WO2018027565A1 - 一种安全高热值燃气制备方法及系统 - Google Patents

一种安全高热值燃气制备方法及系统 Download PDF

Info

Publication number
WO2018027565A1
WO2018027565A1 PCT/CN2016/094187 CN2016094187W WO2018027565A1 WO 2018027565 A1 WO2018027565 A1 WO 2018027565A1 CN 2016094187 W CN2016094187 W CN 2016094187W WO 2018027565 A1 WO2018027565 A1 WO 2018027565A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
calorific value
reforming
excitation device
liquid
Prior art date
Application number
PCT/CN2016/094187
Other languages
English (en)
French (fr)
Inventor
朱光华
Original Assignee
玉灵华科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610639781.8A external-priority patent/CN106315508B/zh
Priority claimed from CN201610639852.4A external-priority patent/CN106244269A/zh
Priority claimed from CN201610639542.2A external-priority patent/CN106283102B/zh
Priority claimed from CN201610639890.XA external-priority patent/CN106118769A/zh
Priority claimed from CN201610639543.7A external-priority patent/CN106190378A/zh
Priority claimed from CN201610639888.2A external-priority patent/CN106191915B/zh
Priority claimed from CN201610639889.7A external-priority patent/CN106048644B/zh
Priority to EP16912020.1A priority Critical patent/EP3495457A4/en
Priority to JP2019526352A priority patent/JP2019528365A/ja
Priority to US16/323,729 priority patent/US20190177628A1/en
Priority to KR1020197002387A priority patent/KR20190021414A/ko
Application filed by 玉灵华科技有限公司 filed Critical 玉灵华科技有限公司
Publication of WO2018027565A1 publication Critical patent/WO2018027565A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/06Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by mixing with gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/034Rotary electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/30Cells comprising movable electrodes, e.g. rotary electrodes; Assemblies of constructional parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to a gas preparation method and system, belonging to the field of new energy, and particularly relates to a safe high-calorific value gas preparation method and system.
  • the mass calorific value (low calorific value) of hydrogen and oxygenated synthetic steam is the highest among all combustible materials, reaching 120 MJ/kg, which is 2.76 times that of gasoline with a low ignition value of 43.5 MJ/kg. Hydrogen and oxygen have many special properties and are ideal as an energy source for clean energy.
  • the cost of producing hydrogen from electrolyzed water is relatively high.
  • the theoretical power of 1kg hydrogen and 0.5kg oxygen is 2390(Ah)
  • Both the power consumption and the actual decomposition voltage are larger than the theoretical value.
  • the actual operating voltage according to the structure and operating conditions of the electrolytic cell, is generally 1.5- of the theoretical decomposition voltage. 2 times.
  • the actual electrical energy consumption of electrolyzed water hydrogen production equipment producing 1 standard cubic meter of hydrogen and 0.5 standard cubic meter of oxygen is 5 KWh, which is greater than the theoretical value. It can be seen that the cost of producing hydrogen by using electrolyzed water is relatively high, and there is no cost advantage compared with other fuels from an economic point of view.
  • the technical problem to be solved by the present invention is to solve the problems of high cost and low safety of the conventional water electrolysis hydrogen-oxygen mixed gas generator, and the object thereof is to provide a uniform gas-liquid exchange, easy gas discharge, low energy consumption, and safety.
  • Reliable safe high calorific value gas preparation method and system The high calorific value gas prepared by the method and the system has good safety, is easy to store, has high heat value and does not pollute the environment.
  • a safe high-calorific value gas preparation method is provided.
  • Hydrogen and oxygen generated by electrolysis are combined with water by molecular hydrogen bond resonance to form a molecular group, and the molecular group has the formula (H 3 O + -O 2 -OH - -H 2 ) n , wherein :1 ⁇ n ⁇ 36;
  • the molecular group is reformed with a reforming liquid to obtain a mixed high calorific value gas including H 2 and O 2 .
  • the above-mentioned method for preparing a safe high-calorific value gas is characterized in that the reforming is a mixed reforming of contact mass transfer and compound reaction on a gas phase liquid phase interface.
  • the reformate being a reformate comprising a hydrocarbon C x H 2x+2 and/or a carbon oxyhydroxide C x H 2x+2 O.
  • the reforming liquid further comprising a quantum carbon additive, wherein: the quantum carbon is a graphene liquid of 0.3 nm to 1.0 nm, and the basic of the quantum carbon liquid
  • the parameters are: pH is 1.8-2.2; electromotive force ORP is 280 mv-380 mv; electrical conductivity is 1.2 ms/cm-5.0 ms/cm; solid content is 0.1%-0.8%.
  • f is the natural frequency of the excitation device
  • h is the thickness of the excitation device
  • L is the length of the excitation device
  • E is the elastic modulus of the excitation device
  • P is the density of the excitation device.
  • the above-mentioned safe high calorific value gas preparation method comprises: C n H 2n+2 gas, wherein 15>n>0.
  • H 2 20% to 60%; O 2 : 10% to 30%; C n H 2n+2 (5>n ⁇ 1): 15% to 30%; C n H 2n+2 (n ⁇ 6): 5% to 25%.
  • a safe high calorific value gas preparation system comprising: a water ion electrolysis device provided with a rotating electrode plate, and the hydrocarbon ion electrolysis device is connected to include a hydrocarbon heavy a liquid-liquid reforming device for a whole liquid; wherein: the rotating electrode plate is provided with an excitation device.
  • the above-mentioned safe high-calorific value gas preparation system is characterized in that a gas-liquid exchange layer is disposed in the gas reforming device, and the gas-liquid exchange layer is located in the reforming liquid and leads to the inside of the gas reforming device.
  • the gas is passed through the gas-liquid exchange layer and then exported.
  • the present invention has the following advantages over the prior art:
  • the new molecule is simultaneously liquefied into a liquid fuel at a temperature point between -90 ° C and -190 ° C; it can withstand a pressure of 200 kg / cm 3 or more and does not undergo any change in properties for long-term storage;
  • Figure 1 is a schematic diagram of high calorific value gas synthesis
  • Figure 2 is a high calorific value gas preparation control system
  • Figure 3 is a schematic diagram of a high calorific value gas preparation system with a gas compression device
  • Figure 4 is a schematic view showing the connection of a water ion electrolysis device and a compressed gas device
  • Figure 5 is a schematic diagram of a high calorific value gas preparation system with a gas reforming unit
  • Figure 6 is a schematic view showing the connection of a water ion electrolysis device and a gas reforming device and a combustion device;
  • Figure 7 is a schematic view showing the unilateral combination of two DC power generation devices and a water ion electrolysis device
  • Figure 8 is a schematic view showing the unilateral combination of a single DC power generation device and a water ion electrolysis device
  • Figure 9 is a schematic view of a water ion electrolysis apparatus
  • Figure 10 is a partial schematic view of a water ion electrolysis apparatus
  • 11-1 is a front view of a rotating electrode plate of a water ion electrolysis device
  • Figure 11-2 is a side view of a rotating electrode plate of a water ion electrolysis device
  • Figure 11-3 is a schematic view showing the connection of the excitation device of the rotating electrode plate of the water ion electrolysis device
  • 12-1 is a front view of the positive and negative electrode plates of the water ion electrolysis device
  • 12-2 is a side view of the positive and negative electrode plates of the water ion electrolysis device
  • Figure 13 is a schematic diagram of a DC power generating device
  • Figure 14-1 is a front view of the rotor magnet of the DC power generating device
  • Figure 14-2 is a side view of the rotor magnet of the DC power generating device
  • Figure 15-1 is a front elevational view of a stator metal disk of a DC power generating device
  • Figure 15-2 is a side view of the stator metal disk of the DC power generating device
  • Figure 16 is a schematic diagram showing the results of chromatographic analysis of Example 1.
  • Figure 17 is a chromatographic analysis record of Example 1.
  • DC power generation device 1 housing 1-1, rotor magnet 1-2, stator metal disk 1-3, fixing member 1-4, insulating bracket 1-5; water ion electrolysis device 2, moving shaft 2-1, insulating plate 2-2.
  • the hydrogen-oxygen gas generated by the existing water electrolysis hydrogen-oxygen mixed gas generator is a mixed gas of elemental gas, and there is a certain safety hazard in the mixing of hydrogen-oxygen elemental gas.
  • the new molecular group has a combustion temperature above 3,500 degrees Celsius and can be liquefied into a liquid fuel that can withstand pressures above 200 kg/cm 3 without any change in properties over long periods of storage.
  • the electrolyte may be selected from KOH at a concentration of 5% to 30%, and the molecular group produced by bonding has the formula (H 3 O + -O 2 -OH - -H 2 ) n , wherein: 1 ⁇ n ⁇ 36.
  • the reforming liquid is a reforming liquid comprising a hydrocarbon C x H 2x+2 and/or a hydrocarbon mixed compound C x H 2x+2 O.
  • a quantum carbon additive can also be added.
  • the quantum carbon is a graphene liquid of 0.3 nm to 1.0 nm
  • the basic parameters of the quantum carbon liquid are: pH is 1.8-2.2; the electromotive force ORP is 280 mv-380 mv; and the electrical conductivity is 1.2 ms/cm-5.0 ms/cm.
  • the solid content is from 0.1% to 0.8%.
  • the natural frequency of the excitation device used for excitation follows the formula:
  • f is the excitation device (inherent) frequency
  • h is the excitation device thickness mm
  • L is the excitation device length mm
  • E is the excitation device elastic modulus
  • P is the excitation device density
  • the excitation frequency Adjust between 10-3000Hz.
  • the present invention provides a safe high calorific value gas preparation system.
  • the details are as follows.
  • the overall structure of the system includes: a DC power generation device 1, a water ion electrolysis device 2, a gas compression device 3, and a gas reforming device 5.
  • Figure 2 is a control system of the system.
  • the control system is used for data collection and automatic management of time points, pressure, temperature, material supply, compressed gas parameters, combustion parameters, and the like.
  • the molecular mass generated by the excitation during electrolysis of the system can be compressed and stored by a compression device.
  • the pressure gauge system 3-1, the storage tank 3-2, and a gas compression chamber connected to the gas outlets 2-11 of the water ion electrolysis device 2 are included.
  • the compressed gas system is a conventional device with a pressure range of 20.7-24.8 MPa and a storage tank 3-2 is a standard gas tank.
  • the molecular group needs to be reformed during combustion.
  • the gas is passed through the reformer tank 5-1 and then burned into the combustion unit 6, which is a conventional device.
  • a plurality of reforming devices 5 can be used for reforming.
  • the reforming tank 5-1 is provided with a reforming liquid 5-2 and a gas-liquid exchange layer 5-3.
  • the reforming liquid 5-2 is a hydrocarbon.
  • the gas-liquid exchange layer 5-3 is a fibrous body such as felt, glass fiber, or shaped plastic particles; a steel ball can also be used as the gas-liquid exchange layer 5-3.
  • the gas leading to the inside of the reforming unit is passed through the gas-liquid exchange layer and then exported.
  • the gas inlet of the gas reformer tank 5-1 passes through the gas pipe to the lower side of the gas-liquid exchange layer 5-3, and the gas outlet is located above the liquid level of the reforming liquid 5-2.
  • the reforming liquid 5-2 is a reforming liquid including a hydrocarbon C x H 2x+2 and/or a hydrocarbon mixed compound C x H 2x+2 O. It is also possible to add 0.1% to 1.0% of the quantum carbon additive.
  • the quantum carbon is a graphene liquid of 0.3 nm to 1.0 nm
  • the basic parameters of the quantum carbon liquid are: pH is 1.8-2.2; the electromotive force ORP is 280 mv-380 mv; and the electrical conductivity is 1.2 ms/cm-5.0 ms/cm.
  • the solid content is from 0.1% to 0.8%.
  • the high calorific value gas prepared by the technical scheme adopted by the invention does not contain sulfur S and nitrogen N components, and the calorific value can reach 11000-51000 kcal/cal 3 .
  • the present embodiment in the case of electrolysis, can be electrolyzed by two DC power generating devices 1, as shown in Fig. 7, or a single DC power generating device 1 can be used for electrolysis, as shown in Fig. 8. Both are selected according to working conditions.
  • the water ion electrolysis device is shown in Figure 9-12.
  • the water ion electrolysis device 2 includes at least one or more of a moving shaft 2-1, an insulating disk 2-2, a casing 2-3, a rotating electrode plate 2-4, an excitation device 2-4-1, and a heat pipe 2-5.
  • Two insulating discs 2-2 are respectively disposed on opposite sides of the inner wall of the electrolysis device housing 2-3, and the positive and negative electrode plates 2-17 are respectively disposed on the two insulating discs 2-2.
  • the rotating electrode plate 2-4 is disposed between the two positive and negative electrode plates 2-17 via the moving shaft 2-1.
  • the top of the electrolysis device housing 2-3 is connected to the gas-liquid separation control tank 2-6 through the heat pipe 2-5, and the liquid recovery outlet of the gas-liquid separation control tank 2-6 passes through the system pipe 2-13 and the electrolysis device casing 2 3
  • the gas outlets 2-11 of the gas-liquid separation control tank 2-6 are connected to the gas compression unit 3 and the gas reforming unit 5.
  • the gas-liquid separation control tank 2-6 is provided with a low pressure limit pressure gauge 2-7, a high pressure limit pressure gauge 2-8, a safety valve 2-9, and a material addition port 2-10.
  • the heat pipe 2-5 is preferably a bellows, and is provided with an air-cooled blade 2-14 for heat dissipation there.
  • the rotating electrode plate 2-4 is at least one piece, and may also be composed of a plurality of electrode groups, each of which is spaced by 1-10 mm.
  • Each of the rotating electrode plates 2-4 is provided with a plurality of excitation devices 2-4-1, and the excitation devices 2-4-1 can be fixed to the rotating electrode plates 2-4 by fixing bolts 2-4-2.
  • the rotating electrode plate 2-4 is rotated at a certain angular velocity in the electrolytic solution 2-12, and under the action of the electrode power sources DC+ and DC- of the positive and negative electrode plates 2-17, water electrolyzed hydrogen and oxygen gas is generated.
  • the rotating electrode plate 2-4 drives the excitation device 2-4-1 to generate excitation during rotation, and the natural frequency of the excitation device follows the formula:
  • f is the natural frequency of the excitation device
  • h is the thickness of the excitation device mm
  • L is the length of the excitation device mm
  • E is the elastic modulus of the excitation device GPa
  • P is the density of the excitation device g / cm 3 ; Adjust between 10-3000Hz.
  • the excitation device 2-4-1 in the present invention is an excitation plate.
  • the electrolyzed hydrogen-oxygen gas generated by the positive and negative electrodes on the excitation plate is generated by the excitation frequency, and the generated single-molecule hydrogen-oxygen gas and water molecules are recombined into new molecular groups by hydrogen bonding.
  • the new molecular group and electrolyte pass through the heat pipe 2-5 to reach the gas-liquid separation control tank 2-6 for gas-liquid separation, and the separated gas is output through the outlet 2-11, the low pressure limit pressure gauge 2-7 and the high pressure limit pressure gauge 2-8 is responsible for maintaining the pressure between 0.01-1.0Mpa, the material addition port 2-10 is responsible for adding the replenishing liquid and additives, the safety valve 2-9 is controlled at 1.5-2.0Mpa, and the pipe 2-13 is the system automatic circulation pipe.
  • the circulation pump 2-15 can be turned on according to conditions such as temperature control.
  • the DC power generating device includes a housing 1-1, a rotor magnet 1-2, a stator metal disk 1-3, a fixing member 1-4, an insulator holder 1-5, and a motor 4.
  • the metal disk top guide wire is connected to DC-, and the metal disk central axis is guided to DC+.
  • Rotor magnet disc 1-2 is the guide
  • the electric metal disc, the metal may be copper and copper alloy or a conductive metal, composed of at least one or more pieces; the rotor magnet 1-2 is a high magnetic flux magnet, and the magnetic flux is between 0.5-1.2 T Tesla, between the two pieces At least one or more stator metal discs 1-3 are sandwiched.
  • the frequency modulation motor 4 supplies kinetic energy of a certain rotational speed, and is converted by the direct current power generation device 1 into a rated direct current electrolytic power supply to the water ion electrolysis device 2.
  • the high calorific value gas prepared by the technical scheme adopted by the invention belongs to the explosion combustion, and the explosion combustion in the closed space is safer than the explosive combustion, and has the safety and stability property superior to other gas properties; the new molecular group is in one
  • the temperature point is simultaneously liquefied into a liquid fuel; the combustion temperature is above 3500 degrees Celsius; it can withstand a pressure of 200 kg/cm 3 or more and does not undergo any property change for long-term storage.
  • the ion of water Of ionized H 3 O + + HO - proton hydrates and mixed with the hydrocarbon substance alkoxy hydroxide ions combined reforming.
  • the electrolyte 2-12 has a KOH concentration of 5%-30%, and 15% is selected.
  • the reforming liquid 2-21 is selected from a mixture comprising a C1-C5 alcohol.
  • the gas component of the hydrocarbon structure prepared by the method of the first embodiment was detected and analyzed, and the chromatographic analysis results are shown in Fig. 16; the chromatographic analysis record is shown in Fig. 17.
  • the results of the tests and analyses show that the gas consists of a variety of hydrocarbon structures with a calorific value > 12000 Kcal/m 3 .
  • the ion of water Of ionized H 3 O + + HO - proton hydrates and mixed with the hydrocarbon substance alkoxy hydroxide ions combined reforming.
  • the electrolyte 2-12 has a KOH concentration of 5%-30% and a selectivity of 20%.
  • the reforming liquid 2-21 is a hydrocarbon, and a C3-C8 alkane mixture is used.
  • the molecular gas composition of the hydrocarbon structure before and after reforming is shown in the following table. It can be seen from the table that the multi-component hydrocarbon structure has a calorific value >30000 Kcal/m3.
  • the ion of water Of ionized H 3 O + + HO - proton hydrates and mixed with the hydrocarbon substance alkoxy hydroxide ions combined reforming.
  • the electrolyte 2-12 has a KOH concentration of 5%-30%, and 30% is used.
  • the reforming liquid 2-21 is a hydrocarbon, and a mixture of C5-C12 alkanes is used.
  • the multicomponent thermoplastic structure obtained after reforming has a calorific value >50000 Kcal/m 3 .
  • the safe high calorific value gas of the invention is a clean energy source, and has excellent energy saving and emission reduction effects compared with any conventional fuel. It can be seen from the combustion performance that energy saving and economy can save more than 50% compared with conventional fuels; effective control of NOX, SOX, CO2 and other harmful gas emissions, combustion emissions can reduce emissions by more than 60%.
  • the invention is not limited to the above examples and can be applied to all applications in the field of combustion. For example, conventional commercial combustion; high pressure fuel storage tanks; liquefaction storage and transportation, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

一种安全高热值燃气制备方法及系统,该方法通过水分子内氢键共振将电解产生的氢气、氧气、和水通过分子键合形成分子团;利用重整液对所述分子团进行重整得到高热值燃气,所述重整液包括碳氢化合物C xH 2x+2和/或碳氢氧化合物C xH 2x+2O。上述方法制备的高热值燃气安全性好,易于存储,热值高,不污染环境。

Description

一种安全高热值燃气制备方法及系统 技术领域
本发明涉及一种燃气制备方法及系统,属于新能源领域,具体涉及一种安全高热值燃气制备方法及系统。
背景技术
当今世界尚处在以石油、天然气和煤炭为主导能源的化石能源经济时代。这个化石能源经济时代必将结束,一场空前的新能源革命已经开始。取代化石能源经济的新能源经济,或者说后石油时代的新能源经济,将是“氢经济”、“低碳经济”及其核能、太阳能、风能、水能、生物质能、地热等多元化能源现代化利用相辅相成的新能源经济。
氢单质形态通常是由双原子分子组成的氢气,氢气是最轻的气体,在零度和一个大气压下,每升氢气只有0.09克重。相当于同体积空气重量的1/14.5;氢气极易燃烧,是所有物质中闪点最低的(闪点<-253℃,可以认为无闪点);氢气点火能量最低,只有0.021mJ(毫焦)=0.005mcal(毫卡路里),是汽油点火能量0.30mJ的1/14;氢气在空气中可燃范围最大,体积含量为4%~75%(汽油为1.3%~7.6%);氢气在空气中燃烧速度最快,为250cm/s(汽油为45cm/s);氢气的沸点-252.9℃,熔点-259.1℃,接近热力学温度-273℃。氢气与氧气化合成水蒸气的质量热值(低热值)是所有可燃物质中最高的,达到120MJ/kg,是汽油低燃值43.5MJ/kg的2.76倍。氢气和氧气具有许多特殊的性质,作为能源燃料是最理想的清洁能源。
但又存在很多的难解的问题,特别是在储存运输和安全方面,还存在着许多技术障碍。
首先,电解水制氢的成本比较高。在标准状况下制取1kg氢和0.5kg氧的理论电量为2390(Ah),理论电能消耗W=I*E=2390/1000*1.23=2.95KWh(1.23V为水分解电压),电解槽实际耗电量和实际分解电压都要比理论值大。实际操作电压,根据电解槽的结构及操作状况,一般为理论分解电压的1.5- 2倍。现在电解水制氢设备生产1标立方米氢和0.5标立方米氧的实际电能消耗为5KWh,大于理论值。可见利用电解水制氢的成本比较高,从经济角度考虑与其他燃料相比没有成本优势。
其次,氢气的安全性比较差。由于氢气是一种极易挥发、燃烧、爆炸的物质,不安全因素也是限制其应用的主要问题,实验表明:(1)在空气中氢气的燃烧极限很宽,按体积比氢气含量达到4%~70%就可燃烧,与汽油的燃烧极限1.3%~7.6%相比要宽的多;(2)点燃氢气最小能量只需要0.005mcal,而且氢气燃烧时的火焰没有颜色不易发现;(3)高压氢气和低温液态氢很容易泄露,对储存要求较高。
由此可见,氢能在低成本生产、安全储存运输等技术方面目前还存在诸多问题,但氢能具有突出的优点:一是清洁环保;二是生产原料广泛,可以摆脱对于石化能源的依赖,所以,如何安全高效的制备、储运和应用氢能已成为当今世界急待攻关的难题。
发明内容
本发明所要解决的技术问题是针对传统水电解氢氧混合气体发生器存在的成本高,安全性低的问题,其目的在于提供了一种气液交换均匀,气体排出容易,能耗降低,安全可靠的安全高热值燃气制备方法及系统。该方法及系统所制备的高热值燃气安全性好,易于存储,热值高,不污染环境。
为了解决上述问题,根据本发明的一个方面,提供了一种安全高热值燃气制备方法,
通过水分子内氢键共振将电解产生的氢气和氧气与水通过分子键合形成分子团,所述分子团的通式为(H3O+-O2-OH--H2)n,其中:1≤n≤36;
利用重整液对所述分子团进行重整,得到包括H2、O2的混合型高热值燃气。
优化的,上述的一种安全高热值燃气制备方法,所述重整为:对气相液相界面进行接触传质和化合反应的混合重整。
优化的,上述的一种安全高热值燃气制备方法,所述重整液是包括有 碳氢化合物CxH2x+2和/或碳氢氧化合物CxH2x+2O的重整液。
优化的,上述的一种安全高热值燃气制备方法,所述重整液还包括量子碳素添加剂,其中:量子碳素为0.3nm-1.0nm的石墨烯液,所述量子碳素液的基本参数为:pH为1.8-2.2;电动势ORP为280mv-380mv;电导率为1.2ms/cm-5.0ms/cm;固含量为0.1%-0.8%。
优化的,上述的一种安全高热值燃气制备方法,用于激振的激振装置固有频率遵循公式:
Figure PCTCN2016094187-appb-000001
式中:f为激振装置固有频率;h为激振装置厚度;L为激振装置长度;E为激振装置弹性模量;P为激振装置密度。
优化的,上述的一种安全高热值燃气制备方法,所述混合型高热值燃气包括:CnH2n+2气体,其中,15>n>0。
优化的,上述的一种安全高热值燃气制备方法,所述高热值燃气包括如下体积组分:
H2:20%~60%;O2:10%~30%;CnH2n+2(5>n≧1):15%~30%;CnH2n+2(n≧6):5%~25%。
为了解决上述问题,根据本发明的另一个方面,提供了一种安全高热值燃气制备系统,包括:设置有旋转电极板的水离子电解装置,与水离子电解装置相连的包括有碳氢化合物重整液的燃气重整装置;其中:所述旋转电极板上设置有激振装置。
优化的,上述的一种安全高热值燃气制备系统,所述激振装置的固有频率遵循公式:
Figure PCTCN2016094187-appb-000002
式中:f为激振装置(固有)频率;h为激振装置厚度mm;L为激振装置长度mm;E为激振装置弹性模量;P为激振装置密度。
优化的,上述的一种安全高热值燃气制备系统,所述燃气重整装置中设置气液交换层,所述气液交换层位于重整液中,通向燃气重整装置内部 的气体经过气液交换层后再被导出。
因此,与现有技术相比,本发明具有以下优点:
(1)安全性好:通过激振原理将单分子氢氧气体和水分子经氢键重新组合成新的分子团,燃烧温度在3500摄氏温度以上,并且属于爆缩燃烧,在封闭的空间中相对爆发式燃烧安全稳定;
(2)易于存储:新的分子的在-90℃~-190℃之间的一个温度点同时液化成液体燃料;可以承受200kg/cm3以上压力并长期储存不发生任何性质变化;
(3)更加环保:不含硫S和氮N成分,热值可达11000~51000大卡(Kcal/m3),相对常规燃料而言,节能和经济性均能节省50%以上,具有清洁环保、热值高、多用途的特点。
附图说明
图1为高热值燃气合成原理图;
图2为高热值燃气制备控制系统;
图3为带有燃气压缩装置的高热值燃气制备系统示意图;
图4为水离子电解装置与压缩燃气装置连接示意图;
图5为带有燃气重整装置的高热值燃气制备系统示意图;
图6为水离子电解装置与燃气重整装置和燃烧装置的连接示意图;
图7为采用两个直流发电装置和水离子电解装置单边组合的示意图;
图8为采用单个直流发电装置和水离子电解装置单边组合的示意图;
图9为水离子电解装置示意图;
图10为水离子电解装置局部示意图;
图11-1为水离子电解装置的旋转电极板主视示意图;
图11-2为水离子电解装置的旋转电极板侧视示意图;
图11-3为水离子电解装置的旋转电极板的激振装置连接示意图;
图12-1为水离子电解装置的正负电极板主视示意图;
图12-2为水离子电解装置的正负电极板侧视示意图;
图13为直流发电装置示意图;
图14-1为直流发电装置的转子磁铁主视示意图;
图14-2为直流发电装置的转子磁铁侧视示意图;
图15-1为直流发电装置的定子金属盘主视示意图;
图15-2为直流发电装置的定子金属盘侧视示意图;
图16为实施例1的色谱分析结果示意图;
图17为实施例1的色谱分析记录。
图中:
直流发电装置1、壳体1-1、转子磁铁1-2、定子金属盘1-3、固定件1-4、绝缘支架1-5;水离子电解装置2、动轴2-1、绝缘盘2-2、电解装置壳体2-3、旋转电极板2-4、激振装置2-4-1、固定螺栓2-4-2、散热管2-5、气液分离控制罐2-6、低压限压表2-7、高压限压表2-8、安全阀2-9、物料添加口2-10、气体出口2-11、电解液2-12、系统管道2-13、风冷叶片扇2-14、系统循环泵2-15、绝缘电板2-16、正负电极板2-17、燃气压缩装置3、压力仪表系统3-1、储存罐3-2;电机4;燃气重整装置5、燃气重整装置罐体5-1、重整液5-2、气液交换层5-3;燃烧装置6。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
一、制备方法
如图1所示,为本发明的制备方法原理图。现有的水电解氢氧混合气体发生器所产生的氢氧气体均为单质气体的混合气体,氢氧单质气体混合存在一定的安全隐患。
本发明的方法在电解水离子化到产生氢氧气体的过程中,将水、氢气、氧气三者的单分子通过分子键合形成一个新的分子团,将活性较高的氢分子束缚在分子团中。因此,新的分子团中氢氧分子比例十分稳定,燃烧时还原成水,属于爆缩燃烧,在封闭的空间中,爆缩燃烧相对爆发式燃烧是十分安全的。
新的分子团的燃烧温度在3500摄氏温度以上,并且能被液化成液体燃 料,可以承受200kg/cm3以上压力,长期储存不发生任何性质变化。
在实施本方法时,电解液可选用KOH,浓度为5%-30%,键合产生的分子团的通式为(H3O+-O2-OH--H2)n,其中:1≤n≤36。
重整液是包括有碳氢化合物CxH2x+2和/或碳氢氧混化合物CxH2x+2O的重整液。还可以添加量子碳素添加剂。其中,量子碳素为0.3nm-1.0nm的石墨烯液,量子碳素液的基本参数为:pH为1.8-2.2;电动势ORP为280mv-380mv;电导率为1.2ms/cm-5.0ms/cm;固含量为0.1%-0.8%。
本方法中,用于激振的激振装置固有频率遵循公式:
Figure PCTCN2016094187-appb-000003
式中:f为激振装置(固有)频率;h为激振装置厚度mm;L为激振装置长度mm;E为激振装置弹性模量;P为激振装置密度;其中,激振频率为10-3000Hz之间调整。
二、制备系统
本发明提供了安全高热值燃气制备系统。具体描述如下。
1、整体结构
如图2-6所示,系统的整体结构包括:直流发电装置1、水离子电解装置2、燃气压缩装置3、燃气重整装置5。
图2是本系统的控制系统。该控制系统是用于时间点、压力、温度、物料供给、压缩燃气参数、燃烧参数等进行数据采集并进行自动化管理。
2、压缩装置
如图3-4所示,本系统电解时激振产生的分子团可以通过压缩装置压缩存储。包括:压力仪表系统3-1、储存罐3-2以及与水离子电解装置2的气体出口2-11相连的气体压缩腔。压缩燃气系统为常规设备,压力范围20.7-24.8Mpa,储存罐3-2为标准气体罐。
3、重整装置
如图5-6所示,在燃烧时,需要对分子团进行重整。将气体经过重整装置罐体5-1后进入燃烧装置6燃烧,该燃烧装置6为常规设备。
可以采用多个重整装置5进行重整。重整装置罐体5-1内设置有重整液5-2和气液交换层5-3。重整液5-2为碳氢化合物。气液交换层5-3为纤维体,例如毛毡、玻璃纤维、异形塑料颗粒;也可以采用钢丝球作为气液交换层5-3。通向重整装置内部的气体经过气液交换层后再被导出。燃气重整装置罐体5-1的进气口通过气管通向气液交换层5-3下方,其出气口位于重整液5-2的液面上方。
重整液5-2是包括有碳氢化合物CxH2x+2和/或碳氢氧混化合物CxH2x+2O的重整液。还可以添加0.1%-1.0%的量子碳素添加剂。其中,量子碳素为0.3nm-1.0nm的石墨烯液,量子碳素液的基本参数为:pH为1.8-2.2;电动势ORP为280mv-380mv;电导率为1.2ms/cm-5.0ms/cm;固含量为0.1%-0.8%。
本发明所采用的技术方案制备的高热值燃气不含硫S和氮N成分,热值可达11000~51000大卡Kcal/m3
4、电解装置
如图7-8所示,在电解时,本实施例可以采用两个直流发电装置1进行电解,如图7所示;也可以采用单个直流发电装置1进行电解,如图8所示。两者根据工况选用。
水离子电解装置如图9-12所示。水离子电解装置2包括动轴2-1、绝缘盘2-2、壳体2-3、旋转电极板2-4、激振装置2-4-1、散热管2-5至少一组或多组、气液分离控制罐2-6、低压限压表2-7、高压限压表2-8、安全阀2-9、物料添加口2-10、气体出口2-11、电解液2-12、系统管道2-13、风冷叶片扇2-14、系统循环泵2-15、正负电极板2-17。
电解装置壳体2-3内壁相对两侧分别设置有两个绝缘盘2-2,正负电极板2-17分别设置于两个绝缘盘2-2上。旋转电极板2-4通过动轴2-1设置于两块正负电极板2-17之间。
电解装置壳体2-3的顶部通过散热管2-5连接气液分离控制罐2-6,气液分离控制罐2-6的液体回收出口通过系统管道2-13与电解装置壳体2-3 的内部相连;气液分离控制罐2-6的气体出口2-11与燃气压缩装置3、燃气重整装置5相连。
气液分离控制罐2-6上设置有低压限压表2-7、高压限压表2-8、安全阀2-9、物料添加口2-10。散热管2-5优选波纹管,并且其旁边配有风冷叶片扇2-14为其散热。
其中,旋转电极板2-4至少为一片,也可以由多片组成电极组,每片间隔1-10mm。每片旋转电极板2-4装置有若干个激振装置2-4-1,该激振装置2-4-1可以通过固定螺栓2-4-2固定在旋转电极板2-4上。
旋转电极板2-4在电解液2-12中以一定角速度旋转,并在正负电极板2-17的电极电源DC+和DC-的作用下,产生水电解氢氧气体。
旋转电极板2-4在旋转中带动激振装置2-4-1产生激振,激振装置固有频率遵循公式:
Figure PCTCN2016094187-appb-000004
式中:f为激振装置固有频率;h为激振装置厚度mm;L为激振装置长度mm;E为激振装置弹性模量GPa;P激振装置密度g/cm3;激振频率为10-3000Hz之间调整。本发明中的激振装置2-4-1为激振片。激振片上的正负极所产生的电解氢氧气体在激振频率的作用下,产生的单分子氢氧气体和水分子,通过氢键重新组合成新的分子团。
新的分子团和电解液经过散热管2-5到达气液分离控制罐2-6进行气液分离,分离后的气体通过出口2-11输出,低压限压表2-7和高压限压表2-8负责保持压力在0.01-1.0Mpa之间运行,物料添加口2-10负责添加补充液和添加剂,安全阀2-9控制在1.5-2.0Mpa,管道2-13为系统自动循环管道,根据温控等工况条件可开启循环泵2-15。
5、发电装置
直流发电装置如图13-15所示,其包括:壳体1-1、转子磁铁1-2、定子金属盘1-3、固定件1-4、绝缘体支架1-5、电机4。金属盘顶端引导线联接为DC-、金属盘中心轴引导性联接为DC+组成。转子磁铁圆盘1-2为导 电金属圆盘,金属可以是铜及铜合金或者是导电金属,至少一片或多片组成;转子磁铁1-2为高磁通量磁铁,磁通量为0.5-1.2T特斯拉之间,两片之间至少夹有一片或多片定子金属盘1-3组成。
调频电机4提供一定转速的动能,由直流发电装置1转换为额定的直流电解电源供给水离子电解装置2。
6、实施效果
本发明所采用的技术方案制备的高热值燃气属于爆缩燃烧,在封闭的空间中爆缩燃烧相对爆发式燃烧十分安全,具有的安全稳定的性质优于其它燃气性质;新的分子团在一个温度点同时液化成液体燃料;燃烧温度在3500摄氏温度以上;可以承受200kg/cm3以上压力并长期储存不发生任何性质变化。
本发明所采用的技术方案所制备的高热值燃气和其它常规燃料比较如下:
表1-重整气体与不同燃料的热值以及二氧化碳排放量比较
燃料种类 数量KG 热值Kcal CO2减排量%
LPG 1 11000 20
重油 1 10000 75
柴油 1 9600 60
煤炭 1 5000 90
电能 1KW 860 折算
天然气 1 8000 20
本发明重整气 1 11000-51000 小于5%
下面能过几个实施例对本发明的有益效果进行验证。
实施例1
水的电离子:
Figure PCTCN2016094187-appb-000005
电离出的H3O++HO-质子水合物和氢氧根离子的混合物质与烃烷结合重整。
电解液2-12选用KOH浓度为5%-30%,选用15%。重整液2-21选用包括C1-C5醇烷的混合物。
按本实施例1中方法制备的碳氢结构体分子气体成分进行检测和分析,其色谱分析结果如图16所示;色谱分析记录如图17所示。检测和分析结 果显示,气体由多种碳氢结构组成,热值>12000Kcal/m3
实施例2
水的电离子:
Figure PCTCN2016094187-appb-000006
电离出的H3O++HO-质子水合物和氢氧根离子的混合物质与烃烷结合重整。
电解液2-12选用KOH浓度为5%-30%,选用20%。重整液2-21为碳氢化合物,选用C3-C8烷烃混合物。
重整前后碳氢结构体分子气体成分如下表所示。从表中可以看出同样,多组份的碳氢结构体热值>30000Kcal/m3。
表2-重整前后碳氢结构体分子气体成分分析表
成分 重整混合气体% 备注
H2 39.50  
O2 19.03  
CH4 4.05  
CO ND 没有检出
CO2 ND 没有检出
C2H6 0.5  
C3H8 11.59  
C3H6 0.04  
i-C4H10 0.55  
n-C4H10 2.68  
1-C4H8+i-C4H8 0.07 分子团结合紧密
t-2-C4H8 0.21  
c-2-C4H8 0.25  
1,3-C4H6 0.16  
i-C5H12 6.82  
n-C5H12 4.49  
C6up 10.06  
合计% 100  
燃值Kcal/m3 31000  
实施例3
水的电离子:
Figure PCTCN2016094187-appb-000007
电离出的H3O++HO-质子水合物和氢氧根离子的混合物质与烃烷结合重整。
电解液2-12选用KOH浓度为5%-30%,选用30%。重整液2-21为碳氢化 合物,选用C5-C12醇烷混合物。重整后得到的多组份的碳氢结构体热值>50000Kcal/m3
实例表明,本发明的安全高热值燃气为清洁能源,和现有的任何常规燃料比较都有十分优秀的节能减排效果。从燃烧实绩可知,相对常规燃料而言,节能和经济性均能节省50%以上;有效控制NOX、SOX、CO2等有害气体的排放,燃烧排放均能减排60%以上。本发明不限于上述举例,可适用于燃烧领域所有应用。如,常规商用燃烧;高压燃料储罐;液化储运等等。
以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (10)

  1. 一种安全高热值燃气制备方法,其特征在于,
    通过水分子内氢键共振将电解产生的氢气和氧气与水通过分子键合形成分子团,所述分子团的通式为(H3O+-O2-OH--H2)n,其中:1≤n≤36;
    利用重整液对所述分子团进行重整,得到包括H2、O2的混合型高热值燃气。
  2. 根据权利要求1所述的一种安全高热值燃气制备方法,其特征在于,所述重整为:对气相液相界面进行接触传质和化合反应的混合重整。
  3. 根据权利要求1所述的一种安全高热值燃气制备方法,其特征在于,所述重整液是包括有碳氢化合物CxH2x+2和/或碳氢氧化合物CxH2x+2O的重整液。
  4. 根据权利要求3所述的一种安全高热值燃气制备方法,其特征在于,所述重整液还包括量子碳素添加剂,其中:量子碳素为0.3nm-1.0nm的石墨烯液,所述量子碳素液的参数为:pH为1.8-2.2;电动势ORP为280mv-380mv;电导率为1.2ms/cm-5.0ms/cm;固含量为0.1%-0.8%。
  5. 根据权利要求1所述的一种安全高热值燃气制备方法,其特征在于,用于激振的激振装置固有频率遵循公式:
    Figure PCTCN2016094187-appb-100001
    式中:f为激振装置固有频率;h为激振装置厚度;L为激振装置长度;E为激振装置弹性模量;P为激振装置密度。
  6. 根据权利要求1所述的一种安全高热值燃气制备方法,其特征在于,所述混合型高热值燃气包括:CnH2n+2气体,其中,15>n>0。
  7. 根据权利要求6所述的一种安全高热值燃气制备方法,其特征在于,所述高热值燃气包括如下体积组分:
    H2:20%~60%;O2:10%~30%;CnH2n+2(5>n≧1):15%~30%;CnH2n+2(n≧6):5%~25%。
  8. 一种安全高热值燃气制备系统,其特征在于,包括:设置有旋转电极板的水离子电解装置,与水离子电解装置相连的包括有碳氢化合物重整液的燃气重整装置;其中:所述旋转电极板上设置有激振装置。
  9. 根据权利要求8所述的一种安全高热值燃气制备系统,其特征在于,所述激振装置的固有频率遵循公式:
    Figure PCTCN2016094187-appb-100002
    式中:f为激振装置固有频率;h为激振装置厚度mm;L为激振装置长度mm;E为激振装置弹性模量;P为激振装置密度。
  10. 根据权利要求8所述的一种安全高热值燃气制备系统,其特征在于,所述燃气重整装置中设置气液交换层,所述气液交换层位于重整液中,通向燃气重整装置内部的气体经过气液交换层后再被导出。
PCT/CN2016/094187 2016-08-07 2016-08-09 一种安全高热值燃气制备方法及系统 WO2018027565A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16912020.1A EP3495457A4 (en) 2016-08-07 2016-08-09 METHOD AND SYSTEM FOR THE SAFE PRODUCTION OF FUEL GAS WITH A HIGH HEATING VALUE
JP2019526352A JP2019528365A (ja) 2016-08-07 2016-08-09 安全な高熱量燃料ガスの製造方法及びシステム
US16/323,729 US20190177628A1 (en) 2016-08-07 2016-08-09 Method and system for preparing fuel gas with high heat value and safety
KR1020197002387A KR20190021414A (ko) 2016-08-07 2016-08-09 안전적 고발열량 연료 가스 제조 방법 및 시스템

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN201610639852.4A CN106244269A (zh) 2016-08-07 2016-08-07 一种安全高热值燃气制备方法及系统
CN201610639542.2A CN106283102B (zh) 2016-08-07 2016-08-07 一种水电解装置及燃气制备系统
CN201610639890.XA CN106118769A (zh) 2016-08-07 2016-08-07 一种燃气重整装置及燃气制备方法
CN201610639781.8A CN106315508B (zh) 2016-08-07 2016-08-07 一种含氢气体的存储及使用方法
CN201610639888.2 2016-08-07
CN201610639543.7A CN106190378A (zh) 2016-08-07 2016-08-07 一种燃气重整液及燃气重整与制备方法
CN201610639890.X 2016-08-07
CN201610639888.2A CN106191915B (zh) 2016-08-07 2016-08-07 一种用于水电解的直流发电装置及电解系统
CN201610639781.8 2016-08-07
CN201610639889.7A CN106048644B (zh) 2016-08-07 2016-08-07 一种含氢气体的压缩系统
CN201610639889.7 2016-08-07
CN201610639543.7 2016-08-07
CN201610639852.4 2016-08-07
CN201610639542.2 2016-08-07

Publications (1)

Publication Number Publication Date
WO2018027565A1 true WO2018027565A1 (zh) 2018-02-15

Family

ID=61161362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094187 WO2018027565A1 (zh) 2016-08-07 2016-08-09 一种安全高热值燃气制备方法及系统

Country Status (5)

Country Link
US (1) US20190177628A1 (zh)
EP (1) EP3495457A4 (zh)
JP (1) JP2019528365A (zh)
KR (1) KR20190021414A (zh)
WO (1) WO2018027565A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265721A (en) * 1980-05-05 1981-05-05 Hackmyer Saul A Commercial hydrogen gas production by electrolysis of water while being subjected to microwave energy
CA2143482A1 (en) * 1995-02-27 1996-08-28 Yoshihiko Takeshita Method of electrolyzing water and apparatus thereof
CN1906330A (zh) * 2004-01-20 2007-01-31 氢技术应用公司 将水转变成新的气态且可燃形式的仪器和方法及由此形成的可燃气体
CN203270043U (zh) * 2013-03-27 2013-11-06 曼波飞梭有限公司 水合离子节能器及其极间共振模块
US20130312327A1 (en) * 2010-12-20 2013-11-28 Impara Finanz Ag Combustible gas composition
CN104312648A (zh) * 2014-09-04 2015-01-28 朱光华 一种高热值燃气及其制备方法与实施设备
CN204162674U (zh) * 2014-09-04 2015-02-18 朱光华 一种制备高热值燃气的实施设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006144A1 (fr) * 1993-08-27 1995-03-02 OSHIDA, Hisako +hf Procede et dispositif d'electrolyse de l'eau
WO2000034208A1 (en) * 1998-12-10 2000-06-15 Shuichi Sugita Reforming material for fluid material
BE1018392A5 (nl) * 2009-01-20 2010-10-05 Palmir Nv Elektrolysesysteem.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265721A (en) * 1980-05-05 1981-05-05 Hackmyer Saul A Commercial hydrogen gas production by electrolysis of water while being subjected to microwave energy
CA2143482A1 (en) * 1995-02-27 1996-08-28 Yoshihiko Takeshita Method of electrolyzing water and apparatus thereof
CN1906330A (zh) * 2004-01-20 2007-01-31 氢技术应用公司 将水转变成新的气态且可燃形式的仪器和方法及由此形成的可燃气体
US20130312327A1 (en) * 2010-12-20 2013-11-28 Impara Finanz Ag Combustible gas composition
CN203270043U (zh) * 2013-03-27 2013-11-06 曼波飞梭有限公司 水合离子节能器及其极间共振模块
CN104312648A (zh) * 2014-09-04 2015-01-28 朱光华 一种高热值燃气及其制备方法与实施设备
CN204162674U (zh) * 2014-09-04 2015-02-18 朱光华 一种制备高热值燃气的实施设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3495457A4 *

Also Published As

Publication number Publication date
EP3495457A4 (en) 2020-03-25
JP2019528365A (ja) 2019-10-10
US20190177628A1 (en) 2019-06-13
KR20190021414A (ko) 2019-03-05
EP3495457A1 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
Naqvi et al. Hydrogen production through alkaline electrolyzers: A techno‐economic and enviro‐economic analysis
US20090134041A1 (en) Compact electric appliance providing hydrogen injection for improved performance of internal combustion engines
El Kady et al. Parametric study and experimental investigation of hydroxy (HHO) production using dry cell
Pielecha et al. Use of hydrogen fuel in drive systems of rail vehicles
Sudrajat et al. Principle of generator HHO hybrid multistack type production technologies to increase HHO gas volume
Pant et al. Fundamentals and use of hydrogen as a fuel
Kameyama et al. Carbon capture and recycle by integration of CCS and green hydrogen
CN106118769A (zh) 一种燃气重整装置及燃气制备方法
WO2018027565A1 (zh) 一种安全高热值燃气制备方法及系统
CN106283102B (zh) 一种水电解装置及燃气制备系统
Huang et al. Effect of ignition timing on the emission of internal combustion engine with syngas containing hydrogen using a spark plug reformer system
Gohar et al. Comparative Analysis of Performance Chacateristicts of CI Engine with and without HHO gas (Brown Gas)
Akpojaro et al. Electricity generation from cow dung biogas
Veziroglu et al. Hydrogen energy progress VIII
CN106315508B (zh) 一种含氢气体的存储及使用方法
CN106048644B (zh) 一种含氢气体的压缩系统
CN106190378A (zh) 一种燃气重整液及燃气重整与制备方法
CN106191915B (zh) 一种用于水电解的直流发电装置及电解系统
Sastri Hydrogen energy research and development in India—an overview
Huang et al. Improvement in hydrogen production with plasma reformer system
CN106244269A (zh) 一种安全高热值燃气制备方法及系统
Thanga et al. A review on the application of hydrogen rich gas as fuel supplement in CI and SI internal combustion engine
CN112250040A (zh) 一种通过低温等离子体重整有机化合物的制氢装置及制氢方法
Song et al. Hydrogen production from partial oxidation of dimethyl ether by plasma-catalyst reforming
Bapu et al. Hydrogen fuel generation and storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002387

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019526352

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016912020

Country of ref document: EP

Effective date: 20190307