WO2018024098A1 - 一种控制短tti的下行控制信道传输的方法及设备 - Google Patents

一种控制短tti的下行控制信道传输的方法及设备 Download PDF

Info

Publication number
WO2018024098A1
WO2018024098A1 PCT/CN2017/093460 CN2017093460W WO2018024098A1 WO 2018024098 A1 WO2018024098 A1 WO 2018024098A1 CN 2017093460 W CN2017093460 W CN 2017093460W WO 2018024098 A1 WO2018024098 A1 WO 2018024098A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
downlink control
short tti
terminal
lte system
Prior art date
Application number
PCT/CN2017/093460
Other languages
English (en)
French (fr)
Inventor
王磊
高雪娟
潘学明
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2018024098A1 publication Critical patent/WO2018024098A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting a short TTI (Transmission Time Interval) downlink control channel in a conventional control region.
  • TTI Transmission Time Interval
  • the mobile Internet is subverting the traditional mobile communication business model, providing users with an unprecedented experience, which has a profound impact on all aspects of people's work and life.
  • the mobile Internet will promote the further upgrade of human social information interaction methods, providing users with a richer business experience such as augmented reality, virtual reality, ultra high definition (3D) video, mobile cloud and so on.
  • the further development of the mobile Internet will bring about a thousand times increase in mobile traffic in the future, and promote a new round of changes in mobile communication technologies and industries.
  • the Internet of Things has expanded the range of services for mobile communications, from human-to-human communication to the intelligent interconnection of people and things, things and things, making mobile communication technology penetrate into a wider range of industries and fields.
  • LTE Long Term Evolution
  • FDD Frequency Division Dual
  • the frequency division duplex system uses a frame structure (frame structure type 1, FS1 for short), and its structure is shown in FIG.
  • the uplink and downlink transmissions use different carrier frequencies, and both the uplink and downlink transmissions use the same frame structure.
  • a 10ms (millisecond) length radio frame contains 10 1ms subframes, each of which is divided into two 0.5ms long slots.
  • the TTI duration of uplink and downlink data transmission is 1 ms.
  • the existing LTE TDD (TimeDivision Duplex) system uses a frame structure type 2 (FS2), as shown in FIG. 2 .
  • FS2 frame structure type 2
  • uplink and downlink transmissions use different subframes or different time slots on the same frequency.
  • Each 10 ms radio frame in FS2 consists of two 5 ms half frames, each of which contains five subframes of 1 ms length.
  • the sub-frames in FS2 are classified into three types: downlink sub-frames, uplink sub-frames, and special sub-frames.
  • Each special sub-frame consists of a downlink transmission time slot (DwPTS, Downlink Pilot Time Slot), a guard interval (GP, Guard Period), and The uplink transmission time slot (UpPTS, Uplink Pilot Time Slot) is composed of three parts.
  • the DwPTS can transmit downlink pilot, downlink service data and downlink control signaling; the GP does not transmit any signal; the UpPTS only transmits random access and sounding reference symbols (SRS, Sounding Reference Symbol), and cannot transmit uplink service or uplink control information.
  • Each field includes at least one downlink subframe and at least one uplink subframe, and at most one special subframe. Table 7 lists the seven uplink and downlink subframe configurations supported by FS2.
  • the minimum resource granularity in the time domain is one OFDM (Orthogonal Frequency Division Multiplexing) symbol
  • the minimum resource granularity in the frequency domain is one subcarrier.
  • (k, l) is the number of a basic resource element RE (resource element).
  • PRB (physical resource element) is a resource unit of a larger dimension. RE composition.
  • PRB pair is the basic unit of data resource allocation.
  • the PDCCH (physical downlink control channel) of the LTE system is used to carry scheduling information and other control information.
  • the transmission of one control channel occupies one CCE (control channel element) or multiple consecutive CCEs, each CCE is composed of 9 REGs (resource element group), and the REG included in the CCE of the PDCCH It is a REG that is not used to carry PCFICH and PHICH (Physical Hybrid Automatic Repeat Indicator Channel).
  • an EPDCCH Enhanced Physical Downlink Control Channel
  • the EPDCCH is transmitted in a data area in a subframe, and cannot occupy the transmission space of the PDCCH. Similar to the PDCCH, the concept of EREG (Enhanced Resource Cell Group) and ECCE (Enhanced Control Channel Element) is introduced.
  • EREG Enhanced Resource Cell Group
  • ECCE Enhanced Control Channel Element
  • the TTI length is fixed to 1 ms.
  • Each TTI of the LTE system needs to include a control area, which occupies the first few OFDM symbols of the TTI or a pre-configured set of PRB pairs.
  • embodiments of the present disclosure provide a method and apparatus for controlling downlink control channel transmission of a short TTI, and solving the technical problem of determining a transmission position of a downlink control channel of one or more short TTIs.
  • a method for controlling downlink control channel transmission of a short TTI including:
  • the base station determines a transmission location of one or more short TTI downlink control channels, which are transmitted in a legacy control region of the LTE system or in a control region of a short TTI.
  • the method further includes:
  • the base station notifies the terminal of the one or more short TTI downlink control channels by using high layer signaling Transmission location.
  • the base station after determining, by the base station, the transmission location of the downlink control channel of one or more short TTIs, the base station does not explicitly notify the terminal of the downlink control channel of the one or more short TTIs. Transfer location.
  • the base station determines a transmission location of a downlink control channel of one or more short TTIs, including:
  • the base station Determining, by the base station, the downlink control channel of the short TTI based on CRS demodulation or DMRS demodulation according to a transmission mode configured to the terminal;
  • the downlink control channel of the short TTI is based on DMRS demodulation, determining that one or more short TTI downlink control channels cannot be transmitted in a legacy control region of the LTE system;
  • the base station places zero or one or more of the short TTI downlink control channels in a traditional control region transmission of the LTE system as needed.
  • the plurality of short TTIs are in the same subframe.
  • the DCI carried on the control channel of each of the short TTIs needs to include the short TTI. location information;
  • the DCI carried on the control channel of the short TTI does not need to be included in the DCI.
  • the location information of the short TTI is not necessary to be included in the DCI.
  • the size of the DCI format corresponding to the short TTI transmitted in the legacy control region of the LTE system is different from the format size of the legacy DCI; or the DCI format corresponding to the short TTI transmitted in the legacy control region of the LTE system
  • the size of the traditional DCI format is reused, and the specific bit field is used to indicate that the DCI is the traditional DCI or the DCI of the corresponding short TTI transmitted in the traditional control region of the LTE system, or the DCI is differentiated into the traditional DCI or the LTE system through the RNTI.
  • the DCI of the corresponding short TTI transmitted by the traditional control region is different from the format size of the legacy DCI; or the DCI format corresponding to the short TTI transmitted in the legacy control region of the LTE system.
  • the method further includes:
  • the base station allocates resources for the downlink control channel in the USS of the terminal, where the terminal is the downlink control A terminal for controlling information scheduling on a channel.
  • the downlink control channel is based on CRS transmission.
  • the method further includes:
  • the base station allocates resources for the downlink control channel in a control region of the short TTI.
  • the downlink control channel is based on CRS and/or DMRS transmission.
  • a method for controlling downlink TWT transmission of a short TTI including:
  • the terminal determines a transmission location of one or more short TTI downlink control channels, which are transmitted in a legacy control region of the LTE system or in a control region of a short TTI.
  • the terminal determines a transmission location of the downlink control channel of one or more short TTIs, including:
  • the terminal determines, according to the configuration information, a transmission location of a downlink control channel of one or more short TTIs.
  • the method further includes:
  • the terminal detects the downlink control channel in the USS of the terminal in the traditional control region;
  • the terminal If it is determined that the downlink control channel of the short TTI is transmitted in the control region of the short TTI, the terminal detects the downlink control channel in the control region of the short TTI.
  • the terminal determines a transmission location of the downlink control channel of one or more short TTIs, including:
  • the terminal determines the transmission location of the downlink control channel of one or more short TTIs by blind detection.
  • the blind check is:
  • the terminal attempts to detect the control channel of the short TTI in the USS of the terminal in a traditional control region of the LTE system.
  • the method further includes:
  • the terminal detects the location in the USS of the terminal in a traditional control area of the LTE system Determining a downlink control channel of a short TTI, the terminal completing data transmission in the short TTI according to downlink control information carried by the downlink control channel, and detecting the downlink control channel in the short TTI;
  • the terminal If the terminal does not detect the downlink control channel of the short TTI in the USS of the terminal in the traditional control region of the LTE system, the terminal detects a downlink control channel associated with it in the control region of the short TTI.
  • the terminal determines a transmission location of the downlink control channel of one or more short TTIs, including:
  • the terminal Determining, by the terminal according to its own transmission mode, that the downlink control channel of the short TTI is based on CRS demodulation or based on DMRS demodulation;
  • the terminal does not detect the downlink control channel of the short TTI in a traditional control region of the LTE system;
  • the terminal detects the downlink control channel of the short TTI in a legacy control region of the LTE system.
  • the plurality of short TTIs are in the same subframe.
  • the method further includes:
  • the terminal demodulates the downlink control channel based on a CRS.
  • the method further includes:
  • the terminal distinguishes the traditional DCI of the LTE system and the DCI applicable to the short TTI according to different DCI format sizes; or the DCI size applicable to the short TTI is the same as the one or more traditional DCIs of the LTE system, according to the specificity in the DCI
  • the indication field determines that the DCI is a legacy DCI of the LTE system and a DCI applicable to the short TTI, or determines that the DCI is a legacy DCI of the LTE system and a DCI applicable to the short TTI according to the RNTI.
  • the method further includes:
  • the terminal demodulates the downlink control channel based on CRS and/or DMRS.
  • a base station including:
  • a first determining module configured to determine a transmission location of the downlink control channel of the one or more short TTIs, where the transmission is performed in a traditional control region of the LTE system, or in a control region of the short TTI.
  • the base station further includes:
  • the first notification module is configured to notify, by using high layer signaling, a transmission location of the downlink control channel of the one or more short TTIs by the terminal.
  • the base station further includes:
  • a second notification module configured to determine, at the transmission location of the downlink control channel of the one or more short TTIs, the uplink control channel transmission location of the one or more short TTIs by the terminal without explicitly signaling.
  • the determining module is further configured to:
  • the downlink control channel of the short TTI is based on DMRS demodulation, determining that one or more short TTI downlink control channels cannot be transmitted in a legacy control region of the LTE system;
  • the downlink control channel of the short TTI is based on CRS demodulation, zero or one or more of the short TTI downlink control channels are placed in a traditional control region transmission of the LTE system as needed.
  • the plurality of short TTIs are in the same subframe.
  • the DCI carried on the control channel of each of the short TTIs needs to include the short TTI. location information;
  • the DCI carried on the control channel of the short TTI does not need to be included in the DCI.
  • the location information of the short TTI is not necessary to be included in the DCI.
  • the size of the DCI format corresponding to the short TTI transmitted in the legacy control region of the LTE system is different from the format size of the legacy DCI; or the DCI format corresponding to the short TTI transmitted in the legacy control region of the LTE system Resizing the size of the traditional DCI format, using a specific bit field to indicate that the DCI is a traditional DCI or a pair of transmissions in the traditional control region of the LTE system.
  • the DCI of the short TTI should be short, or the DCI should be distinguished by the RNTI as the traditional DCI or the DCI of the corresponding short TTI transmitted in the traditional control region of the LTE system.
  • the base station further includes:
  • a first resource allocation module configured to allocate resources for the downlink control channel in the USS of the terminal when the downlink control channel of the short TTI is transmitted in the traditional control region of the LTE system, where the terminal is on the downlink control channel A terminal that controls information scheduling.
  • the downlink control channel is based on CRS transmission.
  • the base station further includes:
  • a second resource allocation module configured to allocate resources to the downlink control channel in a control region of the short TTI when the downlink control channel of the short TTI is not transmitted in the traditional control region of the LTE system.
  • the downlink control channel is based on CRS and/or DMRS transmission.
  • a terminal including:
  • a second determining module configured to determine a transmission location of the downlink control channel of the one or more short TTIs, where the transmission location is: in a traditional control region of the LTE system, or in a control region of the short TTI.
  • the second determining module is further configured to: receive configuration information; and determine, according to the configuration information, a transmission location of a downlink control channel of one or more short TTIs.
  • the terminal further includes:
  • a first detecting module configured to detect the downlink control channel in the USS of the terminal in the traditional control region if the downlink control channel of the short TTI is determined to be transmitted in a traditional control region of the LTE system;
  • the downlink control channel of the short TTI is transmitted in the control region of the short TTI
  • the downlink control channel is detected in the control region of the short TTI.
  • the second determining module is further configured to: determine, by blind detection, a transmission location of a downlink control channel of one or more short TTIs.
  • the second determining module is further configured to: attempt to detect the control channel of the short TTI in a USS of the terminal in a traditional control region of an LTE system.
  • the terminal further includes:
  • a second detecting module configured to: if the terminal detects the downlink control channel of the short TTI in the USS of the terminal in the traditional control area of the LTE system, complete the downlink control information carried by the downlink control channel Determining data transmission in a short TTI, and detecting the downlink control channel in the short TTI;
  • the terminal does not detect the downlink control channel of the short TTI in the USS of the terminal in the traditional control region of the LTE system, the downlink control channel associated with the short TTI is detected in the control region of the short TTI.
  • the second determining module is further configured to: determine, according to a transmission mode of the terminal itself, that the downlink control channel of the short TTI is based on CRS demodulation or based on DMRS demodulation;
  • the terminal does not detect the downlink control channel of the short TTI in a traditional control region of the LTE system;
  • the terminal detects the downlink control channel of the short TTI in a legacy control region of the LTE system.
  • the plurality of short TTIs are in the same subframe.
  • the terminal further includes:
  • the first demodulation module is configured to demodulate the downlink control channel based on the CRS if the downlink control channel is transmitted in a traditional control region of the LTE system.
  • the terminal further includes:
  • a distinguishing module configured to distinguish between a traditional DCI of an LTE system and a DCI applicable to a short TTI according to different DCI format sizes when the downlink control channel is transmitted in a legacy control region of the LTE system; or a DCI size suitable for a short TTI Determining that the DCI is a legacy DCI of an LTE system and a DCI applicable to a short TTI according to a specific indication field in the DCI, or determining that the DCI is a legacy DCI of the LTE system according to the RNTI, according to a specific DCI size of the LTE system. DCI for short TTI.
  • the terminal further includes:
  • the first demodulation module is configured to demodulate the downlink control channel based on the CRS and/or the DMRS if the downlink control channel is transmitted in a control region of a short TTI.
  • a base station including:
  • a memory coupled to the processor via a bus interface and configured to store programs and data used by the processor in performing operations
  • a transceiver for communicating with various other devices on a transmission medium
  • the base station When the processor invokes and executes programs and data stored in the memory, the base station performs the following processing:
  • Determining a transmission location of a downlink control channel of one or more short TTIs either in a legacy control region of the LTE system or in a control region of a short TTI.
  • a terminal including:
  • a memory coupled to the processor via a bus interface and configured to store programs and data used by the processor in performing operations
  • a transceiver for communicating with various other devices on a transmission medium
  • the terminal When the processor calls and executes the program and data stored in the memory, the terminal performs the following processing:
  • Determining a transmission location of a downlink control channel of one or more short TTIs either in a legacy control region of the LTE system or in a control region of a short TTI.
  • the base station can determine whether the downlink control channel of one or more short TTIs is transmitted in a traditional control region of the LTE system or in a control region of a short TTI, and then the base station notifies ( Explicit notification or implicit notification) The transmission position of the downlink control channel of the short TTI of the terminal, the terminal detects the downlink control channel at the transmission position of the corresponding control channel, or the terminal can also blindly check the downlink of one or more short TTIs. Whether the control channel is transmitted in the traditional control region of the LTE system or in the control region of the short TTI.
  • the above technical solution can control the transmission position of the downlink control channel of one or more short TTIs, which helps to reduce the short TTI in the subframe.
  • the overhead of the downlink control channel improves resource utilization.
  • FIG. 1 is a schematic diagram of a frame structure used by an existing LTE FDD system
  • FIG. 2 is a schematic diagram of a frame structure used by an existing LTE TDD system
  • 3 is a schematic diagram of a conventional downlink resource grid
  • FIG. 5 is a flowchart of a method for controlling downlink TWT downlink control channel transmission in Embodiment 2 of the present disclosure
  • FIG. 6 is a structural block diagram of a base station in Embodiment 3 of the present disclosure.
  • FIG. 7 is a structural block diagram of a terminal in Embodiment 4 of the present disclosure.
  • embodiments of the present disclosure may be implemented as a system, apparatus, device, method, or computer program product.
  • embodiments of the present disclosure may be embodied in the form of full hardware, complete software (including firmware, resident software, microcode, etc.), or a combination of hardware and software.
  • the device involved includes a base station and a terminal, and the base station and the terminal accessing the base station can perform downlink transmission and uplink reception.
  • the base station may include only a radio frequency (such as a Radio Radio Unit (RRU)) or a baseband and radio frequency (such as an active antenna).
  • the base station may only include a baseband (such as a baseband unit (BBU)); or may not include any digital/radio functions of the air interface layer, and is only responsible for high-level signal processing, and the baseband processing of the air interface layer is placed on the smart antenna.
  • RRU Radio Radio Unit
  • BBU baseband unit
  • the terminal may also be referred to as a User Equipment (UE), or may be called a Terminal, a Mobile Station (MS), a Mobile Terminal, etc., and the terminal may be connected to the Radio Access Network (Radio).
  • the Access Network (RAN) communicates with one or more core networks.
  • the terminal may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc., for example, the terminal may also be portable, pocket-sized. Handheld Mobile devices built into or onboard computers that exchange voice and/or data with the wireless access network.
  • the terminal in the embodiment of the present disclosure may also be a Device to Device (D2D) terminal or a Machine to Machine (M2M) terminal.
  • D2D Device to Device
  • M2M Machine to Machine
  • Step 401 The base station determines a transmission location of one or more short TTI downlink control channels, where the transmission location is: transmitted in a traditional control region of the LTE system, or transmitted in a control region of a short TTI.
  • multiple short TTIs are in the same subframe. It should be noted that the specific locations of multiple short TTIs are not limited in this embodiment.
  • the length of the short TTI described above is less than 1 ms.
  • the legacy control region of the LTE system is a control region used to transmit a PDCCH (Physical Downlink Control Channel) in the LTE system.
  • PDCCH Physical Downlink Control Channel
  • the control area of the short TTI described above is an area for transmitting a control channel of a short TTI.
  • the base station may notify the terminal by means of explicit notification or implicit notification.
  • the base station informs the terminal of the transmission position of the downlink control channel of one or more short TTIs through high layer signaling.
  • the high-level signaling includes the indication information.
  • the indication information is “1”
  • the downlink control channel of the short TTI is transmitted in the legacy control region of the LTE system, and it should be noted that, in this embodiment, Limit the specific form of the indication information.
  • the base station determines the transmission location of the downlink control channel of one or more short TTIs, and does not explicitly notify the terminal of the downlink control channel transmission location of the one or more short TTIs.
  • the base station autonomously selects (eg, according to scheduling resources or requirements) to transmit the downlink control channel in one or more short TTIs in the traditional control region of the LTE system or in the control region of the short TTI, and the base station does not pass explicit signaling.
  • the transmission position of the downlink control channel of the short TTI is notified to the terminal.
  • the manner of not explicitly signaling is the same as the method of explicitly signaling, and the manner of explicitly signaling may be: explicit notification by high-level signaling, and of course, not limited thereto. .
  • the base station may determine, according to the transmission mode configured to the terminal, that the downlink control channel of the short TTI is demodulated based on CRS (Cell-Specific Pilot) or based on DMRS (Demodulation Reference Signal); if short The downlink control channel of the TTI is based on DMRS demodulation, and the base station determines that one or more short TTI downlink control channels cannot be transmitted in the legacy control region of the LTE system, that is, the base station places one or more short TTI downlink control channels in the short TTI. Control region transmission; if the downlink control channel of the short TTI is based on CRS demodulation, the base station places zero or one or more of the short TTI downlink control channels in the traditional control region transmission of the LTE system as needed.
  • CRS Cell-Specific Pilot
  • DMRS Demodulation Reference Signal
  • the short TTI needs to be included in the DCI (downlink control information) carried on the control channel of each short TTI.
  • DCI downlink control information
  • the location information of the short TTI in the DCI carried on the control channel of the short TTI is not required.
  • the position of the short TTI in the LTE subframe is fixed to the Nth short TTI in the subframe, N is a positive integer greater than or equal to 1, and is smaller than the number of short TTIs included in the frame.
  • the base station may implicitly indicate whether the downlink control channel of the short TTI is transmitted in the traditional control region of the LTE system by using the DCI carried on the control channel of each short TTI.
  • the size of the DCI format corresponding to the short TTI transmitted in the legacy control region of the LTE system is different from the format size of the conventional DCI; or the size of the DCI format corresponding to the short TTI transmitted in the legacy control region of the LTE system is reused in the traditional DCI format.
  • Size using a specific bit field to indicate that the DCI is a conventional DCI or a DCI corresponding to a short TTI transmitted in a legacy control region of an LTE system, or distinguishing DCI from a conventional DCI or a legacy in an LTE system through an RNTI (Radio Network Temporary Identity) The DCI of the corresponding short TTI transmitted by the control region.
  • RNTI Radio Network Temporary Identity
  • the method may further include:
  • the base station transmits the downlink control channel of the short TTI according to the determined transmission position of the downlink control channel of the short TTI.
  • the method further includes:
  • the base station allocates resources for the downlink control channel in the USS (user equipment-specific search space) of the terminal, and the terminal is a terminal for scheduling control information on the downlink control channel; further, optionally, the downlink control channel is based on CRS transmission.
  • the method further includes:
  • the base station allocates resources for the downlink control channel in the control region of the short TTI. Further, optionally, the downlink control channel is based on CRS and/or DMRS transmission.
  • the base station can determine whether the downlink control channel of one or more short TTIs is transmitted in the legacy control region of the LTE system or in the control region of the short TTI, and then the base station notifies (explicitly notified or implicitly notified) that the terminal is short.
  • the transmission position of the downlink control channel of the TTI the terminal detects the downlink control channel at the transmission position of the corresponding control channel, and the foregoing technical solution can control the transmission position of the downlink control channel of one or more short TTIs, thereby helping to reduce the subframe.
  • the overhead of the downlink control channel of the short TTI improves the resource utilization.
  • Step 501 The terminal determines a transmission location of the downlink control channel of the one or more short TTIs, where the transmission location is: transmitted in a traditional control region of the LTE system, or transmitted in a control region of the short TTI.
  • multiple short TTIs are in the same subframe. It should be noted that, in this embodiment, specific locations of multiple short TTIs are not limited. For example, the multiple short TTIs may also be used. In different sub-frames.
  • the legacy control region of the LTE system is a control region used to transmit a PDCCH (Physical Downlink Control Channel) in the LTE system.
  • PDCCH Physical Downlink Control Channel
  • the control area of the short TTI described above is an area for transmitting a control channel of a short TTI.
  • the terminal may determine the transmission location of the downlink control channel of one or more short TTIs in the following manner.
  • the terminal may determine, by using the configuration information, a transmission location of the downlink control channel of one or more short TTIs.
  • the terminal receives the configuration information; the terminal determines, according to the configuration information, a transmission location of the downlink control channel of one or more short TTIs.
  • the terminal If it is determined that the downlink control channel of the short TTI is transmitted in the traditional control region of the LTE system, the terminal detects the downlink control channel in the USS of the terminal in the traditional control region;
  • the terminal If it is determined that the downlink control channel of the short TTI is transmitted in the control region of the short TTI, the terminal detects the downlink control channel in the control region of the short TTI.
  • Option 2 The terminal determines the transmission position of the downlink control channel of one or more short TTIs by blind detection.
  • One way of the blind detection may be that the terminal attempts to detect the control channel of the short TTI in the USS of the terminal in the traditional control region of the LTE system.
  • the terminal detects the downlink control channel of the TTI in the USS of the terminal in the traditional control area of the LTE system, the terminal completes the data transmission in the short TTI according to the downlink control information carried by the downlink control channel, and does not detect in the short TTI.
  • Downlink control channel
  • the terminal If the terminal does not detect the downlink control channel of the short TTI in the USS of the terminal in the traditional control region of the LTE system, the terminal detects the downlink control channel associated with it in the control region of the short TTI.
  • the downlink control information may carry the location information of the short TTI.
  • the DCI includes short TTI indication information indicating which short TTI in the subframe corresponds to the short TTI control channel.
  • the manner in which the terminal implicitly determines the transmission position of the downlink control channel of one or more short TTIs may also be:
  • the terminal determines, according to its own transmission mode, that the downlink control channel of the short TTI is based on CRS demodulation or based on DMRS demodulation;
  • the terminal does not detect the downlink control channel of the short TTI in the traditional control region of the LTE system, and detects the downlink control channel of the short TTI only in the control region of the short TTI;
  • the terminal detects the downlink control channel of the short TTI in the legacy control region of the LTE system.
  • the method further includes: the terminal demodulating the downlink control channel based on the CRS.
  • the method further includes:
  • the terminal distinguishes the traditional DCI of the LTE system and the DCI applicable to the short TTI according to different DCI format sizes; or the DCI size applicable to the short TTI is the same as the one or more traditional DCI sizes of the LTE system according to a specific indication in the DCI.
  • the domain determines that the DCI is a legacy DCI of the LTE system and a DCI applicable to the short TTI, or determines that the DCI is a legacy DCI of the LTE system and a DCI applicable to the short TTI according to the RNTI.
  • the method further includes: the terminal demodulating the downlink control channel based on the CRS and/or the DMRS.
  • the terminal determines the transmission position of the downlink control channel of the short TTI, and then the terminal may detect the downlink control channel at the transmission position of the corresponding control channel, or the terminal may also blindly check the downlink control of one or more short TTIs. Whether the channel is transmitted in the traditional control region of the LTE system or in the control region of the short TTI.
  • the above technical solution can control the transmission position of the downlink control channel of one or more short TTIs, which helps to reduce the downlink of the short TTI in the subframe. Control channel overhead and improve resource utilization.
  • the ability to control the transmission position of the downlink control channel of one or more short TTIs helps to reduce the overhead of the downlink control channel of the short TTI in the subframe and improve resource utilization.
  • the base station notifies the terminal through 1 bit (bit) high layer signaling whether the downlink control channel of the first short TTI in one subframe is transmitted in a legacy control region in the LTE system.
  • the high-level signaling includes indication information.
  • the indication information is 1, the downlink control channel indicating the short TTI is transmitted in a legacy control region of the LTE system.
  • DCI1 first downlink control information
  • the format of DCI1 is different from the DCI format currently defined in the LTE system (the currently defined DCI format can also be referred to as the traditional DCI format), and UE1 can pass blind.
  • the legacy DCI format (the legacy DCI format) and the DCI format for the short TTI are classified; or the DCI of the short TTI is the same as the size of the legacy DCI, and the received DCI is determined according to the specific indication bit in the DCI of the short TTI.
  • Short TTI or legacy TTI (traditional TTI); or, the control channel of the short TTI is scrambled by a specific RNTI, and the terminal can distinguish whether the received channel is a legacy control channel or a control channel of a short TTI by blind detection. If UE1 receives its own DCI1 in the legacy control region of the LTE system, the UE1 transmits data in the short TTI according to the DCI1.
  • the downlink control channel indicating the short TTI is transmitted in the control region of the short TTI. For example, if the UE1 receives the high-layer signaling and learns that the downlink control channel of the short TTI is transmitted in the control region of the short TTI, the UE1 detects only its own downlink control channel in the control region of the short TTI.
  • the control channel of the short TTI transmitted in the legacy control region of the LTE system may be the control channel of other short TTIs in the subframe.
  • the terminal determines whether the control channel of the first short TTI in the subframe is transmitted in the legacy control region of the LTE system by means of blind detection. For example, UE1 (first terminal) needs to transmit data in the first short TTI in the subframe, and its downlink control information is DCI1. Then, UE1 needs to detect a downlink control channel of a short TTI in its own USS in the legacy control region of the LTE system, and attempts to receive DCI1 (first DCI) transmitted on the downlink control channel. The size of the DCI1 is different from the DCI size of the normal TTI (normal TTI) data. The UE1 can distinguish different DCI formats.
  • the DCI size of the short TTI is the same as the legacy DCI (legacy DCI), according to the DCI of the short TTI.
  • the specific indication bit determines that the received DCI is used for the short TTI or the legacy TTI; or the DCI of the short TTI is the same as the legacy DCI (the traditional DCI), and the control channel of the short TTI is scrambled with a specific RNTI, and the terminal can pass the blind It is detected that the received channel is a legacy control channel or a control channel of a short TTI.
  • the UE1 receives the DCI1
  • the data is transmitted in the short TTI according to the scheduling information of the DCI1, and the downlink control channel is not continuously detected in the downlink control region of the short TTI. If the UE1 does not receive the downlink control information of the short TTI in the USS of the legacy control region, the downlink control channel of the short TTI needs to be continuously detected in the downlink control region of the short TTI.
  • the control channel of the short TTI transmitted in the legacy control region of the LTE system may be the control channel of other short TTIs in the subframe.
  • the UL grant (uplink grant) of UE1 (first terminal) needs to be transmitted in the first short TTI in the subframe, and UE1 receives the high layer signaling notification and transmits in the legacy control region of the LTE system. Then, UE1 detects a downlink control channel of a short TTI in its own USS in the legacy control region, and attempts to receive the UL grant.
  • the size of the DCI carrying the short TTI downlink control information is different from the legacy DCI, and the terminal can distinguish by blind detection.
  • the DCI of the short TTI is the same as the size of the legacy DCI, and is determined according to the specific indication bit in the DCI of the short TTI.
  • the DCI is used for the short TTI or the legacy TTI; or the DCI of the short TTI is the same as the legacy DCI (the traditional DCI).
  • the control channel of the short TTI is scrambled with a specific RNTI, and the terminal can distinguish the received channel by blind detection. Is the control channel of the legacy control channel or short TTI. If UE1 receives the UL grant, it does not receive the UL grant in the control region of the short TTI.
  • the control channel of the short TTI transmitted in the legacy control region of the LTE system may be the control channel of other short TTIs in the subframe.
  • the base station notifies the terminal through the 3 bit (bit) high-level signaling whether the downlink control channel of a short TTI in the subframe is transmitted in the legacy control region of the LTE system.
  • the high-level signaling includes indication information.
  • the indication information is 011
  • the downlink control channel indicating the third short TTI in the subframe is transmitted in the legacy control region of the LTE system.
  • UE1 (first terminal) needs to transmit data in the short TTI, and its downlink control information is DCI1 (first DCI). Since the high-level signaling informs that the downlink control channel of the third short TTI in the terminal subframe needs to be transmitted in the legacy control region in the LTE system, UE1 needs to blindly check DCI1 in its own USS in the legacy control region.
  • the size of the DCI1 is different from the currently defined DCI size in the LTE system. The UE can distinguish between the legacy DCI format and the DCI format for the short TTI by blind detection. Alternatively, the DCI size of the short TTI is the same as the size of the legacy DCI, according to the short TTI.
  • the specific indication bit in the DCI determines that the received DCI is used for a short TTI or a legacy TTI;
  • the control channel of the short TTI is scrambled by a specific RNTI, and the terminal can distinguish whether the received channel is a legacy control channel or a control channel of a short TTI by blind detection. If UE1 receives its own DCI1 in the legacy control region of the LTE system, the UE1 transmits data in the short TTI according to the DCI1.
  • the downlink control channel indicating the short TTI is transmitted in the control region of the short TTI. For example, if the UE1 receives the high-layer signaling and learns that the downlink control channel of the short TTI is transmitted in the control region of the short TTI, the UE1 detects only its own downlink control channel in the control region of the short TTI.
  • the high layer signaling may also indicate that the control channels of multiple short TTIs are transmitted in the legacy control region of the LTE system.
  • the base station notifies the terminal whether to transmit the downlink control channel of the short TTI in the legacy control region of the LTE system through the 1-bit high-level signaling. And carrying the short TTI location information in the downlink control information of each short TTI transmitted in the legacy control region in one subframe of the LTE system.
  • Table 1 High-level indications of the control channel of the short TTI transmitted in the legacy control region
  • the first short TTI control information is transmitted in the legacy control region 010
  • the second short TTI control information is transmitted in the legacy control region 011
  • the third short TTI control information is transmitted in the legacy control region 100
  • the fourth short TTI control information is transmitted in the legacy control region.
  • the fifth short TTI control information is transmitted in the legacy control region 110
  • the sixth short TTI control information is transmitted in the legacy control region 111
  • the seventh short TTI control information is transmitted in the legacy control region
  • the terminal determines whether the control channel of a short TTI in the subframe is transmitted in the legacy control region of the LTE system by means of blind detection. It is assumed that 7 short TTIs are included in the subframe.
  • UE1 first terminal
  • DCI1 downlink control information
  • the UE1 needs to detect the downlink control channel of the short TTI in its own USS in the legacy control region of the LTE system, and attempts to receive the DCI1 transmitted on the downlink control channel.
  • the size of the DCI1 is different from the DCI size of the scheduled normal TTI data, and the UE can distinguish different DCI sizes.
  • the DCI of the short TTI is the same as the size of the legacy DCI, and the received DCI is determined according to the specific indication bit in the DCI of the short TTI.
  • the control channel of the short TTI is scrambled by a specific RNTI, and the terminal can distinguish whether the received channel is a legacy control channel or a control channel of a short TTI by blind detection.
  • the DCI includes short TTI indication information indicating that the short TTI control channel corresponds to which short TTI in the subframe, for example, the indication information is 011, indicating that the control channel of the short TTI corresponds to the subframe.
  • the 4th short TTI See Table 2 for specific instructions.
  • the terminal transmits data in the short TTI according to the scheduling information of the DCI1, and does not continue to detect the downlink control channel in the downlink control region of the short TTI. If the UE1 does not receive the downlink control information of the short TTI in the USS of the legacy control region, the downlink control channel of the short TTI needs to be continuously detected in the downlink control region of the short TTI.
  • Table 2 Instructions for transmission in the legacy control region in the control information of the short TTI
  • Short TTI indication Indication information 000 First short TTI control information 001 Second short TTI control information 010 Third short TTI control information 011 The fourth short TTI control information 100 The fifth short TTI control information 101 The sixth short TTI control information 110 The seventh short TTI control information 111 Reserved
  • this embodiment provides an optional implementation manner, when short TTI
  • the downlink control channel of the short TTI cannot be transmitted in the legacy control region of the LTE system.
  • the base station may configure, by using the high layer signaling, that the downlink control channel of the short TTI is not transmitted in the legacy control region of the LTE system.
  • the terminal implicitly determines, according to its own transmission mode, that the downlink control channel of the short TTI is based on CRS demodulation or based on DMRS demodulation.
  • the terminal does not attempt to receive the downlink control channel of the short TTI in the legacy control region of the LTE system. If the downlink control channel of the short TTI is based on CRS demodulation, the terminal attempts to receive the downlink control channel of the short TTI in a legacy control region of the LTE system.
  • Embodiment 3 is based on Embodiment 3 and Embodiment 6.
  • This embodiment provides an optional implementation manner. Based on the foregoing embodiment 3 and the sixth embodiment, when the high layer signaling indicates that the control channel of the terminal one or more short TTIs is transmitted in the legacy control region, but the terminal does not detect the control channel of the related short TTI in the legacy control region, Then, the terminal continues to detect and receive the downlink control channel in the control area of the corresponding short TTI.
  • the base station 600 comprising:
  • the first determining module 601 is configured to determine a transmission location of the downlink control channel of the one or more short TTIs, where the transmission location is: in a traditional control region of the LTE system, or in a control region of a short TTI.
  • the base station further includes:
  • a first notification module configured to notify, by using high layer signaling, a transmission location of the downlink control channel of the one or more short TTIs by the terminal.
  • the base station further includes:
  • a second notification module configured to determine, at the transmission location of the downlink control channel of the one or more short TTIs, the uplink control channel transmission location of the one or more short TTIs by the terminal without explicitly signaling.
  • the determining module is further configured to:
  • the downlink control channel of the short TTI is based on DMRS demodulation, determining that one or more short TTI downlink control channels cannot be transmitted in a legacy control region of the LTE system;
  • the downlink control channel of the short TTI is based on CRS demodulation, zero or one or more of the short TTI downlink control channels are placed in a traditional control region transmission of the LTE system as needed.
  • the multiple short TTIs are in the same subframe.
  • the short TTI needs to be included in the DCI carried on the control channel of each of the short TTIs.
  • the DCI carried on the control channel of the short TTI does not need to be included in the DCI.
  • the location information of the short TTI is not necessary to be included in the DCI.
  • the size of the DCI format corresponding to the short TTI transmitted in the traditional control region of the LTE system is different from the format size of the traditional DCI; or the DCI corresponding to the short TTI transmitted in the traditional control region of the LTE system.
  • the size of the format reuses the size of the traditional DCI format, and the specific bit field is used to indicate that the DCI is the traditional DCI or the DCI of the corresponding short TTI transmitted in the legacy control region of the LTE system, or the DCI is differentiated into the traditional DCI or the LTE system through the RNTI.
  • the traditional control region transmits the DCI corresponding to the short TTI.
  • the base station further includes:
  • a first resource allocation module configured to allocate resources for the downlink control channel in a USS of the terminal when the downlink control channel of the one or more short TTIs is transmitted in a traditional control region of the LTE system, where the terminal is a terminal for scheduling control information on a downlink control channel;
  • the downlink control channel is based on CRS transmission.
  • the base station further includes:
  • a second resource allocation module configured to allocate resources to the downlink control channel in a control region of the short TTI when the downlink control channel of the one or more short TTIs is not transmitted in the traditional control region of the LTE system.
  • the downlink control channel is transmitted based on CRS and/or DMRS.
  • the base station can determine that one or more short TTI downlink control channels are in LTE.
  • the traditional control region transmission of the system is also transmitted in the control region of the short TTI, and then the base station notifies (explicitly or implicitly notifies) the transmission position of the downlink control channel of the short TTI of the terminal, and the terminal detects the downlink at the transmission position of the corresponding control channel.
  • the control channel can control the transmission position of the downlink control channel of one or more short TTIs by using the foregoing technical solution, which helps reduce the overhead of the downlink control channel of the short TTI in the subframe and improves resource utilization.
  • the terminal 700 includes:
  • the second determining module 701 is configured to determine a transmission location of the downlink control channel of the one or more short TTIs, where the transmission location is: in a traditional control region of the LTE system, or in a control region of the short TTI.
  • the second determining module is further configured to: receive configuration information; and determine, according to the configuration information, a transmission location of a downlink control channel of one or more short TTIs.
  • the terminal further includes:
  • a first detecting module configured to detect the downlink control channel in the USS of the terminal in the traditional control region if the downlink control channel of the short TTI is determined to be transmitted in a traditional control region of the LTE system;
  • the downlink control channel of the short TTI is transmitted in the control region of the short TTI
  • the downlink control channel is detected in the control region of the short TTI.
  • the second determining module is further configured to: determine, by using a blind check, a transmission location of the downlink control channel of one or more short TTIs.
  • the second determining module is further configured to: in a legacy control region of the LTE system, attempt to detect a control channel of the short TTI in a USS of the terminal.
  • the terminal further includes:
  • a second detecting module configured to: if the terminal detects the downlink control channel of the short TTI in the USS of the terminal in the traditional control area of the LTE system, complete the downlink control information carried by the downlink control channel Determining data transmission in a short TTI, and detecting the downlink control channel in the short TTI;
  • the terminal does not detect the downlink control channel of the short TTI in the USS of the terminal in the traditional control region of the LTE system, detecting the related information in the control region of the short TTI Downlink control channel.
  • the second determining module is further configured to: determine, according to the transmission mode of the terminal, the downlink control channel of the short TTI, based on CRS demodulation or based on DMRS demodulation;
  • the terminal does not detect the downlink control channel of the short TTI in a traditional control region of the LTE system;
  • the terminal detects the downlink control channel of the short TTI in a legacy control region of the LTE system.
  • the multiple short TTIs are in the same subframe.
  • the terminal further includes:
  • the first demodulation module is configured to demodulate the downlink control channel based on the CRS if the downlink control channel is transmitted in a traditional control region of the LTE system.
  • the terminal further includes:
  • a distinguishing module configured to distinguish between a traditional DCI of an LTE system and a DCI applicable to a short TTI according to different DCI format sizes, if the downlink control channel is transmitted in a traditional control region of the LTE system, or according to a specific indication domain in the DCI
  • the DCI is determined to be a legacy DCI of the LTE system and a DCI applicable to the short TTI, or the DCI is determined to be a legacy DCI of the LTE system and a DCI applicable to the short TTI according to the RNTI.
  • the terminal further includes:
  • the first demodulation module is configured to demodulate the downlink control channel based on the CRS and/or the DMRS if the downlink control channel is transmitted in a control region of a short TTI.
  • the terminal determines the transmission position of the downlink control channel of the short TTI, and then the terminal can detect the downlink control channel at the transmission position of the corresponding control channel, because the transmission position of the downlink control channel of one or more short TTIs can be controlled. It helps to reduce the overhead of the downlink control channel with short TTI in the subframe and improve resource utilization.
  • system and “network” are used interchangeably herein.
  • B corresponding to A means that B is associated with A, and B can be determined from A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed method and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium, including partial steps for performing a transceiving method according to various embodiments of the present disclosure if a dry command is used to cause a computer device (which may be a personal computer, a server, or a network side device, etc.) .
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开文本实施例提供了一种控制短TTI的下行控制信道传输的方法及设备,该方法包括:基站确定一个或多个短TTI的下行控制信道的传输位置,传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输,基站通知终端短TTI的下行控制信道的传输位置,由终端在相应的控制信道的传输位置检测下行控制信道,或者,终端也可通过盲检确定一个或多个短TTI的下行控制信道的传输位置。

Description

一种控制短TTI的下行控制信道传输的方法及设备
相关申请的交叉引用
本申请主张在2016年8月5日在中国提交的中国专利申请号No.201610635934.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及通信技术领域,尤其涉及一种在传统控制区域传输短TTI(Transmission Time Interval,传输时间间隔)下行控制信道的方法及设备。
背景技术
移动互联网正在颠覆传统移动通信业务模式,为用户提供前所未有的使用体验,深刻影响着人们工作生活的方方面面。移动互联网将推动人类社会信息交互方式的进一步升级,为用户提供增强现实、虚拟现实、超高清(3D)视频、移动云等更加丰富的业务体验。移动互联网的进一步发展将带来未来移动流量超千倍增长,推动移动通信技术和产业的新一轮变革。而物联网则扩展了移动通信的服务范围,从人与人通信延伸到人与物、物与物智能互联,使移动通信技术渗透至更加广阔的行业和领域。未来,移动医疗、车联网、智能家居、工业控制、环境监测等将会推动物联网应用爆发式增长,数以千亿的设备将接入网络,实现真正的“万物互联”。同时,海量的设备连接和多样化的物联网业务也会给移动通信带来新的技术挑战。
随着新的业务需求的持续出现和丰富,对未来移动通信系统提出了更高的性能需求,例如更高的峰值速率、更好的用户体验速率、更小的时延、更高的可靠性、更高的频谱效率和更高的能耗效率等,并需要支持更多的用户接入以及使用各种业务类型。为了支持数量巨大的各类终端连接以及不同的业务类型,上下行资源的灵活配置成为技术发展的一大趋势。未来的系统资源可以根据业务的不同,划分成不同的子带,并在子带上划分长度不同的TTI,以满足多种业务需求。
现有LTE(Long Term Evolution,长期演进)FDD(Frequency Division Dual, 频分双工)系统使用帧结构(frame structure type 1,简称FS1),其结构如图1所示。在FDD系统中,上行和下行传输使用不同的载波频率,上行和下行传输均使用相同的帧结构。在每个载波上,一个10ms(毫秒)长度的无线帧包含有10个1ms子帧,每个子帧内由分为两个0.5ms长的时隙。上行和下行数据发送的TTI时长为1ms。
现有LTE TDD(TimeDivisionDuplex,时分双工)系统使用帧结构(frame structure type 2,简称FS2),如图2所示。在TDD系统中,上行和下行传输使用相同的频率上的不同子帧或不同时隙。FS2中每个10ms无线帧由两个5ms半帧构成,每个半帧中包含5个1ms长度的子帧。FS2中的子帧分为三类:下行子帧、上行子帧和特殊子帧,每个特殊子帧由下行传输时隙(DwPTS,Downlink Pilot Time Slot)、保护间隔(GP,Guard Period)和上行传输时隙(UpPTS,Uplink Pilot Time Slot)三部分构成。其中DwPTS可以传输下行导频,下行业务数据和下行控制信令;GP不传输任何信号;UpPTS仅传输随机接入和探测参考信号(SRS,Sounding Reference Symbol),不能传输上行业务或上行控制信息。每个半帧中包含至少1个下行子帧和至少1个上行子帧,以及至多1个特殊子帧。FS2中支持的7种上下行子帧配置方式如表1所示。
表1:Uplink-downlink configurations
Figure PCTCN2017093460-appb-000001
现有LTE下行资源粒度
在现有LTE中,时域上最小资源粒度为一个OFDM(正交频分复用)符号,频域上最小资源粒度为一个子载波。(k,l)为一个基本资源元素RE(resource element)的编号。其中
Figure PCTCN2017093460-appb-000002
PRB(physical resource element,物理资源单元)是更大维度的资源单元,由
Figure PCTCN2017093460-appb-000003
个RE组成。一个subframe中有一个PRB pair,PRB pair是数据资源分配的基本单位。
现有LTE下行控制信道
LTE系统的PDCCH(physical downlink control channel,物理下行控制信道)用于承载调度信息以及其他控制信息。每个下行子帧的控制区域内可以有多个PDCCH,控制区域的大小由PCFICH(物理控制格式指示信道)决定,占1~4个OFDM符号。一个控制信道的传输占用一个CCE(control channel element,控制信道单元)或者多个连续的CCE,每个CCE由9个REG(resource element group,资源单元组)组成,且PDCCH的CCE所包含的REG为没有用于承载PCFICH和PHICH(物理混合自动重传指示信道)的REG。
为了扩展PDCCH的容量,在Rel-11引入了EPDCCH(增强物理下行控制信道)。EPDCCH在子帧中的数据区域进行传输,不能占用PDCCH的传输空间。与PDCCH类似,引入了EREG(增强的资源单元组)与ECCE(增强的控制信道单元)的概念。
在现有LTE系统中,TTI长度固定为1ms。LTE系统每个TTI都需要包含控制区域,控制区域占TTI的前几个OFDM符号或者预先配置好的一组PRB pair。对于短TTI,需要尽量减少短TTI的控制区域的资源开销。在条件允许的情况下,例如legacy control region有足够的资源,如果将子帧中短TTI的控制信道在legacy control region,可以减少短TTI控制信道的资源开销。
但是在LTE系统的现有标准中,如何确定短TTI是否在传统控制区域(legacy control region)中传输并没有明确的方案。
发明内容
鉴于上述技术问题,本公开文本实施例提供一种控制短TTI的下行控制信道传输的方法及设备,解决确定一个或多个短TTI的下行控制信道的传输位置的技术问题。
依据本公开文本实施例的第一方面,提供了一种控制短TTI的下行控制信道传输的方法,包括:
基站确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
在其中一个可行的实施例中,所述方法还包括:
所述基站通过高层信令通知终端所述一个或多个短TTI的下行控制信道 的传输位置。
在其中一个可行的实施例中,所述基站在确定一个或多个短TTI的下行控制信道的传输位置之后,并不通过显式信令通知终端所述一个或者多个短TTI的下行控制信道传输位置。
在其中一个可行的实施例中,所述基站确定一个或多个短TTI的下行控制信道的传输位置,包括:
所述基站根据配置给终端的传输模式,确定所述短TTI的下行控制信道基于CRS解调或基于DMRS解调;
如果所述短TTI的下行控制信道基于DMRS解调,则确定一个或多个短TTI的下行控制信道不能在LTE系统的传统控制区域传输;
如果所述短TTI的下行控制信道基于CRS解调,则基站根据需要将零个或一个或者多个所述短TTI的下行控制信道放置在LTE系统的传统控制区域传输。
在其中一个可行的实施例中,所述多个短TTI在同一个子帧中。
在其中一个可行的实施例中,当所述多个短TTI的控制信道在LTE系统的传统控制区域传输时,每个所述短TTI的控制信道上承载的DCI中需要包含所述短TTI的位置信息;
当所述一个短TTI的控制信道在LTE系统的传统控制区域传输,且所述短TTI在LTE子帧中的位置确定时,则不需要在所述短TTI的控制信道上承载的DCI中包含所述短TTI的位置信息。
在其中一个可行的实施例中,在LTE系统的传统控制区域传输的对应短TTI的DCI格式的大小不同于传统DCI的格式大小;或者在LTE系统的传统控制区域传输的对应短TTI的DCI格式的大小重用传统DCI格式的大小,用特定比特域来指示DCI为传统DCI或是在LTE系统的传统控制区域传输的对应短TTI的DCI,或者通过RNTI区分DCI为传统DCI或是在LTE系统的传统控制区域传输的对应短TTI的DCI。
在其中一个可行的实施例中,所述方法还包括:
当所述短TTI的下行控制信道在LTE系统的传统控制区域传输时,所述基站在终端的USS内为所述下行控制信道分配资源,所述终端为所述下行控 制信道上的控制信息调度的终端。
在其中一个可行的实施例中,所述下行控制信道基于CRS传输。
在其中一个可行的实施例中,所述方法还包括:
当所述短TTI的下行控制信道不在LTE系统的传统控制区域传输时,所述基站在短TTI的控制区域为所述下行控制信道分配资源。
在其中一个可行的实施例中,所述下行控制信道基于CRS和/或DMRS传输。
依据本公开文本实施例的第二方面,还提供了一种控制短TTI的下行控制信道传输的方法,包括:
终端确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
在其中一个可行的实施例中,终端确定一个或多个短TTI的下行控制信道的传输位置,包括:
所述终端接收配置信息;
所述终端根据所述配置信息确定一个或多个短TTI的下行控制信道的传输位置。
在其中一个可行的实施例中,所述方法还包括:
如果确定所述短TTI的下行控制信道在LTE系统的传统控制区域传输,所述终端在传统控制区域中所述终端的USS中检测所述下行控制信道;
如果确定所述短TTI的下行控制信道在短TTI的控制区域传输,所述终端在所述短TTI的控制区域检测所述下行控制信道。
在其中一个可行的实施例中,所述终端确定一个或多个短TTI的下行控制信道的传输位置,包括:
所述终端通过盲检确定一个或多个短TTI的下行控制信道的传输位置。
在其中一个可行的实施例中,所述盲检为:
所述终端在LTE系统的传统控制区域中所述终端的USS内尝试检测所述短TTI的控制信道。
在其中一个可行的实施例中,所述方法还包括:
如果所述终端在LTE系统的传统控制区域中所述终端的USS内检测到所 述短TTI的下行控制信道,所述终端按照所述下行控制信道承载的下行控制信息完成在所述短TTI中的数据传输,并且,在所述短TTI中不再检测所述下行控制信道;
如果所述终端在LTE系统的传统控制区域中所述终端的USS内没有检测到所述短TTI的下行控制信道,所述终端在所述短TTI的控制区域中检测与其相关的下行控制信道。
在其中一个可行的实施例中,所述终端确定一个或多个短TTI的下行控制信道的传输位置,包括:
所述终端根据自身的传输模式,确定所述短TTI的下行控制信道基于CRS解调或基于DMRS解调;
如果所述短TTI的下行控制信道基于DMRS解调,所述终端不会在LTE系统的传统控制区域检测所述短TTI的下行控制信道;
如果所述短TTI的下行控制信道基于CRS解调,所述终端在LTE系统的传统控制区域检测所述短TTI的下行控制信道。
在其中一个可行的实施例中,所述多个短TTI在同一个子帧中。
在其中一个可行的实施例中,如果所述下行控制信道在LTE系统的传统控制区域中传输时,所述方法还包括:
所述终端基于CRS解调所述下行控制信道。
在其中一个可行的实施例中,如果所述下行控制信道在LTE系统的传统控制区域中传输时,所述方法还包括:
所述终端根据不同的DCI格式大小区分LTE系统的传统DCI和适用于短TTI的DCI;或者适用于短TTI的DCI大小与LTE系统的一种或者多种传统DCI大小相同,根据DCI中的特定指示域确定该DCI为LTE系统的传统DCI和适用于短TTI的DCI,或根据RNTI确定该DCI为LTE系统的传统DCI和适用于短TTI的DCI。
在其中一个可行的实施例中,如果所述下行控制信道在短TTI的控制区域中传输时,所述方法还包括:
所述终端基于CRS和/或DMRS解调所述下行控制信道。
依据本公开文本实施例的第三方面,还提供了一种基站,包括:
第一确定模块,用于确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
在其中一个可行的实施例中,所述基站还包括:
第一通知模块,用于通过高层信令通知终端所述一个或多个短TTI的下行控制信道的传输位置。
在其中一个可行的实施例中,所述基站还包括:
第二通知模块,用于在确定一个或多个短TTI的下行控制信道的传输位置,并不通过显式信令通知终端所述一个或者多个短TTI的下行控制信道传输位置。
在其中一个可行的实施例中,所述确定模块进一步用于:
根据配置给终端的传输模式,确定所述短TTI的下行控制信道基于CRS解调或基于DMRS解调;
如果所述短TTI的下行控制信道基于DMRS解调,则确定一个或多个短TTI的下行控制信道不能在LTE系统的传统控制区域传输;
如果所述短TTI的下行控制信道基于CRS解调,则根据需要将零个或者一个或者多个所述短TTI的下行控制信道放置在LTE系统的传统控制区域传输。
在其中一个可行的实施例中,所述多个短TTI在同一个子帧中。
在其中一个可行的实施例中,当所述多个短TTI的控制信道在LTE系统的传统控制区域传输时,每个所述短TTI的控制信道上承载的DCI中需要包含所述短TTI的位置信息;
当所述一个短TTI的控制信道在LTE系统的传统控制区域传输,且所述短TTI在LTE子帧中的位置确定时,则不需要在所述短TTI的控制信道上承载的DCI中包含所述短TTI的位置信息。
在其中一个可行的实施例中,在LTE系统的传统控制区域传输的对应短TTI的DCI格式的大小不同于传统DCI的格式大小;或者在LTE系统的传统控制区域传输的对应短TTI的DCI格式的大小重用传统DCI格式的大小,用特定比特域来指示DCI为传统DCI或是在LTE系统的传统控制区域传输的对 应短TTI的DCI,或者通过RNTI区分所述DCI为传统DCI或是在LTE系统的传统控制区域传输的对应短TTI的DCI。
在其中一个可行的实施例中,所述基站还包括:
第一资源分配模块,用于当短TTI的下行控制信道在LTE系统的传统控制区域传输时,在终端的USS内为所述下行控制信道分配资源,所述终端为所述下行控制信道上的控制信息调度的终端。
在其中一个可行的实施例中,所述下行控制信道基于CRS传输。
在其中一个可行的实施例中,所述基站还包括:
第二资源分配模块,用于当所述短TTI的下行控制信道不在LTE系统的传统控制区域传输时,在短TTI的控制区域为所述下行控制信道分配资源。
在其中一个可行的实施例中,所述下行控制信道基于CRS和/或DMRS传输。
依据本公开文本实施例的第四方面,还提供了一种终端,包括:
第二确定模块,用于确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
在其中一个可行的实施例中,所述第二确定模块进一步用于:接收配置信息;根据所述配置信息确定一个或多个短TTI的下行控制信道的传输位置。
在其中一个可行的实施例中,所述终端还包括:
第一检测模块,用于如果确定所述短TTI的下行控制信道在LTE系统的传统控制区域传输,在传统控制区域中所述终端的USS中检测所述下行控制信道;
如果确定所述短TTI的下行控制信道在短TTI的控制区域传输,在所述短TTI的控制区域检测所述下行控制信道。
在其中一个可行的实施例中,所述第二确定模块进一步用于:通过盲检确定一个或多个短TTI的下行控制信道的传输位置。
在其中一个可行的实施例中,所述第二确定模块进一步用于:在LTE系统的传统控制区域中所述终端的USS内尝试检测所述短TTI的控制信道。
在其中一个可行的实施例中,所述终端还包括:
第二检测模块,用于如果所述终端在LTE系统的传统控制区域中所述终端的USS内检测到所述短TTI的下行控制信道,按照所述下行控制信道承载的下行控制信息完成在所述短TTI中的数据传输,并且,在所述短TTI中不再检测所述下行控制信道;
如果所述终端在LTE系统的传统控制区域中所述终端的USS内没有检测到所述短TTI的下行控制信道,在所述短TTI的控制区域中检测与其相关的下行控制信道。
在其中一个可行的实施例中,所述第二确定模块进一步用于:根据终端自身的传输模式,确定所述短TTI的下行控制信道基于CRS解调或基于DMRS解调;
如果所述短TTI的下行控制信道基于DMRS解调,所述终端不会在LTE系统的传统控制区域检测所述短TTI的下行控制信道;
如果所述短TTI的下行控制信道基于CRS解调,所述终端在LTE系统的传统控制区域检测所述短TTI的下行控制信道。
在其中一个可行的实施例中,所述多个短TTI在同一个子帧中。
在其中一个可行的实施例中,所述终端还包括:
第一解调模块,用于如果所述下行控制信道在LTE系统的传统控制区域中传输时,基于CRS解调所述下行控制信道。
在其中一个可行的实施例中,所述终端还包括:
区分模块,用于如果所述下行控制信道在LTE系统的传统控制区域中传输时,根据不同的DCI格式大小区分LTE系统的传统DCI和适用于短TTI的DCI;或者适用于短TTI的DCI大小与LTE系统的一种或者多种传统DCI大小相同根据DCI中的特定指示域确定该DCI为LTE系统的传统DCI和适用于短TTI的DCI,或根据RNTI确定该DCI为LTE系统的传统DCI和适用于短TTI的DCI。
在其中一个可行的实施例中,所述终端还包括:
第一解调模块,用于如果所述下行控制信道在短TTI的控制区域中传输时,基于CRS和/或DMRS解调所述下行控制信道。
依据本公开文本实施例的第五方面,还提供了一种基站,包括:
处理器;以及
存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;
收发机,用于在传输介质上与各种其他设备进行通信,
当所述处理器调用并执行所述存储器中所存储的程序和数据时,所述基站执行如下处理:
确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
依据本公开文本实施例的第六方面,还提供了一种终端,包括:
处理器;以及
存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;
收发机,用于在传输介质上与各种其他设备进行通信,
当所述处理器调用并执行所述存储器中所存储的程序和数据时,所述终端执行如下处理:
确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
上述技术方案中的一个技术方案具有如下优点或有益效果:基站能够确定一个或多个短TTI的下行控制信道是在LTE系统的传统控制区域传输还是在短TTI的控制区域传输,然后基站通知(显式通知或隐式通知)终端短TTI的下行控制信道的传输位置,由终端在相应的控制信道的传输位置检测下行控制信道,或者,终端也可通过盲检一个或多个短TTI的下行控制信道是在LTE系统的传统控制区域传输还是在短TTI的控制区域传输,通过上述技术方案能够控制一个或多个短TTI的下行控制信道的传输位置,有助于减少子帧内短TTI的下行控制信道的开销,提高资源利用率。
附图说明
图1为现有的LTE FDD系统使用帧结构示意图;
图2为现有的LTE TDD系统使用帧结构示意图;
图3为现有的下行资源栅格示意图;
图4为本公开文本实施例一中的控制短TTI的下行控制信道传输的方法的流程图;
图5为本公开文本实施例二中的控制短TTI的下行控制信道传输的方法的流程图;
图6为本公开文本实施例三中的基站的结构框图;
图7为本公开文本实施例四中的终端的结构框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显式了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本领域技术人员知道,本公开文本的实施方式可以实现为一种系统、装置、设备、方法或计算机程序产品。因此,本公开文本的实施例可以具体实现为以下形式:完全的硬件、完全的软件(包括固件、驻留软件、微代码等),或者硬件和软件结合的形式。
在本公开文本实施例中,所涉及到的设备包括基站和终端,基站与接入该基站的终端之间可以进行下行传输和上行接收。
其中,基站可以只包括射频(如射频拉远单元(Remote Radio Unit,简称RRU))或者包括基带和射频两部分(如有源天线(Active antenna))。基站可以只包括基带(如基带单元(Baseband Unit,简称BBU));也可以完全不包括任何空口层的数字/射频功能,只负责高层信号处理,把空口层的基带处理都放到智能天线。也存在其他多种网络实现可能。
终端也可称为用户设备(User Equipment,简称UE),或者可称之为Terminal、移动台(Mobile Station,简称MS)、移动终端(Mobile Terminal)等,该终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,例如,终端可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计 算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。本公开文本实施例中的终端还可以是设备与设备(Device to Device,简称D2D)终端或者机器与机器(Machine to Machine,简称M2M)终端。
实施例一
参见图4,图中示出了一种控制短TTI的下行控制信道传输的方法,具体步骤如下:
步骤401、基站确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
在本实施例中,可选地,多个短TTI在同一个子帧中,需要说明的是,在本实施例中并不限定多个短TTI的具体位置。
上述短TTI的长度小于1ms。
上述LTE系统的传统控制区域(legacy control region),是LTE系统中用来传输PDCCH(物理下行控制信道)的控制区域。
上述短TTI的控制区域,是用来传输短TTI的控制信道的区域。
在本实施例中,基站在确定了一个或多个短TTI的下行控制信道的传输位置之后,基站可以通过显式通知或隐式通知的方式通知终端。
可选方式一:
基站通过高层信令通知终端一个或多个短TTI的下行控制信道的传输位置。
例如,高层信令中包含指示信息,当该指示信息为“1“时,表示所述短TTI的下行控制信道在LTE系统的legacy control region传输,需要说明的是,在本实施例中并不限定指示信息的具体形式。
可选方式二:
基站确定一个或多个短TTI的下行控制信道的传输位置,并不通过显式信令通知终端所述一个或者多个短TTI的下行控制信道传输位置。
例如,基站自主选择(例如根据调度资源或需求)将一个或多个短TTI中的下行控制信道在LTE系统的传统控制区域传输或者在短TTI的控制区域传输,基站不通过显式信令将短TTI的下行控制信道的传输位置通知给终端。
上述不通过显式信令通知的方式,是相对于通过显式信令通知的方式而言,通过显式信令通知的方式可以是:通过高层信令显式通知,当然也并不限于此。
在上述可选方式二中,基站可以根据配置给终端的传输模式,确定短TTI的下行控制信道基于CRS(小区专有导频)解调或基于DMRS(解调参考信号)解调;如果短TTI的下行控制信道基于DMRS解调,则基站确定一个或多个短TTI的下行控制信道不能在LTE系统的传统控制区域传输,即基站将一个或多个短TTI的下行控制信道放置在短TTI的控制区域传输;如果短TTI的下行控制信道基于CRS解调,则基站根据需要将零个或者一个或者多个所述短TTI的下行控制信道放置在LTE系统的传统控制区域传输。
在本实施例中,可选地,当多个短TTI的控制信道在LTE系统的传统控制区域传输时,每个短TTI的控制信道上承载的DCI(下行控制信息)中需要包含该短TTI的位置信息;
当一个短TTI的控制信道在LTE系统的传统控制区域传输,且短TTI在LTE子帧中的位置确定时,则不需要在短TTI的控制信道上承载的DCI中包含短TTI的位置信息。例如,短TTI在LTE子帧中的位置固定为子帧内的第N个短TTI,N为大于等于1的正整数,且小于该帧中所包含的短TTI的个数。
在本实施例中,可选地,基站可通过每个短TTI的控制信道上承载的DCI来隐式指示该短TTI的下行控制信道是否在LTE系统的传统控制区域传输。
例如:在LTE系统的传统控制区域传输的对应短TTI的DCI格式的大小不同于传统DCI的格式大小;或者在LTE系统的传统控制区域传输的对应短TTI的DCI格式的大小重用传统DCI格式的大小,用特定比特域指示该DCI为传统DCI或是在LTE系统的传统控制区域传输的对应短TTI的DCI,或者通过RNTI(无线网络临时标识)区分DCI为传统DCI或是在LTE系统的传统控制区域传输的对应短TTI的DCI。
在本实施例中,可选地,在上述步骤401之后,该方法还可包括:
基站根据确定的短TTI的下行控制信道的传输位置,传输短TTI的下行控制信道。
在本实施例中,可选地,当短TTI的下行控制信道在LTE系统的传统控制区域传输时,该方法还包括:
基站在终端的USS(用户设备专有搜索空间)内为下行控制信道分配资源,该终端为下行控制信道上的控制信息调度的终端;进一步,可选地,下行控制信道基于CRS传输。
在本实施例中,可选地,当所述短TTI的下行控制信道不在LTE系统的传统控制区域传输时,所述方法还包括:
基站在短TTI的控制区域为下行控制信道分配资源。进一步,可选地,下行控制信道基于CRS和/或DMRS传输。
在本实施例中,基站能够确定一个或多个短TTI的下行控制信道在LTE系统的传统控制区域传输还是在短TTI的控制区域传输,然后基站通知(显式通知或隐式通知)终端短TTI的下行控制信道的传输位置,由终端在相应的控制信道的传输位置检测下行控制信道,通过上述技术方案能够控制一个或多个短TTI的下行控制信道的传输位置,有助于减少子帧内短TTI的下行控制信道的开销,提高资源利用率。
实施例二
参见图5,图中示出了一种控制短TTI的下行控制信道传输的方法,具体步骤如下:
步骤501、终端确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
在本实施例中,可选地,多个短TTI在同一个子帧中,需要说明的是,在本实施例中并不限定多个短TTI的具体位置,例如,该多个短TTI也可以在不同的子帧中。
上述LTE系统的传统控制区域(legacy control region),是LTE系统中用来传输PDCCH(物理下行控制信道)的控制区域。
上述短TTI的控制区域,是用来传输短TTI的控制信道的区域。
在本实施例中,可选地,终端可以通过以下方式确定一个或多个短TTI的下行控制信道的传输位置。
可选方式一、终端可以通过配置信息确定一个或多个短TTI的下行控制信道的传输位置。
具体地,终端接收配置信息;终端根据配置信息确定一个或多个短TTI的下行控制信道的传输位置。
如果确定短TTI的下行控制信道在LTE系统的传统控制区域传输,终端在传统控制区域中终端的USS中检测下行控制信道;
如果确定短TTI的下行控制信道在短TTI的控制区域传输,终端在短TTI的控制区域检测下行控制信道。
可选方式二、终端通过盲检确定一个或多个短TTI的下行控制信道的传输位置。
上述盲检的一种方式可以是:终端在LTE系统的传统控制区域中终端的USS内尝试检测短TTI的控制信道。
如果终端在LTE系统的传统控制区域中终端的USS内检测到TTI的下行控制信道,终端按照下行控制信道承载的下行控制信息完成在短TTI中的数据传输,并且,在短TTI中不再检测下行控制信道;
如果终端在LTE系统的传统控制区域中终端的USS内没有检测到短TTI的下行控制信道,终端在短TTI的控制区域中检测与其相关的下行控制信道。
上述下行控制信息(DCI)可以携带短TTI的位置信息,当终端接收到下行控制信息,DCI中包含短TTI指示信息,指示该短TTI控制信道对应于子帧中的哪个短TTI。
在本实施例中,终端隐式确定一个或多个短TTI的下行控制信道的传输位置的方式还可以是:
终端根据自身的传输模式,确定短TTI的下行控制信道基于CRS解调或基于DMRS解调;
如果短TTI的下行控制信道基于DMRS解调,终端不会在LTE系统的传统控制区域检测短TTI的下行控制信道,仅在短TTI的控制区域中检测短TTI的下行控制信道;
如果所述短TTI的下行控制信道基于CRS解调,终端在LTE系统的传统控制区域检测短TTI的下行控制信道。
在本实施例中,可选地,如果下行控制信道在LTE系统的传统控制区域中传输时,所述方法还包括:终端基于CRS解调下行控制信道。
在本实施例中,可选地,如果下行控制信道在LTE系统的传统控制区域中传输时,方法还包括:
所述终端根据不同的DCI格式大小区分LTE系统的传统DCI和适用于短TTI的DCI;或者适用于短TTI的DCI大小与LTE系统的一种或者多种传统DCI大小相同根据DCI中的特定指示域确定该DCI为LTE系统的传统DCI和适用于短TTI的DCI,或根据RNTI确定该DCI为LTE系统的传统DCI和适用于短TTI的DCI。
在本实施例中,可选地,如果下行控制信道在短TTI的控制区域中传输时,方法还包括:终端基于CRS和/或DMRS解调所述下行控制信道。
在本实施例中,终端确定短TTI的下行控制信道的传输位置,然后终端可以在相应的控制信道的传输位置检测下行控制信道,或者终端也可通过盲检一个或多个短TTI的下行控制信道是在LTE系统的传统控制区域传输还是在短TTI的控制区域传输,通过上述技术方案能够控制一个或多个短TTI的下行控制信道的传输位置,有助于减少子帧内短TTI的下行控制信道的开销,提高资源利用率。
由于能够控制一个或多个短TTI的下行控制信道的传输位置,有助于减少子帧内短TTI的下行控制信道的开销,提高资源利用率。
实施例三
基站通过1bit(比特)高层信令通知终端,一个子帧中第一个短TTI的下行控制信道是否在LTE系统中的legacy control region(传统控制区域)传输。例如,高层信令中包含指示信息,当该指示信息为1时,表示所述短TTI的下行控制信道在LTE系统的legacy control region传输。假设UE1(第一终端)需要在所述短TTI中传输数据,其下行控制信息为DCI1(第一下行控制信息)。由于高层信令通知终端子帧中第一个短TTI的下行控制信道需要在LTE系统中的legacy control region传输,则UE1需要在legacy control region中自己的USS内盲检DCI1。DCI1的格式与LTE系统中当前定义的DCI format(当前定义的DCI格式也可称为传统DCI格式)大小不同,UE1可以通过盲 检区分legacy DCI format(传统DCI格式)和用于短TTI的DCI format;或者,短TTI的DCI大小和legacy DCI的大小相同,根据短TTI的DCI中的特定指示比特确定接收到的DCI用于短TTI或者legacy TTI(传统TTI);或者,短TTI的控制信道采用特定的RNTI加扰,终端可以通过盲检区分接收到的信道是legacy控制信道或者短TTI的控制信道。UE1如果在LTE系统的legacy control region中接收到了自身的DCI1,则根据该DCI1在所述短TTI中传输数据。
当指示信息为0时,表示所述短TTI的下行控制信道在所述短TTI的控制区域传输。例如,UE1如果接收到了所述高层信令,获知所述短TTI的下行控制信道在所述短TTI的控制区域传输,则UE1只会在所述短TTI的控制区域检测自己的下行控制信道。
在LTE系统legacy control region传输的短TTI的控制信道,可以是该子帧中其他短TTI的控制信道。
实施例四
终端通过盲检的方式确定子帧中的第一个短TTI的控制信道是否在LTE系统的legacy control region传输。例如UE1(第一终端)需要在子帧中的第一个短TTI中传输数据,其下行控制信息为DCI1。则UE1需要在LTE系统的legacy control region中自己的USS内检测短TTI的下行控制信道,尝试接收在所述下行控制信道上传输的DCI1(第一DCI)。DCI1的大小与调度normal TTI(正常TTI)数据的DCI大小不同,UE1可以区分不同的DCI格式;或者,短TTI的DCI大小和legacy DCI(传统DCI)的大小相同,根据短TTI的DCI中的特定指示比特确定接收到的DCI用于短TTI或者legacy TTI;或者,短TTI的DCI大小和legacy DCI(传统DCI)的大小相同,短TTI的控制信道采用特定的RNTI加扰,终端可以通过盲检区分接收到的信道是legacy控制信道或者短TTI的控制信道。当UE1接收到DCI1,则根据DCI1的调度信息在所述短TTI中传输数据,且不会在所述短TTI的下行控制区域继续检测下行控制信道。如果UE1在所述legacy control region中自己的USS内没有接收到所述短TTI的下行控制信息,则需要在所述短TTI的下行控制区域内继续检测短TTI的下行控制信道。
在LTE系统legacy control region传输的短TTI的控制信道,可以是该子帧中其他短TTI的控制信道。
实施例五
假设UE1(第一终端)的UL grant(上行链路授权)需要在所述子帧中的第一个短TTI中传输,而UE1接收到了高层信令通知,在LTE系统的legacy control region传输。则UE1在所述legacy control region中自己的USS内检测短TTI的下行控制信道,并尝试接收所述UL grant。承载短TTI下行控制信息的DCI大小与legacy DCI大小不同,终端可以通过盲检进行区分;或者,短TTI的DCI大小和legacy DCI的大小相同,根据短TTI的DCI中的特定指示比特确定接收到的DCI用于短TTI或者legacy TTI;或者,短TTI的DCI大小和legacy DCI(传统DCI)的大小相同,短TTI的控制信道采用特定的RNTI加扰,终端可以通过盲检区分接收到的信道是legacy控制信道或者短TTI的控制信道。如果UE1接收到了所述UL grant,则不在短TTI的控制区域接收UL grant。
在LTE系统legacy control region传输的短TTI的控制信道,可以是该子帧中其他短TTI的控制信道。
实施例六:
假设子帧中包含7个短TTI。基站通过3bit(比特)高层信令通知终端,子帧中某一个短TTI的下行控制信道是否在LTE系统中的legacy control region传输。例如,高层信令包含指示信息,当该指示信息为011时,表示子帧中的第3个短TTI的下行控制信道在LTE系统的legacy control region传输,具体可参见表1。
假设UE1(第一终端)需要在所述短TTI中传输数据,其下行控制信息为DCI1(第一DCI)。由于高层信令通知终端子帧中第3个短TTI的下行控制信道需要在LTE系统中的legacy control region传输,则UE1需要在legacy control region中自己的USS内盲检DCI1。DCI1的大小与LTE系统中当前定义的DCI大小不同,UE可以通过盲检区分legacy DCI format和用于短TTI的DCI format;或者,短TTI的DCI大小和legacy DCI的大小相同,根据短TTI的DCI中的特定指示比特确定接收到的DCI用于短TTI或者legacy TTI; 或者,短TTI的控制信道采用特定的RNTI加扰,终端可以通过盲检区分接收到的信道是legacy控制信道或者短TTI的控制信道。UE1如果在LTE系统的legacy control region中接收到了自身的DCI1,则根据该DCI1在所述短TTI中传输数据。
当指示信息为000时,表示所述短TTI的下行控制信道在所述短TTI的控制区域传输。例如,UE1如果接收到了所述高层信令,获知所述短TTI的下行控制信道在所述短TTI的控制区域传输,则UE1只会在所述短TTI的控制区域检测自己的下行控制信道。
基于本实施例,高层信令也可以指示多个短TTI的控制信道在LTE系统的legacy control region中传输。
或者,基站只通过1bit高层信令通知终端是否在LTE系统的legacy control region传输短TTI的下行控制信道。并在LTE系统的一个子帧中legacy control region中传输的的每个短TTI的下行控制信息中携带短TTI的位置信息。
表1:短TTI的控制信道在legacy control region传输的高层指示信息
高层指示信息 指示信息含义
000 短TTI的控制信息不在legacy control region传输
001 第一个短TTI的控制信息在legacy control region传输
010 第二个短TTI的控制信息在legacy control region传输
011 第三个短TTI的控制信息在legacy control region传输
100 第四个短TTI的控制信息在legacy control region传输
101 第五个短TTI的控制信息在legacy control region传输
110 第六个短TTI的控制信息在legacy control region传输
111 第七个短TTI的控制信息在legacy control region传输
实施例七
终端通过盲检的方式确定子帧中的某个短TTI的控制信道是否在LTE系统的legacy control region传输。假设子帧中包含7个短TTI。例如UE1(第一终端)需要在子帧中的第3个短TTI中传输数据,其下行控制信息为DCI1 (第一DCI)。则UE1需要在LTE系统的legacy control region中自己的USS内检测短TTI的下行控制信道,尝试接收在所述下行控制信道上传输的DCI1。DCI1的大小与调度normal TTI数据的DCI大小不同,UE可以区分不同的DCI大小;或者,短TTI的DCI大小和legacy DCI的大小相同,根据短TTI的DCI中的特定指示比特确定接收到的DCI用于短TTI或者legacy TTI;或者,短TTI的控制信道采用特定的RNTI加扰,终端可以通过盲检区分接收到的信道是legacy控制信道或者短TTI的控制信道。当UE1接收到DCI1,DCI1中包含短TTI指示信息,指示该短TTI控制信道对应于子帧中的哪个短TTI,例如该指示信息为011,则表示该短TTI的控制信道对应于子帧中的第4个短TTI。具体的指示信息参见表2。然后所述终端根据DCI1的调度信息在所述短TTI中传输数据,且不会在所述短TTI的下行控制区域继续检测下行控制信道。如果UE1在所述legacy control region中自己的USS内没有接收到所述短TTI的下行控制信息,则需要在所述短TTI的下行控制区域内继续检测短TTI的下行控制信道。
表2:短TTI的控制信息中在legacy control region传输的指示信息
短TTI指示信息 指示信息含义
000 第一个短TTI的控制信息
001 第二个短TTI的控制信息
010 第三个短TTI的控制信息
011 第四个短TTI的控制信息
100 第五个短TTI的控制信息
101 第六个短TTI的控制信息
110 第七个短TTI的控制信息
111 Reserved
实施例八:
结合实施例三至实施例七,本实施例提供一种可选的实施方式,当短TTI 的下行控制信道基于DMRS解调时,则该短TTI的下行控制信道不能在LTE系统的legacy control region传输。基站可以通过高层信令配置所述短TTI的下行控制信道不在LTE系统的legacy control region传输。或者终端根据自身的传输模式,隐式确定所述短TTI的下行控制信道基于CRS解调或者基于DMRS解调。如果所述短TTI的下行控制信道基于DMRS解调,则终端不会在LTE系统的legacy control region尝试接收所述短TTI的下行控制信道。如果所述短TTI的下行控制信道基于CRS解调,则终端会在LTE系统的legacy control region尝试接收所述短TTI的下行控制信道。
实施例九
本实施例基于实施例三和实施例六,本实施例提供一种可选的实施方式。基于上述实施例三和实施例六,当高层信令指示终端一个或者多个短TTI的控制信道在legacy control region中传输,但是终端在legacy control region中并没有检测到相关短TTI的控制信道,则终端在相应的短TTI的控制区域继续检测接收下行控制信道。
实施例十
参见图6,图中示出了一种基站,该基站600包括:
第一确定模块601,用于确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
在本实施例中,可选地,基站还包括:
第一通知模块,用于通过高层信令通知所述终端所述一个或多个短TTI的下行控制信道的传输位置。
在本实施例中,可选地,基站还包括:
第二通知模块,用于在确定一个或多个短TTI的下行控制信道的传输位置,并不通过显式信令通知终端所述一个或者多个短TTI的下行控制信道传输位置。
在本实施例中,可选地,所述确定模块进一步用于:
根据配置给终端的传输模式,确定所述短TTI的下行控制信道基于CRS解调或基于DMRS解调;
如果所述短TTI的下行控制信道基于DMRS解调,则确定一个或多个短TTI的下行控制信道不能在LTE系统的传统控制区域传输;
如果所述短TTI的下行控制信道基于CRS解调,则根据需要将零个或者一个或者多个所述短TTI的下行控制信道放置在LTE系统的传统控制区域传输。
在本实施例中,可选地,所述多个短TTI在同一个子帧中。
在本实施例中,可选地,当所述多个短TTI的控制信道在LTE系统的传统控制区域传输时,每个所述短TTI的控制信道上承载的DCI中需要包含所述短TTI的位置信息;
当所述一个短TTI的控制信道在LTE系统的传统控制区域传输,且所述短TTI在LTE子帧中的位置确定时,则不需要在所述短TTI的控制信道上承载的DCI中包含所述短TTI的位置信息。
在本实施例中,可选地,在LTE系统的传统控制区域传输的对应短TTI的DCI格式的大小不同于传统DCI的格式大小;或者在LTE系统的传统控制区域传输的对应短TTI的DCI格式的大小重用传统DCI格式的大小,用特定比特域来指示DCI为传统DCI或是在LTE系统的传统控制区域传输的对应短TTI的DCI,或者通过RNTI区分DCI为传统DCI或是在LTE系统的传统控制区域传输的对应短TTI的DCI。
在本实施例中,可选地,所述基站还包括:
第一资源分配模块,用于当所述一个或者多个短TTI的下行控制信道在LTE系统的传统控制区域传输时,在终端的USS内为所述下行控制信道分配资源,所述终端为所述下行控制信道上的控制信息调度的终端;
在本实施例中,可选地,所述下行控制信道基于CRS传输。
在本实施例中,可选地,所述基站还包括:
第二资源分配模块,用于当所述一个或者多个短TTI的下行控制信道不在LTE系统的传统控制区域传输时,在短TTI的控制区域为所述下行控制信道分配资源。
在本实施例中,可选地,所述下行控制信道基于CRS和/或DMRS传输。
在本实施例中,基站能够确定一个或多个短TTI的下行控制信道是在LTE 系统的传统控制区域传输还是在短TTI的控制区域传输,然后基站通知(显式通知或隐式通知)终端短TTI的下行控制信道的传输位置,由终端在相应的控制信道的传输位置检测下行控制信道,通过上述技术方案能够控制一个或多个短TTI的下行控制信道的传输位置,有助于减少子帧内短TTI的下行控制信道的开销,提高资源利用率。
实施例十一
参见图7,图中示出了一种终端,该终端700包括:
第二确定模块701,用于确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
在本实施例中,可选地,所述第二确定模块进一步用于:接收配置信息;根据所述配置信息确定一个或多个短TTI的下行控制信道的传输位置。
在本实施例中,可选地,所述终端还包括:
第一检测模块,用于如果确定所述短TTI的下行控制信道在LTE系统的传统控制区域传输,在传统控制区域中所述终端的USS中检测所述下行控制信道;
如果确定所述短TTI的下行控制信道在短TTI的控制区域传输,在所述短TTI的控制区域检测所述下行控制信道。
在本实施例中,可选地,所述第二确定模块进一步用于:通过盲检确定一个或多个短TTI的下行控制信道的传输位置。
在本实施例中,可选地,所述第二确定模块进一步用于:在LTE系统的传统控制区域中所述终端的USS内尝试检测所述短TTI的控制信道。
在本实施例中,可选地,所述终端还包括:
第二检测模块,用于如果所述终端在LTE系统的传统控制区域中所述终端的USS内检测到所述短TTI的下行控制信道,按照所述下行控制信道承载的下行控制信息完成在所述短TTI中的数据传输,并且,在所述短TTI中不再检测所述下行控制信道;
如果所述终端在LTE系统的传统控制区域中所述终端的USS内没有检测到所述短TTI的下行控制信道,在所述短TTI的控制区域中检测与其相关的 下行控制信道。
在本实施例中,可选地,所述第二确定模块进一步用于:根据终端自身的传输模式,确定所述短TTI的下行控制信道基于CRS解调或基于DMRS解调;
如果所述短TTI的下行控制信道基于DMRS解调,所述终端不会在LTE系统的传统控制区域检测所述短TTI的下行控制信道;
如果所述短TTI的下行控制信道基于CRS解调,所述终端在LTE系统的传统控制区域检测所述短TTI的下行控制信道。
在本实施例中,可选地,所述多个短TTI在同一个子帧中。
在本实施例中,可选地,所述终端还包括:
第一解调模块,用于如果所述下行控制信道在LTE系统的传统控制区域中传输时,基于CRS解调所述下行控制信道。
在本实施例中,可选地,所述终端还包括:
区分模块,用于如果所述下行控制信道在LTE系统的传统控制区域中传输时,根据不同的DCI格式大小区分LTE系统的传统DCI和适用于短TTI的DCI,或者根据DCI中的特定指示域确定该DCI为LTE系统的传统DCI和适用于短TTI的DCI,或根据RNTI确定该DCI为LTE系统的传统DCI和适用于短TTI的DCI。
在本实施例中,可选地,所述终端还包括:
第一解调模块,用于如果所述下行控制信道在短TTI的控制区域中传输时,基于CRS和/或DMRS解调所述下行控制信道。
在本实施例中,终端确定短TTI的下行控制信道的传输位置,然后终端可以在相应的控制信道的传输位置检测下行控制信道,由于能够控制一个或多个短TTI的下行控制信道的传输位置,有助于减少子帧内短TTI的下行控制信道的开销,提高资源利用率。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开文本的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式 结合在一个或多个实施例中。
在本公开文本的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开文本实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开文本各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括如果干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)执行本公开文本各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各 种可以存储程序代码的介质。
以上所述的是本公开文本的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开文本所述的原理前提下还可以做出如果干改进和润饰,这些改进和润饰也在本公开文本的保护范围内。

Claims (46)

  1. 一种控制短TTI的下行控制信道传输的方法,包括:
    基站确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述基站通过高层信令通知终端所述一个或多个短TTI的下行控制信道的传输位置。
  3. 根据权利要求1所述的方法,其中,所述基站在确定一个或多个短TTI的下行控制信道的传输位置之后,并不通过显式信令通知终端所述一个或者多个短TTI的下行控制信道传输位置。
  4. 根据权利要求3所述的方法,其中,所述基站确定一个或多个短TTI的下行控制信道的传输位置,包括:
    所述基站根据配置给终端的传输模式,确定所述短TTI的下行控制信道基于CRS解调或基于DMRS解调;
    如果所述短TTI的下行控制信道基于DMRS解调,则确定一个或多个短TTI的下行控制信道不能在LTE系统的传统控制区域传输;
    如果所述短TTI的下行控制信道基于CRS解调,则基站根据需要将零个或一个或者多个所述短TTI的下行控制信道放置在LTE系统的传统控制区域传输。
  5. 根据权利要求2或3所述的方法,其中,所述多个短TTI在同一个子帧中。
  6. 根据权利要求2或3所述的方法,其中,当所述多个短TTI的控制信道在LTE系统的传统控制区域传输时,每个所述短TTI的控制信道上承载的DCI中需要包含所述短TTI的位置信息;
    当所述一个短TTI的控制信道在LTE系统的传统控制区域传输,且所述短TTI在LTE子帧中的位置确定时,则不需要在所述短TTI的控制信道上承载的DCI中包含所述短TTI的位置信息。
  7. 根据权利要求2或3所述的方法,其中,在LTE系统的传统控制区域 传输的对应短TTI的DCI格式的大小不同于传统DCI的格式大小;或者在LTE系统的传统控制区域传输的对应短TTI的DCI格式的大小重用传统DCI格式的大小,用特定比特域来指示DCI为传统DCI或是在LTE系统的传统控制区域传输的对应短TTI的DCI,或者通过RNTI区分DCI为传统DCI或是在LTE系统的传统控制区域传输的对应短TTI的DCI。
  8. 根据权利要求2或3所述的方法,其中,所述方法还包括:
    当所述短TTI的下行控制信道在LTE系统的传统控制区域传输时,所述基站在终端的USS内为所述下行控制信道分配资源,所述终端为所述下行控制信道上的控制信息调度的终端。
  9. 根据权利要求8所述的方法,其中,所述下行控制信道基于CRS传输。
  10. 根据权利要求2或3所述的方法,其中,所述方法还包括:
    当所述短TTI的下行控制信道不在LTE系统的传统控制区域传输时,所述基站在短TTI的控制区域为所述下行控制信道分配资源。
  11. 根据权利要求10所述的方法,其中,所述下行控制信道基于CRS和/或DMRS传输。
  12. 一种控制短TTI的下行控制信道传输的方法,包括:
    终端确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
  13. 根据权利要求12所述的方法,其中,终端确定一个或多个短TTI的下行控制信道的传输位置,包括:
    所述终端接收配置信息;
    所述终端根据所述配置信息确定一个或多个短TTI的下行控制信道的传输位置。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:
    如果确定所述短TTI的下行控制信道在LTE系统的传统控制区域传输,所述终端在传统控制区域中所述终端的USS中检测所述下行控制信道;
    如果确定所述短TTI的下行控制信道在短TTI的控制区域传输,所述终端在所述短TTI的控制区域检测所述下行控制信道。
  15. 根据权利要求12所述的方法,其中,所述终端确定一个或多个短TTI 的下行控制信道的传输位置,包括:
    所述终端通过盲检确定一个或多个短TTI的下行控制信道的传输位置。
  16. 根据权利要求15所述的方法,其中,所述盲检为:
    所述终端在LTE系统的传统控制区域中所述终端的USS内尝试检测所述短TTI的控制信道。
  17. 根据权利要求16所述的方法,其中,所述方法还包括:
    如果所述终端在LTE系统的传统控制区域中所述终端的USS内检测到所述短TTI的下行控制信道,所述终端按照所述下行控制信道承载的下行控制信息完成在所述短TTI中的数据传输,并且,在所述短TTI中不再检测所述下行控制信道;
    如果所述终端在LTE系统的传统控制区域中所述终端的USS内没有检测到所述短TTI的下行控制信道,所述终端在所述短TTI的控制区域中检测与其相关的下行控制信道。
  18. 根据权利要求12所述的方法,其中,所述终端确定一个或多个短TTI的下行控制信道的传输位置,包括:
    所述终端根据自身的传输模式,确定所述短TTI的下行控制信道基于CRS解调或基于DMRS解调;
    如果所述短TTI的下行控制信道基于DMRS解调,所述终端不会在LTE系统的传统控制区域检测所述短TTI的下行控制信道;
    如果所述短TTI的下行控制信道基于CRS解调,所述终端在LTE系统的传统控制区域检测所述短TTI的下行控制信道。
  19. 根据权利要求13或15所述的方法,其中,所述多个短TTI在同一个子帧中。
  20. 根据权利要求13或15所述的方法,其中,如果所述下行控制信道在LTE系统的传统控制区域中传输时,所述方法还包括:
    所述终端基于CRS解调所述下行控制信道。
  21. 根据权利要求13或15所述的方法,其中,如果所述下行控制信道在LTE系统的传统控制区域中传输时,所述方法还包括:
    所述终端根据不同的DCI格式大小区分LTE系统的传统DCI和适用于短 TTI的DCI,或者根据DCI中的特定指示域确定该DCI为LTE系统的传统DCI和适用于短TTI的DCI,或根据RNTI确定该DCI为LTE系统的传统DCI和适用于短TTI的DCI。
  22. 根据权利要求13或15所述的方法,其中,如果所述下行控制信道在短TTI的控制区域中传输时,所述方法还包括:
    所述终端基于CRS和/或DMRS解调所述下行控制信道。
  23. 一种基站,包括:
    第一确定模块,用于确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
  24. 根据权利要求23所述的基站,其中,所述基站还包括:
    第一通知模块,用于通过高层信令通知终端所述一个或多个短TTI的下行控制信道的传输位置。
  25. 根据权利要求23所述的基站,其中,所述基站还包括:
    第二通知模块,用于在确定一个或多个短TTI的下行控制信道的传输位置,并不通过显式信令通知终端所述一个或者多个短TTI的下行控制信道传输位置。
  26. 根据权利要求25所述的基站,其中,所述确定模块进一步用于:
    根据配置给终端的传输模式,确定所述短TTI的下行控制信道基于CRS解调或基于DMRS解调;
    如果所述短TTI的下行控制信道基于DMRS解调,则确定一个或多个短TTI的下行控制信道不能在LTE系统的传统控制区域传输;
    如果所述短TTI的下行控制信道基于CRS解调,则根据需要将零个或者一个或者多个所述短TTI的下行控制信道放置在LTE系统的传统控制区域传输。
  27. 根据权利要求24或25所述的基站,其中,所述多个短TTI在同一个子帧中。
  28. 根据权利要求24或25所述的基站,其中,当所述多个短TTI的控制信道在LTE系统的传统控制区域传输时,每个所述短TTI的控制信道上承 载的DCI中需要包含所述短TTI的位置信息;
    当所述一个短TTI的控制信道在LTE系统的传统控制区域传输,且所述短TTI在LTE子帧中的位置确定时,则不需要在所述短TTI的控制信道上承载的DCI中包含所述短TTI的位置信息。
  29. 根据权利要求24或25所述的基站,其中,在LTE系统的传统控制区域传输的对应短TTI的DCI格式的大小不同于传统DCI的格式大小;或者在LTE系统的传统控制区域传输的对应短TTI的DCI格式的大小重用传统DCI格式的大小,用特定比特域来指示DCI为传统DCI或是在LTE系统的传统控制区域传输的对应短TTI的DCI,或者通过RNTI区分所述DCI为传统DCI或是在LTE系统的传统控制区域传输的对应短TTI的DCI。
  30. 根据权利要求24或25所述的基站,其中,所述基站还包括:
    第一资源分配模块,用于当短TTI的下行控制信道在LTE系统的传统控制区域传输时,在终端的USS内为所述下行控制信道分配资源,所述终端为所述下行控制信道上的控制信息调度的终端。
  31. 根据权利要求30所述的基站,其中,所述下行控制信道基于CRS传输。
  32. 根据权利要求24或25所述的基站,其中,所述基站还包括:
    第二资源分配模块,用于当所述短TTI的下行控制信道不在LTE系统的传统控制区域传输时,在短TTI的控制区域为所述下行控制信道分配资源。
  33. 根据权利要求31所述的基站,其中,所述下行控制信道基于CRS和/或DMRS传输。
  34. 一种终端,包括:
    第二确定模块,用于确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
  35. 根据权利要求34所述的终端,其中,所述第二确定模块进一步用于:接收配置信息;根据所述配置信息确定一个或多个短TTI的下行控制信道的传输位置。
  36. 根据权利要求35所述的终端,其中,所述终端还包括:
    第一检测模块,用于如果确定所述短TTI的下行控制信道在LTE系统的传统控制区域传输,在传统控制区域中所述终端的USS中检测所述下行控制信道;
    如果确定所述短TTI的下行控制信道在短TTI的控制区域传输,在所述短TTI的控制区域检测所述下行控制信道。
  37. 根据权利要求34所述的终端,其中,所述第二确定模块进一步用于:通过盲检确定一个或多个短TTI的下行控制信道的传输位置。
  38. 根据权利要求37所述的终端,其中,所述第二确定模块进一步用于:在LTE系统的传统控制区域中所述终端的USS内尝试检测所述短TTI的控制信道。
  39. 根据权利要求38所述的终端,其中,所述终端还包括:
    第二检测模块,用于如果所述终端在LTE系统的传统控制区域中所述终端的USS内检测到所述短TTI的下行控制信道,按照所述下行控制信道承载的下行控制信息完成在所述短TTI中的数据传输,并且,在所述短TTI中不再检测所述下行控制信道;
    如果所述终端在LTE系统的传统控制区域中所述终端的USS内没有检测到所述短TTI的下行控制信道,在所述短TTI的控制区域中检测与其相关的下行控制信道。
  40. 根据权利要求34所述的终端,其中,所述第二确定模块进一步用于:根据终端自身的传输模式,确定所述短TTI的下行控制信道基于CRS解调或基于DMRS解调;
    如果所述短TTI的下行控制信道基于DMRS解调,所述终端不会在LTE系统的传统控制区域检测所述短TTI的下行控制信道;
    如果所述短TTI的下行控制信道基于CRS解调,所述终端在LTE系统的传统控制区域检测所述短TTI的下行控制信道。
  41. 根据权利要求35或37所述的终端,其中,所述多个短TTI在同一个子帧中。
  42. 根据权利要求35或37所述的终端,其中,所述终端还包括:
    第一解调模块,用于如果所述下行控制信道在LTE系统的传统控制区域 中传输时,基于CRS解调所述下行控制信道。
  43. 根据权利要求35或37所述的终端,其中,所述终端还包括:
    区分模块,用于如果所述下行控制信道在LTE系统的传统控制区域中传输时,根据不同的DCI格式大小区分LTE系统的传统DCI和适用于短TTI的DCI,或者根据DCI中的特定指示域确定该DCI为LTE系统的传统DCI和适用于短TTI的DCI,或根据RNTI确定该DCI为LTE系统的传统DCI和适用于短TTI的DCI。
  44. 根据权利要求35或37所述的终端,其中,所述终端还包括:
    第一解调模块,用于如果所述下行控制信道在短TTI的控制区域中传输时,基于CRS和/或DMRS解调所述下行控制信道。
  45. 一种基站,包括:
    处理器;以及
    存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;
    收发机,用于在传输介质上与各种其他设备进行通信,
    当所述处理器调用并执行所述存储器中所存储的程序和数据时,所述基站执行如下处理:
    确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
  46. 一种终端,包括:
    处理器;以及
    存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;
    收发机,用于在传输介质上与各种其他设备进行通信,
    当所述处理器调用并执行所述存储器中所存储的程序和数据时,所述终端执行如下处理:
    确定一个或多个短TTI的下行控制信道的传输位置,所述传输位置为:在LTE系统的传统控制区域传输,或者在短TTI的控制区域传输。
PCT/CN2017/093460 2016-08-05 2017-07-19 一种控制短tti的下行控制信道传输的方法及设备 WO2018024098A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610635934.1 2016-08-05
CN201610635934.1A CN107690189B (zh) 2016-08-05 2016-08-05 控制短tti的下行控制信道传输的方法及设备

Publications (1)

Publication Number Publication Date
WO2018024098A1 true WO2018024098A1 (zh) 2018-02-08

Family

ID=61073718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093460 WO2018024098A1 (zh) 2016-08-05 2017-07-19 一种控制短tti的下行控制信道传输的方法及设备

Country Status (2)

Country Link
CN (1) CN107690189B (zh)
WO (1) WO2018024098A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140321422A1 (en) * 2011-09-26 2014-10-30 Lg Electronics Inc. Method and apparatus for transmitting a signal in a wireless communication system
CN104919746A (zh) * 2012-11-02 2015-09-16 高通股份有限公司 利用lte中的epdcch管理载波聚合中的交叉载波调度
CN105122715A (zh) * 2013-04-05 2015-12-02 高通股份有限公司 针对机器型通信(mtc)的物理广播信道(pbch)覆盖增强
WO2016032632A1 (en) * 2014-08-28 2016-03-03 Qualcomm Incorporated Reference signal transmission and averaging for wireless communications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5832663B2 (ja) * 2012-10-31 2015-12-16 エルジー エレクトロニクス インコーポレイティド 制御情報を送受信する方法及びそのための装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140321422A1 (en) * 2011-09-26 2014-10-30 Lg Electronics Inc. Method and apparatus for transmitting a signal in a wireless communication system
CN104919746A (zh) * 2012-11-02 2015-09-16 高通股份有限公司 利用lte中的epdcch管理载波聚合中的交叉载波调度
CN105122715A (zh) * 2013-04-05 2015-12-02 高通股份有限公司 针对机器型通信(mtc)的物理广播信道(pbch)覆盖增强
WO2016032632A1 (en) * 2014-08-28 2016-03-03 Qualcomm Incorporated Reference signal transmission and averaging for wireless communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA: "On DL control channel design for shorter TTI operation", 3GPP TSG-RAN WG1 MEETING #85, R1-165236, 27 May 2016 (2016-05-27), XP051090187 *

Also Published As

Publication number Publication date
CN107690189A (zh) 2018-02-13
CN107690189B (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
CN108353422B (zh) 用于无线通信系统中的侧链路通信的方法和设备
CN110266454B (zh) 用于接收系统信息块的装置
WO2018171667A1 (zh) 一种信道传输方法及网络设备
US20200280981A1 (en) Method and apparatus for managing resource pool in wireless communication system
JP6726767B2 (ja) ページング検出ウィンドウ
CN107005971B (zh) 设备到设备通信中用于调度指派的资源分配的方法和设备
KR101251032B1 (ko) 반영구 스케줄링 셀 무선 네트워크 임시 식별자를 취급하는 방법 및 관련 통신 장치
WO2019192345A1 (zh) 一种时域资源分配方法及装置
TWI566622B (zh) 用於行動式網路通信之方法
WO2014008830A1 (zh) 一种盲检方式确定方法、盲检方法及装置
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
WO2019047632A1 (zh) 用于传输下行数据的资源的确定和配置方法、终端和基站
WO2018228537A1 (zh) 信息发送、接收方法及装置
CN113424618B (zh) 一种通信方法、装置及计算机可读存储介质
WO2014005284A1 (en) Methods and apparatus for contention based transmission
WO2019020060A1 (zh) 确定是否继续检测下行控制信道的方法、终端及基站
US20170339681A1 (en) Control Channel Design for Category-A Devices
WO2017129035A1 (zh) 一种下行控制信息的传输、检测方法及装置
WO2022028543A1 (zh) 资源复用指示方法、装置和中继节点
US10757685B2 (en) Device and method of performing data transmission in bandwidth parts
CN112740765A (zh) 用于唤醒信号的灵活的用户设备分组
WO2013127344A1 (zh) 一种无线通信方法和无线通信装置
WO2017167252A1 (zh) 一种信息传输方法、终端及基站
EP3618535B1 (en) Method and device for transmitting downlink channel
WO2018024098A1 (zh) 一种控制短tti的下行控制信道传输的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836280

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17836280

Country of ref document: EP

Kind code of ref document: A1