JP2015187210A - thermosetting resin composition - Google Patents

thermosetting resin composition Download PDF

Info

Publication number
JP2015187210A
JP2015187210A JP2014064545A JP2014064545A JP2015187210A JP 2015187210 A JP2015187210 A JP 2015187210A JP 2014064545 A JP2014064545 A JP 2014064545A JP 2014064545 A JP2014064545 A JP 2014064545A JP 2015187210 A JP2015187210 A JP 2015187210A
Authority
JP
Japan
Prior art keywords
compound
group
resin composition
thermosetting resin
silanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014064545A
Other languages
Japanese (ja)
Inventor
田中 俊行
Toshiyuki Tanaka
俊行 田中
真紀 齊藤
Masanori Saito
真紀 齊藤
ティ キム フォン ダオ
Phuong Thi Kim Dao
ティ キム フォン ダオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2014064545A priority Critical patent/JP2015187210A/en
Publication of JP2015187210A publication Critical patent/JP2015187210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel thermosetting resin composition using an epoxy compound, and further provide a resin composition that contributes to the provision of a cured product to get new functions by the provision of a novel thermosetting resin composition.SOLUTION: The thermosetting resin composition comprises a glycidyl ester type epoxy compound, a gallium compound, and a silanol source compound.

Description

本発明は、新規な熱硬化性樹脂組成物に関する。   The present invention relates to a novel thermosetting resin composition.

発光ダイオード(LED)等の半導体デバイスの封止材料として、また、白色LED等において蛍光体を担持するマトリックスとして、エポキシ樹脂やシリコーン樹脂(ポリシロキサン樹脂ともいう)が用いられている。また、シリコーン樹脂にエポキシ樹脂をハイブリッド化したエポキシ−シリコーン樹脂も開発されている(特許文献1、2、3)。さらには、用途に応じて、上記の樹脂にシリカ等の添加物を混合することも検討されている。   Epoxy resins and silicone resins (also referred to as polysiloxane resins) are used as sealing materials for semiconductor devices such as light emitting diodes (LEDs) and as matrices for supporting phosphors in white LEDs and the like. Epoxy-silicone resins in which an epoxy resin is hybridized with a silicone resin have also been developed (Patent Documents 1, 2, and 3). Furthermore, mixing an additive such as silica with the above-described resin according to the application has been studied.

エポキシ樹脂の代表的な硬化剤として、ポリアミン系硬化剤、カルボン酸無水物系硬化剤、フェノール樹脂系硬化剤がよく知られている。これらの硬化剤はエポキシ基と反応する官能基を有する化合物である。その他の硬化剤として、エポキシ基の自己重合反応(開環を伴うカチオン重合反応)を触媒するタイプのものがある。この種の硬化剤として、シラノールと、金属錯体(Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、AlまたはZrを含む錯体)とを組合せたものが知られている(特許文献4、5)。   As typical curing agents for epoxy resins, polyamine curing agents, carboxylic anhydride curing agents, and phenol resin curing agents are well known. These curing agents are compounds having a functional group that reacts with an epoxy group. As another curing agent, there is a type that catalyzes a self-polymerization reaction (cation polymerization reaction accompanied by ring opening) of an epoxy group. As this type of curing agent, a combination of silanol and a metal complex (a complex containing Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, or Zr) is known (patent) References 4, 5).

縮合硬化型のシリコーン樹脂のための硬化触媒としてガリウム化合物が知られている(特許文献6)。   Gallium compounds are known as curing catalysts for condensation-curing silicone resins (Patent Document 6).

特開平8−41168号公報JP-A-8-411168 特開2007−332314号公報JP 2007-332314 A 特開2012−92172号公報JP 2012-92172 A 特開昭56−18643号公報JP-A-56-18643 特公昭58−017537号公報Japanese Patent Publication No.58-017537 特開2010−111756号公報JP 2010-1111756 A

本発明の主たる目的は、エポキシ化合物を用いた新規な熱硬化性樹脂組成物を提供することにある。さらには新規な熱硬化性樹脂組成物の提供に新たに機能付与された硬化物の提供に資する樹脂組成物の提供を目的とする。   The main object of the present invention is to provide a novel thermosetting resin composition using an epoxy compound. Furthermore, it aims at provision of the resin composition which contributes to provision of the hardened | cured material newly provided with the function for provision of a novel thermosetting resin composition.

本発明者らは、グリシジルエステル型エポキシ化合物に対して触媒量のガリウム化合物と、シラノールを含有する化合物とを添加した組成物が熱硬化性を示すことを見出し、本発明を完成させた。
すなわち本発明は以下に存する。
(1)グリシジルエステル型エポキシ化合物と、ガリウム化合物と、シラノール源化合物とを含有する熱硬化性樹脂組成物。
(2)上記(1)の組成物において、酸無水物を含むことを特徴とする、熱硬化性樹脂組成物。
(3)上記(1)又は(2)の組成物を加熱することにより硬化した樹脂硬化物。
The present inventors have found that a composition obtained by adding a catalytic amount of a gallium compound and a compound containing silanol to a glycidyl ester type epoxy compound exhibits thermosetting properties, and has completed the present invention.
That is, the present invention is as follows.
(1) A thermosetting resin composition containing a glycidyl ester type epoxy compound, a gallium compound, and a silanol source compound.
(2) The thermosetting resin composition according to (1), wherein the composition includes an acid anhydride.
(3) A cured resin cured by heating the composition of (1) or (2) above.

本発明によれば、グリシジルエステル型エポキシ化合物を用いた新規な熱硬化性樹脂組成物が提供される。そのような組成物の提供により、硬化物としては、高強度、耐熱性、幅広い温度領域での安定した線膨張率および弾性といった機能を付与することができる。   According to the present invention, a novel thermosetting resin composition using a glycidyl ester type epoxy compound is provided. By providing such a composition, the cured product can be provided with functions such as high strength, heat resistance, stable linear expansion coefficient and elasticity in a wide temperature range.

以下、本発明を実施の形態に即して説明するが、本発明は本明細書に明示的または黙示的に記載された実施の形態により限定されるものではなく、その要旨を逸脱しない限りにおいて種々に変更して実施することができる。   Hereinafter, the present invention will be described with reference to the embodiments, but the present invention is not limited to the embodiments described explicitly or implicitly in the present specification, and is not deviated from the gist thereof. Various modifications can be made.

1.熱硬化性樹脂組成物
本発明の熱硬化性樹脂組成物は、(A)グリシジルエステル型のエポキシ化合物、(B)ガリウム化合物、および(C)シラノール源化合物を含有する。この熱硬化性樹脂組成物には、必要に応じて上記(A)〜(C)以外の成分を含有させてもよい。
1. Thermosetting Resin Composition The thermosetting resin composition of the present invention contains (A) a glycidyl ester type epoxy compound, (B) a gallium compound, and (C) a silanol source compound. You may make this thermosetting resin composition contain components other than said (A)-(C) as needed.

この熱硬化性樹脂組成物は、その硬化機構の少なくとも一部に、ガリウム化合物とシラノール源化合物から供給されるシラノールとによって触媒されるエポキシ化合物の自己重合反応が関与するものである。この熱硬化性樹脂組成物は、該自己重合反応のみにより硬化するものであり得るが、限定されるものではない。
以下、この熱硬化性樹脂組成物の各成分について説明する。
In this thermosetting resin composition, a self-polymerization reaction of an epoxy compound catalyzed by a gallium compound and silanol supplied from a silanol source compound is involved in at least a part of the curing mechanism. This thermosetting resin composition can be cured only by the self-polymerization reaction, but is not limited thereto.
Hereinafter, each component of this thermosetting resin composition will be described.

1.1(A)グリシジルエステル型エポキシ化合物
グリシジルエステル型のエポキシ化合物は、グリシジル(メタ)アクリレート等のエポキシ基を有するモノマー、グリシジル(メタ)アクリレート等のエポキシ基を有するモノマーを単独あるいは他のモノマーと共重合して得られる重量平均分子量500〜200000のポリマー、又はエピクロロヒドリンと、下記一般式(1)で表される化合物との反応生成物等をいう。
1.1 (A) Glycidyl ester type epoxy compound The glycidyl ester type epoxy compound is a monomer having an epoxy group such as glycidyl (meth) acrylate, a monomer having an epoxy group such as glycidyl (meth) acrylate, or other monomer. And a reaction product of a polymer having a weight average molecular weight of 500 to 200,000 obtained by copolymerization with epichlorohydrin and a compound represented by the following general formula (1).

グリシジル(メタ)アクリレート等のエポキシ基を有するモノマーと共重合するモノマーとしては特に限定されるものではないが、(メタ)アクリル酸、炭素数4〜25の置換されていても良いアルキル(メタ)アクリレート、スチレン、ビニルモノマー、ビニリデンモノマー、無水マレイン酸、マレイン酸エステル、フマル酸エステル、ベンジルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等があげられる。   Although it does not specifically limit as a monomer copolymerized with the monomer which has epoxy groups, such as glycidyl (meth) acrylate, (meth) acrylic acid, C4-C25 alkyl which may be substituted (meth) Examples thereof include acrylate, styrene, vinyl monomer, vinylidene monomer, maleic anhydride, maleic ester, fumaric ester, benzyl maleimide, phenyl maleimide, cyclohexyl maleimide and the like.

(COOH)一般式(1)
(式中のrは1〜8の整数であり、Rは炭素数2〜30の炭化水素基(β5)、炭素数2〜30のエーテル酸素(−O−)と炭化水素基のみからなる基、イソシアヌレート環、又はイソシアヌレート環と炭化水素基のみからなる基のいずれかである。)
エピクロロヒドリンと一般式(1)で表される化合物との反応は、エピクロロヒドリンと一般式(1)の化合物のカルボキシル基とが付加反応して得られるクロロヒドリンを、水酸化ナトリウム等の塩基で閉環しグリシジルエステル型エポキシ樹脂を得ることができる。また、グリシジルエステル型エポキシ樹脂のエポキシ基の一部を開環重合させたエポキシ樹脂も使用することができる。
R a (COOH) r General formula (1)
(In the formula, r is an integer of 1 to 8, and Ra is composed of a hydrocarbon group having 2 to 30 carbon atoms (β5), ether oxygen having 2 to 30 carbon atoms (—O—) and a hydrocarbon group only. A group, an isocyanurate ring, or a group consisting only of an isocyanurate ring and a hydrocarbon group.)
The reaction between epichlorohydrin and the compound represented by the general formula (1) is carried out by adding chlorohydrin obtained by addition reaction of epichlorohydrin and the carboxyl group of the compound represented by the general formula (1) to sodium hydroxide or the like. The glycidyl ester type epoxy resin can be obtained by ring closure with the above base. An epoxy resin obtained by ring-opening polymerization of a part of the epoxy group of the glycidyl ester type epoxy resin can also be used.

エピクロロヒドリンと一般式(1)で表される化合物の反応生成物は、下記一般式(2)の構造となる。   A reaction product of epichlorohydrin and the compound represented by the general formula (1) has a structure represented by the following general formula (2).

Figure 2015187210
Figure 2015187210

(式中のr、Rは式1と同義である。)
上述したグリシジルエステル型のエポキシ化合物の具体例としては、例えばフタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、シクロヘキサンジカルボン酸ジグリシジル、ステアリン酸グリシジル、パルミチン酸グリシジル、オレイン酸グリシジル、リノール酸グリシジル、リノレン酸グリシジル、ネオデカン酸グリシジル、トリアルキル酢酸グリシジルエステル、3級カルボン酸グリシジルエステル(新日鉄住金化学社製 ネオトートSなど)、2,6−ナフタレンジカルボン酸ジグリシジルエステル等が挙げられる。
(Wherein r and R a are as defined in Formula 1)
Specific examples of the above-mentioned glycidyl ester type epoxy compounds include, for example, diglycidyl phthalate, diglycidyl tetrahydrophthalate, diglycidyl cyclohexanedicarboxylate, glycidyl stearate, glycidyl palmitate, glycidyl oleate, glycidyl linoleate, and linolenic acid. Examples thereof include glycidyl acid, glycidyl neodecanoate, glycidyl trialkyl acetate, glycidyl tertiary carboxylic acid (Neoto Tote S manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), 2,6-naphthalenedicarboxylic acid diglycidyl ester and the like.

中でも硬化時に架橋構造を形成するため、フタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、シクロヘキサンジカルボン酸ジグリシジル等のジグリシジルエステルタイプ、またはメタクリル酸グリシジルの共重合体を使用することが好ましい。   Among these, in order to form a crosslinked structure at the time of curing, it is preferable to use a diglycidyl ester type such as diglycidyl phthalate, diglycidyl tetrahydrophthalate, diglycidyl cyclohexanedicarboxylate, or a copolymer of glycidyl methacrylate.

1.2(B)ガリウム化合物
ガリウム化合物は、後段で詳述するシラノール源化合物から供給されるシラノールと組み合わされて、エポキシ化合物の自己重合反応の触媒として作用する成分である。
ガリウム化合物は上記作用を示すものであればよく、次の候補化合物から選択することができる:キレート配位子を有するガリウム錯体、酢酸ガリウム、オキシ酢酸ガリウム、トリエトキシガリウム、トリス(8−キノリノラト)ガリウム、シュウ酸ガリウム、エチルキサントゲン酸ガリウム、ジエチルエトキシガリウム、マレイン酸ガリウム等。n−オクチル酸、2−エチルヘキサン酸、ナフテン酸などの長鎖カルボン酸のガリウム塩等。
1.2 (B) Gallium Compound A gallium compound is a component that acts as a catalyst for a self-polymerization reaction of an epoxy compound in combination with a silanol supplied from a silanol source compound described in detail later.
The gallium compound is not particularly limited as long as it exhibits the above action, and can be selected from the following candidate compounds: gallium complex having a chelate ligand, gallium acetate, gallium oxyacetate, triethoxygallium, tris (8-quinolinolato) Gallium, gallium oxalate, gallium ethyl xanthate, diethyl ethoxy gallium, gallium maleate and the like. gallium salts of long-chain carboxylic acids such as n-octylic acid, 2-ethylhexanoic acid and naphthenic acid.

キレート配位子としては、β−ジケトン型化合物と、o−ケトフェノール型化合物が挙げられる。β−ジケトン型化合物には、次の式(15)〜式(17)に示す構造を有するものがある。   Examples of chelate ligands include β-diketone type compounds and o-ketophenol type compounds. Some β-diketone type compounds have structures represented by the following formulas (15) to (17).

Figure 2015187210
Figure 2015187210

式(15)〜式(17)において、Rはアルキル基、またはハロゲン置換アルキル基を表している。
式(15)の化合物の具体例としてはアセチルアセトン、トリフルオロアセチルアセトン、ペンタフルオロアセチルアセトン、ヘキサフルオロアセチルアセトン等が、式(16)の化合物の具体例としてはエチルアセトアセテート等が、式(17)の化合物の具体例としてはジエチルマロネート等が挙げられる。
O−ケトフェノール型化合物は、次の式(18)で表される化合物である。
In the formulas (15) to (17), R represents an alkyl group or a halogen-substituted alkyl group.
Specific examples of the compound of the formula (15) include acetylacetone, trifluoroacetylacetone, pentafluoroacetylacetone, hexafluoroacetylacetone and the like. Specific examples of the compound of the formula (16) include ethylacetoacetate and the compound of the formula (17). Specific examples of such include diethyl malonate.
The O-ketophenol type compound is a compound represented by the following formula (18).

Figure 2015187210
Figure 2015187210

式(18)において、R’は水素原子、アルキル基、ハロゲン置換アルキル基またはアルコキシ基を表している。
式(18)の化合物の具体例としては、サリチルアルデヒド、エチル−O−ヒドロキシフェニルケトン等が挙げられる。
キレート配位子を有するガリウム錯体はガリウム化合物の好適例であり、その中でもガリウムアセチルアセトネートは特に好適に使用することができる。
In the formula (18), R ′ represents a hydrogen atom, an alkyl group, a halogen-substituted alkyl group or an alkoxy group.
Specific examples of the compound of formula (18) include salicylaldehyde, ethyl-O-hydroxyphenyl ketone and the like.
A gallium complex having a chelate ligand is a preferred example of a gallium compound, and among them, gallium acetylacetonate can be particularly preferably used.

Ga触媒を用いるとAl触媒に比べて硬化物の加熱による重量減少が少ない。特に硬化物がシロキサン構造を含む場合にはAl触媒に比べて硬化物の加熱による重量減少が少ない。
具体的には、150〜200℃×500時間で、重量減少が加熱前の20質量%以下が好ましく、10質量%以下が更に好ましい。
(B)ガリウム化合物は、(A)エポキシ化合物100重量部に対して通常0.001重量部以上、好ましくは0.01重量部以上、また5.0重量部以下、好ましくは1.0重量部以下である。
When a Ga catalyst is used, the weight loss due to heating of the cured product is less than that of an Al catalyst. In particular, when the cured product contains a siloxane structure, the weight loss due to heating of the cured product is less than that of the Al catalyst.
Specifically, the weight loss is preferably 20% by mass or less before heating at 150 to 200 ° C. × 500 hours, and more preferably 10% by mass or less.
The (B) gallium compound is usually 0.001 part by weight or more, preferably 0.01 part by weight or more, and 5.0 part by weight or less, preferably 1.0 part by weight based on 100 parts by weight of the (A) epoxy compound. It is as follows.

1.3(C)シラノール源化合物
シラノール源化合物はシラノールの供給源たる化合物である。シラノールは、前述のガリウム化合物と組み合わされて、エポキシ化合物の自己重合反応の触媒として作用する。
シラノールの役割は、エポキシ化合物の自己重合反応の開始に必要なカチオン源であると考えられる。シラノール源化合物のケイ素原子にフェニル基等の芳香族基が結合している場合には、この芳香族基はシラノール水酸基の酸性度を高める働き、つまり、シラノールのカチオン源としての作用を強める働きをしていると考えられる。
シラノール源化合物は、潜在的なシラノール源であってもよい。例えば、加水分解性基が結合したケイ素原子を有しており、該加水分解基が加水分解されたときにシラノールを生じる化合物である。加水分解性基の具体例としては、ヒドロキシ基、アルコキシ基、水素、アセトキシ基、エノキシ基、オキシム基、ハロゲン基が挙げられる。好ましい加水分解性基はアルコキシ基であり、特に炭素数1〜3のアルコキシ基、すなわち、メトキシ基、エトキシ基、プロポキシ基である。
1.3 (C) Silanol source compound The silanol source compound is a compound which is a supply source of silanol. Silanol, in combination with the aforementioned gallium compound, acts as a catalyst for the self-polymerization reaction of the epoxy compound.
The role of silanol is considered to be a cation source necessary for the initiation of the self-polymerization reaction of the epoxy compound. When an aromatic group such as a phenyl group is bonded to the silicon atom of the silanol source compound, this aromatic group functions to increase the acidity of the silanol hydroxyl group, that is, to enhance the action of silanol as a cation source. it seems to do.
The silanol source compound may be a potential silanol source. For example, it is a compound which has a silicon atom to which a hydrolyzable group is bonded and which produces silanol when the hydrolyzable group is hydrolyzed. Specific examples of the hydrolyzable group include a hydroxy group, an alkoxy group, hydrogen, an acetoxy group, an enoxy group, an oxime group, and a halogen group. A preferred hydrolyzable group is an alkoxy group, and particularly an alkoxy group having 1 to 3 carbon atoms, that is, a methoxy group, an ethoxy group, or a propoxy group.

シラノール源化合物の一例は、フェニルジメチルシラノール、ジフェニルメチルシラノール、トリフェニルシラノール、ジヒドロキシジフェニルシラン(ジフェニルジシラノール)、トリメチルシラノール、トリエチルシラノール、ジヒドロキシジメチルシラン、トリヒドロキシメチルシランなどの水酸基が結合したケイ素原子を有するモノシラン化合物である。   An example of a silanol source compound is a silicon atom to which hydroxyl groups such as phenyldimethylsilanol, diphenylmethylsilanol, triphenylsilanol, dihydroxydiphenylsilane (diphenyldisilanol), trimethylsilanol, triethylsilanol, dihydroxydimethylsilane, and trihydroxymethylsilane are bonded. It is a monosilane compound having

シラノール源化合物の他の一例は、水酸基が結合したケイ素原子を有する、式(19)で表されるオルガノポリシロキサンである。
(R21 SiO1/2a2(R22 SiO2/2b2(R23SiO3/2c2(SiO4/2d2(O1/2H)e2 ・・・(19)
式(19)において、R21、R22、R23はそれぞれ独立して1価の有機基を示す。
Another example of the silanol source compound is an organopolysiloxane represented by the formula (19) having a silicon atom to which a hydroxyl group is bonded.
(R 21 3 SiO 1/2 ) a 2 (R 22 2 SiO 2/2 ) b 2 (R 23 SiO 3/2 ) c 2 (SiO 4/2 ) d 2 (O 1/2 H) e 2 (19)
In the formula (19), R 21 , R 22 and R 23 each independently represent a monovalent organic group.

式(19)において、R21 SiO1/2はMユニット、R22 SiO2/2はDユニット、R23SiO3/2はTユニット、SiO4/2はQユニットを、それぞれ表している。a2、b2、c2およびd2は、それぞれが0以上の整数であり、かつ、a2+b2+c2+d2≧3である。e2は1以上の自然数であり、ケイ素原子に直接結合する水酸基(シラノール)の個数を表している。 In the formula (19), R 21 3 SiO 1/2 represents an M unit, R 22 2 SiO 2/2 represents a D unit, R 23 SiO 3/2 represents a T unit, and SiO 4/2 represents a Q unit. Yes. a2, b2, c2, and d2 are each integers of 0 or more, and a2 + b2 + c2 + d2 ≧ 3. e2 is a natural number of 1 or more, and represents the number of hydroxyl groups (silanol) directly bonded to the silicon atom.

式(19)のR21、R22、R23は、通常、炭素数1〜10の炭化水素基であり、その具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基などのアルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基などのアルケニル基;フェニル基、トリル基、キシリル基などのアリール基;ベンジル基、フェネチル基などのアラルキル基;クロロメチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、ノナフルオロブチルエチル基などの置換アルキル基が挙げられる。 R 21 , R 22 and R 23 in the formula (19) are usually hydrocarbon groups having 1 to 10 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, Alkyl groups such as hexyl group and heptyl group; alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group and hexenyl group; aryl groups such as phenyl group, tolyl group and xylyl group; aralkyl groups such as benzyl group and phenethyl group Groups; substituted alkyl groups such as a chloromethyl group, a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, and a nonafluorobutylethyl group.

シラノール源化合物は、ケイ素原子に結合する加水分解性基を有するものであって、該加水分解性基を加水分解したときに、式(19)で表されるオルガノポリシロキサンを生じる化合物であってもよい。換言すれば、式(19)で表されるオルガノポリシロキサンにおいて、ケイ素原子に直接結合した水酸基の全部または一部を加水分解性基に置き換えた化合物であってもよい。   The silanol source compound has a hydrolyzable group bonded to a silicon atom, and produces a organopolysiloxane represented by the formula (19) when the hydrolyzable group is hydrolyzed. Also good. In other words, the organopolysiloxane represented by the formula (19) may be a compound in which all or part of the hydroxyl groups directly bonded to the silicon atom are replaced with hydrolyzable groups.

シラノール源化合物がオルガノポリシロキサンであって、これをシロキサン構造を含まないエポキシ化合物と共に用いる場合には、該オルガノポリシロキサンと該エポキシ化合物との相溶性を確保する観点から、該オルガノポリシロキサンはケイ素原子に結合した芳香族基を有するものであることが好ましい。
シラノール源化合物がオルガノポリシロキサンである場合、その重量平均分子量については、熱硬化性樹脂組成物の硬化中あるいは硬化後に揮発しないように、500以上であることが好ましく、700以上であることがより好ましい。一方、重合度が高過ぎると粘度が高くなって取り扱い性が悪くなることから、該重量平均分子量は20,000以下であることが好ましく、15,000以下であることがより好ましい。
When the silanol source compound is an organopolysiloxane and is used together with an epoxy compound not containing a siloxane structure, the organopolysiloxane is silicon from the viewpoint of ensuring compatibility between the organopolysiloxane and the epoxy compound. It preferably has an aromatic group bonded to an atom.
When the silanol source compound is an organopolysiloxane, the weight average molecular weight is preferably 500 or more and more preferably 700 or more so that it does not volatilize during or after curing of the thermosetting resin composition. preferable. On the other hand, if the degree of polymerization is too high, the viscosity becomes high and the handleability deteriorates, so that the weight average molecular weight is preferably 20,000 or less, more preferably 15,000 or less.

好適な実施形態では、シラノール源化合物は水酸基または加水分解性基が結合したケイ素原子を1分子中に2個以上有するオルガノポリシロキサンまたはシラン化合物であってもよい。かかるシラノール源化合物は、加熱されたときにガリウム化合物の作用により重縮合して高分子量化するので、硬化後にブリードアウトすることがない。
シラノール源化合物として好適に使用できるオルガノポリシロキサンとして、式(20)〜式(23)で表される構造を有するものが挙げられる。
In a preferred embodiment, the silanol source compound may be an organopolysiloxane or a silane compound having two or more silicon atoms bonded to a hydroxyl group or a hydrolyzable group in one molecule. Such a silanol source compound is polycondensed by the action of the gallium compound to increase the molecular weight when heated, so that it does not bleed out after curing.
Examples of the organopolysiloxane that can be suitably used as the silanol source compound include those having structures represented by the formulas (20) to (23).

Figure 2015187210
Figure 2015187210

式(22)で表されるオルガノポリシロキサンは、アジピン酸[(7−オキサビシクロ[4.1.0]ヘプタン−3−イル)メチル]と式(24)で表される化合物(ジヒドロキシジメチルシランまたは両末端に水酸基を有するポリジメチルシロキサン)とを、重縮
合することにより得ることができる。重縮合触媒としては、酸、塩基の他、金属触媒を用いることができ、ガリウムアセトアセトネートのようなガリウム化合物を用いることもできる。
The organopolysiloxane represented by the formula (22) includes adipic acid [(7-oxabicyclo [4.1.0] heptan-3-yl) methyl] and a compound represented by the formula (24) (dihydroxydimethylsilane). Alternatively, it can be obtained by polycondensation with polydimethylsiloxane having hydroxyl groups at both ends. As a polycondensation catalyst, a metal catalyst can be used in addition to an acid and a base, and a gallium compound such as gallium acetoacetonate can also be used.

式(23)で表されるオルガノポリシロキサンは、式(21)で表される化合物と式(24)で表される化合物とを、重縮合することにより得ることができる。重縮合触媒としては、酸、塩基の他、金属触媒を用いることができ、ガリウムアセトアセトネートのようなガリウム化合物を用いることもできる。   The organopolysiloxane represented by the formula (23) can be obtained by polycondensing the compound represented by the formula (21) and the compound represented by the formula (24). As a polycondensation catalyst, a metal catalyst can be used in addition to an acid and a base, and a gallium compound such as gallium acetoacetonate can also be used.

Figure 2015187210
Figure 2015187210

式(20)〜式(24)において、m、n、M、N、m1、m2は、それぞれ、1以上の整数である。これらの数を大きくし過ぎた場合、すなわちポリシロキサンの重合度を高くし過ぎた場合、粘度が高くなり過ぎてハンドリングが容易でなくなる他、シラノールの含有率が下がるために触媒能が低下する傾向が生じることに注意すべきである。ハンドリング性の観点からは、当該オルガノポリシロキサンの粘度あるいは当該オルガノポリシロキサンを用いて得られる熱硬化性樹脂組成物の粘度が10000mPa・s以下、特に5000mPa・s以下となるように、その重合度を設定することが好ましい。   In Expression (20) to Expression (24), m, n, M, N, m1, and m2 are each an integer of 1 or more. When these numbers are increased too much, that is, when the degree of polymerization of the polysiloxane is increased too much, the viscosity becomes too high and handling becomes difficult, and the catalytic performance tends to decrease due to a decrease in the content of silanol. Note that occurs. From the viewpoint of handling properties, the degree of polymerization so that the viscosity of the organopolysiloxane or the viscosity of the thermosetting resin composition obtained using the organopolysiloxane is 10,000 mPa · s or less, particularly 5000 mPa · s or less. Is preferably set.

式(2)、式(20)〜式(23)で表されるオルガノポリシロキサンから選ばれる1種以上を、メチルトリメトキシシラン、フェニルトリメトキシシランなどの3官能シラン化合物とともに重縮合させて得られるオルガノポリシロキサンも、(C)シラノール源化合物の好適例である。重縮合触媒としては、酸、塩基の他、金属触媒を用いることができ、ガリウムアセトアセトネートのようなガリウム化合物を用いることもできる。かかるオルガノポリシロキサンは、更に酸、塩基またはガリウム化合物などの金属化合物のような縮合触媒を作用させることにより硬化する性質を有する。シラノール源として、モノシラン化合物とオルガノポリシロキサンを併せて用いてもよい。   Obtained by polycondensing one or more selected from organopolysiloxanes represented by formula (2), formula (20) to formula (23) together with a trifunctional silane compound such as methyltrimethoxysilane or phenyltrimethoxysilane. Organopolysiloxane is also a suitable example of the (C) silanol source compound. As a polycondensation catalyst, a metal catalyst can be used in addition to an acid and a base, and a gallium compound such as gallium acetoacetonate can also be used. Such organopolysiloxanes have the property of being cured by the action of a condensation catalyst such as an acid, a base or a metal compound such as a gallium compound. As the silanol source, a monosilane compound and an organopolysiloxane may be used in combination.

(C)シラノール源化合物は、(A)エポキシ化合物100重量部に対して通常0.05重量部以上、好ましくは0.5重量部以上、また500重量部以下、好ましくは200重量部以下である。
また、(B)ガリウム化合物と(C)シラノール源化合物の含有比は重量比で1:0.05〜0.001:100が好ましく、より好ましくは1:10〜0.01:100である。
The (C) silanol source compound is usually 0.05 parts by weight or more, preferably 0.5 parts by weight or more, and 500 parts by weight or less, preferably 200 parts by weight or less based on 100 parts by weight of the (A) epoxy compound. .
The content ratio of (B) gallium compound and (C) silanol source compound is preferably 1: 0.05 to 0.001: 100, more preferably 1:10 to 0.01: 100, by weight.

1.4 エポキシシリコーン樹脂
本発明の実施形態に係る熱硬化性樹脂組成物においては、エポキシ化合物とシラノール源化合物のいずれか一方、または両方が、オルガノポリシロキサン構造部分を有し得る。その場合に、オルガノポリシロキサン構造部分にシラノールを導入すると、ガリウム化合物がシラノール間の脱水縮合触媒として作用するので、エポキシ化合物の自己重合反応とシラノール縮合反応の両方が硬化に関与する、耐熱性の良好な熱硬化性樹脂組成物が得ら
れる。ガリウム化合物はシラノールとアルコキシ基の間の脱アルコール縮合反応の触媒にもなるので、オルガノポリシロキサン構造部分にシラノールとアルコキシ基を導入した場合も同様の効果が得られる。
1.4 Epoxy Silicone Resin In the thermosetting resin composition according to the embodiment of the present invention, either one or both of the epoxy compound and the silanol source compound may have an organopolysiloxane structure portion. In this case, when silanol is introduced into the organopolysiloxane structure, the gallium compound acts as a dehydration condensation catalyst between the silanols, so that both the self-polymerization reaction of the epoxy compound and the silanol condensation reaction are involved in curing. A good thermosetting resin composition is obtained. Since the gallium compound also serves as a catalyst for the dealcoholization condensation reaction between silanol and alkoxy group, the same effect can be obtained when silanol and alkoxy group are introduced into the organopolysiloxane structure.

他の一例では、エポキシ化合物が有するオルガノポリシロキサン構造部分とシラノール源化合物が有するオルガノポリシロキサン構造部分の一方にヒドロシリル基、他方にビニルシリル基を導入するとともに、白金化合物のようなヒドロシリル化反応触媒を添加することにより、エポキシ化合物の自己重合反応とヒドロシリル化反応の両方が硬化に関与する、硬化性の良好な熱硬化性樹脂組成物が得られる。   In another example, a hydrosilyl group is introduced into one of the organopolysiloxane structure part of the epoxy compound and the organopolysiloxane structure part of the silanol source compound, and a vinylsilyl group is introduced into the other, and a hydrosilylation reaction catalyst such as a platinum compound is used. By adding, a thermosetting resin composition having good curability in which both the self-polymerization reaction and hydrosilylation reaction of the epoxy compound are involved in curing can be obtained.

あるいは、エポキシ化合物とシラノール源化合物のいずれか一方または両方が有するオルガノポリシロキサン構造部分にヒドロシリル基を導入するとともに、ビニルシリル基を有するオルガノポリシロキサンとヒドロシリル化反応触媒を添加することによっても、エポキシ化合物の自己重合反応とヒドロシリル化反応の両方が硬化に関与する熱硬化性樹脂組成物が得られる。この例を変形して、エポキシ化合物とシラノール源化合物のいずれか一方または両方が有するオルガノポリシロキサン構造部分にビニルシリル基を導入し、添加するオルガノポリシロキサンをヒドロシリル基が導入されたものとしてもよい。   Alternatively, by introducing a hydrosilyl group into the organopolysiloxane structure part of either or both of the epoxy compound and the silanol source compound, and adding an organopolysiloxane having a vinylsilyl group and a hydrosilylation reaction catalyst, the epoxy compound Thus, a thermosetting resin composition in which both the self-polymerization reaction and hydrosilylation reaction are involved in curing is obtained. This example may be modified such that a vinylsilyl group is introduced into the organopolysiloxane structure part of either one or both of the epoxy compound and the silanol source compound, and the organopolysiloxane to be added is introduced with a hydrosilyl group.

1.5 その他の成分
本発明の実施形態に係る熱硬化性樹脂組成物には、上述の成分の他に、物性改善、機能付与等の観点から、分散剤、酸化防止剤、消泡剤、着色剤、変性剤、レベリング剤、光拡散剤、熱伝導性、難燃剤、反応性または非反応性の希釈剤、接着、密着性向上剤等の添加剤または各種フィラーをさらに含有してもよい。
1.5 Other components In addition to the above-described components, the thermosetting resin composition according to the embodiment of the present invention includes a dispersant, an antioxidant, a defoaming agent, It may further contain additives such as colorants, modifiers, leveling agents, light diffusing agents, thermal conductivity, flame retardants, reactive or non-reactive diluents, adhesion and adhesion improvers, and various fillers. .

1.5.1 フィラー
フィラーとしては、一般的な有機フィラー、無機フィラーのいずれも使用することができる。有機フィラーとしては、スチレン系ポリマー粒子、メタクリレート系ポリマー粒子、エチレン系ポリマー粒子、プロピレン系ポリマー粒子、ポリアミド系等の合成ポリマー粒子、デンプン、木粉等の天然物、変性されていてもよいセルロース、各種有機顔料などが挙げられる。無機フィラーとしては、無機物もしくは無機物を含む化合物であれば特に限定されないが、具体的に例えば、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系無機フィラー、アルミナ、ジルコン、酸化鉄、酸化亜鉛、酸化チタン、窒化ケイ素、窒化ホウ素、窒化アルミ、炭化ケイ素、ガラス繊維、ガラスフレーク、アルミナ繊維、炭素繊維、マイカ、黒鉛、カーボンブラック、フェライト、グラファイト、ケイソウ土、白土、クレー、タルク、水酸化アルミニウム、炭酸カルシウム、炭酸マンガン、炭酸マグネシウム、硫酸バリウム、チタン酸カリウム、ケイ酸カルシウム、無機バルーン、銀粉等を挙げることができる。
1.5.1 Filler As the filler, both general organic fillers and inorganic fillers can be used. Examples of the organic filler include styrene polymer particles, methacrylate polymer particles, ethylene polymer particles, propylene polymer particles, synthetic polymer particles such as polyamide, starch, natural products such as wood flour, cellulose that may be modified, Examples include various organic pigments. The inorganic filler is not particularly limited as long as it is an inorganic substance or a compound containing an inorganic substance. Specifically, for example, quartz, fumed silica, precipitated silica, anhydrous silicic acid, fused silica, crystalline silica, ultrafine powder amorphous silica. Silica-based inorganic fillers such as alumina, zircon, iron oxide, zinc oxide, titanium oxide, silicon nitride, boron nitride, aluminum nitride, silicon carbide, glass fiber, glass flake, alumina fiber, carbon fiber, mica, graphite, carbon black , Ferrite, graphite, diatomaceous earth, clay, talc, aluminum hydroxide, calcium carbonate, manganese carbonate, magnesium carbonate, barium sulfate, potassium titanate, calcium silicate, inorganic balloon, silver powder and the like.

これらは、単独で用いてもよく、2種類以上併用してもよい。また、適宜表面処理をほどこしてもよい。表面処理としては、アルキル化処理、トリメチルシリル化処理、シリコーン処理、シランカップリング剤による処理等が挙げられるが、特に限定されるものではない。
フィラーの添加量は特に限定されない。
These may be used alone or in combination of two or more. Moreover, you may perform a surface treatment suitably. Examples of the surface treatment include alkylation treatment, trimethylsilylation treatment, silicone treatment, treatment with a silane coupling agent, and the like, but are not particularly limited.
The amount of filler added is not particularly limited.

フィラーを用いることにより、得られる成形体の強度、硬度、弾性率、熱膨張率、熱伝導率、放熱性、電気的特性、光の反射率、難燃性、耐火性、チキソトロピー性、およびガスバリア性等の諸物性を改善することができる。
フィラーの混合の順序としては、特に限定されないが、混合時の発熱による硬化反応の進行を防ぐため、ガリウム化合物、シラノール源化合物、その他のエポキシ樹脂硬化に使用される触媒の非存在下でエポキシ化合物と混合することが望ましい。
By using a filler, the strength, hardness, elastic modulus, thermal expansion coefficient, thermal conductivity, heat dissipation, electrical properties, light reflectance, flame retardancy, fire resistance, thixotropy, and gas barrier of the molded product obtained Various physical properties such as properties can be improved.
The order of mixing the filler is not particularly limited, but the epoxy compound is used in the absence of a catalyst used for curing a gallium compound, silanol source compound, or other epoxy resin in order to prevent the curing reaction from proceeding due to heat generation during mixing. It is desirable to mix with.

フィラーを混合する手段としては、特に限定されるものではないが、具体的に例えば、2本ロールあるいは3本ロール、遊星式撹拌脱泡装置、ホモジナイザー、ディゾルバー、プラネタリーミキサー等の撹拌機、プラストミル等の溶融混練機等が挙げられる。混合は、常温で行ってもよいし加熱して行ってもよく、また、常圧下で行ってもよいし減圧状態で行ってもよい。混合する際の温度が高いと、成型する前に組成物が硬化する場合がある。   The means for mixing the filler is not particularly limited. Specifically, for example, a two-roll or three-roll, a planetary stirring and defoaming device, a homogenizer, a dissolver, a planetary mixer, etc., a plastmill Such as a melt kneader. Mixing may be performed at normal temperature, may be performed by heating, may be performed under normal pressure, or may be performed under reduced pressure. If the temperature during mixing is high, the composition may be cured before molding.

本樹脂組成物を封止材として使用する場合、隣接する部材との間に生じる熱膨張率差を抑えることを主目的として、無機フィラー、特に、シリカ微粒子を添加することがある。添加量を増やすことでより高い効果が得られ、エポキシ樹脂100重量部に対し、40重量部以上、好ましくは70重量部以上、さらに好ましくは80重量部以上の添加が望ましい。添加量を増やす手段として、粒径分布の制御がよく用いられる。粒径の異なるフィラーを混合することで、より高い充填率が得られる。   When this resin composition is used as a sealing material, an inorganic filler, particularly silica fine particles, may be added mainly for the purpose of suppressing the difference in coefficient of thermal expansion between adjacent members. A higher effect can be obtained by increasing the amount added, and it is desirable to add 40 parts by weight or more, preferably 70 parts by weight or more, and more preferably 80 parts by weight or more with respect to 100 parts by weight of the epoxy resin. As a means for increasing the amount of addition, control of the particle size distribution is often used. A higher filling rate can be obtained by mixing fillers having different particle sizes.

また、添加量が増加すると、組成物の粘度上昇が顕著になる。用途、成型法によっては、粘度上昇を抑制する必要があるが、その場合、フィラーの形状、表面構造が大きく影響する。形状は、繊維状、不定形のものよりも、球状のものを選択することで、粘度を低く抑えることが出来る。また、粒子表面官能基の種類、量により、粒子間および粒子−エポキシ樹脂等からなるマトリックス組成物間の相互作用を制御し、適当な粘度を得ることが出来る。   Moreover, when the addition amount increases, the viscosity increase of the composition becomes remarkable. Depending on the application and molding method, it is necessary to suppress the increase in viscosity, but in that case, the shape and surface structure of the filler greatly affect. By selecting a spherical shape rather than a fibrous or irregular shape, the viscosity can be kept low. Further, depending on the type and amount of the surface functional group of the particle, the interaction between the particles and between the matrix compositions composed of the particles and the epoxy resin can be controlled to obtain an appropriate viscosity.

1.5.2 酸化防止剤
本発明の実施形態に係る熱硬化性樹脂組成物には、使用環境下での黄変を抑制するために、酸化防止剤を含有させることができる。
フェノール系酸化防止剤、リン系酸化防止剤、ヒンダードアミン系等が好適に用いられるが、なかでも、フェノール水酸基の片側あるいは両側のオルト位にアルキル基を有するヒンダードフェノール系酸化防止剤が特に好適に用いられる。
1.5.2 Antioxidant The thermosetting resin composition according to the embodiment of the present invention may contain an antioxidant in order to suppress yellowing under the use environment.
Phenol-based antioxidants, phosphorus-based antioxidants, hindered amines, and the like are preferably used. Of these, hindered phenol-based antioxidants having an alkyl group at one or both ortho positions of the phenolic hydroxyl group are particularly preferred. Used.

1.5.3 エポキシ樹脂の硬化触媒
ガリウム化合物と、シラノール源化合物から供給されるシラノールの触媒作用を阻害しない限りにおいて、通常のエポキシ樹脂硬化に使用される触媒を併用することができる。例えば、ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、シクロヘキシルジメチルアミン、トリエタノールアミン等の3 級アミン類;2−メチルイミダゾール、2−n−ヘプチルイミダゾール、2−n−ウンデシルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−(2−シアノエチル)−2−メチルイミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾール、1−(2−シアノエチル)−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジ(ヒドロキシメチル)イミダゾール、1−(2−シアノエチル)−2−フェニル−4,5−ジ〔(2’−シアノエトキシ)メチル〕イミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾリウムトリメリテート、1−(2−シアノエチル)−2−フェニルイミダゾリウムトリメリテート、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾリウムトリメリテート、2,4−ジアミノ−6−〔2 ’−メチルイミダゾリル−(1′)〕エチル−s−トリアジン、2,4−ジアミノ−6−(2 ’−n−ウンデシルイミダゾリル)エチル−s−トリアジン、2,4−ジアミノ−6−〔2’−エチル−4’−メチルイミダゾリル−(1′)〕エチル−s−トリアジン、2−メチルイミダゾールのイソシアヌル酸付加物、2−フェニルイミダ
ゾールのイソシアヌル酸付加物、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1′)〕エチル−s−トリアジンのイソシアヌル酸付加物等のイミダゾール類;ジフェニルフォスフィン、トリフェニルフォスフィン、亜リン酸トリフェニル等の有機リン系化合物;ベンジルトリフェニルフォスフォニウムクロライド、テトラ−n−ブチルフォスフォニウムブロマイド、メチルトリフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムブロマイド、n−ブチルトリフェニルフォスフォニウムブロマイド、テトラフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムヨーダイド、エチルトリフェニルフォスフォニウムアセテート、メチルトリブチルホスホニウムジメチルホスフェート、テトラブチルホスホニウムジエチルホスホジチオネート、テトラ−n−ブチルフォスフォニウムベンゾトリアゾレート、テトラ−n−ブチルフォスフォニウムテトラフルオロボレート、テトラ−n−ブチルフォスフォニウムテトラフェニルボレート、テトラフェニルフォスフォニウムテトラフェニルボレート等の4 級フォスフォニウム塩類;1,8−ジアザビシクロ[5.4.0]ウンデセン−7やその有機酸塩等のジアザビシクロアルケン類;オクチル酸亜鉛、アクチル酸錫、アルミニウムアセチルアセトン錯体等の有機金属化合物;テトラエチルアンモニウムブロマイド、テトラ−n−ブチルアンモニウムブロマイド等の4級アンモニウム塩類;三フッ化ホウ素、ホウ酸トリフェニル等のホウ素化合物;塩化亜鉛、塩化第二錫等の金属ハロゲン化合物のほか、ジシアンジアミドやアミンとエポキシ樹脂との付加物等のアミン付加型促進剤等の高融点分散型潜在性硬化促進剤; 前記イミダゾール類、有機リン系化合物や4級フォスフォニウム塩類等の硬化促進剤の表面をポリマーで被覆したマイクロカプセル型潜在性硬化促進剤; アミン塩型潜在性硬化剤促進剤; ガリウム化合物以外のルイス酸塩、ブレンステッド酸塩等の高温解離型の熱カチオン重合型潜在性硬化促進剤等の潜在性硬化促進剤等を挙げることができる。
1.5.3 Curing Catalyst for Epoxy Resin As long as the catalytic action of the gallium compound and silanol supplied from the silanol source compound is not inhibited, a catalyst used for curing ordinary epoxy resin can be used in combination. For example, tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, cyclohexyldimethylamine, triethanolamine; 2-methylimidazole, 2-n-heptylimidazole, 2-n- Undecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methyl Imidazole, 1- (2-cyanoethyl) -2-methylimidazole, 1- (2-cyanoethyl) -2-n-undecylimidazole, 1- (2-cyanoethyl) -2-phenylimidazole, 1- (2-cyanoethyl) ) -2-Ethyl-4-methylimidazole 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-di (hydroxymethyl) imidazole, 1- (2-cyanoethyl) -2-phenyl-4,5-di [( 2′-cyanoethoxy) methyl] imidazole, 1- (2-cyanoethyl) -2-n-undecylimidazolium trimellitate, 1- (2-cyanoethyl) -2-phenylimidazolium trimellitate, 1- ( 2-cyanoethyl) -2-ethyl-4-methylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')] ethyl-s-triazine, 2,4-diamino- 6- (2′-n-undecylimidazolyl) ethyl-s-triazine, 2,4-diamino-6- [2′-ethyl-4′-methylimidazolyl- ( 1 ')] ethyl-s-triazine, isocyanuric acid adduct of 2-methylimidazole, isocyanuric acid adduct of 2-phenylimidazole, 2,4-diamino-6- [2'-methylimidazolyl- (1')] Imidazoles such as isocyanuric acid adducts of ethyl-s-triazine; organophosphorus compounds such as diphenylphosphine, triphenylphosphine and triphenyl phosphite; benzyltriphenylphosphonium chloride, tetra-n-butylphosphine Phonium bromide, methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, n-butyltriphenylphosphonium bromide, tetraphenylphosphonium bromide, ethyltriphenylphosphonium iodide, et Tiltriphenylphosphonium acetate, methyltributylphosphonium dimethyl phosphate, tetrabutylphosphonium diethylphosphodithionate, tetra-n-butylphosphonium benzotriazolate, tetra-n-butylphosphonium tetrafluoroborate, tetra-n -Quaternary phosphonium salts such as butylphosphonium tetraphenylborate and tetraphenylphosphonium tetraphenylborate; diaza such as 1,8-diazabicyclo [5.4.0] undecene-7 and organic acid salts thereof Bicycloalkenes; Organometallic compounds such as zinc octylate, tin actinate, aluminum acetylacetone complex; quaternary ammonia such as tetraethylammonium bromide and tetra-n-butylammonium bromide Boron compounds such as boron trifluoride and triphenyl borate; metal halide compounds such as zinc chloride and stannic chloride, and amine addition accelerators such as dicyandiamide and adducts of amines and epoxy resins A high melting point dispersion type latent curing accelerator; a microcapsule type latent curing accelerator in which the surface of a curing accelerator such as imidazoles, organophosphorus compounds and quaternary phosphonium salts is coated with a polymer; amine salt type Latent curing accelerator accelerators: Latent curing accelerators such as high temperature dissociation type thermal cationic polymerization type latent curing accelerators such as Lewis acid salts and Bronsted acid salts other than gallium compounds can be mentioned.

1.5.4 酸無水物
本発明の実施形態に係る熱硬化性樹脂組成物には、硬化助剤として酸無水物を含有させることができる。酸無水物の種類に特に制限はないが、該樹脂組成物を光半導体デバイスに使用する場合には、耐光性の観点から脂環式カルボン酸無水物を使用することが好ましい。
1.5.4 Acid Anhydride The thermosetting resin composition according to the embodiment of the present invention may contain an acid anhydride as a curing aid. Although there is no restriction | limiting in particular in the kind of acid anhydride, When using this resin composition for an optical semiconductor device, it is preferable to use an alicyclic carboxylic acid anhydride from a light-resistant viewpoint.

脂環式カルボン酸無水物としては、例えば、式(25)〜式(30)で表される化合物や、4−メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ドデセニルコハク酸無水物のほか、α−テルピネン、アロオシメン等の共役二重結合を有する脂環式化合物と無水マレイン酸とのディールス・アルダー反応生成物やこれらの水素添加物等を挙げることができる。   Examples of the alicyclic carboxylic acid anhydride include compounds represented by formula (25) to formula (30), 4-methyltetrahydrophthalic acid anhydride, methylnadic acid anhydride, dodecenyl succinic acid anhydride, Examples thereof include Diels-Alder reaction products of alicyclic compounds having a conjugated double bond such as α-terpinene and alloocimene and maleic anhydride, and hydrogenated products thereof.

Figure 2015187210
Figure 2015187210

なお、前記ディールス・アルダー反応生成物やこれらの水素添加物としては、任意の構造異性体および任意の幾何異性体を使用することができる。
また、前記脂環式カルボン酸無水物は、硬化反応を実質的に妨げない限り、適宜に化学的に変性して使用することもできる。
酸無水物を含有することで、エポキシ反応速度の制御、ハンドリング、レベリングの向上、着色防止等の効果が得られる場合がある。酸無水物の含有量としては特に制限はないが、エポキシ量に対して1.5当量以下であることが好ましい。より好ましくは1当量以下、更に好ましくは0.8当量以下である。
In addition, arbitrary structural isomers and arbitrary geometric isomers can be used as the Diels-Alder reaction product and hydrogenated products thereof.
In addition, the alicyclic carboxylic acid anhydride can be used after being appropriately chemically modified as long as the curing reaction is not substantially hindered.
By containing an acid anhydride, effects such as control of the epoxy reaction rate, handling, improvement of leveling, and prevention of coloring may be obtained. Although there is no restriction | limiting in particular as content of an acid anhydride, It is preferable that it is 1.5 equivalent or less with respect to the amount of epoxy. More preferably, it is 1 equivalent or less, More preferably, it is 0.8 equivalent or less.

1.5.5 シランカップリング剤
本発明の熱硬化性樹脂組成物には、金属部品や無機フィラーに対する接着性を良好にするためにシランカップリング剤を含有させることができる。
具体例として、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン等が挙げられる。
1.5.5 Silane Coupling Agent The thermosetting resin composition of the present invention can contain a silane coupling agent in order to improve the adhesion to metal parts and inorganic fillers.
Specific examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ- Examples include aminopropyltrimethoxysilane and N-phenyl-3-aminopropyltrimethoxysilane.

1.5.6 シラノールの縮合触媒
ガリウム化合物と、シラノール源化合物から供給されるシラノールの触媒作用によるエポキシの反応を阻害しない限りにおいて、通常のシラノール硬化に使用される触媒を併用することができる。
具体例として、脱水・脱アルコール縮合反応触媒が挙げられる。前記反応触媒には、有機金属錯体触媒、金属と有機酸の塩、ルイス酸・ルイス塩基触媒からなる群から選ばれる少なくとも1つを含有することが好ましい。脱水・脱アルコール縮合反応触媒に含まれる金属成分としては、Sn、Zn、Fe、Ti、Zr、Bi、Hf、Y、Al、B、Gaなどから選ばれる1以上を用いるのが好ましく、中でもSn、Ti、Al、Zn、Zr、Hf、Gaは反応活性が高いという点で好ましく、発光デバイス用部材として用いる場合に電極腐食や光吸収が少なく適度な触媒活性を有し、ジメチルポリシロキサン鎖の不要な切断劣化が起こりにくいZrやHfが特に好ましい。
1.5.6 Silanol Condensation Catalyst A catalyst used for ordinary silanol curing can be used in combination as long as it does not inhibit the epoxy reaction by the catalytic action of the gallium compound and the silanol supplied from the silanol source compound.
Specific examples include a dehydration / dealcohol condensation reaction catalyst. The reaction catalyst preferably contains at least one selected from the group consisting of an organometallic complex catalyst, a salt of a metal and an organic acid, and a Lewis acid / Lewis base catalyst. As the metal component contained in the dehydration / dealcohol condensation reaction catalyst, it is preferable to use one or more selected from Sn, Zn, Fe, Ti, Zr, Bi, Hf, Y, Al, B, Ga, etc. , Ti, Al, Zn, Zr, Hf, and Ga are preferable in that they have high reaction activity. When used as a light emitting device member, they have moderate catalytic activity with little electrode corrosion and light absorption. Zr and Hf are particularly preferable because unnecessary cutting deterioration hardly occurs.

2.熱硬化性樹脂組成物の製造方法
本発明の実施形態に係る上記熱硬化性樹脂組成物は、上記成分(A)〜(C)と、必要に応じてフィラー、希釈剤、酸化防止剤などのその他の成分を混合することにより製造することができる。
この熱硬化性樹脂組成物は、保存安定性を考慮して2液硬化型としてもよい。
2. Manufacturing method of thermosetting resin composition The thermosetting resin composition according to the embodiment of the present invention includes the components (A) to (C) and, if necessary, a filler, a diluent, an antioxidant, and the like. It can be produced by mixing other components.
This thermosetting resin composition may be a two-component curable type in consideration of storage stability.

2液硬化型とする場合は、例えば、A液をエポキシ化合物を含む液とし、B液をガリウム化合物とシラノール源化合物を含む液とすることができる。また、A液をエポキシ化合物とシラノール源化合物を含む液とし、B液をガリウム化合物を含む液とすることもできる。また、A液をエポキシ化合物とガリウム化合物を含む液とし、B液をシラノール源化合物を含む液とすることもできる。   In the case of the two-component curable type, for example, the liquid A can be a liquid containing an epoxy compound, and the liquid B can be a liquid containing a gallium compound and a silanol source compound. Alternatively, the liquid A can be a liquid containing an epoxy compound and a silanol source compound, and the liquid B can be a liquid containing a gallium compound. Further, the liquid A can be a liquid containing an epoxy compound and a gallium compound, and the liquid B can be a liquid containing a silanol source compound.

3.熱硬化性樹脂組成物の硬化方法
本発明の実施形態に係る上記熱硬化性樹脂組成物を硬化させるために行う加熱の方法は、特に限定されるものではなく、例えば、熱風循環式加熱、赤外線加熱、高周波加熱等の従来公知の方法を採用することができる。
熱処理条件は、熱硬化性樹脂組成物を所望の硬化状態にすることができればよく、特に制限はない。
3. The curing method of the thermosetting resin composition The heating method for curing the thermosetting resin composition according to the embodiment of the present invention is not particularly limited, and examples thereof include hot air circulation heating and infrared rays. Conventionally known methods such as heating and high-frequency heating can be employed.
The heat treatment conditions are not particularly limited as long as the thermosetting resin composition can be brought into a desired cured state.

4.熱硬化性樹脂組成物の用途
本発明の実施形態に係る上記熱硬化性樹脂組成物の用途は特に限定されず、LEDデバイスのような発光デバイスを含む各種の半導体デバイスに、封止材等として用いることができる。
発光デバイスにおいては、例えば、半導体発光素子の封止材料、半導体発光素子をパッケージ、リードフレーム等に固定するための接着剤(ダイボンド剤)、パッケージを構成する構造材料、高反射コーティング材など、各種の用途に使用することができる。
4). Use of Thermosetting Resin Composition The use of the thermosetting resin composition according to the embodiment of the present invention is not particularly limited, and as a sealing material or the like for various semiconductor devices including light emitting devices such as LED devices. Can be used.
In a light emitting device, for example, a sealing material for a semiconductor light emitting element, an adhesive (die bond agent) for fixing the semiconductor light emitting element to a package, a lead frame, etc., a structural material constituting the package, a highly reflective coating material, etc. Can be used for

用途に応じて、その他の成分を添加することができ、例えば、波長変換素子として用いる場合は蛍光体、フュームドシリカ、球状シリカなどを添加できる。ダイボンド剤として用いる場合は熱伝導剤、フュームドシリカなどを添加できる。パッケージ用の構造材料や高反射コーティング材として用いる場合はチタニア粒子やアルミナ粒子などを添加することができる。   Depending on the application, other components can be added. For example, when used as a wavelength conversion element, phosphor, fumed silica, spherical silica and the like can be added. When used as a die bond agent, a heat conductive agent, fumed silica, or the like can be added. When used as a structural material for a package or a highly reflective coating material, titania particles, alumina particles, and the like can be added.

以下、実施例により本発明を詳細に説明する。
<実施例1>
組成物液として1,2−シクロヘキサンジカルボン酸ジグリシジル1.14g、真球状フィラーHL−3100(龍森社製)12.6gを撹拌、混合を行った。
この液に酸無水物MH700(新日本理化社製)0.414g、ポリスチレン換算の重量平均分子量約900のポリメチルフェニルシロキサン(BLUESTARS SILICONES社製 FLD516)にガリウムアセチルアセトナート2wt%を溶解した液0.0375gを加えた。硬化性組成物GE−1を得た。
Hereinafter, the present invention will be described in detail by way of examples.
<Example 1>
As a composition liquid, 1.14 g of 1,2-cyclohexanedicarboxylic acid diglycidyl and 12.6 g of true spherical filler HL-3100 (manufactured by Tatsumori Co., Ltd.) were stirred and mixed.
A solution obtained by dissolving 0.4 wt g of acid anhydride MH700 (manufactured by Shin Nippon Rika Co., Ltd.), polymethylphenylsiloxane having a polystyrene-equivalent weight average molecular weight of about 900 (FLD516 manufactured by BLUESTARS SILICONES Co., Ltd.), 2 wt% of gallium acetylacetonate, in this solution 0 0.0375 g was added. The curable composition GE-1 was obtained.

<比較例1>
実施例1のGE−1の1,2−シクロヘキサンジカルボン酸ジグリシジルに変えて、jER828(三菱化学社製ビスフェノールA型エポキシ樹脂)を用いた以外はGE−1と同様にしてGE−0を得た。
GE−0及びGE−1の組成物をそれぞれ5mmφのアルミ皿に3〜4.5g取り、オーブンで80℃30min、120℃120min、150℃60min、200℃60
minの加熱を順次実施し硬化を行った。
結果、GE−1は加熱により硬化したが、GE−0は硬化しなかった。
<Comparative Example 1>
GE-0 was obtained in the same manner as GE-1 except that jER828 (Mitsubishi Chemical's bisphenol A type epoxy resin) was used in place of GE-1 of Example 1 instead of diglycidyl 1,2-cyclohexanedicarboxylate. .
3 to 4.5 g of each of the compositions of GE-0 and GE-1 is taken on an aluminum dish of 5 mmφ, and 80 ° C. for 30 min, 120 ° C. for 120 min, 150 ° C. for 60 min, and 200 ° C. for 60 ° C.
Curing was performed by sequentially performing heating for min.
As a result, GE-1 was cured by heating, but GE-0 was not cured.

Claims (3)

グリシジルエステル型エポキシ化合物と、ガリウム化合物と、シラノール源化合物とを含有する熱硬化性樹脂組成物。   A thermosetting resin composition comprising a glycidyl ester type epoxy compound, a gallium compound, and a silanol source compound. 請求項1記載の組成物において、酸無水物を含むことを特徴とする、熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 1, comprising an acid anhydride. 請求項1又は2記載の組成物を加熱することにより硬化した樹脂硬化物。   A cured resin cured by heating the composition according to claim 1.
JP2014064545A 2014-03-26 2014-03-26 thermosetting resin composition Pending JP2015187210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014064545A JP2015187210A (en) 2014-03-26 2014-03-26 thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014064545A JP2015187210A (en) 2014-03-26 2014-03-26 thermosetting resin composition

Publications (1)

Publication Number Publication Date
JP2015187210A true JP2015187210A (en) 2015-10-29

Family

ID=54429607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014064545A Pending JP2015187210A (en) 2014-03-26 2014-03-26 thermosetting resin composition

Country Status (1)

Country Link
JP (1) JP2015187210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189825A (en) * 2014-03-27 2015-11-02 三菱化学株式会社 thermosetting resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710622A (en) * 1980-06-24 1982-01-20 Toshiba Corp Catalyst for polymerizing epoxy compound
JPS5817537B2 (en) * 1979-06-25 1983-04-07 株式会社東芝 Epoxy resin composition
JP2007138126A (en) * 2005-10-20 2007-06-07 Hitachi Chem Co Ltd Resin composition, optical member using the same, and method for producing the same
JP2010111756A (en) * 2008-11-05 2010-05-20 Yokohama Rubber Co Ltd:The Heat-curable resin composition for sealing optical semiconductor and sealed body of optical semiconductor using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817537B2 (en) * 1979-06-25 1983-04-07 株式会社東芝 Epoxy resin composition
JPS5710622A (en) * 1980-06-24 1982-01-20 Toshiba Corp Catalyst for polymerizing epoxy compound
JP2007138126A (en) * 2005-10-20 2007-06-07 Hitachi Chem Co Ltd Resin composition, optical member using the same, and method for producing the same
JP2010111756A (en) * 2008-11-05 2010-05-20 Yokohama Rubber Co Ltd:The Heat-curable resin composition for sealing optical semiconductor and sealed body of optical semiconductor using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHUQING ZHANG,C.P.WONG: "Study on the Catalytic Behavior of Metal Acetylacetonates for Epoxy Curing Reaction", JOURNAL OF APPLIED POLYMER SCIENCE, vol. Vol.86,(2002), JPN6018003226, US, pages 1572-1579 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015189825A (en) * 2014-03-27 2015-11-02 三菱化学株式会社 thermosetting resin composition

Similar Documents

Publication Publication Date Title
JP5549789B1 (en) Thermosetting resin composition, method for producing the same, method for producing resin cured product, and method for generating self-polymerization of epoxy compound
TWI666250B (en) A thermosetting resin compound and a molding thereof
JPWO2005100445A1 (en) Optical semiconductor sealing composition, optical semiconductor sealing material, and method for producing optical semiconductor sealing composition
JP2008143954A (en) Isocyanuric ring-containing polymer, method for producing the same, and composition containing the same
JP2006225515A (en) Optical semiconductor element, sealing material therefor and sealing composition
JP2016180088A (en) Thermosetting resin composition and molding thereof
JP2012241059A (en) Thermosetting resin composition, member for semiconductor device, and semiconductor device using the same
JP2017066364A (en) Resin composition
JP2016166279A (en) Thermosetting resin composition and molded article thereof
JP6405663B2 (en) Thermosetting resin composition
JP6543991B2 (en) Thermosetting resin composition
JP2015187210A (en) thermosetting resin composition
JP2016117822A (en) Liquid resin composition
JP6421427B2 (en) Thermosetting resin composition
JP6311399B2 (en) Thermosetting resin composition and molded body thereof
JP6299328B2 (en) Thermosetting resin composition, method for producing the same, method for producing resin cured product, and method for generating self-polymerization of epoxy compound
JP2016194059A (en) Epoxy group-containing resin composition and molding thereof
JP6349858B2 (en) Thermosetting resin composition
JP6609935B2 (en) Resin composition
JP6657566B2 (en) Low viscosity resin composition
JP2015189824A (en) One-component thermosetting resin composition
JP2015189936A (en) One-component thermosetting resin composition
JP2018162426A (en) Liquid thermosetting resin composition having high flame retardancy and high reliability and molding thereof
JP2016117879A (en) Liquid resin composition
JP2015189920A (en) resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181106