WO2018028582A1 - 一种分集接收机及终端 - Google Patents

一种分集接收机及终端 Download PDF

Info

Publication number
WO2018028582A1
WO2018028582A1 PCT/CN2017/096507 CN2017096507W WO2018028582A1 WO 2018028582 A1 WO2018028582 A1 WO 2018028582A1 CN 2017096507 W CN2017096507 W CN 2017096507W WO 2018028582 A1 WO2018028582 A1 WO 2018028582A1
Authority
WO
WIPO (PCT)
Prior art keywords
diversity
channel
signal
main set
antenna
Prior art date
Application number
PCT/CN2017/096507
Other languages
English (en)
French (fr)
Inventor
李伟男
李晓然
梁建
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17838712.2A priority Critical patent/EP3499744B1/en
Publication of WO2018028582A1 publication Critical patent/WO2018028582A1/zh
Priority to US16/267,808 priority patent/US10700759B2/en
Priority to US16/845,332 priority patent/US11063654B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0825Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with main and with auxiliary or diversity antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present invention relates to the field of communications, and in particular, to a diversity receiver and a terminal.
  • FDD Frequency Division Duplex
  • TX Transmit
  • IMD2 second-order intermodulation distortion
  • a main set channel generally includes a main set reception consisting of a main set antenna 11, an antenna duplexer 21, a power amplifier 22, and a mixing circuit integrated in the transceiver 30.
  • the channel (11 ⁇ 21 ⁇ 30) and the main set transmission channel (30 ⁇ 22 ⁇ 21 ⁇ 11), the transmission signal transmitted in the main set transmission channel (30 ⁇ 22 ⁇ 21 ⁇ 11) will leak to the main set receiving channel ( In 11 ⁇ 21 ⁇ 30), in order to overcome the interference caused by the signal leakage of the main set transmission channel to the main set receiving channel (11 ⁇ 21 ⁇ 30), the usual scheme is to perform second-order mutual interaction on the main set channel on the production line.
  • IP2 calibration is adjusted to resolve the IMD2 interference of the main set transmit channel to the main set receive channel.
  • the common practice is to use the default IP2 calibration codeword for IP2 calibration, or directly use the IP2 calibration codeword used in the IP2 calibration of the main set channel, and also need to use the suppression in the diversity channel and A Surface Acoustic Wave (SAW) filter with a fixed frequency to suppress signal leakage.
  • SAW Surface Acoustic Wave
  • This paper describes an antenna diversity receiver and terminal to improve the reception performance of the diversity receiver and meet the requirements of miniaturization and low cost.
  • an embodiment of the present invention provides a diversity receiver, the diversity receiver includes: a first main set channel, and a first diversity channel; wherein the first main set channel includes: an antenna duplexer and a first a primary set transmit channel, the first primary set transmit channel coupled to the primary set antenna by the antenna duplexer, the first primary set transmit channel configured to generate a first transmit signal based on the first baseband signal, and The antenna duplexer transmits the first transmit signal to the primary set antenna; the first diversity channel includes: a tunable bandpass filter and a first diversity receive channel, wherein the first diversity receive channel passes the a bandpass filter coupled to the diversity antenna, the adjustable bandpass filter And adjusting a passband bandwidth of the tunable bandpass filter according to a frequency band bandwidth of the first transmit signal and a bandwidth of a first received signal received from the diversity antenna, and adjusting the passband bandwidth of the tunable bandpass filter Performing band pass filtering based on the passband bandwidth to suppress signal leakage caused by the first transmit signal to the first received signal
  • the use of a diversity channel including the adjustable band pass filter can suppress the leakage of the transmitted signal, thereby
  • the structure of the diversity receiver is simplified, which is advantageous for miniaturization.
  • the tunable bandpass filter can be used to set the passband bandwidth of the tunable bandpass filter to the channel bandwidth of the first received signal. Since the passband bandwidth of the tunable bandpass filter is reduced, the frequency band of the first transmit signal is further away from the passband of the tunable bandpass filter, thereby improving the ability to suppress leakage of the first transmit signal.
  • the first main set channel further includes: a first main set receiving channel, where the first main set receiving channel is configured to generate according to a second received signal received from the main set antenna a third baseband signal, the third baseband signal and the second baseband signal being a diversity received signal.
  • the first primary set transmit channel, the first primary set receive channel, and the first diversity receive channel are all one of a zero intermediate frequency channel, a low intermediate frequency channel, or a super heterodyne channel.
  • the first main set transmit channel may include: a power amplifier, a first mixer, a first oscillator, a first low pass filter, and a digital to analog converter; the first main set receive channel may The method includes a first low noise amplifier, a second mixer, a second low pass filter, a first analog to digital converter and a second oscillator.
  • the first diversity receiving channel can include: a second low noise amplifier, a third hybrid The frequency divider, the third low pass filter, the second analog to digital converter, and the second oscillator, the second low noise amplifier in the first diversity receive channel is coupled to the diversity antenna by an adjustable band pass filter.
  • the antenna duplexer, the power amplifier, and the adjustable bandpass filter are packaged together to form a radio frequency front end circuit; the first mixer, the first oscillator First low pass filter, digital to analog converter, first low noise amplifier, second mixer, second low pass filter, first analog to digital converter, second low noise amplifier, third mixer The third low pass filter, the second analog to digital converter, and the second oscillator are packaged together to form a transceiver.
  • the diversity receiver may further include a controller, configured to use a frequency band bandwidth of the first transmit signal processed by the first primary set transmit channel and a second receive signal received by the first diversity receive channel
  • the bandwidth of the band controls the adjustable bandpass filter to adjust its passband bandwidth to filter out portions of the signal that are leaked by the first transmit signal into the first diversity receive channel.
  • the aforementioned controller can also be packaged in a RF front-end circuit to increase the integration of the diversity receiver and reduce the footprint of the printed circuit board.
  • the diversity receiver further includes: an adaptive filter coupled to the first main set transmit channel and the first diversity receive channel, respectively An adaptive filter for receiving the first baseband signal with the first primary set transmit channel, and constructing an adaptive filtering algorithm to construct a signal leakage of the first baseband signal to cause the first diversity receive channel
  • the second-order intermodulation distortion IMD2 interferes with the signal, and filters the IMD2 interference signal from the second baseband signal generated by the first diversity receiving channel.
  • the interference suppression performance can be The embodiment of the present invention provides an adaptive filter, which is used in combination with a tunable bandpass filter to filter a signal leakage of the first baseband signal in the digital domain to the first diversity.
  • the interference signal caused by the receiving channel can make the first diversity receiving channel output the second baseband signal without IMD2 interference, which further improves the interference suppression performance of the diversity receiver.
  • the adaptive filtering algorithm includes at least one of a minimum root mean square LMS algorithm and a recursive least squares RLS algorithm.
  • the adaptive filter is specifically configured to use the first baseband signal as a reference signal, synchronize the reference signal with the second baseband signal, and then construct the Said IMD2 interference signal:
  • IMD2 represents the constructed IMD2 interference signal
  • Ii represents the i-order in-phase component of the reference signal after synchronization
  • Q i represents the i-order orthogonal component of the reference signal after synchronization
  • I j represents the reference signal after synchronization
  • Q j represents the j-order orthogonal component of the reference signal after synchronization
  • S i is the autocorrelation coefficient
  • C ij is the cross coefficient
  • nC ij is the negative cross coefficient
  • DC represents the DC term, i, j They are natural numbers, respectively, and i ⁇ n, j ⁇ n, i ⁇ j.
  • the diversity receiver includes: a plurality of main set channels, a main set switch, and the main set switch is configured to select one main set channel from the plurality of main set channels as the first A main set channel.
  • the diversity receiver includes: a plurality of diversity channels and a diversity switch, wherein the diversity switches are used to determine the first main set channel according to the main set switch
  • the diversity channel selects a diversity channel that matches the first main set channel as the first diversity channel, wherein a filtering range of the tunable bandpass filter in the diversity channel selected by the diversity switch is
  • the transmit bands of the first main set channel do not overlap and match the receive band of the first main set channel.
  • an embodiment of the present application further provides a terminal, including the diversity receiver described in the foregoing embodiments, and a processor coupled to the diversity receiver; the processor is configured to Generating the first baseband signal and transmitting to the diversity receiver; the processor is further configured to perform diversity reception on the generated second baseband signal in the diversity receiver. Since the diversity receiver used in the terminal provided by the embodiment of the present invention can replace the plurality of diversity channels including the SAW filter by using a diversity channel including the adjustable band pass filter, the transmission signal leakage can be suppressed. It is advantageous to simplify the design of the diversity receiver and save costs due to the reduced number of components.
  • the terminal further includes: the main set antenna and the diversity antenna, the main set antenna and the diversity antenna are respectively coupled to the diversity receiver.
  • Figure 1 is a schematic diagram of signal leakage of a diversity receiver
  • FIG. 2 is a schematic structural diagram of a diversity receiver according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an operation of a tunable bandpass filter according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another diversity receiver according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of still another diversity receiver according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an adaptive filter according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of still another diversity receiver according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another diversity receiver according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the words “exemplary” or “such as” are used to mean an example, illustration, or illustration. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the invention should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the words “exemplary” or “such as” is intended to present the concepts in a particular manner.
  • an antenna diversity receiving technique is briefly introduced.
  • the so-called diversity reception refers to the incoherence of fading when the receiver uses the electromagnetic wave to have sufficient difference in space, frequency, polarization and time, and receives multiple fading signals that are statistically independent and carry the same information, and then receive the fading signal. Multiple statistically independent fading signals are combined to reduce the effects of signal fading and to obtain a stable signal reception method.
  • the radio frequency signals respectively received by the main set antenna 11 and the diversity antenna 12 are respectively converted into baseband signals by the down conversion circuit in the transceiver 30, and then in the processor (not shown here).
  • the signal processing such as demodulation, decoding, and combining is performed in the output to obtain the information carried by the radio frequency signals.
  • down conversion refers to converting a radio frequency signal into an intermediate frequency signal or a baseband signal by mixing.
  • up-conversion refers to converting a baseband signal or an intermediate frequency signal into a radio frequency signal by mixing.
  • the up-conversion circuit and the down-conversion circuit are well disclosed in the prior art, and specific reference can be made to the prior art.
  • the present invention provides a new diversity receiver structure to suppress signal leakage.
  • FIG. 2 is a schematic diagram of a diversity receiver according to an embodiment of the present invention, where the diversity receiver may include:
  • the first main set channel may include: an antenna duplexer 201, a first main set transmit channel 31, and a first main set receive channel 32, wherein the first main set transmit channel 31 and the first main set receive channel 32 respectively pass
  • the antenna duplexer 201 is coupled to the main set antenna 101.
  • the first main set transmit channel 31 is configured to receive the first baseband signal generated by the processor 400, and perform digital-to-analog conversion, filtering, up-conversion, power amplification, etc. on the first baseband signal.
  • the first main set receiving channel 32 is used for the main
  • the second received signal received by the collecting antenna 101 performs low noise amplification, down conversion, filtering, analog to digital conversion and the like to generate a third baseband signal, and sends the third baseband signal to the processor 400 for processing the baseband signal;
  • the antenna duplexer can also be called an antenna duplexer, a band splitter, etc., and the function of the antenna duplexer is to combine the second received signal with weak power.
  • the amplified first transmit signal is fed to the main set antenna 101, while ensuring high isolation between the first transmit signal and the second received signal, so that the two do not affect each other.
  • the antenna duplexer can be regarded as a special bidirectional three-terminal filter, one end of which is coupled to the main set antenna 101, and the other ends are respectively coupled with the first main set transmit channel 31 and the first main set receive channel 32, respectively
  • the connection relationship can refer to the prior art and will not be described in detail here.
  • the processor may be a baseband processor, a communication processor, a digital signal processor, an application specific integrated circuit (ASIC) or a system on chip (SOC).
  • the receiving channel in the embodiment of the present invention refers to after passing through the antenna duplexer.
  • the receiving path for down-converting the radio frequency signal is opposite to the transmitting channel, and is not described here. For details, refer to the structure shown in FIG. 4 and the prior art;
  • the first diversity channel may include a tunable bandpass filter 203, a first diversity receive channel 33, and the first diversity receive channel 33 may be coupled to the diversity antenna 102 by the tunable bandpass filter 203, wherein
  • the band pass filter 203 is configured to adjust the band width of the first transmit signal processed by the first main set transmit channel 31 and the band bandwidth of the first received signal received by the diversity antenna 102, and adjust the band pass filter 203 Passband bandwidth and bandpass filtering of the first received signal based on the passband bandwidth to suppress signal leakage caused by the first transmit signal to the first received signal received by the first diversity receive channel 33;
  • first diversity The receiving channel 33 is configured to perform low noise amplification, down conversion, filtering, analog to digital conversion and the like on the filtered first received signal to generate a second baseband signal, and send the signal to the processor 400 for processing the baseband signal, and the second baseband
  • the signal and the third baseband signal are each a diversity received signal.
  • first, second, third and the like used in the specification are used only to distinguish different objects, and not to describe a specific order of the objects.
  • first baseband signal, the second baseband signal, and the third baseband signal are used to distinguish different baseband signals, rather than to describe the sequence of baseband signals.
  • the principle of the tunable bandpass filter 203 suppressing signal leakage is shown in FIG. 3, that is, the passband bandwidth of the tunable bandpass filter 203 is adjusted such that the band bandwidth of the first received signal (ie, FIG. 3)
  • the reception band width shown in the transmission band is included in the pass band bandwidth of the tunable band pass filter 203, and the band bandwidth of the first transmission signal (i.e., the transmission band width shown in FIG. 3) is located at the adjustable band pass.
  • Filter 203 is outside the passband bandwidth. It should be understood that in a communication system, a band can generally be divided into a plurality of channels, wherein one frequency range can be divided into one band according to different communication protocols.
  • the operating band of the Evolved Universal Terrestrial Radio Access (E-UTRA) system is given.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • 3GPP specifies that the uplink bandwidth of Band 1 is (1920 MHz - 1980 MHz), and the downlink bandwidth of Band 1 is 2110 (MHz - 2170 MHz). Due to the emergence of technologies such as frequency division multiplexing, multiple channels can be divided in one frequency band, and the bandwidth of each channel can be 20 MHz, or 10 MHz, etc., wherein each channel can be used as a terminal to transmit wireless signals. The frequency resource used. Therefore, in FIG.
  • the receive channel bandwidth can be understood as the width of the frequency resource carrying the wireless signal to be received, and the receive band bandwidth is the bandwidth of the frequency band corresponding to the receive channel; the transmit bandwidth and the transmit channel bandwidth are similar. , will not repeat them, specifically refer to the prior art.
  • the SAW filter is usually used to suppress the leakage of the transmitted signal. Since the frequency of the SAW filter is fixed, a SAW filter can only process the received signal of a specific frequency band, if the frequency band of the received signal varies widely. , a plurality of SAW filters are needed to construct a plurality of diversity channels, and the embodiment of the present invention is used.
  • the suppression of the transmission signal leakage can be realized by using a diversity channel including the adjustable band pass filter, thereby simplifying the structure of the diversity receiver. Conducive to the realization of miniaturization.
  • the processor 400 performs diversity reception on the third baseband signal generated by the first main set receiving channel 32 and the second baseband signal generated by the first diversity receiving channel 33, respectively. It has been described in detail in the technology. For details, reference may be made to the prior art, and details are not described herein again. In addition, since the first main set receiving channel 32 and the first diversity receiving channel 33 receive the radio frequency signals carrying the same information, the receiving band of the first main set receiving channel 32 and the receiving band of the first diversity receiving channel 33 should be Keep the same.
  • the first main set transmit channel 31 may be a zero intermediate frequency (ZIF) transmit channel, a super-heterodyne transmit channel, or a low intermediate frequency (LIF) Launch channel, etc.
  • the first main set receiving channel 32 and the first diversity receiving channel 33 may also be a zero intermediate frequency receiving channel, a low intermediate frequency receiving channel, or a super heterodyne receiving channel, respectively.
  • the first main set transmit channel 31, the first main set receive channel 32, and the first diversity receive channel 33 may be the same type of channel, for example, the first main set transmit channel 31,
  • the first main set receiving channel 32 and the first diversity receiving channel 33 are both zero intermediate frequency based channels.
  • the prior art has fully disclosed the connection relationship of amplifiers, filters, and mixers in various channels. For details, reference may be made to the prior art.
  • the structure of the first main set transmit channel 31, the first main set receive channel 32 and the first diversity receive channel 33 is described in detail by taking the zero intermediate frequency channel as an example.
  • the first main set transmit channel 31 may specifically include: a power amplifier 202, a first mixer 311, a first oscillator 310, a first low pass filter 312, a digital to analog converter 313, and a first main The set transmit channel 31 is coupled to the antenna duplexer 201 through the power amplifier 202; wherein the first main set transmit channel 31 operates, the digital-to-analog converter 313 first performs digital-to-analog conversion on the first baseband signal generated by the processor 400, After the converted analog signal is filtered by the first low pass filter 312, it is mixed with the local oscillator signal generated by the first oscillator 310 in the first mixer 311, and then amplified by the power amplifier 202.
  • the first transmitted signal is obtained.
  • a circuit composed of a power amplifier 202, a first mixer 311, a first oscillator 310, a first low pass filter 312, and a digital-to-analog converter 313 is generally referred to as an up-conversion circuit.
  • the first main set receiving channel 32 may specifically include: a first low-noise amplifier (LNA) 302, a second mixer 303, a second low-pass filter 304, a first analog-to-digital converter 305, and a first The second oscillator 301, the first main set receiving channel 32 is coupled to the antenna duplexer through the first low noise amplifier 302; wherein the working principle of the first main set receiving channel 32 comprises: the first low noise amplifier 302 is first shared by the antenna
  • the second received signal obtained by the device 201 is amplified, and then the second mixer 303 mixes the amplified signal with the local oscillator signal generated by the second oscillator 301 to obtain a baseband signal, the second low pass filter 304 and
  • the first analog to digital converter 305 performs low pass filtering and analog to digital conversion on the baseband signal to obtain a third baseband signal, and sends it to the processor 400 for diversity reception.
  • a circuit composed of a first low noise amplifier 302, a second mixer 303, a second low pass filter 304, a first analog to digital converter 305, and a second oscillator 301 is generally referred to as a down conversion circuit.
  • the first diversity receiving channel 33 may include: a second low noise amplifier 306, a third mixer 307, a third low pass filter 308, a second analog to digital converter 309, and a second oscillator 301, a first diversity receiving channel
  • the second low noise amplifier 306 of 33 is coupled to the diversity antenna 102 by a tunable bandpass filter 203.
  • the first diversity receive channel 33 operates similarly to the first main set receive channel 32 and will not be described again.
  • the first diversity receiving channel 33 and the first main set The receiving channel 32 needs to down-convert the RF signals of the same frequency. Therefore, they can multiplex the same oscillator 301. Of course, they can also use separate oscillators to generate their respective local oscillator signals. limited.
  • the antenna duplexer 201, the power amplifier 202, and the tunable bandpass filter 203 are generally packaged together, and are referred to as a radio frequency front end circuit 200.
  • the first analog to digital converter 305, the second low noise amplifier 306, the third mixer 307, the third low pass filter 308, the second analog to digital converter 309, and the second oscillator 301 are packaged into another integrated circuit.
  • transceiver 300 integrated circuit, called transceiver 300, or radio frequency integrated circuit (RF IC), for the convenience of convenience, only replace the main set channel and the conversion circuit part in the diversity channel with the transceiver That is, the transceiver is used to represent the up-conversion circuit and the down-conversion circuit.
  • IC integrated circuit
  • RF IC radio frequency integrated circuit
  • the diversity receiver may further include a controller 204, where the controller 204 is specifically configured to use the bandwidth of the first transmit signal processed by the first primary set transmit channel 31 and the first diversity receive channel 33.
  • the band bandwidth of the received second received signal controls the adjustable bandpass filter 203 to adjust its passband bandwidth to filter out portions of the signal leaked by the first transmit signal into the first diversity receive channel 33.
  • controller 204 can be packaged in the RF front end circuit 200 to increase the integration of the diversity receiver and reduce the footprint of the printed circuit board (PCB). It should be understood that the controller 204 can be implemented by various logic circuits, and specific reference can be made to the prior art.
  • the radio frequency front end circuit 200 and the transceiver 300 can be packaged in one IC in the future. Therefore, the present invention is based on the current chip design scheme of the wireless terminal, and the present invention.
  • the embodiment divides the diversity receiver into a radio frequency front end circuit 200, and the transceiver 300 has two separate chips, and the present invention should not be limited.
  • the adjustable band pass filter 203 may further adjust a passband bandwidth of the adjustable band pass filter 203 to a channel of the first received signal.
  • Bandwidth to enhance the ability to suppress leakage of the first transmitted signal.
  • a band can be generally divided into a plurality of channels. For example, a 2.4 GHz band can be divided into 13 channels, and each channel has a bandwidth of 22 MHz. Therefore, the tunable bandpass filter 203 uses the channel bandwidth of the first received signal as the passband bandwidth such that the channel of the first transmit signal is further away from the passband of the tunable bandpass filter 203, thereby improving the first transmit signal The ability to suppress leakage.
  • the diversity receiver further includes an adaptive filter 34, which is coupled to the first main set transmit channel 31 and the first diversity receive channel 33, respectively.
  • one end of the first main set transmit channel 31 is coupled to the antenna duplexer 201, one end of the adaptive filter 34 is coupled to the other end of the first main set transmit channel 31, and the processor 400, the first diversity receive channel 33
  • One end is coupled to a tunable bandpass filter 203, and the other end of the adaptive filter 34 is coupled to the other end of the first diversity receive channel 33 and to the processor 400.
  • the adaptive filter 34 is configured to construct an IMD2 caused by a signal leakage of the first baseband signal to the first diversity receiving channel 33 by using the first baseband signal acquired from the first main set transmitting channel 31 based on an adaptive algorithm. Interfering with the signal and filtering out the IMD2 interference signal from the second baseband signal generated by the first diversity receive channel 33 in the digital domain.
  • the adaptive filtering algorithm may include a least mean square (least mean square)
  • the at least one of the LMS) algorithm, the recursive least square (RLS) algorithm, and other similar algorithms may be referred to the prior art, and details are not described herein again.
  • the working principle of the adaptive filter 34 can be briefly described as follows:
  • the IMD2 interference is caused by the leakage of the first transmitted signal in the first main set transmit channel 31, so the adaptive filter 34 can construct the IMD2 interfering signal based on the first baseband signal of the first main set transmit channel 31.
  • the first baseband signal can be used as a reference signal, considering that the current receiver is mainly based on In-phase/Quadrature (I/Q) modulation technology, where TX_Ref_I is used to represent the in-phase component of the reference signal, and TX_Ref_Q is used to represent the reference signal. Orthogonal component. There is a certain delay between the reference signal and the IMD2 interference signal of the first baseband signal passing through the loop into the first diversity receiving channel 33.
  • I/Q In-phase/Quadrature
  • the reference signal needs to be synchronized first to compensate for the loop delay and the synchronized reference signal. Alignment with the IMD2 interfering signal, that is, since the reference signal leads the IMD2 interfering signal, the reference signal needs to be delayed to synchronize the two. Since the IMD2 interference signal is included in the second baseband signal generated by the diversity receiving channel 33, the second baseband signal is synchronized with the reference signal.
  • RX_I is used herein to represent the in-phase component of the second baseband signal, using RX_Q.
  • I i represents the i-order in-phase component of the reference signal after synchronization
  • Q i represents the i-order quadrature component of the reference signal after synchronization
  • I j represents after synchronization
  • Q j represents the j-th order orthogonal component of the reference signal after synchronization, where i, j are natural numbers, respectively, and i ⁇ n, j ⁇ n, i ⁇ j.
  • the signal leakage from the first main set transmit channel 31 to the first diversity receive channel 33 is memory effect, so the IMD2 term with n-order memory effect can be generated first according to the reference signal after synchronization.
  • IMD2 The expansion of the interference signal can be considered as a polynomial, and the IMD2 term is the term of this polynomial, that is, the IMD2 term includes: (I i 2 +Q i 2 ), (I i I j +Q i Q j ), (I i I j -Q i Q j ).
  • the IMD2 interference signal is constructed based on the following formula (1):
  • S i is an autocorrelation coefficient
  • C ij is a cross coefficient
  • nC ij is a negative cross coefficient
  • DC represents a DC term
  • DC value can be set to a fixed value
  • the constructed IMD2 interference signal is subtracted from the second baseband signal to obtain the second baseband signal after the IMD2 interference cancellation, and the second baseband signal after the IMD2 interference cancellation is sent to the processor 400, where the IMD2 interference is represented by RX_I_output.
  • the in-phase component of the second baseband signal after cancellation, and the orthogonal component of the second baseband signal after IMD2 interference cancellation is represented by RX_Q_output.
  • the adaptive filter 34 may include :
  • a synchronization circuit 341 configured to synchronize TX_Ref_I and TX_Ref_Q based on RX_I and RX_Q, respectively, to obtain synchronized reference signals I i and Q i ;
  • a scaling circuit 342 configured to perform scaling processing on I i and Q i according to a preset scaling factor
  • IMD2 generator 343, according to the scaled I i and Q i generated IMD2 item;
  • the in-phase signal construction circuit 344 (indicated by LMS_I in FIG. 5) is taken as an example, and the orthogonal signal construction circuit is used.
  • the structure of 345 (represented by LMS_Q in Fig. 5) is the same as the signal construction circuit of the same phase, and can be referred to each other.
  • an LMS update circuit 3441 is included for updating the IMD2 coefficients according to the residual error in the RX_I_output and the IMD2 term generated by the IMD2 generator 343, the IMD2 coefficients including: the autocorrelation coefficient S i , the intersection A coefficient C ij , a negative cross coefficient nC ij ; a finite-length unit impulse response filter (FIR) filter 3442 for constructing according to the IMD 2 coefficient provided by the LMS update circuit 3441 and the IMD 2 term generated by the IMD 2 generator 343 IMD2 interference signal, the specific construction method refers to the above formula (1).
  • FIR finite-length unit impulse response filter
  • the subtracter 346 is configured to subtract the IMD2 interference signal constructed by the in-phase signal construction circuit 344 from the in-phase component RX_I of the third baseband signal to obtain an in-phase component RX_I_output of the third baseband signal after the IMD2 interference cancellation.
  • the subtracter 347 is configured to subtract the IMD2 interference signal constructed by the orthogonal signal construction circuit 345 from the orthogonal component RX_Q of the third baseband signal to obtain the orthogonal component RX_Q_output of the third baseband signal after the IMD2 interference cancellation. .
  • the out-of-band rejection of the tunable bandpass filter 203 is generally lower than that of the SAW filter compared to a SAW filter having a fixed frequency, and thus the suppression of TX signal leakage is poor.
  • an IMD2 interference signal is generated, and the IMD2 interference signal is superimposed with the second baseband signal, which affects the performance of the diversity receiver.
  • the adaptive filter 34 provided by the embodiment of the present invention, the first diversity receiving channel 33 can output the second baseband signal without IMD2 interference, and the processor 400 of the subsequent stage performs corresponding processing, thereby further improving diversity reception. Machine interference suppression performance.
  • FIG. 6 is only an exemplary structure of the adaptive filter 34, and those skilled in the art based on the concept of the embodiment of the present invention, and other adaptive filtering algorithms other than the LMS,
  • the function of the adaptive filter 34 can be implemented by different digital circuits. Therefore, the specific circuit configuration shown in FIG. 6 should not constitute a limitation of the adaptive filter 34 provided by the present invention.
  • the diversity receiver may include: multiple main set channels (here, 2011, 2012, 2013 are used to identify multiple main set channels respectively), and the main set switch 204; It should be noted that, for convenience of presentation, the main set receiving channel and the main set transmitting channel of each main set channel are integrated in the transceiver in FIG. 7, so only the antenna duplexer is used to represent each main set channel. .
  • the main set switch 204 is configured to selectively determine one main set channel that is currently working as the first main set channel from the at least one main set channel, and turn on the first main set channel and the main set antenna 101.
  • each main set channel can respectively correspond to different working frequency bands, wherein the working frequency band of each main set channel includes: a main set transmitting channel
  • the transmission band and the reception band of the main set receiving channel are described below for the convenience of the description, and the transmission band of the main set channel and the receiving band of the main set channel are respectively described below, and will not be described later.
  • the diversity receiver can support multi-band signal reception or transmission.
  • the diversity receiver may include: a plurality of diversity channels (here, 2031, 2032, 2033 are used to identify a plurality of diversity channels respectively) and a diversity switch 205, where each of the plurality of diversity channels
  • the filtering range of the tunable bandpass filter can be different. It should be understood that, for convenience of presentation, the diversity receiving channel of each diversity channel is also integrated in the transceiver 300 in Fig. 7, therefore, only the adjustable bandpass is used here. Filters to represent each diversity channel.
  • the diversity switch 205 is configured to select, according to the first main set channel for the current work determined by the main set switch 204, a diversity channel that matches the first main set channel from the plurality of diversity channels as the first diversity.
  • the filtering range of the tunable band pass filter does not overlap with the transmission band of the first main set channel, and the filtering range of the tunable band pass filter in the selected diversity channel and the receiving band of the first main set channel Matching, thereby being able to filter out signals leaking from the first main set channel into the first diversity channel.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • UHB ultra-high frequency band
  • each main set channel device such as the antenna duplexer, oscillator
  • the parameters of each main set channel device may be set separately, so that multiple main set channels respectively correspond to different frequency bands, for example, the receiving band of the main set channel 2011 Corresponding to the B3 band, the receiving band of the main set channel 2012 can correspond to the B5 band, and the receiving band of the main set channel 2013 can correspond to the B38 band.
  • the main set switch 204 selects the main set channel 2012 as The current working main set channel, that is, as the first main set channel, turns on the main set channel 2012 and the main set antenna 101.
  • the filter band of the tunable bandpass filter usually has a certain range.
  • the filtering range of the tunable bandpass filter in the diversity channel 2031 can correspond to the LB, and the tunable bandpass filter in the diversity channel 2032.
  • the filtering range can correspond to HB, and the filtering range of the tunable bandpass filter in the diversity channel 2033 can correspond to UHB.
  • the diversity channel 2031 can be selected as the first diversity channel corresponding to the first main set channel, and the diversity channel 2031 and the diversity antenna 101 are turned on, so that the filtering range of the tunable band pass filter in the diversity channel 2031 can be
  • the B5 band corresponding to the currently working main set channel 2012 is matched, that is, the B5 band is located within the normal working range of the tunable band pass filter in the diversity channel 2031; of course, if the working band corresponding to the main set channel 2012 is B8, B17, B28 and other frequency bands, then the diversity channel 2031 can still be used as the first diversity channel matching the main set channel 2012, because the diversity channel 203
  • the filtering range of the tunable bandpass filter in 1 can cover LB.
  • the chip area can be effectively saved, and the miniaturization integration of the diversity receiver is facilitated, and if the SAW filter is used as a multi-band receiver as in the prior art, even if In the same LB B5, B8, B17, B28 and other frequency bands, in order to ensure the filtering performance, for each frequency band, the diversity channel needs a SAW filter to filter, resulting in a very complex receiver structure, and SAW filter If the number is too large, the area of the RF front-end circuit will increase significantly, which will not meet the requirements of the mobile terminal for miniaturization and low cost of the RF subsystem.
  • an embodiment of the present invention further provides a terminal 1, wherein the terminal 1 includes: a diversity receiver 20, and a processor 30 coupled to the diversity receiver 20, wherein the structure of the diversity receiver 20 can be Referring to the diversity receiver described in the foregoing embodiments, in particular, the diversity receiver shown in FIGS. 2 to 8 may be referred to, and the processor 30 may also refer to the processor 400 described in the foregoing embodiments.
  • the terminal provided in the embodiment of the present invention may be a mobile terminal including a smart phone, a personal digital assistant (PDA), a tablet computer, a handheld terminal, a wearable device, or an intelligent communication capability. Robot or vehicle equipment.
  • PDA personal digital assistant
  • the terminal 1 further includes a main set antenna 11, a diversity antenna 12, and a diversity receiver 20 coupled to the main The antenna 11 and the diversity antenna 12 are collected.
  • the diversity receiver 20 can be configured to receive the first received signal from the diversity antenna 12 and the second received signal from the main set antenna 11 respectively; and perform down-conversion processing on the first received signal and the second received signal respectively to generate a second baseband signal and a third baseband signal.
  • the processor 30 is configured to perform corresponding diversity reception on the second baseband signal and the third baseband signal by using a diversity receiving technique.
  • the processor 30 is further configured to generate a first baseband signal to be transmitted.
  • the diversity receiver 20 is further configured to upconvert the first baseband signal to obtain a first transmit signal, and pass the main set antenna 11 A transmit signal is transmitted.
  • the diversity receiver 20 is further configured to adjust, according to a frequency band bandwidth of the first transmit signal and a frequency band bandwidth of the first received signal, a passband of the adjustable band pass filter in the diversity receive channel where the first received signal is located Bandwidthing and filtering the first received signal to suppress signal leakage caused by the first transmit signal to the first received signal.
  • terminal 1 may also include a memory 40 coupled to processor 30.
  • the memory 40 is used to store various algorithms and instructions required by the processor 30 to generate the first baseband signal and to receive the diversity of the second baseband signal and the third baseband signal. For details, refer to the prior art. I won't go into details here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开一种分集接收机及终端,该分集接收机包括:第一主集通道,以及第一分集通道;所述第一主集通道包括:天线共用器和第一主集发射通道;所述第一分集通道包括:可调带通滤波器以及第一分集接收通道,所述第一分集接收通道通过所述可调带通滤波器耦合到分集天线,所述可调带通滤波器用于根据第一主集发射通道生成的第一发射信号的频带带宽以及从分集天线接收的第一接收信号的频带带宽,调整所述可调带通滤波器的通带带宽,并对所述第一接收信号进行基于所述通带带宽的带通滤波。采用本发明提供的分集接收机,可以提高分集接收机的接收性能,并且满足小型化、低成本的需求。

Description

一种分集接收机及终端
本申请要求于2016年8月8日提交中国专利局、申请号为201610643388.6、发明名称为“一种分集接收机及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及一种分集接收机及终端。
背景技术
由于频分双工(Frequency Division Duplex,FDD)技术可以支持发射机和接收机分别工作在不同的频带上,目前,FDD技术被广泛应用在各种无线通信设备中。然而,在采用FDD技术的通信设备中,发射(Transmit,TX)信号会泄漏到接收机所在的接收通道中,由于接收机内各个器件的非线性特性,会导致二阶互调失真(second-order intermodulation distortion,IMD2)干扰,这是一种典型的自干扰。
如图1所示,在天线分集接收机中,主集通道通常包括由主集天线11,天线共用器21,功率放大器22以及集成在收发信机30中的混频电路所组成的主集接收通道(11→21→30)及主集发射通道(30→22→21→11),主集发射通道(30→22→21→11)中传输的发射信号,会泄漏到主集接收通道(11→21→30)中,为了克服因主集发射通道的信号泄漏对主集接收通道(11→21→30)所造成的干扰,通常的方案是在生产线上对主集通道进行二阶互调截止点(intercept point,IP2)校准,以解决主集发射通道对主集接收通道的IMD2干扰。但是,在由分集天线12,滤波器23以及集成在收发信机30中的混频电路所组成的分集通道中,由于分集通道只用于接收信号,不存在发射信号,因此无法做有线环境下的IP2校准,常用的做法是使用默认的IP2校准码字进行IP2校准,或者直接使用主集通道进行IP2校准时所使用的IP2校准码字,同时还需要在分集通道中使用抑制度较高且频点固定的声表面波(Surface Acoustic Wave,SAW)滤波器,以抑制信号泄漏。采用这种校准方法导致分集接收机的分集通道的接收性能不能满足要求,同时,还与支持多频带接收的移动终端对射频子系统小型化、低成本的强烈需求相违背。
发明内容
本文描述了一种天线分集接收机以及终端,以提高分集接收机的接收性能,并且满足小型化、低成本的需求。
一方面,本发明的实施例提供一种分集接收机,该分集接收机包括:第一主集通道,以及第一分集通道;其中,所述第一主集通道包括:天线共用器和第一主集发射通道,所述第一主集发射通道通过所述天线共用器耦合到主集天线,所述第一主集发射通道用于根据第一基带信号生成第一发射信号,并通过所述天线共用器将所述第一发射信号发送给所述主集天线;所述第一分集通道包括:可调带通滤波器以及第一分集接收通道,所述第一分集接收通道通过所述可调带通滤波器耦合到分集天线,所述可调带通滤波器 用于根据所述第一发射信号的频带带宽以及从所述分集天线接收的第一接收信号的频带带宽,调整所述可调带通滤波器的通带带宽,并对所述第一接收信号进行基于所述通带带宽的带通滤波,以抑制所述第一发射信号对所述第一接收信号造成的信号泄漏,所述第一分集接收通道用于根据滤波后的所述第一接收信号生成第二基带信号。采用本发明实施例提供的分集接收机,当第一主集通道的工作频带在一定范围内变化时,使用一个包括可调带通滤波器的分集通道即可以实现对发射信号泄漏的抑制,从而简化了分集接收机的结构,有利于实现小型化。
在一种可能的设计中,所述可调带通滤波器可以用于将所述可调带通滤波器的通带带宽设置为所述第一接收信号的信道带宽。由于可调带通滤波器的通带带宽被缩小,使得第一发射信号的频带进一步远离可调带通滤波器的通带,从而提高了对第一发射信号的泄漏的抑制能力
在一种可能的设计中,所述第一主集通道还包括:第一主集接收通道,所述第一主集接收通道用于根据从所述主集天线接收的第二接收信号,生成第三基带信号,所述第三基带信号与所述第二基带信号互为分集接收信号。
在一种可能的设计中,前述的第一主集发射通道,第一主集接收通道以及第一分集接收通道均为零中频通道,低中频通道,或者超外差式通道中的一种。
在一种可能的设计中,第一主集发射通道可以包括:功率放大器,第一混频器,第一振荡器,第一低通滤波器,数模转换器;第一主集接收通道可以包括:第一低噪声放大器,第二混频器,第二低通滤波器,第一模数转换器以及第二振荡器;第一分集接收通道可以包括:第二低噪声放大器,第三混频器,第三低通滤波器,第二模数转换器以及第二振荡器,第一分集接收通道中的第二低噪声放大器通过可调带通滤波器耦合到分集天线。
根据前一种可能的设计,在一种可能的设计中,天线共用器,功率放大器,以及可调带通滤波器等封装在一起,形成射频前端电路;第一混频器,第一振荡器,第一低通滤波器,数模转换器,第一低噪声放大器,第二混频器,第二低通滤波器,第一模数转换器,第二低噪声放大器,第三混频器,第三低通滤波器,第二模数转换器以及第二振荡器等封装在一起,形成收发信机。
在一种可能的设计中,分集接收机还可以包括控制器,该控制器用于根据第一主集发射通道处理后的第一发射信号的频带带宽以及第一分集接收通道接收的第二接收信号的频带带宽,控制可调带通滤波器的调整其通带带宽,以滤除由第一发射信号泄漏到第一分集接收通道中的部分信号。
在一种可能的设计中,前述的控制器还可以封装在射频前端电路中,以提高分集接收机的集成度,减少对印刷电路板面积的占用。
在一种可能的设计中,所述分集接收机还包括:自适应滤波器,所述自适应滤波器分别与所述第一主集发射通道和所述第一分集接收通道耦合,所述自适应滤波器用于利用所述第一主集发射通道所接收所述第一基带信号,以及通过执行自适应滤波算法,构造因所述第一基带信号的信号泄漏对所述第一分集接收通道造成的二阶互调失真IMD2干扰信号,并从所述第一分集接收通道生成的所述第二基带信号中滤除所述IMD2干扰信号。由于可调带通滤波器的带外抑制度一般低于SAW滤波器,因此,干扰抑制性能可 能还不满足需求,本发明实施例提供一种自适应滤波器,通过与可调带通滤波器配合使用,在数字域滤除因所述第一基带信号的信号泄漏对所述第一分集接收通道造成的干扰信号,可以使第一分集接收通道输出不含IMD2干扰的第二基带信号,进一步提高了分集接收机的干扰抑制性能。
在一种可能的设计中,所述自适应滤波算法包括最小均方根LMS算法,递归最小二乘方RLS算法中的至少一种。
在一种可能的设计中,所述自适应滤波器具体用于将所述第一基带信号作为参考信号,并将所述参考信号与所述第二基带信号进行同步,然后根据如下公式构造所述IMD2干扰信号:
Figure PCTCN2017096507-appb-000001
其中,IMD2表示构造的IMD2干扰信号,Ii表示经过同步之后的参考信号的i阶同相分量,Qi表示经过同步之后的参考信号的i阶正交分量,Ij表示经过同步之后的参考信号的j阶同相分量,Qj表示经过同步之后的参考信号的j阶正交分量,Si为自相关系数,Cij为交叉系数,nCij为负交叉系数,DC表示直流项,i,j分别为自然数,且i≤n,j≤n,i≠j。
在一种可能的设计中,所述分集接收机包括:多个主集通道,主集开关,所述主集开关用于从所述多个主集通道中选择一个主集通道作为所述第一主集通道。
在一种可能的设计中,所述分集接收机包括:多个分集通道以及分集开关,所述分集开关用于根据所述主集开关确定的所述第一主集通道,从所述多个分集通道选择一个与所述第一主集通道的相匹配的分集通道作为所述第一分集通道,其中,所述分集开关选择的分集通道中的可调带通滤波器的滤波范围与所述第一主集通道的发射频带不重叠,且与述第一主集通道的接收频带相匹配。
另一方面,本申请的实施例还提供了一种终端,该终端包括前一方面的实施例中所描述的分集接收机,以及耦合至所述分集接收机的处理器;所述处理器用于生成所述第一基带信号,并传输给所述分集接收机;所述处理器还用于对所述分集接收机中的生成的所述第二基带信号进行分集接收。由于本发明实施例提供的终端中所采用的分集接收机,通过一个包括可调带通滤波器的分集通道,即可以代替多个包括SAW滤波器的分集通道,实现对发射信号泄漏的抑制,有利于简化分集接收机的设计,并且由于器件数量减少可以节约成本。
在一种可能的设计中,该终端还包括:所述主集天线以及所述分集天线,所述主集天线与所述分集天线分别耦合至所述分集接收机。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为分集接收机的信号泄漏的示意图;
图2为本发明实施例提供的一种分集接收机的结构示意图;
图3为本发明实施例提供的可调带通滤波器的工作原理图;
图4为本发明实施例提供的另一种分集接收机的结构示意图;
图5为本发明施例提供的又一种分集接收机的结构示意图;
图6为本发明实施例提供的一种自适应滤波器的结构示意图;
图7为本发明实施例提供的又一种分集接收机的结构示意图;
图8为本发明实施例提供的又一种分集接收机的结构示意图;
图9为本发明实施例提供的一种终端的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了便于更好地理解本发明的技术方案,首先对天线分集接收技术做简要介绍。所谓分集接收,是指接收机利用电磁波在空间、频率、极化、时间上有足够大差异时衰落的不相干性,分别接收多个统计独立、且携带同一信息的衰落信号,然后将接收到的多个统计独立的衰落信号进行合并,以降低信号衰落的影响,获取稳定信号的接收方式。在图1所示的天线分集接收机中,主集天线11以及分集天线12各自接收的射频信号,分别经收发信机30中的下转换电路转换为基带信号,然后在处理器(这里未示出)中进行解调、译码、合并等信号处理,从而得到这些射频信号所承载的信息。本领域技术人员应当知道,下转换就是指通过混频将射频信号转换为中频信号或者基带信号。相应的,上转换就是指通过混频将基带信号或者中频信号转换为射频信号。上转换电路以及下转换电路在现有技术中已有充分披露,具体可以参考在先技术。
如图2所示,针对现有的分集接收机存在信号泄漏这一问题,本发明实施例提供一种新的分集接收机结构,以抑制信号泄漏。
图2所示为本发明实施例提供的一种分集接收机,该分集接收机可以包括:
第一主集通道,以及第一分集通道;
其中,第一主集通道可以包括:天线共用器201,第一主集发射通道31以及第一主集接收通道32,其中,第一主集发射通道31以及第一主集接收通道32分别通过天线共用器201耦合到主集天线101,第一主集发射通道31用于接收处理器400生成的第一基带信号,并对第一基带信号进行数模转换,滤波,上转换以及功率放大等处理,得到第一发射信号,然后经由所述天线共用器201将第一发射信号传输给主集天线101,并通过主集天线101发射出去;第一主集接收通道32则用于对由主集天线101接收的第二接收信号进行低噪声放大、下转换、滤波、模数转换等处理,以生成第三基带信号,并将该第三基带信号发送给处理器400进行基带信号的处理;
本领域技术人员应当知道,在移动终端中,天线共用器又可以称为天线双工器(Diplexer),频带分离器等,天线共用器的功能是既要将功率微弱的第二接收信号藕合进来,又要将放大后的第一发射信号馈送到主集天线101上去,同时保证第一发射信号和第二接收信号之间的高隔离度,使两者互不影响。天线共用器可以看作是一种特殊的双向三端滤波器,其一端耦合至主集天线101,另位两端分别与第一主集发射通道31以及第一主集接收通道32耦合,具体连接关系可以参考在先技术,这里不再详述。处理器则可以是基带处理器,通信处理器,数字信号处理器,专用集成电路(ASIC)或者片上系统(SOC);此外,本发明实施例中的接收通道,就是指在经过天线共用器之后,对射频信号的进行下转换的接收通路,发射通道与此相反,这里不再赘述,具体可以参考如后续的图4所示的结构以及在先技术;
第一分集通道可以包括:可调带通滤波器203,第一分集接收通道33,所述第一分集接收通道33可以通过所述可调带通滤波器203耦合到分集天线102,其中,可调带通滤波器203用于根据第一主集发射通道31处理后的第一发射信号的频带带宽以及由分集天线102接收的第一接收信号的频带带宽,调整可调带通滤波器203的通带带宽,并对所述第一接收信号基于所述通带带宽的带通滤波,以抑制第一发射信号对第一分集接收通道33接收的第一接收信号造成的信号泄漏;第一分集接收通道33用于对滤波后的第一接收信号进行低噪声放大、下转换、滤波、模数转换等处理,生成第二基带信号,并发送给处理器400进行基带信号的处理,第二基带信号与第三基带信号互为分集接收信号。
需要说明的是,说明书中所使用的术语“第一”、“第二”和“第三”等仅用于区别不同的对象,而非用于描述对象的特定顺序。例如,第一基带信号、第二基带信号和第三基带信号等是用于区别不同的基带信号,而不是用于描述基带信号的先后顺序。
示例性的,可调带通滤波器203抑制信号泄漏的原理参见图3,也就是调整可调带通滤波器203的通带带宽,使得第一接收信号的频带(band)带宽(即图3中所示的接收频带宽度)包含在可调带通滤波器203的通带带宽之内,并使得第一发射信号的频带带宽(即图3中所示的发射频带宽度)位于可调带通滤波器203的通带带宽之外。应当知道,在通信系统中,一个频带(band)通常可以划分为多个信道(channel),其中,根据不同的通信协议,可以将一个频率范围划分为一个频带。在第三代合作伙伴项目(3GPP)协议中(版本号为TS 36.101),就给出了演进通用陆地无线接入(E-UTRA)系统的工作频带。示例性的,3GPP规定了Band 1的上行带宽为(1920MHz–1980MHz),Band 1的下行带宽为2110(MHz–2170MHz)。由于频分复用等技术的出现,在一个频带内,又可以划分多个信道,每个信道的带宽可以是20MHz,或者10MHz等等,其中,每个信道都可以作为一个终端传输无线信号时所使用的频率资源。因此,在图3中,可以将接收信道带宽理解为承载待接收的无线信号的频率资源的宽度,而接收频带带宽就是接收信道所对应的频带的带宽;发射频带宽度和发射信道带宽与此类似,不再赘述,具体可以参考在先技术。
在传统的分集接收机中,通常采用SAW滤波器来抑制发射信号泄漏,由于SAW滤波器的频点固定,一个SAW滤波器只能处理特定频带的接收信号,如果接收信号的频带变化范围较大,则需要采用多个SAW滤波器来构建多个分集通道,而采用本发明实施例的 技术方案,当第一主集通道的发射频带在一定范围内变化时,使用一个包括可调带通滤波器的分集通道即可以实现对发射信号泄漏的抑制,从而简化了分集接收机的结构,有利于实现小型化。
本领域技术人员应当知道,关于处理器400如何对分别由第一主集接收通道32生成的第三基带信号,以及,第一分集接收通道33生成的第二基带信号,进行分集接收,在先技术中已有详细描述,具体可以参考在先技术,这里不再赘述。此外,由于第一主集接收通道32与第一分集接收通道33接收的是承载相同信息的射频信号,因此,第一主集接收通道32的接收频带与第一分集接收通道33的接收频带应保持相同。
本发明实施例中,进一步地,第一主集发射通道31可以是零中频(zero intermediate frequency,ZIF)的发射通道,超外差式的发射通道,或者低中频(low intermediate frequency,LIF)的发射通道等。相应的,第一主集接收通道32和第一分集接收通道33也分别可以是零中频的接收通道,低中频的接收通道,或超外差式的接收通道。其中,所述第一主集发射通道31,所述第一主集接收通道32以及所述第一分集接收通道33可以为同一类型的通道,例如,所述第一主集发射通道31,所述第一主集接收通道32以及所述第一分集接收通道33均为基于零中频的通道。现有技术对于各种通道中的放大器,滤波器以及混频器等器件的连接关系,已有充分披露,具体可以参考在先技术。
如图4所示,这里以零中频的通道为例,分别对第一主集发射通道31,第一主集接收通道32和第一分集接收通道33的结构做详细介绍。在图4中,第一主集发射通道31具体可以包括:功率放大器202,第一混频器311,第一振荡器310,第一低通滤波器312,数模转换器313,第一主集发射通道31通过功率放大器202耦合到天线共用器201;其中,第一主集发射通道31的工作原理包括:数模转换器313首先对处理器400生成的第一基带信号进行数模转换,转换后的模拟信号经第一低通滤波器312滤波后,在第一混频器311中与由第一振荡器310生成的本振信号进行混频,然后再经功率放大器202进行功率放大,就得到第一发射信号。通常将由功率放大器202,第一混频器311,第一振荡器310,第一低通滤波器312以及数模转换器313组成的电路叫做上转换电路。第一主集接收通道32具体可以包括:第一低噪声放大器(low-noise amplifier,LNA)302,第二混频器303,第二低通滤波器304,第一模数转换器305以及第二振荡器301,第一主集接收通道32通过第一低噪声放大器302耦合到天线共用器;其中,第一主集接收通道32的工作原理包括:第一低噪声放大器302首先对经由天线共用器201获取的第二接收信号进行放大,然后第二混频器303将放大后的信号与第二振荡器301产生的本振信号进行混频,得到基带信号,第二低通滤波器304和第一模数转换器305分别对基带信号进行低通滤波以及模数转换得到第三基带信号,并发送给处理器400进行分集接收。通常将由第一低噪声放大器302,第二混频器303,第二低通滤波器304,第一模数转换器305以及第二振荡器301组成的电路叫做下转换电路。第一分集接收通道33可以包括:第二低噪声放大器306,第三混频器307,第三低通滤波器308,第二模数转换器309以及第二振荡器301,第一分集接收通道33中的第二低噪声放大器306通过可调带通滤波器203耦合到分集天线102,第一分集接收通道33的工作原理与第一主集接收通道32类似,这里不再赘述。需要说明的是,由于第一分集接收通道33与第一主集 接收通道32都需要对相同频率的射频信号进行下转换,因此,它们可以复用同一个振荡器301,当然,它们也可以采用独立的振荡器,生成各自所需的本振信号,这里不做限定。
进一步地,在无线终端的芯片设计方案中,如图4所示,通常把天线共用器201,功率放大器202,以及可调带通滤波器203等封装在一起,称为射频前端电路200。将第一混频器311,第一振荡器310,第一低通滤波器312,数模转换器313,第一低噪声放大器302,第二混频器303,第二低通滤波器304,第一模数转换器305,第二低噪声放大器306,第三混频器307,第三低通滤波器308,第二模数转换器309以及第二振荡器301等封装成另一个集成电路(integrated circuit,IC),称作收发信机(transceiver)300,或者叫做射频集成电路(RF IC),后续为了表示方便,仅以收发信机来代替主集通道以及分集通道中的转换电路部分,也就是用收发信机表示上转换电路以及下转换电路。
本发明实施例中,进一步地,分集接收机还可以包括控制器204,控制器204具体用于根据第一主集发射通道31处理后的第一发射信号的频带带宽以及第一分集接收通道33接收的第二接收信号的频带带宽,控制可调带通滤波器203的调整其通带带宽,以滤除由第一发射信号泄漏到第一分集接收通道33中的部分信号。
进一步地,控制器204可以封装在射频前端电路200中,以提高分集接收机的集成度,减少对印刷电路板(PCB)面积的占用。应当知道,控制器204可以通过各种逻辑电路来实现,具体可以参考在先技术。
本领域技术人员应当知道,随着芯片制造技术的不断进步,射频前端电路200,收发信机300未来也可以封装在一个IC中,因此,本发明依据当前的无线终端的芯片设计方案,本发明实施例将分集接收机划分为射频前端电路200,收发信机300两个分离的芯片,不应对本发明构成限定。
本发明实施例中,进一步地,如图3所示,可调带通滤波器203可进一步以用于将可调带通滤波器203的通带带宽调整为第一接收信号的信道(channel)带宽,以增强对第一发射信号的泄漏的抑制能力。应当知道,在通信系统中,一个频带(band)通常可以划分为多个信道(channel),例如:2.4GHz的band可以划分为13个channel,每个channel的带宽为22MHz。因此,可调带通滤波器203将第一接收信号的信道带宽作为通带带宽,使得第一发射信号的信道进一步远离可调带通滤波器203的通带,从而提高了对第一发射信号的泄漏的抑制能力。
本发明实施例中,进一步地,如图5所示,分集接收机还包括自适应滤波器34,该自适应滤波器34分别与第一主集发射通道31和第一分集接收通道33耦合,具体地,第一主集发射通道31的一端耦合至天线共用器201,自适应滤波器34的一端耦合至第一主集发射通道31的另一端以及处理器400,第一分集接收通道33的一端耦合至可调带通滤波器203,自适应滤波器34的另一端耦合至第一分集接收通道33的另一端以及处理器400。所述自适应滤波器34用于基于自适应算法,利用自所述第一主集发射通道31获取的第一基带信号构造因第一基带信号的信号泄漏对第一分集接收通道33造成的IMD2干扰信号,并在数字域从所述第一分集接收通道33生成的第二基带信号中滤除所述IMD2干扰信号。其中,自适应滤波算法可以包括最小均方根(least mean square, LMS)算法,递归最小二乘方(recursive least square,RLS)算法,以及其它类似算法中的至少一种,具体可以参考在先技术,这里不再赘述。
具体地,自适应滤波器34的工作原理可以简述如下:
IMD2干扰是由第一主集发射通道31中的第一发射信号的泄露导致的,因此自适应滤波器34可以根据第一主集发射通道31的第一基带信号,来构建IMD2干扰信号。
由于第一基带信号是在经过了包括第一主集发射通道31、功率放大器202、主集天线101、分集天线102和第一分集接收通道33在内的环路之后,形成的IMD2干扰,因此可以将第一基带信号作为参考信号,考虑到当前的接收机主要基于同相正交(In-phase/Quadrature,I/Q)调制技术,这里用TX_Ref_I表示参考信号的同相分量,用TX_Ref_Q表示参考信号的正交分量。而参考信号与第一基带信号经过环路进入第一分集接收通道33的IMD2干扰信号之间有一定的延迟,因此首先需要对参考信号进行同步,以补偿环路延迟,使同步后的参考信号与IMD2干扰信号对齐,也就是说,由于参考信号超前于IMD2干扰信号,需要对参考信号进行延迟,使两者同步。由于IMD2干扰信号包括在分集接收通道33所生成的第二基带信号之内,这里用第二基带信号与参考信号进行同步,为了便于描述,这里用RX_I表示第二基带信号的同相分量,用RX_Q表示第二基带信号的正交分量,用Ii表示经过同步之后的参考信号的i阶同相分量,用Qi表示经过同步之后的参考信号的i阶正交分量,Ij表示经过同步之后的参考信号的j阶同相分量,Qj表示经过同步之后的参考信号的j阶正交分量,其中,i,j分别为自然数,且i≤n,j≤n,i≠j。
从第一主集发射通道31到第一分集接收通道33的信号泄露是带有记忆效应的,因此可以先根据同步之后的参考信号生成具有n阶记忆效应的IMD2项,需要说明的是,IMD2干扰信号的展开式可以认为是一个多项式,IMD2项就是这个多项式的项,也就是说IMD2项包括:(Ii 2+Qi 2),(Ii Ij+Qi Qj),(Ii Ij-Qi Qj)等向量。
接下来,利用这些IMD2项,基于如下公式(1)构建IMD2干扰信号:
Figure PCTCN2017096507-appb-000002
其中,Si为自相关系数,Cij为交叉系数,nCij为负交叉系数,DC表示直流项,DC的值可设置为固定值。
最后,从第二基带信号中减去构建的IMD2干扰信号,得到IMD2干扰消除后的第二基带信号,并将IMD2干扰消除后的第二基带信号发送给处理器400,这里用RX_I_output表示IMD2干扰消除后的第二基带信号的同相分量,用RX_Q_output表示IMD2干扰消除后的第二基带信号的正交分量。
为了更好地说明自适应滤波器34的原理,这里以LMS算法为例,并结合图6,对自适应滤波器34的结构做简要介绍,如图6所示,自适应滤波器34可以包括:
同步电路341,用于基于RX_I和RX_Q,分别对TX_Ref_I和TX_Ref_Q进行同步,以得到同步后的参考信号Ii和Qi
缩放电路342,用于根据预设的比例系数,对Ii和Qi进行缩放处理;
IMD2生成器343,用于根据缩放后的Ii和Qi生成IMD2项;
由于IMD2干扰信号的构建也是分别按照同相和正交两路进行的,为了便于表述, 这里仅以同相的信号构建电路344(图5中以LMS_I表示)为例进行说明,正交的信号构建电路345(图5中以LMS_Q表示)的结构跟同相的信号构建电路一样,可以相互参考。在同相的信号构建电路344中,包括:LMS更新电路3441,用于根据RX_I_output中的残留误差,以及IMD2生成器343生成的IMD2项,更新IMD2系数,IMD2系数包括:自相关系数Si,交叉系数Cij,负交叉系数nCij;有限长单位冲激响应滤波器(Finite Impulse Response,FIR)滤波器3442,用于根据LMS更新电路3441提供的IMD2系数和IMD2生成器343生成的IMD2项构建IMD2干扰信号,具体构建方式参考前述公式(1)。
减法器346,用于从第三基带信号的同相分量RX_I中减去由同相的信号构建电路344构建的IMD2干扰信号,以得到IMD2干扰消除后的第三基带信号的同相分量RX_I_output。
减法器347,则用于从第三基带信号的正交分量RX_Q中减去由正交的信号构建电路345构建的IMD2干扰信号,以得到IMD2干扰消除后的第三基带信号的正交分量RX_Q_output。
相比具有固定频点的SAW滤波器而言,可调带通滤波器203的带外抑制度一般低于SAW滤波器,因此对TX信号泄漏的抑制度较差。对目前主流的零中频接收机而言,由于泄漏的信号进入第一分集接收通道,会产生IMD2干扰信号,IMD2干扰信号与第二基带信号叠加在一起,会影响分集接收机的性能,因此,采用本发明实施例提供的自适应滤波器34,可以使第一分集接收通道33输出不含IMD2干扰的第二基带信号,供后级的处理器400进行相应的处理,从而进一步提高了分集接收机的干扰抑制性能。
本领域技术人员应当知道,图6所示仅为自适应滤波器34的一种示例性的结构,本领域技术人员基于本发明实施例的构想,以及除LMS之外的其它自适应滤波算法,可以通过不同的数字电路来实现自适应滤波器34的功能,因此,图6所示的具体电路结构不应对本发明所提供的自适应滤波器34构成限定。
进一步地,本发明实施例中,如图7所示,所述分集接收机可以包括:多个主集通道(这里分别用2011,2012,2013来标识多个主集通道),以及主集开关204;需要说明的是,为了表示方便,图7中将各个主集通道的主集接收通道以及主集发射通道都集成在收发信机中,所以这里仅用天线共用器来代表各个主集通道。所述主集开关204用于选择性地从所述至少一个主集通道中确定当前工作的一个主集通道作为第一主集通道,并导通第一主集通道与主集天线101。本领域技术人员应当知道,通过给各个主集通道设置不同的硬件参数,可以使多个主集通道分别对应不同的工作频带,其中,每个主集通道的工作频带包括:主集发射通道的发射频带以及主集接收通道的接收频带,为了表述方便,下文中将分别以主集通道的发射频带以及主集通道的接收频带进行描述,后续不再说明。这样,分集接收机就可以支持多频带的信号接收或者发送。
进一步地,如图8所示,所述分集接收机可以包括:多个分集通道(这里分别用2031,2032,2033来标识多个分集通道)以及分集开关205,这里,多个分集通道各自的可调带通滤波器的滤波范围可以是不同的,应当知道,为了表示方便,图7中也将各个分集通道的分集接收通道集成在收发信机300中,因此,这里仅用可调带通滤波器来代表各个分集通道。所述分集开关205用于根据主集开关204确定的用于当前工作的第一主集通道,从所述多个分集通道选择一个与第一主集通道的相匹配的分集通道作为第一分集 通道,并导通第一分集通道与所述分集天线102,其中,由于第一分集通道的接收频带应与第一主集通道的接收频带相同,因此,分集开关205所选择的分集通道中的可调带通滤波器的滤波范围与所述第一主集通道的发射频带不重叠,且选择的分集通道中的可调带通滤波器的滤波范围与所述第一主集通道的接收频带相匹配,从而能够滤除从所述第一主集通道泄漏到第一分集通道中的信号。
应当知道,在当前的各种通信系统中,如:长期演进(Long Term Evolution,LTE)系统,通用移动通信系统(Universal Mobile Telecommunications System,UMTS),窄带物联网等,分别采用不同的通信频带,大致可以分为覆盖700~900MHz的低频带LB(包括B5,B8,B17,B28等频带),覆盖1700~2100MHz的高频带HB(包括B1,B2,B3,B4等频带),覆盖2300~2700MHz的超高频带UHB(包括B7,B38,B41等频带)。为了满足多频带接收的需求,可以分别设置每个主集通道的器件(如天线共用器,振荡器)参数,使得多个主集通道分别对应不同的频带,例如:主集通道2011的接收频带可以对应B3频带,主集通道2012的接收频带可以对应B5频带,主集通道2013的接收频带可以对应B38频带,若当前需要接收的信号对应B5频带,则主集开关204选择主集通道2012作为当前工作的主集通道,即作为第一主集通道,并导通主集通道2012与主集天线101。此外,可调带通滤波器的滤波频带通常也是有一定范围的,例如,分集通道2031中的可调带通滤波器的滤波范围可以对应LB,分集通道2032中的可调带通滤波器的滤波范围可以对应HB,分集通道2033中的可调带通滤波器的滤波范围可以对应UHB,当主集通道2012被确定为当前工作的第一主集通道之后,为了保证滤波性能,分集开关205则可以选择分集通道2031作为与第一主集通道相对应的第一分集通道,并导通分集通道2031与分集天线101,从而使得分集通道2031中的可调带通滤波器的滤波范围,可以与当前工作的主集通道2012对应的B5频带相匹配,也就是说,B5频带位于分集通道2031中的可调带通滤波器的正常工作范围内;当然,如果主集通道2012对应的工作频带为B8,B17,B28等频带,那么仍然可以将分集通道2031作为与主集通道2012匹配的第一分集通道,因为分集通道2031中的可调带通滤波器的滤波范围可以覆盖LB。
由此可见,采用本发明实施例提供的方案,可以有效节省芯片面积,有利于分集接收机的小型化集成,而如果像在先技术一样采用SAW滤波器来做多频带的接收机,即便是同属LB中的B5,B8,B17,B28等频带,为了保证滤波性能,针对其中每个频带,分集通道都分别需要一个SAW滤波器来进行滤波,从而导致接收机结构非常复杂,且SAW滤波器数量过多,会使得射频前端电路的面积显著增大,无法满足移动终端对于射频子系统小型化、低成本等需求。
如图9所示,本发明实施例还提供了一种终端1,其中,终端1包括:分集接收机20,以及耦合至分集接收机20的处理器30,其中,分集接收机20的结构可以参考前述实施方式中所描述的分集接收机,具体地,可以参考图2至图8所示的分集接收机,处理器30也可以参考前述实施方式中所描述的处理器400。需要说明的是,本发明实施例中提供的终端,可以是包括智能手机,个人数字助理(PDA),平板电脑,手持终端、穿戴式设备在内的移动终端,还可以是具有通信能力的智能机器人或者车载设备。
进一步地,终端1还包括主集天线11,分集天线12,分集接收机20分别耦合至主 集天线11以及分集天线12。
其中,分集接收机20可以用于分别从分集天线12接收第一接收信号,以及从主集天线11接收第二接收信号;并对第一接收信号以及第二接收信号分别进行下转换处理,生成第二基带信号和第三基带信号。处理器30则用于利用分集接收技术,对第二基带信号和第三基带信号进行相应的分集接收。
此外,处理器30还用于生成待发送的第一基带信号,相应的,分集接收机20还用于对第一基带信号进行上转换,得到第一发射信号,并通过主集天线11将第一发射信号发射出去。
分集接收机20还用于根据所述第一发射信号的频带带宽以及所述第一接收信号的频带带宽,调整所述第一接收信号所在的分集接收通道中的可调带通滤波器的通带带宽,并对所述第一接收信号进行滤波,以抑制所述第一发射信号对所述第一接收信号造成的信号泄漏。
进一步地,终端1还可以包括耦合到处理器30的存储器40。其中,存储器40用于存储处理器30在生成第一基带信号,以及在对第二基带信号和第三基带信号进行分集接收时,所需的各种算法以及指令,具体可以参考在先技术,这里不再赘述。
应当理解,此处所描述的具体实施例仅为本发明的普通实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种分集接收机,其特征在于,包括:
    第一主集通道,以及第一分集通道;
    所述第一主集通道包括:天线共用器和第一主集发射通道,所述第一主集发射通道通过所述天线共用器耦合到主集天线,所述第一主集发射通道用于根据第一基带信号生成第一发射信号,并通过所述天线共用器将所述第一发射信号发送给所述主集天线;
    所述第一分集通道包括:可调带通滤波器以及第一分集接收通道,所述第一分集接收通道通过所述可调带通滤波器耦合到分集天线,所述可调带通滤波器用于根据所述第一发射信号的频带带宽以及从所述分集天线接收的第一接收信号的频带带宽,调整所述可调带通滤波器的通带带宽,并对所述第一接收信号进行基于所述通带带宽的带通滤波,以抑制所述第一发射信号对所述第一接收信号造成的信号泄漏,所述第一分集接收通道用于根据滤波后的所述第一接收信号,生成第二基带信号。
  2. 如权利要求1所述的分集接收机,其特征在于,所述可调带通滤波器用于将所述可调带通滤波器的通带带宽设置为所述第一接收信号的信道带宽。
  3. 如权利要求1或2所述的分集接收机,其特征在于,所述第一主集通道还包括:第一主集接收通道,所述第一主集接收通道用于根据从所述主集天线接收的第二接收信号,生成第三基带信号,所述第三基带信号与所述第二基带信号互为分集接收信号。
  4. 如权利要求3所述的分集接收机,其特征在于,所述第一主集发射通道,所述第一主集接收通道以及所述第一分集接收通道均为零中频通道,低中频通道,或者超外差式通道中的一种。
  5. 如权利要求1至4任一所述的分集接收机,其特征在于,所述分集接收机还包括:自适应滤波器,所述自适应滤波器分别与所述第一主集发射通道和所述第一分集接收通道耦合,所述自适应滤波器用于利用所述第一主集发射通道所接收所述第一基带信号,以及通过执行自适应滤波算法,构造因所述第一基带信号的信号泄漏对所述第一分集接收通道造成的二阶互调失真IMD2干扰信号,并从所述第一分集接收通道生成的所述第二基带信号中滤除所述IMD2干扰信号。
  6. 如权利要求5所述的分集接收机,其特征在于,所述自适应滤波算法包括最小均方根LMS算法,递归最小二乘方RLS算法中的至少一种。
  7. 如权利要求5或6所述的分集接收机,其特征在于,所述自适应滤波器具体用于将所述第一基带信号作为参考信号,并将所述参考信号与所述第二基带信号进行同步,然后根据如下公式构造所述IMD2干扰信号:
    Figure PCTCN2017096507-appb-100001
    其中,IMD2表示构造的IMD2干扰信号,Ii表示经过同步之后的参考信号的i阶同相分量,Qi表示经过同步之后的参考信号的i阶正交分量,Ij表示经过同步之后的参考信号的j阶同相分量,Qj表示经过同步之后的参考信号的j阶正交分量,Si为自相关系数,Cij为交叉系数,nCij为负交叉系数,DC表示直流项,i,j分别为自然数,且i≤n,j≤n,i≠j。
  8. 如权利要求1至7任一所述的分集接收机,其特征在于,所述分集接收机包括:多个主集通道,主集开关,所述主集开关用于从所述多个主集通道中选择一个主集通道作为所述第一主集通道。
  9. 如权利要求8所述的分集接收机,其特征在于,所述分集接收机包括:多个分集通道以及分集开关,所述分集开关用于根据所述主集开关确定的所述第一主集通道,从所述多个分集通道选择一个与所述第一主集通道的相匹配的分集通道作为所述第一分集通道,其中,所述分集开关选择的分集通道中的,可调带通滤波器的滤波范围,与所述第一主集通道的发射频带不重叠,且与述第一主集通道的接收频带相匹配。
  10. 一种终端,其特征在于,包括:如权利要求1至9任一所述的分集接收机,以及耦合至所述分集接收机的处理器;
    所述处理器用于生成所述第一基带信号,并传输给所述分集接收机;
    所述处理器还用于对所述分集接收机生成的所述第二基带信号进行分集接收。
  11. 如权利要求10所述的终端,其特征在于,还包括:所述主集天线以及所述分集天线,所述主集天线与所述分集天线分别耦合至所述分集接收机。
PCT/CN2017/096507 2016-08-08 2017-08-08 一种分集接收机及终端 WO2018028582A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17838712.2A EP3499744B1 (en) 2016-08-08 2017-08-08 Diversity receiver and terminal
US16/267,808 US10700759B2 (en) 2016-08-08 2019-02-05 Diversity receiver and terminal
US16/845,332 US11063654B2 (en) 2016-08-08 2020-04-10 Diversity receiver and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610643388.6 2016-08-08
CN201610643388.6A CN106301516B (zh) 2016-08-08 2016-08-08 一种分集接收机及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/267,808 Continuation US10700759B2 (en) 2016-08-08 2019-02-05 Diversity receiver and terminal

Publications (1)

Publication Number Publication Date
WO2018028582A1 true WO2018028582A1 (zh) 2018-02-15

Family

ID=57666611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096507 WO2018028582A1 (zh) 2016-08-08 2017-08-08 一种分集接收机及终端

Country Status (4)

Country Link
US (2) US10700759B2 (zh)
EP (1) EP3499744B1 (zh)
CN (3) CN111800178A (zh)
WO (1) WO2018028582A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046435B (zh) * 2016-02-05 2021-09-28 索尼公司 无线通信方法和无线通信装置
CN111800178A (zh) 2016-08-08 2020-10-20 华为技术有限公司 一种分集接收机及终端
WO2019079938A1 (en) * 2017-10-23 2019-05-02 Hewlett Packard Enterprise Development Lp DETERMINING AVAILABLE FREQUENCIES BASED ON FREQUENCIES AND INTERFERENCE ENERGY LEVELS
CN109104214B (zh) * 2018-07-25 2020-07-28 维沃移动通信有限公司 一种信号处理装置、电子设备及信号处理的方法
CN109547040B (zh) * 2018-11-13 2021-01-26 西安邮电大学 一种防干扰信号输送方法
IL266247B (en) * 2019-04-18 2020-10-29 Elbit Systems Land & C4I Ltd A high frequency radio that includes an adjustable bandpass filter to improve incoming call detection and incoming call processing methods
JP2021087035A (ja) * 2019-11-25 2021-06-03 株式会社村田製作所 高周波信号送受信回路
CN111313940B (zh) * 2020-02-12 2022-05-06 惠州Tcl移动通信有限公司 一种mimo系统和mimo系统区分信号的方法
CN111323804B (zh) * 2020-04-22 2023-08-29 北京国泰星云科技有限公司 一种基于北斗系统的船舶姿态测量设备及测量方法
CN111800160A (zh) * 2020-06-30 2020-10-20 联想(北京)有限公司 一种电子设备
CN111835377B (zh) * 2020-08-19 2022-02-22 展讯通信(上海)有限公司 信号收发装置及其发射模块上、下电方法
CN115811320B (zh) * 2023-02-08 2023-05-23 北京智联安科技有限公司 消除零中频发射机的cim3互调干扰信号的方法、装置及介质
CN115801029B (zh) * 2023-02-08 2023-04-18 北京智联安科技有限公司 消除零中频接收机的im2信号的方法、装置及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104390A (zh) * 2009-12-16 2011-06-22 中国科学院微电子研究所 用于6至9GHz的双载波正交频分复用超宽带收发机
US20150087245A1 (en) * 2013-09-20 2015-03-26 Broadcom Corporation Receiver for carrier aggregation
CN105141335A (zh) * 2009-12-23 2015-12-09 华为技术有限公司 天线振子复用的方法、装置和天线组件
CN204967861U (zh) * 2015-06-01 2016-01-13 宇龙计算机通信科技(深圳)有限公司 一种基带信号收发电路、系统及移动终端
CN106301516A (zh) * 2016-08-08 2017-01-04 华为技术有限公司 一种分集接收机及终端

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9811380D0 (en) * 1998-05-27 1998-07-22 Nokia Mobile Phones Ltd A transciever for wireless communication
JP2002517124A (ja) * 1998-05-27 2002-06-11 ノキア モービル フォーンズ リミテッド ワイヤレス通信用の受信器及び受信方法
CN1151691C (zh) * 2000-10-24 2004-05-26 深圳市中兴通讯股份有限公司 移动通信全向5载频至三扇区24载频的基站天馈系统
US6917328B2 (en) * 2001-11-13 2005-07-12 Rosum Corporation Radio frequency device for receiving TV signals and GPS satellite signals and performing positioning
US7116952B2 (en) * 2003-10-09 2006-10-03 Intel Corporation Method and apparatus to provide an area efficient antenna diversity receiver
JP2006129247A (ja) * 2004-10-29 2006-05-18 Toshiba Corp 情報処理装置および通信制御方法
JP2007019939A (ja) * 2005-07-08 2007-01-25 Renesas Technology Corp 無線通信装置及びそれを用いた携帯電話端末
US7680510B2 (en) * 2005-11-10 2010-03-16 Alcatel-Lucent Usa Inc. Diversity-switched front end base station transceiver system
CN101202581A (zh) * 2006-12-13 2008-06-18 中兴通讯股份有限公司 移动通信中的基站频点扩展系统
US8090332B2 (en) * 2007-12-12 2012-01-03 Qualcomm, Incorporated Tracking filter for a receiver
CN101741441A (zh) * 2008-11-12 2010-06-16 华为终端有限公司 无线终端、天线切换控制方法及装置
EP2197119B1 (en) * 2008-12-12 2013-02-13 ST-Ericsson SA Method and system of calibration of a second order intermodulation intercept point of a radio transceiver
CN101483281B (zh) * 2009-02-27 2011-04-13 华为终端有限公司 一种控制终端天线的方法和装置
CN101534141A (zh) * 2009-04-15 2009-09-16 华为技术有限公司 一种射频模块的支持多频段共存的方法及装置
US8744377B2 (en) 2009-12-21 2014-06-03 Qualcomm Incorporated Method and apparatus for adaptive non-linear self-jamming interference cancellation
US8320868B2 (en) * 2010-02-11 2012-11-27 Mediatek Singapore Pte. Ltd. Integrated circuits, communication units and methods of cancellation of intermodulation distortion
WO2012075332A1 (en) 2010-12-01 2012-06-07 Qualcomm Incorporated Non-linear adaptive scheme for cancellation of transmit out of band emissions
US20120140685A1 (en) * 2010-12-01 2012-06-07 Infineon Technologies Ag Simplified adaptive filter algorithm for the cancellation of tx-induced even order intermodulation products
US9002309B2 (en) * 2011-05-27 2015-04-07 Qualcomm Incorporated Tunable multi-band receiver
US8767869B2 (en) 2011-08-18 2014-07-01 Qualcomm Incorporated Joint linear and non-linear cancellation of transmit self-jamming interference
US20130155911A1 (en) * 2011-12-16 2013-06-20 Broadcom Corporation Radio Transceiver With IM2 Mitigation
WO2013116229A1 (en) * 2012-01-30 2013-08-08 Dali Systems Co. Ltd. Frequency translation in a virtualized distributed antenna system
US8879663B1 (en) * 2012-06-26 2014-11-04 L-3 Communications Corp. Adaptive filtering for canceling distortion in radio frequency signals
CN104113356B (zh) * 2013-04-19 2017-03-01 联发科技(新加坡)私人有限公司 无线通信单元、射频模块及调谐无线通信单元的方法
CN104427656A (zh) * 2013-08-19 2015-03-18 中兴通讯股份有限公司 信号处理方法、装置及移动终端
US9432112B2 (en) * 2013-12-17 2016-08-30 Intel IP Corporation Mobile communication device and method for adaptive RF front-end tuning
US9306654B2 (en) * 2014-01-10 2016-04-05 Qualcomm Incorporated Opportunistic active interference cancellation using RX diversity antenna
US20150358041A1 (en) * 2014-06-06 2015-12-10 Qualcomm Incorporated Calibration and tuning for a tunable filter having adjustable inductance and capacitance
US9385765B2 (en) * 2014-10-31 2016-07-05 Skyworks Solutions, Inc. Diversity receiver front end system with phase-shifting components
JP6029728B2 (ja) * 2014-10-31 2016-11-24 スカイワークス ソリューションズ,インコーポレイテッドSkyworks Solutions,Inc. 位相シフト部品を備えたダイバーシティ受信器フロントエンドシステム
US10298186B2 (en) * 2014-11-03 2019-05-21 Qorvo Us, Inc. Diversity receive modules using one or more shared tunable notch filters for transmit blocker rejection
CN107113016B (zh) * 2014-12-26 2019-06-11 株式会社村田制作所 高频前端电路及通信装置
CN105553499B (zh) * 2015-10-29 2019-03-08 东莞酷派软件技术有限公司 一种移动终端的射频前端和移动终端
DE102016213076A1 (de) * 2016-07-18 2018-01-18 Te Connectivity Germany Gmbh Kontaktloser übertragungskoppler für datennetze

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104390A (zh) * 2009-12-16 2011-06-22 中国科学院微电子研究所 用于6至9GHz的双载波正交频分复用超宽带收发机
CN105141335A (zh) * 2009-12-23 2015-12-09 华为技术有限公司 天线振子复用的方法、装置和天线组件
US20150087245A1 (en) * 2013-09-20 2015-03-26 Broadcom Corporation Receiver for carrier aggregation
CN204967861U (zh) * 2015-06-01 2016-01-13 宇龙计算机通信科技(深圳)有限公司 一种基带信号收发电路、系统及移动终端
CN106301516A (zh) * 2016-08-08 2017-01-04 华为技术有限公司 一种分集接收机及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3499744A4

Also Published As

Publication number Publication date
US11063654B2 (en) 2021-07-13
US20190173564A1 (en) 2019-06-06
CN111800179A (zh) 2020-10-20
EP3499744A1 (en) 2019-06-19
EP3499744A4 (en) 2019-07-10
US10700759B2 (en) 2020-06-30
CN111800179B (zh) 2022-04-12
US20200244341A1 (en) 2020-07-30
CN111800178A (zh) 2020-10-20
EP3499744B1 (en) 2021-01-20
CN106301516B (zh) 2020-07-21
CN106301516A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2018028582A1 (zh) 一种分集接收机及终端
US10128872B2 (en) Enabling radio frequency multiplexing in a wireless system
CN107078693B (zh) 为混频器提供谐波响应抑制的电路
US9859943B2 (en) Tunable RF diplexer
KR101115270B1 (ko) 송신 신호 누설의 영향을 감소시키기 위해서 노치 필터를 구비한 무선 수신기
JP5823590B2 (ja) 無線通信装置における送信信号漏出の排除
RU2493649C2 (ru) Способ частотно-зависимого подавления сигналов и устройство для его реализации (варианты)
US10693687B1 (en) Intermediate frequency on chip (IFoC) system
WO2011104313A1 (en) Rejection of rf interferers and noise in a wireless communications transceiver
JP2016517249A (ja) 広帯域の同調可能なノッチ除去
US20090017770A1 (en) Noise cancellation system for transceivers
US10965325B2 (en) Communication unit
WO2013123705A1 (zh) 一种移相滤波装置及其应用
KR20080047515A (ko) Fdd 시스템용 라디오 아키텍쳐
CN109314537B (zh) 收发器设备、通信设备以及补偿信号泄漏的方法
US20160352365A1 (en) High-frequency front end circuit
Kim et al. Design considerations for cognitive radio based CMOS TV white space transceivers
US10148010B2 (en) Antenna arrangement
WO2023140999A1 (en) Constant-phase attenuator techniques in radio frequency front end (rffe) amplifiers
JP2012060433A (ja) 送受信機及びそれを用いた携帯電話用端末向けrfic並びに携帯電話用基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838712

Country of ref document: EP

Effective date: 20190311