WO2018024757A1 - Vorrichtung zur generativen fertigung eines dreidimensionalen körpers in einem pulverbett mit mehreren rakeln - Google Patents

Vorrichtung zur generativen fertigung eines dreidimensionalen körpers in einem pulverbett mit mehreren rakeln Download PDF

Info

Publication number
WO2018024757A1
WO2018024757A1 PCT/EP2017/069492 EP2017069492W WO2018024757A1 WO 2018024757 A1 WO2018024757 A1 WO 2018024757A1 EP 2017069492 W EP2017069492 W EP 2017069492W WO 2018024757 A1 WO2018024757 A1 WO 2018024757A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder bed
doctor blade
doctor
doctor blades
over
Prior art date
Application number
PCT/EP2017/069492
Other languages
English (en)
French (fr)
Inventor
Frank Brueckner
Mirko Riede
Robin WILLNER
André Seidel
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Technische Universität Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Technische Universität Dresden filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2018024757A1 publication Critical patent/WO2018024757A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/214Doctor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a device for the generative production of a three-dimensional body in a powder bed with a plurality of doctor blades.
  • a powdered material is knife coated onto a platform in a manufacturing area, or jetted onto the platform and scrapered evenly on the platform distributed. Subsequently, the powder bed is irradiated along a predetermined geometry with an energy beam and thereby melted or sintered in the irradiated areas. Before applying a new layer, the platform is lowered by the thickness of one layer. Further layers of the powdery material are applied and irradiated along a predetermined geometry with at least one energy beam until the wished three-dimensional body is designed as a composite or composite component.
  • SLM Selective Laser Melting
  • EBM Electron Beam Melting
  • the process speed in such processes mainly depends on the powder application and the irradiation of the surface of the powder bed.
  • irradiation of the surface of the powder bed can only take place when the powder application for the respective layer has been completed. This makes the process relatively slow.
  • Another disadvantage of known devices is that when using different powdered materials for the targeted formation of various properties in the produced three-dimensional body as a composite or composite component, the supply of powdered material must be changed or replaced before the squeegee apply another material on the powder bed and can distribute. This further reduces the already low working speed and productivity.
  • An apparatus for the additive production of a three-dimensional body in a powder bed has a production area with a lowerable surface. A powder bed is placed on the lowerable surface. Each time before applying a new layer of powdery material, the lowerable surface is lowered by the set layer thickness.
  • the device has a plurality of doctor blades for uniformly distributing a supplied pulverulent material over the surface of the powder bed, as well as a device for carrying out translatory movements of the doctor blade over the surface of the powder bed.
  • the applied powdered material is evenly distributed over the surface and pushed excess powdered material from the surface of the powder bed down.
  • the apparatus also includes means for directing at least one energy beam toward the surface of the powder bed and having its focal spot two-dimensionally movable across the surface of the powder bed.
  • the at least one energy beam may be a laser beam or an electron beam with which the powdery material is melted or sintered along a predeterminable geometry.
  • the doctor blade can be aligned both parallel to one another, as well as at an angle not equal to 0 ° to each other. In the case of an arrangement of more than two doctor blades, these can also be aligned at least partially parallel to one another and partly at different angles not equal to 0 ° with respect to one another and be moved in translation.
  • the translatory movement of the doctor blade over the surface of the powder bed can take place simultaneously or with a time interval one behind the other in the same direction and / or it can after completion of the translatory movement of a doctor blade, the movement of a next doctor blade in one of the direction of translational movement of the previously moved squeegee different direction.
  • the movement of the squeegee should be controlled so that the squeegee in their movement does not interfere with each other. For example, it is possible to move a squeegee, after having been applied and distributed on the surface of a powder bed with this powdered material, back to its original position before a next squeegee is moved over the surface of the powder bed. In an alternative, the squeegee can be brought into an end position of the translational movement and after reaching the next squeegee can be moved over the surface of the powder bed.
  • the squeegees can be moved so far beyond the surface of the manufacturing area that they do not hinder each other in their movement.
  • recesses may be provided in the doctor blades, so that they can be used in a movement. tion in different directions over the surface are movable.
  • the device for carrying out the translatory movements can be an electric, pneumatic or hydraulic drive.
  • the doctor blades can be guided on rails over the surface of the powder bed, which can be arranged at different heights above the surface of the powder bed.
  • the doctor blade can be designed to supply pulverulent material to the surface of the powder bed.
  • nozzles are formed in / on the doctor blades for applying the powdery material to the surface of the powder bed.
  • a screw conveyor and / or a pneumatic feed for the powdery material to the nozzles of the doctor blade can be arranged in the doctor blades.
  • the powdery material can also be conveyed by means of gravitational force from at least one powder container to the nozzles on / in the doctor blades.
  • various powdered materials can be kept in several powder containers, which can be promoted alternately each alone or as a mixture.
  • various powdered materials or powdery materials with different particle size ranges can be applied to the powder bed. This makes it possible to apply different materials in layers so as to influence the material properties of the cardiac body in a targeted manner. An elaborate cleaning of the doctor blade in a material change is thereby eliminated.
  • a device for local preheating of the powdery material preferably by means of infrared radiation or induction, may be arranged.
  • the local preheating of the powder bed, the melting or sintering of the powdery material can be achieved by the irradiation with the energy beam faster and with a smaller amount of energy.
  • the manufacturing area can be divided into several work areas in which three-dimensional bodies can be produced at the same time. This can be made in a shorter time a higher number of three-dimensional body. It is particularly advantageous if several energy beams are arranged for irradiation of the powdery material. This further increases the working speed and the productivity.
  • the device By designing the device with a plurality of doctor blades, a change of the pulverulent material can take place in layers or within one layer, so that the material properties of the body to be produced can be influenced in a targeted manner. For this, when the powdery material is changed, no elaborate cleaning of the doctor blade is required, and the production process need not be interrupted. Thus, the working speed and the productivity of a method performed with the device can be increased.
  • FIG. 1 shows a production area 1 with a lowerable surface 2.
  • the base of the manufacturing area 1 and the lowerable surface 2 is rectangular.
  • a powder bed of a powdery material is applied on the lowerable surface 2.
  • two squeegees 3 a and 3 b oriented perpendicular to one another are arranged so that the squeegees 3 a, 3 b can be moved so far beyond the production area 1 that they are in the execution translatory movements do not interfere with each other.
  • nozzles 4a and 4b are arranged in / on the device. This allows different powdered materials or powdered materials with different
  • Particle size ranges are applied to the powder bed.
  • the powdery material is distributed with the doctor 3a over the surface of the powder bed.
  • the movement of the squeegee 3a in the direction of the arrow 5 over the surface is carried out by a device 7 for performing translational movements (not shown).
  • the nozzles may be arranged separately above the surface of the powder bed or on the doctor blades 3a, 3b. In each case a plurality of nozzles 4a and 4b, preferably equidistantly, can be arranged on the doctor blades 3a and 3b.
  • the surface of the powder bed is irradiated along a predetermined geometry, whereby the powdery material melts or sinters in the region of the irradiation , Thereafter, the lowerable surface 2 is lowered by the thickness of the applied powder layer.
  • a layer of a second powdery material is applied by means of the nozzle 4b and with the doctor 3b over the surface of the
  • the device shown in Figure 2 differs in the orientation of the doctor blade 3a and 3b of that shown in Figure 1.
  • Doctor blades 3a and 3b are arranged parallel to one another here and are moved in the direction of the double arrows 5 over the surface of the powder bed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Powder Metallurgy (AREA)

Abstract

Vorrichtung zur generativen Fertigung eines dreidimensionalen Körpers in einem Pulverbett mit einem Fertigungsbereich, der eine absenkbare Oberfläche, auf der das Pulverbett angeordnet ist, aufweist, und mit mehreren Rakeln zur gleichmäßigen Verteilung eines zugeführten pulverförmigen Werkstoffs über die Oberfläche des Pulverbetts. Die Vorrichtung weist außerdem eine Einrichtung zur Ausführung translatorischer Bewegungen der Rakel über die Oberfläche des Pulverbetts, und eine Einrichtung, mit der mindestens ein Energiestrahl auf die Oberfläche des Pulverbetts gerichtet und dessen Brennfleck zweidimensional bewegbar ist, auf.

Description

Vorrichtung zur generativen Fertigung eines dreidimensionalen Körpers in einem Pulverbett mit mehreren Rakeln
Die Erfindung betrifft eine Vorrichtung zur generativen Fertigung eines dreidimensionalen Körpers in einem Pulverbett mit mehreren Rakeln.
Bei Verfahren zur generativen Fertigung in einem Pulverbett, beispielsweise durch Selektives Laserschmelzen (SLM) oder Elektronenstrahlschmelzen (EBM), wird ein pulverförmiger Werkstoff mittels Rakel auf eine Plattform in einem Fertigungsbereich aufgetragen oder mittels Düsen auf die Plattform aufgebracht und mit einem Abstreifer gleichmäßig auf der Plattform verteilt. Anschließend wird das Pulverbett entlang einer vorgegebenen Geometrie mit einem Energiestrahl bestrahlt und dabei in den bestrahlten Bereichen aufgeschmolzen oder gesintert. Vor jedem Aufbringen einer neuen Schicht wird die Plattform um die Dicke einer Schicht abgesenkt. Weitere Schichten des pulverförmigen Werkstoffs werden aufgebracht und entlang einer vorgegebenen Geometrie mit mindestens einem Energiestrahl bestrahlt, bis der ge- wünschte dreidimensionale Körper als Verbund- oder Kompositbauteil ausgebildet ist.
Die Prozessgeschwindigkeit bei derartigen Verfahren, die mit bekannten Vorrichtungen durchgeführt werden, hängt vor allem vom Pulverauftrag und der Bestrahlung der Oberfläche des Pulverbetts ab. So kann eine Bestrahlung der Oberfläche des Pulverbetts nur erfolgen, wenn der der Pulverauftrag für die jeweilige Schicht abgeschlossen ist. Dadurch ist das Verfahren relativ langsam.
Ein weiterer Nachteil bekannter Vorrichtungen ist, dass bei der Verwendung verschiedener pulverförmiger Werkstoffe zur gezielten Ausbildung verschiedener Eigenschaften in dem herzustellenden dreidimensionalen Körper als Verbund- oder Kompositbauteil die Zufuhr für pulverförmigen Werkstoff verändert oder ausgetauscht werden muss, bevor der Rakel einen anderen Werkstoff auf dem Pulverbett aufbringen und verteilen kann. Das senkt die ohnehin niedrige Arbeitsgeschwindigkeit und Produktivität weiter ab.
Es ist daher Aufgabe der Erfindung, eine Vorrichtung vorzuschlagen, mit der dreidimensionale Körper mittels generativer Fertigung im Pulverbett mit einer höheren Arbeitsgeschwindigkeit bzw. kleineren Taktzeit herstellbar sind.
Die Aufgabe wird erfindungsgemäß mit einer Vorrichtung mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen sind in den untergeordneten Ansprüchen dargestellt.
Eine Vorrichtung zur generativen Fertigung eines dreidimensionalen Körpers in einem Pulverbett weist einen Fertigungsbereich mit einer absenkbaren Oberfläche auf. Auf der absenkbaren Oberfläche wird ein Pulverbett angeordnet. Jeweils vor dem Aufbringen einer neuen Schicht pulverförmigen Werkstoffs wird die absenkbare Oberfläche um die eingestellte Schichtdicke abgesenkt.
Weiterhin weist die Vorrichtung mehrere Rakel zur gleichmäßigen Verteilung eines zugeführten pulverförmigen Werkstoffs über die Oberfläche des Pulverbetts, sowie eine Einrichtung zur Ausführung translatorischer Bewegungen der Rakel über die Oberfläche des Pulverbetts auf. Durch die translatorische Bewegung der Rakel über die Oberfläche des Pulverbetts wird der aufgebrachte pulverförmige Werkstoff gleichmäßig über die Oberfläche verteilt und überschüssiger pulverförmiger Werkstoff von der Oberfläche des Pulverbetts herunter geschoben.
Die Vorrichtung weist auch eine Einrichtung, mit der mindestens ein Energiestrahl auf die Oberfläche des Pulverbetts gerichtet und dessen Brennfleck zweidimensional über die Oberfläche des Pulverbetts bewegbar ist, auf. Der mindestens eine Energiestrahl kann ein Laserstrahl oder ein Elektronenstrahl sein, mit dem der pulverförmige Werkstoff entlang einer vorgebbaren Geometrie aufgeschmolzen oder gesintert wird.
Die Rakel können sowohl parallel zueinander, als auch in einem Winkel ungleich 0° zueinander ausgerichtet sein. Bei einer Anordnung von mehr als zwei Rakeln können diese auch zumindest teilweise parallel zueinander und teilweise in verschiedenen Winkeln ungleich 0° zueinander ausgerichtet sein und translatorisch bewegt werden. Die translatorische Bewegung der Rakel über die Oberfläche des Pulverbetts kann dabei gleichzeitig oder mit einem zeitlichen Abstand hintereinander in gleicher Richtung erfolgen und/oder es kann jeweils nach Abschluss der translatorischen Bewegung eines Rakels die Bewegung eines nächsten Rakels in einer von der Richtung der translatorischen Bewegung des zuvor bewegten Rakels verschiedenen Richtung ausgeführt werden. Dazu sollte die Bewegung der Rakel so gesteuert werden, dass sich die Rakel in ihrer Bewegung nicht gegenseitig behindern. So ist es beispiels- weise möglich, einen Rakel, nachdem mit diesem pulverförmiger Werkstoff auf der Oberfläche eines Pulverbetts aufgebracht und verteilt wurde, in seine Ausgangsposition zurück zu bewegen, bevor ein nächster Rakel über die Oberfläche des Pulverbetts bewegt wird. In einer Alternative kann der Rakel in eine Endposition der translatorischen Bewegung gebracht werden und nach ihrem Erreichen kann der nächste Rakel über die Oberfläche des Pulverbetts bewegt werden.
In einer vorteilhaften Ausführungsform können die Rakel soweit über die Oberfläche des Fertigungsbereichs hinaus bewegt werden, dass sie sich gegenseitig nicht in ihrer Bewegung behindern. Alternativ oder gleichzeitig können in den Rakeln Aussparungen vorgesehen sein, so dass sie bei einer Bewe- gung in verschiedene Richtungen über die Oberfläche bewegbar sind.
Die Einrichtung zur Ausführung der translatorischen Bewegungen kann ei- elektrisch, pneumatisch oder hydraulisch betriebener Antrieb sein. In einer Ausführungsvariante können die Rakel auf schienen über die Oberfläche des Pulverbetts geführt werden, die in unterschiedlichen Höhen über der Oberfläche des Pulverbetts angeordnet sein können.
Die Rakel können zur Zuführung pulverförmigen Werkstoffs zur Oberfläche des Pulverbetts ausgebildet sein. Dabei sind in/an den Rakeln Düsen zum Aufbringen des pulverförmigen Werkstoffs auf die Oberfläche des Pulverbetts ausgebildet. In den Rakeln können jeweils eine Förderschnecke und/oder eine pneumatische Zuführung für den pulverförmigen Werkstoff zu den Düsen der Rakel angeordnet sein.
Der pulverförmige Werkstoff kann auch mittels Gravitationskraft aus mindestens einem Pulverbehälter zu den Düsen an/in den Rakeln gefördert werden. Dabei können in mehreren Pulverbehältern auch verschiedene pulverförmige Werkstoffe vorgehalten werden, die im Wechsel jeweils allein oder auch als Mischung gefördert werden können.
Mit den verschiedenen Rakeln können verschiedene pulverförmige Werkstoffe oder pulverförmige Werkstoffe mit verschiedenen Partikelgrößenbereichen auf das Pulverbett aufgebracht werden. Damit ist es möglich, schichtweise verschiedene Werkstoffe aufzubringen, um so die Materialeigenschaften des herzstellenden Körpers gezielt zu beeinflussen. Ein aufwändiges Reinigen der Rakel bei einem Werkstoffwechsel entfällt dadurch.
Es können weitere Funktionselemente an der Vorrichtung vorgesehen sein. Beispielsweise kann eine Einrichtung zum lokalen Vorwärmen des pulverförmigen Werkstoffs, bevorzugt mittels Infrarotstrahlung oder Induktion, angeordnet sein. Durch das lokale Vorwärmen des Pulverbetts kann das Aufschmelzen oder Sintern des pulverförmigen Werkstoffs durch die Bestrahlung mit dem Energiestrahl schneller und mit einer geringeren Energiemenge erreicht werden. Der Fertigungsbereich kann in mehrere Arbeitsbereiche unterteilt werden, in denen gleichzeitig dreidimensionale Körper herstellbar sind. Damit kann in kürzerer Zeit eine höhere Anzahl dreidimensionaler Körper hergestellt werden. Dabei ist es besonders vorteilhaft, wenn mehrere Energiestrahlen zur Bestrahlung des pulverförmigen Werkstoffs angeordnet werden. Dies erhöht die Arbeitsgeschwindigkeit und die Produktivität weiter.
Durch eine Ausbildung der Vorrichtung mit mehreren Rakeln kann lagenweise oder innerhalb einer Lage ein Wechsel des pulverförmigen Werkstoffs erfol- gen, so dass die Materialeigenschaften des herzustellenden Körpers gezielt beeinflusst werden können. Dazu ist bei einem Wechsel des pulverförmigen Werkstoffs keine aufwändige Reinigung der Rakel erforderlich, und der Ferti- gungsprozess muss nicht unterbrochen werden. Damit kann die Arbeitsgeschwindigkeit und die Produktivität eines mit der Vorrichtung durchgeführten Verfahrens gesteigert werden.
Nachfolgend soll die Vorrichtung an Beispielen näher erläutert werden.
eine beispielhafte Ausführungsform einer erfindungsgemäßen Vorrichtung mit zwei senkrecht zueinander angeordneten Rakeln in einer perspektivischen Ansicht, und eine Variante der Ausführungsform aus Figur 1 mit zwei parallel zueinander angeordneten Rakeln in einer perspektivischen Ansicht.
In Figur 1 ist ein Fertigungsbereich 1 mit einer absenkbaren Oberfläche 2 dargestellt. Die Grundfläche des Fertigungsbereichs 1 und der absenkbaren Oberfläche 2 ist rechteckig. Auf der absenkbaren Oberfläche 2 wird ein Pulverbett aus einem pulverförmigen Werkstoff aufgebracht.
Über der Oberfläche 2 sind zwei senkrecht zueinander ausgerichtete Rakel 3a und 3b so angeordnet, dass die Rakel 3a, 3b soweit über den Fertigungsbereich 1 hinaus bewegt werden können, dass sie sich bei der Ausführung translatorischer Bewegungen nicht gegenseitig behindern.
Zum Zuführen des pulverförmigen Werkstoffs auf das Pulverbett sind in/an der Vorrichtung Düsen 4a und 4b angeordnet. Damit können verschiedene pulverförmige Werkstoffe oder pulverförmige Werkstoffe mit verschiedenen
Partikelgrößenbereichen auf das Pulverbett aufgebracht werden. Nach dem Aufbringen eines ersten pulverförmigen Werkstoffs mittels Düse 4a wird der pulverförmige Werkstoff mit dem Rakel 3a über die Oberfläche des Pulverbetts verteilt. Die Bewegung des Rakels 3a in Richtung des Pfeils 5 über die Oberfläche wird von einer Einrichtung 7 zur Ausführung translatorischer Bewegungen (nicht gezeigt) ausgeführt. Die Düsen können separat über der Oberfläche des Pulverbetts oder an den Rakeln 3a, 3b angeordnet sein. An den Rakeln 3a und 3b können jeweils mehrere Düsen 4a und 4b, bevorzugt äquidistant, angeordnet sein.
Mit einer Einrichtung, mit der ein Energiestrahl in Form eines Laser- oder Elektronenstrahls auf die Oberfläche des Pulverbetts gerichtet und dessen Brennfleck zweidimensional bewegbar ist, wird die Oberfläche des Pulverbetts entlang einer vorgegebenen Geometrie bestrahlt, wodurch der pulverförmige Werkstoff im Bereich der Bestrahlung schmilzt oder sintert. Danach wird die absenkbare Oberfläche 2 um die Dicke der aufgebrachten Pulverschicht abgesenkt.
Im Anschluss wird eine Schicht eines zweiten pulverförmigen Werkstoffs mit- tels der Düse 4b aufgebracht und mit dem Rakel 3b über der Oberfläche des
Pulverbetts verteilt. Auch die Bewegung des Rakels 3b in Richtung des Pfeils 6 über die Oberfläche wird von einer Einrichtung 7 zur Ausführung translatorischer Bewegungen ausgeführt. Ein Laser- oder Elektronenstrahl wird nun auf die Oberfläche des Pulverbetts gerichtet und die Oberfläche des Pulverbetts durch zweidimensionale Auslenkung des Laser- oder Elektronenstrahl entlang einer vorgegebenen Geometrie bestrahlt, wobei der zweite pulverförmige Werkstoff im bestrahlten Bereich geschmolzen oder gesintert wird. Danach wird die absenkbare Oberfläche 2 um die Dicke der aufgebrachten Schicht abgesenkt. Zur Fertigung eines dreidimensionalen Körpers in einem Pulverbett werden die notwendige Anzahl Schichten aus erstem und zweitem pulverförmigen Werkstoff in einer vorgebbaren Reihenfolge aufgebracht. Eine Variante der erfindungsgemäßen Vorrichtung nach Figur 1 ist in Figur 2 gezeigt. Dabei unterscheidet sich die in Figur 2 gezeigte Vorrichtung in der Ausrichtung der Rakel 3a und 3b von der in Figur 1 gezeigten. Rakel 3a und 3b sind hier parallel zueinander angeordnet und werden in Richtung der Doppelpfeile 5 über die Oberfläche des Pulverbettes bewegt.

Claims

Patentansprüche
1. Vorrichtung zur generativen Fertigung eines dreidimensionalen Körpers in einem Pulverbett mit einem Fertigungsbereich (1), der eine absenkbare Oberfläche (2), auf der das Pulverbett angeordnet ist, aufweist, und mehreren Rakeln (3) zur gleichmäßigen Verteilung eines zugeführten pulverförmigen Werkstoffs über die Oberfläche des Pulverbetts, und einer Einrichtung (7) zur Ausführung translatorischer Bewegungen der Rakel (3) über die Oberfläche des Pulverbetts, und einer Einrichtung, mit der mindestens ein Energiestrahl auf die Oberfläche des Pulverbetts gerichtet und dessen Brennfleck zweidimensional bewegbar ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der mindestens eine Energiestrahl ein Laserstrahl oder ein Elektronenstrahl ist
3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rakel (3) in einem Winkel ungleich 0° zueinander ausgerichtet sind.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rakel (3) hintereinander in gleicher Richtung und/oder in unterschiedlicher Richtung über die Oberfläche des Pulverbetts bewegbar sind.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rakel (3) zur Zuführung des pulverförmigen Werkstoffs ausgebildet sind, wobei der pulverförmige Werkstoff mit- tels Gravitationskraft von mindestens einem Pulverbehälter zu den Rakeln (3) gefördert wird und/oder dabei in den Rakeln (3)
Düsen zum Aufbringen des pulverförmigen Werkstoffs auf die Oberfläche des Pulverbetts und/oder
jeweils eine Förderschnecke und/oder eine pneumatische Zuführung zur Förderung des pulverförmigen Werkstoffs zu den Düsen der Rakel (3) angeordnet ist/sind.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mit den Rakeln (3) verschiedene pulverförmige Werkstoffe und/oder pulverförmige Werkstoffe mit verschiedenen mittleren Partikelgrößenbereichen auf die Oberfläche des Pulverbetts aufbringbar sind.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rakel (3) soweit über die Oberfläche (2) des Fertigungsbereichs (1) hinaus bewegbar sind, dass sie sich in ihren Bewegungen gegenseitig nicht behindern.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rakel (3) Aussparungen aufweisen, so dass sie bei einer Bewegung in verschiedenen Richtungen über die Oberfläche des Pulverbetts bewegbar sind.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine Einrichtung zum lokalen Vorwärmen des pulverförmigen Werkstoffs, bevorzugt mittels Infrarotstrahlung oder Induktion, aufweist.
10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Fertigungsbereich (1) in mindestens zwei Arbeitsbereiche teilbar ist und gleichzeitig in jedem Arbeitsbereich dreidimensionale Körper herstellbar sind.
PCT/EP2017/069492 2016-08-02 2017-08-02 Vorrichtung zur generativen fertigung eines dreidimensionalen körpers in einem pulverbett mit mehreren rakeln WO2018024757A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016214251.8 2016-08-02
DE102016214251.8A DE102016214251A1 (de) 2016-08-02 2016-08-02 Vorrichtung zur generativen Fertigung eines dreidimensionalen Körpers in einem Pulverbett mit mehreren Rakeln

Publications (1)

Publication Number Publication Date
WO2018024757A1 true WO2018024757A1 (de) 2018-02-08

Family

ID=59649671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/069492 WO2018024757A1 (de) 2016-08-02 2017-08-02 Vorrichtung zur generativen fertigung eines dreidimensionalen körpers in einem pulverbett mit mehreren rakeln

Country Status (2)

Country Link
DE (1) DE102016214251A1 (de)
WO (1) WO2018024757A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108327256A (zh) * 2018-04-18 2018-07-27 安徽机电职业技术学院 一种粉末打印的双向铺粉装置
CN109016504A (zh) * 2018-07-27 2018-12-18 繁昌县众运机械制造有限公司 一种3d打印机的粉料扫平装置
EP3536483A1 (de) * 2018-03-07 2019-09-11 Hitachi, Ltd. Vorrichtung zur pulverschichtmodellierung
WO2020161132A1 (de) 2019-02-04 2020-08-13 Kyocera Fineceramics Precision Gmbh Vorrichtung zur herstellung von bauteilen mittels additiver fertigungsverfahren
CN115430847A (zh) * 2022-09-27 2022-12-06 华中科技大学 一种同一切片层内多材料任意形态铺粉的装置
DE102019007941B4 (de) 2019-11-15 2023-12-21 Frank Heimbert Kulke Vorrichtung zur Herstellung eines dreidimensionalen Objektes
DE102022002558A1 (de) 2022-07-05 2024-01-11 Hochschule Mittweida (FH), Körperschaft des öffentlichen Rechts Verwendung von wenigstens einer Rakel zum Abstreifen von als Schicht aufgetragenem Pulver eines Pulverbetts zur nachfolgenden Beaufschlagung mit Laserstrahlen wenigstens eines Lasers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705210A1 (de) * 2019-03-05 2020-09-09 Siemens Aktiengesellschaft Verfahren und anlage zum versehen eines bereits hergestellten ersten bauteils mit wenigstens einem additiv gefertigten zweiten bauteil
CN115884843A (zh) * 2020-07-28 2023-03-31 西门子能源美国公司 使用分体式擦拭器来修复在粉末床上方突出的物体的方法和设备
DE102020213125A1 (de) 2020-10-19 2022-04-21 Zf Friedrichshafen Ag Verfahren und Vorrichtung zur additiven Fertigung eines schichtweise aufgebauten Faserverbundbauteils in einem Matrixmaterialbett

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012212587A1 (de) * 2012-07-18 2014-01-23 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts
US20150375340A1 (en) * 2014-06-30 2015-12-31 General Electric Company Additive manufacturing methods and systems with fiber reinforcement
WO2017145544A1 (ja) * 2016-02-24 2017-08-31 株式会社エンプラス 粉末焼結積層装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2743017B1 (fr) * 1996-01-03 1998-02-20 Allanic Andre Luc Procede de prototypage rapide par transformation successive de volumes de matiere et dispositif de mise en oeuvre de ce procede
DE102007040755A1 (de) * 2007-08-28 2009-03-05 Jens Jacob Lasersintervorrichtung sowie Verfahren zum Herstellen von dreidimensionalen Objekten durch selektives Lasersintern
DE102013209963A1 (de) * 2013-05-28 2014-12-18 Siemens Aktiengesellschaft Anordnung zum Aufrakeln eines Pulvers
DE102015213011A1 (de) * 2015-07-10 2017-01-12 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012212587A1 (de) * 2012-07-18 2014-01-23 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts
US20150375340A1 (en) * 2014-06-30 2015-12-31 General Electric Company Additive manufacturing methods and systems with fiber reinforcement
WO2017145544A1 (ja) * 2016-02-24 2017-08-31 株式会社エンプラス 粉末焼結積層装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3536483A1 (de) * 2018-03-07 2019-09-11 Hitachi, Ltd. Vorrichtung zur pulverschichtmodellierung
CN108327256A (zh) * 2018-04-18 2018-07-27 安徽机电职业技术学院 一种粉末打印的双向铺粉装置
CN108327256B (zh) * 2018-04-18 2023-10-24 安徽机电职业技术学院 一种粉末打印的双向铺粉装置
CN109016504A (zh) * 2018-07-27 2018-12-18 繁昌县众运机械制造有限公司 一种3d打印机的粉料扫平装置
CN109016504B (zh) * 2018-07-27 2020-07-10 芜湖市创源新材料有限公司 一种3d打印机的粉料扫平装置
WO2020161132A1 (de) 2019-02-04 2020-08-13 Kyocera Fineceramics Precision Gmbh Vorrichtung zur herstellung von bauteilen mittels additiver fertigungsverfahren
US11945133B2 (en) 2019-02-04 2024-04-02 Kyocera Fineceramics Precision Gmbh Apparatus for producing components by way of additive manufacturing processes
JP7483729B2 (ja) 2019-02-04 2024-05-15 キョウセラ ファインセラミックス プレシジョン ゲーエムベーハー 積層造形法によってコンポーネントを製造するための装置
DE102019007941B4 (de) 2019-11-15 2023-12-21 Frank Heimbert Kulke Vorrichtung zur Herstellung eines dreidimensionalen Objektes
DE102022002558A1 (de) 2022-07-05 2024-01-11 Hochschule Mittweida (FH), Körperschaft des öffentlichen Rechts Verwendung von wenigstens einer Rakel zum Abstreifen von als Schicht aufgetragenem Pulver eines Pulverbetts zur nachfolgenden Beaufschlagung mit Laserstrahlen wenigstens eines Lasers
CN115430847A (zh) * 2022-09-27 2022-12-06 华中科技大学 一种同一切片层内多材料任意形态铺粉的装置

Also Published As

Publication number Publication date
DE102016214251A1 (de) 2018-02-08

Similar Documents

Publication Publication Date Title
WO2018024757A1 (de) Vorrichtung zur generativen fertigung eines dreidimensionalen körpers in einem pulverbett mit mehreren rakeln
EP3083870B1 (de) Verfahren zur herstellung von mehrschicht-schleifpartikeln
EP2289462B1 (de) Vorrichtung und Verfahren zur kontinuierlichen, generativen Fertigung
EP2191922B1 (de) Träger- und Pulverauftragsvorrichtung für eine Anlage zur Herstellung von Werkstücken durch Beaufschlagen von Pulverschichten mit elektromagnetischer Strahlung oder Teilchenstrahlung
DE102007006478B4 (de) Vorrichtung und Verfahren zum Zuführen von sinterbarem Pulver auf eine Auftragsstelle einer Lasersintereinrichtung
EP3297811B1 (de) Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts
DE102014004633B4 (de) Vorrichtung und Verfahren zum Herstellen von dreidimensionalen Objekten durch aufeinanderfolgendes Verfestigen von Schichten
WO2018024755A1 (de) Vorrichtung zur generativen fertigung eines dreidimensionalen körpers in einem pulverbett
WO2016110440A1 (de) Vorrichtung und generatives schichtbauverfahren zur herstellung eines dreidimensionalen objekts mit mehrzahligen strahlen
DE19853978C1 (de) Vorrichtung für das selektive Laser-Schmelzen zur Herstellung eines Formkörpers
DE102006041320A1 (de) Beschichtereinrichtung für eine Bauvorrichtung zur Erstellung von Formteilen aus pulverartigem Baumaterial unter Einbringung von Strahlungsenergie
DE102006003152A1 (de) Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Gegenständen
EP3275654A1 (de) Beschichtungseinheit, beschichtungsverfahren, vorrichtung und verfahren zum generativen herstellen eines dreidimensionalen objekts
DE102012107297A1 (de) Arbeitsverfahren und Vorrichtung zum Auftragen, Aushärten und Oberflächenbearbeitung von pulverförmigen Werkstoffen auf Bauflächen
WO2012051979A2 (de) Vorrichtung zum herstellen, reparieren und/oder austauschen eines bauteils mittels eines durch energiestrahlung verfestigbaren pulvers, sowie ein verfahren und ein gemäss dem verfahren hergestelltes bauteil
DE102016202696B4 (de) Vorrichtung zur additiven Herstellung von dreidimensionalen Bauteilen
WO2012062253A2 (de) Vorrichtung zum herstellen, reparieren und/oder austauschen eines bauteils mittels eines durch energiestrahlung verfestigbaren pulvers, sowie ein verfahren und ein gemäss dem verfahren hergestellten bauteils
EP3323597B1 (de) Vorrichtung und verfahren zur additiven herstellung eines dreidimensionalen produktes
WO2015055361A1 (de) Elektronenstrahlschmelzverfahren sowie elektronenstrahlanordnung
WO2017097287A1 (de) Vorrichtung und verfahren zur herstellung eines dreidimensionalen metallischen formkörpers
WO2019076910A2 (de) Verfahren zur additiven fertigung eines bauteils sowie vorrichtung zur durchführung des verfahrens
WO2020177916A1 (de) Verfahren und anlage zum versehen eines bereits hergestellten ersten bauteils mit wenigstens einem additiv gefertigten zweiten bauteil
EP4048467A1 (de) Anordnung und verfahren zum erzeugen einer schicht eines partikelförmigen baumaterials in einem 3d-drucker
DE102017126698B4 (de) Verfahren und Vorrichtung zur additiven Fertigung
DE102019007941B4 (de) Vorrichtung zur Herstellung eines dreidimensionalen Objektes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17754102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17754102

Country of ref document: EP

Kind code of ref document: A1