断溝CD内に挿入される細線51の下端51aを加工ヘッド20の加工対象物Wに対する切断進行方向MDに対して交差する方向に移動可能な追従機構80を備える。追従機構80は、制御装置40により細線51の角度が、パーツを構成する切断溝CDの一方の内側面CDCに接触する角度にされる。 In the laser beam machine 1 according to the fifth embodiment, the lower end 51a of the thin wire 51 inserted into the piercing hole PH and the cutting groove CD by the thin wire insertion portion 50-5 is cut in the cutting progress direction MD with respect to the workpiece W of the processing head 20. Is provided with a follow-up mechanism 80 that is movable in a direction intersecting with respect to. In the follow-up mechanism 80, the angle of the thin line 51 is adjusted by the control device 40 so as to be in contact with one inner side surface CDC of the cutting groove CD constituting the part.
 実施の形態5において、細線挿入部50-5は、ローラ54-5の軸心がローラ54の軸心と直交しているとともに、ガイドローラ56-5の軸心がガイドローラ56の軸心と直交している。追従機構80は、ガイドローラ56-5を水平方向と平行でかつ切断進行方向MDに直交する方向に移動するリニアアクチュエータ81を備える。追従機構80は、リニアアクチュエータ81によりガイドローラ56-5を水平方向と平行でかつ切断進行方向MDに直交する方向に移動することで、細線51の角度を図15中の実線で示す角度と破線で示す角度とに亘って調整することができる。 In the fifth embodiment, in the thin wire insertion portion 50-5, the axis of the roller 54-5 is orthogonal to the axis of the roller 54, and the axis of the guide roller 56-5 is aligned with the axis of the guide roller 56. Orthogonal. The follow-up mechanism 80 includes a linear actuator 81 that moves the guide roller 56-5 in a direction parallel to the horizontal direction and perpendicular to the cutting progress direction MD. The follow-up mechanism 80 moves the guide roller 56-5 by the linear actuator 81 in a direction parallel to the horizontal direction and perpendicular to the cutting progress direction MD, thereby changing the angle of the thin line 51 to the angle indicated by the solid line in FIG. It can adjust over the angle shown.
 実施の形態5に係るレーザ加工機1は、実施の形態1と同様に、レーザ光Lの照射点SPよりもピアス孔PH及び切断溝CD内に切断進行方向MDの後方に細線51を挿入しているために、細線51により反射したレーザ光Lを切断溝CDの前端CDAの内面CDBに向けて反射することができる。このために、実施の形態5に係るレーザ加工機1は、切断加工の高速化を図ることができる。 As in the first embodiment, the laser beam machine 1 according to the fifth embodiment inserts the thin wire 51 behind the piercing hole PH and the cutting groove CD from the irradiation point SP of the laser beam L in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 5 can increase the cutting speed.
 実施の形態5に係るレーザ加工機1は、追従機構80によりパーツを構成する切断溝CDの一方の内側面CDCに細線51を接触させて移動できるので、切断面品質が向上する。 Since the laser beam machine 1 according to the fifth embodiment can move by moving the thin wire 51 in contact with one inner side surface CDC of the cutting groove CD constituting the part by the follow-up mechanism 80, the quality of the cut surface is improved.
実施の形態6.
 次に、実施の形態6に係るレーザ加工機1を図面に基づいて説明する。図16は、実施の形態6に係るレーザ加工機の細線挿入部と角度調整機構と追従機構を示す斜視図である。図16は、実施の形態1と同一部分に同一符号を付して説明を省略する。
Embodiment 6 FIG.
Next, a laser beam machine 1 according to Embodiment 6 will be described with reference to the drawings. FIG. 16 is a perspective view showing a thin wire insertion portion, an angle adjustment mechanism, and a follow-up mechanism of a laser beam machine according to the sixth embodiment. In FIG. 16, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 実施の形態6に係るレーザ加工機1は、細線挿入部50によりピアス孔PH及び切断溝CD内に挿入される細線51の下端51aを加工ヘッド20の加工対象物Wに対する切断進行方向MDに移動可能な角度調整機構70-6を備える。角度調整機構70-6は、制御装置40により細線51の角度が、加工対象物Wの厚み及び材質に適切な角度にされる。 The laser beam machine 1 according to the sixth embodiment moves the lower end 51a of the thin wire 51 inserted into the piercing hole PH and the cutting groove CD by the thin wire insertion portion 50 in the cutting progress direction MD with respect to the workpiece W of the processing head 20. A possible angle adjustment mechanism 70-6 is provided. In the angle adjusting mechanism 70-6, the angle of the thin wire 51 is set to an angle appropriate for the thickness and material of the workpiece W by the control device 40.
 実施の形態6に係るレーザ加工機1は、細線挿入部50によりピアス孔PH及び切断溝CD内に挿入される細線51の下端51aを加工ヘッド20の加工対象物Wに対する切断進行方向MDに対して交差する方向に移動可能な追従機構80-6を備える。追従機構80-6は、制御装置40により細線51の角度が、パーツを構成する切断溝CDの一方の内側面CDCに接触する角度にされる。 In the laser beam machine 1 according to the sixth embodiment, the lower end 51a of the thin wire 51 inserted into the piercing hole PH and the cutting groove CD by the thin wire insertion portion 50 is cut with respect to the cutting progress direction MD with respect to the workpiece W of the processing head 20. And a follower mechanism 80-6 movable in the intersecting direction. In the follow-up mechanism 80-6, the angle of the thin line 51 is set to an angle at which the fine line 51 comes into contact with one inner surface CDC of the cutting groove CD constituting the part by the control device 40.
 追従機構80-6は、加工ヘッド20に取り付けられ、駆動軸82に細線挿入部50の挿入ガイド52を挿入するスリット83を設けたロータリアクチュエータ84を備える。駆動軸82は、X方向とY方向との双方に平行な平面において、切断進行方向MDと平行である。追従機構80-6は、駆動軸82を回転することで、細線51の下端51aを加工ヘッド20の加工対象物Wに対する切断進行方向MDに対して交差する方向に移動して、細線51の切断溝CDの一方の内側面CDCに接触させる。 The follow-up mechanism 80-6 includes a rotary actuator 84 attached to the machining head 20 and provided with a slit 83 for inserting the insertion guide 52 of the thin wire insertion portion 50 in the drive shaft 82. The drive shaft 82 is parallel to the cutting progress direction MD on a plane parallel to both the X direction and the Y direction. The follow-up mechanism 80-6 rotates the drive shaft 82 to move the lower end 51a of the thin wire 51 in a direction intersecting the cutting progress direction MD with respect to the workpiece W of the processing head 20, thereby cutting the thin wire 51. One inner surface CDC of the groove CD is brought into contact.
 角度調整機構70-6は、駆動軸82に内蔵され、挿入ガイド52に取り付けられた駆動軸72が駆動軸82と直交するロータリアクチュエータ73を備える。駆動軸72は、X方向とY方向との双方に平行な平面において、切断進行方向MDに交差している。角度調整機構70-6は、駆動軸72を回転することで、細線51の下端51aを加工ヘッド20の加工対象物Wに対する切断進行方向MDに移動して、細線51の角度を加工対象物Wの厚み及び材質に適切な角度にする。 The angle adjustment mechanism 70-6 includes a rotary actuator 73 that is built in the drive shaft 82 and in which the drive shaft 72 attached to the insertion guide 52 is orthogonal to the drive shaft 82. The drive shaft 72 intersects the cutting progress direction MD on a plane parallel to both the X direction and the Y direction. The angle adjusting mechanism 70-6 rotates the drive shaft 72 to move the lower end 51a of the thin wire 51 in the cutting progress direction MD with respect to the workpiece W of the machining head 20, and the angle of the thin wire 51 is changed to the workpiece W. The angle is appropriate for the thickness and material of the material.
 実施の形態6に係るレーザ加工機1は、実施の形態1と同様に、レーザ光Lの照射点SPよりもピアス孔PH及び切断溝CD内に切断進行方向MDの後方に細線51を挿入しているために、細線51により反射したレーザ光Lを切断溝CDの前端CDAの内面CDBに向けて反射することができる。このために、実施の形態6に係るレーザ加工機1は、切断加工の高速化を図ることができる。 As in the first embodiment, the laser beam machine 1 according to the sixth embodiment inserts the thin wire 51 behind the piercing hole PH and the cutting groove CD from the irradiation point SP of the laser beam L in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 6 can increase the cutting speed.
 実施の形態6に係るレーザ加工機1は、角度調整機構70-6により加工対象物Wの厚み及び材質に応じて細線51の角度を適切な角度にするので、加工対象物Wに適した切断加工が可能となる。実施の形態6に係るレーザ加工機1は、追従機構80-6によりパーツを構成する切断溝CDの一方の内側面CDCに細線51を接触させて移動できるので、切断面品質が向上する。 In the laser beam machine 1 according to Embodiment 6, the angle of the fine wire 51 is set to an appropriate angle according to the thickness and material of the workpiece W by the angle adjustment mechanism 70-6, so that the cutting suitable for the workpiece W is performed. Processing becomes possible. Since the laser beam machine 1 according to Embodiment 6 can be moved by bringing the thin wire 51 into contact with one inner side surface CDC of the cutting groove CD constituting the part by the follow-up mechanism 80-6, the quality of the cut surface is improved.
実施の形態7.
 次に、実施の形態7に係るレーザ加工機1を図面に基づいて説明する。図17は、実施の形態7に係るレーザ加工機の複数の細線挿入部を示す背面図である。図18は、図17に示された複数の細線挿入部の一部の細線がピアス孔に挿入された状態を示す背面図である。図19は、図18に示された複数の細線挿入部の他の細線が加工対象物から遠ざけられた状態を示す背面図である。図20は、図19に示された加工対象物の平面図である。図21は、図20に示された加工対象物に切断溝が形成された状態を示す平面図である。図22は、図21に示された切断溝の向きが変更された状態を示す平面図である。図17から図22は、実施の形態1と同一部分に同一符号を付して説明を省略する。
Embodiment 7 FIG.
Next, the laser beam machine 1 according to Embodiment 7 will be described with reference to the drawings. FIG. 17 is a rear view showing a plurality of thin wire insertion portions of the laser beam machine according to the seventh embodiment. FIG. 18 is a rear view showing a state in which some fine wires of the plurality of fine wire insertion portions shown in FIG. 17 are inserted into the pierce holes. FIG. 19 is a rear view showing a state in which other fine lines of the plurality of fine line insertion portions shown in FIG. 18 are kept away from the object to be processed. FIG. 20 is a plan view of the object to be processed shown in FIG. FIG. 21 is a plan view showing a state in which cutting grooves are formed in the object to be processed shown in FIG. FIG. 22 is a plan view showing a state where the orientation of the cutting groove shown in FIG. 21 is changed. 17 to 22, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 実施の形態7に係るレーザ加工機1は、加工ヘッド20から加工対象物Wに照射されるレーザ光Lの周囲に細線挿入部50を複数配置している。実施の形態7において、X方向とY方向との双方と平行な平面において、複数の細線挿入部50をレーザ光Lを中心とする半円上に配置している。また、複数の細線挿入部50の水平方向と平行でかつ切断進行方向MDに直交する方向の中央の位置を、レーザ光Lの照射点SPよりも切断進行方向MDの後方に配置している。 In the laser beam machine 1 according to the seventh embodiment, a plurality of thin wire insertion portions 50 are arranged around the laser beam L irradiated to the workpiece W from the machining head 20. In the seventh embodiment, a plurality of thin wire insertion portions 50 are arranged on a semicircle centered on the laser beam L on a plane parallel to both the X direction and the Y direction. Further, the central position in the direction parallel to the horizontal direction of the plurality of thin wire insertion portions 50 and perpendicular to the cutting progress direction MD is arranged behind the irradiation point SP of the laser light L in the cutting progress direction MD.
 また、複数の細線挿入部50は、図17から図19に示すように、加工対象物Wに近付くにしたがって細線51の下端51aが互いに近づく方向にZ方向に対して傾いている。実施の形態7において、複数の細線挿入部50は、細線51の下端51aが互いに加工対象物Wの下方で接触する位置に配置されているが、細線51の下端51aが互いに加工対象物Wの内部で接触しても良く、加工対象物Wの上面で接触しても良く、加工対象物Wの上面よりも上方で接触しても良い。実施の形態7にかかるレーザ加工機1は、細線51の下端51aが互いに接触する位置により切断溝CDの内部での細線51の相互の位置が異なるため、細線51によるレーザ光Lの反射の割合、表面張力及びコアンダ効果による溶融物の排出力を変更することができ、目的に応じた切断加工が可能となる。 Further, as shown in FIGS. 17 to 19, the plurality of fine wire insertion portions 50 are inclined with respect to the Z direction in the direction in which the lower ends 51 a of the thin wires 51 approach each other as they approach the workpiece W. In the seventh embodiment, the plurality of thin wire insertion portions 50 are arranged at positions where the lower ends 51a of the thin wires 51 are in contact with each other below the workpiece W, but the lower ends 51a of the thin wires 51 are mutually connected to the workpiece W. Contact may be made inside, contact may be made on the upper surface of the workpiece W, or contact may be made above the upper surface of the workpiece W. In the laser beam machine 1 according to the seventh embodiment, since the mutual positions of the thin wires 51 in the cutting groove CD differ depending on the positions where the lower ends 51a of the thin wires 51 are in contact with each other, the ratio of the reflection of the laser light L by the thin wires 51 The melt discharge force due to the surface tension and the Coanda effect can be changed, and cutting according to the purpose can be performed.
 実施の形態7に係るレーザ加工機1は、全ての細線51の移動方向を案内するガイド部材90を備える。ガイド部材90は、図20から図22に示すように、レーザ光Lを中心とするリング状に形成され、細線51をレーザ光Lの照射点SPの周囲に案内する。なお、図20から図22は、ガイド部材90の細線51を案内する部分を平行斜線で示している。 The laser beam machine 1 according to the seventh embodiment includes a guide member 90 that guides the moving direction of all the thin wires 51. As shown in FIGS. 20 to 22, the guide member 90 is formed in a ring shape centered on the laser beam L, and guides the thin line 51 around the irradiation point SP of the laser beam L. 20 to 22 show the portion of the guide member 90 that guides the thin line 51 with parallel oblique lines.
 実施の形態7に係るレーザ加工機1は、ピアス孔PHの形成中、図17に示すように細線51を加工対象物Wから遠ざけ、ピアス孔PHの形成終了後に、図18に示すように、細線挿入部50によって全ての細線51が加工対象物Wに近づけられ、一部の細線51がピアス孔PH内に挿入される。次に、レーザ加工機1は、ピアス孔PHに挿入されなかった細線51を図19に示すように、加工対象物Wから遠ざけ切断加工を行う。レーザ加工機1は、図20から図22に密な平行斜線で示すように、ピアス孔PH及び切断溝CD内に挿入された細線51が、レーザ光Lの照射点SPよりも切断進行方向MDの後方に位置する。なお、レーザ加工機1は、細線51がピアス孔PHに挿入されたか否かの判別を、ガイド部材90に設けられた圧力センサ又は位置センサにより計測する事ができる。 The laser beam machine 1 according to Embodiment 7 keeps the thin wire 51 away from the workpiece W as shown in FIG. 17 during the formation of the piercing hole PH, and after the formation of the piercing hole PH, as shown in FIG. All the thin wires 51 are brought close to the workpiece W by the thin wire insertion portion 50, and a part of the thin wires 51 is inserted into the piercing hole PH. Next, the laser beam machine 1 cuts away the thin wire 51 that has not been inserted into the piercing hole PH away from the workpiece W as shown in FIG. In the laser processing machine 1, as indicated by dense parallel oblique lines in FIGS. 20 to 22, the thin wire 51 inserted into the piercing hole PH and the cutting groove CD has a cutting progress direction MD from the irradiation point SP of the laser light L. Located behind. The laser beam machine 1 can measure whether or not the thin wire 51 has been inserted into the piercing hole PH by using a pressure sensor or a position sensor provided in the guide member 90.
 実施の形態7において、少なくとも一本の細線51をピアス孔PH及び切断溝CDに挿入すれば良く、必ずしも全ての細線51を挿入する必要は無い。ピアス孔PH及び切断溝CDに挿入される細線51は、加工対象物Wの厚み、材質、及びパーツの形状により調整する事ができる。 In the seventh embodiment, at least one thin wire 51 may be inserted into the piercing hole PH and the cutting groove CD, and it is not always necessary to insert all the thin wires 51. The thin wire 51 inserted into the piercing hole PH and the cutting groove CD can be adjusted by the thickness, material, and part shape of the workpiece W.
 実施の形態7に係るレーザ加工機1は、実施の形態1と同様に、レーザ光Lの照射点SPよりもピアス孔PH及び切断溝CD内に切断進行方向MDの後方に細線51を挿入しているために、細線51により反射したレーザ光Lを切断溝CDの前端CDAの内面CDBに向けて反射することができる。このために、実施の形態7に係るレーザ加工機1は、切断加工の高速化を図ることができる。 As in the first embodiment, the laser beam machine 1 according to the seventh embodiment inserts the thin wire 51 behind the piercing hole PH and the cutting groove CD from the irradiation point SP of the laser beam L in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 7 can increase the speed of the cutting process.
 実施の形態7に係るレーザ加工機1は、細線51によってレーザ光Lの照射が阻害されることなくピアス孔PHを形成でき、切断加工にスムーズに移行できる。実施の形態7に係るレーザ加工機1は、レーザ光Lよりも切断進行方向MDの後方の細線51を挿入することで切断加工開始直後に細線51によって加工対象物Wへのレーザ光Lの照射が阻害されることが無い。 The laser beam machine 1 according to the seventh embodiment can form the piercing hole PH without hindering the irradiation of the laser beam L by the thin wire 51, and can smoothly shift to the cutting process. The laser beam machine 1 according to the seventh embodiment inserts the thin wire 51 behind the laser beam L in the cutting progress direction MD so that the laser beam L is irradiated onto the workpiece W by the thin wire 51 immediately after the start of the cutting process. Is not hindered.
実施の形態8.
 次に、実施の形態8に係るレーザ加工機1を図面に基づいて説明する。図23は、実施の形態8に係るレーザ加工機の加工ヘッドの側面図である。図24は、図23に示された加工対象物の平面図である。図23及び図24は、実施の形態1と同一部分に同一符号を付して説明を省略する。
Embodiment 8 FIG.
Next, the laser beam machine 1 according to Embodiment 8 will be described with reference to the drawings. FIG. 23 is a side view of the machining head of the laser beam machine according to the eighth embodiment. FIG. 24 is a plan view of the object to be processed shown in FIG. 23 and 24, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 加工ヘッド20は、図23に示すように、レーザ光Lの周囲からパージガスPGを加工対象物Wに噴射する。加工対象物W上のパージガスPGの噴射範囲PGAは、リング状形状である。実施の形態8において、加工ヘッド20は、レーザ光Lを照射するとともに補助ガスAGを噴射する加工ノズル23の周囲にパージガスPGを加工対象物Wに噴射する噴出口25を設けている。実施の形態8において、噴出口25は、加工ノズル23の周囲の全周に設けられている。また、実施の形態8において、図24に示すように、レーザ光Lの照射点SPと、補助ガスAGの噴射範囲AGAと、パージガスPGの噴射範囲PGAとは同軸に配置されている。 The machining head 20 injects a purge gas PG from the periphery of the laser beam L onto the workpiece W as shown in FIG. The injection range PGA of the purge gas PG on the workpiece W has a ring shape. In the eighth embodiment, the machining head 20 is provided with an ejection port 25 that ejects the purge gas PG to the workpiece W around the machining nozzle 23 that irradiates the laser beam L and injects the auxiliary gas AG. In the eighth embodiment, the ejection ports 25 are provided on the entire circumference around the processing nozzle 23. In the eighth embodiment, as shown in FIG. 24, the irradiation point SP of the laser beam L, the injection range AGA of the auxiliary gas AG, and the injection range PGA of the purge gas PG are arranged coaxially.
 実施の形態8に係るレーザ加工機1は、実施の形態1と同様に、レーザ光Lの照射点SPよりもピアス孔PH及び切断溝CD内に切断進行方向MDの後方に細線51を挿入しているために、細線51により反射したレーザ光Lを切断溝CDの前端CDAの内面CDBに向けて反射することができる。このために、実施の形態8に係るレーザ加工機1は、切断加工の高速化を図ることができる。 As in the first embodiment, the laser beam machine 1 according to the eighth embodiment inserts the thin wire 51 behind the piercing hole PH and the cutting groove CD from the irradiation point SP of the laser beam L in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to Embodiment 8 can achieve high speed cutting.
 実施の形態8に係るレーザ加工機1は、細線51がピアス孔PH及び切断溝CD内に挿入されているため、ピアス孔PH及び切断溝CD内の気圧が高くなり、補助ガスAGが加工対象物Wの上面に沿って逃げやすくなる。そこで、実施の形態8に係るレーザ加工機1は、図23及び図24に示すように、補助ガスAGの周囲からパージガスPGを供給する事で、加工対象物Wの平面近傍の気圧を高く維持し、補助ガスAGをピアス孔PH及び切断溝CD内に供給しやすくすることができる。切断加工品質は、ピアス孔PH及び切断溝CD内に供給される補助ガスAGの量及び純度に大きく影響を受けるため、実施の形態8に係るレーザ加工機1は、切断加工の高品位化が可能となる。 In the laser processing machine 1 according to the eighth embodiment, since the thin wire 51 is inserted into the piercing hole PH and the cutting groove CD, the atmospheric pressure in the piercing hole PH and the cutting groove CD is increased, and the auxiliary gas AG is processed. It becomes easy to escape along the upper surface of the object W. Therefore, as shown in FIGS. 23 and 24, the laser processing machine 1 according to the eighth embodiment maintains a high pressure near the plane of the workpiece W by supplying the purge gas PG from the periphery of the auxiliary gas AG. In addition, the auxiliary gas AG can be easily supplied into the piercing hole PH and the cutting groove CD. Since the quality of the cutting process is greatly influenced by the amount and purity of the auxiliary gas AG supplied into the piercing hole PH and the cutting groove CD, the laser processing machine 1 according to the eighth embodiment has a high quality cutting process. It becomes possible.
実施の形態9.
 次に、実施の形態9に係るレーザ加工機1を図面に基づいて説明する。図25は、実施の形態9に係るレーザ加工機により切断加工中の加工対象物の平面図である。図25は、実施の形態1と同一部分に同一符号を付して説明を省略する。
Embodiment 9 FIG.
Next, the laser beam machine 1 according to Embodiment 9 will be described with reference to the drawings. FIG. 25 is a plan view of a processing object being cut by the laser beam machine according to the ninth embodiment. In FIG. 25, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 実施の形態9に係るレーザ加工機1は、細線51よりも太い細線51Aを細線51よりも切断進行方向MDの後方に配置する。実施の形態9に係るレーザ加工機1は、実施の形態1と同様に、レーザ光Lの照射点SPよりもピアス孔PH及び切断溝CD内に切断進行方向MDの後方に細線51を挿入しているために、細線51により反射したレーザ光Lを切断溝CDの前端CDAの内面CDBに向けて反射することができる。このために、実施の形態9に係るレーザ加工機1は、細線51を設けない比較例よりも切断加工に寄与するレーザ光Lの割合を増やすことができ、切断加工の高速化を図ることができる。 The laser beam machine 1 according to the ninth embodiment arranges the thin wire 51A thicker than the thin wire 51 behind the cutting progress direction MD than the thin wire 51. As in the first embodiment, the laser beam machine 1 according to the ninth embodiment inserts the thin wire 51 behind the irradiation point SP of the laser beam L into the piercing hole PH and the cutting groove CD in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, the laser beam machine 1 according to the ninth embodiment can increase the ratio of the laser beam L that contributes to the cutting process as compared with the comparative example in which the thin wire 51 is not provided, and can increase the cutting process speed. it can.
 実施の形態9に係るレーザ加工機1は、軟鋼よりも高い圧力の補助ガスAGが必要とされるステンレス鋼により構成された加工対象物Wを切断加工する時には、切断溝CD内の圧力によって挿入した細線51が切断進行方向MDの後方に曲がる場合がある。そこで、実施の形態9に係るレーザ加工機1は、細線51よりも太い細線51Aを細線51よりも切断進行方向MDの後方に配置することで、補助ガスAGにより細線51が切断進行方向MDの後方に曲がることを抑制することができる。実施の形態9において、細線51,51Aの断面形状を同じ形状にしているが、異なる形状にしても良い。 The laser beam machine 1 according to Embodiment 9 is inserted by the pressure in the cutting groove CD when cutting the workpiece W made of stainless steel that requires an auxiliary gas AG having a pressure higher than that of mild steel. The thin wire 51 may bend backward in the cutting progress direction MD. Therefore, the laser beam machine 1 according to Embodiment 9 disposes the thin wire 51A thicker than the thin wire 51 behind the cutting progress direction MD with respect to the thin wire 51, so that the thin wire 51 is in the cutting progress direction MD by the auxiliary gas AG. Bending backward can be suppressed. In the ninth embodiment, the thin wires 51 and 51A have the same cross-sectional shape, but may have different shapes.
実施の形態10.
 次に、実施の形態10を図面に基づいて説明する。図26は、実施の形態10に係る細線の断面図である。実施の形態10に係る細線51-10は、断面形状が正方形に形成されている。
Embodiment 10 FIG.
Next, Embodiment 10 will be described with reference to the drawings. FIG. 26 is a cross-sectional view of a thin line according to the tenth embodiment. The thin wire 51-10 according to the tenth embodiment has a square cross section.
実施の形態11.
 次に、実施の形態11を図面に基づいて説明する。図27は、実施の形態11に係る細線の断面図である。実施の形態11に係る細線51-11は、断面形状が矩形状の溝が形成された丸型に形成されている。
Embodiment 11 FIG.
Next, an eleventh embodiment will be described with reference to the drawings. FIG. 27 is a cross-sectional view of a thin line according to the eleventh embodiment. The thin wire 51-11 according to the eleventh embodiment is formed in a round shape with a groove having a rectangular cross section.
実施の形態12.
 次に、実施の形態12を図面に基づいて説明する。図28は、実施の形態12に係る細線の断面図である。実施の形態12に係る細線51-12は、断面形状がV字状の溝が形成された丸型に形成されている。
Embodiment 12 FIG.
Next, Embodiment 12 will be described with reference to the drawings. FIG. 28 is a cross-sectional view of a thin line according to the twelfth embodiment. The thin wire 51-12 according to the twelfth embodiment is formed in a round shape in which a groove having a V-shaped cross section is formed.
実施の形態13.
 次に、実施の形態13を図面に基づいて説明する。図29は、実施の形態13に係る細線の断面図である。実施の形態13に係る細線51-13は、断面形状が三日月形に形成されている。
Embodiment 13 FIG.
Next, Embodiment 13 will be described with reference to the drawings. FIG. 29 is a cross-sectional view of a thin line according to the thirteenth embodiment. The fine wire 51-13 according to the thirteenth embodiment has a crescent-shaped cross section.
実施の形態14.
 次に、実施の形態14を図面に基づいて説明する。図30は、実施の形態14に係る細線の断面図である。実施の形態14に係る細線51-14は、断面形状が正三角形に形成されている。
Embodiment 14 FIG.
Next, a fourteenth embodiment will be described with reference to the drawings. FIG. 30 is a cross-sectional view of a thin line according to the fourteenth embodiment. The thin wire 51-14 according to the fourteenth embodiment has a cross-sectional shape of an equilateral triangle.
実施の形態15.
 次に、実施の形態15を図面に基づいて説明する。図31は、実施の形態15に係る細線の断面図である。実施の形態15に係る細線51-15は、断面形状が星形に形成されている。
Embodiment 15 FIG.
Next, a fifteenth embodiment will be described with reference to the drawings. FIG. 31 is a cross-sectional view of a thin line according to the fifteenth embodiment. Thin wire 51-15 according to the fifteenth embodiment has a star-shaped cross section.
 実施の形態10から実施の形態15は、実施の形態1と同様に、レーザ光Lの照射点SPよりもピアス孔PH及び切断溝CD内に切断進行方向MDの後方に細線51を挿入しているために、細線51により反射したレーザ光Lを切断溝CDの前端CDAの内面CDBに向けて反射することができる。このために、実施の形態10から実施の形態15は、細線51を設けない比較例よりも切断加工に寄与するレーザ光Lの割合を増やすことができ、切断加工の高速化を図ることができる。 In the tenth to fifteenth embodiments, as in the first embodiment, the thin wire 51 is inserted behind the laser beam irradiation point SP in the piercing hole PH and the cutting groove CD in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. Therefore, in the tenth to fifteenth embodiments, the ratio of the laser beam L contributing to the cutting process can be increased as compared with the comparative example in which the thin wire 51 is not provided, and the cutting process can be speeded up. .
 実施の形態10から実施の形態15は、細線51-10,51-11,51-12,51-13,51-14,51-15の表面張力及び溶融物の流し方の目的に応じて様々な形状を用いても良く、また、細線51-10,51-11,51-12,51-13,51-14,51-15と溶融物との接触面積を増やすため、サンドブラスト加工により細線51-10,51-11,51-12,51-13,51-14,51-15の表面に凹凸を形成しても良い。 The tenth to fifteenth embodiments vary according to the surface tension of the thin wires 51-10, 51-11, 51-12, 51-13, 51-14, and 51-15 and the purpose of flowing the melt. In order to increase the contact area between the fine wires 51-10, 51-11, 51-12, 51-13, 51-14, 51-15 and the melt, the fine wires 51-10, 51-11, 51-12, 51-15 are increased by sandblasting. Concavities and convexities may be formed on the surfaces of −10, 51-11, 51-12, 51-13, 51-14, and 51-15.
実施の形態16.
 次に、実施の形態16を図面に基づいて説明する。図32は、実施の形態16に係る細線の側面図である。実施の形態16に係る細線51-16は、断面円弧状の切り込みが複数形成されている。
Embodiment 16 FIG.
Next, an embodiment 16 will be described with reference to the drawings. FIG. 32 is a side view of a fine line according to the sixteenth embodiment. Thin wire 51-16 according to the sixteenth embodiment has a plurality of cuts having an arcuate cross section.
実施の形態17.
 次に、実施の形態17を図面に基づいて説明する。図33は、実施の形態17に係る細線の側面図である。実施の形態17に係る細線51-17は、断面V字状の切り込みが複数形成されている。
Embodiment 17. FIG.
Next, an embodiment 17 will be described with reference to the drawings. FIG. 33 is a side view of a thin line according to the seventeenth embodiment. The fine wire 51-17 according to the seventeenth embodiment has a plurality of cuts with a V-shaped cross section.
 実施の形態16及び実施の形態17は、実施の形態1と同様に、レーザ光Lの照射点SPよりもピアス孔PH及び切断溝CD内に切断進行方向MDの後方に細線51を挿入しているために、細線51により反射したレーザ光Lを切断溝CDの前端CDAの内面CDBに向けて反射することができる。このために、実施の形態16及び実施の形態17は、細線51を設けない比較例よりも切断加工に寄与するレーザ光Lの割合を増やすことができ、切断加工の高速化を図ることができる。 In the sixteenth and seventeenth embodiments, as in the first embodiment, the thin wire 51 is inserted behind the irradiation point SP of the laser beam L in the piercing hole PH and the cutting groove CD in the cutting progress direction MD. Therefore, the laser beam L reflected by the thin wire 51 can be reflected toward the inner surface CDB of the front end CDA of the cutting groove CD. For this reason, in the sixteenth and seventeenth embodiments, the ratio of the laser light L contributing to the cutting process can be increased as compared with the comparative example in which the thin line 51 is not provided, and the cutting process can be speeded up. .
 実施の形態16及び実施の形態17は、細線51-16,51-17が切断溝CDの前端CDAの内面CDBにより反射されたレーザ光Lを効率良く、切断溝CDの前端CDAの内面CDBに向けて反射できるとともに、レーザ光Lの反射角を調整することができる。 In the sixteenth and seventeenth embodiments, the laser light L reflected by the inner surface CDB of the front end CDA of the cutting groove CD is efficiently applied to the inner surface CDB of the front end CDA of the cutting groove CD. The reflection angle of the laser beam L can be adjusted.
 次に、各実施の形態に係るレーザ加工機1の制御装置40の構成を説明する。図34は、各実施の形態に係るレーザ加工機の制御装置のハードウェアの構成の一例を示す図である。制御装置40は、図34に示す入出力インタフェース441に接続された入力装置41から加工対象物Wにおける各パーツの位置情報、及び切断加工条件が入力される。入力装置41は、タッチパネル、キーボード、マウス、トラックボール又はこれらの組み合わせにより構成される。制御装置40は、入出力インタフェース441に接続された表示装置42に加工対象物Wにおける各パーツの位置情報を表示する。各実施の形態において、表示装置42は、液晶表示装置であるが、液晶表示装置に限定されない。 Next, the configuration of the control device 40 of the laser beam machine 1 according to each embodiment will be described. FIG. 34 is a diagram illustrating an example of a hardware configuration of a control device for a laser beam machine according to each embodiment. The control device 40 receives position information of each part on the workpiece W and cutting processing conditions from an input device 41 connected to the input / output interface 441 shown in FIG. The input device 41 is configured by a touch panel, a keyboard, a mouse, a trackball, or a combination thereof. The control device 40 displays position information of each part on the workpiece W on the display device 42 connected to the input / output interface 441. In each embodiment, the display device 42 is a liquid crystal display device, but is not limited to a liquid crystal display device.
 制御装置40は、図34に示すように、CPU(Central Processing Unit)443と、メモリ444と、入出力インタフェース441とを備えるコンピュータである。メモリ444は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせをプログラムとして格納する。また、メモリ444は、入力装置41から入力された加工対象物Wにおけるパーツの位置情報、及び切断加工条件を記憶する。メモリ444は、不揮発性又は揮発性の半導体メモリ、磁気ディスク、光ディスク、又は光磁気ディスクにより構成される。不揮発性又は揮発性の半導体メモリとしては、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、又はEEPROM(Electrically Erasable Programmable Read-Only Memory)が用いられる。制御装置40は、メモリ444に格納されたプログラムをCPU443が実行して、制御装置40の機能を実現する。 As shown in FIG. 34, the control device 40 is a computer including a CPU (Central Processing Unit) 443, a memory 444, and an input / output interface 441. The memory 444 stores software, firmware, or a combination of software and firmware as a program. In addition, the memory 444 stores part position information on the workpiece W input from the input device 41 and cutting processing conditions. The memory 444 is configured by a nonvolatile or volatile semiconductor memory, a magnetic disk, an optical disk, or a magneto-optical disk. Non-volatile or volatile semiconductor memory uses RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (Electrically Erasable Programmable) Read-Only Memory) It is done. In the control device 40, the CPU 443 executes the program stored in the memory 444 to realize the function of the control device 40.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 レーザ加工機、10 加工対象物支持部、20 加工ヘッド、50,50-3,50-5 細線挿入部、70,70-6 角度調整機構、80,80-6 追従機構、W 加工対象物、L レーザ光、SP 照射点、AG 補助ガス、PG パージガス、PH ピアス孔(加工領域)、CD 切断溝(加工領域)、MD 切断進行方向。 1 laser processing machine, 10 processing object support section, 20 processing head, 50, 50-3, 50-5 fine wire insertion section, 70, 70-6 angle adjustment mechanism, 80, 80-6 tracking mechanism, W processing object , L laser light, SP irradiation point, AG auxiliary gas, PG purge gas, PH piercing hole (processing area), CD cutting groove (processing area), MD cutting progress direction.

Claims (8)

  1.  加工対象物に集光されたレーザ光を照射して、前記加工対象物を切断加工するレーザ加工機であって、
     前記加工対象物を支持する加工対象物支持部と、
     集光された前記レーザ光を前記加工対象物に照射すると共に補助ガスを噴射する加工ヘッドと、
     前記加工ヘッドに取り付けられ、前記加工対象物に形成された加工領域内に、前記レーザ光を反射する細線を挿入可能な細線挿入部と、
     切断加工中に前記細線挿入部を制御して、前記加工対象物支持部と前記加工ヘッドとの少なくとも一方を移動させることにより生じる切断進行方向に対して、前記加工対象物における前記レーザ光の照射点よりも後方から、前記細線を前記加工領域内に挿入する制御装置と、を備える
     ことを特徴とするレーザ加工機。
    A laser processing machine that irradiates a laser beam focused on an object to be processed and cuts the object to be processed,
    A workpiece support section for supporting the workpiece,
    A processing head for irradiating the object to be processed with the condensed laser light and injecting an auxiliary gas;
    A thin wire insertion portion that is attached to the processing head and capable of inserting a thin wire that reflects the laser light into a processing region formed on the processing object;
    Irradiation of the laser beam on the workpiece with respect to the cutting progress direction caused by moving the at least one of the workpiece support section and the machining head by controlling the thin wire insertion section during the cutting process. And a control device that inserts the thin wire into the processing region from behind the point.
  2.  加工ヘッドは、前記切断加工中に前記補助ガスを前記照射点に噴射する
     ことを特徴とする請求項1に記載のレーザ加工機。
    The laser beam machine according to claim 1, wherein the machining head injects the auxiliary gas to the irradiation point during the cutting process.
  3.  前記細線は、金属により構成される
     ことを特徴とする請求項1に記載のレーザ加工機。
    The laser beam machine according to claim 1, wherein the thin wire is made of metal.
  4.  前記細線挿入部は、前記加工領域内に複数の前記細線を挿入可能である
     ことを特徴とする請求項1に記載のレーザ加工機。
    The laser processing machine according to claim 1, wherein the thin wire insertion unit is capable of inserting a plurality of the thin wires into the processing region.
  5.  前記細線挿入部により前記加工領域内に挿入される前記細線の下端を前記切断進行方向に移動可能な角度調整機構を備える
     ことを特徴とする請求項1に記載のレーザ加工機。
    The laser processing machine according to claim 1, further comprising an angle adjustment mechanism capable of moving a lower end of the thin wire inserted into the processing region by the thin wire insertion portion in the cutting progress direction.
  6.  前記細線挿入部により前記加工領域内に挿入される前記細線の下端を前記切断進行方向に交差する方向に移動可能な追従機構を備える
     ことを特徴とする請求項1又は請求項5に記載のレーザ加工機。
    6. The laser according to claim 1, further comprising a follow-up mechanism capable of moving a lower end of the thin wire inserted into the processing region by the thin wire insertion portion in a direction intersecting the cutting progress direction. Processing machine.
  7.  前記加工ヘッドから照射されるレーザ光の周囲に前記細線挿入部を複数配置している
     ことを特徴とする請求項1に記載のレーザ加工機。
    The laser beam machine according to claim 1, wherein a plurality of the thin wire insertion portions are arranged around the laser beam emitted from the machining head.
  8.  前記加工ヘッドは、前記レーザ光の周囲からパージガスを前記加工対象物に噴射する
     ことを特徴とする請求項1に記載のレーザ加工機。
    The laser processing machine according to claim 1, wherein the processing head injects a purge gas from the periphery of the laser light onto the processing object.
PCT/JP2016/073675 2016-08-10 2016-08-10 Laser processing machine WO2018029842A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018503604A JP6381849B2 (en) 2016-08-10 2016-08-10 Laser processing machine
PCT/JP2016/073675 WO2018029842A1 (en) 2016-08-10 2016-08-10 Laser processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073675 WO2018029842A1 (en) 2016-08-10 2016-08-10 Laser processing machine

Publications (1)

Publication Number Publication Date
WO2018029842A1 true WO2018029842A1 (en) 2018-02-15

Family

ID=61161884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073675 WO2018029842A1 (en) 2016-08-10 2016-08-10 Laser processing machine

Country Status (2)

Country Link
JP (1) JP6381849B2 (en)
WO (1) WO2018029842A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100683A (en) * 1993-10-05 1995-04-18 Amada Co Ltd Method for cutting aging facing material and device therefor
JP2001013452A (en) * 1999-06-28 2001-01-19 Taiyo Yuden Co Ltd Mask for laser beam machining and laser beam machining device
JP2003170289A (en) * 2001-12-06 2003-06-17 Tadahiro Omi Laser processing apparatus and laser processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100683A (en) * 1993-10-05 1995-04-18 Amada Co Ltd Method for cutting aging facing material and device therefor
JP2001013452A (en) * 1999-06-28 2001-01-19 Taiyo Yuden Co Ltd Mask for laser beam machining and laser beam machining device
JP2003170289A (en) * 2001-12-06 2003-06-17 Tadahiro Omi Laser processing apparatus and laser processing method

Also Published As

Publication number Publication date
JP6381849B2 (en) 2018-08-29
JPWO2018029842A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US20240116797A1 (en) Method and device for separation of glass portions or glass ceramic portions
US8916798B2 (en) Laser machining apparatus with switchable laser system and laser machining method
KR101165977B1 (en) Method for processing fragile material substrate
TWI380868B (en) Fine processing method of sintered diamond using laser, cutter wheel for brittle material substrate, and method of manufacturing the same
US9108271B2 (en) Oblique laser beam cutting
JP6116757B2 (en) Laser processing equipment
US6787734B2 (en) System and method of laser drilling using a continuously optimized depth of focus
JP6137767B2 (en) Laser processing apparatus and method for forming surface of semi-finished product
CN108778610B (en) Laser processing apparatus and laser processing method
US20100044353A1 (en) Method and system for laser processing
JP2006347168A (en) Device to sever flat workpiece of brittle material more than once by lazer
JP2008503355A (en) Substrate material cutting, dividing or dividing apparatus, system and method
JP2009274951A (en) Scribe line forming method
JP2011200935A (en) Laser machining apparatus and method for manufacture of rotationally symmetrical tool
US9536551B2 (en) Laser processing method and apparatus
US20190151996A1 (en) Multiple laser processing for biosensor test strips
CN111375913A (en) Laser processing device and beam rotator unit
KR20130048007A (en) Laser drilling apparatus and laser drilling method
JP2005088068A (en) Laser beam machining apparatus and laser beam machining method
WO2009128315A1 (en) Method for processing fragile material substrate
JP2016055326A (en) Laser cutting method and laser cutting device
JP6381849B2 (en) Laser processing machine
JP5873978B2 (en) Laser processing method and nozzle manufacturing method
WO2019176379A1 (en) Laser processing machine and laser processing method
JP3905732B2 (en) Laser processing head, laser cutting apparatus and laser cutting method using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018503604

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912722

Country of ref document: EP

Kind code of ref document: A1