WO2018023817A1 - 变压器合闸控制系统和无涌流控制方法 - Google Patents
变压器合闸控制系统和无涌流控制方法 Download PDFInfo
- Publication number
- WO2018023817A1 WO2018023817A1 PCT/CN2016/093739 CN2016093739W WO2018023817A1 WO 2018023817 A1 WO2018023817 A1 WO 2018023817A1 CN 2016093739 W CN2016093739 W CN 2016093739W WO 2018023817 A1 WO2018023817 A1 WO 2018023817A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- transformer
- circuit breaker
- converter
- transceiver
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/14—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/40—Synchronising a generator for connection to a network or to another generator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/50—The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
- H02J2310/56—The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
- H02J2310/58—The condition being electrical
Definitions
- the invention relates to electric power technology, in particular to a transformer closing control system and a non-inrush current control method.
- the high voltage circuit breaker between the transformer and the power grid is usually directly closed, but due to the randomness of the voltage phase of the power grid and the existence of the transformer core remanence, when the transformer is connected to the power grid, It may cause saturation of the transformer core, which in turn will result in a large closing current (amplitude up to 6-8 times the rated current of the transformer).
- a large closing surge will reduce the service life of the transformer on the one hand, and may cause the high voltage circuit breaker protection to trip on the other hand, that is, the transformer fails to be merged into the grid.
- phase selection closing technology In order to effectively suppress the inrush current caused by the magnetizing inrush current at the moment of transformer closing, it is usually selected to close the initial phase angle of the appropriate grid voltage, so-called “phase selection closing technology”, but the method closes the high voltage circuit breaker. Time accuracy presents extremely high requirements and is difficult to achieve.
- the invention provides a transformer closing control system and a non-inrush current control method, which are used to solve the problem that the current phase selection and closing technology of the existing transformer is difficult to realize.
- the invention provides a transformer closing control system, comprising: a high voltage circuit breaker, a transformer, a low voltage circuit breaker, a converter and a control device, the control device comprising: a detector, a processor and a transceiver;
- a high voltage side of the transformer is connected to the power grid through the high voltage circuit breaker, and a low voltage side of the transformer is connected to an alternating current side of the converter through the low voltage circuit breaker;
- the DC side of the converter is connected to a DC power source, and the DC power source is used to supply power to the converter;
- the transceiver is respectively connected to the power grid and the processor, and configured to receive a network voltage synchronization signal sent by the power grid, and send the network voltage synchronization signal to the processor;
- the detector is respectively connected to the AC side of the converter and the processor, for detecting a voltage value of the low voltage side of the transformer, obtaining a first voltage detection result, and the first voltage detection result Transmitting to the processor;
- the transceiver is further connected to the current transformer, the low voltage circuit breaker and the high voltage circuit breaker, respectively, wherein the processor is configured to control the sending and receiving according to the network voltage synchronization signal Transmitting an inverter instruction to the converter, and controlling the transceiver to send a closing instruction to the low voltage circuit breaker, determining, according to the first voltage detection result, that the voltage value of the low voltage side of the transformer reaches a low voltage rated voltage And controlling, by the transceiver, to send a closing instruction to the high voltage circuit breaker;
- the inverter command is used to instruct the converter to operate in an inverter state and indicate an output voltage of the AC side of the converter.
- the inverter command is used to instruct the converter to operate in an inverter state and indicate an output voltage of the AC side of the converter.
- the transformer closing control system and the non-inrush current control method provided by the invention control the working state of the converter and the voltage phase of the alternating current side of the converter by the control device, so that the voltage phase of the alternating current side of the converter and the grid
- the voltage phases are the same.
- the AC side of the converter supplies power to the low-voltage side of the transformer, so that the voltage phase of the low-voltage side of the transformer is the same as the phase of the grid voltage, and the low-voltage side of the transformer is ensured before the high-voltage circuit breaker is closed.
- the voltage value reaches the low voltage rated voltage, Furthermore, the closing current of the high-voltage circuit breaker is avoided, and the system and the method have no special requirements for the closing timing of the circuit breaker, and have wide applicability.
- FIG. 1 is a schematic structural diagram of a transformer closing control system according to an embodiment of the present invention.
- FIG. 2 is a schematic structural diagram of a transformer closing control system according to another embodiment of the present invention.
- FIG. 3 is a schematic structural diagram of a transformer closing control system according to still another embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of a transformer closing control system according to another embodiment of the present invention.
- FIG. 5 is a schematic flow chart of a method for controlling no-inrush current of a transformer according to an embodiment of the present invention
- FIG. 6 is a flow chart of a method for controlling no-inrush current of a transformer according to another embodiment of the present invention.
- FIG. 1 is a schematic structural diagram of a transformer closing control system according to an embodiment of the present invention. As shown in Figure 1, the system includes:
- control device 5 includes: a detector 51, a processor 52 and a transceiver 53;
- the high-voltage side 21 of the transformer 2 is connected to the grid via a high-voltage circuit breaker 1
- the low-voltage side 22 of the transformer 2 is connected to the AC side 42 of the converter 4 via a low-voltage circuit breaker 3 ;
- the DC side 41 of the converter 4 is connected to a DC power source, and the DC power source is used to supply power to the converter 4;
- the transceiver 53 is respectively connected to the power grid and the processor 52 for receiving the network voltage synchronization sent by the power grid. Signal, and send the network voltage synchronization signal to the processor 52;
- the detector 51 is connected to the AC side 42 of the converter 4 and the processor 52, respectively, for detecting the voltage value of the low voltage side 22 of the transformer 2, obtaining a first voltage detection result, and transmitting the first voltage detection result to the processor. 52;
- the transceiver 53 is also connected to the current transformer 4, the low voltage circuit breaker 3 and the high voltage circuit breaker 1, respectively.
- the processor 52 is configured to control the transceiver 53 to send an inverter instruction to the converter 4 according to the network voltage synchronization signal, and control the transmission and reception.
- the device 53 sends a closing command to the low voltage circuit breaker 3, and when determining that the voltage value of the low voltage side 22 of the transformer 2 reaches the low voltage rated voltage value according to the first voltage detection result, the control transceiver 53 sends a closing command to the high voltage circuit breaker 1;
- the inverter command is used to instruct the converter 4 to operate in an inverter state and to indicate the output voltage of the AC side 42 of the converter 4.
- a DC power source is connected to the converter 4 for supplying a DC voltage to the converter 4.
- the DC power source is a DC bus, and the voltage may be 750 volts or 1500 volts.
- the converter 4 is used to operate in an inverter state to convert a DC voltage into an AC voltage.
- the low-voltage side 22 of the transformer 2 is connected to the alternating current side 42 of the converter 4 via a low-voltage circuit breaker 3.
- the alternating-side side 42 of the converter 4 supplies power to the low-voltage side 22 of the transformer 2, and the transformer 2
- the voltage phase of the low voltage side 22 is the same as the phase of the alternating voltage output by the alternating current side 42 of the converter 4.
- the high voltage side 21 of the transformer 2 is connected to the grid via a high voltage circuit breaker 1 which provides an alternating voltage.
- the voltage can be 10 kV or 35 kV.
- the lines marked with three short slashes in Figure 1 are represented as three-phase lines.
- the voltage phase of the high voltage side 21 of the transformer 2 is the same as the voltage phase of the grid.
- the voltage phase of the high voltage side 21 of the transformer 2 and the voltage phase of the low voltage side 22 of the transformer 2 must be the same, and it is determined that the voltage value of the low voltage side 22 of the transformer 2 reaches the low voltage rated voltage value, otherwise the high voltage circuit breaker 1 is closed.
- the magnetic flux in the iron core of the transformer is abruptly changed, and the inrush current is generated, which affects the service life of the transformer.
- the above voltage values are merely illustrative and are not limiting of the invention.
- the controller 52 controls the voltage phase of the alternating current side 42 of the converter 4 until the alternating current side 42 of the converter 4
- the voltage phase is the same as the voltage phase of the power grid, so that the voltage phase of the low voltage side 22 of the transformer 2 is equal to the voltage phase of the high voltage side 21 of the transformer 2 and the voltage phase of the power grid.
- the controller 52 is also used to control the amplitude of the voltage value of the alternating current side 42 of the converter 4 to slowly increase until the low voltage side of the transformer 2
- the voltage value of 22 reaches the low voltage rated voltage value, thereby avoiding the closing inrush current when the high voltage circuit breaker 1 is closed, and since the voltage phases are the same everywhere, the high voltage circuit breaker 1 can be closed at any time.
- the transceiver 53 receives the network voltage synchronization signal sent by the power grid, and sends the network voltage synchronization signal to the processor 52.
- the network voltage synchronization signal includes the voltage phase of the power grid; the processor 52 transmits and receives according to the network voltage synchronization signal.
- the inverter 53 sends an inverter command to the converter for instructing the converter 4 to operate in an inverter state and to indicate an output voltage of the AC side 42 of the converter 4.
- the inverter command indicates that the phase of the output voltage of the AC side 42 of the converter 4 is the same as the phase of the grid, and the magnitude of the output voltage slowly increases until the low voltage rated voltage of the transformer 2 is reached.
- the processor 52 After the processor 52 sends the inverter command to the converter 4, the converter 4 operates in the inverter state and outputs the output voltage of the AC side 42 having the same phase as the grid voltage; then, the processor 52 controls the transceiver 53 to the low voltage.
- the circuit breaker 3 sends a closing command.
- the detector 51 is connected to the AC side 42 of the converter 4, and detects the voltage value of the AC side 42 of the converter 4, that is, the voltage value of the low voltage side 22 of the transformer 2 in real time, to obtain a first voltage detection result, and The first voltage detection result is sent to the processor 52.
- the processor 52 detects the AC side 42 of the converter 4.
- the processor 52 detects that the voltage value of the AC side 42 of the converter 4 reaches the low voltage rated voltage value. After the voltage value satisfies the condition, the processor 52 controls the transceiver 53 to send a close command to the high voltage circuit breaker 1.
- the processor 52 sends an inverter command to the converter 4 through the transceiver 53 for instructing the converter 4 to operate in an inverter state and indicating the output voltage of the AC side 42 of the converter 4, It is ensured that the voltage phase of the high voltage side 21 of the transformer 2 is the same as the voltage phase of the low voltage side 22 of the transformer 2;
- the processor 52 sends a closing command to the low voltage circuit breaker 3;
- the processor 52 detects the voltage value of the low voltage side 22 of the transformer 2;
- the processor 52 determines that the voltage value of the low voltage side 22 of the transformer 2 reaches the low voltage rated voltage value, it sends a closing command to the high voltage circuit breaker 1.
- the transformer closing control system adds a control device for controlling the working state of the converter and the voltage phase of the alternating current side of the converter, so that the voltage phase of the alternating current side of the converter is The voltage phase of the power grid is the same.
- the AC side of the converter supplies power to the low-voltage side of the transformer, so that the voltage phase of the low-voltage side of the transformer is the same as the phase of the grid voltage, and before the high-voltage circuit breaker is closed, the transformer is ensured.
- the voltage value on the low voltage side reaches the low voltage rated voltage value, thereby avoiding the closing current when the high voltage circuit breaker is closed.
- the system has no special requirements for the closing time of the circuit breaker and has wide applicability.
- the transformer closing control system provided by the present invention will be described in detail below with reference to the embodiment shown in FIG.
- the following embodiments are all improvements and detailed descriptions based on the embodiment of FIG. 1 , and have the same structure and components as those of the embodiment shown in FIG. 1 .
- the structures and working principles of the components are the same, and the present invention is the same. I will not go into details here, but only the different parts will be explained in detail.
- FIG. 2 is a schematic structural diagram of a transformer closing control system according to another embodiment of the present invention. As shown in FIG. 2, the transformer closing control system further includes a switch assembly 6.
- the transceiver 53 is coupled to the processor 52, the transceiver 53 is also coupled to the switch assembly 6, the converter 4 is coupled to the DC power source via the switch assembly 6, and the processor 52 controls the closing and opening of the switch assembly 6 via the transceiver 53.
- the processor 52 sends a closing command to the switch assembly 6 through the transceiver 53, and the switch assembly 6 is closed according to the closing command, so that the DC power source starts to supply power to the converter 4.
- the converter can be taken out of operation when the transformer is idle.
- FIG. 3 is a schematic structural diagram of a transformer closing control system according to still another embodiment of the present invention.
- the DC side of the converter 4 is provided with a DC capacitor 7, which is used to maintain the DC voltage supplied to the converter 4 by the DC power source to stabilize the life of the converter.
- FIG. 4 is a schematic structural diagram of a transformer closing control system according to still another embodiment of the present invention.
- the switch assembly 6 includes a first branch and a second branch connected in parallel;
- the first branch is provided with a DC circuit breaker 61, and the second branch is provided with a series of DC pre-charging contactors 62 and a DC pre-charging resistor 63;
- the detector 51 is also connected to the DC capacitor 7, and the transceiver 53 is also connected to the DC pre-charge contactor 62 and the DC breaker 61, respectively;
- the processor 52 is further configured to: after acquiring the transformer grid connection command received by the transceiver 53, the control transceiver 53 sends a closing instruction to the DC pre-charging contactor 62;
- the detector 51 is configured to detect the voltage value of the DC capacitor 7, to obtain a second voltage detection result, and send the second voltage detection result to the processor 52;
- the processor 52 is further configured to control the transceiver 53 to send a closing command to the DC circuit breaker 61 after determining that the voltage value of the DC capacitor 7 reaches the capacitor rated voltage value according to the second voltage detection result.
- the processor 52 controls the transceiver 53 to send a closing command to the DC pre-charge contactor 62 of the second branch.
- the DC pre-charge contactor 62 When the DC pre-charge contactor 62 is closed, the DC The power supply charges the DC capacitor 7 through the second branch. Since the DC pre-charging resistor 63 is generally large, the current of the DC capacitor 7 is stabilized during charging, and the inrush current does not break through the DC capacitor 7.
- the processor 52 controls the transceiver 53 to send a closing command to the DC breaker 61.
- the second branch is short-circuited by the first branch, and the DC power source The converter is powered directly via the first branch.
- the inverter instruction may be a 6-channel pulse signal, and controls the phase of the AC voltage outputted by the AC side 42 of the converter 4, and the intensity of the pulse signal determines the AC side of the converter 4.
- the amplitude of the AC voltage output by 42 is also adaptively adjusted.
- all switches in the embodiments of the present invention such as a high voltage circuit breaker, a low voltage circuit breaker, a DC precharge contactor, a DC circuit breaker, etc., include a switch body and a second opening and opening of the control switch body.
- the circuit, the transceiver 53 is connected to each secondary circuit.
- the transformer closing system includes: a high voltage circuit breaker, a transformer, a low voltage circuit breaker, a converter, and a high voltage side of the transformer passes through a high voltage circuit.
- the transformer is connected to the power grid, and the low voltage side of the transformer is connected to the AC side of the converter through a low voltage circuit breaker.
- the execution body of the method can be implemented by software or hardware.
- the transformer system can be the transformer in any of the above embodiments.
- the closing control system, the executing body may be the processor in any of the above embodiments.
- FIG. 5 is a schematic flow chart of a method for controlling no-inrush current of a transformer according to an embodiment of the present invention. As shown in FIG. 5, the method includes:
- the inverter command is used to indicate that the converter operates in an inverter state and indicates an output voltage of the AC side of the converter.
- FIG. 6 is a flow chart of a method for controlling no-inrush current of a transformer according to another embodiment of the present invention. As shown in FIG. 6, the method includes:
- the inverter command is used to instruct the converter 4 to operate in an inverter state and to indicate the output voltage of the AC side 42 of the converter 4.
- the voltage phase of the output voltage of the AC side 42 of the converter 4 is controlled to be the same as the voltage phase of the grid according to the grid voltage synchronizing signal, and the amplitude of the output voltage of the AC side 42 of the control converter 4 is slowly increased.
- the method further includes: determining that all the switches are in an open state, and all the switches include: a high voltage circuit breaker, a low voltage circuit breaker, a DC precharge contactor, and a DC circuit breaker.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
一种变压器合闸控制系统和无涌流控制方法,该系统包括:高压断路器(1)、变压器(2)、低压断路器(3)、变流器(4)和控制装置(5),控制装置(5)包括:检测器(51)、处理器(52)以及收发器(53);变压器(2)的高压侧(21)通过高压断路器(1)与电网连接,变压器(2)的低压侧(22)通过低压断路器(3)与变流器(4)的交流侧(42)连接;处理器(52)根据网压同步信号,控制收发器(53)向变流器(4)发送逆变指令,控制了变流器(4)交流侧(42)的输出电压的相位,并控制收发器(53)向低压断路器(3)发送闭合指令,根据检测器(51)的检测结果确定变压器(2)的低压侧(22)的电压值达到低压额定电压值时,控制收发器(53)向高压断路器(1)发送闭合指令。解决了变压器并网时的合闸涌流问题,且易于实现。
Description
本发明涉及电力技术,尤其涉及一种变压器合闸控制系统和无涌流控制方法。
在地铁、城市轨道交通等多种用电情景下,存在白天耗电量大,而夜间耗电少的情况。当夜间无耗电或耗电减少时,大容量能馈变压器变为空载运行,此时应将该变压器退出电网,以减少变压器空载损耗,待白天耗电量增大时,再次合闸将变压器并入电网。
现有技术在将变压器合闸并入电网时,通常直接将变压器与电网间的高压断路器直接合闸,但是由于电网的电压相位的随机性以及变压器铁心剩磁的存在,变压器接入电网时可能会引发变压器铁芯饱和,进而产生很大的合闸涌流(幅值可达变压器额定电流的6-8倍)。较大的合闸涌流一方面会降低变压器使用寿命,另一方面可能导致高压断路器保护跳闸,即变压器并入电网失败。
为有效抑制变压器合闸瞬间的励磁涌流冲击导致的合闸涌流,目前通常选择在合适的电网电压初始相位角合闸,即所谓的“选相合闸技术”,但是该方法对高压断路器合闸时间精度提出了极高要求,难以实现。
发明内容
本发明提供一种变压器合闸控制系统和无涌流控制方法,用以解决现有变压器的选相合闸技术难以实现的问题。
本发明提供一种变压器合闸控制系统,包括:高压断路器、变压器、低压断路器、变流器和控制装置,所述控制装置包括:检测器、处理器以及收发器;
所述变压器的高压侧通过所述高压断路器与电网连接,所述变压器的低压侧通过所述低压断路器与所述变流器的交流侧连接;
所述变流器的直流侧与直流电源连接,所述直流电源用于为所述变流器供电;
所述收发器分别与所述电网和所述处理器连接,用于接收所述电网发送的网压同步信号,并将所述网压同步信号发送到所述处理器;
所述检测器分别与所述变流器的交流侧和所述处理器连接,用于检测所述变压器的低压侧的电压值,得到第一电压检测结果,并将所述第一电压检测结果发送给所述处理器;所述收发器还分别与所述变流器、所述低压断路器和所述高压断路器连接,所述处理器用于根据所述网压同步信号,控制所述收发器向所述变流器发送逆变指令,并控制所述收发器向所述低压断路器发送闭合指令,根据所述第一电压检测结果确定所述变压器的低压侧的电压值达到低压额定电压值时,控制所述收发器向所述高压断路器发送闭合指令;
其中,所述逆变指令用于指示所述变流器工作在逆变状态并指示所述变流器的交流侧的输出电压。
本发明另一方面提供一种变压器的无涌流控制方法,应用于变压器合闸系统,所述变压器合闸系统包括:高压断路器、变压器、低压断路器、变流器,所述变压器的高压侧通过所述高压断路器与电网连接,所述变压器的低压侧通过所述低压断路器与所述变流器的交流侧连接;所述方法包括:
接收所述电网发送的网压同步信号,根据所述网压同步信号向所述变流器发送逆变指令;
向所述低压断路器发送闭合指令;
检测所述变压器的低压侧的电压值;
确定所述变压器的低压侧的电压值达到低压额定电压值时,向所述高压断路器发送闭合指令;
其中,所述逆变指令用于指示所述变流器工作在逆变状态并指示所述变流器的交流侧的输出电压。
本发明提供的变压器合闸控制系统和无涌流控制方法,由控制装置控制变流器的工作状态和变流器的交流侧的电压相位,以使变流器的交流侧的电压相位与电网的电压相位相同,在相位相同时,由变流器的交流侧为变压器的低压侧供电,使得变压器的低压侧的电压相位与电网电压相位相同,且在闭合高压断路器之前,确保变压器的低压侧的电压值达到低压额定电压值,
进而避免了高压断路器闭合时的合闸涌流,本系统和方法对断路器的合闸时刻没有特殊要求,具有广泛的适用性。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的变压器合闸控制系统的结构示意图;
图2为本发明另一实施例提供的变压器合闸控制系统的结构示意图;
图3为本发明再一实施例提供的变压器合闸控制系统的结构示意图;
图4为本发明又一实施例提供的变压器合闸控制系统的结构示意图;
图5为本发明一实施例提供的变压器的无涌流控制方法的流程示意图;
图6为本发明另一实施例提供的变压器的无涌流控制方法的流程框图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种变压器合闸控制系统,用于实现变压器并入电网时的无涌流合闸。图1为本发明一实施例提供的变压器合闸控制系统的结构示意图。如图1所示,该系统包括:
高压断路器1、变压器2、低压断路器3、变流器4和控制装置5,控制装置5包括:检测器51、处理器52以及收发器53;
变压器2的高压侧21通过高压断路器1与电网连接,变压器2的低压侧22通过低压断路器3与变流器4的交流侧42连接;
变流器4的直流侧41与直流电源连接,直流电源用于为变流器4供电;
收发器53分别与电网和处理器52连接,用于接收电网发送的网压同步
信号,并将网压同步信号发送到处理器52;
检测器51分别与变流器4的交流侧42和处理器52连接,用于检测变压器2的低压侧22的电压值,得到第一电压检测结果,并将第一电压检测结果发送给处理器52;
收发器53还分别与变流器4、低压断路器3和高压断路器1连接,处理器52用于根据网压同步信号,控制收发器53向变流器4发送逆变指令,并控制收发器53向低压断路器3发送闭合指令,根据第一电压检测结果确定变压器2的低压侧22的电压值达到低压额定电压值时,控制收发器53向高压断路器1发送闭合指令;
其中,逆变指令用于指示变流器4工作在逆变状态并指示变流器4的交流侧42的输出电压。
具体的,如图1所示,直流电源与变流器4连接,用于为变流器4提供直流电压,示例性的,直流电源为直流母线,电压可以为750伏或1500伏。变流器4用于工作在逆变状态,将直流电压转化为交流电压。
变压器2的低压侧22与变流器4的交流侧42通过低压断路器3连接,当低压断路器3合闸后,变流器4的交流侧42为变压器2的低压侧22供电,变压器2的低压侧22的电压相位与变流器4的交流侧42输出的交流电压的相位相同。变压器2的高压侧21通过高压断路器1与电网连接,电网提供交流电压,示例性的,电压可以为10kV或35kV。图1中标示有三个短斜线的线路表示为三相线路。
当高压断路器1合闸时,变压器2的高压侧21的电压相位与电网的电压相位相同。但是变压器2的高压侧21的电压相位与变压器2的低压侧22的电压相位必须相同,且需确定变压器2的低压侧22的电压值达到低压额定电压值,否则会在高压断路器1合闸时,导致变压器的铁芯内的磁通突变,产生合闸涌流,影响变压器的使用寿命。以上电压值仅为示例性的说明,而并非对本发明的限制。
为保证变压器2的高压侧21的电压相位与变压器2的低压侧22的电压相位相同,控制器52需控制变流器4的交流侧42的电压相位,直至变流器4的交流侧42的电压相位与电网的电压相位相同,进而使得变压器2的低压侧22的电压相位与变压器2的高压侧21的电压相位、电网的电压相位均相
同,为保证变压器2的低压侧22的电压值达到低压额定电压值,控制器52还用于控制变流器4的交流侧42的电压值的幅值缓慢增大,直至变压器2的低压侧22的电压值达到低压额定电压值,从而避免了高压断路器1合闸时的合闸涌流,且由于各处电压相位均相同,高压断路器1可在任意时刻合闸。
具体的,收发器53接收电网发送的网压同步信号,并将网压同步信号发送到处理器52,该网压同步信号中包含有电网的电压相位;处理器52根据网压同步信号通过收发器53向变流器发送逆变指令,逆变指令用于指示变流器4工作在逆变状态并指示变流器4的交流侧42的输出电压。示例性的,逆变指令指示变流器4的交流侧42的输出电压的相位与电网相位相同,输出电压的幅值缓慢增大直至达到变压器2的低压额定电压值。当处理器52向变流器4发送逆变指令之后,变流器4工作在逆变状态并输出与电网电压相位相同的交流侧42的输出电压;然后,处理器52控制收发器53向低压断路器3发送闭合指令。
具体的,检测器51与变流器4的交流侧42连接,实时检测变流器4的交流侧42的电压值,即变压器2的低压侧22的电压值,得到第一电压检测结果,并将第一电压检测结果发送给处理器52。当处理器52检测到变流器4的交流侧42的。当处理器52检测到变流器4的交流侧42的电压值达到低压额定电压值。在电压值满足条件后,处理器52控制收发器53向高压断路器1发送闭合指令。
示例性的,上述变压器合闸控制系统在进行变压器合闸时的操作流程为:
第一步,处理器52通过收发器53向变流器4发送逆变指令,逆变指令用于指示变流器4工作在逆变状态并指示变流器4的交流侧42的输出电压,保证了变压器2的高压侧21的电压相位与变压器2的低压侧22的电压相位相同;
第二步,处理器52向低压断路器3发送闭合指令;
第三步,处理器52检测变压器2的低压侧22的电压值;
第四步,处理器52确定变压器2的低压侧22的电压值达到低压额定电压值时,向高压断路器1发送闭合指令。
本发明提供的变压器合闸控制系统,增加控制装置,用于控制变流器的工作状态和变流器的交流侧的电压相位,以使变流器的交流侧的电压相位与
电网的电压相位相同,在相位相同时,由变流器的交流侧为变压器的低压侧供电,使得变压器的低压侧的电压相位与电网电压相位相同,且在闭合高压断路器之前,确保变压器的低压侧的电压值达到低压额定电压值,进而避免了高压断路器闭合时的合闸涌流,本系统对断路器的合闸时刻没有特殊要求,具有广泛的适用性。
下面结合图1所示实施例,对本发明提供的变压器合闸控制系统进行详细说明。下述各实施例均为在图1实施例基础上的改进和详细说明,具有部分与图1所示实施例相同的结构与部件,该些结构与部件连接方式、工作原理均相同,本发明不再赘述,仅对有区别的部分进行详细说明。
进一步地,在图1所示实施例的基础上,图2为本发明另一实施例提供的变压器合闸控制系统的结构示意图。如图2所示,该变压器合闸控制系统还包括开关组件6。
收发器53与处理器52连接,收发器53还与开关组件6连接,变流器4通过开关组件6与直流电源连接,处理器52通过收发器53控制开关组件6的闭合与断开。
具体的,当收发器53接受到变压器并网指令时,处理器52通过收发器53向开关组件6发送闭合指令,开关组件6根据闭合指令闭合,使得直流电源开始为变流器4供电。通过增加开关组件使得变流器可在变压器空闲时退出运行。
进一步地,在图2所示实施例的基础上,图3为本发明再一实施例提供的变压器合闸控制系统的结构示意图。如图3所示,变流器4的直流侧设置有直流电容7,该直流电容用于维持直流电源提供给变流器4的直流电压稳定,延长变流器的使用寿命。
进一步地,在图3所示实施例的基础上,图4为本发明又一实施例提供的变压器合闸控制系统的结构示意图。如图4所示,开关组件6包括并联的第一支路和第二支路;
第一支路上设置有直流断路器61,第二支路上设置有串联的直流预充电接触器62和直流预充电电阻63;
检测器51还与直流电容7连接,收发器53还分别与直流预充电接触器62和直流断路器61连接;
处理器52还用于,在获取到收发器53接收到的变压器并网指令后,控制收发器53向直流预充电接触器62发送闭合指令;
检测器51用于检测直流电容7的电压值,得到第二电压检测结果,并将第二电压检测结果发送给处理器52;
处理器52还用于,根据第二电压检测结果,在确定直流电容7的电压值达到电容额定电压值后,控制收发器53向直流断路器61发送闭合指令。
具体的,在收发器53接收到的变压器并网指令后,处理器52控制收发器53向第二支路的直流预充电接触器62发送闭合指令,当直流预充电接触器62闭合时,直流电源通过第二支路向直流电容7充电,由于直流预充电电阻63通常较大,可保证直流电容7在充电时电流稳定,不会出现冲击电流击穿直流电容7。当检测器51检测到直流电容7的电压达到电容额定电压值后,处理器52控制收发器53向直流断路器61发送闭合指令,此时,第二支路被第一支路短路,直流电源通过第一支路直接向变流器供电。通过增加第二支路,可进一步保护直流电容,延长直流电容的使用寿命。
可选的,如图4所示,逆变指令可以为6路脉冲信号,控制了变流器4的交流侧42输出的交流电压的相位,脉冲信号的强度决定了变流器4的交流侧42输出的交流电压的幅值。适应性的,当变流器4的结构发生变化时,逆变指令也进行适应性的调整。
可选的,本发明各实施例中的所有开关、如高压断路器、低压断路器、直流预充电接触器、直流断路器等,均包括开关主体和控制开关主体的打开与断开的二次电路,收发器53与各二次电路连接。
本发明另一方面还提供一种变压器的无涌流控制方法,应用于变压器合闸系统,变压器合闸系统包括:高压断路器、变压器、低压断路器、变流器,变压器的高压侧通过高压断路器与电网连接,变压器的低压侧通过低压断路器与变流器的交流侧连接,该方法的执行主体可以由软件或硬件实现,示例性的,变压器系统可以为上述任一实施例中的变压器合闸控制系统,执行主体可以为上述任一实施例中的处理器。
图5为本发明一实施例提供的变压器的无涌流控制方法的流程示意图。如图5所示,该方法包括:
S501、接收电网发送的网压同步信号,根据网压同步信号向变流器发送
逆变指令;
S502、向低压断路器发送闭合指令;
S503、检测变压器的低压侧的电压值;
S504、确定变压器的低压侧的电压值达到低压额定电压值时,向高压断路器发送闭合指令。
其中,逆变指令用于指示变流器工作在逆变状态并指示变流器的交流侧的输出电压。
上述方法实施例与图1至图4所示的系统实施例相对应,具有相同的技术特征和技术效果,本发明不再赘述。
下面结合图4所示实施例,对变压器的无涌流控制方法的具体流程进行详细说明。图6为本发明另一实施例提供的变压器的无涌流控制方法的流程框图。如图6所示,该方法包括:
S601,处理器52初始化;
S602,确定是否接收到变压器并网指令;若是,则执行S603;若否,则结束;
S603,向直流预充电接触器62发送闭合指令;
S604,判断直流电容7的电压是否达到电容额定电压值;若是,则执行S605;若否,则再次执行S604;
S605,向直流断路器61发送闭合指令,根据网压同步信号向变流器4发送逆变指令;
S606,向低压断路器3发送闭合指令;
S607,判断变压器2的低压侧22的电压是否达到低压额定电压值;若是,则执行S608;若否,则再次执行S607;
S608,向高压断路器1发送闭合指令。
其中,逆变指令用于指示变流器4工作在逆变状态并指示变流器4的交流侧42的输出电压。示例性的,根据网压同步信号控制变流器4的交流侧42的输出电压的电压相位与电网的电压相位相同,控制变流器4的交流侧42的输出电压的幅值缓慢增大。
具体的,在S602之前,本方法还包括:确定所有开关处于打开状态,所有开关包括:高压断路器、低压断路器、直流预充电接触器、直流断路器。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (5)
- 一种变压器合闸控制系统,其特征在于,包括:高压断路器、变压器、低压断路器、变流器和控制装置,所述控制装置包括:检测器、处理器以及收发器;所述变压器的高压侧通过所述高压断路器与电网连接,所述变压器的低压侧通过所述低压断路器与所述变流器的交流侧连接;所述变流器的直流侧与直流电源连接,所述直流电源用于为所述变流器供电;所述收发器分别与所述电网和所述处理器连接,用于接收所述电网发送的网压同步信号,并将所述网压同步信号发送到所述处理器;所述检测器分别与所述变流器的交流侧和所述处理器连接,用于检测所述变压器的低压侧的电压值,得到第一电压检测结果,并将所述第一电压检测结果发送给所述处理器;所述收发器还分别与所述变流器、所述低压断路器和所述高压断路器连接,所述处理器用于根据所述网压同步信号,控制所述收发器向所述变流器发送逆变指令,并控制所述收发器向所述低压断路器发送闭合指令,根据所述第一电压检测结果确定所述变压器的低压侧的电压值达到低压额定电压值时,控制所述收发器向所述高压断路器发送闭合指令;其中,所述逆变指令用于指示所述变流器工作在逆变状态并指示所述变流器的交流侧的输出电压。
- 根据权利要求1所述的变压器合闸控制系统,其特征在于,还包括开关组件,所述变流器的直流侧通过所述开关组件与直流电源连接;所述收发器还与所述开关组件连接;所述处理器还用于在获取到所述收发器接收到的变压器并网指令后,控制所述收发器向所述开关组件发送闭合指令,以使所述直流电源为所述变流器供电。
- 根据权利要求2所述的变压器合闸控制系统,其特征在于,所述变流器的直流侧设置有直流电容。
- 根据权利要求3所述的变压器合闸控制系统,其特征在于,所述开关组件包括并联的第一支路和第二支路;所述第一支路上设置有直流断路器,所述第二支路上设置有串联的直流 预充电接触器和直流预充电电阻;所述检测器还与所述直流电容连接,所述收发器还分别与所述直流预充电接触器和所述直流断路器连接;所述处理器还用于,在获取到所述收发器接收到的变压器并网指令后,控制所述收发器向所述直流预充电接触器发送闭合指令;所述检测器还用于检测所述直流电容的电压值,得到第二电压检测结果,并将所述第二电压检测结果发送给所述处理器;所述处理器还用于,根据所述第二电压检测结果,在确定所述直流电容的电压值达到电容额定电压值后,控制所述收发器向所述直流断路器发送闭合指令。
- 一种变压器的无涌流控制方法,其特征在于,应用于变压器合闸系统,所述变压器合闸系统包括:高压断路器、变压器、低压断路器、变流器,所述变压器的高压侧通过所述高压断路器与电网连接,所述变压器的低压侧通过所述低压断路器与所述变流器的交流侧连接;所述方法包括:接收所述电网发送的网压同步信号,根据所述网压同步信号向所述变流器发送逆变指令;向所述低压断路器发送闭合指令;检测所述变压器的低压侧的电压值;确定所述变压器的低压侧的电压值达到低压额定电压值时,向所述高压断路器发送闭合指令;其中,所述逆变指令用于指示所述变流器工作在逆变状态并指示所述变流器的交流侧的输出电压。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/093739 WO2018023817A1 (zh) | 2016-08-05 | 2016-08-05 | 变压器合闸控制系统和无涌流控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/093739 WO2018023817A1 (zh) | 2016-08-05 | 2016-08-05 | 变压器合闸控制系统和无涌流控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018023817A1 true WO2018023817A1 (zh) | 2018-02-08 |
Family
ID=61073139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/093739 WO2018023817A1 (zh) | 2016-08-05 | 2016-08-05 | 变压器合闸控制系统和无涌流控制方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018023817A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112332531A (zh) * | 2020-10-19 | 2021-02-05 | 甘肃华煜晟荣科技有限公司 | 一种供电费用控制系统及控制方法 |
CN113363107A (zh) * | 2021-05-20 | 2021-09-07 | 中电新源(廊坊)电气集团有限公司 | 一种可频繁投切的高压开关变压器组合电器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104037730A (zh) * | 2013-03-04 | 2014-09-10 | 艾默生网络能源有限公司 | 一种抑制变压器空载合闸励磁涌流的装置和方法 |
CN105226610A (zh) * | 2015-10-26 | 2016-01-06 | 三峡大学 | 一种变压器合闸励磁涌流消除器 |
CN205039524U (zh) * | 2015-10-26 | 2016-02-17 | 三峡大学 | 一种变压器合闸励磁涌流消除器 |
KR20160083270A (ko) * | 2014-12-30 | 2016-07-12 | 주식회사 포스코아이씨티 | 계통 연계 인버터 시스템 및 제어 방법 |
CN106058939A (zh) * | 2016-08-05 | 2016-10-26 | 北京千驷驭电气有限公司 | 变压器合闸控制系统和无涌流控制方法 |
CN205921399U (zh) * | 2016-08-05 | 2017-02-01 | 北京千驷驭电气有限公司 | 变压器合闸控制系统 |
-
2016
- 2016-08-05 WO PCT/CN2016/093739 patent/WO2018023817A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104037730A (zh) * | 2013-03-04 | 2014-09-10 | 艾默生网络能源有限公司 | 一种抑制变压器空载合闸励磁涌流的装置和方法 |
KR20160083270A (ko) * | 2014-12-30 | 2016-07-12 | 주식회사 포스코아이씨티 | 계통 연계 인버터 시스템 및 제어 방법 |
CN105226610A (zh) * | 2015-10-26 | 2016-01-06 | 三峡大学 | 一种变压器合闸励磁涌流消除器 |
CN205039524U (zh) * | 2015-10-26 | 2016-02-17 | 三峡大学 | 一种变压器合闸励磁涌流消除器 |
CN106058939A (zh) * | 2016-08-05 | 2016-10-26 | 北京千驷驭电气有限公司 | 变压器合闸控制系统和无涌流控制方法 |
CN205921399U (zh) * | 2016-08-05 | 2017-02-01 | 北京千驷驭电气有限公司 | 变压器合闸控制系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112332531A (zh) * | 2020-10-19 | 2021-02-05 | 甘肃华煜晟荣科技有限公司 | 一种供电费用控制系统及控制方法 |
CN113363107A (zh) * | 2021-05-20 | 2021-09-07 | 中电新源(廊坊)电气集团有限公司 | 一种可频繁投切的高压开关变压器组合电器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8310106B2 (en) | Magnetizing inrush current suppression device and method for transformer | |
JP5377636B2 (ja) | 電気的な負荷をシミュレーションするための回路 | |
KR102279970B1 (ko) | 병렬로 복수의 배터리를 포함하는 전원의 외부 단락으로부터의 보호 | |
US20110309809A1 (en) | High power dc sspc with capability of soft turn-on to large capacitive loads | |
CN205921399U (zh) | 变压器合闸控制系统 | |
US20170338760A1 (en) | System and method for magnetizing a transformer in an electrical system prior to energizing the electrical system | |
US9627923B2 (en) | Apparatus and methods for backfeed detection in and control of uninterruptible power systems | |
CN106058939A (zh) | 变压器合闸控制系统和无涌流控制方法 | |
US9859809B2 (en) | Power conversion device | |
CN101678995B (zh) | 运输系统电力控制器、控制方法及中间电路电力的整流器 | |
CN105870929A (zh) | 一种抑制船舶变压器励磁涌流的装置和方法 | |
US9170597B2 (en) | Inrush current suppressing device | |
CN105141209B (zh) | 减少隔离ups旁路导通的变压器励磁电流的方法及装置 | |
US20130286513A1 (en) | Subtransient Current Suppression | |
WO2018023817A1 (zh) | 变压器合闸控制系统和无涌流控制方法 | |
US10439431B2 (en) | Method to reduce inrush currents in a transformer-less rectifier uninterruptible power supply system | |
KR20110068223A (ko) | 자동 전원 절체장치 | |
CN107431349B (zh) | 用于变换器的受控制的通电的方法 | |
US8207632B2 (en) | Control device for uninterruptible power supply | |
CN106953376B (zh) | 储能设备与控制方法 | |
Qi et al. | Modeling, Simulation, and Protection of Grid Forming Inverter-based Ring Configuration Datacenter | |
JP6240405B2 (ja) | 自励式変換器充電方法および電力変換システム | |
CN211351265U (zh) | 一种用于超级电容储能系统的高压电控箱 | |
CN102510081A (zh) | 一种光伏断网继电器过零控制电路、方法及系统 | |
RU108233U1 (ru) | Устройство для снижения бросков тока при включении трансформатора |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16911412 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16911412 Country of ref document: EP Kind code of ref document: A1 |