WO2018025850A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2018025850A1
WO2018025850A1 PCT/JP2017/027872 JP2017027872W WO2018025850A1 WO 2018025850 A1 WO2018025850 A1 WO 2018025850A1 JP 2017027872 W JP2017027872 W JP 2017027872W WO 2018025850 A1 WO2018025850 A1 WO 2018025850A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
resin
epoxy
less
Prior art date
Application number
PCT/JP2017/027872
Other languages
French (fr)
Japanese (ja)
Inventor
章則 木村
田中 俊行
フォン ティ キム ダオ
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2018531915A priority Critical patent/JPWO2018025850A1/en
Publication of WO2018025850A1 publication Critical patent/WO2018025850A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a resin composition suitably used as a sealing material for semiconductor devices and the like.
  • sealing materials such as semiconductor devices are required to have a low coefficient of linear expansion. This is to prevent the sealing resin from being cracked or peeled off due to expansion due to heat generated from the semiconductor device.
  • a filler is added to the sealing material in order to reduce the linear expansion coefficient (for example, Patent Documents 1 and 2).
  • the sealing material needs to have a high elastic modulus.
  • a sealing material having a high elastic modulus is generally preferable from the viewpoint of protecting chips, wires, and their connection portions inside the device, because deformation with respect to external force is small.
  • a power cycle test in which the circuit is actually sealed and the reliability of the heat generated from the inside is evaluated by repeating energization, and a heating furnace without energization, etc.
  • a thermal cycle test is performed in which reliability is evaluated by repeating rapid heating and cooling in a container.
  • a resin that is moderately soft, that is, having a low elastic modulus has been used as a sealing material.
  • a resin having a low elastic modulus a device in a reliability test such as a power cycle test is used.
  • the problem is that the internal chips, wires, and their connections cannot be adequately protected.
  • the occurrence of cracks and peeling may not be suppressed.
  • the present invention is a liquid before curing, and the cured product maintains a high elastic modulus in the operating temperature range of the semiconductor device, and does not easily crack or peel off even when used for a long period of time. It is an object of the present invention to provide a resin composition in which cracking and peeling do not occur in a sealing material resin even in a thermal cooling test.
  • the present inventors have found that a liquid resin having fluidity before curing, and the cured product has a high elastic modulus in the working temperature region of the semiconductor device.
  • a resin composition is obtained in which cracks and peeling are unlikely to occur in a rapid cooling test such as a thermal cycle test.
  • thermosetting resin composition comprising a thermosetting resin and a curing catalyst, wherein the viscosity at 25 ° C. and a shear rate of 0.009 s ⁇ 1 is 1500 Pa ⁇ s or less, and the thermosetting resin composition
  • the storage elastic modulus of the cured product at 25 ° C. and 180 ° C. is 1.0 ⁇ 10 8 Pa or more, respectively, and the ratio of the volume resistivity a at 25 ° C. and the volume resistivity b at 200 ° C. is 8500.
  • the resin composition characterized by the following.
  • (2) The resin composition according to (1), wherein the thermosetting resin includes an epoxy resin.
  • the epoxy resin contains an alicyclic epoxy group.
  • the present invention is a liquid resin that is fluid before curing, and the cured product retains a high elastic modulus in the working temperature region of the semiconductor device, and further the volume of the cured product at 25 ° C. and 200 ° C.
  • the cause of cracks and peeling in the encapsulant resin is that the encapsulant resin undergoes a local structural change when the semiconductor device is exposed to the rapid thermal cooling environment. This is considered to be a factor. As a result, stress concentration locally occurs, and the degree of charge of the resin is also sparse and dense, which is considered to damage the resin. In the present invention, it has been found that the change appears as a large change in the volume resistivity of the encapsulant resin.
  • the reliability in rapid thermal testing such as thermal cycle testing
  • the high elastic modulus can be maintained in the working temperature region of the semiconductor device, so that high performance can be expected in a reliability test such as a power cycle test.
  • Thermosetting resin composition which is one embodiment of the present invention is a thermosetting resin composition containing a thermosetting resin and a curing catalyst (hereinafter sometimes abbreviated as "resin composition"). It is.
  • the resin composition before thermosetting is liquid and fluid, and has a viscosity at 25 ° C. and a shear rate of 0.009 s ⁇ 1 of 1500 Pa ⁇ s or less.
  • the cured product of the resin composition has a storage elastic modulus at 25 ° C. and 180 ° C. of 1.0 ⁇ 10 8 Pa or more, and the cured product of the resin composition has a volume resistivity a at 25 ° C. The ratio a / b of the volume resistivity b at 200 ° C.
  • thermosetting resin is 8500 or less.
  • a thermosetting resin is used as necessary.
  • Components other than the curing catalyst for example, epoxy compounds, reactive or non-reactive silicones, fillers, epoxy resin curing agents, and the like can be contained.
  • Thermosetting resin composition containing thermosetting resin and curing catalyst and physical properties of cured product of resin composition As described above, 25 ° C. and shear rate of the resin composition before thermosetting.
  • the viscosity at 009 s ⁇ 1 is 1500 Pa ⁇ s or less
  • the storage modulus of the cured product of the resin composition at 25 ° C. and 180 ° C. is 1.0 ⁇ 10 8 Pa or more
  • the resin composition is cured.
  • the ratio a / b of the volume resistivity a at 25 ° C. to the volume resistivity b at 200 ° C. is 8500 or less.
  • the measuring method of a viscosity, a storage elastic modulus, and a volume resistivity is demonstrated in the item of [Example]. The method for curing (crosslinking) the resin composition will be described later.
  • the resin composition has a viscosity at 25 ° C. at a shear rate of 0.009 s ⁇ 1 of 1500 Pa ⁇ s or less, preferably 1200 Pa ⁇ s or less, more preferably 1000 Pa ⁇ s or less, and even more preferably. Is 900 Pa ⁇ s or less, particularly preferably 800 Pa ⁇ s or less.
  • a lower limit is not specifically limited, Usually, it is 1 Pa.s or more.
  • the storage elastic modulus is a value obtained by solid viscoelasticity measurement at a frequency of 1 Hz.
  • the storage elastic modulus at 25 ° C. of the cured product of the resin composition is 1.0 ⁇ 10 8 Pa or more, preferably 2.0 ⁇ 10 8 Pa or more, more preferably 3.0 ⁇ 10 8 Pa or more, Preferably it is 4.0 ⁇ 10 8 Pa or more, more preferably 5.0 ⁇ 10 8 Pa or more, and the upper limit is usually 1.0 ⁇ 10 15 Pa or less, preferably 1.0 ⁇ 10 14 Pa or less, more preferably Is 1.0 ⁇ 10 13 Pa or less, more preferably 1.0 ⁇ 10 12 Pa or less.
  • the cured product of the resin composition is 1.0 ⁇ 10 8 Pa or more, preferably 1.5 ⁇ 10 8 Pa or more, more preferably 2.0 ⁇ 10 8 Pa or more, Preferably it is 3.0 ⁇ 10 8 Pa or more, more preferably 4.0 ⁇ 10 8 Pa or more, and the upper limit is usually 1.0 ⁇ 10 15 Pa or less, preferably 1.0 ⁇ 10 14 Pa or less, more preferably Is 1.0 ⁇ 10 13 Pa or less, more preferably 1.0 ⁇ 10 12 Pa or less.
  • a method for controlling the storage elastic modulus at 25 ° C. and 180 ° C. to a high elastic modulus in addition to selection of each component such as a thermosetting resin and a curing agent described later, for example, an alicyclic epoxy group or glycidyl group as a reactive group
  • a method of increasing the cross-linking density by adding an epoxy resin having 2 or more can be used.
  • it can control by selection of a hardening
  • the volume resistivity ratio is the ratio of the volume resistivity a at 25 ° C. and the volume resistivity b at 200 ° C. of the cured resin composition a / b, which is an index for determining whether or not there is a reliability problem in a rapid cooling test such as a thermal cycle test.
  • the ratio a / b of the volume resistivity a at 25 ° C. and the volume resistivity b at 200 ° C. is 8500 or less, preferably 8000 or less, more preferably 7000 or less, and further preferably 6000 or less.
  • the volume resistivity a at 25 ° C. of the cured product of the resin composition of one embodiment of the present invention is 1.0 ⁇ 10 14 ⁇ ⁇ cm or more, preferably 1.0 ⁇ 10 15 ⁇ ⁇ cm or more. is there.
  • the volume resistivity b at 200 ° C. of the cured product of the resin composition is 1.0 ⁇ 10 11 ⁇ ⁇ cm or more, preferably 1.0 ⁇ 10 12 ⁇ ⁇ cm or more.
  • each component such as a thermosetting resin and a curing agent to be described later
  • a method of suppressing the transfer of electrons and ions such as filling with a low linear expansion coefficient filler, increasing the reactive group density in the resin and suppressing the molecular motion of the cured product, etc.
  • a method of making the crosslink density in the resin uniform and reducing the density structure is also effective.
  • the average linear expansion coefficient is obtained using thermomechanical analysis (TMA) based on JIS K7197, and is between a certain temperature T1 and T2. The rate at which the length of the object expands as the temperature rises is shown per 1 K (° C.).
  • TMA thermomechanical analysis
  • the average linear expansion coefficient at ⁇ 30 ° C. to 200 ° C. of the cured product of the resin composition is usually 100 ppm / K or less, preferably 90 ppm / K or less, more preferably 80 ppm / K or less, and even more preferably 70 ppm / K.
  • the lower limit of the average linear expansion coefficient is not particularly limited, and is preferably as low as possible.
  • the lower limit is a value similar to the linear expansion coefficient of a member adjacent to the cured product of the resin composition (a metal such as aluminum or copper used for patterns or wires, a ceramic used for a substrate, or the like).
  • the resin composition of one embodiment of the present invention can form a cured product with a low average linear expansion coefficient.
  • the value of the average linear expansion coefficient of the cured product obtained by curing the resin composition is too large, cracks during curing tend to occur. If the average linear expansion coefficient of the cured product obtained by curing the resin composition exceeds the upper limit, the internal stress generated by the temperature change during curing and during use increases, which may lead to the generation of cracks.
  • the average linear expansion coefficient can be kept low by increasing the crosslinking density of a thermosetting resin such as an epoxy resin and other organic components, filling with a low linear expansion coefficient filler, and the like.
  • the crosslinking density of the cured resin can be controlled in the same manner as when controlling the storage elastic modulus.
  • an epoxy resin when used as the thermosetting resin, it can be controlled by selecting a curing agent, a curing catalyst, and the like in addition to the epoxy value of the epoxy resin and the number of epoxy groups per molecule.
  • thermosetting resin In the present specification, the thermosetting resin is cured in the presence of a curing catalyst, and the resin composition before thermosetting has a predetermined viscosity, and also has a predetermined storage elastic modulus and volume resistance. It will not specifically limit if it can become the hardened
  • an epoxy resin, a phenol resin, a polycarbonate resin, an unsaturated polyester resin, a urethane resin, a melamine resin, a urea resin, etc. are mentioned, for example. Among these, an epoxy resin is preferable.
  • the epoxy resin examples include an epoxy group-containing silicon compound, an aliphatic epoxy resin, a bisphenol A or F epoxy resin, a novolac epoxy resin, an alicyclic epoxy resin, and a glycidyl ester.
  • one molecule contains an epoxy part, which is an organic component, and a siloxane part, which is an inorganic component, it has high affinity with organic substances such as resins and curing agents and inorganic fillers, and high uniformity including crosslinking density.
  • a sealing layer can be produced.
  • the polyfunctional epoxy resin contains many reactive groups, it is excellent in elasticity, heat resistance and insulation and is suitable as a sealing material. Moreover, the resin is effectively cross-linked by reacting more epoxy groups, and the effect is greater.
  • the resin composition may contain an epoxy group-containing silicon compound or an epoxy resin different from that alone, or a mixture of an epoxy group-containing silicon compound and a known epoxy resin.
  • thermosetting resin is usually contained in an amount of 1% by mass or more, preferably 3% by mass or more, more preferably 5% by mass or more in the thermosetting resin composition according to the present invention.
  • the upper limit of the content of the thermosetting resin in the thermosetting resin composition is usually 40% by mass or less, preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.
  • Epoxy resin is a general term for compounds having one or more oxirane rings (epoxy groups) in the molecule.
  • the epoxy group containing silicon compound mentioned later is also contained in an epoxy resin.
  • two or more oxirane rings An epoxy resin having an epoxy group
  • an epoxy resin having three or more oxirane rings (epoxy groups) in the molecule is more preferable.
  • the polarity of the matrix resin can be adjusted, and the composition viscosity due to the attractive force between the hydrophilic fillers can be controlled.
  • the oxirane ring (epoxy group) possessed may be either an alicyclic epoxy group or a glycidyl group.
  • the epoxy resin may be an aromatic oxirane ring (epoxy group) -containing compound.
  • Examples include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetramethyl bisphenol AD, tetramethyl bisphenol S, tetrafluorobisphenol A, etc. as shown in formula (12).
  • Bisphenol-type epoxy resins obtained by glycidylation of bisphenols biphenyl-type epoxy resins represented by the formula (13), dihydroxynaphthalene, 9,9-bis (4-hydroxyphenyl) fluorene and other divalent phenols are glycidylated.
  • Epoxy resin epoxy resin obtained by glycidylation of trisphenols such as 1,1,1-tris (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) Tetrakis phenols glycidylated epoxy resins such as Tan, phenol novolac, cresol novolac, bisphenol A, novolak, such as novolaks the glycidylated novolak type epoxy resins such as brominated bisphenol A novolak and the like.
  • trisphenols such as 1,1,1-tris (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) Tetrakis phenols glycidylated epoxy resins such as Tan, phenol novolac, cresol novolac, bisphenol A, novolak, such as novolaks the glycidylated novolak type epoxy resins such as brominated bisphenol A novolak and the like.
  • the aromatic oxirane ring (epoxy group) -containing compound may be hydrogenated as an epoxy resin and an oxetane resin having an alicyclic structure.
  • the epoxy resin may be a non-aromatic oxirane ring (epoxy group) -containing resin. Examples include Denacol (registered trademark) EX-211L EX-216L EX-722P EX-810P (manufactured by Nagase ChemteX Corporation) Celoxide 2021P (manufactured by Daicel Corporation) YED216 (manufactured by Mitsubishi Chemical Corporation).
  • an epoxy resin having three or more oxirane rings is preferable.
  • Denacol registered trademark
  • EX321-L Denacol-301, DLC-402 (manufactured by Nagase ChemteX Corporation).
  • Epoxy group-containing silicon compound is a compound having a structure containing silicon in the molecule and further having an epoxy group.
  • the epoxy group may be a glycidyl group or an alicyclic epoxy group, and is preferably an alicyclic epoxy group represented by a cyclohexyl epoxy group.
  • the thermosetting resin contained in the resin composition those containing an epoxy group-containing silicon compound are particularly preferable.
  • the molecular weight of the epoxy group-containing silicon compound is 100 or more in terms of weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) from the viewpoints of handleability, wettability to the filler surface, and viscosity reduction of the resin composition.
  • Mw weight average molecular weight measured by gel permeation chromatography
  • GPC gel permeation chromatography
  • it is 500 or more, more preferably 700 or more.
  • it is 4000 or less, and it is more preferable that it is 3500 or less.
  • the weight average molecular weight (Mw) measured by GPC is preferably 100 or more, more preferably 200 or more, and 300 or more. More preferably.
  • the content of the epoxy group-containing silicon compound is 0.1% by mass or more, preferably 1% by mass or more, more preferably, when the total amount of the resin composition is 100% by mass from the viewpoint of reducing the viscosity of the resin composition. Is 2% by mass or more. Further, the content of the epoxy group-containing silicon compound is preferably 20% by mass or less, and more preferably 15% by mass or less, when the total amount of the resin composition is 100% by mass.
  • the epoxy group-containing silicon compound will be described.
  • the epoxy group-containing silicon compound is a compound having a structure containing silicon in the molecule and further having an epoxy group.
  • Epoxy group-containing silicon compounds include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4- Epoxycyclohexyl) ethyltriethoxysilane, ( ⁇ -glycidoxypropyl) (methyl) dimethoxysilane, ( ⁇ -glycidoxypropyl) (ethyl) dimethoxysilane, ( ⁇ -glycidoxypropyl) (methyl) diethoxysilane , ( ⁇ -glycidoxypropyl) (ethyl) diethoxysilane, [2- (3,4-epoxycyclohexylethyl) (methyl) dimethoxysilane, [2- (3,4-epoxycyclohexyl) ethyl] (ethyl) Dimethoxy
  • the organopolysiloxane represented by Formula (1) is also contained in the silicon compound containing an epoxy group.
  • R 11 3 SiO 1/2 a1 (R 12 2 SiO 2/2 ) b1 (R 13 SiO 3/2 ) c1 (SiO 4/2 ) d1 (O 1/2 H) e1
  • R 11 , R 12 and R 13 each independently represent a monovalent organic group, and at least one in each molecule is an organic group containing an epoxy group.
  • R 11 3 SiO 1/2 represents an M unit
  • R 12 2 SiO 2/2 represents a D unit
  • R 13 SiO 3/2 represents a T unit
  • SiO 4/2 represents a Q unit.
  • a1, b1, c1, and d1 are each integers of 0 or more, and a1 + b1 + c1 + d1 ⁇ 2.
  • R 11 , R 12 and R 13 are preferably hydrocarbon groups having 1 to 10 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and pentyl.
  • Alkyl groups such as hexyl and heptyl groups; alkenyl groups such as vinyl, allyl, butenyl, pentenyl and hexenyl; aryl groups such as phenyl, tolyl and xylyl; benzyl and phenethyl And substituted alkyl groups such as chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, and nonafluorobutylethyl group.
  • the organic group containing an epoxy group includes an epoxyalkyl group such as 2,3-epoxypropyl group, 3,4-epoxybutyl group, 4,5-epoxypentyl group; 2-glycidoxyethyl Groups, glycidoxyalkyl groups such as 3-glycidoxypropyl group, 4-glycidoxybutyl group; ⁇ - (or 2-) (3,4-epoxycyclohexyl) ethyl group, ⁇ - (or 3-) Examples include epoxycyclohexylalkyl groups such as (3,4-epoxycyclohexyl) propyl group.
  • an epoxyalkyl group such as 2,3-epoxypropyl group, 3,4-epoxybutyl group, 4,5-epoxypentyl group
  • 2-glycidoxyethyl Groups glycidoxyalkyl groups such as 3-glycidoxypropyl group, 4-glycidoxybutyl group
  • e1 is an integer of 0 or more, and represents the number of hydroxyl groups (silanol) directly bonded to the silicon atom.
  • the epoxy resin has a hydrolyzable group bonded to a silicon atom.
  • the organopolysiloxane represented by the formula (1) (where e1 ⁇ 1) The compound which produces
  • e1 ⁇ 1 it may be a compound in which all or part of the hydroxyl groups directly bonded to the silicon atom are replaced with hydrolyzable groups. .
  • the hydrolyzable group is a group that generates a hydroxyl group (silanol) bonded to a silicon atom by hydrolysis.
  • a hydroxy group an alkoxy group, hydrogen, an acetoxy group, an enoxy group, an oxime group, A halogen group is mentioned.
  • a preferred hydrolyzable group is an alkoxy group, particularly an alkoxy group having 1 to 3 carbon atoms, that is, a methoxy group, an ethoxy group, or a propoxy group.
  • the organopolysiloxane type epoxy resin represented by the above formula (1) can be produced, for example, by the following method.
  • Method 1 A method of cohydrolyzing and polycondensing a silane compound having an epoxy group and a silane compound having no epoxy group and / or an oligomer thereof.
  • Method 2 A method of adding an organic compound having an epoxy group and a carbon-carbon double bond group to a polysiloxane having a hydrosilyl group.
  • Methodhod 3) A method in which the double bond portion of the polysiloxane having an organic group containing a carbon-carbon double bond is oxidized and converted to an epoxy group.
  • the raw materials that can be used when the polysiloxane type epoxy resin is produced by the method 1 are as follows.
  • Examples of the raw material for introducing the M unit include trimethylmethoxysilane, trimethylethoxysilane, triphenylmethoxysilane, and triphenylsilanol.
  • dialkylsiloxane oligomers having hydroxyl groups at both ends compounds having silanol-modified compounds at both ends such as polydimethylsiloxane, polymethylphenylsiloxane, dimethylsiloxane-diphenylsiloxane copolymer, and polydiphenylsiloxane are commercially available.
  • Raw materials for introducing T unit include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, 3,3,3-trifluoropropyl Examples include trimethoxysilane and hydrolytic condensates thereof.
  • Examples of the raw material for introducing the Q unit include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and hydrolytic condensates thereof.
  • the epoxy value of the epoxy group-containing silicon compound is usually 100 g / eq or more, preferably 200 g / eq or more, more preferably 250 g / eq or more, further preferably 300 g / eq or more, and particularly preferably 400 g / eq or more. It is 4000 g / eq or less, preferably 3500 g / eq or less, more preferably 3000 g / eq or less, and further preferably 2500 g / eq or less.
  • the epoxy value is preferably slightly lower, 100 g / eq or more, preferably 150 g / eq or more, and 4000 g / eq or less, Preferably it is 3000 g / eq or less, More preferably, it is 2000 g / eq or less, More preferably, it is 1000 g / eq or less.
  • the resin can easily stay on the surface of the filler, and the elastic modulus of the cured product increases. It is easy to prevent cracks from occurring due to internal stress caused by temperature changes during curing or in use.
  • the epoxy value is the mass (g) of an epoxy group-containing compound (including a polymer) containing 1 equivalent (eq) of an epoxy group.
  • thermosetting resin in the resin composition one kind of the above-described resins may be used alone, or two or more kinds may be used in combination. Moreover, it is preferable that an epoxy group containing silicon compound is included from a wettability viewpoint to the filler surface.
  • the resin composition which is one Embodiment of this invention contains a curing catalyst.
  • the curing catalyst may be appropriately selected depending on the type of resin used, and the curing catalyst is not particularly limited as long as it is a compound that can cure the thermosetting resin.
  • examples of the curing catalyst for the epoxy resin will be shown.
  • Curing catalyst of epoxy resin When using an epoxy resin, the catalyst used for normal epoxy resin hardening can be used.
  • tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, cyclohexyldimethylamine, triethanolamine; 2-methylimidazole, 2-n-heptylimidazole, 2-n- Undecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methyl Imidazole, 1- (2-cyanoethyl) -2-methylimidazole, 1- (2-cyanoethyl) -2-n-undecylimidazole, 1- (2-cyanoethyl) -2-phenylimidazole, 1- (2-cyano
  • High melting point dispersion type latent curing accelerators such as amine addition type accelerators; Microcapsule type latents in which the surface of curing accelerators such as imidazoles, organophosphorus compounds and quaternary phosphonium salts are coated with a polymer Curing accelerator; amine salt type latent curing agent accelerator; latent curing accelerator such as high temperature dissociation type thermal cationic polymerization type latent curing accelerator such as Lewis acid salt other than gallium compound, Bronsted acid salt, etc. Can be mentioned.
  • an organometallic compound is preferable, a gallium compound and an indium compound are more preferable, and a gallium compound is more preferable.
  • gallium acetylacetonate and gallium acetate are particularly preferred.
  • the gallium compound is a component that acts as a catalyst for the self-polymerization reaction of the epoxy resin in combination with silanol supplied from a silanol source compound described in detail later.
  • the gallium compound is not particularly limited as long as it is a compound containing gallium as a metal atom, and various forms such as an oxide, a salt, and a chelate complex can be used.
  • Gallium complex having chelate ligand, gallium acetate, gallium oxyacetate, triethoxygallium, tris (8-quinolinolato) gallium, gallium oxalate, gallium ethylxanthate, diethylethoxygallium, gallium maleate, n-octylic acid, Examples thereof include gallium salts of long chain carboxylic acids such as 2-ethylhexanoic acid and naphthenic acid.
  • the chelate ligand include ⁇ -diketone type compounds and o-ketophenol type compounds. Some ⁇ -diketone type compounds have structures represented by the following formulas (15) to (17).
  • R 5 independently represents an alkyl group or a halogen-substituted alkyl group.
  • Specific examples of the compound of the formula (15) include acetylacetone, trifluoroacetylacetone, pentafluoroacetylacetone, hexafluoroacetylacetone and the like, and specific examples of the compound of the formula (16) include ethylacetoacetate and the compound of the formula (17). Specific examples of such include diethyl malonate.
  • the o-ketophenol type compound is a compound represented by the following formula (18).
  • R ′ represents a hydrogen atom, an alkyl group, a halogen-substituted alkyl group or an alkoxy group.
  • Specific examples of the compound of formula (18) include salicylaldehyde, ethyl-o-hydroxyphenyl ketone and the like.
  • a gallium complex having a chelate ligand is a preferred example of a gallium compound, and among them, gallium acetylacetonate can be particularly preferably used. Two or more kinds of gallium compounds can be used in any combination.
  • the weight loss when the cured product is exposed to a high temperature is less than that of an Al catalyst. A great effect is obtained particularly when the cured product contains a siloxane structure.
  • the weight loss when the temperature is maintained at 150 to 200 ° C. for 500 hours is preferably 20% by mass or less of the mass before heating, and more preferably 10% by mass or less.
  • the epoxy resin-containing composition containing a gallium compound and an epoxy resin is cured, the content of the gallium compound is usually 0.001 part by mass or more, preferably 0.01 part by mass or more, based on 100 parts by mass of the epoxy resin. Usually, 5.0 parts by mass or less, preferably 1.0 parts by mass or less.
  • silanol source compound is a compound that is a supply source of silanol.
  • Silanol in combination with the aforementioned gallium compound, acts as a catalyst for the self-polymerization reaction of the epoxy resin.
  • the role of silanol is considered to be a cation source necessary for the initiation of the self-polymerization reaction of the epoxy resin.
  • an aromatic group such as a phenyl group is bonded to the silicon atom of the silanol source compound, the aromatic group functions to increase the acidity of the silanol hydroxyl group, that is, to enhance the action of silanol as a cation source. it seems to do.
  • the silanol source compound may be a potential silanol source.
  • it is a compound which has a silicon atom to which a hydrolyzable group is bonded and which produces silanol when the hydrolyzable group is hydrolyzed.
  • the hydrolyzable group include a hydroxy group, an alkoxy group, hydrogen, an acetoxy group, an enoxy group, an oxime group, and a halogen group.
  • a preferred hydrolyzable group is an alkoxy group, particularly an alkoxy group having 1 to 3 carbon atoms, that is, a methoxy group, an ethoxy group, or a propoxy group.
  • silanol source compound is a silicon atom to which hydroxyl groups such as phenyldimethylsilanol, diphenylmethylsilanol, triphenylsilanol, dihydroxydiphenylsilane (diphenyldisilanol), trimethylsilanol, triethylsilanol, dihydroxydimethylsilane, and trihydroxymethylsilane are bonded. It is a monosilane compound having
  • silanol source compound is an organopolysiloxane represented by the formula (19) having a silicon atom to which a hydroxyl group is bonded.
  • R 21 3 SiO 1/2 a 2 (R 22 2 SiO 2/2 ) b 2 (R 23 SiO 3/2 ) c 2 (SiO 4/2 ) d 2 (O 1/2 H) e 2 (19)
  • R 21 , R 22 and R 23 each independently represent a monovalent organic group.
  • R 21 3 SiO 1/2 represents an M unit
  • R 22 2 SiO 2/2 represents a D unit
  • R 23 SiO 3/2 represents a T unit
  • SiO 4/2 represents a Q unit.
  • Each of a2, b2, c2, and d2 is an integer of 0 or more, and a2 + b2 + c2 + d2 ⁇ 1.
  • e2 is a natural number of 1 or more, and represents the number of hydroxyl groups (silanol) directly bonded to the silicon atom.
  • R 21 , R 22 and R 23 in the formula (19) are usually hydrocarbon groups having 1 to 10 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, Alkyl groups such as hexyl and heptyl groups; alkenyl groups such as vinyl, allyl, butenyl, pentenyl and hexenyl; aryl groups such as phenyl, tolyl and xylyl; aralkyls such as benzyl and phenethyl Groups; substituted alkyl groups such as chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, nonafluorobutylethyl group and the like.
  • the silanol source compound has a hydrolyzable group bonded to a silicon atom, and produces a organopolysiloxane represented by the formula (19) when the hydrolyzable group is hydrolyzed. Also good.
  • the organopolysiloxane represented by the formula (19) may be a compound in which all or a part of hydroxyl groups directly bonded to silicon atoms are replaced with hydrolyzable groups.
  • the silanol source compound is an organopolysiloxane and is used together with an epoxy resin that does not contain a siloxane structure
  • the organopolysiloxane is silicon from the viewpoint of ensuring compatibility between the organopolysiloxane and the epoxy resin. It preferably has an aromatic group bonded to an atom.
  • the weight average molecular weight is preferably 500 or more and more preferably 700 or more so that it does not volatilize during or after curing of the thermosetting resin composition. preferable.
  • the weight average molecular weight is preferably 20,000 or less, more preferably 15,000 or less.
  • the silanol source compound may be an organopolysiloxane or a silane compound having two or more silicon atoms bonded to a hydroxyl group or a hydrolyzable group in one molecule.
  • a silanol source compound is polycondensed by the action of the gallium compound to increase the molecular weight when heated, so that it does not bleed out after curing.
  • the organopolysiloxane that can be suitably used as the silanol source compound include those having structures represented by the following formulas (20) to (23).
  • the organopolysiloxane represented by the formula (22) includes a compound represented by the formula (20) and a compound represented by the formula (24) (dihydroxydimethylsilane or polydimethylsiloxane having hydroxyl groups at both ends), It can be obtained by polycondensation.
  • a metal catalyst can be used in addition to an acid and a base, and a gallium compound such as gallium acetylacetonate can also be used.
  • the organopolysiloxane represented by the formula (23) can be obtained by polycondensing the compound represented by the formula (21) and the compound represented by the formula (24).
  • a metal catalyst can be used in addition to an acid and a base, and a gallium compound such as gallium acetylacetonate can also be used.
  • m, n, M, N, m1, and m2 are each an integer of 1 or more.
  • the viscosity of the organopolysiloxane or the viscosity of the resin composition obtained using the organopolysiloxane is 50,000 cp or less, preferably 40,000 cp or less, more preferably at 30 ° C. and 1 atm. Is preferably set to 30,000 cp or less, more preferably 20,000 cp or less, particularly preferably 15,000 cp or less, and most preferably 10,000 cp or less.
  • a silanol source compound such as methyltrimethoxysilane or phenyltrimethoxysilane
  • a metal catalyst can be used in addition to an acid and a base, and a gallium compound such as gallium acetylacetonate can also be used.
  • Such organopolysiloxanes have the property of being cured by the action of a condensation catalyst such as an acid, a base or a metal compound such as a gallium compound.
  • a monosilane compound and an organopolysiloxane may be used in combination.
  • a silanol source compound is 0.05 mass part or more normally with respect to 100 mass parts of epoxy resins, Preferably it is 0.1 mass part or more, and is 500 mass parts or less, Preferably it is 200 mass parts or less. Further, the content ratio of the gallium compound and the silanol source compound is preferably 1: 0.05 to 0.001: 100, more preferably 1:10 to 0.01: 100 in terms of mass ratio. The content of the curing catalyst in the thermosetting resin composition is preferably adjusted to be 0.001% by mass to 0.3% by mass with respect to 100% by mass of the thermosetting resin composition.
  • either one or both of the epoxy resin and the silanol source compound may have an organopolysiloxane structure portion.
  • the gallium compound acts as a dehydration condensation catalyst between silanols, so that both the self-polymerization reaction and silanol condensation reaction of epoxy resin are involved in curing A good thermosetting resin composition is obtained. Since the gallium compound also serves as a catalyst for the dealcoholization condensation reaction between silanol and alkoxy group, the same effect can be obtained when silanol and alkoxy group are introduced into the organopolysiloxane structure.
  • the gallium compound is preferable because it also serves as a catalyst for siloxane condensation and the crosslinking system proceeds simultaneously. Further, it has good compatibility with siloxane and silica and contributes to silica dispersion. Furthermore, when an epoxy group-containing silicon compound is reacted with a gallium compound, the linear expansion coefficient of the resulting cured product becomes constant over a wide range.
  • a hydrosilyl group is introduced into one of the organopolysiloxane structure part of the epoxy resin and the organopolysiloxane structure part of the silanol source compound, and a vinylsilyl group is introduced into the other, and a hydrosilylation reaction catalyst such as a platinum compound is used.
  • a thermosetting resin composition with good curability in which both the self-polymerization reaction and hydrosilylation reaction of the epoxy resin are involved in the curing can be obtained.
  • thermosetting resin composition in which both the self-polymerization reaction and hydrosilylation reaction are involved in curing is obtained.
  • This example may be modified so that a vinylsilyl group is introduced into the organopolysiloxane structure part of either one or both of the epoxy resin and the silanol source compound, and the organopolysiloxane to be added is introduced with a hydrosilyl group.
  • Curing agent for epoxy resin examples include amines, polyamide resins, acid anhydrides, and phenols. From the viewpoints of reducing the linear expansion coefficient, controlling the polymerization rate, and reducing the viscosity, it is preferable to use an acid anhydride.
  • the acid anhydride include aliphatic acid anhydrides, alicyclic acid anhydrides, aromatic acid anhydrides, halogen acid anhydrides, and acyclic carboxylic acid anhydrides.
  • an alicyclic carboxylic acid anhydride from the viewpoint of increasing the light resistance and the elastic modulus of the cured product.
  • Examples of the alicyclic carboxylic acid anhydride include compounds represented by formulas (25) to (31), 4-methyltetrahydrophthalic acid anhydride, methylnadic acid anhydride, dodecenyl succinic acid anhydride, Examples thereof include Diels-Alder reaction products of alicyclic compounds having a conjugated double bond such as ⁇ -terpinene and alloocimene and maleic anhydride, and hydrogenated products thereof.
  • arbitrary structural isomers and arbitrary geometrical isomers can be used as the Diels-Alder reaction product and hydrogenated products thereof.
  • the alicyclic carboxylic acid anhydride can be used after being appropriately chemically modified as long as the curing reaction is not substantially hindered. By containing an acid anhydride, effects such as control of the epoxy reaction rate, handling, improvement in leveling, and prevention of coloring may be obtained.
  • an acid anhydride it is 1.5 equivalent or less with respect to the amount of epoxy. More preferably, it is 1 equivalent or less, More preferably, it is 0.8 equivalent or less, More preferably, it is 0.6 equivalent or less.
  • Examples of the acyclic carboxylic acid anhydride include those represented by the formula (32).
  • the hydrocarbon group may be any aliphatic, alicyclic or aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group is a linear or branched saturated hydrocarbon or unsaturated hydrocarbon, and examples thereof include an aliphatic hydrocarbon group having 2 to 18 carbon atoms. More specifically, a compound represented by the formula (33) can be given.
  • n ′ is preferably 0 or more, more preferably 2 or more, and still more preferably 4 or more in terms of low volatility. In view of solubility, n ′ is preferably 15 or less, and more preferably 12 or less.
  • Aliphatic hydrocarbon groups include ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, heptadecyl, octadecyl, etc.
  • An alkenyl group such as a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group.
  • aromatic hydrocarbon group examples include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, ⁇ -naphthyl group, ⁇ -naphthyl group, biphenyl-4-yl group, biphenyl-3-yl group, Aryl groups such as biphenyl-2-yl, anthryl, and phenanthryl; benzyl, phenethyl, ⁇ -naphthylmethyl, ⁇ -naphthylmethyl, ⁇ -naphthylethyl, and ⁇ -naphthylethyl An aralkyl group is mentioned.
  • substituents that may be substituted on the hydrocarbon group include a hydroxyl group, an alkyl group, a nitro group, an amino group, a mercapto group, an acetyl group, and a halogen (Cl, Br, F).
  • the storage stability of a resin composition can be improved at the point which can control the reaction rate of an epoxy group by containing a non-cyclic carboxylic acid anhydride. Furthermore, by containing a non-cyclic carboxylic acid anhydride, effects such as improved handling, leveling, and prevention of coloring may be obtained.
  • the ester bond portion of the acyclic carboxylic acid anhydride is a highly polar site, or R 6 and R 7 in the formula (32) are nonpolar sites, thereby eliminating the phase separation structure in the resin composition. May function as an activator.
  • the minimum of content is 0.015 equivalent or more with respect to the amount of epoxy, Preferably it is 0.1 equivalent or more, More preferably, it is 0.12 equivalent or more. More preferably, it is 0.15 equivalent or more.
  • the upper limit is 1.5 equivalent or less with respect to the amount of epoxy, Preferably it is 1.0 equivalent or less, More preferably, it is 0.8 equivalent or less, More preferably, it is 0.6 equivalent or less.
  • Silicone resin curing catalyst When a silicone resin is used, examples of the curing catalyst include metal compounds.
  • the metal compound a chelate complex, an organic acid salt, an inorganic salt, or an alkoxide of zirconium, hafnium, yttrium, tin, zinc, titanium, or gallium can be used. From the viewpoint of the linear expansion coefficient of the cured product, the above-described gallium compound is preferably used.
  • Organic group-containing silicon compounds other than epoxy group-containing silicon compounds are organic groups other than epoxy groups in the molecule. It is a silicon compound having Examples of the organic group include an alcohol group, a carboxyl group, an acrylic group, a methacryl group, a thiol group, an ether group, an aralkyl group, an amino group, and an alkyl group.
  • organic group-containing silicon compound it is preferable to use at least one silicon compound modified with an alcohol group or a carboxyl group.
  • the organic group-containing silicon compound as described above in the resin composition are likely to stay on the filler surface, and are easily adsorbed to the filler because they have an appropriately polar organic group. Furthermore, since it has an appropriate weight average molecular weight, it is easy to stay on the filler surface, and the structural viscosity of the filler can be destroyed.
  • the surfactant that eliminates the phase separation structure in the resin composition by contacting the silicon compound portion of the organic group-containing silicon compound with the low polarity portion of the filler and the organic group portion with the polar portion of the filler. May function as.
  • the effect of controlling the elastic modulus of the cured product of the resin composition may be obtained by containing the organic group-containing silicon compound in the resin composition.
  • the organic group-containing silicon compound chemically reacts with other resins to form a cross-linked structure, the cured product is made highly elastic, or when the organic group-containing silicon compound has a flexible skeleton, Lower elasticity.
  • the molecular weight is preferably 100 or more in terms of weight average molecular weight (Mw) measured by GPC from the viewpoints of handleability, filler wettability, and viscosity reduction. It is more preferably 1000 or more, further preferably 2000 or more, and preferably 10,000 or less, more preferably 5000 or less.
  • the content of these organic group-containing silicon compounds is 0.01% by mass or more, preferably 0 when the total amount of the resin composition is 100% by mass from the viewpoint of viscosity reduction and storage modulus control of the cured product. 0.05% by mass or more, more preferably 0.1% by mass or more. Moreover, 20 mass% or less is preferable and 10 mass% or less is more preferable.
  • the alcohol group-containing silicon compound has one or a plurality of primary alcohols, secondary alcohols, tertiary alcohols in the molecule, and preferably contains primary alcohols.
  • Examples of such a silicon compound include those represented by formula (2).
  • R 1 and R 2 independently represent a divalent organic group.
  • R 1 and R 2 are an oxygen atom, a nitrogen atom, a sulfur atom, and a hydrocarbon group that may contain an aromatic group. Further, R 1 and R 2 are not linked, and R 1 and R 2 may be the same or different and may have a substituent.
  • Ra and Rb represent a hydrogen atom or a hydroxyl group.
  • n is preferably 1 or more, more preferably 5 or more, and still more preferably 10 or more.
  • n is preferably 120 or less, more preferably 100 or less.
  • About a and b, 1 or more are preferable and 10 or less are preferable.
  • the alcohol group-containing silicon compound is not limited to the form of the formula (2), and the silicone part may have a branched structure via a T unit and a Q unit. Moreover, you may have M unit.
  • the number of alcohol groups contained in one molecule is not limited, but more preferably is 2.
  • the following formula (2 ') is exemplified.
  • x represents an integer of 1 to 120
  • y represents an integer of 1 to 120
  • R represents an organic group.
  • examples of the organic group represented by R include an oxygen atom, a nitrogen atom, a sulfur atom, and a hydrocarbon group that may contain an aromatic group.
  • alcohol group-containing silicon compounds examples include BY-16-201 (Toray Dow Corning), SF8427 (Toray Dow Corning), SF8428 (Toray Dow Corning), KF-6000 (Shin-Etsu Chemical).
  • KF6001 manufactured by Shin-Etsu Chemical
  • KF6002 manufactured by Shin-Etsu Chemical
  • KF6003 manufactured by Shin-Etsu Chemical
  • Examples of the carboxyl group-containing silicon compound include those represented by the formula (3).
  • R 3 and R 4 independently represent a divalent organic group.
  • R 3 and R 4 are an oxygen atom, a nitrogen atom, a sulfur atom, and a hydrocarbon group that may contain an aromatic group.
  • R 3 and R 4 are not linked, and R 3 and R 4 may be the same or different, and may have a substituent.
  • m ′ is preferably 1 or more, more preferably 5 or more, and still more preferably 10 or more.
  • m ′ is preferably 120 or less, and more preferably 100 or less.
  • the carboxyl group-containing silicon compound is not limited to the form of the formula (3), and the silicone part may have a branched structure via a T unit and a Q unit. Moreover, you may have M unit.
  • the number of carboxyl groups contained in one molecule is not limited, but more preferably is 2. Examples of the carboxyl group-containing silicon compound include Magnassoft 800L (Momentive), BY16-880 (Toray Dow Corning), X-22-3710 (Shin-Etsu Chemical).
  • the resin composition may contain a filler, and the content thereof is not particularly limited, but usually contains 50% by mass or more of filler with respect to the total amount of the resin composition.
  • a filler both general organic fillers and inorganic fillers can be used.
  • Organic fillers include styrene polymer particles, methacrylate polymer particles, ethylene polymer particles, propylene polymer particles, polyamide polymer particles, synthetic polymer particles such as polynylon polymer particles, natural products such as starch and wood flour, Examples thereof include cellulose which may be modified and various organic pigments.
  • the inorganic filler is not particularly limited as long as it is an inorganic substance or a compound containing an inorganic substance.
  • silica for example, quartz, fumed silica, precipitated silica, anhydrous silicic acid, fused silica, crystalline silica, ultrafine powder amorphous silica.
  • Silica-based inorganic fillers such as alumina, zircon, iron oxide, zinc oxide, titanium oxide, silicon nitride, boron nitride, aluminum nitride, silicon carbide, glass fiber, glass flake, alumina fiber, carbon fiber, mica, graphite, carbon black , Ferrite, graphite, diatomaceous earth, clay, talc, aluminum hydroxide, magnesium hydroxide, calcium carbonate, manganese carbonate, magnesium carbonate, barium sulfate, potassium titanate, calcium silicate, inorganic balloon, silver powder, etc.
  • the content of the filler with respect to the total amount of the resin composition is usually 50% by mass or more. From the viewpoint of reducing the linear expansion coefficient of the cured product of the resin composition, it is preferably 75% by mass or more, more preferably 80% by mass or more, and further preferably 85% by mass or more.
  • a filler By using a filler, the strength, hardness, elastic modulus, thermal expansion coefficient, thermal conductivity, heat dissipation, electrical properties, light reflectivity, flame retardancy, fire resistance, thixotropy of the resulting molded product (cured product) Properties (characteristics of the composition, not the molded body), and various physical properties such as gas barrier properties can be improved.
  • a silica filler is preferably contained. Hereinafter, the silica filler will be described in detail.
  • the silica filler refers to a filler such as silica-based inorganic filler such as quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, and ultrafine powder amorphous silica.
  • silica-based inorganic filler such as quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, and ultrafine powder amorphous silica.
  • the shape is preferably spherical rather than fibrous or irregular.
  • the spherical shape may be a true spherical shape, an elliptical shape, or a substantially spherical shape including an oval shape.
  • the aspect ratio ratio of major axis to minor axis is usually 1. .3 or less, preferably 1.2 or less, more preferably 1.1 or less.
  • a hydroxyl group on the filler surface from the viewpoint of formulation. Since the polarity of the filler surface can be improved by having a hydroxyl group, an organic polymer having a higher polarity than an inorganic substance can be easily mixed. It is also possible to increase the amount of filler added by controlling the particle size distribution. That is, a higher filling rate can be obtained by mixing fillers having different particle sizes.
  • the average particle diameter of the filler is measured using (Particle Size Analyzer CILAS 1064), preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more. Moreover, 100 micrometers or less are preferable and 50 micrometers or less are more preferable.
  • the silica filler may be appropriately surface-treated.
  • the surface treatment include alkylation treatment, trimethylsilylation treatment, silicone treatment, treatment with a silane coupling agent, and the like, but are not particularly limited.
  • the type of particle surface functional group can be controlled. From the viewpoint of reducing the viscosity, it is preferable to use (glycidylated) treated filler.
  • a silica filler may use 1 type and may use 2 or more types together.
  • Increasing the amount of filler may decrease the viscosity at low shear while increasing the viscosity at high shear.
  • the viscosity at the time of low shear is the viscosity when the viscosity is measured by the method described later, that is, at 25 ° C. and a shear rate of 0.09 s ⁇ 1 or less.
  • the viscosity at high shear is the viscosity at a shear rate of 1 s -1 or higher. This is presumably because the filler mobility is hindered by increasing the amount of filler, and it becomes difficult for the filler to form a secondary structure at low shear.
  • a hydrated metal compound filler such as aluminum hydroxide or magnesium hydroxide.
  • the resin composition of this invention may contain the thermoplastic resin as needed.
  • the thermoplastic resin is not particularly limited, but vinyl polymers such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, (meth) acrylic resin, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer; polylactic acid resin, Polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyamides such as nylon and polyamidoamine; polyvinyl acetal resins such as polyvinyl acetoacetal, polyvinyl benzal and polyvinyl butyral resin; ionomer resins; polyphenylene ether; polyphenylene sulfide; polycarbonate; Polyacetal, ABS resin, LCP (liquid crystal polymer), fluorine resin, urethane resin, elastomer, or these Including resin modified products and the like.
  • the thermoplastic resin is preferably stretchable.
  • the elongation can relieve stress and suppress cracks.
  • the maximum elongation of the thermoplastic resin is preferably 5% or more, and more preferably 10% or more.
  • the maximum elongation of the thermoplastic resin is a value measured by a measuring method based on JIS K7113 or ASTM D638.
  • thermoplastic resin may be soluble in at least one component of the thermosetting resin in the resin composition.
  • thermoplastic resins polyvinyl acetals such as polyvinyl butyral and vinyl resins such as (meth) acrylic resins are preferable, and polyvinyl acetals such as polyvinyl butyral are particularly preferable.
  • Polyvinyl acetal has a hydroxyl group and is excellent in dispersibility.
  • a hydroxyl group such as an acid anhydride
  • a part of the acetal is taken in, making it difficult to separate from the thermosetting resin. . It is also possible to positively introduce a reactive group by modification with an acid anhydride in advance.
  • the thermoplastic resin is preferably insoluble in the thermosetting resin in the resin composition.
  • Insoluble in the thermosetting resin means that the component soluble in the thermosetting resin component in the resin composition is less than 10%, preferably less than 5%, more preferably less than 3%, still more preferably less than 1%. Say something.
  • the thermoplastic resin is insoluble in the thermosetting resin, it is possible to prevent the viscosity of the liquid resin composition from increasing and improve the leveling property.
  • a thermoplastic resin that is insoluble in a thermosetting resin simultaneously with a large amount of fillers, that is, in combination a component phase that is thermoplastic and has good elongation can be efficiently dispersed in the resin composition, and stress is relieved. It's easy to do.
  • the dispersed thermoplastic resin is insoluble in the thermosetting resin, cracks can be suppressed without lowering the elastic modulus of the cured product of the resin composition.
  • polyamide resins such as nylon and cellulose resins are particularly preferable, and polyamide resins such as nylon are particularly preferable.
  • the thermoplastic resin is preferably stretchable. The elongation can relieve stress and suppress cracks.
  • the particle diameter of the thermoplastic resin is small.
  • the average particle size of the thermoplastic resin is preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 100 ⁇ m or less.
  • the content of the thermoplastic resin in the resin composition is preferably 0.001% or more, more preferably 0.003% or more, and further preferably 0.005% or more, as a lower limit value in the resin composition. Moreover, as an upper limit, Preferably it is 10% or less, More preferably, it is 5% or less, More preferably, it is 2% or less.
  • the resin composition according to the embodiment of the present invention includes a dispersant, an antioxidant, an antifoaming agent, a colorant, a modifier, and a leveling agent from the viewpoint of improving physical properties and imparting functions.
  • additives such as a light diffusing agent, a thermal conductivity, a flame retardant, a reactive or non-reactive diluent, an adhesive, and an adhesion improver may be further contained.
  • the resin composition according to one embodiment of the present invention may contain an antioxidant in order to suppress yellowing under the use environment.
  • Phenol-based antioxidants, phosphorus-based antioxidants, hindered amines, and the like are preferably used.
  • hindered phenol-based antioxidants having an alkyl group at one or both ortho positions of the phenol hydroxyl group are particularly suitable. Used.
  • Silane coupling agent can be contained in the resin composition in order to improve the adhesion to metal parts and fillers.
  • Specific examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - Examples include aminopropyltrimethoxysilane and N-phenyl-3-aminopropyltrimethoxysilane.
  • organic flame retardants such as halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, and their composite types, antimony compounds, metals
  • An inorganic flame retardant such as hydroxide can be contained. They may be additive or reactive.
  • the resin composition can be produced by mixing a thermosetting resin and a curing catalyst with other components such as the filler, resin, and antioxidant described above as necessary.
  • the order of mixing is not particularly limited. For example, when an epoxy group-containing silicon compound is used, it must be mixed with an epoxy resin in the absence of a gallium compound, a silanol source compound, and a catalyst used for curing the epoxy resin in order to prevent the curing reaction from proceeding due to heat generation during mixing. Is desirable.
  • the means for mixing the filler is not particularly limited, but specifically, for example, a two-roll or three-roll, a planetary stirring and defoaming device, a homogenizer, a dissolver, a planetary mixer, etc., a plast mill And a melt kneader.
  • Mixing may be performed at normal temperature, may be performed by heating, may be performed under normal pressure, or may be performed under reduced pressure. If the temperature during mixing is high, the composition may be cured before molding.
  • This resin composition may be a one-component curable type or a two-component curable type in consideration of storage stability.
  • the resin composition of the present invention is preferably used as a sealing material for semiconductor devices, but the sealing method may be performed by a commonly performed method. Examples of the sealing method include transfer molding and potting. Since the resin composition of the present invention is a resin composition having fluidity at room temperature, it is preferably used for potting. Specifically, a liquid containing a resin composition and a liquid containing a curing catalyst are respectively prepared and then mixed to prepare a mixed liquid that can be used for potting. A part is placed in the housing, and the above-mentioned mixed liquid is poured into it. Then it is cured. Depending on the resin composition used, room temperature curing or heat curing may be used. For heat curing, conventionally known methods such as hot air circulation heating, infrared heating, and high-frequency heating can be employed.
  • the resin composition of the present invention contains a thermosetting resin.
  • the heat treatment conditions may be determined according to the resin composition, the catalyst concentration, the thickness of the member to be formed with the composition, and the like as long as the resin composition can be brought into a desired cured state.
  • the curing temperature By setting the curing temperature to about 100 ° C. at first and then to 120 to 180 ° C., foaming due to residual solvent or dissolved water vapor in the composition can be prevented.
  • the difference in the curing rate between the deep portion and the surface of the resin composition can be reduced, a cured product having a smooth surface and no wrinkles and a good appearance can be obtained. If the difference in cure speed between the deep part and the surface of the resin composition is small, the cured state becomes uniform, so that the generation of internal stress in the cured product is suppressed, and the occurrence of cracks can be prevented.
  • the use of the resin composition according to the embodiment of the present invention is not particularly limited, and can be used as a sealing material for various semiconductor devices including light emitting devices such as LED devices.
  • the molded body obtained by curing the resin composition according to one embodiment of the present invention contains 50% by mass or more of silica filler, so that it has a low coefficient of thermal expansion even at a high temperature, and cracks are generated by relaxing the stress. It is difficult to use and excellent in reliability, so it is particularly suitable for power devices.
  • the power device include those used as rectification, frequency conversion, a regulator, an inverter, and the like.
  • the resin composition of the present invention has fluidity as a composition, can be suitably used for sealing by potting, and has a very low linear expansion coefficient of a cured product, so it is suitable for a wide range of power devices.
  • Can be used for It can also be used for power devices such as home appliances and computers, and can also be used for large power devices for controlling automobiles, railway vehicles, and substations.
  • Synthetic resins A and B which are epoxy group-containing silicon compounds, were synthesized as in Synthesis Examples 1 and 2, respectively.
  • the weight average molecular weight (Mw) and the epoxy value were measured as follows.
  • -Weight average molecular weight (Mw) The weight average molecular weight (Mw) of the curable composition was measured by gel permeation chromatography under the following conditions and indicated as a standard polystyrene equivalent value.
  • 1 mass% tetrahydrofuran solution of polysiloxane was filtered with the filter of 0.45 micrometer after that was used as the measurement sample solution.
  • Apparatus Waters 2690 (manufactured by Waters) Column: KF-G, KF-602.5, KF-603, KF-604 (manufactured by Showa Denko) Eluent: THF, flow rate 0.7 mL / min, sample concentration 1%, injection volume 10 ⁇ L -Epoxy value It implemented according to JISK7236: 2001. The precisely weighed sample was dissolved in chloroform, and acetic acid and tetraethylammonium bromide acetic acid solution were added, followed by titration with a 0.1 mol / L perchloric acid acetic acid standard solution. The end point was determined using a crystal violet indicator.
  • a polysiloxane synthetic resin A having a value of 1160 g / eq was obtained.
  • the viscosity at 25 ° C. and a shear rate of 0.009 s ⁇ 1 is defined as follows.
  • the viscosity of the resin composition was measured with a rheometer VISCOANALYSER (Reologica Inst. AB). Measurement conditions are 25 ° C for temperature, ⁇ 30 parallel plate for use plate, gap of 0.800 mm, preshear condition of 0.1 (1 / s) for 60 seconds, and equilibration time (wait time before measurement) of 25.0 seconds. Delay time (time when data is not acquired) 40 seconds, integration time (time when data is acquired) 80 seconds, measurement shear rate range: 0.001 to 600 (1 / s).
  • the viscosity at 0.009 s ⁇ 1 was calculated by placing an appropriate amount of the resin composition on the sample stage, lowering the jig, and measuring the viscosity when the shear rate was increased under the above conditions. .
  • ⁇ Measurement of physical properties of cured product The physical properties of the cured products obtained in the following examples and comparative examples were measured as follows. Measurement of average linear expansion coefficient From a plate-like cured product having a thickness of 1 to 2 mm, it was cut into 3 ⁇ 3 mm and used as a measurement sample. The average linear expansion coefficient is EXSTAR as a thermomechanical analyzer in accordance with JIS K7197. Using TMA / SS6100 (manufactured by SII Nanotechnology Inc.), measurement was performed in a compression mode with a temperature program shown in Table 1, and an average linear expansion coefficient in Program 3 was calculated.
  • E ' Storage elastic modulus (E ') measurement From a plate-like cured product having a thickness of 1 to 2 mm, it was cut into a strip shape having a width of 5 mm and used as a measurement sample.
  • the storage elastic modulus is based on JIS K7244, using EXSTAR DMS / 6100 (manufactured by SII NanoTechnology) as a thermomechanical analyzer, in a tensile mode, with a chuck distance (effective length) of 15 mm.
  • the frequency was measured by a temperature program shown in Table 2 below at a frequency of 1 Hz, and the storage elastic modulus at 25 ° C. and 180 ° C. in Program 1 was calculated.
  • a cured product of a disk having a thickness of 1 to 2 mm and a diameter of 7 cm was used as a measurement sample.
  • the volume resistivity measurement was performed under the following conditions using a resiliency chamber 12708 and a digital ultrahigh resistance / microammeter 5451 (manufactured by ADC Corporation). Voltage: 500V Charge time: 4 minutes Electrode size: Conforms to ASTM D257
  • ⁇ Thermal cycle test> An evaluation case was prepared by combining a nickel-plated copper plate on the bottom surface of a module case (34 PM case manufactured by Kojin Co., Ltd.) having a PPS wall. About 44 g of the resin composition was poured into the case, and the resin composition was sequentially heated and cured under predetermined curing conditions to produce a thermal cycle test sample. Using a thermal shock device TSA-41LA (manufactured by ESPEC), a thermal cycle test was performed with 70 cycles of 175 ° C high temperature exposure for 30 minutes, normal temperature exposure for 1 minute, and -40 ° C low temperature exposure for 30 minutes. A sample was taken out later, and it was visually confirmed whether the cured product was cracked or peeled off from the PPS wall. The case where no crack was generated was marked as ⁇ , and the case where a crack was generated was marked as x.
  • TSA-41LA manufactured by ESPEC
  • Example 1 2.0 g of modified silicone oil X-22-169 (manufactured by Shin-Etsu Chemical Co., Ltd.), 0.54 g of trimethylolpropane triglycidyl ether Denacol (registered trademark) EX-321L (manufactured by Nagase ChemteX), nylon fine particle SP500 (Toray Industries, Inc.) 0.10 g) and 30 g of true spherical filler HL-3100 (manufactured by Tatsumori) were stirred and mixed using Planetary Vacuum Mixer ARV-300 manufactured by THIKY.
  • modified silicone oil X-22-169 manufactured by Shin-Etsu Chemical Co., Ltd.
  • EX-321L registered trademark
  • nylon fine particle SP500 Toray Industries, Inc.
  • the obtained resin composition was cured at 80 ° C. for 0.5 hour, 120 ° C. for 1 hour, and 180 ° C. for 5 hours to obtain a cured product, and the physical properties of the cured product were measured by the above method.
  • the results are shown in Table 4.
  • WPE is an epoxy value (g / eq).
  • Example 2 In accordance with the method of Example 1, a resin composition was obtained with the composition shown in Table 4.
  • X22-169A is a modified silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Magnasoft (registered trademark) 800L is an organic group-containing silicon compound (manufactured by Momentive)
  • TSL9906 is an epoxy group-containing silicon compound (manufactured by Momentive).
  • the viscosity of the obtained resin composition at 25 ° C. and a shear rate of 0.009 s ⁇ 1 was measured.
  • the obtained resin composition was hardened on the same conditions as Example 1, the hardened
  • Example 3 In accordance with the method of Example 1, a resin composition was obtained with the composition shown in Table 4.
  • DLC-402 is a liquid epoxy resin, Denacol (registered trademark) DLC-402 (manufactured by Nagase ChemteX Corporation). The viscosity of the obtained resin composition at 25 ° C. and a shear rate of 0.009 s ⁇ 1 was measured.
  • the obtained resin composition was hardened on the same conditions as Example 1, the hardened
  • Example 1 In accordance with the method of Example 1, a resin composition was obtained with the composition shown in Table 4.
  • E-PO is an epoxy resin (manufactured by Shin Nippon Chemical Co., Ltd.)
  • JER871 is an epoxy resin (manufactured by Mitsubishi Chemical Corporation)
  • EX-216L is an epoxy resin (manufactured by Nagase ChemteX)
  • FLD516 is a silanol source compound (BLUESTARS) SILICONES).
  • the viscosity of the obtained resin composition at 25 ° C. and a shear rate of 0.009 s ⁇ 1 was measured.
  • the obtained resin composition was cured at 80 ° C. for 0.5 hour, 120 ° C. for 1 hour, 150 ° C. for 1 hour, and 180 ° C. for 3 hours to obtain a cured product. Physical properties were measured. The results are shown in Table 4.
  • Example 2 In accordance with the method of Example 1, a resin composition was obtained with the composition shown in Table 4.
  • YED216D is an epoxy resin (manufactured by Mitsubishi Chemical Corporation).
  • the viscosity of the obtained resin composition at 25 ° C. and a shear rate of 0.009 s ⁇ 1 was measured.
  • the obtained resin composition was cured at 80 ° C. for 1 hour, 120 ° C. for 2 hours, 150 ° C. for 1 hour, and 200 ° C. for 1 hour to obtain a cured product. It was measured. The results are shown in Table 4.
  • Example 4 As shown in Table 4, in Examples 1 to 3, the viscosity of the resin composition before curing was low, and the cured product exhibited high storage elastic modulus at 25 ° C and 180 ° C.
  • the volume resistivity ratio a / b was within a predetermined range, and no cracks or peeling from the PPS wall was observed after 70 cycles of the thermal cycle test.
  • the cured product of Comparative Example 1 had a low storage elastic modulus at 180 ° C., indicating that the temperature dependency of the storage elastic modulus was large, and cracks were observed after 70 cycles of the thermal cycle test.
  • Comparative Example 2 exhibited high storage modulus at 25 ° C. and 180 ° C., but the volume resistivity ratio a / b was outside the predetermined range, and cracks were observed after 70 cycles of the thermal cycle test.

Abstract

Provided is a resin composition which is in a liquid state before curing, and a cured product of which maintains high elastic modulus in the actual working temperature range of a semiconductor device and is not susceptible to cracks or separation even if used for a long period of time. A thermosetting resin composition which contains a thermosetting resin and a curing catalyst, and which is characterized in that: the viscosity as measured at 25°C at a shear rate of 0.009 s-1 is 1,500 Pa·s or less; the storage elastic moduli of a cured product of this thermosetting resin composition at 25°C and at 180°C are 1.0 × 108 Pa or more; and the ratio of the volume resistivity a at 25°C to the volume resistivity b at 200°C of a cured product of this thermosetting resin composition, namely a/b is 8,500 or less.

Description

樹脂組成物Resin composition
 本発明は、半導体デバイス等の封止材として好適に用いられる樹脂組成物に関する。 The present invention relates to a resin composition suitably used as a sealing material for semiconductor devices and the like.
 半導体デバイス等の封止材には、絶縁性、熱信頼性に加え、低い線膨張率が求められる。これは、半導体デバイスから発生する熱による膨張で封止樹脂にクラックや剥離が生じることを防ぐためである。線膨張率を下げるために、封止材に充填剤(フィラー)を加えることが一般的に行われている(例えば、特許文献1、2)。 In addition to insulation and thermal reliability, sealing materials such as semiconductor devices are required to have a low coefficient of linear expansion. This is to prevent the sealing resin from being cracked or peeled off due to expansion due to heat generated from the semiconductor device. In general, a filler (filler) is added to the sealing material in order to reduce the linear expansion coefficient (for example, Patent Documents 1 and 2).
 さらにデバイスを封止するためには、封止材に高い弾性率が必要である。高弾性率の封止材は外力に対する変形が小さいため、デバイス内部のチップ、ワイヤー及びそれらの接続部分を保護する観点から一般的に好ましい。
 また、封止材の評価方法としては、実際に回路を封止し、これに通電を繰り返すことにより内部から発生する熱に対する信頼性を評価するパワーサイクル試験と、通電することなく、加熱炉などの中に入れて急温冷を繰り返すことにより信頼性を評価するサーマルサイクル試験が行われている。
Further, in order to seal the device, the sealing material needs to have a high elastic modulus. A sealing material having a high elastic modulus is generally preferable from the viewpoint of protecting chips, wires, and their connection portions inside the device, because deformation with respect to external force is small.
Moreover, as an evaluation method of the sealing material, a power cycle test in which the circuit is actually sealed and the reliability of the heat generated from the inside is evaluated by repeating energization, and a heating furnace without energization, etc. A thermal cycle test is performed in which reliability is evaluated by repeating rapid heating and cooling in a container.
特開2004-27005号公報JP 2004-27005 A 特開2009-67890号公報JP 2009-67890 A
 しかしパワーデバイスのように発熱量が大きい半導体デバイスの封止に弾性率が高い封止材を使用すると、線膨張率のなるべく小さい封止材を用いても、使用中の熱膨張により、内部応力が大きくなり、封止材樹脂にクラックや剥離が生じる。さらにはデバイス内部のチップ、ワイヤー及びそれらの接続部分を破損させてしまうといった問題があった。 However, if a sealing material with a high elastic modulus is used to seal a semiconductor device that generates a large amount of heat, such as a power device, even if a sealing material with a linear expansion coefficient as small as possible is used, the internal stress is reduced due to thermal expansion during use. Increases and cracks and peeling occur in the encapsulant resin. Furthermore, there is a problem that the chip, the wire, and their connection part inside the device are damaged.
 そこで封止材として、適度にやわらかい、すなわち弾性率を低く抑えた樹脂等を用いることが行われてきたが、弾性率の低い樹脂を用いた場合、パワーサイクル試験のような信頼性試験においてデバイス内部のチップ、ワイヤー及びそれらの接続部分を十分に保護できないことが問題となる。さらに、弾性率の低い樹脂を用いた場合でも、クラックや剥離の発生を抑えられないこともあった。 Therefore, as a sealing material, a resin that is moderately soft, that is, having a low elastic modulus has been used. However, when a resin having a low elastic modulus is used, a device in a reliability test such as a power cycle test is used. The problem is that the internal chips, wires, and their connections cannot be adequately protected. Furthermore, even when a resin having a low elastic modulus is used, the occurrence of cracks and peeling may not be suppressed.
 パワーサイクル試験のような信頼性試験においてデバイス内部のチップ、ワイヤー及びそれらの接続部分を十分に保護し、さらに封止材樹脂にクラックや剥離が生じない材料として、固形封止材を用いたトランスファー成形などによる封止があるが、成形プロセスに金型が必要になる。さらに半導体デバイスが大型化した場合はより大型の金型が必要となりプロセスコストがかかるという問題があった。 Transfer using a solid encapsulant as a material that sufficiently protects the chip, wires, and their connection parts inside the device in reliability tests such as power cycle tests, and does not cause cracks or peeling in the encapsulant resin Although there is sealing by molding or the like, a mold is required for the molding process. Further, when the semiconductor device is increased in size, there is a problem that a larger mold is required and the process cost is increased.
 本発明は、硬化前に液状であり、かつ硬化物が半導体デバイスの実働温度領域で高い弾性率を保持し、長期間使用してもクラックや剥離が生じにくい、すなわち、サーマルサイクル試験などの急温冷試験においても封止材樹脂にクラックや剥離が生じない樹脂組成物を提供することを課題とする。 The present invention is a liquid before curing, and the cured product maintains a high elastic modulus in the operating temperature range of the semiconductor device, and does not easily crack or peel off even when used for a long period of time. It is an object of the present invention to provide a resin composition in which cracking and peeling do not occur in a sealing material resin even in a thermal cooling test.
 本発明者らは、上記課題を解決するために諸種の検討を行った結果、硬化前には流動性のある液状樹脂であって、硬化物が半導体デバイスの実働温度領域で高い弾性率を保持しながら、さらに該硬化物の25℃及び200℃での体積抵抗率の比を一定の範囲に収めることで、サーマルサイクル試験などの急温冷試験においてクラックや剥離が生じにくい樹脂組成物が得られることを見出した。そして、当該樹脂組成物を封止材として用いることで、一般的にサイズの大きいパワーデバイスに適用した場合であっても高い信頼性が得られることに想到した。本発明はこれらの知見に基づいて成し遂げられたものである。すなわち、本発明の要旨は以下に存する。
(1) 熱硬化性樹脂及び硬化触媒を含む熱硬化性樹脂組成物であって、25℃、せん断速度0.009s-1における粘度が1500Pa・s以下であり、該熱硬化性樹脂組成物の硬化物の25℃及び180℃での貯蔵弾性率がそれぞれ1.0×10Pa以上で、かつ25℃での体積抵抗率aと200℃での体積抵抗率bの比a/bが8500以下であることを特徴とする樹脂組成物。
(2) 前記熱硬化性樹脂がエポキシ樹脂を含む、(1)に記載の樹脂組成物。
(3) 前記エポキシ樹脂が脂環式エポキシ基を含む、(2)に記載の樹脂組成物。
(4) 前記エポキシ樹脂がグリシジル基を含む、(2)又は(3)に記載の樹脂組成物。
(5) 前記エポキシ樹脂がグリシジル基を2個以上含むエポキシ樹脂を含む、(4)に記載の樹脂組成物。
(6) 前記エポキシ樹脂がエポキシ基含有ケイ素化合物を含む、(2)~(5)のいずれかに記載の樹脂組成物。
(7) 前記エポキシ基含有ケイ素化合物が脂環式エポキシ基を含む、(6)に記載の樹脂組成物。
(8) さらにフィラーを50質量%以上含有する、(1)~(7)のいずれかに記載の樹脂組成物。
(9) 前記フィラーがシリカを含む、(8)に記載の樹脂組成物。
(10) さらに酸無水物を含む、(1)~(9)のいずれかに記載の樹脂組成物。
(11) 前記樹脂組成物がエポキシ基の開環重合を伴うことより硬化するものである、(1)~(10)のいずれかに記載の樹脂組成物。
(12) 前記開環重合がカチオン重合である、(11)に記載の樹脂組成物。
(13) 前記硬化触媒が金属触媒を含む、(1)~(12)のいずれかに記載の樹脂組成物。
(14) 前記金属触媒がガリウム化合物である、(13)に記載の樹脂組成物。
(15) (1)~(14)のいずれかに記載の樹脂組成物を硬化してなる成形体。
(16) (1)~(14)のいずれかに記載の樹脂組成物を用いて封止してなる半導体デバイス。
As a result of various studies to solve the above problems, the present inventors have found that a liquid resin having fluidity before curing, and the cured product has a high elastic modulus in the working temperature region of the semiconductor device. However, by further keeping the volume resistivity ratio of the cured product at 25 ° C. and 200 ° C. within a certain range, a resin composition is obtained in which cracks and peeling are unlikely to occur in a rapid cooling test such as a thermal cycle test. I found out that And it was conceived that by using the resin composition as a sealing material, high reliability can be obtained even when it is generally applied to a power device having a large size. The present invention has been accomplished based on these findings. That is, the gist of the present invention is as follows.
(1) A thermosetting resin composition comprising a thermosetting resin and a curing catalyst, wherein the viscosity at 25 ° C. and a shear rate of 0.009 s −1 is 1500 Pa · s or less, and the thermosetting resin composition The storage elastic modulus of the cured product at 25 ° C. and 180 ° C. is 1.0 × 10 8 Pa or more, respectively, and the ratio of the volume resistivity a at 25 ° C. and the volume resistivity b at 200 ° C. is 8500. The resin composition characterized by the following.
(2) The resin composition according to (1), wherein the thermosetting resin includes an epoxy resin.
(3) The resin composition according to (2), wherein the epoxy resin contains an alicyclic epoxy group.
(4) The resin composition according to (2) or (3), wherein the epoxy resin contains a glycidyl group.
(5) The resin composition according to (4), wherein the epoxy resin contains an epoxy resin containing two or more glycidyl groups.
(6) The resin composition according to any one of (2) to (5), wherein the epoxy resin contains an epoxy group-containing silicon compound.
(7) The resin composition according to (6), wherein the epoxy group-containing silicon compound contains an alicyclic epoxy group.
(8) The resin composition according to any one of (1) to (7), further containing 50% by mass or more of a filler.
(9) The resin composition according to (8), wherein the filler contains silica.
(10) The resin composition according to any one of (1) to (9), further comprising an acid anhydride.
(11) The resin composition according to any one of (1) to (10), wherein the resin composition is cured by accompanying ring-opening polymerization of an epoxy group.
(12) The resin composition according to (11), wherein the ring-opening polymerization is cationic polymerization.
(13) The resin composition according to any one of (1) to (12), wherein the curing catalyst includes a metal catalyst.
(14) The resin composition according to (13), wherein the metal catalyst is a gallium compound.
(15) A molded product obtained by curing the resin composition according to any one of (1) to (14).
(16) A semiconductor device encapsulated with the resin composition according to any one of (1) to (14).
 本発明によると、硬化前には流動性のある液状樹脂であって、硬化物が半導体デバイスの実働温度領域で高い弾性率を保持しながら、さらに該硬化物の25℃及び200℃での体積抵抗率の比を一定の範囲に収めることで、長期間使用してもクラックや剥離が生じにくい、すなわち、サーマルサイクル試験などの急温冷試験においてクラックや剥離が生じにくい樹脂組成物を提供することができる。 According to the present invention, it is a liquid resin that is fluid before curing, and the cured product retains a high elastic modulus in the working temperature region of the semiconductor device, and further the volume of the cured product at 25 ° C. and 200 ° C. By providing a resistivity ratio within a certain range, a resin composition that does not easily crack or peel off even when used for a long period of time, that is, does not easily crack or peel off in a rapid thermal cooling test such as a thermal cycle test. be able to.
 サーマルサイクル試験などの急温冷試験において、封止材樹脂にクラックや剥離が生じる原因は、半導体デバイスが急温冷環境にさらされることにより、封止材樹脂が局所的な構造的変化を起こすことが一因であると考えられる。それにより応力集中が局所的に起こるのに加え、樹脂の帯電の程度にも疎密が生じ、樹脂にダメージを与えると考えられる。本発明ではその変化が封止材樹脂の体積抵抗率の大きな変化として現れることを見いだした。すなわち室温である25℃と実用温度の実質的な上限である200℃での封止材樹脂の体積抵抗率の比を一定の範囲にすることにより、サーマルサイクル試験などの急温冷試験における信頼性を向上できて、かつ半導体デバイスの実働温度領域で高い弾性率を維持しているため、パワーサイクル試験のような信頼性試験においても高性能が期待できる。 In rapid thermal testing such as thermal cycle testing, the cause of cracks and peeling in the encapsulant resin is that the encapsulant resin undergoes a local structural change when the semiconductor device is exposed to the rapid thermal cooling environment. This is considered to be a factor. As a result, stress concentration locally occurs, and the degree of charge of the resin is also sparse and dense, which is considered to damage the resin. In the present invention, it has been found that the change appears as a large change in the volume resistivity of the encapsulant resin. In other words, by setting the ratio of the volume resistivity of the encapsulant resin at 25 ° C., which is room temperature, to 200 ° C., which is the practical upper limit of the practical temperature, within a certain range, the reliability in rapid thermal testing such as thermal cycle testing In addition, the high elastic modulus can be maintained in the working temperature region of the semiconductor device, so that high performance can be expected in a reliability test such as a power cycle test.
 以下、本発明を実施形態に即して詳細に説明する。ただし、本発明は本明細書に明示的又は黙示的に記載された実施形態に限定されるものではない。また、本明細書に記載された各実施形態は、発明の趣旨を逸脱しない範囲内で、様々に変形することができ、かつ、実施可能な範囲内で、他の実施形態により説明された特徴と組み合わせることができる。 Hereinafter, the present invention will be described in detail according to embodiments. However, the present invention is not limited to the embodiments described explicitly or implicitly in the present specification. In addition, each embodiment described in the present specification can be variously modified without departing from the gist of the invention, and features described by other embodiments within a feasible range. Can be combined.
1.熱硬化性樹脂組成物
 本発明の一実施形態である樹脂組成物は、熱硬化性樹脂及び硬化触媒を含む熱硬化性樹脂組成物(以下、「樹脂組成物」と略記することがある。)である。また熱硬化する前の該樹脂組成物は液状で流動性があり、25℃、せん断速度0.009s-1における粘度が1500Pa・s以下である。また該樹脂組成物の硬化物は、25℃および180℃における貯蔵弾性率が1.0×10Pa以上、であり、かつ該樹脂組成物の硬化物は25℃での体積抵抗率aと200℃での体積抵抗率bの比a/bが8500以下である。この樹脂組成物には、熱硬化する前の樹脂組成物の粘度、及び硬化物の貯蔵弾性率及び体積抵抗率比a/bが上記の値を満たす限り、必要に応じて、熱硬化性樹脂及び硬化触媒以外の成分、例えば、エポキシ化合物、反応性又は非反応性シリコーン、フィラー、エポキシ樹脂硬化剤等を含有させることができる。
1. Thermosetting resin composition The resin composition which is one embodiment of the present invention is a thermosetting resin composition containing a thermosetting resin and a curing catalyst (hereinafter sometimes abbreviated as "resin composition"). It is. The resin composition before thermosetting is liquid and fluid, and has a viscosity at 25 ° C. and a shear rate of 0.009 s −1 of 1500 Pa · s or less. The cured product of the resin composition has a storage elastic modulus at 25 ° C. and 180 ° C. of 1.0 × 10 8 Pa or more, and the cured product of the resin composition has a volume resistivity a at 25 ° C. The ratio a / b of the volume resistivity b at 200 ° C. is 8500 or less. In this resin composition, as long as the viscosity of the resin composition before thermosetting, and the storage elastic modulus and volume resistivity ratio a / b of the cured product satisfy the above values, a thermosetting resin is used as necessary. Components other than the curing catalyst, for example, epoxy compounds, reactive or non-reactive silicones, fillers, epoxy resin curing agents, and the like can be contained.
1-1. 熱硬化性樹脂及び硬化触媒を含む熱硬化性樹脂組成物並びに該樹脂組成物の硬化物の物性
 上記のとおり、熱硬化する前の該樹脂組成物の25℃、せん断速度 0.009s-1における粘度は1500Pa・s以下であり、また該樹脂組成物の硬化物の25℃および180℃における貯蔵弾性率が1.0×10Pa以上であり、かつ該樹脂組成物の硬化物の25℃での体積抵抗率aと200℃での体積抵抗率bの比a/bが8500以下である。なお、粘度、貯蔵弾性率及び体積抵抗率の測定方法は、[実施例]の項において説明する。また、樹脂組成物の硬化(架橋)方法等については後述する。
1-1. Thermosetting resin composition containing thermosetting resin and curing catalyst and physical properties of cured product of resin composition As described above, 25 ° C. and shear rate of the resin composition before thermosetting. The viscosity at 009 s −1 is 1500 Pa · s or less, the storage modulus of the cured product of the resin composition at 25 ° C. and 180 ° C. is 1.0 × 10 8 Pa or more, and the resin composition is cured. The ratio a / b of the volume resistivity a at 25 ° C. to the volume resistivity b at 200 ° C. is 8500 or less. In addition, the measuring method of a viscosity, a storage elastic modulus, and a volume resistivity is demonstrated in the item of [Example]. The method for curing (crosslinking) the resin composition will be described later.
1-1-1. 粘度
 樹脂組成物は、25℃において、せん断速度 0.009s-1における粘度が1500Pa・s以下であり、好ましくは1200Pa・s以下、より好ましくは1000Pa・s以下、さらに好ましくは900Pa・s以下、特に好ましくは800Pa・s以下である。この範囲の物性を満たすことにより、特にポッティングによる封止においてハンドリングが容易であるだけでなく、ポッティングした後にシェアをかけることなくレベリングし、半導体パッケージ内側の全域および細部まで樹脂が濡れやすい傾向にある。また下限値は特に限定されないが、通常1Pa・s以上である。
1-1-1. Viscosity The resin composition has a viscosity at 25 ° C. at a shear rate of 0.009 s −1 of 1500 Pa · s or less, preferably 1200 Pa · s or less, more preferably 1000 Pa · s or less, and even more preferably. Is 900 Pa · s or less, particularly preferably 800 Pa · s or less. By satisfying the physical properties in this range, not only is it easy to handle, especially when sealing by potting, but also leveling without applying share after potting, the resin tends to get wet to the entire area and details inside the semiconductor package. . Moreover, although a lower limit is not specifically limited, Usually, it is 1 Pa.s or more.
1-1-2. 貯蔵弾性率
 本明細書において、貯蔵弾性率とは、周波数1Hzでの固体粘弾性測定によって得られる値である。
 樹脂組成物の硬化物の25℃における貯蔵弾性率は1.0×108Pa以上であるが、好ましくは2.0×108Pa以上、より好ましくは3.0×108Pa以上、さらに好ましくは4.0×108Pa以上、さらに好ましくは5.0×108Pa以上であり、上限は通常1.0×1015Pa以下、好ましくは1.0×1014Pa以下、より好ましくは1.0×1013Pa以下、さらに好ましくは1.0×1012Pa以下である。
 樹脂組成物の硬化物の180℃における貯蔵弾性率は1.0×108Pa以上であるが、好ましくは1.5×108Pa以上、より好ましくは2.0×108Pa以上、さらに好ましくは3.0×108Pa以上、さらに好ましくは4.0×108Pa以上であり、上限は通常1.0×1015Pa以下、好ましくは1.0×1014Pa以下、より好ましくは1.0×1013Pa以下、さらに好ましくは1.0×1012Pa以下である。
 この範囲の物性を満たすことにより、特にパワーサイクル試験のような信頼性試験においてデバイス内部のチップ、ワイヤー及びそれらの接続部分を十分に保護できるものと期待できる。
1-1-2. Storage Elastic Modulus In this specification, the storage elastic modulus is a value obtained by solid viscoelasticity measurement at a frequency of 1 Hz.
The storage elastic modulus at 25 ° C. of the cured product of the resin composition is 1.0 × 10 8 Pa or more, preferably 2.0 × 10 8 Pa or more, more preferably 3.0 × 10 8 Pa or more, Preferably it is 4.0 × 10 8 Pa or more, more preferably 5.0 × 10 8 Pa or more, and the upper limit is usually 1.0 × 10 15 Pa or less, preferably 1.0 × 10 14 Pa or less, more preferably Is 1.0 × 10 13 Pa or less, more preferably 1.0 × 10 12 Pa or less.
The storage elastic modulus at 180 ° C. of the cured product of the resin composition is 1.0 × 10 8 Pa or more, preferably 1.5 × 10 8 Pa or more, more preferably 2.0 × 10 8 Pa or more, Preferably it is 3.0 × 10 8 Pa or more, more preferably 4.0 × 10 8 Pa or more, and the upper limit is usually 1.0 × 10 15 Pa or less, preferably 1.0 × 10 14 Pa or less, more preferably Is 1.0 × 10 13 Pa or less, more preferably 1.0 × 10 12 Pa or less.
By satisfying the physical properties in this range, it can be expected that the chip, wires, and their connection portions inside the device can be sufficiently protected particularly in a reliability test such as a power cycle test.
 25℃及び180℃における貯蔵弾性率を高弾性率に制御する方法としては後述する熱硬化性樹脂や硬化剤等の各成分の選択に加え、例えば反応性基として脂環式エポキシ基もしくはグリシジル基を2個以上有するエポキシ樹脂を添加して架橋密度を増加させる方法等を用いることができる。また硬化剤及び硬化触媒等の選択により制御することができる。 As a method for controlling the storage elastic modulus at 25 ° C. and 180 ° C. to a high elastic modulus, in addition to selection of each component such as a thermosetting resin and a curing agent described later, for example, an alicyclic epoxy group or glycidyl group as a reactive group For example, a method of increasing the cross-linking density by adding an epoxy resin having 2 or more can be used. Moreover, it can control by selection of a hardening | curing agent, a hardening catalyst, etc.
1-1-3. 体積抵抗率比
 本明細書において、体積抵抗率比とは、樹脂組成物の硬化物の25℃での体積抵抗率aと200℃での体積抵抗率bの比a/bであり、サーマルサイクル試験などの急温冷試験における信頼性の問題の有無を判別する指標である。
 25℃での体積抵抗率aと200℃での体積抵抗率bの比a/bは8500以下であり、好ましくは8000以下であり、より好ましくは7000以下であり、さらに好ましくは6000以下であり、さらに好ましくは5000以下であり、さらに好ましくは4000以下であり、さらに好ましくは3000以下であり、さらに好ましくは2000以下であり、さらに好ましくは1000以下であり、さらに好ましくは500以下である。またa/bは通常1以上である。
 また本発明の一実施態様の樹脂組成物の硬化物の25℃での体積抵抗率aは1.0×1014Ω・cm以上であり、好ましくは1.0×1015Ω・cm以上である。樹脂組成物の硬化物の200℃での体積抵抗率bは1.0×1011Ω・cm以上であり、好ましくは1.0×1012Ω・cm以上である。
1-1-3. Volume Resistivity Ratio In this specification, the volume resistivity ratio is the ratio of the volume resistivity a at 25 ° C. and the volume resistivity b at 200 ° C. of the cured resin composition a / b, which is an index for determining whether or not there is a reliability problem in a rapid cooling test such as a thermal cycle test.
The ratio a / b of the volume resistivity a at 25 ° C. and the volume resistivity b at 200 ° C. is 8500 or less, preferably 8000 or less, more preferably 7000 or less, and further preferably 6000 or less. More preferably, it is 5000 or less, More preferably, it is 4000 or less, More preferably, it is 3000 or less, More preferably, it is 2000 or less, More preferably, it is 1000 or less, More preferably, it is 500 or less. Further, a / b is usually 1 or more.
The volume resistivity a at 25 ° C. of the cured product of the resin composition of one embodiment of the present invention is 1.0 × 10 14 Ω · cm or more, preferably 1.0 × 10 15 Ω · cm or more. is there. The volume resistivity b at 200 ° C. of the cured product of the resin composition is 1.0 × 10 11 Ω · cm or more, preferably 1.0 × 10 12 Ω · cm or more.
 樹脂組成物の硬化物の25℃での体積抵抗率aと200℃での体積抵抗率bの比a/bを低く制御する方法としては、後述する熱硬化性樹脂や硬化剤等の各成分の選択に加え、例えば低線膨張率フィラーを充填すること、樹脂中の反応性基密度を増加させて硬化物の分子運動を抑制すること等、電子やイオンの伝達を抑制する方法が挙げられる。さらに樹脂中の架橋密度を均一化し、疎密構造の少なくする方法も有効である。 As a method for controlling the ratio a / b of the volume resistivity a at 25 ° C. and the volume resistivity b at 200 ° C. of the cured product of the resin composition to be low, each component such as a thermosetting resin and a curing agent to be described later In addition to the above selection, for example, a method of suppressing the transfer of electrons and ions, such as filling with a low linear expansion coefficient filler, increasing the reactive group density in the resin and suppressing the molecular motion of the cured product, etc. . Furthermore, a method of making the crosslink density in the resin uniform and reducing the density structure is also effective.
1-1-4. 平均線膨張率
 本明細書において、平均線膨張率とは、JIS K7197に基づいて熱機械分析(TMA)を用いて求められるものであり、ある温度T1とT2との間で温度の上昇によって物体の長さが膨張する割合を、1K(℃)当たりで示したものである。
 樹脂組成物の硬化物の-30℃~200℃の平均線膨張率は、通常100ppm/K以下であるが、好ましくは90ppm/K以下、より好ましくは80ppm/K以下、さらに好ましくは70ppm/K以下、さらに好ましくは60ppm/K以下、さらに好ましくは50ppm/K以下、さらに好ましくは40ppm/K以下である。平均線膨張率の下限は特に限定されず、可能なかぎり低い値が好ましい。例えば、樹脂組成物の硬化物に隣接する部材(パターンやワイヤ等に用いられるアルミや銅等の金属、基板に用いられるセラミック等)の線膨張率と同程度の値が下限となる。
1-1-4. Average linear expansion coefficient In this specification, the average linear expansion coefficient is obtained using thermomechanical analysis (TMA) based on JIS K7197, and is between a certain temperature T1 and T2. The rate at which the length of the object expands as the temperature rises is shown per 1 K (° C.).
The average linear expansion coefficient at −30 ° C. to 200 ° C. of the cured product of the resin composition is usually 100 ppm / K or less, preferably 90 ppm / K or less, more preferably 80 ppm / K or less, and even more preferably 70 ppm / K. Hereinafter, it is more preferably 60 ppm / K or less, further preferably 50 ppm / K or less, and further preferably 40 ppm / K or less. The lower limit of the average linear expansion coefficient is not particularly limited, and is preferably as low as possible. For example, the lower limit is a value similar to the linear expansion coefficient of a member adjacent to the cured product of the resin composition (a metal such as aluminum or copper used for patterns or wires, a ceramic used for a substrate, or the like).
 本発明の一実施形態の樹脂組成物は、平均線膨張率も低く抑えられた硬化物を形成し得るものである。樹脂組成物を硬化して得られる硬化物の平均線膨張率の値が大きすぎると、硬化時のクラックが発生し易くなる傾向がある。樹脂組成物を硬化して得られる硬化物の平均線膨張率が上限を超えると、硬化時及び使用中の温度変化によって生じる内部応力が大きくなり、クラックの発生につながる可能性がある。 The resin composition of one embodiment of the present invention can form a cured product with a low average linear expansion coefficient. When the value of the average linear expansion coefficient of the cured product obtained by curing the resin composition is too large, cracks during curing tend to occur. If the average linear expansion coefficient of the cured product obtained by curing the resin composition exceeds the upper limit, the internal stress generated by the temperature change during curing and during use increases, which may lead to the generation of cracks.
 平均線膨張率は、後述するとおり、熱硬化性樹脂、例えばエポキシ樹脂及びその他有機成分からなる硬化樹脂の架橋密度の増加、低線膨張率フィラーの充填等により低く抑えることができる。硬化樹脂の架橋密度は、貯蔵弾性率を制御する際と同様に制御することができる。また、例えば、熱硬化性樹脂としてエポキシ樹脂を用いる場合は、エポキシ樹脂のエポキシ価や1分子当たりのエポキシ基数のほか、硬化剤及び硬化触媒等の選択により制御することができる。 As will be described later, the average linear expansion coefficient can be kept low by increasing the crosslinking density of a thermosetting resin such as an epoxy resin and other organic components, filling with a low linear expansion coefficient filler, and the like. The crosslinking density of the cured resin can be controlled in the same manner as when controlling the storage elastic modulus. For example, when an epoxy resin is used as the thermosetting resin, it can be controlled by selecting a curing agent, a curing catalyst, and the like in addition to the epoxy value of the epoxy resin and the number of epoxy groups per molecule.
1-2. 熱硬化性樹脂
 本明細書において、熱硬化性樹脂としては、硬化触媒の存在下で硬化し、熱硬化する前の樹脂組成物が所定の粘度であること、また所定の貯蔵弾性率、体積抵抗率比を満たす硬化物となり得るものであれば特に限定されない。具体的には、例えば、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、メラミン樹脂、ユリア樹脂等が挙げられる。これらの中で、エポキシ樹脂が好ましく、エポキシ樹脂としては、例えば、エポキシ基含有ケイ素化合物、脂肪族型エポキシ樹脂、ビスフェノールAまたはF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、多官能型エポキシ樹脂、高分子型エポキシ樹脂等が挙げられる。
 中でも、エポキシ基含有ケイ素化合物、多官能型エポキシ樹脂が特に好ましい。エポキシ基含有ケイ素化合物は、シロキサン結合を主な骨格とするため、耐熱性及び絶縁性に優れ、封止材料として適している。また有機成分であるエポキシ部分と無機成分であるシロキサン部分を1分子中に含むために、樹脂、硬化剤等の有機物質や無機フィラーとの親和性が高く、架橋密度も含めた均一性の高い封止層を作製することが出来る。また、隣接部材との密着性にも大きく寄与する。多官能型エポキシ樹脂は、反応基を多く含有するため、弾性、耐熱性及び絶縁性に優れ、封止材料として適している。またより多くのエポキシ基が反応することで樹脂が効果的に架橋され、その効果はより大きい。樹脂組成物は、エポキシ基含有ケイ素化合物もしくはそれとは別のエポキシ樹脂を単独で含んでもよいし、エポキシ基含有ケイ素化合物と公知のエポキシ樹脂を混合して用いてもよい。
 また、熱硬化性樹脂は、本発明に係る熱硬化性樹脂組成物中、通常1質量%以上、好ましくは3質量%以上、より好ましくは5質量%以上含有される。熱硬化性樹脂組成物中の熱硬化性樹脂の含有量の上限は通常40質量%以下、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下である。
1-2. Thermosetting resin In the present specification, the thermosetting resin is cured in the presence of a curing catalyst, and the resin composition before thermosetting has a predetermined viscosity, and also has a predetermined storage elastic modulus and volume resistance. It will not specifically limit if it can become the hardened | cured material which satisfy | fills a rate ratio. Specifically, an epoxy resin, a phenol resin, a polycarbonate resin, an unsaturated polyester resin, a urethane resin, a melamine resin, a urea resin, etc. are mentioned, for example. Among these, an epoxy resin is preferable. Examples of the epoxy resin include an epoxy group-containing silicon compound, an aliphatic epoxy resin, a bisphenol A or F epoxy resin, a novolac epoxy resin, an alicyclic epoxy resin, and a glycidyl ester. Type epoxy resin, polyfunctional type epoxy resin, polymer type epoxy resin and the like.
Of these, epoxy group-containing silicon compounds and polyfunctional epoxy resins are particularly preferred. Since the epoxy group-containing silicon compound has a siloxane bond as a main skeleton, it is excellent in heat resistance and insulation and is suitable as a sealing material. In addition, since one molecule contains an epoxy part, which is an organic component, and a siloxane part, which is an inorganic component, it has high affinity with organic substances such as resins and curing agents and inorganic fillers, and high uniformity including crosslinking density. A sealing layer can be produced. In addition, it greatly contributes to adhesion with adjacent members. Since the polyfunctional epoxy resin contains many reactive groups, it is excellent in elasticity, heat resistance and insulation and is suitable as a sealing material. Moreover, the resin is effectively cross-linked by reacting more epoxy groups, and the effect is greater. The resin composition may contain an epoxy group-containing silicon compound or an epoxy resin different from that alone, or a mixture of an epoxy group-containing silicon compound and a known epoxy resin.
Further, the thermosetting resin is usually contained in an amount of 1% by mass or more, preferably 3% by mass or more, more preferably 5% by mass or more in the thermosetting resin composition according to the present invention. The upper limit of the content of the thermosetting resin in the thermosetting resin composition is usually 40% by mass or less, preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.
1-2-1. エポキシ樹脂
 エポキシ樹脂とは、分子内に1個以上のオキシラン環(エポキシ基)を有する化合物の総称である。本発明では、後述するエポキシ基含有ケイ素化合物もエポキシ樹脂に含まれる。
 熱硬化後の硬化物の貯蔵弾性率を高くする、特にパワーデバイスなど発熱量の多い場合に重要になる高温時の貯蔵弾性率を高くする観点からは、分子内に2個以上のオキシラン環(エポキシ基)を有するエポキシ樹脂が好ましく、また分子内に3個以上のオキシラン環(エポキシ基)を有するエポキシ樹脂がさらに好ましい。分子内に複数のオキシラン環(エポキシ基)を有することで、マトリクス樹脂の極性を調整でき、親水性フィラー間の引力に起因する組成物粘度を制御することが出来る。また有するオキシラン環(エポキシ基)は脂環式エポキシ基、グリシジル基のどちらでも構わない。
 具体的には例えば、エポキシ樹脂は芳香族オキシラン環(エポキシ基)含有化合物であってもよい。例としては、式(12)に示すようなビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラフルオロビスフェノールAなどのビスフェノール類をグリシジル化したビスフェノール型エポキシ樹脂、式(13)に示すようなビフェニル型のエポキシ樹脂、ジヒドロキシナフタレン、9,9-ビス(4-ヒドロキシフェニル)フルオレンなどの2価のフェノール類をグリシジル化したエポキシ樹脂、1,1,1-トリス(4-ヒドロキシフェニル)メタンなどのトリスフェノール類をグリシジル化したエポキシ樹脂、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタンなどのテトラキスフェノール類をグリシジル化したエポキシ樹脂、フェノールノボラック、クレゾールノボラック、ビスフェノールA、ノボラック、臭素化ビスフェノールAノボラックなどのノボラック類をグリシジル化したノボラック型エポキシ樹脂などが挙げられる。
1-2-1. Epoxy resin Epoxy resin is a general term for compounds having one or more oxirane rings (epoxy groups) in the molecule. In this invention, the epoxy group containing silicon compound mentioned later is also contained in an epoxy resin.
From the viewpoint of increasing the storage elastic modulus of the cured product after thermosetting, especially the high storage modulus at high temperatures, which is important when the calorific value is high, such as a power device, two or more oxirane rings ( An epoxy resin having an epoxy group) is preferable, and an epoxy resin having three or more oxirane rings (epoxy groups) in the molecule is more preferable. By having a plurality of oxirane rings (epoxy groups) in the molecule, the polarity of the matrix resin can be adjusted, and the composition viscosity due to the attractive force between the hydrophilic fillers can be controlled. Further, the oxirane ring (epoxy group) possessed may be either an alicyclic epoxy group or a glycidyl group.
Specifically, for example, the epoxy resin may be an aromatic oxirane ring (epoxy group) -containing compound. Examples include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetramethyl bisphenol AD, tetramethyl bisphenol S, tetrafluorobisphenol A, etc. as shown in formula (12). Bisphenol-type epoxy resins obtained by glycidylation of bisphenols, biphenyl-type epoxy resins represented by the formula (13), dihydroxynaphthalene, 9,9-bis (4-hydroxyphenyl) fluorene and other divalent phenols are glycidylated. Epoxy resin, epoxy resin obtained by glycidylation of trisphenols such as 1,1,1-tris (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) Tetrakis phenols glycidylated epoxy resins such as Tan, phenol novolac, cresol novolac, bisphenol A, novolak, such as novolaks the glycidylated novolak type epoxy resins such as brominated bisphenol A novolak and the like.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002

 [Rは独立して炭素数1~12の置換されていてもよい炭化水素基またはハロゲンを示す]
 上記芳香族オキシラン環(エポキシ基)含有化合物は、水素化して脂環構造を有するエポキシ樹脂及びオキセタン樹脂としてもよい。
 またエポキシ樹脂は非芳香族オキシラン環(エポキシ基)含有樹脂であってもよい。例としては、デナコール(登録商標)EX-211L EX-216L EX-722P EX-810P (ナガセケムテックス社製) セロキサイド2021P(ダイセル社製) YED216(三菱化学社製)を挙げることができる。また熱硬化後の硬化物の貯蔵弾性率を高くする、特に高温時の貯蔵弾性率を高くする観点では、オキシラン環(エポキシ基)を3個以上有するエポキシ樹脂が好ましく、例えばデナコール(登録商標)EX321-L、DLC-301、DLC-402 (ナガセケムテックス社製)が挙げられる。これらの多官能のエポキシ樹脂を用いることで硬化物の線膨張係数を低く抑えることもできる。これらは、単独で用いてもよく、2種類以上併用してもよい。
Figure JPOXMLDOC01-appb-C000002

[R independently represents an optionally substituted hydrocarbon group or halogen having 1 to 12 carbon atoms]
The aromatic oxirane ring (epoxy group) -containing compound may be hydrogenated as an epoxy resin and an oxetane resin having an alicyclic structure.
The epoxy resin may be a non-aromatic oxirane ring (epoxy group) -containing resin. Examples include Denacol (registered trademark) EX-211L EX-216L EX-722P EX-810P (manufactured by Nagase ChemteX Corporation) Celoxide 2021P (manufactured by Daicel Corporation) YED216 (manufactured by Mitsubishi Chemical Corporation). In addition, from the viewpoint of increasing the storage elastic modulus of a cured product after heat curing, in particular, increasing the storage elastic modulus at a high temperature, an epoxy resin having three or more oxirane rings (epoxy groups) is preferable. For example, Denacol (registered trademark) EX321-L, DLC-301, DLC-402 (manufactured by Nagase ChemteX Corporation). By using these polyfunctional epoxy resins, the linear expansion coefficient of the cured product can be kept low. These may be used alone or in combination of two or more.
1-2-2. エポキシ基含有ケイ素化合物
 エポキシ基含有ケイ素化合物は、分子中にケイ素を含む構造を持ち、さらにエポキシ基を有する化合物である。エポキシ基はグリシジル基でも脂環式エポキシ基であってもよく、好ましくはシクロヘキシルエポキシ基に代表される脂環式エポキシ基である。樹脂組成物に含まれる熱硬化性樹脂としては特にエポキシ基含有ケイ素化合物を含むものが好ましい。
1-2-2. Epoxy group-containing silicon compound The epoxy group-containing silicon compound is a compound having a structure containing silicon in the molecule and further having an epoxy group. The epoxy group may be a glycidyl group or an alicyclic epoxy group, and is preferably an alicyclic epoxy group represented by a cyclohexyl epoxy group. As the thermosetting resin contained in the resin composition, those containing an epoxy group-containing silicon compound are particularly preferable.
 エポキシ基含有ケイ素化合物の分子量としては、取扱い性、フィラー表面への濡れ性、樹脂組成物の粘度低減の観点から、ゲル浸透クロマトグラフィー(GPC)により測定された重量平均分子量(Mw)が100以上であることが好ましく、500以上であることがより好ましく、700以上であることが更に好ましい。また、4000以下であることが好ましく、3500以下であることがより好ましい。
 また、熱硬化後の硬化物の貯蔵弾性率を高くする観点からは、GPCにより測定された重量平均分子量(Mw)が100以上であることが好ましく、200以上であることがより好ましく、300以上であることが更に好ましい。また、4000以下であることが好ましく、3000以下であることがより好ましい。
 エポキシ基含有ケイ素化合物の含有量としては、樹脂組成物の粘度低減の観点から、樹脂組成物全量を100質量%としたときに、0.1質量%以上、好ましくは1質量%以上、より好ましくは2質量%以上である。また、エポキシ基含有ケイ素化合物の含有量は、樹脂組成物全量を100質量%としたときに、20質量%以下が好ましく、15質量%以下がより好ましい。
 以下、このエポキシ基含有ケイ素化合物について説明する。
 エポキシ基含有ケイ素化合物は、分子中にケイ素を含む構造を持ち、さらにエポキシ基を有する化合物である。
The molecular weight of the epoxy group-containing silicon compound is 100 or more in terms of weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) from the viewpoints of handleability, wettability to the filler surface, and viscosity reduction of the resin composition. Preferably, it is 500 or more, more preferably 700 or more. Moreover, it is preferable that it is 4000 or less, and it is more preferable that it is 3500 or less.
Further, from the viewpoint of increasing the storage elastic modulus of the cured product after thermosetting, the weight average molecular weight (Mw) measured by GPC is preferably 100 or more, more preferably 200 or more, and 300 or more. More preferably. Moreover, it is preferable that it is 4000 or less, and it is more preferable that it is 3000 or less.
The content of the epoxy group-containing silicon compound is 0.1% by mass or more, preferably 1% by mass or more, more preferably, when the total amount of the resin composition is 100% by mass from the viewpoint of reducing the viscosity of the resin composition. Is 2% by mass or more. Further, the content of the epoxy group-containing silicon compound is preferably 20% by mass or less, and more preferably 15% by mass or less, when the total amount of the resin composition is 100% by mass.
Hereinafter, the epoxy group-containing silicon compound will be described.
The epoxy group-containing silicon compound is a compound having a structure containing silicon in the molecule and further having an epoxy group.
 エポキシ基含有ケイ素化合物には、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、(γ-グリシドキシプロピル)(メチル)ジメトキシシラン、(γ-グリシドキシプロピル)(エチル)ジメトキシシラン、(γ-グリシドキシプロピル)(メチル)ジエトキシシラン、(γ-グリシドキシプロピル)(エチル)ジエトキシシラン、〔2-(3,4-エポキシシクロヘキシルエチル〕(メチル)ジメトキシシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(エチル)ジメトキシシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(メチル)ジエトキシシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(エチル)ジエトキシシラン、(γ-グリシドキシプロピル)(メトキシ)ジメチルシラン、(γ-グリシドキシプロピル)(メトキシ)ジエチルシラン、(γ-グリシドキシプロピル)(エトキシ)ジメチルシラン、(γ-グリシドキシプロピル)(エトキシ)ジエチルシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(メトキシ)ジメチルシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(メトキシ)ジエチルシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(エトキシ)ジメチルシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(エトキシ)ジエチルシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(ジメチル)ジシロキサン、1,3-ビス(3-グリシドキシプロピル)1,1,3,3-テトラメチルジシロキサン、(3-グリシドキシプロピル)ペンタメチルジシロキサン、3-エポキシプロピル(フェニル)ジメトキシシランなどがある。 Epoxy group-containing silicon compounds include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4- Epoxycyclohexyl) ethyltriethoxysilane, (γ-glycidoxypropyl) (methyl) dimethoxysilane, (γ-glycidoxypropyl) (ethyl) dimethoxysilane, (γ-glycidoxypropyl) (methyl) diethoxysilane , (Γ-glycidoxypropyl) (ethyl) diethoxysilane, [2- (3,4-epoxycyclohexylethyl) (methyl) dimethoxysilane, [2- (3,4-epoxycyclohexyl) ethyl] (ethyl) Dimethoxysilane, [2- (3,4-epoxycyclohexyl) ethyl (Methyl) diethoxysilane, [2- (3,4-epoxycyclohexyl) ethyl] (ethyl) diethoxysilane, (γ-glycidoxypropyl) (methoxy) dimethylsilane, (γ-glycidoxypropyl) ( Methoxy) diethylsilane, (γ-glycidoxypropyl) (ethoxy) dimethylsilane, (γ-glycidoxypropyl) (ethoxy) diethylsilane, [2- (3,4-epoxycyclohexyl) ethyl] (methoxy) dimethyl Silane, [2- (3,4-epoxycyclohexyl) ethyl] (methoxy) diethylsilane, [2- (3,4-epoxycyclohexyl) ethyl] (ethoxy) dimethylsilane, [2- (3,4-epoxycyclohexyl) ) Ethyl] (ethoxy) diethylsilane, [2- (3,4-epoxycyclohexyl) L) ethyl] (dimethyl) disiloxane, 1,3-bis (3-glycidoxypropyl) 1,1,3,3-tetramethyldisiloxane, (3-glycidoxypropyl) pentamethyldisiloxane, 3 -Epoxypropyl (phenyl) dimethoxysilane and the like.
 また、エポキシ基を含有するケイ素化合物には、式(1)で表されるオルガノポリシロキサンも含まれる。
 (R11 3SiO1/2)a1(R12 2SiO2/2)b1(R13SiO3/2)c1(SiO4/2)d1(O1/2H)e1 ・・・(1)
 式(1)において、R11、R12、R13はそれぞれ独立して1価の有機基を示し、かつ、1分子中において少なくとも1つがエポキシ基を含む有機基である。
Moreover, the organopolysiloxane represented by Formula (1) is also contained in the silicon compound containing an epoxy group.
(R 11 3 SiO 1/2 ) a1 (R 12 2 SiO 2/2 ) b1 (R 13 SiO 3/2 ) c1 (SiO 4/2 ) d1 (O 1/2 H) e1 (1)
In the formula (1), R 11 , R 12 and R 13 each independently represent a monovalent organic group, and at least one in each molecule is an organic group containing an epoxy group.
 式(1)において、R11 SiO1/2はMユニット、R12 SiO2/2はDユニット、R13SiO3/2はTユニット、SiO4/2はQユニットを、それぞれ表している。a1、b1、c1及びd1は、それぞれが0以上の整数であり、かつ、a1+b1+c1+d1≧2である。また、e1は0以上の整数である。
 上限値としては、特に限定されないが、200≧a1+b1+c1+d1であることが好ましく、またe1は200以下の整数であることが好ましい。この値は、およそ重量平均分子量が15000以下である時に相当する値である。
 式(1)において、R11、R12、R13は、好ましくは、炭素数1~10の炭化水素基であり、その具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基などのアルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基などのアルケニル基;フェニル基、トリル基、キシリル基などのアリール基;ベンジル基、フェネチル基などのアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、ノナフルオロブチルエチル基などの置換アルキル基が挙げられる。
In the formula (1), R 11 3 SiO 1/2 represents an M unit, R 12 2 SiO 2/2 represents a D unit, R 13 SiO 3/2 represents a T unit, and SiO 4/2 represents a Q unit. Yes. a1, b1, c1, and d1 are each integers of 0 or more, and a1 + b1 + c1 + d1 ≧ 2. E1 is an integer of 0 or more.
Although it does not specifically limit as an upper limit, It is preferable that it is 200> = a1 + b1 + c1 + d1, and it is preferable that e1 is an integer of 200 or less. This value corresponds to a value when the weight average molecular weight is about 15000 or less.
In the formula (1), R 11 , R 12 and R 13 are preferably hydrocarbon groups having 1 to 10 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and pentyl. Alkyl groups such as hexyl and heptyl groups; alkenyl groups such as vinyl, allyl, butenyl, pentenyl and hexenyl; aryl groups such as phenyl, tolyl and xylyl; benzyl and phenethyl And substituted alkyl groups such as chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, and nonafluorobutylethyl group.
 式(1)において、エポキシ基を含む有機基としては、2,3-エポキシプロピル基、3,4-エポキシブチル基、4,5-エポキシペンチル基などのエポキシアルキル基;2-グリシドキシエチル基、3-グリシドキシプロピル基、4-グリシドキシブチル基などのグリシドキシアルキル基;β-(又は2-)(3,4-エポキシシクロヘキシル)エチル基、γ-(又は3-)(3,4-エポキシシクロヘキシル)プロピル基などのエポキシシクロヘキシルアルキル基が例示される。 In the formula (1), the organic group containing an epoxy group includes an epoxyalkyl group such as 2,3-epoxypropyl group, 3,4-epoxybutyl group, 4,5-epoxypentyl group; 2-glycidoxyethyl Groups, glycidoxyalkyl groups such as 3-glycidoxypropyl group, 4-glycidoxybutyl group; β- (or 2-) (3,4-epoxycyclohexyl) ethyl group, γ- (or 3-) Examples include epoxycyclohexylalkyl groups such as (3,4-epoxycyclohexyl) propyl group.
 式(1)においてe1は0以上の整数であり、ケイ素原子に直接結合する水酸基(シラノール)の個数を表している。
 エポキシ樹脂は、ケイ素原子に結合する加水分解性基を有するものであって、該加水分解性基を加水分解したときに、式(1)で表されるオルガノポリシロキサン(ただし、e1≧1)を生じる化合物であってもよい。換言すれば、式(1)で表されるオルガノポリシロキサン(ただし、e1≧1)において、ケイ素原子に直接結合した水酸基の全部又は一部を加水分解性基に置き換えた化合物であってもよい。
In the formula (1), e1 is an integer of 0 or more, and represents the number of hydroxyl groups (silanol) directly bonded to the silicon atom.
The epoxy resin has a hydrolyzable group bonded to a silicon atom. When the hydrolyzable group is hydrolyzed, the organopolysiloxane represented by the formula (1) (where e1 ≧ 1) The compound which produces | generates may be sufficient. In other words, in the organopolysiloxane represented by the formula (1) (however, e1 ≧ 1), it may be a compound in which all or part of the hydroxyl groups directly bonded to the silicon atom are replaced with hydrolyzable groups. .
 ここで、加水分解性基とは、加水分解によってケイ素原子に結合した水酸基(シラノール)を生じる基であり、具体例としては、ヒドロキシ基、アルコキシ基、水素、アセトキシ基、エノキシ基、オキシム基、ハロゲン基が挙げられる。好ましい加水分解性基はアルコキシ基であり、特に炭素数1~3のアルコキシ基、すなわち、メトキシ基、エトキシ基、プロポキシ基である。 Here, the hydrolyzable group is a group that generates a hydroxyl group (silanol) bonded to a silicon atom by hydrolysis. Specific examples include a hydroxy group, an alkoxy group, hydrogen, an acetoxy group, an enoxy group, an oxime group, A halogen group is mentioned. A preferred hydrolyzable group is an alkoxy group, particularly an alkoxy group having 1 to 3 carbon atoms, that is, a methoxy group, an ethoxy group, or a propoxy group.
 上記式(1)で表されるオルガノポリシロキサン型のエポキシ樹脂は、例えば、次の方法で製造することができる。
(方法1)エポキシ基を有するシラン化合物と、エポキシ基を有しないシラン化合物及び/又はそのオリゴマーとを、共加水分解及び重縮合させる方法。
(方法2)ヒドロシリル基を有するポリシロキサンに、エポキシ基と炭素-炭素二重結合基を有する有機化合物を付加させる方法。
(方法3)炭素-炭素二重結合を含む有機基を有するポリシロキサンの該二重結合部分を酸化させて、エポキシ基に変換する方法。
The organopolysiloxane type epoxy resin represented by the above formula (1) can be produced, for example, by the following method.
(Method 1) A method of cohydrolyzing and polycondensing a silane compound having an epoxy group and a silane compound having no epoxy group and / or an oligomer thereof.
(Method 2) A method of adding an organic compound having an epoxy group and a carbon-carbon double bond group to a polysiloxane having a hydrosilyl group.
(Method 3) A method in which the double bond portion of the polysiloxane having an organic group containing a carbon-carbon double bond is oxidized and converted to an epoxy group.
 上記方法1でポリシロキサン型のエポキシ樹脂を製造する際に用いることのできる原料は次の通りである。
 Mユニットを導入するための原料としては、トリメチルメトキシシラン、トリメチルエトキシシラン、トリフェニルメトキシシラン、トリフェニルシラノールなどが例示される。
The raw materials that can be used when the polysiloxane type epoxy resin is produced by the method 1 are as follows.
Examples of the raw material for introducing the M unit include trimethylmethoxysilane, trimethylethoxysilane, triphenylmethoxysilane, and triphenylsilanol.
 Dユニットを導入するための原料としては、ジメチルジメトキシシラン、メチルフェニルジメトキシシラン、メチルビニルジメトキシシラン、ジフェニルジメトキシシラン、ジメチルジエトキシシラン、メチルフェニルジエトキシシラン及びこれらの加水分解縮合物(オリゴマー)が例示される。
 両末端に水酸基を有するジアルキルシロキサンオリゴマーとして、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ジメチルシロキサン-ジフェニルシロキサン共重合体、ポリジフェニルシロキサンなどの両末端をシラノール変性した化合物が市販されている。
As raw materials for introducing D unit, dimethyldimethoxysilane, methylphenyldimethoxysilane, methylvinyldimethoxysilane, diphenyldimethoxysilane, dimethyldiethoxysilane, methylphenyldiethoxysilane, and their hydrolysis condensates (oligomers) Illustrated.
As dialkylsiloxane oligomers having hydroxyl groups at both ends, compounds having silanol-modified compounds at both ends such as polydimethylsiloxane, polymethylphenylsiloxane, dimethylsiloxane-diphenylsiloxane copolymer, and polydiphenylsiloxane are commercially available.
 Tユニットを導入するための原料としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン及びこれらの加水分解縮合物が例示される。
 Qユニットを導入するための原料としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン及びこれらの加水分解縮合物が例示される。
Raw materials for introducing T unit include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, 3,3,3-trifluoropropyl Examples include trimethoxysilane and hydrolytic condensates thereof.
Examples of the raw material for introducing the Q unit include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and hydrolytic condensates thereof.
 エポキシ基を導入するための原料としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、(γ-グリシドキシプロピル)(メチル)ジメトキシシラン、(γ-グリシドキシプロピル)(エチル)ジメトキシシラン、(γ-グリシドキシプロピル)(メチル)ジエトキシシラン、(γ-グリシドキシプロピル)(エチル)ジエトキシシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(メチル)ジメトキシシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(エチル)ジメトキシシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(メチル)ジエトキシシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(エチル)ジエトキシシラン、(γ-グリシドキシプロピル)(メトキシ)ジメチルシラン、(γ-グリシドキシプロピル)(メトキシ)ジエチルシラン、(γ-グリシドキシプロピル)(エトキシ)ジメチルシラン、(γ-グリシドキシプロピル)(エトキシ)ジエチルシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(メトキシ)ジメチルシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(メトキシ)ジエチルシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(エトキシ)ジメチルシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(エトキシ)ジエチルシラン、〔2-(3,4-エポキシシクロヘキシル)エチル〕(ジメチル)ジシロキサン、1,3-ビス(3-グリシドキシプロピル)1,1,3,3-テトラメチルジシロキサン、(3-グリシドキシプロピル)ペンタメチルジシロキサン、3-エポキシプロピル(フェニル)ジメトキシシランなどが例示される。 As raw materials for introducing the epoxy group, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3 , 4-epoxycyclohexyl) ethyltriethoxysilane, (γ-glycidoxypropyl) (methyl) dimethoxysilane, (γ-glycidoxypropyl) (ethyl) dimethoxysilane, (γ-glycidoxypropyl) (methyl) Diethoxysilane, (γ-glycidoxypropyl) (ethyl) diethoxysilane, [2- (3,4-epoxycyclohexyl) ethyl] (methyl) dimethoxysilane, [2- (3,4-epoxycyclohexyl) ethyl ] (Ethyl) dimethoxysilane, [2- (3,4-epoxycyclohexyl) ) Ethyl] (methyl) diethoxysilane, [2- (3,4-epoxycyclohexyl) ethyl] (ethyl) diethoxysilane, (γ-glycidoxypropyl) (methoxy) dimethylsilane, (γ-glycidoxy) (Propyl) (methoxy) diethylsilane, (γ-glycidoxypropyl) (ethoxy) dimethylsilane, (γ-glycidoxypropyl) (ethoxy) diethylsilane, [2- (3,4-epoxycyclohexyl) ethyl] ( Methoxy) dimethylsilane, [2- (3,4-epoxycyclohexyl) ethyl] (methoxy) diethylsilane, [2- (3,4-epoxycyclohexyl) ethyl] (ethoxy) dimethylsilane, [2- (3,4 -Epoxycyclohexyl) ethyl] (ethoxy) diethylsilane, [2- (3,4-epoxysilane) Chlohexyl) ethyl] (dimethyl) disiloxane, 1,3-bis (3-glycidoxypropyl) 1,1,3,3-tetramethyldisiloxane, (3-glycidoxypropyl) pentamethyldisiloxane, 3 -Epoxypropyl (phenyl) dimethoxysilane and the like are exemplified.
 エポキシ基含有ケイ素化合物のエポキシ価は、通常100g/eq以上、好ましくは200g/eq以上、より好ましくは250g/eq以上、さらに好ましくは300g/eq以上、特に好ましくは400g/eq以上であり、また4000g/eq以下、好ましくは3500g/eq以下、より好ましくは3000g/eq以下、さらに好ましくは2500g/eq以下である。特に熱硬化後の硬化物の貯蔵弾性率を高くする観点からは、エポキシ価は少し低めにすることが好ましく、100g/eq以上、好ましくは150g/eq以上、であり、また4000g/eq以下、好ましくは3000g/eq以下、より好ましくは2000g/eq以下、さらに好ましくは1000g/eq以下である。
 エポキシ価をこれら上限値以下とする(これは極性が低くなりすぎず、エポキシ密度が十分であることに対応する)ことにより、フィラー表面に樹脂が滞在しやすくなり、かつ十分に硬化させることが容易になり、硬化物が脆くなることを防ぐことができる。また下限値以上とする(これは極性が高くなりすぎず、エポキシ密度が過剰にならないことに対応する)ことにより、フィラーの表面に樹脂が滞在しやすくなり、かつ硬化物の弾性率が大きくなりすぎることが無く、硬化時や使用中の温度変化によって生じる内部応力により、クラックが発生することを防ぐことが容易になる。
The epoxy value of the epoxy group-containing silicon compound is usually 100 g / eq or more, preferably 200 g / eq or more, more preferably 250 g / eq or more, further preferably 300 g / eq or more, and particularly preferably 400 g / eq or more. It is 4000 g / eq or less, preferably 3500 g / eq or less, more preferably 3000 g / eq or less, and further preferably 2500 g / eq or less. In particular, from the viewpoint of increasing the storage elastic modulus of the cured product after heat curing, the epoxy value is preferably slightly lower, 100 g / eq or more, preferably 150 g / eq or more, and 4000 g / eq or less, Preferably it is 3000 g / eq or less, More preferably, it is 2000 g / eq or less, More preferably, it is 1000 g / eq or less.
By making the epoxy value below these upper limits (this corresponds to the fact that the polarity is not too low and the epoxy density is sufficient), the resin can easily stay on the filler surface and can be sufficiently cured. It becomes easy and it can prevent that hardened | cured material becomes weak. Moreover, by setting it to the lower limit value or more (this corresponds to the fact that the polarity does not become too high and the epoxy density does not become excessive), the resin can easily stay on the surface of the filler, and the elastic modulus of the cured product increases. It is easy to prevent cracks from occurring due to internal stress caused by temperature changes during curing or in use.
 また、本明細書において、エポキシ価とは、1当量(eq)のエポキシ基を含むエポキシ基含有化合物(重合体を含む)の質量(g)である。 In this specification, the epoxy value is the mass (g) of an epoxy group-containing compound (including a polymer) containing 1 equivalent (eq) of an epoxy group.
 樹脂組成物中の熱硬化性樹脂としては、上述した樹脂から1種を単独で用いてもよく、2種以上を併用してもよい。またフィラー表面への濡れ性の観点から、エポキシ基含有ケイ素化合物を含むことが好ましい。 As the thermosetting resin in the resin composition, one kind of the above-described resins may be used alone, or two or more kinds may be used in combination. Moreover, it is preferable that an epoxy group containing silicon compound is included from a wettability viewpoint to the filler surface.
1-3. 硬化触媒
 本発明の一実施形態である樹脂組成物は、硬化触媒を含む。硬化触媒は使用する樹脂の種類により適宜選択すればよく、熱硬化性樹脂を硬化させ得る化合物であれば硬化触媒は特に限定されない。以下、エポキシ樹脂について硬化触媒の例を示す。
1-3. Curing catalyst The resin composition which is one Embodiment of this invention contains a curing catalyst. The curing catalyst may be appropriately selected depending on the type of resin used, and the curing catalyst is not particularly limited as long as it is a compound that can cure the thermosetting resin. Hereinafter, examples of the curing catalyst for the epoxy resin will be shown.
(1)エポキシ樹脂の硬化触媒
 エポキシ樹脂を用いる場合、通常のエポキシ樹脂硬化に使用される触媒を使用することができる。例えば、ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、シクロヘキシルジメチルアミン、トリエタノールアミンなどの3級アミン類;2-メチルイミダゾール、2-n-ヘプチルイミダゾール、2-n-ウンデシルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1-(2-シアノエチル)-2-メチルイミダゾール、1-(2-シアノエチル)-2-n-ウンデシルイミダゾール、1-(2-シアノエチル)-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジ(ヒドロキシメチル)イミダゾール、1-(2-シアノエチル)-2-フェニル-4,5-ジ〔(2’-シアノエトキシ)メチル〕イミダゾール、1-(2-シアノエチル)-2-n-ウンデシルイミダゾリウムトリメリテート、1-(2-シアノエチル)-2-フェニルイミダゾリウムトリメリテート、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾリウムトリメリテート、2,4-ジアミノ-6-〔2’-メチルイミダゾリル-(1’)〕エチル-s-トリアジン、2,4-ジアミノ-6-(2’-n-ウンデシルイミダゾリル)エチル-s-トリアジン、2,4-ジアミノ-6-〔2’-エチル-4’-メチルイミダゾリル-(1’)〕エチル-s-トリアジン、2-メチルイミダゾールのイソシアヌル酸付加物、2-フェニルイミダゾールのイソシアヌル酸付加物、2,4-ジアミノ-6-〔2’-メチルイミダゾリル-(1’)〕エチル-s-トリアジンのイソシアヌル酸付加物などのイミダゾール類;ジフェニルフォスフィン、トリフェニルフォスフィン、亜リン酸トリフェニルなどの有機リン系化合物;ベンジルトリフェニルフォスフォニウムクロライド、テトラ-n-ブチルフォスフォニウムブロマイド、メチルトリフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムブロマイド、n-ブチルトリフェニルフォスフォニウムブロマイド、テトラフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムヨーダイド、エチルトリフェニルフォスフォニウムアセテート、メチルトリブチルホスホニウムジメチルホスフェート、テトラブチルホスホニウムジエチルホスホジチオネート、テトラ-n-ブチルフォスフォニウムベンゾトリアゾレート、テトラ-n-ブチルフォスフォニウムテトラフルオロボレート、テトラ-n-ブチルフォスフォニウムテトラフェニルボレート、テトラフェニルフォスフォニウムテトラフェニルボレートなどの4級フォスフォニウム塩類;1,8-ジアザビシクロ[5.4.0]ウンデセン-7やその有機酸塩などのジアザビシクロアルケン類;オクチル酸亜鉛、アクチル酸錫、アルミニウムアセチルアセトン錯体、ガリウム化合物、インジウム化合物などの有機金属化合物;テトラエチルアンモニウムブロマイド、テトラ-n-ブチルアンモニウムブロマイドなどの4級アンモニウム塩類;三フッ化ホウ素、ホウ酸トリフェニルなどのホウ素化合物;塩化亜鉛、塩化第二錫などの金属ハロゲン化合物のほか、ジシアンジアミドやアミンとエポキシ樹脂との付加物などのアミン付加型促進剤などの高融点分散型潜在性硬化促進剤;前記イミダゾール類、有機リン系化合物や4級フォスフォニウム塩類などの硬化促進剤の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤;アミン塩型潜在性硬化剤促進剤;ガリウム化合物以外のルイス酸塩、ブレンステッド酸塩などの高温解離型の熱カチオン重合型潜在性硬化促進剤などの潜在性硬化促進剤などを挙げることができる。
(1) Curing catalyst of epoxy resin When using an epoxy resin, the catalyst used for normal epoxy resin hardening can be used. For example, tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, cyclohexyldimethylamine, triethanolamine; 2-methylimidazole, 2-n-heptylimidazole, 2-n- Undecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methyl Imidazole, 1- (2-cyanoethyl) -2-methylimidazole, 1- (2-cyanoethyl) -2-n-undecylimidazole, 1- (2-cyanoethyl) -2-phenylimidazole, 1- (2-cyanoethyl) ) -2-Ethyl-4-methylimidazo 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-di (hydroxymethyl) imidazole, 1- (2-cyanoethyl) -2-phenyl-4,5-di [( 2′-cyanoethoxy) methyl] imidazole, 1- (2-cyanoethyl) -2-n-undecylimidazolium trimellitate, 1- (2-cyanoethyl) -2-phenylimidazolium trimellitate, 1- ( 2-cyanoethyl) -2-ethyl-4-methylimidazolium trimellitate, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)] ethyl-s-triazine, 2,4-diamino- 6- (2′-n-undecylimidazolyl) ethyl-s-triazine, 2,4-diamino-6- [2′-ethyl-4′-methylimidazolyl- ( ')] Ethyl-s-triazine, isocyanuric acid adduct of 2-methylimidazole, isocyanuric acid adduct of 2-phenylimidazole, 2,4-diamino-6- [2'-methylimidazolyl- (1')] ethyl Imidazoles such as isocyanuric acid adduct of s-triazine; organophosphorus compounds such as diphenylphosphine, triphenylphosphine, triphenyl phosphite; benzyltriphenylphosphonium chloride, tetra-n-butylphospho Nitrobromide, Methyltriphenylphosphonium bromide, Ethyltriphenylphosphonium bromide, n-Butyltriphenylphosphonium bromide, Tetraphenylphosphonium bromide, Ethyltriphenylphosphonium iodide, Et Tiltriphenylphosphonium acetate, methyltributylphosphonium dimethyl phosphate, tetrabutylphosphonium diethylphosphodithionate, tetra-n-butylphosphonium benzotriazolate, tetra-n-butylphosphonium tetrafluoroborate, tetra-n Quaternary phosphonium salts such as butylphosphonium tetraphenylborate and tetraphenylphosphonium tetraphenylborate; diaza such as 1,8-diazabicyclo [5.4.0] undecene-7 and its organic acid salts Bicycloalkenes; Organometallic compounds such as zinc octylate, tin actylate, aluminum acetylacetone complex, gallium compounds, indium compounds; tetraethylammonium bromide, tetra-n-butyl Quaternary ammonium salts such as ruammonium bromide; Boron compounds such as boron trifluoride and triphenyl borate; Metal halide compounds such as zinc chloride and stannic chloride, additions of dicyandiamide, amines and epoxy resins, etc. High melting point dispersion type latent curing accelerators such as amine addition type accelerators; Microcapsule type latents in which the surface of curing accelerators such as imidazoles, organophosphorus compounds and quaternary phosphonium salts are coated with a polymer Curing accelerator; amine salt type latent curing agent accelerator; latent curing accelerator such as high temperature dissociation type thermal cationic polymerization type latent curing accelerator such as Lewis acid salt other than gallium compound, Bronsted acid salt, etc. Can be mentioned.
 これらのうち、強い触媒活性が必要であることから、好ましくは有機金属化合物であり、より好ましくはガリウム化合物及びインジウム化合物であり、さらに好ましくはガリウム化合物である。
 中でも特に好ましいのは、ガリウムアセチルアセトネート及び酢酸ガリウムである。
Among these, since strong catalytic activity is required, an organometallic compound is preferable, a gallium compound and an indium compound are more preferable, and a gallium compound is more preferable.
Of these, gallium acetylacetonate and gallium acetate are particularly preferred.
 ガリウム化合物は、後段で詳述するシラノール源化合物から供給されるシラノールと組み合わされて、エポキシ樹脂の自己重合反応の触媒として作用する成分である。ガリウム化合物としては、金属原子としてガリウムを含む化合物であれば特に限定されるものではなく、酸化物、塩、キレート錯体など、各種形態のものを使用することができる。キレート配位子を有するガリウム錯体、酢酸ガリウム、オキシ酢酸ガリウム、トリエトキシガリウム、トリス(8-キノリノラト)ガリウム、シュウ酸ガリウム、エチルキサントゲン酸ガリウム、ジエチルエトキシガリウム、マレイン酸ガリウム、n-オクチル酸、2-エチルヘキサン酸、ナフテン酸などの長鎖カルボン酸のガリウム塩等を例示することができる。
 キレート配位子としては、β-ジケトン型化合物及びo-ケトフェノール型化合物が挙げられる。β-ジケトン型化合物には、次の式(15)~式(17)に示す構造を有するものがある。
The gallium compound is a component that acts as a catalyst for the self-polymerization reaction of the epoxy resin in combination with silanol supplied from a silanol source compound described in detail later. The gallium compound is not particularly limited as long as it is a compound containing gallium as a metal atom, and various forms such as an oxide, a salt, and a chelate complex can be used. Gallium complex having chelate ligand, gallium acetate, gallium oxyacetate, triethoxygallium, tris (8-quinolinolato) gallium, gallium oxalate, gallium ethylxanthate, diethylethoxygallium, gallium maleate, n-octylic acid, Examples thereof include gallium salts of long chain carboxylic acids such as 2-ethylhexanoic acid and naphthenic acid.
Examples of the chelate ligand include β-diketone type compounds and o-ketophenol type compounds. Some β-diketone type compounds have structures represented by the following formulas (15) to (17).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(15)~式(17)において、R5は独立してアルキル基又はハロゲン置換アルキル基を表している。
 式(15)の化合物の具体例としてはアセチルアセトン、トリフルオロアセチルアセトン、ペンタフルオロアセチルアセトン、ヘキサフルオロアセチルアセトンなどが、式(16)の化合物の具体例としてはエチルアセトアセテートなどが、式(17)の化合物の具体例としてはジエチルマロネートなどが挙げられる。
 o-ケトフェノール型化合物は、次の式(18)で表される化合物である。
In formulas (15) to (17), R 5 independently represents an alkyl group or a halogen-substituted alkyl group.
Specific examples of the compound of the formula (15) include acetylacetone, trifluoroacetylacetone, pentafluoroacetylacetone, hexafluoroacetylacetone and the like, and specific examples of the compound of the formula (16) include ethylacetoacetate and the compound of the formula (17). Specific examples of such include diethyl malonate.
The o-ketophenol type compound is a compound represented by the following formula (18).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(18)において、R’は水素原子、アルキル基、ハロゲン置換アルキル基又はアルコキシ基を表している。
 式(18)の化合物の具体例としては、サリチルアルデヒド、エチル-o-ヒドロキシフェニルケトンなどが挙げられる。
 キレート配位子を有するガリウム錯体はガリウム化合物の好適例であり、その中でもガリウムアセチルアセトネートは特に好適に使用することができる。2種類以上のガリウム化合物を任意に組み合わせて用いることもできる。
In the formula (18), R ′ represents a hydrogen atom, an alkyl group, a halogen-substituted alkyl group or an alkoxy group.
Specific examples of the compound of formula (18) include salicylaldehyde, ethyl-o-hydroxyphenyl ketone and the like.
A gallium complex having a chelate ligand is a preferred example of a gallium compound, and among them, gallium acetylacetonate can be particularly preferably used. Two or more kinds of gallium compounds can be used in any combination.
 ガリウム化合物を用いるとAl触媒に比べて硬化物の高温に暴露されたときの重量減少が少ない。特に硬化物がシロキサン構造を含む場合に大きな効果が得られる。
 具体的には、150~200℃の温度条件下、500時間保持された場合の、重量減少量が加熱前の質量の20質量%以下が好ましく、10質量%以下が更に好ましい。
 ガリウム化合物およびエポキシ樹脂を含むエポキシ樹脂含有組成物を硬化させる場合、ガリウム化合物の含有量は、エポキシ樹脂100質量部に対して通常0.001質量部以上、好ましくは0.01質量部以上、また、通常5.0質量部以下、好ましくは1.0質量部以下である。
When a gallium compound is used, the weight loss when the cured product is exposed to a high temperature is less than that of an Al catalyst. A great effect is obtained particularly when the cured product contains a siloxane structure.
Specifically, the weight loss when the temperature is maintained at 150 to 200 ° C. for 500 hours is preferably 20% by mass or less of the mass before heating, and more preferably 10% by mass or less.
When the epoxy resin-containing composition containing a gallium compound and an epoxy resin is cured, the content of the gallium compound is usually 0.001 part by mass or more, preferably 0.01 part by mass or more, based on 100 parts by mass of the epoxy resin. Usually, 5.0 parts by mass or less, preferably 1.0 parts by mass or less.
(2)シラノール源化合物
 シラノール源化合物は、シラノールの供給源たる化合物である。シラノールは、前述のガリウム化合物と組み合わされて、エポキシ樹脂の自己重合反応の触媒として作用する。
 シラノールの役割は、エポキシ樹脂の自己重合反応の開始に必要なカチオン源であると考えられる。シラノール源化合物のケイ素原子にフェニル基などの芳香族基が結合している場合には、この芳香族基はシラノール水酸基の酸性度を高める働き、つまり、シラノールのカチオン源としての作用を強める働きをしていると考えられる。
(2) Silanol source compound The silanol source compound is a compound that is a supply source of silanol. Silanol, in combination with the aforementioned gallium compound, acts as a catalyst for the self-polymerization reaction of the epoxy resin.
The role of silanol is considered to be a cation source necessary for the initiation of the self-polymerization reaction of the epoxy resin. When an aromatic group such as a phenyl group is bonded to the silicon atom of the silanol source compound, the aromatic group functions to increase the acidity of the silanol hydroxyl group, that is, to enhance the action of silanol as a cation source. it seems to do.
 シラノール源化合物は、潜在的なシラノール源であってもよい。例えば、加水分解性基が結合したケイ素原子を有しており、該加水分解基が加水分解されたときにシラノールを生じる化合物である。加水分解性基の具体例としては、ヒドロキシ基、アルコキシ基、水素、アセトキシ基、エノキシ基、オキシム基、ハロゲン基が挙げられる。好ましい加水分解性基はアルコキシ基であり、特に炭素数1~3のアルコキシ基、すなわち、メトキシ基、エトキシ基、プロポキシ基である。 The silanol source compound may be a potential silanol source. For example, it is a compound which has a silicon atom to which a hydrolyzable group is bonded and which produces silanol when the hydrolyzable group is hydrolyzed. Specific examples of the hydrolyzable group include a hydroxy group, an alkoxy group, hydrogen, an acetoxy group, an enoxy group, an oxime group, and a halogen group. A preferred hydrolyzable group is an alkoxy group, particularly an alkoxy group having 1 to 3 carbon atoms, that is, a methoxy group, an ethoxy group, or a propoxy group.
 シラノール源化合物の一例は、フェニルジメチルシラノール、ジフェニルメチルシラノール、トリフェニルシラノール、ジヒドロキシジフェニルシラン(ジフェニルジシラノール)、トリメチルシラノール、トリエチルシラノール、ジヒドロキシジメチルシラン、トリヒドロキシメチルシランなどの水酸基が結合したケイ素原子を有するモノシラン化合物である。 An example of a silanol source compound is a silicon atom to which hydroxyl groups such as phenyldimethylsilanol, diphenylmethylsilanol, triphenylsilanol, dihydroxydiphenylsilane (diphenyldisilanol), trimethylsilanol, triethylsilanol, dihydroxydimethylsilane, and trihydroxymethylsilane are bonded. It is a monosilane compound having
 シラノール源化合物の他の一例は、水酸基が結合したケイ素原子を有する、式(19)で表されるオルガノポリシロキサンである。
 (R21 SiO1/2a2(R22 SiO2/2b2(R23SiO3/2c2(SiO4/2d2(O1/2H)e2 ・・・(19)
 式(19)において、R21、R22、R23はそれぞれ独立して1価の有機基を示す。
Another example of the silanol source compound is an organopolysiloxane represented by the formula (19) having a silicon atom to which a hydroxyl group is bonded.
(R 21 3 SiO 1/2 ) a 2 (R 22 2 SiO 2/2 ) b 2 (R 23 SiO 3/2 ) c 2 (SiO 4/2 ) d 2 (O 1/2 H) e 2 (19)
In the formula (19), R 21 , R 22 and R 23 each independently represent a monovalent organic group.
 式(19)において、R21 SiO1/2はMユニット、R22 SiO2/2はDユニット、R23SiO3/2はTユニット、SiO4/2はQユニットを、それぞれ表している。a2、b2、c2及びd2は、それぞれが0以上の整数であり、かつ、a2+b2+c2+d2≧1である。e2は1以上の自然数であり、ケイ素原子に直接結合する水酸基(シラノール)の個数を表している。 In the formula (19), R 21 3 SiO 1/2 represents an M unit, R 22 2 SiO 2/2 represents a D unit, R 23 SiO 3/2 represents a T unit, and SiO 4/2 represents a Q unit. Yes. Each of a2, b2, c2, and d2 is an integer of 0 or more, and a2 + b2 + c2 + d2 ≧ 1. e2 is a natural number of 1 or more, and represents the number of hydroxyl groups (silanol) directly bonded to the silicon atom.
 式(19)のR21、R22、R23は、通常、炭素数1~10の炭化水素基であり、その具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基などのアルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基などのアルケニル基;フェニル基、トリル基、キシリル基などのアリール基;ベンジル基、フェネチル基などのアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、ノナフルオロブチルエチル基などの置換アルキル基が挙げられる。 R 21 , R 22 and R 23 in the formula (19) are usually hydrocarbon groups having 1 to 10 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, Alkyl groups such as hexyl and heptyl groups; alkenyl groups such as vinyl, allyl, butenyl, pentenyl and hexenyl; aryl groups such as phenyl, tolyl and xylyl; aralkyls such as benzyl and phenethyl Groups; substituted alkyl groups such as chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, nonafluorobutylethyl group and the like.
 シラノール源化合物は、ケイ素原子に結合する加水分解性基を有するものであって、該加水分解性基を加水分解したときに、式(19)で表されるオルガノポリシロキサンを生じる化合物であってもよい。換言すれば、式(19)で表されるオルガノポリシロキサンにおいて、ケイ素原子に直接結合した水酸基の全部又は一部を加水分解性基に置き換えた化合物であってもよい。 The silanol source compound has a hydrolyzable group bonded to a silicon atom, and produces a organopolysiloxane represented by the formula (19) when the hydrolyzable group is hydrolyzed. Also good. In other words, the organopolysiloxane represented by the formula (19) may be a compound in which all or a part of hydroxyl groups directly bonded to silicon atoms are replaced with hydrolyzable groups.
 シラノール源化合物がオルガノポリシロキサンであり、これを、シロキサン構造を含まないエポキシ樹脂と共に用いる場合には、該オルガノポリシロキサンと該エポキシ樹脂との相溶性を確保する観点から、該オルガノポリシロキサンはケイ素原子に結合した芳香族基を有するものであることが好ましい。
 シラノール源化合物がオルガノポリシロキサンである場合、その重量平均分子量については、熱硬化性樹脂組成物の硬化中あるいは硬化後に揮発しないように、500以上であることが好ましく、700以上であることがより好ましい。一方、重合度が高過ぎると粘度が高くなって取り扱い性が悪くなることから、該重量平均分子量は20,000以下であることが好ましく、15,000以下であることがより好ましい。
When the silanol source compound is an organopolysiloxane and is used together with an epoxy resin that does not contain a siloxane structure, the organopolysiloxane is silicon from the viewpoint of ensuring compatibility between the organopolysiloxane and the epoxy resin. It preferably has an aromatic group bonded to an atom.
When the silanol source compound is an organopolysiloxane, the weight average molecular weight is preferably 500 or more and more preferably 700 or more so that it does not volatilize during or after curing of the thermosetting resin composition. preferable. On the other hand, if the degree of polymerization is too high, the viscosity becomes high and the handleability deteriorates, so that the weight average molecular weight is preferably 20,000 or less, more preferably 15,000 or less.
 好適な実施形態では、シラノール源化合物は水酸基又は加水分解性基が結合したケイ素原子を1分子中に2個以上有するオルガノポリシロキサン又はシラン化合物であってもよい。かかるシラノール源化合物は、加熱されたときにガリウム化合物の作用により重縮合して高分子量化するので、硬化後にブリードアウトすることがない。
 シラノール源化合物として好適に使用できるオルガノポリシロキサンとして、下記式(20)~式(23)で表される構造を有するものが挙げられる。
In a preferred embodiment, the silanol source compound may be an organopolysiloxane or a silane compound having two or more silicon atoms bonded to a hydroxyl group or a hydrolyzable group in one molecule. Such a silanol source compound is polycondensed by the action of the gallium compound to increase the molecular weight when heated, so that it does not bleed out after curing.
Examples of the organopolysiloxane that can be suitably used as the silanol source compound include those having structures represented by the following formulas (20) to (23).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(22)で表されるオルガノポリシロキサンは、式(20)で表される化合物と式(24)で表される化合物(ジヒドロキシジメチルシラン又は両末端に水酸基を有するポリジメチルシロキサン)とを、重縮合することにより得ることができる。重縮合触媒としては、酸、塩基の他、金属触媒を用いることができ、ガリウムアセチルアセトネートのようなガリウム化合物を用いることもできる。
 式(23)で表されるオルガノポリシロキサンは、式(21)で表される化合物と式(24)で表される化合物とを、重縮合することにより得ることができる。重縮合触媒としては、酸、塩基の他、金属触媒を用いることができ、ガリウムアセチルアセトネートのようなガリウム化合物を用いることもできる。
The organopolysiloxane represented by the formula (22) includes a compound represented by the formula (20) and a compound represented by the formula (24) (dihydroxydimethylsilane or polydimethylsiloxane having hydroxyl groups at both ends), It can be obtained by polycondensation. As the polycondensation catalyst, a metal catalyst can be used in addition to an acid and a base, and a gallium compound such as gallium acetylacetonate can also be used.
The organopolysiloxane represented by the formula (23) can be obtained by polycondensing the compound represented by the formula (21) and the compound represented by the formula (24). As the polycondensation catalyst, a metal catalyst can be used in addition to an acid and a base, and a gallium compound such as gallium acetylacetonate can also be used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(20)~式(24)において、m、n、M、N、m1、m2は、それぞれ、1以上の整数である。これらの数を大きくし過ぎた場合、すなわちポリシロキサンの重合度を高くし過ぎた場合、粘度が高くなり過ぎてハンドリングが容易でなくなる他、シラノールの含有率が下がるために触媒能が低下する傾向が生じることに注意すべきである。ハンドリング性の観点からは、当該オルガノポリシロキサンの粘度あるいは当該オルガノポリシロキサンを用いて得られる樹脂組成物の粘度が、30℃、1atmにおいて、50,000cp以下、好ましくは40,000cp以下、より好ましくは30,000cp以下、更に好ましくは20,000cp以下、特に好ましくは15,000cp以下、最も好ましくは10,000cp以下となるように、その重合度を設定することが好ましい。 In the expressions (20) to (24), m, n, M, N, m1, and m2 are each an integer of 1 or more. When these numbers are increased too much, that is, when the degree of polymerization of the polysiloxane is increased too much, the viscosity becomes too high and handling becomes difficult, and the catalytic performance tends to decrease due to a decrease in the content of silanol. Note that occurs. From the viewpoint of handling properties, the viscosity of the organopolysiloxane or the viscosity of the resin composition obtained using the organopolysiloxane is 50,000 cp or less, preferably 40,000 cp or less, more preferably at 30 ° C. and 1 atm. Is preferably set to 30,000 cp or less, more preferably 20,000 cp or less, particularly preferably 15,000 cp or less, and most preferably 10,000 cp or less.
 式(20)~式(23)で表されるオルガノポリシロキサンから選ばれる1種以上を、メチルトリメトキシシラン、フェニルトリメトキシシランなどの3官能シラン化合物とともに重縮合させて得られるオルガノポリシロキサンも、シラノール源化合物の好適例である。重縮合触媒としては、酸、塩基の他、金属触媒を用いることができ、ガリウムアセチルアセトネートのようなガリウム化合物を用いることもできる。かかるオルガノポリシロキサンは、更に酸、塩基又はガリウム化合物などの金属化合物のような縮合触媒を作用させることにより硬化する性質を有する。シラノール源として、モノシラン化合物とオルガノポリシロキサンを併せて用いてもよい。 An organopolysiloxane obtained by polycondensation of one or more selected from the organopolysiloxanes represented by formulas (20) to (23) together with a trifunctional silane compound such as methyltrimethoxysilane or phenyltrimethoxysilane This is a preferred example of a silanol source compound. As the polycondensation catalyst, a metal catalyst can be used in addition to an acid and a base, and a gallium compound such as gallium acetylacetonate can also be used. Such organopolysiloxanes have the property of being cured by the action of a condensation catalyst such as an acid, a base or a metal compound such as a gallium compound. As the silanol source, a monosilane compound and an organopolysiloxane may be used in combination.
 シラノール源化合物は、エポキシ樹脂100質量部に対して通常0.05質量部以上、好ましくは0.1質量部以上、また500質量部以下、好ましくは200質量部以下である。
 また、ガリウム化合物とシラノール源化合物の含有比は質量比で1:0.05~0.001:100が好ましく、より好ましくは1:10~0.01:100である。
 熱硬化性樹脂組成物における硬化触媒の含有量は、熱硬化性樹脂組成物100質量%に対して0.001質量%~0.3質量%となるように調製することが好ましい。
A silanol source compound is 0.05 mass part or more normally with respect to 100 mass parts of epoxy resins, Preferably it is 0.1 mass part or more, and is 500 mass parts or less, Preferably it is 200 mass parts or less.
Further, the content ratio of the gallium compound and the silanol source compound is preferably 1: 0.05 to 0.001: 100, more preferably 1:10 to 0.01: 100 in terms of mass ratio.
The content of the curing catalyst in the thermosetting resin composition is preferably adjusted to be 0.001% by mass to 0.3% by mass with respect to 100% by mass of the thermosetting resin composition.
 エポキシ基含有ケイ素化合物においては、エポキシ樹脂とシラノール源化合物のいずれか一方、又は両方が、オルガノポリシロキサン構造部分を有し得る。その場合に、オルガノポリシロキサン構造部分にシラノールを導入すると、ガリウム化合物がシラノール間の脱水縮合触媒として作用するので、エポキシ樹脂の自己重合反応とシラノール縮合反応の両方が硬化に関与する、耐熱性の良好な熱硬化性樹脂組成物が得られる。ガリウム化合物はシラノールとアルコキシ基の間の脱アルコール縮合反応の触媒にもなるので、オルガノポリシロキサン構造部分にシラノールとアルコキシ基を導入した場合も同様の効果が得られる。熱硬化性樹脂がシラノール基を有する場合、ガリウム化合物はシロキサン縮合の触媒にもなり、架橋系が同時に進行するので好ましい。また、シロキサンやシリカとの相性が良好であり、シリカの分散に寄与する。さらに、エポキシ基含有ケイ素化合物をガリウム化合物で反応させると、得られる硬化物の線膨張率が広い範囲で一定になる。 In the epoxy group-containing silicon compound, either one or both of the epoxy resin and the silanol source compound may have an organopolysiloxane structure portion. In that case, when silanol is introduced into the organopolysiloxane structure, the gallium compound acts as a dehydration condensation catalyst between silanols, so that both the self-polymerization reaction and silanol condensation reaction of epoxy resin are involved in curing A good thermosetting resin composition is obtained. Since the gallium compound also serves as a catalyst for the dealcoholization condensation reaction between silanol and alkoxy group, the same effect can be obtained when silanol and alkoxy group are introduced into the organopolysiloxane structure. When the thermosetting resin has a silanol group, the gallium compound is preferable because it also serves as a catalyst for siloxane condensation and the crosslinking system proceeds simultaneously. Further, it has good compatibility with siloxane and silica and contributes to silica dispersion. Furthermore, when an epoxy group-containing silicon compound is reacted with a gallium compound, the linear expansion coefficient of the resulting cured product becomes constant over a wide range.
 他の一例では、エポキシ樹脂が有するオルガノポリシロキサン構造部分とシラノール源化合物が有するオルガノポリシロキサン構造部分の一方にヒドロシリル基、他方にビニルシリル基を導入するとともに、白金化合物のようなヒドロシリル化反応触媒を添加することにより、エポキシ樹脂の自己重合反応とヒドロシリル化反応の両方が硬化に関与する、硬化性の良好な熱硬化性樹脂組成物が得られる。 In another example, a hydrosilyl group is introduced into one of the organopolysiloxane structure part of the epoxy resin and the organopolysiloxane structure part of the silanol source compound, and a vinylsilyl group is introduced into the other, and a hydrosilylation reaction catalyst such as a platinum compound is used. By adding, a thermosetting resin composition with good curability in which both the self-polymerization reaction and hydrosilylation reaction of the epoxy resin are involved in the curing can be obtained.
 あるいは、エポキシ樹脂とシラノール源化合物のいずれか一方又は両方が有するオルガノポリシロキサン構造部分にヒドロシリル基を導入するとともに、ビニルシリル基を有するオルガノポリシロキサンとヒドロシリル化反応触媒を添加することによっても、エポキシ樹脂の自己重合反応とヒドロシリル化反応の両方が硬化に関与する熱硬化性樹脂組成物が得られる。この例を変形して、エポキシ樹脂とシラノール源化合物のいずれか一方又は両方が有するオルガノポリシロキサン構造部分にビニルシリル基を導入し、添加するオルガノポリシロキサンをヒドロシリル基が導入されたものとしてもよい。 Alternatively, by introducing a hydrosilyl group into the organopolysiloxane structure part of either or both of the epoxy resin and the silanol source compound, and adding an organopolysiloxane having a vinylsilyl group and a hydrosilylation reaction catalyst, the epoxy resin Thus, a thermosetting resin composition in which both the self-polymerization reaction and hydrosilylation reaction are involved in curing is obtained. This example may be modified so that a vinylsilyl group is introduced into the organopolysiloxane structure part of either one or both of the epoxy resin and the silanol source compound, and the organopolysiloxane to be added is introduced with a hydrosilyl group.
1-4. エポキシ樹脂の硬化剤
 エポキシ基との反応により架橋物を形成する硬化剤としては、アミン、ポリアミド樹脂、酸無水物、フェノールなどが挙げられる。線膨張率の低減、重合速度の制御、粘度の低減の観点から、酸無水物を用いることが好ましい。酸無水物としては、脂肪族酸無水物、脂環式酸無水物、芳香族酸無水物、ハロゲン系酸無水物、非環状カルボン酸無水物などが挙げられる。該樹脂組成物を光半導体デバイスに使用する場合には、耐光性及びより硬化物の弾性率を高くする観点から脂環式カルボン酸無水物を使用することが好ましい。
 酸無水物の含有量としては特に制限はないが、多すぎると酸無水物のTgが、得られる硬化物の線膨張率に影響を与える場合がある。
1-4. Curing agent for epoxy resin Examples of the curing agent that forms a cross-linked product by reaction with an epoxy group include amines, polyamide resins, acid anhydrides, and phenols. From the viewpoints of reducing the linear expansion coefficient, controlling the polymerization rate, and reducing the viscosity, it is preferable to use an acid anhydride. Examples of the acid anhydride include aliphatic acid anhydrides, alicyclic acid anhydrides, aromatic acid anhydrides, halogen acid anhydrides, and acyclic carboxylic acid anhydrides. When using this resin composition for an optical semiconductor device, it is preferable to use an alicyclic carboxylic acid anhydride from the viewpoint of increasing the light resistance and the elastic modulus of the cured product.
Although there is no restriction | limiting in particular as content of an acid anhydride, when too much, Tg of an acid anhydride may affect the linear expansion coefficient of the hardened | cured material obtained.
 脂環式カルボン酸無水物としては、例えば、式(25)~式(31)で表される化合物や、4-メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物のほか、α-テルピネン、アロオシメンなどの共役二重結合を有する脂環式化合物と無水マレイン酸とのディールス・アルダー反応生成物やこれらの水素添加物などを挙げることができる。 Examples of the alicyclic carboxylic acid anhydride include compounds represented by formulas (25) to (31), 4-methyltetrahydrophthalic acid anhydride, methylnadic acid anhydride, dodecenyl succinic acid anhydride, Examples thereof include Diels-Alder reaction products of alicyclic compounds having a conjugated double bond such as α-terpinene and alloocimene and maleic anhydride, and hydrogenated products thereof.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 なお、前記ディールス・アルダー反応生成物やこれらの水素添加物としては、任意の構造異性体及び任意の幾何異性体を使用することができる。
 また、前記脂環式カルボン酸無水物は、硬化反応を実質的に妨げない限り、適宜に化学的に変性して使用することもできる。
 酸無水物を含有することで、エポキシ反応速度の制御、ハンドリング、レベリングの向上、着色防止などの効果が得られる場合がある。酸無水物の含有量としては特に制限はないが、エポキシ量に対して1.5当量以下であることが好ましい。より好ましくは1当量以下、更に好ましくは0.8当量以下、更に好ましくは0.6当量以下である。
 非環状カルボン酸無水物としては、例えば式(32)のようなものが挙げられる。
In addition, arbitrary structural isomers and arbitrary geometrical isomers can be used as the Diels-Alder reaction product and hydrogenated products thereof.
In addition, the alicyclic carboxylic acid anhydride can be used after being appropriately chemically modified as long as the curing reaction is not substantially hindered.
By containing an acid anhydride, effects such as control of the epoxy reaction rate, handling, improvement in leveling, and prevention of coloring may be obtained. Although there is no restriction | limiting in particular as content of an acid anhydride, It is preferable that it is 1.5 equivalent or less with respect to the amount of epoxy. More preferably, it is 1 equivalent or less, More preferably, it is 0.8 equivalent or less, More preferably, it is 0.6 equivalent or less.
Examples of the acyclic carboxylic acid anhydride include those represented by the formula (32).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(32)において、R6とR7は連結せず、またR6とR7は同一又は各々独立して、置換していてもよい炭化水素基を示す。)
 炭化水素基としては、脂肪族、脂環式及び芳香族のいずれの炭化水素基でもよい。脂肪族炭化水素基としては、直鎖状又は分岐状の、飽和炭化水素又は不飽和炭化水素であり、例えば、炭素数2~18の脂肪族炭化水素基が挙げられる。より具体的には、式(33)で表される化合物を挙げることができる。
(In the formula (32), R 6 and R 7 are not connected, and R 6 and R 7 are the same or each independently represent an optionally substituted hydrocarbon group.)
The hydrocarbon group may be any aliphatic, alicyclic or aromatic hydrocarbon group. The aliphatic hydrocarbon group is a linear or branched saturated hydrocarbon or unsaturated hydrocarbon, and examples thereof include an aliphatic hydrocarbon group having 2 to 18 carbon atoms. More specifically, a compound represented by the formula (33) can be given.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(n’は、0~18の整数を示す。)
 式(33)において、揮発性の低い点でn’は0以上が好ましく、2以上がより好ましく、4以上が更に好ましい。また溶解性の点でn’は15以下が好ましく、12以下がより好ましい。
 脂肪族炭化水素基としては、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基などのアルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基などのアルケニル基が挙げられる。
(N ′ represents an integer of 0 to 18)
In the formula (33), n ′ is preferably 0 or more, more preferably 2 or more, and still more preferably 4 or more in terms of low volatility. In view of solubility, n ′ is preferably 15 or less, and more preferably 12 or less.
Aliphatic hydrocarbon groups include ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, heptadecyl, octadecyl, etc. An alkenyl group such as a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group.
 芳香族炭化水素基としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、α-ナフチル基、β-ナフチル基、ビフェニル-4-イル基、ビフェニル-3-イル基、ビフェニル-2-イル基、アントリル基、及びフェナントリル基等のアリール基;ベンジル基、フェネチル基、α-ナフチルメチル基、β-ナフチルメチル基、α-ナフチルエチル基、及びβ-ナフチルエチル基等のアラルキル基が挙げられる。 Examples of the aromatic hydrocarbon group include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, α-naphthyl group, β-naphthyl group, biphenyl-4-yl group, biphenyl-3-yl group, Aryl groups such as biphenyl-2-yl, anthryl, and phenanthryl; benzyl, phenethyl, α-naphthylmethyl, β-naphthylmethyl, α-naphthylethyl, and β-naphthylethyl An aralkyl group is mentioned.
 また上記炭化水素基に置換していてもよい置換基としては、水酸基、アルキル基、ニトロ基、アミノ基、メルカプト基、アセチル基、ハロゲン(Cl、Br、F)等が挙げられる。 Examples of the substituent that may be substituted on the hydrocarbon group include a hydroxyl group, an alkyl group, a nitro group, an amino group, a mercapto group, an acetyl group, and a halogen (Cl, Br, F).
 また非環状カルボン酸無水物を含有することで、エポキシ基の反応速度を制御できる点で樹脂組成物の保管安定性を向上できる。
 さらに非環状カルボン酸無水物を含有することで、ハンドリング、レベリングの向上、着色防止等の効果が得られる場合がある。具体的には非環状カルボン酸無水物のエステル結合部分が高極性部位また式(32)のR6およびR7が非極性部位であることで、樹脂組成物内の相分離構造を解消する界面活性剤として機能することがある。
Moreover, the storage stability of a resin composition can be improved at the point which can control the reaction rate of an epoxy group by containing a non-cyclic carboxylic acid anhydride.
Furthermore, by containing a non-cyclic carboxylic acid anhydride, effects such as improved handling, leveling, and prevention of coloring may be obtained. Specifically, the ester bond portion of the acyclic carboxylic acid anhydride is a highly polar site, or R 6 and R 7 in the formula (32) are nonpolar sites, thereby eliminating the phase separation structure in the resin composition. May function as an activator.
 非環状カルボン酸無水物の含有量としては特に制限はないが、含有量の下限は、エポキシ量に対して0.015当量以上、好ましくは0.1当量以上、より好ましくは0.12当量以上、さらに好ましくは0.15当量以上である。またその上限は、エポキシ量に対して、1.5当量以下、好ましくは1.0当量以下、より好ましくは0.8当量以下、さらに好ましくは0.6当量以下である。 Although there is no restriction | limiting in particular as content of an acyclic carboxylic acid anhydride, The minimum of content is 0.015 equivalent or more with respect to the amount of epoxy, Preferably it is 0.1 equivalent or more, More preferably, it is 0.12 equivalent or more. More preferably, it is 0.15 equivalent or more. Moreover, the upper limit is 1.5 equivalent or less with respect to the amount of epoxy, Preferably it is 1.0 equivalent or less, More preferably, it is 0.8 equivalent or less, More preferably, it is 0.6 equivalent or less.
1-5. シリコーン樹脂の硬化触媒
 シリコーン樹脂を用いる場合、硬化触媒としては金属化合物などが挙げられる。金属化合物としては、ジルコニウム、ハフニウム、イットリウム、スズ、亜鉛、チタン又はガリウムの、キレート錯体、有機酸塩、無機塩又はアルコキシドなどを用いることができる。硬化物の線膨張係数の観点から、上述したガリウム化合物を用いることが好ましい。
1-5. Silicone resin curing catalyst When a silicone resin is used, examples of the curing catalyst include metal compounds. As the metal compound, a chelate complex, an organic acid salt, an inorganic salt, or an alkoxide of zirconium, hafnium, yttrium, tin, zinc, titanium, or gallium can be used. From the viewpoint of the linear expansion coefficient of the cured product, the above-described gallium compound is preferably used.
1-6. エポキシ基含有ケイ素化合物以外の有機基含有ケイ素化合物
 エポキシ基含有ケイ素化合物以外の有機基含有ケイ素化合物(以下、単に「有機基含有ケイ素化合物」とも表記する)は、分子中にエポキシ基以外の有機基を有するケイ素化合物である。有機基としては、アルコール基、カルボキシル基、アクリル基、メタクリル基、チオール基、エーテル基、アラルキル基、アミノ基、アルキル基等が挙げられる。有機基含有ケイ素化合物としては、アルコール基又はカルボキシル基で変性されたケイ素化合物の少なくとも1種を使用することが好ましい。
1-6. Organic group-containing silicon compounds other than epoxy group-containing silicon compounds Organic group-containing silicon compounds other than epoxy group-containing silicon compounds (hereinafter also simply referred to as “organic group-containing silicon compounds”) are organic groups other than epoxy groups in the molecule. It is a silicon compound having Examples of the organic group include an alcohol group, a carboxyl group, an acrylic group, a methacryl group, a thiol group, an ether group, an aralkyl group, an amino group, and an alkyl group. As the organic group-containing silicon compound, it is preferable to use at least one silicon compound modified with an alcohol group or a carboxyl group.
 上記のような有機基含有ケイ素化合物を樹脂組成物に含有することで、それらがフィラー表面に滞在しやすく、また適度な極性の有機基を有することからフィラーに吸着しやすい。さらに適度な重量平均分子量を有することからフィラー表面に滞在しやすく、フィラーの構造粘性を破壊することができる。 By including the organic group-containing silicon compound as described above in the resin composition, they are likely to stay on the filler surface, and are easily adsorbed to the filler because they have an appropriately polar organic group. Furthermore, since it has an appropriate weight average molecular weight, it is easy to stay on the filler surface, and the structural viscosity of the filler can be destroyed.
 また、有機基含有ケイ素化合物を樹脂組成物に含有することで、ハンドリング、レベリングの向上、着色防止等の効果が得られる場合がある。具体的には有機基含有ケイ素化合物のケイ素化合物部分がフィラーの低極性部位に、また有機基部分がフィラーの極性部位に接触することにより、樹脂組成物内の相分離構造を解消する界面活性剤として機能することがある。 In addition, by including the organic group-containing silicon compound in the resin composition, there are cases where effects such as handling, improvement in leveling, and prevention of coloring can be obtained. Specifically, the surfactant that eliminates the phase separation structure in the resin composition by contacting the silicon compound portion of the organic group-containing silicon compound with the low polarity portion of the filler and the organic group portion with the polar portion of the filler. May function as.
 また、有機基含有ケイ素化合物を樹脂組成物に含有することで、樹脂組成物の硬化物の弾性率を制御する効果が得られることがある。具体的には有機基含有ケイ素化合物がその他の樹脂と化学反応することで架橋構造を形成したり、硬化物を高弾性化したり、有機基含有ケイ素化合物が柔軟性骨格を有する場合は硬化物を低弾性化する。 Moreover, the effect of controlling the elastic modulus of the cured product of the resin composition may be obtained by containing the organic group-containing silicon compound in the resin composition. Specifically, the organic group-containing silicon compound chemically reacts with other resins to form a cross-linked structure, the cured product is made highly elastic, or when the organic group-containing silicon compound has a flexible skeleton, Lower elasticity.
 次に、アルコール基含有ケイ素化合物、カルボキシル基含有ケイ素化合物について説明する。これらの有機基含有ケイ素化合物について、その分子量としては、取扱い性、フィラー表面への濡れ性、粘度低減の観点から、GPCにより測定された重量平均分子量(Mw)が100以上であることが好ましく、1000以上であることがより好ましく、2000以上であることが更に好ましく、また、10000以下であることが好ましく、5000以下であることがより好ましい。これらの有機基含有ケイ素化合物の含有量としては、粘度低減、硬化物の貯蔵弾性率制御の観点から、樹脂組成物全量を100質量%としたときに、0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上である。また、20質量%以下が好ましく、10質量%以下がより好ましい。 Next, the alcohol group-containing silicon compound and the carboxyl group-containing silicon compound will be described. For these organic group-containing silicon compounds, the molecular weight is preferably 100 or more in terms of weight average molecular weight (Mw) measured by GPC from the viewpoints of handleability, filler wettability, and viscosity reduction. It is more preferably 1000 or more, further preferably 2000 or more, and preferably 10,000 or less, more preferably 5000 or less. The content of these organic group-containing silicon compounds is 0.01% by mass or more, preferably 0 when the total amount of the resin composition is 100% by mass from the viewpoint of viscosity reduction and storage modulus control of the cured product. 0.05% by mass or more, more preferably 0.1% by mass or more. Moreover, 20 mass% or less is preferable and 10 mass% or less is more preferable.
 アルコール基含有ケイ素化合物は、分子中に1級アルコール、2級アルコール、3級アルコールのいずれか、もしくは複数を有しており、好ましくは1級アルコールを含む。そのようなケイ素化合物としては式(2)のようなものが挙げられる。 The alcohol group-containing silicon compound has one or a plurality of primary alcohols, secondary alcohols, tertiary alcohols in the molecule, and preferably contains primary alcohols. Examples of such a silicon compound include those represented by formula (2).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(nは、1~120の整数、aは1~10の整数、bは1~10の整数を示す。)
 式(2)において、RとRは独立して2価の有機基を示す。RとRの例としては、酸素原子、窒素原子、硫黄原子、芳香族を含んでもよい炭化水素基を示す。また、RとRは連結せず、またRとRは同一又は異なっていてもよく、置換基を有していてもよい。Ra及びRbは水素原子又は水酸基を示す。
(N represents an integer from 1 to 120, a represents an integer from 1 to 10, and b represents an integer from 1 to 10.)
In the formula (2), R 1 and R 2 independently represent a divalent organic group. Examples of R 1 and R 2 are an oxygen atom, a nitrogen atom, a sulfur atom, and a hydrocarbon group that may contain an aromatic group. Further, R 1 and R 2 are not linked, and R 1 and R 2 may be the same or different and may have a substituent. Ra and Rb represent a hydrogen atom or a hydroxyl group.
 また揮発性の低い点でnは1以上が好ましく、5以上がより好ましく、10以上が更に好ましい。また溶解性の点でnは120以下が好ましく、100以下がより好ましい。a及びbについては、1以上が好ましく、10以下が好ましい。 In view of low volatility, n is preferably 1 or more, more preferably 5 or more, and still more preferably 10 or more. In view of solubility, n is preferably 120 or less, more preferably 100 or less. About a and b, 1 or more are preferable and 10 or less are preferable.
 アルコール基含有ケイ素化合物は、式(2)の形態に限定されず、シリコーン部分がTユニット、Qユニットを介して分岐構造を有していてもよい。またMユニットを有していてもよい。また1分子中に含むアルコール基の数に限定はないが、より好ましくは2個である。例えば、下記式(2’)のようなものが挙げられる。 The alcohol group-containing silicon compound is not limited to the form of the formula (2), and the silicone part may have a branched structure via a T unit and a Q unit. Moreover, you may have M unit. The number of alcohol groups contained in one molecule is not limited, but more preferably is 2. For example, the following formula (2 ') is exemplified.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式(2’)中、xは1~120の整数、yは1~120の整数を示す。Rは有機基を示す。)
 式(2’)中、Rで示される有機基としては、酸素原子、窒素原子、硫黄原子、芳香族を含んでもよい炭化水素基が挙げられる。
(In the formula (2 ′), x represents an integer of 1 to 120, y represents an integer of 1 to 120, and R represents an organic group.)
In formula (2 ′), examples of the organic group represented by R include an oxygen atom, a nitrogen atom, a sulfur atom, and a hydrocarbon group that may contain an aromatic group.
 アルコール基含有ケイ素化合物の例としては、BY-16-201(東レ・ダウコーニング社製)、SF8427(東レ・ダウコーニング社製)、SF8428(東レ・ダウコーニング社製)、KF-6000(信越化学社製)KF6001(信越化学社製)KF6002(信越化学社製)KF6003(信越化学社製)などが挙げられる。 Examples of alcohol group-containing silicon compounds include BY-16-201 (Toray Dow Corning), SF8427 (Toray Dow Corning), SF8428 (Toray Dow Corning), KF-6000 (Shin-Etsu Chemical). KF6001 (manufactured by Shin-Etsu Chemical) KF6002 (manufactured by Shin-Etsu Chemical) KF6003 (manufactured by Shin-Etsu Chemical) and the like.
 カルボキシル基含有ケイ素化合物としては、式(3)のようなものが挙げられる。 Examples of the carboxyl group-containing silicon compound include those represented by the formula (3).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(m’は、1~120の整数を示す。)
 式(3)において、R及びRは独立して2価の有機基を示す。R及びRの例としては、酸素原子、窒素原子、硫黄原子、芳香族を含んでもよい炭化水素基を示す。またRとRは連結せず、またRとRは同一又は異なっていてもよく、置換基を有していてもよい。また揮発性の低い点でm’は1以上が好ましく、5以上がより好ましく、10以上が更に好ましい。また溶解性の点でm’は120以下が好ましく、100以下がより好ましい。
(M ′ represents an integer of 1 to 120.)
In the formula (3), R 3 and R 4 independently represent a divalent organic group. Examples of R 3 and R 4 are an oxygen atom, a nitrogen atom, a sulfur atom, and a hydrocarbon group that may contain an aromatic group. R 3 and R 4 are not linked, and R 3 and R 4 may be the same or different, and may have a substituent. In view of low volatility, m ′ is preferably 1 or more, more preferably 5 or more, and still more preferably 10 or more. In view of solubility, m ′ is preferably 120 or less, and more preferably 100 or less.
 カルボキシル基含有ケイ素化合物は、式(3)の形態に限定されず、シリコーン部分がTユニット、Qユニットを介して分岐構造を有していてもよい。またMユニットを有していてもよい。また1分子中に含むカルボキシル基の数に限定はないが、より好ましくは2個である。
 またカルボキシル基含有ケイ素化合物の例としては、Magnasoft800L(モメンティブ社製)、BY16-880(東レ・ダウコーニング社製)、X-22-3710(信越化学社製)などが挙げられる。
The carboxyl group-containing silicon compound is not limited to the form of the formula (3), and the silicone part may have a branched structure via a T unit and a Q unit. Moreover, you may have M unit. The number of carboxyl groups contained in one molecule is not limited, but more preferably is 2.
Examples of the carboxyl group-containing silicon compound include Magnassoft 800L (Momentive), BY16-880 (Toray Dow Corning), X-22-3710 (Shin-Etsu Chemical).
1-7. フィラー
 樹脂組成物はフィラーを含んでいてもよく、その含有量は特段限定されないが、通常樹脂組成物全量に対し50質量%以上のフィラーを含むものである。フィラーとしては、一般的な有機フィラー、無機フィラーのいずれも使用することができる。有機フィラーとしては、スチレン系ポリマー粒子、メタクリレート系ポリマー粒子、エチレン系ポリマー粒子、プロピレン系ポリマー粒子、ポリアミド系ポリマー粒子、ポリナイロン系ポリマー粒子等の合成ポリマー粒子、デンプン、木粉等の天然物、変性されていてもよいセルロース、各種有機顔料などが挙げられる。無機フィラーとしては、無機物もしくは無機物を含む化合物であれば特に限定されないが、具体的に例えば、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系無機フィラー、アルミナ、ジルコン、酸化鉄、酸化亜鉛、酸化チタン、窒化ケイ素、窒化ホウ素、窒化アルミ、炭化ケイ素、ガラス繊維、ガラスフレーク、アルミナ繊維、炭素繊維、マイカ、黒鉛、カーボンブラック、フェライト、グラファイト、ケイソウ土、白土、クレー、タルク、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マンガン、炭酸マグネシウム、硫酸バリウム、チタン酸カリウム、ケイ酸カルシウム、無機バルーン、銀粉等を挙げることができる。これらは、単独で用いてもよく、2種類以上併用してもよい。また、適宜表面処理をほどこしてもよい。表面処理としては、アルキル化処理、トリメチルシリル化処理、シリコーン処理、シランカップリング剤による処理等が挙げられるが、特に限定されるものではない。
1-7. Filler The resin composition may contain a filler, and the content thereof is not particularly limited, but usually contains 50% by mass or more of filler with respect to the total amount of the resin composition. As the filler, both general organic fillers and inorganic fillers can be used. Organic fillers include styrene polymer particles, methacrylate polymer particles, ethylene polymer particles, propylene polymer particles, polyamide polymer particles, synthetic polymer particles such as polynylon polymer particles, natural products such as starch and wood flour, Examples thereof include cellulose which may be modified and various organic pigments. The inorganic filler is not particularly limited as long as it is an inorganic substance or a compound containing an inorganic substance. Specifically, for example, quartz, fumed silica, precipitated silica, anhydrous silicic acid, fused silica, crystalline silica, ultrafine powder amorphous silica. Silica-based inorganic fillers such as alumina, zircon, iron oxide, zinc oxide, titanium oxide, silicon nitride, boron nitride, aluminum nitride, silicon carbide, glass fiber, glass flake, alumina fiber, carbon fiber, mica, graphite, carbon black , Ferrite, graphite, diatomaceous earth, clay, talc, aluminum hydroxide, magnesium hydroxide, calcium carbonate, manganese carbonate, magnesium carbonate, barium sulfate, potassium titanate, calcium silicate, inorganic balloon, silver powder, etc. Can do. These may be used alone or in combination of two or more. Moreover, you may perform a surface treatment suitably. Examples of the surface treatment include alkylation treatment, trimethylsilylation treatment, silicone treatment, treatment with a silane coupling agent, and the like, but are not particularly limited.
 樹脂組成物全量に対するフィラーの含有量は、通常、50質量%以上である。樹脂組成物の硬化物の線膨張率を低くするという観点から、好ましくは75質量%以上、より好ましくは80質量%以上、さらに好ましくは85質量%以上である。 The content of the filler with respect to the total amount of the resin composition is usually 50% by mass or more. From the viewpoint of reducing the linear expansion coefficient of the cured product of the resin composition, it is preferably 75% by mass or more, more preferably 80% by mass or more, and further preferably 85% by mass or more.
 フィラーを用いることにより、得られる成形体(硬化物)の強度、硬度、弾性率、熱膨張率、熱伝導率、放熱性、電気的特性、光の反射率、難燃性、耐火性、チキソトロピー性(成形体ではなく組成物の特性)、およびガスバリア性等の諸物性を改善することができる。
 上記フィラーの中でもシリカフィラーを含有することが好ましい。以下、シリカフィラーについて詳細に説明する。
By using a filler, the strength, hardness, elastic modulus, thermal expansion coefficient, thermal conductivity, heat dissipation, electrical properties, light reflectivity, flame retardancy, fire resistance, thixotropy of the resulting molded product (cured product) Properties (characteristics of the composition, not the molded body), and various physical properties such as gas barrier properties can be improved.
Among the fillers, a silica filler is preferably contained. Hereinafter, the silica filler will be described in detail.
 本明細書において、シリカフィラーとは、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカなどのシリカ系無機フィラーなどのフィラーをいう。
 通常の樹脂組成物では、フィラーの添加量が増加すると、組成物の粘度上昇が顕著になる。
In the present specification, the silica filler refers to a filler such as silica-based inorganic filler such as quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, and ultrafine powder amorphous silica.
In a normal resin composition, when the amount of filler added increases, the viscosity of the composition increases significantly.
 粘度制御の観点から、形状は、繊維状、不定形のものよりも、球状のものが好ましい。ここで球状とは、真球状であってもよく、楕円状であってもよく、卵形などを含む略球状を意味し、具体的にはアスペクト比(長径と短径の比)が通常1.3以下であり、好ましくは1.2以下、より好ましくは1.1以下である。 From the viewpoint of viscosity control, the shape is preferably spherical rather than fibrous or irregular. Here, the spherical shape may be a true spherical shape, an elliptical shape, or a substantially spherical shape including an oval shape. Specifically, the aspect ratio (ratio of major axis to minor axis) is usually 1. .3 or less, preferably 1.2 or less, more preferably 1.1 or less.
 さらに配合の観点から、フィラー表面に水酸基を有することが好ましい。水酸基を有することによりフィラー表面の極性を向上できるため、無機物と比べて極性の高い有機ポリマーを混合しやすくなる。
 また、粒径分布の制御によりフィラーの添加量を増やすことも可能である。すなわち、粒径の異なるフィラーを混合することで、より高い充填率が得られる。
Furthermore, it is preferable to have a hydroxyl group on the filler surface from the viewpoint of formulation. Since the polarity of the filler surface can be improved by having a hydroxyl group, an organic polymer having a higher polarity than an inorganic substance can be easily mixed.
It is also possible to increase the amount of filler added by controlling the particle size distribution. That is, a higher filling rate can be obtained by mixing fillers having different particle sizes.
 フィラーの平均粒子径は、(Particle Size Analyzer CILAS 1064)を用いて測定され、0.1μm以上が好ましく、1μm以上がより好ましい。また、100μm以下が好ましく、50μm以下がより好ましい。 The average particle diameter of the filler is measured using (Particle Size Analyzer CILAS 1064), preferably 0.1 μm or more, and more preferably 1 μm or more. Moreover, 100 micrometers or less are preferable and 50 micrometers or less are more preferable.
 また、シリカフィラーは適宜表面処理がされていてもよい。表面処理としては、アルキル化処理、トリメチルシリル化処理、シリコーン処理、シランカップリング剤による処理などが挙げられるが、特に限定されるものではない。表面処理により、粒子表面官能基の種類を制御することができる。粘度を低減させる観点から、(グリシジル化)処理されたフィラーを用いることが好ましい。
 シリカフィラーは、1種を用いてもよく、2種以上を併用してもよい。
Further, the silica filler may be appropriately surface-treated. Examples of the surface treatment include alkylation treatment, trimethylsilylation treatment, silicone treatment, treatment with a silane coupling agent, and the like, but are not particularly limited. By the surface treatment, the type of particle surface functional group can be controlled. From the viewpoint of reducing the viscosity, it is preferable to use (glycidylated) treated filler.
A silica filler may use 1 type and may use 2 or more types together.
 フィラー量を増大させることで、低シェア時の粘度を低下させ、一方で高シェア時の粘度を増加させることがある。低シェア時の粘度とは、後述に記載の方法で粘度測定した際の、すなわち25℃、せん断速度0.09s-1以下における粘度のことである。また高シェア時の粘度とはせん断速度1s-1以上における粘度のことである。これはフィラー量を増大させることでフィラーの運動性を阻害し、低シェア時にフィラーが二次構造を形成しにくくなるためであると考えられる。 Increasing the amount of filler may decrease the viscosity at low shear while increasing the viscosity at high shear. The viscosity at the time of low shear is the viscosity when the viscosity is measured by the method described later, that is, at 25 ° C. and a shear rate of 0.09 s −1 or less. The viscosity at high shear is the viscosity at a shear rate of 1 s -1 or higher. This is presumably because the filler mobility is hindered by increasing the amount of filler, and it becomes difficult for the filler to form a secondary structure at low shear.
 また難燃性を向上する効果を期待する場合は水酸化アルミニウム、水酸化マグネシウムといった水和金属化合物フィラーを添加すると効果的である。 Also, when an effect of improving flame retardancy is expected, it is effective to add a hydrated metal compound filler such as aluminum hydroxide or magnesium hydroxide.
1-8. 熱可塑性樹脂
 本発明の樹脂組成物は、必要に応じて熱可塑性樹脂を含んでいてもよい。熱可塑性樹脂としては特段限定されないが、ポリエチレン,ポリプロピレン,ポリスチレン,ポリ塩化ビニル,(メタ)アクリル樹脂,エチレン-酢酸ビニル共重合体,エチレン-ビニルアルコール共重合体などビニル系ポリマー;ポリ乳酸樹脂,ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル;ナイロン,ポリアミドアミンなどのポリアミド,ポリビニルアセトアセタール,ポリビニルベンザール,ポリビニルブチラール樹脂などのポリビニルアセタール樹脂;アイオノマー樹脂;ポリフェニレンエーテル;ポリフェニレンサルファイド;ポリカーボネート;ポリエーテルエーテルケトン;ポリアセタール;ABS樹脂;LCP(液晶ポリマー);フッ素樹脂;ウレタン樹脂;エラストマー;またはこれらの樹脂の変性品などがあげられる。
1-8. Thermoplastic resin The resin composition of this invention may contain the thermoplastic resin as needed. The thermoplastic resin is not particularly limited, but vinyl polymers such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, (meth) acrylic resin, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer; polylactic acid resin, Polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyamides such as nylon and polyamidoamine; polyvinyl acetal resins such as polyvinyl acetoacetal, polyvinyl benzal and polyvinyl butyral resin; ionomer resins; polyphenylene ether; polyphenylene sulfide; polycarbonate; Polyacetal, ABS resin, LCP (liquid crystal polymer), fluorine resin, urethane resin, elastomer, or these Including resin modified products and the like.
 また、熱可塑性樹脂は伸び性がある方が好ましい。伸び性があることで応力を緩和することができ、クラックを抑制する。
 熱可塑性樹脂の最大伸び率は5%以上であることが好ましく、10%以上であることがより好ましい。熱可塑性樹脂の最大伸び率はJIS K7113またはASTM D638に準拠した測定方法で測定した値とする。
The thermoplastic resin is preferably stretchable. The elongation can relieve stress and suppress cracks.
The maximum elongation of the thermoplastic resin is preferably 5% or more, and more preferably 10% or more. The maximum elongation of the thermoplastic resin is a value measured by a measuring method based on JIS K7113 or ASTM D638.
 また、熱可塑性樹脂は樹脂組成物中の熱硬化性樹脂の少なくとも一成分に可溶であってもいい。 Further, the thermoplastic resin may be soluble in at least one component of the thermosetting resin in the resin composition.
 熱可塑性樹脂のうち、特にポリビニルブチラールなどのポリビニルアセタール、(メタ)アクリル樹脂などのビニル系樹脂が好ましく、特にポリビニルブチラールなどのポリビニルアセタールが好ましい。ポリビニルアセタールは水酸基を持ち、分散性に優れる他、硬化剤が水酸基との反応性を持つもの(酸無水物など)である場合には一部が取り込まれるため熱硬化樹脂との分離が起こりにくい。予め、酸無水物で変性することで積極的に反応性基を導入することも可能である。 Among the thermoplastic resins, polyvinyl acetals such as polyvinyl butyral and vinyl resins such as (meth) acrylic resins are preferable, and polyvinyl acetals such as polyvinyl butyral are particularly preferable. Polyvinyl acetal has a hydroxyl group and is excellent in dispersibility. In addition, when the curing agent is reactive with a hydroxyl group (such as an acid anhydride), a part of the acetal is taken in, making it difficult to separate from the thermosetting resin. . It is also possible to positively introduce a reactive group by modification with an acid anhydride in advance.
 また、熱可塑性樹脂は樹脂組成物中の熱硬化性樹脂に不溶であることが好ましい。
 熱硬化性樹脂に不溶とは、樹脂組成物中の熱硬化性樹脂の成分に可溶な成分が10%未満、好ましくは5%未満、より好ましくは3%未満、更に好ましくは1%未満であることをいう。
 熱可塑性樹脂が熱硬化性樹脂に不溶であることで、液状樹脂組成物の粘度が上がることを防ぎ、レベリング性を向上させることができる。
 また、熱硬化性樹脂に不溶な熱可塑性樹脂を大量のフィラーと同時に混合、つまり組み合わせて混合することで、熱可塑性で伸びのよくなる成分相を効率よく樹脂組成物中に分散でき、応力を緩和しやすい。
 さらに分散した熱可塑性樹脂は熱硬化性樹脂に不溶である場合、樹脂組成物の硬化物の弾性率を下げることなく、クラックを抑制できる。
The thermoplastic resin is preferably insoluble in the thermosetting resin in the resin composition.
Insoluble in the thermosetting resin means that the component soluble in the thermosetting resin component in the resin composition is less than 10%, preferably less than 5%, more preferably less than 3%, still more preferably less than 1%. Say something.
When the thermoplastic resin is insoluble in the thermosetting resin, it is possible to prevent the viscosity of the liquid resin composition from increasing and improve the leveling property.
Also, by mixing a thermoplastic resin that is insoluble in a thermosetting resin simultaneously with a large amount of fillers, that is, in combination, a component phase that is thermoplastic and has good elongation can be efficiently dispersed in the resin composition, and stress is relieved. It's easy to do.
Furthermore, when the dispersed thermoplastic resin is insoluble in the thermosetting resin, cracks can be suppressed without lowering the elastic modulus of the cured product of the resin composition.
 これらのうち、特にナイロンなどのポリアミド樹脂、セルロース樹脂などが好ましく、特にナイロンなどのポリアミド樹脂が好ましい。
 また、熱可塑性樹脂は伸び性がある方が好ましい。伸び性があることで応力を緩和することができ、クラックを抑制する。
Of these, polyamide resins such as nylon and cellulose resins are particularly preferable, and polyamide resins such as nylon are particularly preferable.
The thermoplastic resin is preferably stretchable. The elongation can relieve stress and suppress cracks.
 熱可塑性樹脂相を樹脂組成物中に効率よく分散させるために、熱可塑性樹脂の粒子径は小さい方がのぞましい。熱可塑性樹脂の平均粒径は500μm以下が好ましく、200μm以下がより好ましく、100μm以下が更に好ましい。 In order to efficiently disperse the thermoplastic resin phase in the resin composition, it is preferable that the particle diameter of the thermoplastic resin is small. The average particle size of the thermoplastic resin is preferably 500 μm or less, more preferably 200 μm or less, and even more preferably 100 μm or less.
 樹脂組成物中の熱可塑性樹脂の含有量は、樹脂組成物中の下限値として、好ましくは0.001%以上、より好ましくは0.003%以上、さらに好ましくは0.005%以上であり、また上限値としては好ましくは10%以下、より好ましくは5%以下、さらに好ましくは2%以下である。 The content of the thermoplastic resin in the resin composition is preferably 0.001% or more, more preferably 0.003% or more, and further preferably 0.005% or more, as a lower limit value in the resin composition. Moreover, as an upper limit, Preferably it is 10% or less, More preferably, it is 5% or less, More preferably, it is 2% or less.
1-9. その他
 本発明の実施形態に係る樹脂組成物には、上述の成分の他に、物性改善、機能付与などの観点から、分散剤、酸化防止剤、消泡剤、着色剤、変性剤、レベリング剤、光拡散剤、熱伝導性、難燃剤、反応性又は非反応性の希釈剤、接着、密着性向上剤などの添加剤をさらに含有してもよい。
1-9. Others In addition to the above-mentioned components, the resin composition according to the embodiment of the present invention includes a dispersant, an antioxidant, an antifoaming agent, a colorant, a modifier, and a leveling agent from the viewpoint of improving physical properties and imparting functions. Further, additives such as a light diffusing agent, a thermal conductivity, a flame retardant, a reactive or non-reactive diluent, an adhesive, and an adhesion improver may be further contained.
(1)酸化防止剤
 本発明の一実施形態に係る樹脂組成物には、使用環境下での黄変を抑制するために、酸化防止剤を含有させることができる。フェノール系酸化防止剤、リン系酸化防止剤、ヒンダードアミン系などが好適に用いられるが、n中でも、フェノール水酸基の片側あるいは両側のオルト位にアルキル基を有するヒンダードフェノール系酸化防止剤が特に好適に用いられる。
(1) Antioxidant The resin composition according to one embodiment of the present invention may contain an antioxidant in order to suppress yellowing under the use environment. Phenol-based antioxidants, phosphorus-based antioxidants, hindered amines, and the like are preferably used. Among n, hindered phenol-based antioxidants having an alkyl group at one or both ortho positions of the phenol hydroxyl group are particularly suitable. Used.
(2)シランカップリング剤
 樹脂組成物には、金属部品やフィラーに対する接着性を良好にするためにシランカップリング剤を含有させることができる。具体例として、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランなどが挙げられる。
(2) Silane coupling agent A silane coupling agent can be contained in the resin composition in order to improve the adhesion to metal parts and fillers. Specific examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ- Examples include aminopropyltrimethoxysilane and N-phenyl-3-aminopropyltrimethoxysilane.
(3)難燃剤
 また難燃性を向上する効果を期待して、ハロゲン系化合物、リン原子含有化合物、窒素原子含有化合物、および、それらの複合型等の有機系難燃剤、アンチモン系化合物、金属水酸化物等の無機系難燃剤を含有させることができる。それらは、添加型でも反応型でもよい。
(3) Flame retardant In addition, in order to improve the flame retardancy, organic flame retardants such as halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, and their composite types, antimony compounds, metals An inorganic flame retardant such as hydroxide can be contained. They may be additive or reactive.
2. 樹脂組成物の製造方法
 樹脂組成物は、熱硬化性樹脂及び硬化触媒と、必要に応じて前述したフィラー、樹脂、酸化防止剤などのその他の成分を混合することにより製造することができる。これらの混合の順序としては、特に限定されない。例えば、エポキシ基含有ケイ素化合物を用いる場合、混合時の発熱による硬化反応の進行を防ぐため、ガリウム化合物、シラノール源化合物、エポキシ樹脂硬化に使用される触媒の非存在下でエポキシ樹脂と混合することが望ましい。
2. Method for Producing Resin Composition The resin composition can be produced by mixing a thermosetting resin and a curing catalyst with other components such as the filler, resin, and antioxidant described above as necessary. The order of mixing is not particularly limited. For example, when an epoxy group-containing silicon compound is used, it must be mixed with an epoxy resin in the absence of a gallium compound, a silanol source compound, and a catalyst used for curing the epoxy resin in order to prevent the curing reaction from proceeding due to heat generation during mixing. Is desirable.
 フィラーを混合する手段としては、特に限定されるものではないが、具体的に例えば、2本ロールあるいは3本ロール、遊星式撹拌脱泡装置、ホモジナイザー、ディゾルバー、プラネタリーミキサーなどの撹拌機、プラストミルなどの溶融混練機などが挙げられる。混合は、常温で行ってもよいし加熱して行ってもよく、また、常圧下で行ってもよいし減圧状態で行ってもよい。混合する際の温度が高いと、成形する前に組成物が硬化する場合がある。
 この樹脂組成物は、1液硬化型であってもよく、保存安定性を考慮して2液硬化型としてもよい。
The means for mixing the filler is not particularly limited, but specifically, for example, a two-roll or three-roll, a planetary stirring and defoaming device, a homogenizer, a dissolver, a planetary mixer, etc., a plast mill And a melt kneader. Mixing may be performed at normal temperature, may be performed by heating, may be performed under normal pressure, or may be performed under reduced pressure. If the temperature during mixing is high, the composition may be cured before molding.
This resin composition may be a one-component curable type or a two-component curable type in consideration of storage stability.
3. 封止方法
 本発明の樹脂組成物は、半導体デバイスの封止材として使用することが好適であるが、封止の方法は通常行われる方法で行えばよい。
 封止の方法としては、例えばトランスファー成形やポッティングなどが挙げられる。本発明の樹脂組成物は常温で流動性のある樹脂組成物であるので、中でも、ポッティングに好適に用いられる。具体的には、樹脂組成物を含有する液と硬化触媒を含有する液をそれぞれ作製し、その後混合して混合液を作製し、ポッティングに供することができる。ハウジング内に部品を置き、これに上記混合液を注型する。次いで、硬化させる。用いる樹脂組成物により、室温硬化あるいは加熱硬化すればよい。加熱硬化には、例えば、熱風循環式加熱、赤外線加熱、高周波加熱などの従来公知の方法を採用することができる。
3. Sealing Method The resin composition of the present invention is preferably used as a sealing material for semiconductor devices, but the sealing method may be performed by a commonly performed method.
Examples of the sealing method include transfer molding and potting. Since the resin composition of the present invention is a resin composition having fluidity at room temperature, it is preferably used for potting. Specifically, a liquid containing a resin composition and a liquid containing a curing catalyst are respectively prepared and then mixed to prepare a mixed liquid that can be used for potting. A part is placed in the housing, and the above-mentioned mixed liquid is poured into it. Then it is cured. Depending on the resin composition used, room temperature curing or heat curing may be used. For heat curing, conventionally known methods such as hot air circulation heating, infrared heating, and high-frequency heating can be employed.
 本発明の樹脂組成物は熱硬化性樹脂を含む。熱処理条件は、樹脂組成物を所望の硬化状態にすることができればよく、樹脂組成物、触媒濃度や当該組成物で形成しようとする部材の厚みなどに応じて定めればよい。硬化温度を、最初は100℃付近とし、次いで120~180℃に上げることにより、組成物中の残留溶媒や溶存水蒸気による発泡を防ぐことができる。また、樹脂組成物の深部と表面の硬化速度差を小さくできるので、表面が平滑でシワの無い、外観の良好な硬化物を得ることができる。樹脂組成物の深部と表面の硬化速度差が小さいと、硬化状態が均一となるので硬化物中における内部応力の発生が抑制され、ひいてはクラックの発生が防止できる。 The resin composition of the present invention contains a thermosetting resin. The heat treatment conditions may be determined according to the resin composition, the catalyst concentration, the thickness of the member to be formed with the composition, and the like as long as the resin composition can be brought into a desired cured state. By setting the curing temperature to about 100 ° C. at first and then to 120 to 180 ° C., foaming due to residual solvent or dissolved water vapor in the composition can be prevented. Moreover, since the difference in the curing rate between the deep portion and the surface of the resin composition can be reduced, a cured product having a smooth surface and no wrinkles and a good appearance can be obtained. If the difference in cure speed between the deep part and the surface of the resin composition is small, the cured state becomes uniform, so that the generation of internal stress in the cured product is suppressed, and the occurrence of cracks can be prevented.
4. 樹脂組成物の用途
 本発明の実施形態に係る上記樹脂組成物の用途は特に限定されず、LEDデバイスのような発光デバイスを含む各種の半導体デバイスに、封止材などとして用いることができる。また、本発明の一実施形態に係る樹脂組成物を硬化させた成形体は、シリカフィラーを50質量%以上含むので高温でも低い熱膨張率を有し、かつ応力を緩和することでクラックが生じにくく信頼性に優れるので、特にパワーデバイスに好適に使用される。パワーデバイスとしては、例えば、整流、周波数変換、レギュレータ、インバータなどとして使用されるものが挙げられる。本発明の樹脂組成物は、組成物としては流動性を有し、ポッティングによる封止にも好適に用いることができ、硬化物の線膨張率が非常に低いので、幅広いサイズのパワーデバイスに好適に使用できる。家電機器、コンピュータなどのパワーデバイスに用いることもできるし、自動車、鉄道車両や変電所の制御用などの大型のパワーデバイスに用いることもできる。
4). Use of Resin Composition The use of the resin composition according to the embodiment of the present invention is not particularly limited, and can be used as a sealing material for various semiconductor devices including light emitting devices such as LED devices. Further, the molded body obtained by curing the resin composition according to one embodiment of the present invention contains 50% by mass or more of silica filler, so that it has a low coefficient of thermal expansion even at a high temperature, and cracks are generated by relaxing the stress. It is difficult to use and excellent in reliability, so it is particularly suitable for power devices. Examples of the power device include those used as rectification, frequency conversion, a regulator, an inverter, and the like. The resin composition of the present invention has fluidity as a composition, can be suitably used for sealing by potting, and has a very low linear expansion coefficient of a cured product, so it is suitable for a wide range of power devices. Can be used for It can also be used for power devices such as home appliances and computers, and can also be used for large power devices for controlling automobiles, railway vehicles, and substations.
 以下、実験例(実施例、比較例)により本発明をさらに詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。なお、下記の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限または下限の好ましい値としての意味をもつものであり、好ましい範囲は、前記上限または下限の値と下記実施例の値または実施例同士の値との組合せで規定される範囲であってもよい。 Hereinafter, the present invention will be described in more detail with reference to experimental examples (Examples and Comparative Examples), but the present invention is not limited to the following Examples as long as it does not exceed the gist thereof. In addition, the values of various production conditions and evaluation results in the following examples have meanings as preferable values of the upper limit or the lower limit in the embodiment of the present invention, and the preferable range is the value of the upper limit or the lower limit. It may be a range defined by a combination of values of the following examples or values of the examples.
 先ず、実施例、比較例で用いた材料、試薬について説明する。
 エポキシ基含有ケイ素化合物である、合成樹脂A及びBは、それぞれ、合成例1~2のとおり合成した。なお、下記の合成例において、重量平均分子量(Mw)、エポキシ価は次のとおり測定した。
・重量平均分子量(Mw)
 硬化性組成物の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィーにより下記条件で測定し、標準ポリスチレン換算値として示した。また、ポリシロキサンの1質量%テトラヒドロフラン溶液を調製し、その後、0.45μmのフィルターにて濾過したものを測定試料溶液とした。
 装置:Waters 2690(Waters社製)
 カラム:KF-G、KF-602.5、KF-603、KF-604(昭和電工社製)
 溶離液:THF、流量0.7mL/分、サンプル濃度1%、注入量10μL
・エポキシ価
 JIS K7236:2001に準じて実施した。精秤した試料をクロロホルムに溶解させ、酢酸と臭化テトラエチルアンモニウム酢酸溶液を加えた後、0.1mol/L過塩素酸酢酸標準液によって滴定した。終了点はクリスタルバイオレット指示薬を用いて、判定した。
First, materials and reagents used in Examples and Comparative Examples will be described.
Synthetic resins A and B, which are epoxy group-containing silicon compounds, were synthesized as in Synthesis Examples 1 and 2, respectively. In the following synthesis examples, the weight average molecular weight (Mw) and the epoxy value were measured as follows.
-Weight average molecular weight (Mw)
The weight average molecular weight (Mw) of the curable composition was measured by gel permeation chromatography under the following conditions and indicated as a standard polystyrene equivalent value. Moreover, what prepared the 1 mass% tetrahydrofuran solution of polysiloxane, and filtered with the filter of 0.45 micrometer after that was used as the measurement sample solution.
Apparatus: Waters 2690 (manufactured by Waters)
Column: KF-G, KF-602.5, KF-603, KF-604 (manufactured by Showa Denko)
Eluent: THF, flow rate 0.7 mL / min, sample concentration 1%, injection volume 10 μL
-Epoxy value It implemented according to JISK7236: 2001. The precisely weighed sample was dissolved in chloroform, and acetic acid and tetraethylammonium bromide acetic acid solution were added, followed by titration with a 0.1 mol / L perchloric acid acetic acid standard solution. The end point was determined using a crystal violet indicator.
<合成例1:合成樹脂Aの合成方法>
 2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン13.0g、両末端シラノール型ジメチルシロキサン(モメンティブ社製XC96-723)55.4g、トリメチルメトキシシラン3.67g、イソプロピルアルコール34.6g、トルエン34.6g及び0.37%KOH水溶液6.99gを混合し、室温で2時間撹拌し、さらに還流条件(内温約73℃)で6時間加熱撹拌操作を行った。その後、リン酸二水素ナトリウム水溶液(10質量%)で反応液を中和してから、洗浄後の水が中性になるまで水洗後、減圧下で揮発成分を除去して、Mw=3300 エポキシ価1160g/eqのポリシロキサン合成樹脂Aを得た。
<Synthesis Example 1: Synthesis Method of Synthetic Resin A>
2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 13.0 g, double-ended silanol-type dimethylsiloxane (XC96-723 manufactured by Momentive) 55.4 g, trimethylmethoxysilane 3.67 g, isopropyl alcohol 34.6 g, toluene 34.6 g and a 0.37% KOH aqueous solution 6.99 g were mixed, stirred at room temperature for 2 hours, and further heated and stirred for 6 hours under reflux conditions (internal temperature of about 73 ° C.). Thereafter, the reaction solution is neutralized with an aqueous sodium dihydrogen phosphate solution (10% by mass), washed with water until the washed water becomes neutral, volatile components are removed under reduced pressure, and Mw = 3300 epoxy. A polysiloxane synthetic resin A having a value of 1160 g / eq was obtained.
<合成例2:合成樹脂Bの合成方法>
 2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン64.9g、トリメチルエトキシシラン40.1g、イソプロピルアルコール45g及び1N塩酸24.2gを混合し、室温で3時間撹拌し、さらに水酸化カリウム1.45gとイソプロピルアルコール50.2gを加えてイソプロピルアルコール還流条件で4時間加熱撹拌操作を行った。その後、リン酸二水素ナトリウム水溶液(10質量%)で反応液を中和してから、洗浄後の水が中性になるまで水洗後、減圧下で揮発成分を除去して、Mw=1100 エポキシ価290g/eqのポリシロキサン合成樹脂Bを得た。
<Synthesis Example 2: Synthesis Method of Synthetic Resin B>
2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (64.9 g), trimethylethoxysilane (40.1 g), isopropyl alcohol (45 g) and 1N hydrochloric acid (24.2 g) were mixed and stirred at room temperature for 3 hours. .45 g and 50.2 g of isopropyl alcohol were added, and the mixture was heated and stirred for 4 hours under reflux conditions of isopropyl alcohol. Thereafter, the reaction solution is neutralized with an aqueous solution of sodium dihydrogen phosphate (10% by mass), washed with water until the washed water becomes neutral, volatile components are removed under reduced pressure, and Mw = 1100 epoxy. A polysiloxane synthetic resin B having a value of 290 g / eq was obtained.
<組成物の粘度・流動性の評価>
 本実施態様において、25℃、せん断速度0.009s-1における粘度を以下のように定義する。レオメータVISCOANALYSER(Reologica Inst. A.B.社製)で樹脂組成物の粘度を測定した。測定条件は温度を25℃、使用プレートをΦ30パラレルプレート、ギャップを0.800mm、プレシェア条件を0.1(1/s)で60秒、平衡時間(測定前の待ち時間)を25.0秒、ディレイタイム(データを取り込まない時間)40秒、積算時間(データを取り込む時間)80秒、測定せん断速度範囲;0.001~600(1/s)とした。測定手順としては、樹脂組成物を試料ステージに適量載せて、治具を降下し、上記条件でせん断速度を上昇させた時の粘度を測定することで、0.009s-1における粘度を算出した。
<Evaluation of viscosity and fluidity of the composition>
In this embodiment, the viscosity at 25 ° C. and a shear rate of 0.009 s −1 is defined as follows. The viscosity of the resin composition was measured with a rheometer VISCOANALYSER (Reologica Inst. AB). Measurement conditions are 25 ° C for temperature, Φ30 parallel plate for use plate, gap of 0.800 mm, preshear condition of 0.1 (1 / s) for 60 seconds, and equilibration time (wait time before measurement) of 25.0 seconds. Delay time (time when data is not acquired) 40 seconds, integration time (time when data is acquired) 80 seconds, measurement shear rate range: 0.001 to 600 (1 / s). As a measurement procedure, the viscosity at 0.009 s −1 was calculated by placing an appropriate amount of the resin composition on the sample stage, lowering the jig, and measuring the viscosity when the shear rate was increased under the above conditions. .
<硬化物の物性測定>
 下記実施例及び比較例で得られた硬化物の物性を次のとおり測定した。
・平均線膨張率測定
 厚さ1~2mmの板状の硬化物から、3×3mmに切り出し、測定用サンプルとした。
 平均線膨張率は、JIS K7197に準拠して、熱機械分析装置としてEXSTAR
 TMA/SS6100(エスアイアイ・ナノテクノロジー社製)を用いて、圧縮モードで、表1に示す温度プログラムで測定し、プログラム3での平均線膨張率を算出した。
<Measurement of physical properties of cured product>
The physical properties of the cured products obtained in the following examples and comparative examples were measured as follows.
Measurement of average linear expansion coefficient From a plate-like cured product having a thickness of 1 to 2 mm, it was cut into 3 × 3 mm and used as a measurement sample.
The average linear expansion coefficient is EXSTAR as a thermomechanical analyzer in accordance with JIS K7197.
Using TMA / SS6100 (manufactured by SII Nanotechnology Inc.), measurement was performed in a compression mode with a temperature program shown in Table 1, and an average linear expansion coefficient in Program 3 was calculated.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
・貯蔵弾性率(E’)測定
 厚さ1~2mmの板状の硬化物から、幅5mmの短冊状に切り出し、測定用サンプルとした。
 貯蔵弾性率は、JIS K7244に準拠して、熱機械分析装置としてEXSTAR DMS/6100(エスアイアイ・ナノテクノロジー社製)を用いて、引っ張りモードで、チャック間距離(実効長さ)15mmにて、周波数:1Hzで下記表2に示す温度プログラムで測定し、プログラム1における25℃および180℃での貯蔵弾性率を算出した。
-Storage elastic modulus (E ') measurement From a plate-like cured product having a thickness of 1 to 2 mm, it was cut into a strip shape having a width of 5 mm and used as a measurement sample.
The storage elastic modulus is based on JIS K7244, using EXSTAR DMS / 6100 (manufactured by SII NanoTechnology) as a thermomechanical analyzer, in a tensile mode, with a chuck distance (effective length) of 15 mm. The frequency was measured by a temperature program shown in Table 2 below at a frequency of 1 Hz, and the storage elastic modulus at 25 ° C. and 180 ° C. in Program 1 was calculated.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
・体積抵抗率測定
 厚さ1~2mm、直径7cmの円板の硬化物を測定サンプルとした。体積抵抗率測定は、レジスティビティ・チェンバ12708とデジタル超高抵抗/微小電流計5451(株式会社エーディーシー社製)を用いて下記の条件で行った。
 電圧:500V
 チャージ時間:4分
 電極サイズ:ASTM D257準拠
-Volume resistivity measurement A cured product of a disk having a thickness of 1 to 2 mm and a diameter of 7 cm was used as a measurement sample. The volume resistivity measurement was performed under the following conditions using a resiliency chamber 12708 and a digital ultrahigh resistance / microammeter 5451 (manufactured by ADC Corporation).
Voltage: 500V
Charge time: 4 minutes Electrode size: Conforms to ASTM D257
Figure JPOXMLDOC01-appb-T000016
算出式:(体積抵抗率)=(π*(主電極直径))/(4*(試料の厚み))*(体積抵抗(測定値))
Figure JPOXMLDOC01-appb-T000016
Calculation formula: (volume resistivity) = (π * (main electrode diameter) 2 ) / (4 * (sample thickness)) * (volume resistance (measured value))
<サーマルサイクル試験>
 PPS壁を有するモジュールケース(コージン社製 34PMケース)の底面に、ニッケルメッキを施した銅板を合わせて評価用ケースを作製した。ケース内に約44gの樹脂組成物をそれぞれ流し込み、所定の硬化条件で順次加熱して硬化し、サーマルサイクル試験用サンプルを作製した。
 冷熱衝撃装置TSA-41L-A(エスペック社製)を用いて、175℃高温さらし30分、常温さらし1分、-40℃低温さらし30分を1サイクルとするサーマルサイクル試験を実施し、70サイクル後にサンプルを取り出し、硬化物にクラック、PPS壁からの剥がれが生じていないか目視で確認した。クラックの発生が無い場合を○、クラックの発生があった場合を×とした。
<Thermal cycle test>
An evaluation case was prepared by combining a nickel-plated copper plate on the bottom surface of a module case (34 PM case manufactured by Kojin Co., Ltd.) having a PPS wall. About 44 g of the resin composition was poured into the case, and the resin composition was sequentially heated and cured under predetermined curing conditions to produce a thermal cycle test sample.
Using a thermal shock device TSA-41LA (manufactured by ESPEC), a thermal cycle test was performed with 70 cycles of 175 ° C high temperature exposure for 30 minutes, normal temperature exposure for 1 minute, and -40 ° C low temperature exposure for 30 minutes. A sample was taken out later, and it was visually confirmed whether the cured product was cracked or peeled off from the PPS wall. The case where no crack was generated was marked as ◯, and the case where a crack was generated was marked as x.
[実施例1]
 変性シリコーンオイルX-22-169(信越化学社製)を2.0g、トリメチロールプロパントリグリシジルエーテル デナコール(登録商標)EX-321L(ナガセケムテックス社製)を0.54g、ナイロン微粒子SP500(東レ社製)0.10g、真球状フィラーHL-3100(株式会社龍森製)30gをTHIKY社製Planetary Vacuum Mixer ARV-300 を用いて撹拌し、混合した。この混合物に、その後、リカシッドMH700(新日本理化社製)0.58g、両末端ヒドロキシ基ポリメチルフェニルシロキサン YF3804(モメンティブ社製)0.075g、ガリウムアセチルアセトネート(Strem Chemicals, Inc.社製)0.0032g、ジフェニルシランジオール(東京化成工業社製)0.0078gを加えてさらに撹拌、混合を行い、樹脂組成物を得た。
 得られた樹脂組成物の25℃、せん断速度0.009s-1における粘度を測定した。また、得られた樹脂組成物を80℃で0.5時間、120℃で1時間、180℃で5時間硬化させて硬化物を得て、上記の方法で硬化物の物性を測定した。結果を表4に示す。なお、表4中、WPEはエポキシ価(g/eq)である。
[Example 1]
2.0 g of modified silicone oil X-22-169 (manufactured by Shin-Etsu Chemical Co., Ltd.), 0.54 g of trimethylolpropane triglycidyl ether Denacol (registered trademark) EX-321L (manufactured by Nagase ChemteX), nylon fine particle SP500 (Toray Industries, Inc.) 0.10 g) and 30 g of true spherical filler HL-3100 (manufactured by Tatsumori) were stirred and mixed using Planetary Vacuum Mixer ARV-300 manufactured by THIKY. To this mixture, 0.58 g of Ricacid MH700 (manufactured by Shin Nippon Rika Co., Ltd.), 0.075 g of both-end hydroxy group polymethylphenylsiloxane YF3804 (manufactured by Momentive), gallium acetylacetonate (manufactured by Strem Chemicals, Inc.) 0.0032 g and 0.0078 g of diphenylsilane diol (manufactured by Tokyo Chemical Industry Co., Ltd.) were added and further stirred and mixed to obtain a resin composition.
The viscosity of the obtained resin composition at 25 ° C. and a shear rate of 0.009 s −1 was measured. Further, the obtained resin composition was cured at 80 ° C. for 0.5 hour, 120 ° C. for 1 hour, and 180 ° C. for 5 hours to obtain a cured product, and the physical properties of the cured product were measured by the above method. The results are shown in Table 4. In Table 4, WPE is an epoxy value (g / eq).
[実施例2]
 実施例1の方法に準拠し、表4に示す組成にて、樹脂組成物を得た。
 表4中、X22-169Aは変性シリコーンオイル(信越化学社製)、Magnasoft(登録商標)800Lは有機基含有ケイ素化合物(Momentive社製)、TSL9906はエポキシ基含有ケイ素化合物(Momentive社製)である。
 得られた樹脂組成物の25℃、せん断速度0.009s-1における粘度を測定した。また、得られた樹脂組成物を実施例1と同様の条件で硬化させて硬化物を得て、上記の方法で硬化物の物性を測定した。結果を表4に示す。
[Example 2]
In accordance with the method of Example 1, a resin composition was obtained with the composition shown in Table 4.
In Table 4, X22-169A is a modified silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd.), Magnasoft (registered trademark) 800L is an organic group-containing silicon compound (manufactured by Momentive), and TSL9906 is an epoxy group-containing silicon compound (manufactured by Momentive). .
The viscosity of the obtained resin composition at 25 ° C. and a shear rate of 0.009 s −1 was measured. Moreover, the obtained resin composition was hardened on the same conditions as Example 1, the hardened | cured material was obtained, and the physical property of the hardened | cured material was measured by said method. The results are shown in Table 4.
[実施例3]
 実施例1の方法に準拠し、表4に示す組成にて、樹脂組成物を得た。
 表4中、DLC-402は、液状エポキシ樹脂、デナコール(登録商標)DLC-402(ナガセケムテックス社製)である。
 得られた樹脂組成物の25℃、せん断速度0.009s-1における粘度を測定した。また、得られた樹脂組成物を実施例1と同様の条件で硬化させて硬化物を得て、上記の方法で硬化物の物性を測定した。結果を表4に示す。
[Example 3]
In accordance with the method of Example 1, a resin composition was obtained with the composition shown in Table 4.
In Table 4, DLC-402 is a liquid epoxy resin, Denacol (registered trademark) DLC-402 (manufactured by Nagase ChemteX Corporation).
The viscosity of the obtained resin composition at 25 ° C. and a shear rate of 0.009 s −1 was measured. Moreover, the obtained resin composition was hardened on the same conditions as Example 1, the hardened | cured material was obtained, and the physical property of the hardened | cured material was measured by said method. The results are shown in Table 4.
[比較例1]
 実施例1の方法に準拠し、表4に示す組成にて、樹脂組成物を得た。
 表4中、E-POはエポキシ樹脂(新日本理化社製)、JER871はエポキシ樹脂(三菱化学社製)、EX-216Lはエポキシ樹脂(ナガセケムテックス社製)、FLD516はシラノール源化合物(BLUESTARS SILICONES社製)である。
 得られた樹脂組成物の25℃、せん断速度0.009s-1における粘度を測定した。また、得られた樹脂組成物を80℃で0.5時間、120℃で1時間、150℃で1時間、180℃で3時間硬化させて硬化物を得て、上記の方法で硬化物の物性を測定した。結果を表4に示す。
[Comparative Example 1]
In accordance with the method of Example 1, a resin composition was obtained with the composition shown in Table 4.
In Table 4, E-PO is an epoxy resin (manufactured by Shin Nippon Chemical Co., Ltd.), JER871 is an epoxy resin (manufactured by Mitsubishi Chemical Corporation), EX-216L is an epoxy resin (manufactured by Nagase ChemteX), FLD516 is a silanol source compound (BLUESTARS) SILICONES).
The viscosity of the obtained resin composition at 25 ° C. and a shear rate of 0.009 s −1 was measured. Moreover, the obtained resin composition was cured at 80 ° C. for 0.5 hour, 120 ° C. for 1 hour, 150 ° C. for 1 hour, and 180 ° C. for 3 hours to obtain a cured product. Physical properties were measured. The results are shown in Table 4.
[比較例2]
 実施例1の方法に準拠し、表4に示す組成にて、樹脂組成物を得た。
 表4中、YED216Dはエポキシ樹脂(三菱化学社製)である。
 得られた樹脂組成物の25℃、せん断速度0.009s-1における粘度を測定した。また、得られた樹脂組成物を80℃で1時間、120℃で2時間、150℃で1時間、200℃で1時間硬化させて硬化物を得て、上記の方法で硬化物の物性を測定した。結果を表4に示す。
[Comparative Example 2]
In accordance with the method of Example 1, a resin composition was obtained with the composition shown in Table 4.
In Table 4, YED216D is an epoxy resin (manufactured by Mitsubishi Chemical Corporation).
The viscosity of the obtained resin composition at 25 ° C. and a shear rate of 0.009 s −1 was measured. Moreover, the obtained resin composition was cured at 80 ° C. for 1 hour, 120 ° C. for 2 hours, 150 ° C. for 1 hour, and 200 ° C. for 1 hour to obtain a cured product. It was measured. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表4に示すように実施例1乃至3は硬化前の樹脂組成物の粘度が低粘度であり、かつ硬化物は25℃、180℃において高い貯蔵弾性率を示した。かつ体積抵抗率比a/bが所定の範囲内であり、サーマルサイクル試験70サイクル後にクラックやPPS壁からの剥離は見られなかった。
 一方比較例1の硬化物は180℃での貯蔵弾性率が低く、貯蔵弾性率の温度依存性が大きいことを示しており、サーマルサイクル試験70サイクル後にクラックが見られた。また比較例2は25℃、180℃において高い貯蔵弾性率を示したものの、体積抵抗率比a/bが所定の範囲外であり、サーマルサイクル試験70サイクル後にクラックがみられた。
As shown in Table 4, in Examples 1 to 3, the viscosity of the resin composition before curing was low, and the cured product exhibited high storage elastic modulus at 25 ° C and 180 ° C. The volume resistivity ratio a / b was within a predetermined range, and no cracks or peeling from the PPS wall was observed after 70 cycles of the thermal cycle test.
On the other hand, the cured product of Comparative Example 1 had a low storage elastic modulus at 180 ° C., indicating that the temperature dependency of the storage elastic modulus was large, and cracks were observed after 70 cycles of the thermal cycle test. Comparative Example 2 exhibited high storage modulus at 25 ° C. and 180 ° C., but the volume resistivity ratio a / b was outside the predetermined range, and cracks were observed after 70 cycles of the thermal cycle test.

Claims (16)

  1. 熱硬化性樹脂及び硬化触媒を含む熱硬化性樹脂組成物であって、
    25℃、せん断速度0.009s-1における粘度が1500Pa・s以下であり、
    該熱硬化性樹脂組成物の硬化物の25℃及び180℃での貯蔵弾性率がそれぞれ1.0×10Pa以上で、かつ25℃での体積抵抗率aと200℃での体積抵抗率bの比a/bが8500以下であることを特徴とする樹脂組成物。
    A thermosetting resin composition comprising a thermosetting resin and a curing catalyst,
    The viscosity at 25 ° C. and a shear rate of 0.009 s −1 is 1500 Pa · s or less,
    The cured product of the thermosetting resin composition has a storage elastic modulus at 25 ° C. and 180 ° C. of 1.0 × 10 8 Pa or more, and a volume resistivity a at 25 ° C. and a volume resistivity at 200 ° C. A resin composition, wherein the ratio a / b of b is 8500 or less.
  2. 前記熱硬化性樹脂がエポキシ樹脂を含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the thermosetting resin contains an epoxy resin.
  3. 前記エポキシ樹脂が脂環式エポキシ基を含む、請求項2に記載の樹脂組成物。 The resin composition according to claim 2, wherein the epoxy resin contains an alicyclic epoxy group.
  4. 前記エポキシ樹脂がグリシジル基を含む、請求項2又は3に記載の樹脂組成物。 The resin composition according to claim 2 or 3, wherein the epoxy resin contains a glycidyl group.
  5. 前記エポキシ樹脂がグリシジル基を2個以上含むエポキシ樹脂を含む、請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the epoxy resin contains an epoxy resin containing two or more glycidyl groups.
  6. 前記エポキシ樹脂がエポキシ基含有ケイ素化合物を含む、請求項2~5のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 2 to 5, wherein the epoxy resin contains an epoxy group-containing silicon compound.
  7. 前記エポキシ基含有ケイ素化合物が脂環式エポキシ基を含む、請求項6に記載の樹脂組成物。 The resin composition according to claim 6, wherein the epoxy group-containing silicon compound contains an alicyclic epoxy group.
  8. さらにフィラーを50質量%以上含有する、請求項1~7のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, further comprising 50% by mass or more of a filler.
  9. 前記フィラーがシリカを含む、請求項8に記載の樹脂組成物。 The resin composition according to claim 8, wherein the filler contains silica.
  10. さらに酸無水物を含む、請求項1~9のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 9, further comprising an acid anhydride.
  11. 前記樹脂組成物がエポキシ基の開環重合を伴うことより硬化するものである、請求項1~10のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, wherein the resin composition is cured by accompanying ring-opening polymerization of an epoxy group.
  12. 前記開環重合がカチオン重合である、請求項11に記載の樹脂組成物。 The resin composition according to claim 11, wherein the ring-opening polymerization is cationic polymerization.
  13. 前記硬化触媒が金属触媒を含む、請求項1~12のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 12, wherein the curing catalyst contains a metal catalyst.
  14. 前記金属触媒がガリウム化合物である、請求項13に記載の樹脂組成物。 The resin composition according to claim 13, wherein the metal catalyst is a gallium compound.
  15. 請求項1~14のいずれかに記載の樹脂組成物を硬化してなる成形体。 A molded product obtained by curing the resin composition according to any one of claims 1 to 14.
  16. 請求項1~14のいずれかに記載の樹脂組成物を用いて封止してなる半導体デバイス。 A semiconductor device encapsulated with the resin composition according to any one of claims 1 to 14.
PCT/JP2017/027872 2016-08-03 2017-08-01 Resin composition WO2018025850A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018531915A JPWO2018025850A1 (en) 2016-08-03 2017-08-01 Resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-152654 2016-08-03
JP2016152654 2016-08-03

Publications (1)

Publication Number Publication Date
WO2018025850A1 true WO2018025850A1 (en) 2018-02-08

Family

ID=61073425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027872 WO2018025850A1 (en) 2016-08-03 2017-08-01 Resin composition

Country Status (3)

Country Link
JP (1) JPWO2018025850A1 (en)
TW (1) TW201821502A (en)
WO (1) WO2018025850A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068811A (en) * 2009-09-28 2011-04-07 Sekisui Chem Co Ltd Sealing agent for optical semiconductor device, and optical semiconductor device
JP2012255125A (en) * 2011-05-17 2012-12-27 Mitsubishi Chemicals Corp Thermoset resin composition, member for semiconductor device, and semiconductor device using the same
JP2013194070A (en) * 2012-03-16 2013-09-30 Asahi Kasei Chemicals Corp Curable resin composition and use thereof
JP2015063656A (en) * 2012-09-28 2015-04-09 三菱化学株式会社 Thermosetting resin composition and method for producing the same, method for producing resin cured material, and method for inducing self-polymerization of epoxy compound
JP2015187208A (en) * 2014-03-26 2015-10-29 三菱化学株式会社 Thermosetting resin composition and method for producing the same, method for producing resin cured product, and method for generating self-polymerization of epoxy compound
JP2015193838A (en) * 2014-03-26 2015-11-05 三菱化学株式会社 thermosetting resin composition
JP2016117822A (en) * 2014-12-19 2016-06-30 三菱化学株式会社 Liquid resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068811A (en) * 2009-09-28 2011-04-07 Sekisui Chem Co Ltd Sealing agent for optical semiconductor device, and optical semiconductor device
JP2012255125A (en) * 2011-05-17 2012-12-27 Mitsubishi Chemicals Corp Thermoset resin composition, member for semiconductor device, and semiconductor device using the same
JP2013194070A (en) * 2012-03-16 2013-09-30 Asahi Kasei Chemicals Corp Curable resin composition and use thereof
JP2015063656A (en) * 2012-09-28 2015-04-09 三菱化学株式会社 Thermosetting resin composition and method for producing the same, method for producing resin cured material, and method for inducing self-polymerization of epoxy compound
JP2015187208A (en) * 2014-03-26 2015-10-29 三菱化学株式会社 Thermosetting resin composition and method for producing the same, method for producing resin cured product, and method for generating self-polymerization of epoxy compound
JP2015193838A (en) * 2014-03-26 2015-11-05 三菱化学株式会社 thermosetting resin composition
JP2016117822A (en) * 2014-12-19 2016-06-30 三菱化学株式会社 Liquid resin composition

Also Published As

Publication number Publication date
JPWO2018025850A1 (en) 2019-06-06
TW201821502A (en) 2018-06-16

Similar Documents

Publication Publication Date Title
US9550877B2 (en) Thermosetting resin composition, method for producing same, method for producing cured resin product, and method for causing self-polymerization of epoxy compound
TWI666250B (en) A thermosetting resin compound and a molding thereof
KR100591671B1 (en) Semiconductor Encapsulating Epoxy Resin Composition and Semiconductor Device
JP2016180088A (en) Thermosetting resin composition and molding thereof
JP2009227849A (en) Epoxy resin composition for use in sealing optical semiconductor element
JP2016166279A (en) Thermosetting resin composition and molded article thereof
JP2016117822A (en) Liquid resin composition
JP2017066364A (en) Resin composition
JP2019001841A (en) Epoxy resin composition and semiconductor device having cured product of composition
WO2018025850A1 (en) Resin composition
JP6299328B2 (en) Thermosetting resin composition, method for producing the same, method for producing resin cured product, and method for generating self-polymerization of epoxy compound
JP2016194059A (en) Epoxy group-containing resin composition and molding thereof
JP6543991B2 (en) Thermosetting resin composition
JP6311399B2 (en) Thermosetting resin composition and molded body thereof
JP6405663B2 (en) Thermosetting resin composition
JP6657566B2 (en) Low viscosity resin composition
JP6609935B2 (en) Resin composition
JP6349858B2 (en) Thermosetting resin composition
JP2016117879A (en) Liquid resin composition
JP2015187210A (en) thermosetting resin composition
JP2015189936A (en) One-component thermosetting resin composition
JP2015189920A (en) resin composition
JP2018162426A (en) Liquid thermosetting resin composition having high flame retardancy and high reliability and molding thereof
JP2015189824A (en) One-component thermosetting resin composition
JP2004352956A (en) Flame-retardant epoxy resin composition for sealing semiconductor and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836954

Country of ref document: EP

Kind code of ref document: A1