WO2018028002A1 - 开口波导、天线子阵、平板天线阵列及平板天线 - Google Patents

开口波导、天线子阵、平板天线阵列及平板天线 Download PDF

Info

Publication number
WO2018028002A1
WO2018028002A1 PCT/CN2016/095832 CN2016095832W WO2018028002A1 WO 2018028002 A1 WO2018028002 A1 WO 2018028002A1 CN 2016095832 W CN2016095832 W CN 2016095832W WO 2018028002 A1 WO2018028002 A1 WO 2018028002A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
waveguide
cavity
antenna
signal transmission
Prior art date
Application number
PCT/CN2016/095832
Other languages
English (en)
French (fr)
Inventor
王岩
吴知航
王正斌
陈茂明
梁雄帆
Original Assignee
南京肯微弗通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620877311.0U external-priority patent/CN205944438U/zh
Priority claimed from CN201610662023.8A external-priority patent/CN106129597A/zh
Application filed by 南京肯微弗通信技术有限公司 filed Critical 南京肯微弗通信技术有限公司
Publication of WO2018028002A1 publication Critical patent/WO2018028002A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • the invention belongs to the technical field of microwave antennas, and in particular relates to an improved open waveguide and an antenna sub-array having the same structure, a planar antenna array and a planar antenna with polarization adjustment.
  • Satellite communication has the advantages of long transmission distance, wide coverage and small interference. With the rapid development of global informationization, more and more information is transmitted through satellites, and communication with satellites is available on mobile carriers anytime and anywhere. The urgent need for dual-use emergency communication and real-time communication.
  • the on-board (onboard or airborne) satellite mobile communication system is often referred to as “moving in the middle”.
  • One of the core technologies of the mobile communication is the antenna technology.
  • the antenna form of the moving medium includes the reflector antenna, the panel antenna, and the lens antenna. And phased array antennas, etc.
  • In the high-speed mobile carrier to ensure communication quality not only requires the antenna to have a high gain, but also requires the system to have a very high star speed and star accuracy.
  • the main disadvantages of the reflector antenna are that the volume and weight are large. The wind resistance is high and the star speed is slow under high-speed movement.
  • the disadvantages of the phased array antenna are that the transmission and reception are difficult to share, the power scan has gain loss, and the manufacturing and maintenance costs are high.
  • the flat panel antenna has the advantages of low profile, high efficiency of the mouth surface, and fast star speed, and is particularly suitable for use in moving through.
  • the open waveguide of the existing planar antenna mostly adopts a horn structure, and the horn antenna is characterized by an inclined surface with an adduction.
  • the antenna unit In order to ensure the gain and bandwidth of the horn antenna, the antenna unit must adopt a slope with a gentle slope to achieve its impedance with air.
  • the matching results in a relatively high profile height of the antenna, a thick thickness, and a relatively heavy antenna.
  • the size of the horn antenna radiating port is large, resulting in poor side lobes of the radiation lobe pattern.
  • an arbitrary polarization wave can be synthesized by two orthogonal linear polarization waves, by controlling the amplitude and phase of two orthogonal linear polarization waves, a synthetic wave of arbitrary polarization can be obtained, so the conventional mechanical rotation
  • the feed waveguide method is no longer suitable for the panel antenna.
  • How to achieve automatic polarization adjustment is one of the core technologies of this type of antenna.
  • TV broadcast satellites and communication broadcast satellites operate in a two-line polarization or a double-polarization state.
  • most of the planar array antennas operate in a single-line polarization or a single-polarization state, and often need to be rotated for dual-polarization reception.
  • the entire antenna panel or two antennas respectively transmit and receive two polarization signals.
  • the two methods are either complicated in structure, cannot achieve dual polarization and compatible at the same time, or the antenna is expensive to manufacture and has low equivalent surface efficiency.
  • the present invention proposes a novel open waveguide, antenna subarray, planar antenna array and corresponding polarized tone
  • the whole panel antenna greatly reduces the thickness of the existing panel antenna, reduces its weight, and at the same time ensures the gain and bandwidth of the antenna, and can automatically adjust the polarization direction of the electromagnetic wave.
  • the specific invention is as follows:
  • the present invention proposes an open waveguide having a novel structure.
  • the open waveguide includes a waveguide opening, a first polarization selection cavity and a second polarization selection cavity, a first polarization connection port and a second polarization connection port; the waveguide opening is for receiving and transmitting a polarization signal, the first polarization selection The cavity and the second polarization are used for polarization selective feeding, and the first polarization connection port is located on a sidewall of the first polarization selection cavity, and is connected to the first polarization selection cavity and the signal transmission channel, and the second polarization connection The port is located on a side wall of the second polarization selection cavity, and is connected to the second polarization selection cavity and the signal transmission channel; connected from top to bottom in sequence, the inner diameter is gradually reduced, and is connected to the first polarization on the open surface of the open waveguide
  • a step structure is formed between the ports and the first polarization connection port and the second polarization connection port for smoothing the impedance matching between the waveguide opening and the outside air; the vertical wall design can also effectively
  • the waveguide opening, the first polarization selecting cavity and the second polarization selecting cavity have a circular cross section, an axisymmetric polygon, or a chamfered shape corresponding to the axisymmetric polygon; and the shape of each cross section is not required. Consistent.
  • At least two inner diameters of the inner cavity wall of the first polarization selecting cavity and/or the second polarization selecting cavity may be gradually decreased from the top to the bottom, thereby forming at least one layer for smoothly matching the open waveguide and The step structure of the impedance between the outside air.
  • the cross-sectional shape of the adjacent inner cavity wall bounded by the step structure is at least one of, and may be a circular shape, an axisymmetric polygonal shape, or a chamfered shape corresponding to the axisymmetric polygonal shape.
  • first polarization selection cavity and the second polarization selection cavity are a horizontal polarization selection cavity and a vertical polarization selection cavity, respectively, or a vertical polarization selection cavity and a horizontal polarization selection cavity, respectively.
  • At least one interference protrusion for widening the frequency band is disposed on the inner wall of the horizontal polarization selection cavity corresponding to the horizontal polarization connection port; the interference protrusion may be designed as a side ridge structure, The cross section may be trapezoidal, triangular, semi-circular, curved, or may be banded or other structures.
  • the cross-sectional shape of the inner wall of the second polarization selective cavity can be designed to be a relatively regular shape, preferably a chamfered rectangle. This has a wider bandwidth than a polarization selective cavity with a 45° oblique reflection edge structure, and the process is simpler and the production cost is lower.
  • the opening of the waveguide opening is preferably a sub-wavelength aperture.
  • the invention also proposes an antenna sub-array based on an open waveguide having the above features.
  • the antenna sub-array includes an even number of open waveguide units having any of the above features, and a first signal transmission channel and a second signal transmission channel connected to the open waveguide; each signal transmission channel includes at least one one-two power distribution network,
  • the left and right branches of the trigeminal portion include at least one pair of symmetrically graded steps for effecting impedance transformation and impedance matching of the waveguide.
  • the present invention also proposes a planar antenna array having an antenna sub-array of the above features.
  • the planar antenna array includes at least one antenna sub-array having any one of the above characteristics, and respectively connected to the first signal transmission a first signal transmission main channel and a second signal transmission main channel of the channel and the second signal transmission channel, and a first polarization signal total feed port at the end of the first signal transmission main channel and the second signal transmission main channel, respectively
  • the second polarization signal total feed port; the first polarization signal total feed port and the second polarization signal total feed port are connected to the back end circuit, and the main transmission channel comprises a multi-stage one-two-two power distribution network.
  • the left and right branches of the three-pronged portion of the one-two power distribution network in the main channel of the signal transmission include at least one pair of symmetric step-changing steps.
  • the one-two power distribution network in the main channel of the signal transmission has a "T" shape, a "work” shape, and a “Y” shape structure.
  • the top middle portion of the one-two power distribution network of the "T"-shaped structure is smooth and has no protrusion, and includes at least one pair of symmetric step-changing steps on the left and right branches. This is compared to the prior art one-two power distribution network with sharp convex portions, energy-efficient impedance transformation and impedance matching, and has a wider cavity wall, a smoother transmission channel and a simpler processing process.
  • a right angle portion of the main transmission channel in the main channel of the signal transmission adopts a reflection structure formed by at least one step which is gradually changed.
  • the reflective surface design method of the present invention has a wider bandwidth and a smoother transmission channel than a conventional 45° reflective surface at a right angle bend.
  • the invention proposes a panel antenna with polarization adjustment.
  • a planar antenna with polarization adjustment comprising a planar antenna array having any of the above features and a polarization adjusting device between the planar antenna array and the rear RF circuit; the polarization adjusting device comprising a polarization synthesizer and a polar
  • the polarizer and the polarizer are respectively provided with a common port and two polarization connection ports, and the polarization combiner and the polarizer are directly connected through the common port, and the polarizer can rotate along the axis;
  • the two polarization connection ports of the polarization synthesizer are respectively connected to the first polarization signal total feed port and the second polarization signal total feed port of the panel antenna array; and the two polarization connection ports of the polarizer are at least There is a way to connect to the back-end RF circuit.
  • the polarization adjusting device further includes a waveguide between the polarization synthesizer and the common port of the polariser, the waveguide having a circular or centrally symmetrical polygonal shape; and the waveguide being coupled to the polarizer.
  • the panel antenna with polarization adjustment further includes a rotating device coupled to the waveguide for driving the waveguide and the polariser to rotate.
  • the polarization synthesizer is implemented by an orthogonal mode coupler, and the polarization components transmitted by the two polarization ports are orthogonal to each other, and the polarization synthesis is performed when the antenna operates in the receiving state, and is polarized when the antenna operates in the transmitting state.
  • the polarizer is implemented by an orthogonal mode coupler.
  • the antenna open waveguide of the present invention adopts a vertical wall design, and has a thinner thickness, a lighter weight, and a better sidelobe parameter performance than a conventional horn-shaped open waveguide; correspondingly, an antenna using the open waveguide structure
  • the array and the panel antenna also have a thinner thickness and a lighter weight, thereby also increasing the range and convenience of use.
  • the inner diameter of the inner wall of the antenna open waveguide and its corresponding antenna sub-array, antenna array and planar antenna is gradually reduced, and the impedance is effectively smoothed; and the plurality of step structures are combined to further effectively realize impedance transformation and impedance match.
  • the interference convex structure adopted in the antenna open waveguide and the rectangular cross section of the second selective cavity with chamfered shape can effectively widen the bandwidth of the frequency band, and the manufacturing process is also relatively simple.
  • the waveguide power dividing network has a wider cavity wall, a smoother transmission channel and a simpler Processing technology; not only energy-efficient impedance transformation and impedance matching, but also widening the bandwidth of the band, and lower processing accuracy and lower manufacturing costs.
  • the polarization adjustment of the panel antenna can realize dual-polarization transceiving only by a very small number of microwave passive components, which is more automatic than the conventional mechanical polarization adjustment method, and the structure is simple and easy to operate;
  • the circuit polarization adjustment means can realize the transmission and reception sharing at the same time.
  • Adopting the panel antenna with polarization adjustment in the invention can avoid rotating the antenna panel or adding a polarization grating in the panel, and the polarization adjustment method is simple and reliable in control, and only needs to rotate the rotation device to realize polarization adjustment. Manufacturing costs are low and easy to batch.
  • the panel antenna with polarization adjustment in the invention has better performance in polarization adjustment, the polarization isolation design value gain can reach 40dB, and the processed prototype has a measured gain of more than 30dB.
  • Figure 1 is a block diagram of a planar antenna with polarization adjustment
  • Figure 2 is a perspective view of the open waveguide
  • Figure 3 is a cross-sectional view of the open waveguide structure
  • Figure 4 is an exploded view of an antenna sub-array with four open waveguide structures
  • Figure 5 is a side view of the second layer of the antenna array
  • Figure 6 Rear side view of the second layer of the antenna sub-array
  • Figure 7 is a rear plan view of the second layer of the antenna sub-array
  • Figure 8 is a top view of the third layer of the antenna sub-array
  • Figure 9 is a side view of the third layer of the antenna sub-array
  • FIG. 11 Front side view of the fourth layer of the antenna sub-array
  • Figure 12 Rear side view of the fourth layer of the antenna sub-array
  • Figure 13 Rear view of the fourth layer of the antenna sub-array
  • Figure 14 is a top view of the fifth layer of the antenna sub-array
  • FIG. 15 side view of the fifth layer of the antenna sub-array
  • Figure 16 is a side view of a planar antenna array
  • Figure 17 is a side view of the first layer of the planar antenna array
  • Figure 18 is a top view of the second layer of the planar antenna array
  • Figure 19 Rear side view of the second layer of the planar antenna array
  • Figure 21 is a top view of the third layer of the planar antenna array
  • Figure 22 is a side view of the third layer of the planar antenna array
  • Figure 24 is a top view of the fourth layer of the planar antenna array
  • Figure 25 Rear side view of the fourth layer of the planar antenna array
  • Figure 27 is a top view of the fifth layer of the planar antenna array
  • Figure 28 is a side view of the fifth layer of the planar antenna array
  • Figure 30 is a schematic diagram of the back structure of the planar antenna array
  • Figure 33 is a comparison of main polarization and cross polarization in the entire frequency band in the embodiment of the present invention
  • Figure 1 is a schematic block diagram of a preferred embodiment of a panel antenna with polarization adjustment of the present invention. It comprises a dual-polarized antenna array 1, a signal transmission channel 2, a polarization synthesizer 3, a waveguide 4, and a polariser 5.
  • the dual-polarized antenna array 1 is composed of at least one dual-polarized antenna unit, and the number depends on the index requirements of different systems.
  • the dual-polarized antenna array 1 can realize orthogonal linear polarization transmission and reception, which are respectively defined as vertical polarization and Horizontal polarization.
  • the open waveguide 11 of the present embodiment adopts a waveguide structure, which can be regarded as an Ortho-Mode Transducer (OMT), and a radiant port is a waveguide opening of an orthogonal mode coupler. Two orthogonal linearly polarized signals can be transmitted; the aperture of the waveguide opening is preferably a sub-wavelength aperture.
  • OMT Ortho-Mode Transducer
  • the open waveguide specifically includes a waveguide opening 111, a first polarization selection cavity 2101 and a second polarization selection cavity 2201, a first polarization connection port 2102 and a second polarization connection port 2202;
  • the waveguide opening 111 is for receiving and transmitting a polarization signal
  • the first polarization selection cavity 2101 and the second polarization are used for polarization selective feeding
  • the first polarization connection port 2102 is located at one side of the first polarization selection cavity 2101.
  • the first polarization selection cavity 2101 and the signal transmission channel are connected, and the second polarization connection port 2202 is located on a sidewall of the second polarization selection cavity 2201, and connects the second polarization selection cavity 2201 and the signal transmission channel;
  • the waveguide opening 111, the first polarization selecting cavity 2101 and the second polarization selecting cavity 2201 are sequentially connected from top to bottom, and the inner cavity walls are vertically designed without a sloped portion, such as the metal vertical wall 121 in the embodiment, and The inner diameter of each inner cavity wall is gradually reduced; there is a step structure 131 between the waveguide opening 111 and the first polarization selecting cavity 2101, and a step structure is formed between the first polarization selecting cavity 2101 and the second polarization selecting cavity 2201. 2140.
  • the shape of the step structure 131 is Guide opening 111 approximately uniform shape, square shape, the stepped configuration are provided with a chamfer 2140 is a rectangle with chamfered.
  • the conventional flat-panel satellite antenna with a horn structure open waveguide is thicker and heavier on the one hand; on the other hand, because the horn antenna has a larger radiation port size, the side lobes of the radiation lobe pattern are poor, and the present invention proposes a novel vertical The open waveguide of the wall structure can better solve this problem.
  • the shape of the cross section of the waveguide opening, the first polarization selection cavity and the second polarization selection cavity may be inconsistent according to requirements, and may be circular, axisymmetric polygon, or chamfered corresponding to the axisymmetric polygon. Shape and so on.
  • the inner diameter of the inner wall of the first polarization selective cavity and/or the second polarization selective cavity may be at least two, and gradually decrease from the top to the bottom, thereby forming at least one layer for smoothly matching the open waveguide and the outside air.
  • the step structure of the inter-impedance that is, a plurality of step structures can be formed by itself in a selection cavity, further optimizing the impedance matching, and also making the antenna board thinner.
  • the cross-section of the inner wall of the first polarization selection cavity and/or the second polarization selection cavity has at least one shape, which may be a circular shape, an axisymmetric polygon, or a chamfer corresponding to the axisymmetric polygon. Shape and so on.
  • the first polarization selection cavity 2101 is a horizontal polarization selection cavity 2101
  • the second polarization selection cavity 2202 The cavity 2202 is selected for vertical polarization; wherein the waveguide opening 111 and the horizontal cross section are squares with chamfers, and the cross-sectional shape of the vertical polarization selection cavity inner wall adopts a relatively regular chamfered rectangle This design has a simpler processing process and lower production costs.
  • At least one interference protrusion for widening the frequency band is provided on the inner wall of the horizontal polarization selection cavity corresponding to the horizontal polarization connection port.
  • Such interference bumps may also be designed as ridge structures, which may be trapezoidal, triangular, semi-circular, curved, etc., and may also be designed as ribbon structures or others.
  • the ridge protrusion structure 2110 and the strip protrusion structure 2150 have a trapezoidal cross section.
  • the antenna sub-array is composed of four open waveguide units, and includes a first layer 100, a second layer 210, a third layer 211, a fourth layer 220, and a fifth layer 221.
  • the open waveguide 11 of the first layer 100 is a symmetrical square and is therefore capable of receiving or transmitting dual polarized electromagnetic waves.
  • the cavity wall of the first layer 100 is a vertical wall 121, and a chamfered square step structure 131 is provided at a distance below the opening. It should be noted that the step structure may also be other shapes such as a circle or an octagon. 141 is an inner opening of the open waveguide 11.
  • Figs. 8 to 10 are a plan view, a side view and a back view, respectively, of the third layer 211 of Fig. 4.
  • the second layer 210 and the third layer 211 are combined to form a horizontally polarized selection cavity 2101, a horizontally polarized signal channel port 2102, and a horizontally polarized signal waveguide channel of four antenna elements.
  • the horizontally polarized signals of the two adjacent open waveguides are collected in the waveguide channel 2105 through the waveguide channel 2103 and the waveguide channel 2104 to form a split-waveguide power split structure.
  • the horizontally polarized signals of the other two adjacent cells of the antenna sub-array are collected by the mirrored waveguide channel of the one-two-waveguide power split structure and the signals of the first two antenna elements are collected in the "work"-shaped one-two-waveguide power split structure 2106 And gathered through the waveguide channel 2107 in the upper layer network.
  • Figure 9 shows a trapezoidal ridge 2110 opposite the horizontally polarized signal path opening 2102 of the third layer 211, primarily functioning to broaden the frequency band.
  • Figs. 11 to 13 are a plan view, a rear side view, and a back plan view, respectively, of the fourth layer 220 of Fig. 4, and Figs. 14 to 15 are a plan view and a side view, respectively, of the fifth layer 221 of Fig. 4.
  • the fourth layer 220 and the fifth layer 221 are combined to form a vertically polarized selection channel 2201, a vertically polarized signal path port 2202, and a vertically polarized signal waveguide channel of four open waveguide units.
  • the vertically polarized signals of two adjacent antenna elements are collected in the waveguide channel 2105 through the waveguide channel 2103 and the waveguide channel 2104 to form a split-waveguide power split structure.
  • the vertically polarized signals of the other two adjacent cells of the antenna sub-array are collected by the mirror waveguide channel of the one-two-waveguide work structure and the signals of the first two antenna elements are collected in a "T"-shaped one-two-waveguide power split structure 2206 And gathered through the waveguide channel 2207 in the upper layer network.
  • the vertical polarization selection cavity 2201 of the antenna unit of the present invention is a relatively regular rectangular structure, and the vertical polarization selection in the present invention is compared to a vertically polarized selection cavity with a 45° oblique reflection edge structure.
  • the cavity has a wider bandwidth, Simpler processing and lower production costs.
  • the transmission process of the dual-polarized electromagnetic wave signal is further explained below in conjunction with the planar antenna array.
  • FIG. 16 is a specific example of a panel antenna panel of the present invention, which includes 16 antenna sub-arrays and a total of 64 open waveguide antenna units.
  • 17 is a first layer 1 of the panel
  • FIG. 18 is a plan view of the second layer 21 of the panel
  • FIG. 19 is a rear side view of the second layer
  • FIG. 20 is a rear view of the second layer 21.
  • 21 to 23 are a plan view, a side view and a rear view, respectively, of the third layer of Fig. 16; the back side of the first layer 1 is combined with the upper plane of the second layer to form the first part of the entire antenna panel; Pressing together with the upper plane of the third layer forms a horizontally polarized selection cavity and a horizontally polarized signal transmission channel.
  • the transmission process of the horizontally polarized signal in the second and third laminated waveguide networks will be described with reference to FIG.
  • the first open waveguide antenna unit in the upper left corner of the antenna sub-array is subjected to horizontal polarization selection in the polarization selection cavity 2101 after receiving the dual-polarized electromagnetic signal.
  • the horizontally polarized signal channel port 2102, and then entering the first-stage one-two-waveguide power dividing network 2105 through the waveguide 2103 the horizontally polarized signal of the adjacent adjacent antenna elements also enters the first-stage one-two-waveguide power split through the waveguide 2104.
  • the network 2105 is superimposed and mixed with the previous signal; the superimposed horizontally polarized signal enters the second-stage one-two-waveguide power dividing network 2106 of the "work" shape along the waveguide; similarly, the right side of the antenna sub-array
  • the two antenna elements also merge the filtered horizontally polarized signals into the "work" shaped power dividing network 2106 and mix and superimpose with the horizontally polarized signals entered by the left channel 2105; the superimposed horizontally polarized signals are along
  • the waveguide 2107 enters a "T"-shaped third-order one-two-waveguide power division network 2109; similarly, the four-element antenna sub-array on the lower side of the antenna sub-array also filters the horizontally polarized signals through the waveguide 2108.
  • the T-shaped power dividing network 2109 is mixed and superimposed with the horizontally polarized signal entered by the upper channel 2107; the superimposed horizontally polarized signal enters the "T"-shaped fourth-order one-two waveguide along the waveguide 2110.
  • the power division network 2111 similarly, the two antenna sub-arrays on the right side of the antenna sub-array also merge the filtered horizontal polarization signals into the "T"-shaped power division network 2111 through the waveguide 2112, and the left channel 2110
  • the entered horizontally polarized signals are mixed and superimposed; the superimposed horizontally polarized signals enter the "T"-shaped fifth-order one-two-waveguide power dividing network 2115 along the waveguide 2113; similarly, the central axis of the waveguide channel 2116 is taken as the center line.
  • the lower four antenna sub-arrays also merge the filtered horizontally polarized signals into the "T"-shaped power dividing network 2115 through the waveguide 2114, and are mixed and superimposed with the horizontally polarized signals entering the upper channel 2113;
  • the horizontally polarized signal travels along the waveguide 2116, and after passing through the right angle bend 2117 and the waveguide 2118, merges into the "T"-shaped sixth-order one-two-waveguide power dividing network 2120; similarly, the central axis of the waveguide channel 2121 is centered.
  • the subarray also merges the filtered horizontally polarized signal into the "T" shaped power dividing network 2120 through the waveguide 2119, and mixes and superimposes with the horizontally polarized signal entered by the upper side channel 2118; the superimposed horizontally polarized signal edge
  • the waveguide 2121 enters the horizontally polarized total feed port 2130.
  • 24 to 26 are a plan view, a rear side view, and a rear view, respectively, of the fourth layer 22 of the antenna panel.
  • 27 to 28 are a plan view and a side view, respectively, of the fifth layer.
  • the back surface of the fourth layer 22 is pressed together with the upper plane of the fifth layer to form a vertical
  • the polarization selects the cavity and the vertically polarized signal transmission channel.
  • Fig. 26 illustrates the transmission process of the vertically polarized signals in the fourth and fifth laminated waveguide networks.
  • the first open waveguide antenna unit in the upper left corner of the antenna sub-array is subjected to vertical polarization selection after receiving the dual-polarized electromagnetic signal in the polarization selection cavity 2201. Entering the vertically polarized signal channel port 2202, and then entering the "T"-shaped first-stage one-two-waveguide power dividing network 2205 through the waveguide 2203; similarly, the vertically polarized signal of the right adjacent antenna element is also fed through the waveguide 2204.
  • the "T" shaped power dividing network 2205 is superimposed and mixed with the previous signal; the superposed vertically polarized signal enters the "Y"-shaped second-order one-two-waveguide power dividing network 2206 along the waveguide; similarly, The two antenna elements on the lower side of the antenna sub-array also merge the filtered vertical polarization signals into the "Y"-shaped power division network 2206, and mix and superimpose with the vertically polarized signals entering the upper channel 2205; The vertically polarized signal enters a "T" shaped third-order one-two-waveguide power dividing network 2209 along the waveguide 2207; similarly, the four-element antenna sub-array on the right side of the antenna sub-array will also filter the vertically polarized signal.
  • the guide 2208 merges into the "T" shaped power dividing network 2209, and is mixed and superimposed with the vertically polarized signal entered by the left channel 2207; the superposed vertical polarized signal enters the "T" shaped fourth level along the waveguide 2210.
  • the lower four antenna sub-arrays with the central axis of the waveguide channel 2218 as the center line also merge the filtered vertical polarization signals into the "T"-shaped power distribution network 2217 through the waveguide 2216, and the upper side
  • the vertically polarized signals entering the channel 2215 are mixed and superimposed; the superposed vertical polarized signals travel along the waveguide 2218, and after passing through the right angle bend 2219 and the waveguide 2220, a "T" shaped sixth-order one-two-waveguide power dividing network is introduced.
  • the lower eight antenna sub-array with the central axis of the waveguide channel 2223 as the center line also merges the filtered vertical polarization signal into the "T" shaped power dividing network 2222 through the waveguide 2221, and enters the vertical pole with the upper channel 2220.
  • the signal is mixed and superimposed; the superimposed vertically polarized signal enters the vertically polarized total feed port 2230 along the waveguide 2223.
  • the horizontally polarized signal and the vertically polarized signal waveguide power division network are mainly a "T"-shaped one-two-power sub-network, and the top of the "T"-shaped waveguide in the trunk channel does not contain a convex portion, and the two are longer.
  • the step implements waveguide impedance transformation and impedance matching, for example, the sixth-order one-two-waveguide power division network 2120 in the horizontally-polarized signal channel and the sixth-order one-two-waveguide power division network 2222 and the fifth-order one in the vertically-polarized signal channel Divided into two waveguide power division networks 2217.
  • the waveguide power dividing network of the present invention has a wider cavity wall, a smoother transmission path, and a simpler processing process than a one-two waveguide power dividing network having a sharp convex portion.
  • the vertical polarization signal transmission main channel adopts a reflection surface having two steps at a right angle bend 2219 and a mirror position thereof, and the reflection surface design method disclosed by the present invention has a comparison with a 45° reflection surface at a conventional right angle bend.
  • the reflecting surface may employ at least one step structure, preferably two steps or more steps.
  • the signal transmission channel 2 in Fig. 29 includes a horizontally polarized signal transmission channel 21 at the upper layer and a vertically polarized signal transmission channel 22 at the lower layer, wherein the horizontally polarized feed port 2102 of all the dual-polarized antenna elements 11 is horizontally polarized.
  • the signal transmission channel 21 is connected, and the vertical polarization feed port 2202 is connected to the vertical polarization signal transmission channel 22.
  • the horizontally polarized signal and the vertically polarized signal transmitted in the waveguide opening 111 of the dual polarized antenna unit 11 are respectively sent to the horizontally polarized signal transmission channel 21 and the vertical through the horizontally polarized feed port 2102 and the vertically polarized feed port 2202. Polarized signal transmission channel 22.
  • the signal transmission channel 2 is divided into two layers, which can be designed differently according to requirements, that is, the upper layer network is designed as a vertically polarized signal transmission channel 22, and the lower layer network is designed as a horizontally polarized signal transmission channel 21 It suffices to correspond to the polarization mode of the upper and lower layers of the dual-polarized antenna unit 11.
  • the back side of the antenna array is provided with a horizontally polarized signal total feed port 2130 and a vertically polarized signal total feed port 2230, and the horizontally polarized signal is transmitted through the horizontally polarized signal.
  • the channel 21 eventually converges on the horizontally polarized signal total feed port 2130, and the vertically polarized signal finally converges the vertically polarized signal total feed port 2230 via the vertically polarized signal transmission channel 22.
  • the horizontally polarized signal total feed port 2130 is connected to the first polarization connection port 31 of the polarization combiner 3, and the vertically polarized signal total feed port 2230 and the second polarization connection port 32 of the polarization combiner 3 are connected.
  • the polarization synthesizer 3 is implemented by an orthogonal mode coupler, the polarization components transmitted by the two polarization connection ports are orthogonal to each other, the polarization synthesizer 3 is fixed on the back side of the antenna array, and the polarization synthesizer 3 is provided.
  • Public port 33 is provided.
  • the polarizer 5 is fixed on the back surface of the antenna array, and the polarizer 5 is provided with a first polarization connection port 51, a second polarization connection port 52 and a common port 53.
  • the waveguide 4 is connected between the common port 53 of the polarizer 5 and the common port 33 of the polarization combiner 3.
  • the outer periphery of the common port 53 of the polarizer 5 is sleeved with a rotating device 6, and the rotating device 6 can drive the polarizer 5 to rotate along the axis of the waveguide 4.
  • the rotating device 6 adopts a driving device commonly used in the prior art, usually It is realized by a motor driven by a timing belt, a gear, a worm gear or other transmission device, and details are not described herein.
  • the polarizer 5 is implemented by an orthogonal mode coupler, and the first polarization connection port 51 and the second polarization connection port 52 of the polarizer 5 are connected to the back end radio frequency circuit. It should be noted that, in the single polarization mode, only one of the first polarization connection port or the second polarization connection port 52 needs to be connected to the back end RF circuit; in the dual polarization mode At the same time, the two polarization connection ports are connected to the back end RF circuit.
  • the double arrows in Figures 3 to 5 indicate the direction of the electric field.
  • the first antenna polarization connection port 31 and the second path polarization connection port 32 on the polarization combiner 3 in the receiving state are used as signal input ports, and the first path pole on the polarizer 5 is taken.
  • the connection port 51 and the second polarization connection port 52 serve as signal output ports; in the emission state, on the contrary, polarization synthesis
  • the first polarization connection port 31 and the second polarization connection port 32 on the device 3 serve as signal output ports, and the first polarization connection port 51 and the second polarization connection port 52 on the polarizer 5 are taken.
  • the horizontally polarized signal and the vertically polarized signal are respectively sent to the horizontally polarized feed port 2102 and the vertically polarized feed port 2202 of the dual polarized antenna unit 11 to
  • the horizontally polarized signal transmission channel 21 and the vertically polarized signal transmission channel 22 the horizontally linearly polarized signal finally converges on the horizontally polarized signal total feed port 2130 via the horizontally polarized signal transmission channel 21, and enters the first of the polarization synthesizer 3
  • the ground polarization connection port 31 the vertically polarized signal finally converges through the vertically polarized signal transmission channel 22 to the vertical polarization signal total feed port 2230, enters the second polarization connection port 32 of the polarization combiner 3, and then Resynthesized at the common port 33 of the polarization synthesizer.
  • the free space signal is restored in the common port 33 of the polarization synthesizer; if it is necessary to transmit the circularly polarized signal, it is necessary to rationally design the two signal transmission channels 21 and 22 so that the two signals are from the double
  • the polarization loss of the polarized antenna unit waveguide opening 111 to the polarization synthesizer common port 33 is uniform, and the phase difference is 90°, and the circularly polarized signal is synthesized at the polarization synthesizer common port 33 by linear polarization containing the original circular polarization information. signal.
  • the synthesized signal is sent to the common port 53 of the polarizer 5 via the waveguide 4, and is controlled by the rotating device 6, (the polarization direction of the polarizer and the polarization synthesizer is the same, and the received signal is the strongest)
  • the polarizer 5 is rotated along the axis of the waveguide 4, and in the single polarization mode, the synthesized signal is detected at the polarization connection port 51 or 52 of the polariser 5, and output to the rear RF circuit;
  • the synthesized two orthogonally polarized signals are respectively detected at the first polarization connection port 51 and the second polarization connection port 52 of the polarizer, and output to the back-end RF. Circuit.
  • the process is reversed.
  • the polarization combiner 3 and the polariser 5 can be directly connected, and the synthesized signal is directly sent to the common port 53 of the polarizer 5 via the common port 33 of the polarization synthesizer 3, thereby implementing corresponding The function does not require the waveguide 4 to be set.
  • the polarization adjusting device can select the rotating device controlled by the servo motor to automatically or directly adjust manually, and drive the polarizer to rotate, so that the electromagnetic wave energy that can be propagated in the polarizer is maximized.
  • Embodiment 1 Single-line polarized signal reception
  • the direction of the incoming wave is single-line polarization E, and the polarization direction is arbitrary.
  • the linear polarization wave can be decomposed into two in-phase linear polarization components according to the polarization direction of the dual-polarized radiation unit, which are respectively the horizontal polarization component E h and
  • the vertical polarization component E v the horizontal polarization component E h received by the dual-polarized antenna unit 11 is sent to the horizontally polarized signal transmission channel 21 via the horizontally polarized feed port 2102 located below the unit, and finally integrated into the horizontally polarized signal
  • the total feed port 2130 is transmitted to the polarization synthesizer 3, and the vertical polarization component Ev received by the dual-polarized antenna unit 11 is sent to the vertically polarized signal transmission channel 22 via the vertical polarization feed port 2202 under the unit. It is finally aggregated to the vertically polarized signal total feed port 2230 and transmitted to the polarization synthesizer 3.
  • the insertion loss and phase of the two polarization components from the dual-polarized antenna element waveguide opening 111 to the polarization synthesizer common port 33 are uniform, so that the common port 33 of the polarization synthesizer, two The road polarization components are recombined and the free space signal is recovered.
  • the restored signal is sent to the common port of the polarizer 5 via the waveguide 4, and is rotated by the rotating device 6, and the restored signal is detected, and transmitted through any of the polarized connection ports 51 or 52 of the polarizer 5.
  • the signal is received to the back-end RF circuit.
  • Embodiment 2 Single-line polarized signal transmission
  • the transmitting signal provided by the back-end RF circuit is sent to a common port 53 via a certain polarization connection port 51 or 52 of the polarizer 5, and sent to the polarization synthesizer 3 via the waveguide 4.
  • the common port at this time, the polarization synthesizer 3 functions as a polarization decomposition, and the emission signal is decomposed into two orthogonal linear polarization signals respectively entering the horizontal through the two polarization connection ports 32 and 33 of the polarization synthesizer 3.
  • the polarized signal total feed port 2130 and the vertically polarized signal total feed port 2230 are distributed to the dual polarized antenna unit 11 via the polarized signal transmission channel, and recombined at the face of each dual polarized antenna unit waveguide opening 111. , thus completing the transmission of the signal.
  • Embodiment 3 Single circular polarization signal receiving
  • the incoming wave direction is a single circular polarized wave E, and the polarization direction is arbitrary, similar to the single-line polarization receiving, which can be decomposed into a horizontally polarized component E h and a vertically polarized component E v , E h and E v
  • the two polarization components have the same amplitude and phase difference of 90°, and the horizontal polarization components E h received by all the dual-polarized antenna units 11 are concentrated by the horizontally polarized signal transmission channel 21 to the horizontally polarized signal total feed port 2130.
  • the vertical polarization component E v also converges at the vertically polarized signal total feed port 2230.
  • the horizontally polarized signal total feed port 2130 and the vertically polarized signal transmission channel 2230 are respectively connected to the first polarization connection port 31 and the second polarization connection port 32 of the polarization synthesizer, respectively, and are transmitted through a reasonable design signal.
  • the channel is such that the insertion loss from the common port surface of the dual-polarized antenna unit 11 to the common port surface of the polarization synthesizer is uniform, and the phase difference is 90° (to compensate for the difference between the two components of the cell surface decomposition), so that the polarization synthesis
  • the two ports of the common port 33 are superimposed in phase, and are synthesized into a linearly polarized signal, which is sent to the common port 53 of the polarizer 5 via the waveguide 4, and is rotated by the rotating device 6, and the synthesized signal is detected.
  • a certain polarization connection port 51 or 52 of the polarizer 5 is sent to the back end radio frequency circuit to complete the reception of the signal.
  • Embodiment 4 Single circular polarization signal transmission
  • the single circular polarization transmission is the reverse process of its reception, and will not be described here.
  • the polarization synthesizer 3 functions as a polarization decomposition in the emission state
  • the dual polarization antenna unit 11 functions as a polarization synthesis.
  • Embodiment 5 Dual Line Polarization Reception
  • E 1 can be decomposed into two components of E 1v and E 1h
  • E 2 can be decomposed into E 2v and E 2h components.
  • E 1h and E 2h components eventually converge to the horizontally polarized signal total feed port 2130
  • E 1v and E 2v components eventually converge to the vertically polarized signal total feed port 2230.
  • the horizontally polarized signal total feed port 2130 and the vertically polarized signal total feed port 2230 are respectively connected to the first polarization connection port 31 and the second polarization connection port 32 of the polarization synthesizer, and are transmitted through a rational design signal.
  • the channel is such that the insertion loss and phase are uniform from the unit radiation surface to the common surface of the polarization synthesizer, so that E 1 , E 2v and E 2h are recombined at the common port 33 of the polarization synthesizer, E 1v and E 1h . re-synthesized E 2, orthogonality is maintained in the second component in the waveguide 4 E 1 and E.
  • E 1 will be taken to the detection of a line polarization polarizer 5 is connected to port 51 or 52, further passage polarizer 5 while the polarization E 2 is detected,
  • the other polarized connection port 52 or 51 is sent to the polarizer and then transmitted to the back end radio frequency circuit, thus completing the reception of the two-line polarized signal.
  • Embodiment 6 Dual-line polarized signal transmission
  • the two-line polarization transmission is the reverse process of its reception, and will not be described here.
  • Embodiment 7 Double circular polarization signal receiving
  • E R and E Rv can be decomposed into two components E Rh, E Rv equal amplitude and phase E Rh With a difference of 90° (or -90°), E L can be decomposed into E Lv and E Lh components, and the amplitudes of E Lv and E 1h are equal to -90° (or 90°).
  • E Rh and E Lh components are finally concentrated to the horizontally polarized signal total feed port 2130, and the E Rv and E Lv components are finally concentrated to the vertically polarized signal total feed port 2230.
  • the insertion loss from the radiating surface of the unit to the common surface of the polarization synthesizer is uniform, and the phase difference is 90° (the difference between the two components used to compensate the decomposition of the cell surface), so that the polarization synthesis
  • the common port 33 of the device, E Rv and E Rh have the same amplitude and phase compensation, and are synthesized as a linear polarization E 1 ; and E Lv and E Lh have the same amplitude and phase compensation, and are synthesized as a linear polarization E 2 , and E 1 and E 2 are orthogonal.
  • E 1 and E 2 are sent to the common port 53 of the polarizer via the waveguide 4, and as with the two-wire polarized signal reception, the composite signals E 1 and E 2 are simultaneously detected by the rotation of the rotating device 6, respectively.
  • the first polarization connection port 51 and the second path 52 of the polarizer 5 are sent to the back end RF circuit for receiving the double circular polarization signal.
  • the two-line polarization transmission is the reverse process of its reception, and will not be described here.
  • Embodiment 9 Single-line polarization transceiver duplex
  • the signal transceiving process of this embodiment corresponds to Embodiments 1 and 2, respectively, and the specific polarization adjustment process will not be described again.
  • the difference is that when the antenna receiving and transmitting frequency band is different, that is, when the transceiver duplex is in the frequency division mode, the duplexer is connected to a polarized connection port of the polarizer to complete the signal transmission and reception; when the antenna transceiver duplex is in the time division mode, A certain polarization connection port 51 or 52 of the polarizer 5 is connected to the switch to complete signal transmission and reception.
  • Embodiment 10 Dual-Line Polarization Transceiver Duplex
  • the signal transceiving process of this embodiment corresponds to Embodiments 5 and 6, respectively, and the specific polarization adjustment process will not be described again.
  • the duplexer When the antenna transceiver duplex mode is the frequency division mode, the duplexer is connected to the two polarization connection ports 51 and 52 of the polarizer 5 to realize signal transmission and reception sharing; when the antenna transceiver duplex mode is time division mode At the time of taking the polarizer of the polarized connection port 51 and 52 are connected to the switch, and switching is realized by switching.
  • Embodiment 11 Single Circular Polarization Transceiver Duplex
  • the signal transceiving process of this embodiment corresponds to Embodiments 3 and 4, respectively, and the specific polarization adjustment process will not be described again.
  • Embodiment 12 Double Circular Polarization Transceiver Duplex
  • the signal transceiving process of this embodiment corresponds to Embodiments 7 and 8, respectively, and the specific polarization adjustment process will not be described again.
  • the signal transmission channel when the system transmits and receives the line polarization signal, the signal transmission channel is designed to make the insertion loss and phase of the two polarization signals reach the polarization synthesizer common port 33; when the system transmits and receives circular polarization
  • the signal transmission channel is designed to make the two polarization signals reach the polarization loss of the common port 33 of the polarization synthesizer, and the phase difference is 90°.
  • the polarization is The polarization of the synthesizer's common port synthesis is no longer ideal linear polarization but elliptically polarized.
  • the effect on the back-end system is that the cross-polarization level is improved, but under the premise of meeting different system requirements. This automatic polarization adjustment scheme still applies.
  • the panel antenna with polarization adjustment of this embodiment operates in the Ku band, and the main polarization and cross polarization patterns at typical frequency points are as shown in FIG. 31, and are in the entire frequency band.
  • the main polarization and cross-polarization frequency response curves are shown in Figure 32. It can be seen that the cross-polarization level can be controlled within 30 dB in the whole working frequency band, which fully validates the effective effect of the panel antenna with polarization adjustment of the present invention. Sex and reliability.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

为解决现有平板天线厚度较厚、重量较重等问题,本发明提出了一种新型的开口波导,内腔壁采用垂直壁设计,并结合多个台阶结构和干扰凸起结构,有效的实现阻抗变换和阻抗匹配;在此基础上,提出了具有该开口波导结构的天线子阵和平板天线阵列,并在波导信号传输通道中采用多个缓变台阶结构及缓变台阶构成的反射结构,有效的实现阻抗变换和阻抗匹配,拓宽频带带宽,且对加工精度要求更低,制造成本更低;此外,本发明还提出了一种带有极化调整的平板天线,包括具有前述结构的平板天线阵列和极化调整装置,极化调整装置包括公共口直接相连的极化合成器和取极化器,取极化器可沿轴线旋转,通过极少量的微波无源器件实现双极化收发共用。

Description

开口波导、天线子阵、平板天线阵列及平板天线 技术领域
本发明属于微波天线技术领域,具体涉及一种改进的开口波导及具该结构的天线子阵、平板天线阵列及带有极化调整的平板天线。
背景技术
卫星通信具有传输距离远、覆盖范围广、受干扰小等优点,随着全球信息化的高速发展,越来越多的信息通过卫星进行传输,在移动载体上随时随地和卫星通信,已成为军民两用应急通信、实时通信的迫切需求。车载(船载或机载)卫星移动通信系统通常又称为“动中通”,动中通的核心技术之一就是天线技术,动中通的天线形式包括反射面天线、平板天线、透镜天线和相控阵天线等。在高速移动载体上要保证通信质量,不仅仅要求天线有很高的增益,同时要求系统有极高的对星速度和对星精度。反射面天线的主要缺点是体积和重量较大,高速移动状态下风阻很大、对星速度慢;相控阵天线的缺点是收发难以共用、电扫描有增益损失、制造及维护成本高;相对而言,平板天线具备剖面低、口面效率高、对星速度快的优势,特别适合在动中通中使用。
现有平板天线的开口波导大多采用喇叭结构,喇叭天线的特征是有内收的倾斜面,为了保证喇叭天线的增益和带宽,天线单元必需采用坡度较缓的倾斜面来实现其与空气的阻抗匹配,从而导致天线的剖面高度比较大,厚度较厚,天线的重量也比较重。另外,喇叭天线辐射端口尺寸较大,导致其辐射波瓣图的副瓣较差。
平板天线根据任意极化波可由两个正交的线极化波合成的理论,通过控制两个正交线极化波的幅度和相位,可以获得任意极化的合成波,因此传统的机械旋转馈电波导方式不再适用于平板天线,如何实现自动极化调整是该类天线的核心技术之一。通常电视直播卫星和通信广播卫星都工作在双线极化或双圆极化状态,而目前的平板阵列天线大多工作在单线极化或单圆极化状态,为实现双极化接收往往需要旋转整个天线面板,或者用两个天线分别收发两路极化信号,这两种方法要么结构复杂、不能实现双极化同时兼容,要么天线制造成本高、等效口面效率低。
发明内容
为此,本发明提出一种新型的开口波导、天线子阵、平板天线阵列及对应的带有极化调 整的平板天线,大大减小现有平板天线的厚度,减轻其重量,同时还能保证天线的增益和带宽,并能实现电磁波极化方向自动调整。具体发明内容如下:
首先,本发明提出了一种具有新型结构的开口波导。
开口波导包括波导开口、第一极化选择腔和第二极化选择腔、第一极化连接口和第二极化连接口;波导开口用于接收和发射极化信号,第一极化选择腔和第二极化用于极化选择馈电,第一极化连接口位于第一极化选择腔的一侧壁上,连接第一极化选择腔和信号传输通道,第二极化连接口位于第二极化选择腔的一侧壁上,连接第二极化选择腔和信号传输通道;从上至下依次连接,内径逐渐缩小,并在开口波导的开口面与第一极化连接口之间及第一极化连接口与第二极化连接口之间各形成一层台阶结构,用于平滑波导开口与外部空气的阻抗匹配;垂直壁的设计还能有效减小其开口波导的厚度。
进一步,波导开口、第一极化选择腔和第二极化选择腔的横截面呈圆形、轴对称多边形、或与轴对称多边形对应带有倒角的形状;且各横截面的形状不要求一致。
进一步,在第一极化选择腔和/或第二极化选择腔的内腔壁内径至少可以有两种,且从上往下逐渐减小,从而形成至少一层用于平滑匹配开口波导与外部空气间阻抗的台阶结构。以台阶结构为界线的相邻内腔壁的横截面的形状至少有一种,可以是圆形、轴对称多边形、或与轴对称多边形对应带有倒角的形状。
进一步,第一极化选择腔和第二极化选择腔分别为水平极化选择腔和垂直极化选择腔,或分别为垂直极化选择腔和水平极化选择腔。
进一步,为拓宽频带,在与水平极化连接口对应的水平极化选择腔内腔壁上至少设有一个用于拓宽频带的干扰凸起;这种干扰凸起可设计成边脊结构,其横截面可以是梯形、三角形、半圆形、弧形,还可以带状凸起或其它结构。
进一步,第二极化选择腔内腔壁的横截面形状可设计成比较规整的形状,优选为倒角矩形。这相对于带有45°倾斜反射边结构的极化选择腔具有更宽的带宽,且加工工艺更简单和生产成本更低。
进一步,波导开口的开口优选亚波长口径。
其次,本发明还提出一种基于具有上述特征的开口波导的天线子阵。
天线子阵包括偶数个具有上述任一项特征的开口波导单元,及与开口波导连接的第一信号传输通道和第二信号传输通道;各信号传输通道至少包括一个一分二功率分配网络,其三叉口部位的左右支路上包括至少一对对称的缓变台阶,用于实现波导阻抗的变换和阻抗匹配。
再次,本发明还提出具有上述特征的天线子阵的平板天线阵列。
平板天线阵列包括具有上述任意一种特征的天线子阵至少一个,分别连接第一信号传输 通道和第二信号传输通道的第一信号传输主通道和第二信号传输主通道,以及分别位于第一信号传输主通道和第二信号传输主通道末端的第一极化信号总馈电端口和第二极化信号总馈电端口;第一极化信号总馈电端口和第二极化信号总馈电端口与后端电路连接,主传输通道包括多级一分二功率分配网络。信号传输主通道中的一分二功率分配网络的三叉口部位的左右支路上包括至少一对对称的缓变台阶。
进一步,信号传输主通道中的一分二功率分配网络呈“T”字形、“工”字形、“Y”字形结构。其中,“T”字形结构的一分二功率分配网络的顶部中间部分平滑且无凸起,并在左右支路上包括至少一对对称的缓变台阶。这相比现有技术中采用尖锐凸起部分的一分二功率分配网络,能效的阻抗变换和阻抗匹配,并具有更宽的腔壁,更通畅的传输通道和更简单的加工工艺。
进一步,信号传输主通道中的主传输通道的直角部位采用由至少一个由缓变台阶形成的反射结构。本发明的这种反射面设计方法与传统的在直角弯处采用45°反射面相比,具有更宽的带宽和更通畅的传输通道。
最后,本发明提出了一种带有极化调整的平板天线。
带有极化调整的平板天线,包括具有上述任一项特征的平板天线阵列和位于平板天线阵列和后端射频电路之间的极化调整装置;极化调整装置包括极化合成器和取极化器,极化合成器和取极化器分别设有一个公共口和两路极化连接口,极化合成器和取极化器通过公共口直接相连,取极化器可沿轴线旋转;极化合成器的两路极化连接口分别与平板天线阵列的第一极化信号总馈电端口和第二极化信号总馈电端口连接;取极化器的两路极化连接口至少有一路与后端射频电路连接。
进一步,极化调整装置还包括位于极化合成器和取极化器的公共口之间的波导管,波导管的形状为圆形或中心对称多边形;波导管与取极化器连接。
进一步,带有极化调整的平板天线还包括与波导管连接的转动装置,用于驱动波导管和取极化器旋转。
进一步,极化合成器采用正交模式耦合器实现,两路极化口传输的极化分量相互正交,当天线工作于接收状态时进行极化合成,当天线工作于发射状态时进行极化分解;所述取极化器采用正交模式耦合器实现,当平板天线工作于单极化模式时取极化器的任一路极化连接口和后端射频电路相连,当平板天线工作于双极化模式时取极化器的两路极化连接口均与后端射频电路相连。
有益效果:
本发明具备主要优点如下:
1)本发明中的天线开口波导采用垂直壁设计,与传统的喇叭形的开口波导相比厚度更薄,重量更轻,且副瓣参数性能较好;对应的,采用该开口波导结构的天线阵列、平板天线也具有更薄的厚度,更轻的重量,从而也提高了使用的范围和便利性。
2)本发明中天线开口波导及与其对应的天线子阵、天线阵列和平板天线中的内腔壁的内径逐渐缩小,有效地平滑阻抗;结合多个台阶结构,进一步有效的实现阻抗变换和阻抗匹配。
3)本发明中天线开口波导内采用的干扰凸起结构,及第二选择腔的带有倒角形状的矩形横截面均能有效的拓宽频带带宽,且制作工艺也较为简单。
4)本发明中天线阵列和平板天线中的传输通道中采用缓变台阶结构及直角处台阶反射结构的设计,使波导功分网络具有更宽的腔壁,更通畅的传输通道和更简单的加工工艺;不仅能效的阻抗变换和阻抗匹配,还能拓宽频带带宽,且对加工精度要求更低,制造成本也更低。
5)本发明中平板天线的极化调整仅需极少量的微波无源器件就可以实现双极化收发,相比传统的机械极化调整手段更自动完成,并且结构简单易操作;相比传统的电路极化调整手段相比可同时实现收发共用。
6)采用本发明中带有极化调整的平板天线可以避免旋转天线面板或在面板内加装极化栅,极化调整方法控制简单、可靠,仅需要旋转转动装置即可实现极化调整,制造成本很低,且易于批量化。
7)采用本发明中带有极化调整的平板天线在极化调整上性能更优异,其极化隔离度设计值增益可达40dB,已加工的样机实测值增益达30dB以上。
附图说明
图1带有极化调整的平板天线的原理框图
图2开口波导立体图
图3开口波导结构剖面图
图4具有四个开口波导结构的天线子阵的分解图
图5天线子阵第二层的侧视图
图6天线子阵第二层的背面侧视图
图7天线子阵第二层的背面平视图
图8天线子阵第三层的俯视图
图9天线子阵第三层的侧视图
图10天线子阵第三层的背视图
图11天线子阵第四层的正面侧视图
图12天线子阵第四层的背面侧视图
图13天线子阵第四层的背视图
图14天线子阵第五层的俯视图
图15天线子阵第五层的侧视图
图16平板天线阵列的侧视图
图17平板天线阵列第一层的侧视图
图18平板天线阵列第二层的俯视图
图19平板天线阵列第二层的背面侧视图
图20平板天线阵列第二层的后视图
图21平板天线阵列第三层的俯视图
图22平板天线阵列第三层的侧视图
图23平板天线阵列第三层的后视图
图24平板天线阵列第四层的俯视图
图25平板天线阵列第四层的背面侧视图
图26平板天线阵列第四层的后视
图27平板天线阵列第五层的俯视图
图28平板天线阵列第五层的侧视图;
[根据细则26改正11.10.2016] 
图29带有极化调整的平板天线结构示意图
[根据细则26改正11.10.2016] 
图30平板天线阵列背面结构示意图
[根据细则26改正11.10.2016] 
图31极化合成OMT和取极化OMT结构示意图
[根据细则26改正11.10.2016] 
图32本发明实施方式中一典型频点方向图
[根据细则26改正11.10.2016] 
图33本发明实施方式中整个频段内主极化和交叉极化对比情况
具体实施方式
结合说明书附图1-32对本发明的具体实例作进一步详细具体说明。
图1是本发明一种带有极化调整的平板天线的优选实施例的原理框图。其包括双极化天线阵列1、信号传输通道2、极化合成器3、波导管4、取极化器5。双极化天线阵列1由至少1个双极化天线单元构成,具体数量取决于不同系统的指标要求,双极化天线阵列1可以实现正交线极化的收发,分别定义为垂直极化和水平极化。
如图2所示,本实施例的开口波导11采用波导结构,本质上可将其看为正交模式耦合器(Ortho-Mode Transducer,OMT),辐射口为正交模式耦合器的波导开口,可以传输两路正交线极化信号;波导开口的口径优选亚波长口径。
结合如图2至图15所示,开口波导具体包括波导开口111、第一极化选择腔2101和第二极化选择腔2201、第一极化连接口2102和第二极化连接口2202;波导开口111用于接收和发射极化信号,第一极化选择腔2101和第二极化用于极化选择馈电,第一极化连接口2102位于第一极化选择腔2101的一侧壁上,连接第一极化选择腔2101和信号传输通道,第二极化连接口2202位于第二极化选择腔2201的一侧壁上,连接第二极化选择腔2201和信号传输通道;波导开口111、第一极化选择腔2101和第二极化选择腔2201从上至下依次连接,各内腔壁呈垂直设计,无倾斜部分,如本实施例中的金属垂直壁121,且各内腔壁内径逐渐缩小;在波导开口111与第一极化选择腔2101之间有一层台阶结构131,在第一极化选择腔2101和第二极化选择腔2201之间有一层台阶结构2140,本实施例中,台阶结构131的形状与波导开口111形状近似一致,均为带有倒角的正方形,台阶结构2140的形状是带有倒角的矩形。
传统的采用喇叭结构开口波导的平板卫星天线一方面厚度较厚,重量较重;另一方面因为喇叭天线辐射端口尺寸较大,导致其辐射波瓣图的副瓣较差,本发明提出新型垂直壁结构的开口波导能较好的解决此问题。
当然,根据需求,波导开口、第一极化选择腔和第二极化选择腔的横截面的形状本身可以不一致,可以是圆形、轴对称多边形、或与轴对称多边形对应带有倒角的形状等。
在第一极化选择腔和/或第二极化选择腔的内腔壁内径至少可以有两种,且从上往下逐渐减小,从而形成至少一层用于平滑匹配开口波导与外部空气间阻抗的台阶结构,即在一个选择腔里自身就可以形成多个台阶结构,进一步优化阻抗匹配,也能使的天线板更薄。对应的,第一极化选择腔和/或第二极化选择腔的内腔壁横截面的形状至少有一种,可以是圆形、轴对称多边形、或与轴对称多边形对应带有倒角的形状等。
优选的,本实施例中第一极化选择腔2101为水平极化选择腔2101,第二极化选择腔2202 为垂直极化选择腔2202;其中,波导开口111和水平的横截面采用的是带有倒角的正方形,垂直极化选择腔内腔壁的横截面形状采用比较规整的带有倒角的矩形,这种设计具有更简单的加工工艺和更低的生产成本。
为进一步拓宽频带,在与水平极化连接口对应的水平极化选择腔内腔壁上至少设有一个用于拓宽频带的干扰凸起。这种干扰凸起还可设计成边脊结构,其横截面可以是梯形、三角形、半圆形、弧形等,还可以设计成带状结构或其它。如图2所示,本实施中的第一极化选择腔2101内的设计了两个干扰凸起,横截面为梯形的边脊凸起结构2110和带状凸起结构2150。
图4是本发明具体实施例中的天线子阵的分解图。本实施例中天线子阵由四个开口波导单元构成,包含第一层100、第二层210、第三层211、第四层220和第五层221。
第一层100的开口波导11是对称的正方形,因此能够接收或发射双极化电磁波。第一层100的腔壁是垂直壁121,在开口下方一定距离处设有带有倒角的正方形台阶结构131,这里需要指出的是该台阶结构还可以是圆形、八边形等其他形状,141是开口波导11的内开口。
图5至图7分别是图4中第二层210的俯视图,背面侧视图和背面平视图;图8至图10分别是图4中第三层211的俯视图,侧视图和背视图。
第二层210与第三层211合在一起形成水平极化选择腔2101、水平极化信号通道口2102和四个天线单元的水平极化信号波导通道。两个相邻开口波导的水平极化信号通过波导通道2103和波导通道2104汇集于波导通道2105,形成一分二波导功分结构。天线子阵的另外两个相邻单元的水平极化信号通过该一分二波导功分结构的镜像波导通道与前两个天线单元的信号汇集于“工”字形一分二波导功分结构2106,并通过波导通道2107汇集于上一层网络。
图9显示在第三层211的水平极化信号通道口2102对面有一个梯形的脊2110,主要起拓宽频带的作用。
图11至图13分别是图4中第四层220的俯视图、背面侧视图和背面平视图,图14至图15分别是图4中第五层221的俯视图和侧视图。第四层220与第五层221合在一起形成垂直极化选择腔2201、垂直极化信号通道口2202和四个开口波导单元的垂直极化信号波导通道。两个相邻天线单元的垂直极化信号通过波导通道2103和波导通道2104汇集于波导通道2105,形成一分二波导功分结构。天线子阵的另外两个相邻单元的垂直极化信号通过该一分二波导功分结构的镜像波导通道与前两个天线单元的信号汇集于“T”字形一分二波导功分结构2206,并通过波导通道2207汇集于上一层网络。
值得指出的是,本发明中天线单元的垂直极化选择腔2201是比较规整的矩形结构,相比于带有45°倾斜反射边结构的垂直极化选择腔,本发明中的垂直极化选择腔具有更宽的带宽, 更简单的加工工艺和更低的生产成本。
下面结合平板天线阵列进一步解释双极化电磁波信号的传输过程。
图16是本发明中平板天线面板的一个具体实例,该天线面板包含16个天线子阵,共64个开口波导天线单元。图17是该面板的第一层1,图18是该面板的第二层21的俯视图,图19是第二层21的背面侧视图,图20是第二层21的后视图。图21至图23分别是图16第三层的俯视图、侧视图和后视图;第一层1的背面与第二层的上平面结合在一起,构成整个天线面板的第一部分;第二层背面与第三层的上平面压合在一起形成水平极化选择空腔和水平极化信号传输通道。
下面就图20说明水平极化信号在第二、三层压合而成的波导网络中的传输过程。首先从天线阵列左上角第一个天线子阵开始,该天线子阵左上角第一个开口波导天线单元在接收到双极化电磁信号后,在极化选择腔2101内经过水平极化选择后进入水平极化信号通道口2102,然后通过波导2103进入第一级一分二波导功分网络2105,下方相邻天线单元的水平极化信号通过波导2104也进入第一级一分二波导功分网络2105,并与之前的信号进行叠加混合;叠加后的水平极化信号沿着波导进入“工”字形的第二级一分二波导功分网络2106;同理,该天线子阵右侧的两个天线单元也将筛选出的水平极化信号汇入该“工”字形功分网络2106,并与左侧通道2105进入的水平极化信号进行混合叠加;叠加后的水平极化信号沿着波导2107进入“T”字形第三级一分二波导功分网络2109;同理,该天线子阵下侧的四单元天线子阵也将筛选出的水平极化信号通过波导2108汇入该“T”字形功分网络2109,并与上侧通道2107进入的水平极化信号进行混合叠加;叠加后的水平极化信号沿着波导2110进入“T”字形第四级一分二波导功分网络2111;同理,该天线子阵右侧的两个天线子阵也将筛选出的水平极化信号通过波导2112汇入该“T”字形功分网络2111,并与左侧通道2110进入的水平极化信号进行混合叠加;叠加后的水平极化信号沿着波导2113进入“T”字形第五级一分二波导功分网络2115;同理,以波导通道2116中轴线为中心线的下侧四个天线子阵也将筛选出的水平极化信号通过波导2114汇入该“T”字形功分网络2115,并与上侧通道2113进入的水平极化信号进行混合叠加;叠加后的水平极化信号沿着波导2116行进,在经过直角弯2117和波导2118后汇入“T”字形第六级一分二波导功分网络2120;同理,以波导通道2121中轴线为中心线的下侧八个天线子阵也将筛选出的水平极化信号通过波导2119汇入该“T”字形功分网络2120,并与上侧通道2118进入的水平极化信号进行混合叠加;叠加后的水平极化信号沿着波导2121进入水平极化总馈电端口2130。
图24至图26分别是天线面板第四层22的俯视图、背面侧视图和后视图。图27至图28分别是第五层的俯视图和侧视图。第四层22的背面与第五层的上平面压合在一起,形成垂直 极化选择空腔和垂直极化信号传输通道。
下面就图26说明垂直极化信号在第四、五层压合而成的波导网络中的传输过程。首先从天线面板左上角第一个天线子阵开始,该天线子阵左上角第一个开口波导天线单元在接收到双极化电磁信号后,在极化选择腔2201内经过垂直极化选择后进入垂直极化信号通道口2202,然后通过波导2203进入“T”字形第一级一分二波导功分网络2205;同理,右侧相邻天线单元的垂直极化信号通过波导2204也汇入该“T”字形功分网络2205,并与之前的信号进行叠加混合;叠加后的垂直极化信号沿着波导进入“Y”字形的第二级一分二波导功分网络2206;同理,该天线子阵下侧的两个天线单元也将筛选出的垂直极化信号汇入该“Y”字形功分网络2206,并与上侧通道2205进入的垂直极化信号进行混合叠加;叠加后的垂直极化信号沿着波导2207进入“T”字形第三级一分二波导功分网络2209;同理,该天线子阵右侧的四单元天线子阵也将筛选出的垂直极化信号通过波导2208汇入该“T”字形功分网络2209,并与左侧通道2207进入的垂直极化信号进行混合叠加;叠加后的垂直极化信号沿着波导2210进入“T”字形第四级一分二波导功分网络2212;同理,该天线子阵下侧的两个天线子阵也将筛选出的垂直极化信号通过波导2211汇入该“T”字形功分网络2212,并与上侧通道2210进入的垂直极化信号进行混合叠加;叠加后的垂直极化信号沿着波导2213行进,在经过直角弯2214和波导2215后进入“T”字形第五级一分二波导功分网络2117;同理,以波导通道2218中轴线为中心线的下侧四个天线子阵也将筛选出的垂直极化信号通过波导2216汇入该“T”字形功分网络2217,并与上侧通道2215进入的垂直极化信号进行混合叠加;叠加后的垂直极化信号沿着波导2218行进,在经过直角弯2219和波导2220后汇入“T”字形第六级一分二波导功分网络2222;同理,以波导通道2223中轴线为中心线的下侧八个天线子阵也将筛选出的垂直极化信号通过波导2221汇入该“T”字形功分网络2222,并与上侧通道2220进入的垂直极化信号进行混合叠加;叠加后的垂直极化信号沿着波导2223进入垂直极化总馈电端口2230。
本发明中水平极化信号和垂直极化信号波导功分网络主要是“T”字形一分二功分网络,主干通道中“T”字形波导的顶部不含凸起部分,由两个较长台阶实现波导阻抗变换和阻抗匹配,例如水平极化信号通道中第六级一分二波导功分网络2120和垂直极化信号通道中第六级一分二波导功分网络2222和第五级一分二波导功分网络2217。相比于具有尖锐凸起部分的一分二波导功分网络,本发明中的波导功分网络具有更宽的腔壁,更通畅的传输通道和更简单的加工工艺。
本发明中垂直极化信号传输主通道在直角弯2219及其镜像位置处采用了具有两个台阶的反射面,与传统直角弯处采用45°反射面相比,本发明公布的反射面设计方法具有更宽的 带宽和更通畅的传输通道。该反射面可采用至少一个台阶结构,优选两个台阶或者更多个台阶。
下面结合图1、图29、图30和图31与具体实例对本发明所公开的极化调整方法作进一步详细说明。
图29中信号传输通道2包括位于上层的水平极化信号传输通道21和位于下层的垂直极化信号传输通道22,其中所有双极化天线单元11的水平极化馈电口2102与水平极化信号传输通道21连接,垂直极化馈电口2202和垂直极化信号传输通道22连接。双极化天线单元11的波导开口111中传输的水平线极化信号和垂直极化信号分别经水平极化馈电口2102和垂直极化馈电口2202送至水平极化信号传输通道21和垂直极化信号传输通道22。需要说明的是,本发明中分为两层的信号传输通道2,其可以根据需要作不同设计,即上层网络设计为垂直极化信号传输通道22、下层网络设计为水平极化信号传输通道21,只要和双极化天线单元11的上下层极化方式对应即可。
结合图1、图29、图30和图31,天线阵面的背面设有水平极化信号总馈电端口2130和垂直极化信号总馈电端口2230,水平极化信号经水平极化信号传输通道21最终汇聚于水平极化信号总馈电端口2130,垂直极化信号经垂直极化信号传输通道22最终汇聚垂直极化信号总馈电端口2230。水平极化信号总馈电端口2130与极化合成器3的第一路极化连接口31相连,垂直极化信号总馈电端口2230与极化合成器3的第二路极化连接口32相连;极化合成器3采用正交模式耦合器实现,两路极化连接口传输的极化分量相互正交,极化合成器3固定在天线阵面的背面,极化合成器3设有公共口33。取极化器5固定在天线阵面的背面,取极化器5设有第一路极化连接口51、第二路极化连接口52和公共口53。取极化器5的公共口53与极化合成器3的公共口33之间连接波导管4。取极化器5的公共口53外周采用轴承套接旋转装置6,旋转装置6可驱动取极化器5沿波导管4的轴线旋转,旋转装置6采用现有技术中常见的驱动装置,通常由电机带动通过同步带、齿轮、蜗轮蜗杆或其它传动装置来实现,在此不展开赘述。
取极化器5采用正交模式耦合器实现,取极化器5的第一路极化连接口51和第二路极化连接口52与后端射频电路相连接。需要说明的是,在单极化模式时第一路极化连接口51或第二路极化连接口52中仅需要任意一路极化连接口与后端射频电路相连接;在双极化模式时,则两路极化连接口均与后端射频电路相连接。
图3至图5中的双箭头表示电场方向。本发明中,平板天线在接收状态下极化合成器3上的第一路极化连接口31和第二路极化连接口32作为信号输入口,取极化器5上的第一路极化连接口51和第二路极化连接口52作为信号输出口;在发射状态下,则相反,极化合成 器3上的第一路极化连接口31和第二路极化连接口32作为信号输出口,取极化器5上的第一路极化连接口51和第二路极化连接口52作为信号输入口。
如图1、29、30、31所示,接收时,水平极化信号和垂直极化信号经双极化天线单元11的水平极化馈电口2102和垂直极化馈电口2202分别送至水平极化信号传输通道21和垂直极化信号传输通道22,水平线极化信号经水平极化信号传输通道21最终汇聚于水平极化信号总馈电端口2130,进入极化合成器3的第一路极化连接口31,垂直极化信号经垂直极化信号传输通道22最终汇聚于垂直极化信号总馈电端口2230,进入极化合成器3的第二路极化连接口32,然后在在极化合成器的公共口33重新合成。如果需要传输线极化信号,需要合理设计水平极化信号传输通道21和垂直极化信号传输通道22,令两路极化信号从双极化天线单元的波导开口111传输至极化合成器的公共口33的插损和相移一致,则自由空间信号在极化合成器的公共口33复原;如果需要传输圆极化信号,需要合理设计两路信号传输通道21和22,令两路信号从双极化天线单元波导开口111传输至极化合成器公共口33的插损一致、而相位差90°,则圆极化信号在极化合成器公共口33合成含原圆极化信息的线极化信号。
合成的信号经波导管4被送至取极化器5的公共口53,通过旋转装置6的控制,(使取极化器与极化合成器的电极化方向相同,接收信号最强)将取极化器5沿波导管4的轴线旋转,在单极化工作模式时,合成的信号会在取极化器5的极化连接口51或52检出,输出到后端射频电路;在双极化工作模式时,合成的两路正交极化信号会分别在取极化器的第一路极化连接口51和第二路极化连接口52分别检出,输出到后端射频电路。发射时,过程相反。
在另一实施例中,极化合成器3和取极化器5可直接连接,合成的信号直接经极化合成器3的公共口33送至取极化器5的公共口53,实现相应的功能,无需设置波导管4。
在上述实施例中,极化调整装置可选择由伺服电机控制的转动装置自动或直接手动调整,带动取极化器旋转,使得取极化器中所能传播的电磁波能量最大。
以下结合具体实施例对本发明的工作过程进行详细说明。
实施例1单线极化信号接收
来波方向为单线极化E,极化方向任意,该线极化波可以按双极化辐射单元两路极化方向分解为两路同相线极化分量,分别为水平极化分量Eh和垂直极化分量Ev,双极化天线单元11接收到的水平极化分量Eh经位于单元下面水平极化馈电口2102送至水平极化信号传输通道21,最终汇总到水平极化信号总馈电端口2130并传送至极化合成器3,同样双极化天线单元11接收到的垂直极化分量Ev经单元下的垂直极化馈电口2202送至垂直极化信号传输通道22,最终汇总到垂直极化信号总馈电端口2230并传送至极化合成器3。
通过合理设计信号传输通道,使得从双极化天线单元波导开口111到极化合成器公共口33的两路极化分量的插损和相位一致,这样在极化合成器的公共口33,两路极化分量重新合成,自由空间信号得到复原。复原后的信号经波导管4送至取极化器5的公共口,通过转动装置6旋转,将复原后的信号检出,经取极化器5的任一路极化连接口51或52传送至后端射频电路,完成信号的接收。
实施例2单线极化信号发射
和单线极化接收过程相反,此后端射频电路提供的发射信号经取极化器5的某一路极化连接口51或52送至其公共口53,经波导管4送至极化合成器3的公共口,此时极化合成器3起到极化分解的作用,发射信号分解为两路正交的线极化信号分别经极化合成器3的两路极化连接口32和33进入水平极化信号总馈电端口2130和垂直极化信号总馈电端口2230,经极化信号传输通道分配送至双极化天线单元11,并在各双极化天线单元波导开口111面处重新合成,从而完成信号的发射。
实施例3单圆极化信号接收
来波方向为单圆极化波E,极化旋向任意,和单线极化接收类似,该圆极化波可以分解为水平极化分量Eh和垂直极化分量Ev,Eh和Ev两路极化分量幅度相等,相位相差90°,所有双极化天线单元11接收到的水平极化分量Eh经水平极化信号传输通道21汇聚到水平极化信号总馈电端口2130,同时垂直极化分量Ev也在垂直极化信号总馈电端口2230汇聚。
水平极化信号总馈电端口2130和垂直极化信号传输通道2230总口分别和极化合成器的第一路极化连接口31和第二路极化连接口32相连,通过合理设计信号传输通道,使得从双极化天线单元11公共口面到极化合成器公共口面的插损一致、相位相差90°(用来补偿单元口面分解的两路分量相差),这样在极化合成器的公共口33两路极化同相叠加,合成为线极化信号,经波导管4送至取极化器5的公共口53,通过转动装置6旋转,将合成后的信号检出,经取极化器5的某一路极化连接口51或52送至后端射频电路,完成信号的接收。
实施例4单圆极化信号发射
由于收发天线的互易性,单圆极化发射是其接收的逆过程,这里不再赘述。需要指出的是,发射状态时,极化合成器3起着极化分解的作用,而双极化天线单元11起着极化合成的作用。
实施例5双线极化接收
假定来波为两路正交线极化信号E1和E2,和单线极化接收类似,E1可以分解为E1v和E1h两路分量,E2可以分解为E2v和E2h分量,其中E1h和E2h分量最终汇聚至水平极化信号总馈电端口2130,E1v和E2v分量最终汇聚至垂直极化信号总馈电端口2230。
水平极化信号总馈电端口2130和垂直极化信号总馈电端口2230分别和极化合成器的第一路极化连接口31和第二路极化连接口32相连,通过合理设计信号传输通道,使得从单元辐射口面到极化合成器公共口面的插损和相位一致,这样在极化合成器的公共口33,E1v和E1h重新合成得到E1,E2v和E2h重新合成得到E2,在波导管4中E1和E2分量保持正交。通过转动装置6旋转取极化器5,将E1检出送至取极化器5的某一路极化连接口51或52,极化器5的另一路极化E2同时被检出,被送至取极化器的另一路极化连接口52或51,然后传送至后端射频电路,这样完成了双线极化信号的接收。
实施例6双线极化信号发射
由于收发天线的互易性,双线极化发射是其接收的逆过程,这里不再赘述。
实施例7双圆极化信号接收
假定来波为两路旋向相反的圆极化信号ER和EL,和单圆极化接收类似,ER可以分解为ERv和ERh两路分量,ERv和ERh幅度相等相位相差90°(或-90°),EL可以分解为ELv和ELh分量,ELv和E1h幅度相等相位相差-90°(或90°)。其中ERh和ELh分量最终汇聚至水平极化信号总馈电端口2130,ERv和ELv分量最终汇聚至垂直极化信号总馈电端口2230。
通过合理设计信号传输通道,使得从单元辐射口面到极化合成器公共口面的插损一致、相位相差90°(用于补偿单元口面分解的两路分量相差),这样在极化合成器的公共口33,ERv和ERh的幅度相等、相位补偿一致,合成为一线极化E1;而ELv和ELh的幅度相等、相位补偿一致,合成为一线极化E2,且E1和E2正交。E1和E2经波导管4送至取极化器的公共口53,至此和双线极化信号接收一样,通过转动装置6旋转,合成信号E1和E2分别被同时检出,经取极化器5的第一路极化连接口51和第二路52送至后端射频电路送,完成双圆极化信号的接收。
实施例8双圆极化发射
由于收发天线的互易性,双线极化发射是其接收的逆过程,这里不再赘述。
实施例9单线极化收发双工
该实施例的信号收发过程分别和实施例1、2相对应,具体极化调整过程不再赘述。区别是当天线收发频段不同即收发双工为频分模式时,在取极化器的某路极化连接口连接双工器,完成信号的收发;当天线收发双工为时分模式时,在取极化器5的某一路极化连接口51或52连接开关,完成信号的收发。
实施例10双线极化收发双工
该实施例的信号收发过程分别和实施例5、6相对应,具体极化调整过程不再赘述。当天线收发双工模式为频分模式时,在取极化器5的两路极化连接口51和52上均连接双工器,实现信号的收发共用;当天线收发双工模式为时分模式时,在取极化器的两极化连接口51和 52均连接开关,通过开关切换实现收发双工。
实施例11单圆极化收发双工
该实施例的信号收发过程分别和实施例3、4相对应,具体极化调整过程不再赘述。和实施例9一样,只需根据天线双工模式在取极化器5的某一路极化连接口51或52上连接双工器或开关即可。
实施例12双圆极化收发双工
该实施例的信号收发过程分别和实施例7、8相对应,具体极化调整过程不再赘述。和实施例10一样,只需根据天线双工模式在取极化器5的某路极化连接口51和52分别连接双工器或开关即可。
需要指出的是,以上实施例描述中当系统收发线极化信号时,设计信号传输通道让两路极化信号达极化合成器公共口33的插损和相位相等;当系统收发圆极化信号时,设计信号传输通道让两路极化信号达极化合成器公共口33的插损相等、相位相差90°,这均为理想条件,当信号传输通道性能设计不理想时,在极化合成器的公共口合成的极化不再为理想线极化而是椭圆极化,这时对后端系统的影响是交叉极化电平有所提升,但是在满足不同系统指标要求的前提下该自动极化调整方案依然适用。
如图31和32所示,本实施例的带有极化调整的平板天线工作于Ku波段,其典型频点处的主极化和交叉极化方向图如图31所示,在整个频段内的主极化、交叉极化频响曲线如图32所示,可见在整个工作频段内其交叉极化电平可控制在30dB以内,充分验证了本发明带有极化调整的平板天线的有效性和可靠性。
以上所述实施例仅表达了本发明的有限实施方式,其描述并不能理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干改进,这些均应落入本发明的保护范围。

Claims (15)

  1. 一种开口波导,其特征在于:包括波导开口、第一极化选择腔和第二极化选择腔、第一极化连接口和第二极化连接口;波导开口用于接收和发射极化信号,第一极化选择腔和第二极化用于极化选择馈电,第一极化连接口位于第一极化选择腔的一侧壁上并连接第一极化选择腔和信号传输通道,第二极化连接口位于第二极化选择腔的一侧壁上并连接第二极化选择腔和信号传输通道;所述波导开口、第一极化选择腔和第二极化选择腔的内腔壁均呈垂直设计,从上至下依次连接,内径逐渐缩小并在开口波导的开口面与第一极化连接口之间及第一极化连接口与第二极化连接口之间各形成一层台阶结构。
  2. 根据权利要求1所述的开口波导,其特征在于:所述波导开口、第一极化选择腔和第二极化选择腔的内腔壁横截面呈圆形、轴对称多边形、或与轴对称多边形对应带有倒角的形状,且各横截面的形状不要求一致。
  3. 根据权利要求1所述的开口波导,其特征在于:在所述第一极化选择腔和/或第二极化选择腔的内腔壁内径至少可以有两种,且从上往下逐渐减小,形成至少一层用于平滑匹配开口波导与外部空气间阻抗的台阶结构。
  4. 根据权利要求3所述的开口波导,其特征在于:以所述台阶结构为界线的相邻内腔壁的横截面的形状至少有一种,可以是圆形、轴对称多边形、或与轴对称多边形对应带有倒角的形状。
  5. 根据权利要求1所述的开口波导,其特征在于:所述第一极化选择腔和第二极化选择腔分别为水平极化选择腔和垂直极化选择腔,或分别为垂直极化选择腔和水平极化选择腔。
  6. 根据权利要求5所述的开口波导,其特征在于:在所述水平极化选择腔内与水平极化连接口对应的腔壁上至少设有一个用于拓宽频带的干扰凸起。
  7. 根据权利要求6所述的开口波导,其特征在于:所述干扰凸起为带状凸起结构或边脊结构。
  8. 根据权利要求1所述的开口波导,其特征在于:所述的第二极化选择腔的内腔壁的横截面形状为倒角矩形。
  9. 根据权利要求1所述的开口波导,其特征在于:所述波导开口的开口为亚波长口径。
  10. 一种天线子阵,其特征在于:包括偶数个如权利要求1至9任一项所述的开口波导单元,及与开口波导连接的第一信号传输通道和第二信号传输通道;所述各信号传输通道至少包括一个一分二功率分配网络,一分二功率分配网络的三叉口部位的左右支路上包括至少一对对称的缓变台阶。
  11. 一种平板天线阵列,其特征在于:包括至少一个如权利要求10所述的天线子阵,分别连接第一信号传输通道和第二信号传输通道的第一信号传输主通道和第二信号传输主 通道,以及分别位于第一信号传输主通道和第二信号传输主通道末端的第一极化信号总馈电端口和第二极化信号总馈电端口;所述第一极化信号总馈电端口和第二极化信号总馈电端口与后端电路连接,所述信号传输通道和主传输通道包括多级一分二功率分配网络,其三叉口部位的左右支路上包括一对对称的缓变台阶。
  12. 根据权利要求11所述的平板天线阵列,其特征在于:信号传输主通道中的主传输通道的直角部位采用由至少一个缓变台阶形成的反射结构。
  13. 一种带有极化调整的平板天线,其特征在于:包括如权利要求11至12任一项所述的平板天线阵列和位于平板天线阵列和后端射频电路之间的极化调整装置;所述极化调整装置包括极化合成器和取极化器,极化合成器和取极化器分别设有一个公共口和两路极化连接口,极化合成器和取极化器通过公共口直接相连,取极化器可沿轴线旋转;所述极化合成器的两路极化连接口分别与平板天线阵列的第一极化信号总馈电端口和第二极化信号总馈电端口连接,所述取极化器的两路极化连接口至少有一路与后端射频电路连接。
  14. 根据权利要求13所述的带有极化调整的平板天线,其特征在于:所述极化调整装置还包括位于极化合成器和取极化器的公共口之间的波导管,波导管与取极化器连接,其形状为圆形或中心对称多边形。
  15. 根据权利要求14所述的带有极化调整的平板天线,其特征在于:所述带有极化调整的平板天线还包括与波导管连接的转动装置,用于驱动波导管和取极化器旋转。
PCT/CN2016/095832 2016-08-12 2016-08-18 开口波导、天线子阵、平板天线阵列及平板天线 WO2018028002A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2016106620238 2016-08-12
CN2016208773110 2016-08-12
CN201620877311.0U CN205944438U (zh) 2016-08-12 2016-08-12 开口波导、天线子阵、平板天线阵列及平板天线
CN201610662023.8A CN106129597A (zh) 2016-08-12 2016-08-12 开口波导、天线子阵、平板天线阵列及平板天线

Publications (1)

Publication Number Publication Date
WO2018028002A1 true WO2018028002A1 (zh) 2018-02-15

Family

ID=61161547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095832 WO2018028002A1 (zh) 2016-08-12 2016-08-18 开口波导、天线子阵、平板天线阵列及平板天线

Country Status (1)

Country Link
WO (1) WO2018028002A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066047A (zh) * 2018-09-28 2018-12-21 西安恒达微波技术开发有限公司 超大功率三维馈线系统及其伸缩线结构
CN110581364A (zh) * 2019-08-27 2019-12-17 航天恒星空间技术应用有限公司 一种用于动中通的简易极化跟踪器
CN114552221A (zh) * 2022-02-25 2022-05-27 南京邮电大学 一种改善方向性的圆极化腔体天线
CN116315568A (zh) * 2023-05-22 2023-06-23 长沙航天华成科技有限公司 一种高口径效率和高功率容量的低剖面模式裂变天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083359A (zh) * 2007-07-10 2007-12-05 中国电子科技集团公司第五十四研究所 高增益双线极化或双圆极化波导阵列天线制造方法
CN201060943Y (zh) * 2007-07-10 2008-05-14 中国电子科技集团公司第五十四研究所 高增益双线极化或双圆极化波导阵列天线
CN105161852A (zh) * 2015-09-30 2015-12-16 南京肯微弗通信技术有限公司 带有极化调整的平板天线
CN205039254U (zh) * 2015-09-30 2016-02-17 南京肯微弗通信技术有限公司 带有极化调整的平板天线
CN106229637A (zh) * 2016-08-12 2016-12-14 南京肯微弗通信技术有限公司 平板天线阵列及带极化调整的平板天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083359A (zh) * 2007-07-10 2007-12-05 中国电子科技集团公司第五十四研究所 高增益双线极化或双圆极化波导阵列天线制造方法
CN201060943Y (zh) * 2007-07-10 2008-05-14 中国电子科技集团公司第五十四研究所 高增益双线极化或双圆极化波导阵列天线
CN105161852A (zh) * 2015-09-30 2015-12-16 南京肯微弗通信技术有限公司 带有极化调整的平板天线
CN205039254U (zh) * 2015-09-30 2016-02-17 南京肯微弗通信技术有限公司 带有极化调整的平板天线
CN106229637A (zh) * 2016-08-12 2016-12-14 南京肯微弗通信技术有限公司 平板天线阵列及带极化调整的平板天线

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066047A (zh) * 2018-09-28 2018-12-21 西安恒达微波技术开发有限公司 超大功率三维馈线系统及其伸缩线结构
CN110581364A (zh) * 2019-08-27 2019-12-17 航天恒星空间技术应用有限公司 一种用于动中通的简易极化跟踪器
CN110581364B (zh) * 2019-08-27 2024-04-05 航天恒星空间技术应用有限公司 一种用于动中通的极化跟踪器
CN114552221A (zh) * 2022-02-25 2022-05-27 南京邮电大学 一种改善方向性的圆极化腔体天线
CN114552221B (zh) * 2022-02-25 2023-12-12 南京邮电大学 一种改善方向性的圆极化腔体天线
CN116315568A (zh) * 2023-05-22 2023-06-23 长沙航天华成科技有限公司 一种高口径效率和高功率容量的低剖面模式裂变天线
CN116315568B (zh) * 2023-05-22 2023-07-18 长沙航天华成科技有限公司 一种高口径效率和高功率容量的低剖面模式裂变天线

Similar Documents

Publication Publication Date Title
WO2018058722A1 (zh) 双极化收发共用波导阵列天线
US9768508B2 (en) Antenna system for simultaneous triple-band satellite communication
CN106129597A (zh) 开口波导、天线子阵、平板天线阵列及平板天线
US4473828A (en) Microwave transmission device with multimode diversity combined reception
CN105161852B (zh) 带有极化调整的平板天线
WO2018028002A1 (zh) 开口波导、天线子阵、平板天线阵列及平板天线
CN104901001B (zh) 脊波导偏置缝耦合微带振子双极化天线
CN108110436B (zh) 波导馈电网络、波导阵列天线
US6842154B1 (en) Dual polarization Vivaldi notch/meander line loaded antenna
US10910731B2 (en) High performance flat panel antennas for dual band, wide band and dual polarity operation
CN103390798B (zh) 动中通卫星通信双极化四脊方喇叭阵列天线
CN205944438U (zh) 开口波导、天线子阵、平板天线阵列及平板天线
CN106229637A (zh) 平板天线阵列及带极化调整的平板天线
RU2365000C1 (ru) Фазированная антенна с круговой пространственной поляризацией
US6967619B2 (en) Low noise block
US11769952B2 (en) Antenna element and electronic device
WO2017054587A1 (zh) 带有极化调整的平板天线
CN111355024A (zh) 一种宽频双圆极化平板卫星天线
CN103474787B (zh) 双极化平面阵列卫星电视接收天线
CN205039254U (zh) 带有极化调整的平板天线
CN110943294B (zh) 宽带低剖面双圆极化平板天线
CN111710969A (zh) 一种低剖面高度宽频带的波导阵列卫星通信天线
CA2567417A1 (en) Circular polarity elliptical horn antenna
CN108550990B (zh) 一种5g大规模天线波束控制系统及方法
CN114204268B (zh) 一种C/Ku双频共用圆极化同轴馈源网络

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912457

Country of ref document: EP

Kind code of ref document: A1