WO2018023719A1 - 低功耗大功率限流电路 - Google Patents

低功耗大功率限流电路 Download PDF

Info

Publication number
WO2018023719A1
WO2018023719A1 PCT/CN2016/093564 CN2016093564W WO2018023719A1 WO 2018023719 A1 WO2018023719 A1 WO 2018023719A1 CN 2016093564 W CN2016093564 W CN 2016093564W WO 2018023719 A1 WO2018023719 A1 WO 2018023719A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
amplifier
current
output
load
Prior art date
Application number
PCT/CN2016/093564
Other languages
English (en)
French (fr)
Inventor
韩性峰
Original Assignee
韩性峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韩性峰 filed Critical 韩性峰
Priority to PCT/CN2016/093564 priority Critical patent/WO2018023719A1/zh
Publication of WO2018023719A1 publication Critical patent/WO2018023719A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc

Definitions

  • the invention belongs to the technical field of electronic circuits, and in particular relates to a current limiting circuit.
  • a common current limiting circuit uses a series resistor Ra between the power supply VCC and the collector of the power NPN transistor Q.
  • the voltage induced on the series resistor is compared with a preset value by a comparator to generate a current limiting signal.
  • this circuit structure has the following disadvantages: 1) The accuracy is not high and it is sensitive to temperature.
  • the current limit setting of the circuit depends on the switching threshold of the NPN transistor Q, and the switching threshold of the NPN transistor Q is generally poor in consistency and has temperature drift, thus affecting the setting of the current limiting point, resulting in a current limiting circuit.
  • the current limit value error is large.
  • Power consumption is large.
  • the current-limiting resistor consumes a large amount of power, and other auxiliary modules, such as a bias circuit, also consume part of the current, resulting in excessive power consumption.
  • the present invention provides a low power consumption high power current limiting circuit capable of achieving low power consumption while realizing current limiting constant current.
  • the invention is achieved by the following technical solutions:
  • a low power consumption high power current limiting circuit comprises a DC signal amplifying circuit, a current control circuit, a dynamic variable load and a switching circuit, and an output circuit; and a high precision and a large connection between the output end of the output circuit and the ground
  • the sampling resistor of the power and the low resistance value obtains the sampled voltage signal V1;
  • the DC signal amplifying circuit includes a first amplifier and a surrounding resistor thereof, and the DC signal amplifying circuit amplifies the sampled voltage signal V1 to obtain an amplified a voltage signal V2;
  • the current control circuit includes a second amplifier and its surrounding resistors, forming a comparator, the first input of the second amplifier is connected to the amplified voltage signal V2, and the second input terminal is connected to the reference voltage Vref, When the voltage signal V2 is less than the reference voltage Vref, the second amplifier controls to turn on the dynamic variable load and the switching circuit to increase the load current; when V2 is greater than the reference voltage Vref, the second amplifier controls to turn
  • the current control circuit includes a second amplifier and its surrounding resistor R3 and a diode D1, the non-inverting input of the second amplifier is connected to the output of the first amplifier, and the second amplifier is negative.
  • the phase input terminal is connected to the reference voltage Vref: the total voltage VCC of the circuit is connected to the negative phase input terminal of the second amplifier through R3, and the reference voltage Vref is obtained after dividing R3; the positive electrode of the diode D1 and the negative phase of the second amplifier The input terminals are connected, and the negative pole of the diode D1 is grounded.
  • a resistor R6 is also connected in series between the non-inverting input of the second amplifier and the output of the first amplifier.
  • the dynamic load circuit includes a PNP transistor Q1, resistors R1, R5, one end of which is connected to the output end of the second amplifier, and the other end of R5 is connected to the base of Q1; the emitter of Q1 is connected to the circuit.
  • the collector of the voltage VCC, Q1 is connected to the load resistance of the output circuit; the resistor R1 is connected in series between the emitter and the base of Q1.
  • the resistance of the sampling resistor is 0.1 ⁇ .
  • the invention has the beneficial effects that the low-power high-power current limiting circuit provided by the invention directly connects a high-precision, high-power, low-resistance sampling resistor between the output end of the output circuit and the ground, and obtains the sampling voltage signal V1.
  • the DC signal amplifying circuit amplifies the sampling voltage signal V1 to obtain an amplified voltage signal V2;
  • the current control circuit is a comparator, and compares the amplified voltage signal V2 with the reference voltage Vref, when the voltage signal V2 is smaller than the reference
  • the second amplifier controls to turn on the dynamic variable load and the switching circuit to increase the load current; when V2 is greater than the reference voltage Vref, the second amplifier controls to turn off the dynamic variable load and the switching circuit to reduce the load.
  • Current The current limiting reaction speed of the invention is high, the precision is high, the power consumption is small, and the cost is low.
  • FIG. 1 is a circuit diagram of a low power high power current limiting circuit of the present invention.
  • the low power consumption high power current limiting circuit 100 of the present invention includes a DC signal amplifying circuit 101, a current control circuit 102, a dynamic variable load and switching circuit 103, and an output circuit 104.
  • V1 generated on the sampling resistor R8 in the output circuit 104
  • V2 V1.
  • the current control circuit 102 includes a second amplifier and its surrounding resistors to form a comparator.
  • the first input of the second amplifier is coupled to the amplified voltage signal V2, and the second input is coupled to the reference voltage Vref.
  • the second amplifier When the voltage signal V2 is less than the reference voltage Vref, the second amplifier outputs a low level, turns on the dynamic variable load and the switch circuit 103, and increases the load current; when V2 is greater than the reference voltage Vref, the second amplifier outputs an open circuit, which is floating.
  • the level is pulled high by R1, the dynamic variable load and switching circuit 103 are turned off, and the load current is reduced; thus, constant current control of the current can be realized.
  • the second amplifier uses LM358.
  • the dynamic variable load and switching circuit 103 functions to balance the line impedance in practical applications.
  • the impedance is increased and the current is reduced.
  • the impedance is lowered and the current is increased. Constant current constant for constant load current.
  • the output circuit 104 includes load resistors R9, one end of which is connected to the output of the dynamically variable load and switching circuit 103, and the other end of which is connected to the input of the DC signal amplifying circuit 101.
  • the invention has the advantages that the current limiting reaction speed is fast, the precision is high, the power consumption is small, and the cost is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)

Abstract

一种低功耗大功率限流电路(100),包括直流信号放大电路(101)、电流控制电路(102)、动态可变负载及开关电路(103)以及输出电路(104)。在输出电路(104)的输出端与地之间串接高精度、大功率、低阻值的采样电阻(R8),得到采样电压信号V1;直流信号放大电路(101)对所述采样电压信号V1进行放大,得到放大后的电压信号V2;电流控制电路(102)为比较器,对放大后的电压信号V2和参考电压Vref进行比较,当电压信号V2小于参考电压Vref时,第二放大器控制打开所述动态可变负载及开关电路(103),增大负载电流;当V2大于参考电压Vref时,第二放大器控制关闭所述动态可变负载及开关电路(103),减小负载电流。该限流电路(100)限流反应速度快、精度高、功耗小、成本低。

Description

低功耗大功率限流电路 技术领域
本发明属于电子电路技术领域,尤其涉及一种限流电路。
背景技术
常见的限流电路采用在电源VCC和功率NPN晶体管Q的集电极之间加入串联电阻Ra,通过比较器对串联电阻上感应的电压和预设值进行比较,产生限流信号。但此种电路结构有以下缺点:1)精度不高,对温度敏感。该电路的限流点设置取决于NPN晶体管Q的开关门限值,而NPN晶体管Q的开关门限值一致性通常比较差,并且有温度漂移,因而影响限流点的设置,导致限流电路的限流值误差很大。2)功耗大。限流电阻会消耗较大的功耗,其他的一些辅助模块如偏置电路等,也会消耗部分电流,因而导致其功耗过大。
发明内容
为了解决现有技术中问题,本发明提供了一种低功耗大功率限流电路,能够在实现限流恒流的同时做到功耗较低。本发明通过如下技术方案实现:
一种低功耗大功率限流电路,包括直流信号放大电路、电流控制电路、动态可变负载及开关电路以及输出电路;在所述输出电路的输出端与地之间串接高精度、大功率、低阻值的采样电阻,得到采样电压信号V1;所述直流信号放大电路包括第一放大器及其周围电阻,所述直流信号放大电路对所述采样电压信号V1进行放大,得到放大后的电压信号V2;所述电流控制电路包括第二放大器及其周围电阻,构成一个比较器,所述第二放大器的第一输入端接放大后的电压信号V2,第二输入端接参考电压Vref,当电压信号V2小于参考电压Vref时,第二放大器控制打开所述动态可变负载及开关电路,增大负载电流;当V2大于参考电压Vref时,第二放大器控制关闭所述动态可变负载及开关电路,减小负载电流;所述输出电路,包括负载电阻,负载电阻的一端与动态可变负载及开关电路的输出相连,负载电阻的另一端与直流信号放大电路的输入端相连。
作为本发明的进一步改进,所述直流信号放大电路包括第一放大器及其周围电阻R2、R4、和R7,其中,R2的一端接第一放大器的负相输入端,R2的另一端接地;R4的一端接第一放大器的正相输入端,R4的另一端采样电阻的非接地端;R7的一端接第一放大器的负相输入端,另一端接第一放大器的输出端,V2=V1*(R7/R2)。
作为本发明的进一步改进,所述电流控制电路包括第二放大器及其周围电阻R3和二极管D1,所述第二放大器的正相输入端接第一放大器的输出端,所述第二放大器的负相输入端接参考电压Vref:电路的总电压VCC通过R3与所述第二放大器的负相输入端相连,R3分压后得到参考电压Vref;二极管D1的正极和所述第二放大器的负相输入端相连,二极管D1的负极接地。
作为本发明的进一步改进,在所述第二放大器的正相输入端和第一放大器的输出端之间还串接一个电阻R6。
作为本发明的进一步改进,所述动态负载电路包括PNP三极管Q1、电阻R1、R5,R5的一端接第二放大器的输出端,R5的另一端接Q1的基极;Q1的发射极接电路总电压VCC,Q1的集电极与所述输出电路的负载电阻相连;在Q1的发射极和基极间串接电阻R1。
作为本发明的进一步改进,所述采样电阻的阻值为0.1Ω。
本发明的有益效果是:本发明提供的低功耗大功率限流电路,在输出电路的输出端与地之间串接高精度、大功率、低阻值的采样电阻,得到采样电压信号V1;直流信号放大电路对所述采样电压信号V1进行放大,得到放大后的电压信号V2;电流控制电路为比较器,对放大后的电压信号V2和参考电压Vref进行比较,当电压信号V2小于参考电压Vref时,第二放大器控制打开所述动态可变负载及开关电路,增大负载电流;当V2大于参考电压Vref时,第二放大器控制关闭所述动态可变负载及开关电路,减小负载电流。本发明限流反应速度快、精度高、功耗小、成本低。
附图说明
图1是本发明的低功耗大功率限流电路的电路图。
具体实施方式
下面结合附图说明及具体实施方式对本发明进一步说明。
本发明的低功耗大功率限流电路100,如附图1所示,包括直流信号放大电路101、电流控制电路102、动态可变负载及开关电路103、输出电路104。在输出电路104的输出端与地之间串接高精度、大功率、低阻值的采样电阻(图中为R8),本实施例中,采用R8=0.1Ω,负载电流流经该采样电阻R8时,生成电压信号,因为电阻R8阻值小,产生的电压信号也很微弱,但同时带来的是低功耗的效果。
直流信号放大电路101包括第一放大器及其周围电阻,所述直流信号放大电路101对输出电路104中的采样电阻R8上产生的电压信号V1进行直流放大处理,变成电压信号V2,V2=V1*(R7/R2)。本实施例中,第一放大器采用LM358,R7=100k,R2=10k,放大倍数为10,即V2=10V1。
电流控制电路102包括第二放大器及其周围电阻,构成一个比较器,第二放大器的第一输入端接放大后的电压信号V2,第二输入端接参考电压Vref。当电压信号V2小于参考电压Vref时,第二放大器输出低电平,打开动态可变负载及开关电路103,增大负载电流;当V2大于参考电压Vref时,第二放大器输出断路,浮空的电平被R1拉高,关闭动态可变负载及开关电路103,减小负载电流;这样就可以实现电流的恒流控制。本实施例中,第二放大器采用LM358。
动态可变负载及开关电路103,在实际应用中起到平衡线路阻抗的作用,当电路总电压VCC偏高时,提高阻抗,降低电流;当电路总电压VCC偏低时,降低阻抗,提升电流;始终保持负载电流的恒流稳定。
输出电路104,包括负载电阻R9,R9的一端与动态可变负载及开关电路103的输出相连,R9的另一端与直流信号放大电路101的输入端相连。
本发明的优点是限流反应速度快、精度高、功耗小、成本低。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (6)

  1. 一种低功耗大功率限流电路,其特征在于:所述限流电路包括直流信号放大电路、电流控制电路、动态可变负载及开关电路以及输出电路;在所述输出电路的输出端与地之间串接高精度、大功率、低阻值的采样电阻,得到采样电压信号V1;所述直流信号放大电路包括第一放大器及其周围电阻,所述直流信号放大电路对所述采样电压信号V1进行放大,得到放大后的电压信号V2;所述电流控制电路包括第二放大器及其周围电阻,构成一个比较器,所述第二放大器的第一输入端接放大后的电压信号V2,第二输入端接参考电压Vref,当电压信号V2小于参考电压Vref时,第二放大器控制打开所述动态可变负载及开关电路,增大负载电流;当V2大于参考电压Vref时,第二放大器控制关闭所述动态可变负载及开关电路,减小负载电流;所述输出电路,包括负载电阻,负载电阻的一端与动态可变负载及开关电路的输出相连,负载电阻的另一端与直流信号放大电路的输入端相连。
  2. 根据权利要求1所述的限流电路,其特征在于:所述直流信号放大电路包括第一放大器及其周围电阻R2、R4、和R7,其中,R2的一端接第一放大器的负相输入端,R2的另一端接地;R4的一端接第一放大器的正相输入端,R4的另一端采样电阻的非接地端;R7的一端接第一放大器的负相输入端,另一端接第一放大器的输出端,V2=V1*(R7/R2)。
  3. 根据权利要求1所述的限流电路,其特征在于:所述电流控制电路包括第二放大器及其周围电阻R3和二极管D1,所述第二放大器的正相输入端接第一放大器的输出端,所述第二放大器的负相输入端接参考电压Vref:电路的总电压VCC通过R3与所述第二放大器的负相输入端相连,R3分压后得到参考电压Vref;二极管D1的正极和所述第二放大器的负相输入端相连,二极管D1的负极接地。
  4. 根据权利要求3所述的限流电路,其特征在于:在所述第二放大器的正相输入端和第一放大器的输出端之间还串接一个电阻R6.
  5. 根据权利要求1所述的限流电路,其特征在于:所述动态负载电路包括PNP三极管Q1、电阻R1、R5,R5的一端接第二放大器的输出 端,R5的另一端接Q1的基极;Q1的发射极接电路总电压VCC,Q1的集电极与所述输出电路的负载电阻相连;在Q1的发射极和基极间串接电阻R1。
  6. 根据权利要求1所述的限流电路,其特征在于:所述采样电阻的阻值为0.1Ω。
PCT/CN2016/093564 2016-08-05 2016-08-05 低功耗大功率限流电路 WO2018023719A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/093564 WO2018023719A1 (zh) 2016-08-05 2016-08-05 低功耗大功率限流电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/093564 WO2018023719A1 (zh) 2016-08-05 2016-08-05 低功耗大功率限流电路

Publications (1)

Publication Number Publication Date
WO2018023719A1 true WO2018023719A1 (zh) 2018-02-08

Family

ID=61072603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093564 WO2018023719A1 (zh) 2016-08-05 2016-08-05 低功耗大功率限流电路

Country Status (1)

Country Link
WO (1) WO2018023719A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271659A (ja) * 1997-03-24 1998-10-09 Nissan Motor Co Ltd 半導体過電流検知回路とその検査方法
CN101141048A (zh) * 2007-06-19 2008-03-12 中兴通讯股份有限公司 激光器偏置电流的限流电路
CN101145615A (zh) * 2006-09-14 2008-03-19 比亚迪股份有限公司 一种燃料电池控制系统及控制方法
CN201666945U (zh) * 2010-03-10 2010-12-08 深圳市恒翼能科技有限公司 电池测试设备中的功率模块并联电路
CN204028738U (zh) * 2014-07-16 2014-12-17 深圳市众芯能科技有限公司 一种恒压恒流电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271659A (ja) * 1997-03-24 1998-10-09 Nissan Motor Co Ltd 半導体過電流検知回路とその検査方法
CN101145615A (zh) * 2006-09-14 2008-03-19 比亚迪股份有限公司 一种燃料电池控制系统及控制方法
CN101141048A (zh) * 2007-06-19 2008-03-12 中兴通讯股份有限公司 激光器偏置电流的限流电路
CN201666945U (zh) * 2010-03-10 2010-12-08 深圳市恒翼能科技有限公司 电池测试设备中的功率模块并联电路
CN204028738U (zh) * 2014-07-16 2014-12-17 深圳市众芯能科技有限公司 一种恒压恒流电路

Similar Documents

Publication Publication Date Title
CN105867511B (zh) 一种分段温度补偿电路
CN104993454A (zh) 过温保护电路
WO2016154132A1 (en) Bandgap voltage generation
US11914412B2 (en) Low noise bandgap reference architecture
TWI332136B (en) Voltage stabilizing circuit
CN114062765A (zh) 一种低功耗高精度电压检测电路
CN206339589U (zh) 电流检测电路
CN110412342B (zh) 一种快速电流检测电路
WO2018023719A1 (zh) 低功耗大功率限流电路
CN204044342U (zh) 双向磁滞比较器电路及磁传感器电路
CN108496291B (zh) 法拉电容充电电路及电子设备
CN110971201A (zh) 一种功率放大器偏置电路
CN104009503A (zh) 充电电路及其控制电路与控制方法
WO2021135661A1 (zh) 一种掉电检测电路
CN109375687B (zh) 一种抗辐照双极温度监测电路
CN210626553U (zh) 一种快速易调节的电流检测电路
KR20110068613A (ko) 응답속도를 개선한 아날로그 회로
CN210244187U (zh) 一种低压差线性稳压电路
US4851759A (en) Unity-gain current-limiting circuit
CN102447466B (zh) 可下拉精准电流的io电路
CN201589986U (zh) 高精度限流稳压电源
CN112485494A (zh) 一种基于三极管的电流检测电路
JPS5816763B2 (ja) 信号出力回路
CN113282132B (zh) 一种简易型输出端无过冲电压的线性稳压器电路
CN214380645U (zh) 一种直流电源保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.05.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16911314

Country of ref document: EP

Kind code of ref document: A1