WO2018025876A1 - Measurement apparatus and measurement method - Google Patents

Measurement apparatus and measurement method Download PDF

Info

Publication number
WO2018025876A1
WO2018025876A1 PCT/JP2017/027935 JP2017027935W WO2018025876A1 WO 2018025876 A1 WO2018025876 A1 WO 2018025876A1 JP 2017027935 W JP2017027935 W JP 2017027935W WO 2018025876 A1 WO2018025876 A1 WO 2018025876A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
measuring
gate insulating
insulating film
measurement
Prior art date
Application number
PCT/JP2017/027935
Other languages
French (fr)
Japanese (ja)
Inventor
利弥 坂田
隆治 円城寺
嘉一 脇坂
Original Assignee
国立大学法人東京大学
株式会社Afiテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 株式会社Afiテクノロジー filed Critical 国立大学法人東京大学
Publication of WO2018025876A1 publication Critical patent/WO2018025876A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to a measuring apparatus and a measuring method, and more particularly to a measuring apparatus for measuring a sample flowing in a flow path.
  • a sample such as a cell or microorganism flowing in a flow path is irradiated with a laser beam, and the properties of the sample are quantified by detecting the intensity of fluorescence or scattered light emitted from the sample.
  • a flow cytometer is known (for example, Patent Document 1). With this flow cytometer, the sample can be individually measured or separated. The flow cytometer requires a laser irradiation unit that irradiates a sample with laser light and an optical detector that detects the intensity of fluorescence or scattered light emitted from the sample for each sample.
  • the above-mentioned flow cytometer requires a laser irradiation part and an optical detector for each flow path, and there is a concern that the apparatus will be enlarged.
  • an object of the present invention is to provide a measuring apparatus and a measuring method that can be further simplified.
  • the measurement apparatus is a measurement apparatus including a measurement unit that measures charges, wherein the measurement unit includes at least two electrodes that draw the sample near the gate insulating film by a dielectrophoretic force, and charges discharged from the sample. And a field-effect transistor that measures through the gate insulating film.
  • the measurement method according to the present invention includes a step of drawing a sample in a liquid near a gate insulating film by a dielectrophoretic force, and a step of measuring charges discharged from the sample through the gate insulating film. To do.
  • the laser irradiation unit and the optical detector can be omitted as in the conventional optical measurement device. Therefore, it can be simplified.
  • FIG. 2 is a partially enlarged view of the AA cross section in FIG. 1, schematically showing a circuit configuration. It is a partial expanded sectional view which shows typically the use condition of the measuring apparatus which concerns on this embodiment. It is a top view which shows typically the structure of the modification of the measuring apparatus which concerns on this embodiment. It is a perspective view showing typically the composition of another modification of the measuring device concerning this embodiment. It is a graph which shows the result of having measured the sample with the measuring device concerning this embodiment, and Drawing 6A shows the result of having measured a cancer cell and Drawing 6B with a normal cell.
  • a measurement apparatus 10A shown in FIG. 1 includes a measurement unit 12 and a flow path 18 that supplies a liquid containing a sample 20 onto the measurement unit 12.
  • the sample 20 is a living body microparticle such as a cell or a microorganism, a microbead, or the like.
  • the measurement unit 12 includes a gate insulating film 28, and a field effect transistor (FET) 14 that measures the charge discharged from the sample 20, and the sample 20 near the gate insulating film 28 by a dielectrophoretic force. And two electrodes 16 for attracting each other.
  • the size of the inner space of the flow path 18 can be selected as appropriate. For example, both the width and the height are preferably about 20 ⁇ m to 100 ⁇ m.
  • the inner space of the flow path 18 may have a circular cross section in the width direction as well as a quadrangle.
  • the electrode 16 is provided so as to face the short direction of the flow path 18, has a substantially trapezoidal shape in plan view, and is formed so as to taper from the side of the flow path toward the center.
  • a DEP (Dielectrophoresis) solution As the liquid, a DEP (Dielectrophoresis) solution, a cell culture solution, or a buffer solution having a pH of about 7 can be used.
  • Examples of the electric charges discharged from the sample 20 include ions and ionic molecules discharged from cell membranes and cells, ions discharged from particles other than cells, and the like.
  • Examples of ionic / ionic molecules discharged from the cell membrane include sugar chains present in the cell membrane, specifically, sugar chains containing sialic acid that is highly expressed in cancer cells.
  • Examples of ion / ionic molecules excreted from cells include hydrogen ions brought about by changes in CO 2 concentration excreted by cell respiration, lactic acid excreted by cell metabolism, and histamine excreted from leukemia stem cells.
  • Examples of ions ejected from particles other than cells include ions ejected by antigen / antibody reaction on the microbead surface, DNA molecule recognition reaction, various biomolecule recognition reactions, and the like.
  • the FET 14 is formed substantially at the center in the width direction of the flow path 18, and a source 24 is disposed on the upstream side of the flow path 18, and a drain 26 is disposed on the downstream side.
  • An electrode 16 is formed on the FET 14 via a gate insulating film 28.
  • the electrodes 16 are provided on both sides in the width direction of the flow path 18 across the channel of the FET 14.
  • the electrode 16 is preferably formed of a material having high conductivity.
  • the electrode 16 can be formed of gold, silver, copper, or the like.
  • the electrode 16 is electrically connected to a power source that applies an alternating voltage having a specific frequency. When an AC voltage having a specific frequency is applied to the electrode 16 from the power source, a non-uniform electric field, that is, an electric field having a gradient in electric field strength is generated between the electrodes 16.
  • the measurement part 12 is formed in the bottom part of the flow path 18, as shown in FIG.
  • the FET 14 includes a semiconductor substrate 22, a source 24 and a drain 26 formed on the surface of the semiconductor substrate 22, and a gate insulating film 28 formed on the source 24 and the drain 26.
  • the FET 14 can use either n-MOS or p-MOS.
  • the semiconductor substrate 22 may be formed of Si, Ga, As, ITO, IGZO, IZO, or the like, or an organic semiconductor, a carbon semiconductor (for example, a carbon nanotube, a graphene semiconductor, a diamond semiconductor, or the like) may be used.
  • the gate insulating film 28 can be formed of an oxide or nitride such as SiO 2 , Si 3 N 4 (SiN x ), Ta 2 O 5 , Al 2 O 3 .
  • the source 24 and the drain 26 are electrically connected to a power source 34 and an ammeter 36, and are configured to measure a drain current flowing from the source 24 to the drain 26.
  • a drain current flowing from the source 24 to the drain 26 When the charge density on the gate insulating film 28 changes, the magnitude of the drain current changes. That is, in order to keep the drain current constant, it is necessary to change the gate voltage as the charge density on the gate insulating film 28 changes.
  • the FET 14 electrically measures the change in the charge density on the gate insulating film 28 by measuring the change in the gate voltage.
  • a reference electrode 32 is used as shown in FIG.
  • the reference electrode 32 is a reference potential in the FET 14 and is electrically connected to the liquid in the flow path 18.
  • a liquid containing an infinite number of samples 20 is flowed from the upstream side of the flow path 18 to the downstream side at a predetermined flow rate.
  • the sample 20 reaches the vicinity of the measurement unit 12 through the flow path 18 in a row at a predetermined interval.
  • a non-uniform electric field is generated between the electrodes 16 due to the applied AC voltage having a specific frequency.
  • the sample 20 that has reached the vicinity of the measurement unit 12 is polarized by the electric field, and is attracted between the electrodes 16 by the dielectrophoretic force generated by the polarization of the surrounding liquid and the gradient of the electric field, and approaches the gate insulating film 28 of the channel (FIG. 3).
  • the dielectrophoretic force is determined by the degree of non-uniformity of the electric field, that is, the electric field intensity gradient between the pair of electrodes 16, that is, the amount of change in the density of the electric field lines.
  • the measuring apparatus 10A can measure the property of the sample 20.
  • the sample 20 Since the liquid is flowing at a predetermined flow velocity, the sample 20 once approaches the gate insulating film 28 of the channel by the dielectrophoretic force, and then flows on the liquid flow again downstream.
  • the measuring device 10A continuously measures one sample at a predetermined interval for the countless samples 20 flowing through the flow path 18 at a predetermined interval.
  • the measurement apparatus 10 ⁇ / b> A may stop the voltage applied between the electrodes 16 and cause the sample 20 to flow downstream along the liquid flow. As a result, the measuring apparatus 10A can smoothly return the sample 20 once brought close to the gate insulating film 28 of the channel by the dielectrophoretic force by the flow of the liquid.
  • the measurement apparatus 10A electrically measures the property of the sample 20 by the measurement unit 12 formed at the bottom of the flow path 18, so that a laser irradiation unit, a conventional optical measurement apparatus, Since the optical detector can be omitted, it can be simplified accordingly.
  • the measurement apparatus 10A can measure the sample 20 without damaging the sample 20 in the liquid flowing at a predetermined flow rate by bringing the sample 20 close to the channel gate insulating film 28 so that the charge can be measured by the FET 14 by the dielectrophoretic force. it can. Further, the measurement apparatus 10A measures the electric charge by once bringing the sample 20 close to the channel gate insulating film 28 by the dielectrophoretic force, and then again flows on the liquid flow and flows downstream. Properties can be measured.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
  • an identification film (not shown) having an identification substance that combines with a characteristic substance that characterizes the properties of the sample 20 and discharges electric charges may be provided.
  • a characteristic substance sialic acid Lewis X sugar chain (the following (Chemical Formula 1)) or sialic acid Lewis A sugar chain (the following (Chemical Formula 2)) existing on the surface of the cancer cell is applied.
  • NeuAc is N-acetylneuramic acid (siarylic acid)
  • Gal is galactose
  • GlcNAc is N-acerylglucosamine
  • Fuc is fucose
  • the identification film is a so-called molecular template and has a base material and an identification substance.
  • the base material is formed of a hydrophilic polymer.
  • the hydrophilic polymer is a polymer having a hydrophilic functional group (hydroxyl group, carboxyl group), such as hydrogel, paper, superabsorbent polymer (SAP).
  • Hydrogel is a gel-like material in which hydrophilic polymer chains are cross-linked and retains a large amount of water and is excellent in water absorption, for example, polyhydroxyethyl methacrylate (Poly-HEMA, polyhydroxymethacrylate 2-hydroxyethyl). And polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), and the like.
  • Poly-HEMA may be a homopolymer of hydroxyethyl methacrylate (HEMA) or a copolymer with other monomers (for example, 2,3-dihydroxypropyl methacrylate, glycerol methacrylate (GMA), etc.).
  • Poly-HEMA tends to have a higher water content when it is a copolymer.
  • the PVP may be a homopolymer of N-vinyl-2-pyrrolidone (NVP), which is a copolymer obtained by polymerizing NVP as a main component and adding a crosslinking agent with HEMA, methyl methacrylate (MMA) or the like. May be.
  • NVP N-vinyl-2-pyrrolidone
  • MMA methyl methacrylate
  • Paper is manufactured by gluing plant fibers and other fibers.
  • Plant fibers are composed of cellulose, hemicellulose, and lignin.
  • Cellulose has a property in which a large number of hydroxyl groups are bonded to each other by hydrogen bonding, whereby plant fibers constituting the paper adhere to each other.
  • other fibers include fibers made of minerals, metals, synthetic resins, etc. From the viewpoint of more firmly fixing the identification substance, paper made of plant fibers (cellulose) is used. preferable.
  • SAP is a polymer that can absorb and retain water from several hundred times to several thousand times its own weight.
  • a polymer of acrylic acid can be used. Since a polymer of acrylic acid has a large number of carboxyl groups, it has a high hydrophilicity and is further crosslinked to a fine structure to form a gel having a high water absorption when it is in the form of a sodium salt.
  • hydrophilic polymers include cellulose derivatives such as 2-methacryloyloxyethyl phosphorylcholine (MPC), hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose (CMC-Na), hydroxyethylcellulose (HEC); alginic acid, hyaluronic acid, agarose , Starch, dextran, pullulan and other polysaccharides and derivatives thereof; homopolymers such as carboxyvinyl polymer, polyethylene oxide, poly (meth) acrylamide, poly (meth) acrylic acid, and copolymers of the homopolymer and polysaccharides , And a copolymer of the monomer constituting the homopolymer and other monomers; proteins such as collagen and gelatin and derivatives thereof; heparin, hyaluronic acid, chondroitin sulfate, Mention may be made of glycosaminoglycans such as dermatan sulfate, dextran sulfate
  • 1-vinyl-2-pyrrolidinone, propenoic acid 2-methyl ester, monomethacryloyloxyethyl phthalate, ammonium sulfatoethyl methacrylate, N-vinylpyrrolidone, N, N-dimethylacrylamide, 2- (methacryloyloxyethyl) ) -2- (Trimethylammonioethyl) phosphate and other hydrophilic polymers may be used.
  • hydrophilic polymers exemplified above may be used alone or in combination of two or more.
  • a known radical polymerization accelerator can be appropriately selected and used as the polymerization initiator.
  • those having water solubility or water dispersibility and uniformly contained in the entire system are preferably used.
  • water-soluble peroxides such as potassium peroxodisulfate and ammonium peroxodisulfate, water-soluble azo compounds such as VA-044, V-50, and V-501 (all of which are Wako Pure Chemical Industries, Ltd.)
  • a mixture of Fe 2+ and hydrogen peroxide can be used.
  • N, N'-methylenebisacrylamide, ethylene glycol dimethacrylate, vinyl methacrylate, or the like can be used as the crosslinking agent.
  • Phenylboronic acid can be used as the identification substance.
  • the phenylboronic acid contained in the identification film has an equilibrium based on the diol bond of the saccharide as shown in the following (Chemical Formula 4).
  • the boron atom changes from a nonionic state lacking an electron to a negatively charged state by ester bonding with the diol compound.
  • the identification film as a characteristic substance, for example, the sialic acid Lewis X sugar chain or the sialic acid Lewis A sugar chain as sugars binds to phenylboronic acid as an identification substance, thereby discharging negative charges. Prompt.
  • the discharged electric charges are charged in the gate insulating film 28.
  • the measuring apparatus 10A can measure the property of the sample 20 with higher sensitivity by measuring the change in the gate voltage.
  • the characteristic substance includes the first metabolite to be measured for blood cell stem cells such as hematopoietic stem cells and leukemia stem cells.
  • blood cell stem cells such as hematopoietic stem cells and leukemia stem cells.
  • BCAA valine, leucine, isoleucine
  • alanine glutamine
  • glycine glycine
  • H + Na
  • ions such as + , K + , Ca 2+ , NH 4+ , Cl ⁇ and HCO 3 ⁇ .
  • the identification film (molecular template) using phenylboronic acid as an identification substance, an oxide film, a polymer film containing ion-sensitive crown ether in polyvinyl chloride (PVC), and the like can be applied. Since the oxide film has a hydroxyl group in the solution, it has excellent hydrogen ion responsiveness.
  • hematopoietic stem cells for transplantation include uric acid
  • leukemia stem cells include physiologically active phospholipids such as histamine and PGE2.
  • canceration can be estimated from the difference in the charge amount of the functional group.
  • identification film molecular template
  • phenylboronic acid as an identification substance
  • oxide film that captures a change in hydrogen ion concentration due to the difference in the amount of charge of phospholipid.
  • one measurement unit 39 may include a plurality of FETs 40.
  • different identification films may be provided on at least some of the gate insulating films 28 of the FETs 40.
  • the measuring apparatus 10B can measure the electric charge discharged
  • the measurement apparatus 10A has been described as including one measurement unit 12, but the present invention is not limited to this.
  • the measurement apparatus 10 ⁇ / b> C may include a plurality of measurement units 42.
  • the plurality of measurement units 42 shown in this figure are arranged in an array.
  • the measurement unit 42 is provided with four electrodes 44 so as to surround one sample 20.
  • the electrode 44 is formed in a cylindrical shape.
  • An FET 43 is formed at the center bottom surrounded by the electrode 44.
  • An AC voltage having a predetermined frequency is applied between the electrodes 44 so as to generate a dielectrophoretic force that attracts the sample 20 to the FET 43.
  • a flow path (not shown) is formed on the plurality of measurement units 42 arranged in an array so that a liquid containing the sample 20 flows.
  • the measuring apparatus 10C when the sample 20 reaches the measuring unit 42, the sample 20 is attracted to the FET 43 between the electrodes 44 by the dielectrophoretic force and is captured between the electrodes 44.
  • the charges are discharged from the sample 20, the charges are charged on the gate insulating film (not shown in the figure).
  • the charge density on the gate insulating film changes.
  • the FET 43 measures a change in gate voltage accompanying a change in charge density on the gate insulating film.
  • the measuring apparatus 10 ⁇ / b> C can measure the property of the sample 20.
  • the measurement apparatus 10C according to this modification can measure the charges of the plurality of samples 20 at a time by arranging the measurement units 42 in an array.
  • the measuring apparatus 10C can sort by separating only the specific sample 20 from the measuring unit 42 according to the measurement result.
  • the measuring apparatus 10 ⁇ / b> C stops the voltage applied between the electrodes 44 capturing the specific sample 20.
  • the specific sample 20 moves away from the measurement unit 42, rides on the liquid flow, and flows downstream.
  • the measurement unit 39 shown in FIG. 4 may be applied to the measurement unit 42 of the measurement apparatus 10C shown in FIG. Thereby, the measuring apparatus can measure the electric charge discharged
  • a measuring device with an identification film was actually manufactured, and it was verified whether the properties of cancer cells and normal cells could be measured as samples.
  • the FET used IGZO as a semiconductor substrate, ITO as a source / drain, SiO 2 as a gate insulating film, and a channel area of 20 ⁇ 10 ⁇ m 2 .
  • the electrode was formed using gold.
  • an identification film was formed of a base material made of HEMA and MPC and an identification substance made of phenylboronic acid.
  • the DEP liquid was allowed to flow at a flow rate of 3.3 cm / s while an AC voltage of 10 V and 1.4 MHz was applied between the electrodes.
  • a DEP solution was prepared by adding 8.5 g of sucrose, 0.3 g of D-glucose, and 0.1 g of BSA to 100 ml with pure water. The FET was measured for 100 ⁇ s (10 4 times / s). Samples were flowed at 10 / s intervals. The results are shown in FIGS. 6A and 6B. In this figure, the horizontal axis shows time (sec) and the vertical axis shows the change in surface potential (mV) which is the gate voltage. From the result of FIG. 6A, the negative charge was measured 6 times when cancer cells were flowed.
  • the measurement device can measure the negative charge generated by the binding of the sugar chain present in the cell membrane of the cancer cells in the liquid flowing at a predetermined flow rate to the phenylboronic acid. It was confirmed that the cells could be measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Provided are a measurement apparatus and a measurement method that can achieve further simplification. A measurement apparatus (10A) provided with a measurement unit (12) for measuring charges is characterized in that the measurement unit (12) has: at least two electrodes (16) that draw a sample (20) near a gate insulating film (28) by means of dielectrophoresis force; and a field effect transistor (14) for measuring charges outputted from the sample (20) through the gate insulating film (28).

Description

測定装置及び測定方法Measuring apparatus and measuring method
 本発明は、測定装置及び測定方法に関し、特に流路を流れる試料を測定するための測定装置に関する。 The present invention relates to a measuring apparatus and a measuring method, and more particularly to a measuring apparatus for measuring a sample flowing in a flow path.
 測定装置の一例として、流路中を流れる細胞や微生物などの試料に、レーザー光を照射し、当該試料から発せられた蛍光や散乱光の強度を検出することで、試料の性質を定量化するフローサイトメーターが知られている(例えば、特許文献1)。このフローサイトメーターにより、試料を個々に測定したり、分取したりすることができる。フローサイトメーターは、試料にレーザー光を照射するレーザー照射部と、1つ1つの試料毎に、当該試料から発せられた蛍光や散乱光の強度を検出する光学検出器が必要である。 As an example of a measuring device, a sample such as a cell or microorganism flowing in a flow path is irradiated with a laser beam, and the properties of the sample are quantified by detecting the intensity of fluorescence or scattered light emitted from the sample. A flow cytometer is known (for example, Patent Document 1). With this flow cytometer, the sample can be individually measured or separated. The flow cytometer requires a laser irradiation unit that irradiates a sample with laser light and an optical detector that detects the intensity of fluorescence or scattered light emitted from the sample for each sample.
特開2012-21863号公報JP 2012-21863 A
 上記したフローサイトメーターは、レーザー照射部や、光学検出器が流路毎に必要になるため、装置が大型化してしまう、という懸念がある。 The above-mentioned flow cytometer requires a laser irradiation part and an optical detector for each flow path, and there is a concern that the apparatus will be enlarged.
 そこで本発明は、より簡素化することができる測定装置及び測定方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a measuring apparatus and a measuring method that can be further simplified.
 本発明に係る測定装置は、電荷を計測する測定部を備える測定装置において、前記測定部は、誘電泳動力によりゲート絶縁膜付近に試料を引き寄せる少なくとも2つの電極と、前記試料から排出される電荷を、前記ゲート絶縁膜を通じて計測する電界効果トランジスタとを有することを特徴とする。 The measurement apparatus according to the present invention is a measurement apparatus including a measurement unit that measures charges, wherein the measurement unit includes at least two electrodes that draw the sample near the gate insulating film by a dielectrophoretic force, and charges discharged from the sample. And a field-effect transistor that measures through the gate insulating film.
 本発明に係る測定方法は、誘電泳動力によりゲート絶縁膜付近に液体中の試料を引き寄せるステップと、前記試料から排出される電荷を、前記ゲート絶縁膜を通じて計測するステップとを備えることを特徴とする。 The measurement method according to the present invention includes a step of drawing a sample in a liquid near a gate insulating film by a dielectrophoretic force, and a step of measuring charges discharged from the sample through the gate insulating film. To do.
 本発明によれば、流路の底部に形成された測定部によって電気的に試料の性質を測定することにより、従来の光学的測定装置のようにレーザー照射部や、光学検出器を省略できるので、その分、簡素化することができる。 According to the present invention, since the properties of the sample are electrically measured by the measurement unit formed at the bottom of the flow path, the laser irradiation unit and the optical detector can be omitted as in the conventional optical measurement device. Therefore, it can be simplified.
本実施形態に係る測定装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the measuring apparatus which concerns on this embodiment. 図1におけるA-A断面の部分拡大図であり、回路構成を模式的に示す図である。FIG. 2 is a partially enlarged view of the AA cross section in FIG. 1, schematically showing a circuit configuration. 本実施形態に係る測定装置の使用状態を模式的に示す部分拡大断面図である。It is a partial expanded sectional view which shows typically the use condition of the measuring apparatus which concerns on this embodiment. 本実施形態に係る測定装置の変形例の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the modification of the measuring apparatus which concerns on this embodiment. 本実施形態に係る測定装置の別の変形例の構成を模式的に示す斜視図である。It is a perspective view showing typically the composition of another modification of the measuring device concerning this embodiment. 本実施形態に係る測定装置で試料を測定した結果を示すグラフであり、図6Aは癌細胞、図6Bは正常細胞を測定した結果である。It is a graph which shows the result of having measured the sample with the measuring device concerning this embodiment, and Drawing 6A shows the result of having measured a cancer cell and Drawing 6B with a normal cell.
 以下、図面を参照して本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(全体構成)
 図1に示す測定装置10Aは、測定部12と、試料20を含む液体を前記測定部12上に供給する流路18とを備える。試料20は、細胞や微生物などの生体微小粒子、マイクロビーズなどである。測定部12は、ゲート絶縁膜28を有し、試料20から排出される電荷を計測する電界効果トランジスタ(FET:Field Effect Transistor)14と、誘電泳動力により前記ゲート絶縁膜28付近に前記試料20を引き寄せる2つの電極16とを有する。流路18の内空間の大きさは、適宜選択することができるが、例えば幅及び高さがいずれも20μm~100μm程度が好ましい。流路18の内空間は、幅方向断面が、四角形であるだけでなく、円形であってもよい。電極16は、流路18の短手方向に対向して設けられ、平面視において略台形状を有し、流路の側部から中心に向かって先細となるように形成されている。液体としては、DEP(Dielectrophoresis)液、細胞培養溶液、pH7程度の緩衝溶液を用いることができる。
(overall structure)
A measurement apparatus 10A shown in FIG. 1 includes a measurement unit 12 and a flow path 18 that supplies a liquid containing a sample 20 onto the measurement unit 12. The sample 20 is a living body microparticle such as a cell or a microorganism, a microbead, or the like. The measurement unit 12 includes a gate insulating film 28, and a field effect transistor (FET) 14 that measures the charge discharged from the sample 20, and the sample 20 near the gate insulating film 28 by a dielectrophoretic force. And two electrodes 16 for attracting each other. The size of the inner space of the flow path 18 can be selected as appropriate. For example, both the width and the height are preferably about 20 μm to 100 μm. The inner space of the flow path 18 may have a circular cross section in the width direction as well as a quadrangle. The electrode 16 is provided so as to face the short direction of the flow path 18, has a substantially trapezoidal shape in plan view, and is formed so as to taper from the side of the flow path toward the center. As the liquid, a DEP (Dielectrophoresis) solution, a cell culture solution, or a buffer solution having a pH of about 7 can be used.
 試料20から排出される電荷としては、細胞膜や細胞から排出されるイオン・イオン性分子、細胞以外の粒子から排出されるイオンなどが挙げられる。細胞膜から排出されるイオン・イオン性分子は、例えば、細胞膜に存在する糖鎖、具体的には癌細胞に多く発現するシアリル酸を含む糖鎖がある。また再生医療用の軟骨細胞表面に存在する硫酸基を有するプロテオグリカン、癌細胞の膜タンパク質で、特にE-cadherin発現量が腫瘍における細胞の多様化と転移に関わる膜たんぱく質がある。細胞から排出されるイオン・イオン性分子は、例えば、細胞の呼吸により排出されるCO濃度変化がもたらす水素イオン、細胞の代謝で排出される乳酸、白血病幹細胞から排出されるヒスタミンなどがある。細胞以外の粒子から排出されるイオンは、例えば、マイクロビーズ表面での抗原・抗体反応、DNA分子認識反応、種々の生体分子認識反応などによって排出されるイオンがある。 Examples of the electric charges discharged from the sample 20 include ions and ionic molecules discharged from cell membranes and cells, ions discharged from particles other than cells, and the like. Examples of ionic / ionic molecules discharged from the cell membrane include sugar chains present in the cell membrane, specifically, sugar chains containing sialic acid that is highly expressed in cancer cells. There are also proteoglycans having sulfate groups present on the surface of cartilage cells for regenerative medicine, and membrane proteins of cancer cells. In particular, there are membrane proteins whose E-cadherin expression level is involved in cell diversification and metastasis in tumors. Examples of ion / ionic molecules excreted from cells include hydrogen ions brought about by changes in CO 2 concentration excreted by cell respiration, lactic acid excreted by cell metabolism, and histamine excreted from leukemia stem cells. Examples of ions ejected from particles other than cells include ions ejected by antigen / antibody reaction on the microbead surface, DNA molecule recognition reaction, various biomolecule recognition reactions, and the like.
 FET14は、流路18の幅方向の略中央に形成されており、流路18の上流側にソース24、下流側にドレイン26が配置されている。FET14上にゲート絶縁膜28を介して電極16が形成されている。電極16は、FET14のチャネルを挟んで、流路18の幅方向の両側にそれぞれ設けられている。電極16は、高い導電性を有する材料で形成することが好ましく、例えば、金、銀、銅などで形成することができる。電極16は、図示しないが、特定の周波数の交流電圧を印加する電源に電気的に接続されている。電極16に電源から特定の周波数の交流電圧が印加されることにより、電極16間に不均一な電場、すなわち電場強度に勾配を有する電場が生じる。 The FET 14 is formed substantially at the center in the width direction of the flow path 18, and a source 24 is disposed on the upstream side of the flow path 18, and a drain 26 is disposed on the downstream side. An electrode 16 is formed on the FET 14 via a gate insulating film 28. The electrodes 16 are provided on both sides in the width direction of the flow path 18 across the channel of the FET 14. The electrode 16 is preferably formed of a material having high conductivity. For example, the electrode 16 can be formed of gold, silver, copper, or the like. Although not shown, the electrode 16 is electrically connected to a power source that applies an alternating voltage having a specific frequency. When an AC voltage having a specific frequency is applied to the electrode 16 from the power source, a non-uniform electric field, that is, an electric field having a gradient in electric field strength is generated between the electrodes 16.
 測定部12は、図2に示すように、流路18の底部に形成されている。FET14は、半導体基板22と、半導体基板22の表面に形成されたソース24及びドレイン26と、ソース24及びドレイン26上に形成されたゲート絶縁膜28とを備える。FET14は、n-MOS、p-MOSのいずれも使用することができる。 The measurement part 12 is formed in the bottom part of the flow path 18, as shown in FIG. The FET 14 includes a semiconductor substrate 22, a source 24 and a drain 26 formed on the surface of the semiconductor substrate 22, and a gate insulating film 28 formed on the source 24 and the drain 26. The FET 14 can use either n-MOS or p-MOS.
 半導体基板22は、Si、Ga、As、ITO、IGZO、IZO等で形成してもよいし、有機半導体、炭素半導体(例えば、カーボンナノチューブ、グラフェン半導体、ダイヤモンド半導体等)等を用いてもよい。ゲート絶縁膜28は、SiO、Si(SiN)、Ta、Al等の酸化物又は窒化物で形成することができる。 The semiconductor substrate 22 may be formed of Si, Ga, As, ITO, IGZO, IZO, or the like, or an organic semiconductor, a carbon semiconductor (for example, a carbon nanotube, a graphene semiconductor, a diamond semiconductor, or the like) may be used. The gate insulating film 28 can be formed of an oxide or nitride such as SiO 2 , Si 3 N 4 (SiN x ), Ta 2 O 5 , Al 2 O 3 .
 ソース24とドレイン26は、電源34及び電流計36が電気的に接続されており、ソース24からドレイン26へ流れるドレイン電流を計測するように形成されている。ゲート絶縁膜28上の電荷密度が変化すると、ドレイン電流の大きさが変化する。すなわちドレイン電流を一定に保つためには、ゲート絶縁膜28上の電荷密度の変化に伴いゲート電圧を変化させる必要がある。FET14は、このゲート電圧の変化を計測することにより、ゲート絶縁膜28上の電荷密度の変化を電気的に計測する。 The source 24 and the drain 26 are electrically connected to a power source 34 and an ammeter 36, and are configured to measure a drain current flowing from the source 24 to the drain 26. When the charge density on the gate insulating film 28 changes, the magnitude of the drain current changes. That is, in order to keep the drain current constant, it is necessary to change the gate voltage as the charge density on the gate insulating film 28 changes. The FET 14 electrically measures the change in the charge density on the gate insulating film 28 by measuring the change in the gate voltage.
 この際、本図に示すように参照電極32が用いられる。参照電極32は、FET14における基準電位であり、流路18において液体と電気的に接続される。 At this time, a reference electrode 32 is used as shown in FIG. The reference electrode 32 is a reference potential in the FET 14 and is electrically connected to the liquid in the flow path 18.
(作用及び効果)
 上記のように構成された測定装置10Aにおいて、無数の試料20を含む液体を流路18上流から下流に向かって所定の流速で流す。試料20は所定の間隔をあけ、一列で流路18を通って測定部12付近に到達する。電極16間には、印加された特定周波数の交流電圧によって不均一な電場が生じている。測定部12付近に到達した試料20は、電場によって分極し、周囲の液体の分極と電場の勾配によって生じた誘電泳動力により、電極16間に引き寄せられ、チャネルのゲート絶縁膜28に近づく(図3)。誘電泳動力は、電場の不均一の程度、すなわち一対の電極16間の電場強度勾配、つまり電気力線の密度の変化量で決まる。
(Function and effect)
In the measurement apparatus 10A configured as described above, a liquid containing an infinite number of samples 20 is flowed from the upstream side of the flow path 18 to the downstream side at a predetermined flow rate. The sample 20 reaches the vicinity of the measurement unit 12 through the flow path 18 in a row at a predetermined interval. A non-uniform electric field is generated between the electrodes 16 due to the applied AC voltage having a specific frequency. The sample 20 that has reached the vicinity of the measurement unit 12 is polarized by the electric field, and is attracted between the electrodes 16 by the dielectrophoretic force generated by the polarization of the surrounding liquid and the gradient of the electric field, and approaches the gate insulating film 28 of the channel (FIG. 3). The dielectrophoretic force is determined by the degree of non-uniformity of the electric field, that is, the electric field intensity gradient between the pair of electrodes 16, that is, the amount of change in the density of the electric field lines.
 試料20がゲート絶縁膜28に近づき、当該試料20から電荷が排出されている場合、当該電荷がゲート絶縁膜28に帯電する。ゲート絶縁膜28表面に電荷が帯電することにより、ゲート絶縁膜28上の電荷密度が変化する。FET14は、ゲート絶縁膜28上の電荷密度の変化に伴うゲート電圧の変化を計測する。これにより測定装置10Aは、当該試料20の性質を測定することができる。 When the sample 20 approaches the gate insulating film 28 and charges are discharged from the sample 20, the charges are charged on the gate insulating film 28. When the charge is charged on the surface of the gate insulating film 28, the charge density on the gate insulating film 28 changes. The FET 14 measures a change in gate voltage accompanying a change in charge density on the gate insulating film 28. Thereby, the measuring apparatus 10A can measure the property of the sample 20.
 液体は所定の流速で流れているので、試料20は、誘電泳動力によりチャネルのゲート絶縁膜28に一旦近づいた後、再び液体の流れに乗って下流へと流れる。測定装置10Aは、所定の間隔で流路18を流れてくる無数の試料20に対し、所定の間隔で1つずつ連続的に測定する。なお、測定装置10Aは、電極16間に印加されている電圧を止めることにより、試料20を液体の流れに乗って下流へと流すこととしてもよい。これにより測定装置10Aは、誘電泳動力によりチャネルのゲート絶縁膜28に一旦近づけた試料20を、液体の流れにより円滑に戻すことができる。 Since the liquid is flowing at a predetermined flow velocity, the sample 20 once approaches the gate insulating film 28 of the channel by the dielectrophoretic force, and then flows on the liquid flow again downstream. The measuring device 10A continuously measures one sample at a predetermined interval for the countless samples 20 flowing through the flow path 18 at a predetermined interval. Note that the measurement apparatus 10 </ b> A may stop the voltage applied between the electrodes 16 and cause the sample 20 to flow downstream along the liquid flow. As a result, the measuring apparatus 10A can smoothly return the sample 20 once brought close to the gate insulating film 28 of the channel by the dielectrophoretic force by the flow of the liquid.
 本実施形態に係る測定装置10Aは、流路18の底部に形成された測定部12によって電気的に試料20の性質を測定することにより、従来の光学的測定装置のようにレーザー照射部や、光学検出器を省略できるので、その分、簡素化することができる。 The measurement apparatus 10A according to the present embodiment electrically measures the property of the sample 20 by the measurement unit 12 formed at the bottom of the flow path 18, so that a laser irradiation unit, a conventional optical measurement apparatus, Since the optical detector can be omitted, it can be simplified accordingly.
 測定装置10Aは、所定の流速で流れる液体中の試料20を、誘電泳動力によりFET14で電荷を測定できるようにチャネルのゲート絶縁膜28に近づけることにより、試料20を傷つけずに測定することができる。また測定装置10Aは、試料20を、誘電泳動力によりチャネルのゲート絶縁膜28に一旦近づけて電荷を計測した後、再び液体の流れに乗って下流へと流すので、短時間で試料20毎の性質を測定することができる。 The measurement apparatus 10A can measure the sample 20 without damaging the sample 20 in the liquid flowing at a predetermined flow rate by bringing the sample 20 close to the channel gate insulating film 28 so that the charge can be measured by the FET 14 by the dielectrophoretic force. it can. Further, the measurement apparatus 10A measures the electric charge by once bringing the sample 20 close to the channel gate insulating film 28 by the dielectrophoretic force, and then again flows on the liquid flow and flows downstream. Properties can be measured.
(変形例)
 本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
(Modification)
The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
 例えば、チャネルにおけるゲート絶縁膜28上に、試料20の性質を特徴づける特徴物質と結合し、電荷を排出する識別物質を有する識別膜(図示しない)を設けてもよい。特徴物質は、癌細胞の表面に存在するシアリル酸ルイスX糖鎖(下記(化1))や、シアリル酸ルイスA糖鎖(下記(化2))が適用される。 For example, on the gate insulating film 28 in the channel, an identification film (not shown) having an identification substance that combines with a characteristic substance that characterizes the properties of the sample 20 and discharges electric charges may be provided. As the characteristic substance, sialic acid Lewis X sugar chain (the following (Chemical Formula 1)) or sialic acid Lewis A sugar chain (the following (Chemical Formula 2)) existing on the surface of the cancer cell is applied.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 なお、上記化学式中、NeuAcはN-acetylneuramic acid(siarylic acid), Galはgalactose, GlcNAcはN-acerylglucosamine, Fucはfucoseである。 In the above chemical formula, NeuAc is N-acetylneuramic acid (siarylic acid), Gal is galactose, GlcNAc is N-acerylglucosamine, and Fuc is fucose.
 識別膜は、いわゆる分子鋳型であって、基材と識別物質とを有する。基材は、親水性ポリマーで形成されている。親水性ポリマーとは親水性の官能基(水酸基、カルボキシル基)を有するポリマーであり、ハイドロゲル、紙、高吸水性ポリマー(SAP:Superabsorbent Polymer)等である。 The identification film is a so-called molecular template and has a base material and an identification substance. The base material is formed of a hydrophilic polymer. The hydrophilic polymer is a polymer having a hydrophilic functional group (hydroxyl group, carboxyl group), such as hydrogel, paper, superabsorbent polymer (SAP).
 ハイドロゲルは、親水性高分子鎖間が架橋されて多量の水を保持し、吸水性に優れるゲル状材料であり、例えば、ポリヒドロキシエチルメタクリレート(Poly-HEMA、ポリメタクリル酸2-ヒドロキシエチルとも称する。)、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)等が挙げられる。Poly-HEMAは、ヒドロキシエチルメタクリレート(HEMA)のホモポリマーであってもよく、他のモノマー(例えば、2,3-ジヒドロキシプロピルメタクリレート、グリセロールメタクリレート(GMA)等)とのコポリマーであってもよい。なお、Poly-HEMAは、コポリマーとした方がより含水率が高くなる傾向にある。また、PVPとしては、N-ビニル-2-ピロリドン(NVP)のホモポリマーであってもよく、NVPを主成分として、HEMA、メチルメタクリレート(MMA)等と架橋剤を加えて重合したコポリマーであってもよい。 Hydrogel is a gel-like material in which hydrophilic polymer chains are cross-linked and retains a large amount of water and is excellent in water absorption, for example, polyhydroxyethyl methacrylate (Poly-HEMA, polyhydroxymethacrylate 2-hydroxyethyl). And polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), and the like. Poly-HEMA may be a homopolymer of hydroxyethyl methacrylate (HEMA) or a copolymer with other monomers (for example, 2,3-dihydroxypropyl methacrylate, glycerol methacrylate (GMA), etc.). Poly-HEMA tends to have a higher water content when it is a copolymer. The PVP may be a homopolymer of N-vinyl-2-pyrrolidone (NVP), which is a copolymer obtained by polymerizing NVP as a main component and adding a crosslinking agent with HEMA, methyl methacrylate (MMA) or the like. May be.
 紙は、植物繊維その他の繊維を膠着させて製造される。植物繊維は、セルロース、ヘミセルロース、リグニンから構成される。セルロースは、多数有する水酸基同士が水素結合により結合する性質を有しており、これにより紙を構成する植物繊維同士がくっつき合う。また、その他の繊維としては、鉱物、金属、合成樹脂等を繊維状にしたもの等が挙げられるが、識別物質をより強固に固定するという観点から、植物繊維(セルロース)で形成された紙が好ましい。 Paper is manufactured by gluing plant fibers and other fibers. Plant fibers are composed of cellulose, hemicellulose, and lignin. Cellulose has a property in which a large number of hydroxyl groups are bonded to each other by hydrogen bonding, whereby plant fibers constituting the paper adhere to each other. Examples of other fibers include fibers made of minerals, metals, synthetic resins, etc. From the viewpoint of more firmly fixing the identification substance, paper made of plant fibers (cellulose) is used. preferable.
 SAPは、自重の数百倍から数千倍までの水を吸収及び保持することができる高分子である。SAPとしては、アクリル酸の重合体を用いることができる。アクリル酸の重合体は、カルボキシル基を多数有するため、親水性が高く、さらに細目構造に架橋させ、ナトリウム塩の形とすると高い吸水性を持つゲルとなる。 SAP is a polymer that can absorb and retain water from several hundred times to several thousand times its own weight. As the SAP, a polymer of acrylic acid can be used. Since a polymer of acrylic acid has a large number of carboxyl groups, it has a high hydrophilicity and is further crosslinked to a fine structure to form a gel having a high water absorption when it is in the form of a sodium salt.
 その他の親水性ポリマーとしては、2-メタクリロイルオキシエチルホスホリルコリン(MPC)、ヒドロキシプロピルメチルセルロース(HPMC)、カルボキシメチルセルロースナトリウム(CMC-Na)、ヒドロキシエチルセルロース(HEC)などのセルロース誘導体;アルギン酸、ヒアルロン酸、アガロース、デンプン、デキストラン、プルラン等の多糖類及びその誘導体;カルボキシビニルポリマー、ポリエチレンオキサイド、ポリ(メタ)アクリルアミド、ポリ(メタ)アクリル酸等のホモポリマー、当該ホモポリマーと多糖類等との共重合体、及び当該ホモポリマーを構成するモノマーと他のモノマーとの共重合体;コラーゲン、ゼラチン等のタンパク質及びその誘導体;ヘパリン、ヒアルロン酸、コンドロイチン硫酸、デルマタン硫酸、デキストラン硫酸、ケラタン硫酸、ヘパラン硫酸等のグリコサミノグリカン、キチン、キトサン等の多糖類やムコ多糖類を挙げることができる。 Other hydrophilic polymers include cellulose derivatives such as 2-methacryloyloxyethyl phosphorylcholine (MPC), hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose (CMC-Na), hydroxyethylcellulose (HEC); alginic acid, hyaluronic acid, agarose , Starch, dextran, pullulan and other polysaccharides and derivatives thereof; homopolymers such as carboxyvinyl polymer, polyethylene oxide, poly (meth) acrylamide, poly (meth) acrylic acid, and copolymers of the homopolymer and polysaccharides , And a copolymer of the monomer constituting the homopolymer and other monomers; proteins such as collagen and gelatin and derivatives thereof; heparin, hyaluronic acid, chondroitin sulfate, Mention may be made of glycosaminoglycans such as dermatan sulfate, dextran sulfate, keratan sulfate and heparan sulfate, polysaccharides such as chitin and chitosan, and mucopolysaccharides.
 さらには、1-ビニル-2-ピロリジノン、プロぺノン酸2-メチルエステル、モノメタクリロイルオキシエチルフタレート、アンモニウムスルファトエチルメタクリレート、N-ビニルピロリドン、N,N-ジメチルアクリルアミド、2-(メタクリロイルオキシエチル)-2-(トリメチルアンモニオエチル)ホスフェート等の親水性ポリマーを用いてもよい。 Furthermore, 1-vinyl-2-pyrrolidinone, propenoic acid 2-methyl ester, monomethacryloyloxyethyl phthalate, ammonium sulfatoethyl methacrylate, N-vinylpyrrolidone, N, N-dimethylacrylamide, 2- (methacryloyloxyethyl) ) -2- (Trimethylammonioethyl) phosphate and other hydrophilic polymers may be used.
 上記例示した親水性ポリマーは、単独で用いてもよく、2種類以上を併用してもよい。 The hydrophilic polymers exemplified above may be used alone or in combination of two or more.
 重合開始剤としては、公知のラジカル重合促進剤を適宜選択して用いることができる。好ましくは水溶性または水分散性を有し、系全体に均一に含まれるものが好ましく用いられる。具体的には、重合開始剤として、水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えばVA-044、V-50、V-501(いずれも和光純薬工業株式会社製)の他、Fe2+と過酸化水素との混合物等を用いることができる。 A known radical polymerization accelerator can be appropriately selected and used as the polymerization initiator. Preferably, those having water solubility or water dispersibility and uniformly contained in the entire system are preferably used. Specifically, as a polymerization initiator, water-soluble peroxides such as potassium peroxodisulfate and ammonium peroxodisulfate, water-soluble azo compounds such as VA-044, V-50, and V-501 (all of which are Wako Pure Chemical Industries, Ltd.) In addition to Yakuhin Kogyo Co., Ltd., a mixture of Fe 2+ and hydrogen peroxide can be used.
 架橋剤としては、N,N’-メチレンビスアクリルアミド、エチレングリコールジメタクリレート、メタクリル酸ビニル等を用いることができる。 As the crosslinking agent, N, N'-methylenebisacrylamide, ethylene glycol dimethacrylate, vinyl methacrylate, or the like can be used.
 識別物質は、フェニルボロン酸を用いることができる。 フ ェ ニ ル Phenylboronic acid can be used as the identification substance.
 基材としてHEMAを用いた識別膜の構成を下記(化3)に示す。 The structure of the identification film using HEMA as the substrate is shown below (Chemical Formula 3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 識別膜に含まれるフェニルボロン酸は、下記(化4)に示すように、サッカライドのジオール結合を基に平衡が成り立っている。ホウ素原子は電子を欠いた非イオン状態からジオール化合物とエステル結合することで負電荷を帯びた状態へと変化する。 The phenylboronic acid contained in the identification film has an equilibrium based on the diol bond of the saccharide as shown in the following (Chemical Formula 4). The boron atom changes from a nonionic state lacking an electron to a negatively charged state by ester bonding with the diol compound.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 このようにして識別膜は、特徴物質として例えば糖として上記したシアリル酸ルイスX糖鎖や、シアリル酸ルイスA糖鎖が、識別物質としてのフェニルボロン酸と結合することにより、負電荷の排出を促す。排出された電荷はゲート絶縁膜28に帯電する。測定装置10Aは、ゲート電圧の変化を計測することにより、より高感度で試料20の性質を測定することができる。 In this way, the identification film, as a characteristic substance, for example, the sialic acid Lewis X sugar chain or the sialic acid Lewis A sugar chain as sugars binds to phenylboronic acid as an identification substance, thereby discharging negative charges. Prompt. The discharged electric charges are charged in the gate insulating film 28. The measuring apparatus 10A can measure the property of the sample 20 with higher sensitivity by measuring the change in the gate voltage.
 特徴物質としては、造血幹細胞および白血病幹細胞等の血球系幹細胞について、計測する最初の代謝産物が挙げられる。例えば、定常状態・移植等のストレス時や、白血病における代謝産物として、ピルビン酸、乳酸、アミノ酸(アスパラギン酸やBCAA(バリン、ロイシン、イソロイシン)、アラニン、グルタミン、グリシン、リジン)、H、Na、K、Ca2+、NH4+、Cl、HCO3-などの各種イオンがある。この場合、識別物質としてフェニルボロン酸を用いた上記識別膜(分子鋳型)、酸化膜、ポリヴィニルクロライド(PVC)にイオン感応性のクラウンエーテルを含む高分子膜などを適用することができる。酸化膜は、溶液下で水酸基を持つので水素イオン応答性に優れる。 The characteristic substance includes the first metabolite to be measured for blood cell stem cells such as hematopoietic stem cells and leukemia stem cells. For example, pyruvate, lactic acid, amino acids (aspartate, BCAA (valine, leucine, isoleucine), alanine, glutamine, glycine, lysine), H + , Na as metabolites in steady state / transplantation stress or leukemia There are various ions such as + , K + , Ca 2+ , NH 4+ , Cl and HCO 3− . In this case, the identification film (molecular template) using phenylboronic acid as an identification substance, an oxide film, a polymer film containing ion-sensitive crown ether in polyvinyl chloride (PVC), and the like can be applied. Since the oxide film has a hydroxyl group in the solution, it has excellent hydrogen ion responsiveness.
 また移植用造血幹細胞について尿酸、白血病幹細胞についてヒスタミン、PGE2等の生理活性リン脂質が挙げられる。さらに特徴物質として細胞表面の複数種類のリン脂質を適用することにより、官能基の電荷量の相違から癌化を推定することができる。この場合、識別物質としてフェニルボロン酸を用いた上記識別膜(分子鋳型)、リン脂質の電荷量の相違により水素イオン濃度変化を捉える酸化膜を適用することができる。 In addition, hematopoietic stem cells for transplantation include uric acid, and leukemia stem cells include physiologically active phospholipids such as histamine and PGE2. Furthermore, by applying a plurality of types of phospholipids on the cell surface as a characteristic substance, canceration can be estimated from the difference in the charge amount of the functional group. In this case, it is possible to apply the identification film (molecular template) using phenylboronic acid as an identification substance and an oxide film that captures a change in hydrogen ion concentration due to the difference in the amount of charge of phospholipid.
 上記実施形態の場合、測定部12は1個のFET14を有する場合について説明したが、本発明はこれに限らない。例えば、図4に示すように、1つの測定部39に複数のFET40を備えることとしてもよい。この場合、少なくとも一部のFET40のゲート絶縁膜28上に、それぞれ異なる上記識別膜(図示しない)を設けてもよい。これにより測定装置10Bは、1つの試料20から、異なる性質に基づいて排出される電荷を、性質ごとに計測することができる。 In the case of the above embodiment, the case where the measurement unit 12 has one FET 14 has been described, but the present invention is not limited to this. For example, as shown in FIG. 4, one measurement unit 39 may include a plurality of FETs 40. In this case, different identification films (not shown) may be provided on at least some of the gate insulating films 28 of the FETs 40. Thereby, the measuring apparatus 10B can measure the electric charge discharged | emitted from one sample 20 based on a different property for every property.
 上記実施形態の場合、測定装置10Aは1つの測定部12を備える場合について説明したが、本発明はこれに限らない。例えば図5に示すように、測定装置10Cは、測定部42を複数備えることとしてもよい。本図に示す複数の測定部42は、アレイ状に配置されている。この場合、測定部42は、1つの試料20を囲むように4個の電極44が設けられている。電極44は円柱状に形成されている。電極44で囲まれた中央の底部にはFET43が形成されている。電極44間には、FET43に試料20を引き寄せる誘電泳動力を生じるように、所定の周波数の交流電圧が印加されている。アレイ状に配置された複数の測定部42上を、試料20を含む液体が流れるように流路(図示しない)が形成されている。 In the case of the above embodiment, the measurement apparatus 10A has been described as including one measurement unit 12, but the present invention is not limited to this. For example, as illustrated in FIG. 5, the measurement apparatus 10 </ b> C may include a plurality of measurement units 42. The plurality of measurement units 42 shown in this figure are arranged in an array. In this case, the measurement unit 42 is provided with four electrodes 44 so as to surround one sample 20. The electrode 44 is formed in a cylindrical shape. An FET 43 is formed at the center bottom surrounded by the electrode 44. An AC voltage having a predetermined frequency is applied between the electrodes 44 so as to generate a dielectrophoretic force that attracts the sample 20 to the FET 43. A flow path (not shown) is formed on the plurality of measurement units 42 arranged in an array so that a liquid containing the sample 20 flows.
 測定装置10Cにおいて、試料20が測定部42上に到達すると、当該試料20は誘電泳動力により電極44間のFET43に引き寄せられ、電極44間に捕捉される。これにより当該試料20から電荷が排出されている場合、当該電荷がゲート絶縁膜(本図には図示しない)に帯電する。ゲート絶縁膜表面に電荷が帯電することにより、ゲート絶縁膜上の電荷密度が変化する。FET43は、ゲート絶縁膜上の電荷密度の変化に伴うゲート電圧の変化を計測する。これにより測定装置10Cは、当該試料20の性質を測定することができる。しかも本変形例に係る測定装置10Cは、アレイ状に測定部42が配置されていることにより、1度に複数の試料20の電荷を計測することができる。 In the measuring apparatus 10C, when the sample 20 reaches the measuring unit 42, the sample 20 is attracted to the FET 43 between the electrodes 44 by the dielectrophoretic force and is captured between the electrodes 44. As a result, when charges are discharged from the sample 20, the charges are charged on the gate insulating film (not shown in the figure). When the charge is charged on the surface of the gate insulating film, the charge density on the gate insulating film changes. The FET 43 measures a change in gate voltage accompanying a change in charge density on the gate insulating film. Thereby, the measuring apparatus 10 </ b> C can measure the property of the sample 20. Moreover, the measurement apparatus 10C according to this modification can measure the charges of the plurality of samples 20 at a time by arranging the measurement units 42 in an array.
 測定装置10Cは、測定結果に応じ、当該特定の試料20のみを測定部42から引き離すことにより、分取することができる。この場合、測定装置10Cは、特定の試料20を捕捉している電極44間に印加されている電圧を止める。これにより当該特定の試料20は、測定部42から離れ、液体の流れに乗り、下流へと流れる。 The measuring apparatus 10C can sort by separating only the specific sample 20 from the measuring unit 42 according to the measurement result. In this case, the measuring apparatus 10 </ b> C stops the voltage applied between the electrodes 44 capturing the specific sample 20. As a result, the specific sample 20 moves away from the measurement unit 42, rides on the liquid flow, and flows downstream.
 なお、図5に示す測定装置10Cの測定部42に、図4に示す測定部39を適用してもよい。これにより測定装置は、複数の試料20について、異なる性質に基づいて排出される電荷を性質ごとに、1度に計測することができる。 Note that the measurement unit 39 shown in FIG. 4 may be applied to the measurement unit 42 of the measurement apparatus 10C shown in FIG. Thereby, the measuring apparatus can measure the electric charge discharged | emitted based on a different property about the some sample 20 for every property at once.
 実際に識別膜を備える測定装置を作製し、試料として癌細胞と正常細胞の性質を測定することができるか検証した。FETは、半導体基板にIGZO、ソース・ドレインにITO、ゲート絶縁膜にSiOを用い、チャネル面積を20×10μmとした。電極は金を用いて形成した。ゲート絶縁膜上には識別膜として、HEMAとMPCで形成した基材と、フェニルボロン酸からなる識別物質とで形成した。 A measuring device with an identification film was actually manufactured, and it was verified whether the properties of cancer cells and normal cells could be measured as samples. The FET used IGZO as a semiconductor substrate, ITO as a source / drain, SiO 2 as a gate insulating film, and a channel area of 20 × 10 μm 2 . The electrode was formed using gold. On the gate insulating film, an identification film was formed of a base material made of HEMA and MPC and an identification substance made of phenylboronic acid.
 電極間に10V、1.4MHzの交流電圧を印加した状態で、流速3.3cm/sでDEP液を流した。DEP液は、スクロース8.5g、D-グルコース0.3g、BSA0.1gを純水で100mlとし調整した。FETは、100μs(10回/s)測定した。試料は、10個/sの間隔で流した。その結果を図6A,6Bに示す。本図は、横軸が時間(sec)、縦軸がゲート電圧である表面電位の変化(mV)を示す。図6Aの結果から、癌細胞を流した場合、負電荷が6回測定された。一方、図6Bの結果から、正常細胞を流した場合、負電荷が測定されなかった。この結果から測定装置は、所定の流速で流れる液体中の癌細胞の、細胞膜に存在する糖鎖がフェニルボロン酸と結合することによって生じた負電荷を計測することができ、これにより試料が癌細胞であることを測定できることが確認された。 The DEP liquid was allowed to flow at a flow rate of 3.3 cm / s while an AC voltage of 10 V and 1.4 MHz was applied between the electrodes. A DEP solution was prepared by adding 8.5 g of sucrose, 0.3 g of D-glucose, and 0.1 g of BSA to 100 ml with pure water. The FET was measured for 100 μs (10 4 times / s). Samples were flowed at 10 / s intervals. The results are shown in FIGS. 6A and 6B. In this figure, the horizontal axis shows time (sec) and the vertical axis shows the change in surface potential (mV) which is the gate voltage. From the result of FIG. 6A, the negative charge was measured 6 times when cancer cells were flowed. On the other hand, from the result of FIG. 6B, when normal cells were flowed, no negative charge was measured. From this result, the measurement device can measure the negative charge generated by the binding of the sugar chain present in the cell membrane of the cancer cells in the liquid flowing at a predetermined flow rate to the phenylboronic acid. It was confirmed that the cells could be measured.
10A、10B、10C 測定装置
12、39、42 測定部
14、40、43 FET(電界効果トランジスタ)
16 電極
18 流路
20 試料
28 ゲート絶縁膜
44 電極
 
10A, 10B, 10C Measuring device 12, 39, 42 Measuring unit 14, 40, 43 FET (field effect transistor)
16 Electrode 18 Channel 20 Sample 28 Gate insulating film 44 Electrode

Claims (9)

  1. 電荷を計測する測定部を備える測定装置において、
    前記測定部は、
    誘電泳動力によりゲート絶縁膜付近に試料を引き寄せる少なくとも2つの電極と、
    前記試料から排出される電荷を、前記ゲート絶縁膜を通じて計測する電界効果トランジスタと
    を有することを特徴とする測定装置。
    In a measuring device comprising a measuring unit for measuring electric charge,
    The measuring unit is
    At least two electrodes that draw the sample near the gate insulating film by dielectrophoretic force;
    And a field effect transistor for measuring charges discharged from the sample through the gate insulating film.
  2. 前記ゲート絶縁膜の表面に前記試料の性質を特徴づける特徴物質と結合する識別膜が設けられていることを特徴とする請求項1記載の測定装置。 The measuring apparatus according to claim 1, wherein an identification film is provided on the surface of the gate insulating film, which is bonded to a characteristic substance that characterizes the properties of the sample.
  3. 前記電界効果トランジスタが複数設けられており、前記複数の電界効果トランジスタの少なくとも一部には、異なる前記識別膜がそれぞれ設けられていることを特徴とする請求項2記載の測定装置。 The measurement apparatus according to claim 2, wherein a plurality of the field effect transistors are provided, and the different identification films are provided on at least a part of the plurality of field effect transistors.
  4. 前記測定部が、アレイ状に設けられていることを特徴とする請求項1~3のいずれか1項記載の測定装置。 The measuring apparatus according to any one of claims 1 to 3, wherein the measuring sections are provided in an array.
  5. 前記ゲート絶縁膜に前記試料を含む液体を供給する流路を備えることを特徴とする請求項1~4のいずれか1項記載の測定装置。 The measuring apparatus according to claim 1, further comprising a flow path for supplying a liquid containing the sample to the gate insulating film.
  6. 誘電泳動力によりゲート絶縁膜付近に液体中の試料を引き寄せるステップと、
    前記試料から排出される電荷を、前記ゲート絶縁膜を通じて計測するステップと
    を備えることを特徴とする測定方法。
    Drawing the sample in the liquid near the gate insulating film by dielectrophoretic force;
    Measuring the charge discharged from the sample through the gate insulating film.
  7. 前記計測するステップは、1つの前記試料から、異なる性質に基づいて排出される電荷を、前記性質ごとに計測することを特徴とする請求項6記載の測定方法。 The measuring method according to claim 6, wherein in the measuring step, a charge discharged from one sample based on different properties is measured for each property.
  8. 前記計測するステップは、1度に複数の前記試料の電荷を計測することを特徴とする請求項6又は7記載の測定方法。 The measuring method according to claim 6 or 7, wherein the measuring step measures the charges of the plurality of samples at a time.
  9. 前記計測するステップの後に、
    測定結果に応じて少なくとも一部の前記試料を前記ゲート絶縁膜から引き離すステップを備えることを特徴とする請求項8記載の測定方法。
    After the measuring step,
    The measurement method according to claim 8, further comprising a step of separating at least a part of the sample from the gate insulating film according to a measurement result.
PCT/JP2017/027935 2016-08-03 2017-08-01 Measurement apparatus and measurement method WO2018025876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-153195 2016-08-03
JP2016153195A JP6714259B2 (en) 2016-08-03 2016-08-03 Measuring device and measuring method

Publications (1)

Publication Number Publication Date
WO2018025876A1 true WO2018025876A1 (en) 2018-02-08

Family

ID=61073493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027935 WO2018025876A1 (en) 2016-08-03 2017-08-01 Measurement apparatus and measurement method

Country Status (2)

Country Link
JP (1) JP6714259B2 (en)
WO (1) WO2018025876A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019236690A1 (en) * 2018-06-05 2019-12-12 Regents Of The University Of Minnesota Graphene-based dielectrophoresis sensor and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276660U (en) * 1985-10-31 1987-05-16
JPH03293547A (en) * 1990-04-12 1991-12-25 Olympus Optical Co Ltd Semiconductor sensor apparatus
JP2002062161A (en) * 2000-08-18 2002-02-28 Horiba Ltd Raindrop chemical concentration measuring instrument
JP2006138761A (en) * 2004-11-12 2006-06-01 Univ Waseda Semiconductor sensor chip and semiconductor sensor
JP2012528329A (en) * 2009-05-29 2012-11-12 ライフ テクノロジーズ コーポレーション Apparatus and method for conducting electrochemical reactions
JP2016038384A (en) * 2014-08-07 2016-03-22 国立大学法人 東京大学 Biosensor
WO2016104517A1 (en) * 2014-12-26 2016-06-30 株式会社 東芝 Biosensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276660U (en) * 1985-10-31 1987-05-16
JPH03293547A (en) * 1990-04-12 1991-12-25 Olympus Optical Co Ltd Semiconductor sensor apparatus
JP2002062161A (en) * 2000-08-18 2002-02-28 Horiba Ltd Raindrop chemical concentration measuring instrument
JP2006138761A (en) * 2004-11-12 2006-06-01 Univ Waseda Semiconductor sensor chip and semiconductor sensor
JP2012528329A (en) * 2009-05-29 2012-11-12 ライフ テクノロジーズ コーポレーション Apparatus and method for conducting electrochemical reactions
JP2016038384A (en) * 2014-08-07 2016-03-22 国立大学法人 東京大学 Biosensor
WO2016104517A1 (en) * 2014-12-26 2016-06-30 株式会社 東芝 Biosensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CASTELLARNAU, M. ET AL.: "Integrated cell positioning and cell -based ISFET biosensors", SENSORS AND ACTUATORS B, vol. 120, 2007, pages 615 - 620, XP005812373, DOI: doi:10.1016/j.snb.2006.01.057 *

Also Published As

Publication number Publication date
JP6714259B2 (en) 2020-06-24
JP2018021827A (en) 2018-02-08

Similar Documents

Publication Publication Date Title
JP5599012B1 (en) Collection unit and biosensor
US11630078B2 (en) Biosensor
KR102436976B1 (en) Hydrogel particles with tunable optical properties and methods for using the same
Al Sulaiman et al. Chemically modified hydrogel-filled nanopores: a tunable platform for single-molecule sensing
US10295454B2 (en) Microparticle detection system and microparticle detection program
JP6591822B2 (en) Biosensor
JP6468520B2 (en) Medical inspection apparatus and cell inspection method
WO2018025876A1 (en) Measurement apparatus and measurement method
Zheng et al. Solute exclusion and potential distribution near hydrophilic surfaces
Oh et al. Inverted ion current rectification-based chemical delivery probes for stimulation of neurons
Schmidt et al. Selective adhesion and switchable release of breast cancer cells via hyaluronic acid functionalized dual stimuli-responsive microgel films
Xiao et al. Bulk modification of PDMS microchips by an amphiphilic copolymer
JP2009145245A (en) Hemoglobin measurement method
Bu et al. High-performance gel-free and label-free size fractionation of extracellular vesicles with two-dimensional electrophoresis in a microfluidic artificial sieve
JP4854638B2 (en) Method for measuring stable hemoglobin A1c value
US10188753B1 (en) Method for integrating nanoparticles as part of a hydrogel matrix
Baumann Early stage shape change of human erythrocytes after application of electric field pulses
JP6886667B2 (en) Cancer cell capture method
JP4565204B2 (en) Capillary electrophoresis method and capillary and electrophoresis apparatus therefor
TW201606303A (en) Biosensor
Czerwinski et al. Immune cells employ traction forces to overcome steric hindrance in 3D biopolymer networks
JP2008267819A (en) Measuring method for hemoglobins
Lu et al. Differential detection of immune cell activation by label-free radiation pressure force
JP2012198152A (en) Separation medium for electrophoresis
JPS62247243A (en) Medium material for electrophoresis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836979

Country of ref document: EP

Kind code of ref document: A1