WO2018023340A1 - 终端、信号处理方法及装置 - Google Patents

终端、信号处理方法及装置 Download PDF

Info

Publication number
WO2018023340A1
WO2018023340A1 PCT/CN2016/092732 CN2016092732W WO2018023340A1 WO 2018023340 A1 WO2018023340 A1 WO 2018023340A1 CN 2016092732 W CN2016092732 W CN 2016092732W WO 2018023340 A1 WO2018023340 A1 WO 2018023340A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
circuit
part value
port
gate logic
Prior art date
Application number
PCT/CN2016/092732
Other languages
English (en)
French (fr)
Inventor
付森
廖勇
刘嘉男
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2016/092732 priority Critical patent/WO2018023340A1/zh
Priority to CN201680000698.4A priority patent/CN106464326B/zh
Publication of WO2018023340A1 publication Critical patent/WO2018023340A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion

Definitions

  • the embodiments of the present disclosure relate to the field of communications technologies, and in particular, to a terminal, a signal processing method, and an apparatus.
  • the antenna is a device for transmitting or receiving electromagnetic waves in the terminal, and the terminal transmits or receives electromagnetic waves through the antenna to realize data transmission.
  • each antenna of the first terminal transmits different data
  • each antenna of the second terminal receives different data
  • the performance of each antenna of the second terminal is similar.
  • it can improve the throughput of the MIMO system.
  • the first terminal is an evolutional Node B (eNB or an e-NodeB)
  • the second terminal is a User Equipment (UE).
  • eNB evolutional Node B
  • UE User Equipment
  • the present disclosure provides a terminal and a signal processing method. And equipment.
  • the technical solution is as follows:
  • an embodiment of the present disclosure provides a terminal, where the terminal includes:
  • n is a positive integer
  • a multi-port matrix integrated circuit IC chip connected to the n receiving antennas, wherein the multi-port matrix IC chip is used to adjust signal parameters of the n wireless signals received by the n receiving antennas through the multi-port matrix;
  • radio frequency processing circuit connected to the multi-port matrix IC chip
  • a baseband processing chip coupled to the RF processing circuit.
  • the multi-port matrix includes n rows and n columns of matrix elements, and each matrix element includes a real value. And imaginary value;
  • the multi-port matrix IC chip comprises a digital gate logic circuit, an active gain circuit, a phase shift circuit and a passive coupling circuit;
  • the digital gate logic circuit is connected to the passive coupling circuit
  • the active gain circuit is respectively connected to the passive coupling circuit and the digital gate logic circuit;
  • the phase shifting circuit is respectively connected to the passive coupling circuit and the digital gate logic circuit;
  • a digital gate logic circuit is used to control the real value of the matrix element generated by the active gain circuit
  • the digital gate logic circuit is further configured to control the imaginary part value of the matrix element generated by the phase shifting circuit
  • the digital gate logic circuit is further configured to control coupling coefficients of the plurality of couplers in the passive coupling circuit, and the coupler is configured to couple the real part value and the imaginary part value to obtain a matrix element, so that the passive coupling circuit generates the multi-port matrix.
  • the terminal further includes a power supply circuit
  • the power supply circuit is connected to the multi-port matrix IC chip
  • the power supply circuit is used to power the multi-port matrix IC chip.
  • the multi-port matrix is any one of an impedance parameter matrix, an admittance parameter matrix, and a transmission parameter matrix.
  • an embodiment of the present disclosure provides a signal processing method, where the method is applied to a terminal as shown in the first aspect, the method includes:
  • the n analog signals are converted into communication data by a baseband processing chip.
  • the multi-port matrix includes n rows and n columns of matrix elements, and each matrix element includes an imaginary part value and a real part value;
  • Adjust n wireless signals through a multi-port matrix including:
  • At least one of a spatial phase difference, a distance difference, and a polarization direction of the i-th wireless signal in the n-way wireless signal is adjusted by an imaginary part value of the i-th column matrix element in the multi-port matrix.
  • the method further includes:
  • the coupling coefficients of the plurality of couplers in the passive coupling circuit are controlled by the digital gate logic circuit according to the pre-stored first programming instruction, and the matrix elements in the multi-port matrix are obtained by the coupler coupling the real part value and the imaginary part value.
  • the method further includes:
  • the second programming instruction is generated by the baseband processing chip according to the spatial fading model, and the spatial fading model is calculated by the baseband processing chip according to the received n wireless signals;
  • a plurality of coupler coupling coefficients in the passive coupling circuit are controlled by the digital gate logic circuit according to the second programming instruction, and the matrix element in the multi-port matrix is obtained by the coupler coupling the real part value and the imaginary part value.
  • an embodiment of the present disclosure provides a signal processing apparatus, and the application, as in the terminal shown in the first aspect, includes:
  • a first receiving module configured to receive n wireless signals through n receiving antennas
  • the adjustment module is configured to adjust the signal parameters of the n wireless signals through the multi-port matrix to obtain the adjusted n wireless signals;
  • the first conversion module is configured to convert the adjusted n wireless signals into n analog signals by using a radio frequency processing circuit
  • the second conversion module is configured to convert the n analog signals into communication data through the baseband processing chip.
  • the multi-port matrix includes n rows and n columns of matrix elements, and each matrix element includes an imaginary part value and a real part value;
  • Adjustment module including:
  • a first adjustment submodule configured to adjust a signal gain of the i-th wireless signal in the n-way wireless signal by a real value of the matrix element of the i-th column in the multi-port matrix
  • a second adjustment submodule configured to pass the imaginary value of the matrix element of the i-th column in the multi-port matrix At least one of a spatial phase difference, a distance difference, and a polarization direction of the i-th wireless signal in the entire n-way wireless signal.
  • the device further includes:
  • a first generation module configured to control, by the digital gate logic circuit, an active gain circuit to generate a real part value of the matrix element
  • a second generation module configured to control, by the digital gate logic circuit, the phase shift circuit to generate an imaginary part value of the matrix element
  • a third generation module configured to control, by the digital gate logic circuit, a coupling coefficient of the plurality of couplers in the passive coupling circuit according to the pre-stored first programming instruction, and the multi-port is obtained by coupling the real part value and the imaginary part value by the coupler The matrix elements in the matrix.
  • the device further includes:
  • the second receiving module is configured to receive the second programming instruction by the digital gate logic circuit; the second programming instruction is generated and transmitted by the baseband processing chip according to the spatial fading model, and the spatial fading model is the baseband processing chip according to the received n wireless Calculated by the signal;
  • a first generation module configured to control, by the digital gate logic circuit, an active gain circuit to generate a real part value of the matrix element
  • a second generation module configured to control, by the digital gate logic circuit, the phase shift circuit to generate an imaginary part value of the matrix element
  • a third generation module configured to control, by the digital gate logic circuit, a coupling coefficient of the plurality of couplers in the passive coupling circuit according to the second programming instruction, where the coupler couples the real part value and the imaginary part value to obtain the multi-port matrix Matrix element.
  • the multi-port matrix IC By connecting n receiving antennas to the multi-port matrix IC chip, the multi-port matrix IC generates a multi-port matrix to adjust the signal parameters of the n wireless signals received by the n receiving antennas, thereby solving the performance setting on the UE.
  • the close and consistent n receiving antennas are very difficult, and the inconsistent performance of each receiving antenna may lead to poor performance in MIMO transmission; the signal parameters of the n wireless signals are adjusted through the multi-port matrix, indirectly The performance between the n receive antennas is balanced to improve the throughput during MIMO transmission.
  • FIG. 1 is a schematic structural diagram of a terminal according to some exemplary embodiments.
  • FIG. 2 is a schematic structural diagram of a wireless signal transmission system according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing the operation of a multi-port matrix according to an exemplary embodiment
  • FIG. 4 is a schematic structural diagram of a multi-port matrix IC chip in a terminal according to an exemplary embodiment
  • FIG. 5 is a flowchart of a signal processing method according to an exemplary embodiment
  • FIG. 6 is a flowchart of a signal processing method according to another exemplary embodiment
  • FIG. 7 is a flowchart of a signal processing method according to another exemplary embodiment.
  • FIG. 8 is a block diagram showing the structure of a signal processing apparatus according to an exemplary embodiment
  • FIG. 9 is a block diagram showing the structure of a signal processing apparatus according to another exemplary embodiment.
  • FIG. 10 is a block diagram showing the structure of a signal processing apparatus according to an exemplary embodiment.
  • a base station transmits data to a terminal through an m-channel transmit antenna, and different transmit antennas on the base station are used to transmit different data; the terminal receives data transmitted by the base station through n receive antennas, and different receive antennas on the terminal are used for receiving Different data.
  • the wireless signal After the base station transmits the wireless signal, the wireless signal will be affected by the air and the obstacle when the wireless signal propagates in the transmission space, and the wireless signal received by the terminal has a change in the amplitude of the wireless signal compared with the wireless signal transmitted by the base station. That is, the wireless signal produces fading.
  • the transmission space pair The role of wireless signals is abstracted into a spatial fading model.
  • the performance of each receiving antenna in the terminal is generally required to be consistent.
  • the performance of a certain receiving antenna in the terminal may affect the data transmission, thereby Affects the throughput of MIMO systems.
  • the base station transmits two channels of data to the terminal at the same time. Since one of the two receiving antennas in the terminal has poor performance, and one of the data transmission fails, the transmission of the entire two channels of data fails.
  • FIG. 1 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • the terminal 100 includes at least n receiving antennas 110 and a multi-port matrix IC (Integrated Circuit) chip 120.
  • the RF processing circuit 130 and the baseband processing chip 140, n are positive integers.
  • the n receiving antennas 110 are respectively connected to the multi-port matrix IC chip 120, the multi-port matrix IC chip 120 is connected to the radio frequency processing circuit 130, and the radio frequency processing circuit 130 is connected to the baseband processing chip 140.
  • the receiving antenna 110 is configured to receive a wireless signal.
  • the n receiving antennas 110 receive n wireless signals.
  • the receiving antenna 110 is an antenna made of an alloy material and/or an oxide superconducting material, and the receiving antenna 110 is a vertical antenna, an inverted-L antenna, a T-shaped antenna, an umbrella antenna, a whip antenna, and a shaped antenna.
  • the shape of the receiving antenna 110 is not limited in this embodiment.
  • the shape of the receiving antenna 110 is generally limited by the space and the outer frame of the terminal, and the shape of each receiving antenna 110 is the same or different.
  • n is a power of two.
  • the multi-port matrix IC chip 120 is configured to generate a multi-port matrix to adjust signal parameters of the n-way wireless signals received by the n antennas, and send the adjusted n-way wireless signals to the RF processing circuit 130.
  • the signal parameters include at least one of a signal gain, a phase difference, a distance difference, and a polarization direction.
  • the RF processing circuit 130 is configured to receive the adjusted n wireless signals sent by the multi-port matrix IC chip 120, and adjust the adjusted n wireless signals to be n analog signals, and then send the signals to the baseband processing chip 140.
  • the baseband processing chip 140 is configured to receive the adjusted analog signal sent by the radio frequency processing circuit 130, and convert the n analog signals into communication data by at least one of demodulation, descrambling, despreading, and decoding.
  • FIG. 2 it is exemplarily shown a structural diagram of a wireless signal transmission system.
  • the wireless signal After the base station 22 transmits the wireless signal, the wireless signal propagates in the transmission transmission space 24. Terminal reception The wireless signal propagated in the transmission space transmission space 24 is adjusted by the multi-port matrix IC chip 26, and then sent to the RF processing circuit and the baseband processing chip for subsequent processing.
  • the effect of the transmission space transmission space 24 on the wireless signal is abstracted into a spatial fading model [Z] space , and the wireless signal received by the terminal can be regarded as a wireless signal processed by the spatial fading model [Z] space .
  • the effect of the multi-port matrix IC chip 26 on the wireless signal is abstracted into a multi-port matrix [Z] trx , that is, the baseband processing chip is subjected to a spatial fading model [Z] space and a multi-port matrix [Z] before processing the wireless signal.
  • the spatial fading model [Z] space is a matrix of m rows and n columns, m is equal to the number of transmitting antennas of the base station, and n is equal to the number of receiving antennas of the terminal.
  • the multi-port matrix [Z] trx is a matrix of n rows and n columns, and n is equal to the number of receiving antennas of the terminal.
  • the spatial fading model [Z] space is determined by the transmission space between the base station and the terminal. The terminal cannot change the spatial fading model [Z] space , but the terminal can change the value of the matrix element of the multi-port matrix [Z] space . Thereby changing the signal parameters of the received wireless signals.
  • the terminal connects the n receiving antennas to the multi-port matrix IC chip, and generates the multi-port matrix to generate the n-way wireless signals received by the n receiving antennas through the multi-port matrix IC chip.
  • the adjustment of the signal parameters solves the problem that it is very difficult to set the n receiving antennas with relatively close and consistent performance on the UE.
  • the inconsistent performance of each receiving antenna may result in poor performance in MIMO transmission; the multi-port matrix is achieved.
  • the signal parameters of the n-way wireless signals are adjusted to indirectly balance the performance between the n receiving antennas, thereby improving the throughput during MIMO transmission.
  • the multi-port matrix generated by the multi-port matrix IC circuit includes n rows and n columns of matrix elements, and each matrix element is a complex number, that is, each matrix element includes a real part value and an imaginary part value.
  • Each matrix element z 11 , . . . , z 44 is a complex number, and each matrix element includes a real value and an imaginary value.
  • the multi-port matrix is used to adjust the signal parameters of the n wireless signals received by the n antennas.
  • the real part value of the matrix element is used to adjust the signal gain of the wireless signal
  • the imaginary part value of the matrix element is used to adjust any one of the spatial phase difference, the distance difference, and the polarization direction of the wireless signal.
  • the signal parameters of the receiving antenna can be adjusted by setting a reasonable real value and/or imaginary value. That is, by adjusting the multi-end
  • the value of the matrix element of the port matrix can adjust any one of the received signal gain, spatial phase difference, distance difference, and polarization direction of each wireless signal.
  • the multi-port matrix has 4 rows and 4 columns of matrix elements. As shown in FIG. 3, 4 receiving antennas receive 4 wireless signals, and each wireless signal is adjusted by the multi-port matrix. Transmission on the path, the multi-port matrix adjusts any one of the gain, spatial phase difference, distance difference, and polarization direction of each wireless signal.
  • the gain, the spatial phase difference, the distance difference, and the polarization direction of the wireless signals received by the respective receiving antennas can be adjusted through the multi-port matrix, thereby balancing the respective receptions.
  • the multi-port matrix IC chip 120 includes at least a digital gate logic circuit 121, an active gain circuit 122, a phase shift circuit 123, and a passive coupling circuit 124. .
  • Digital gate logic circuit 121 is coupled to passive coupling circuit 124.
  • the active gain circuit 122 is connected to the digital gate logic circuit 121 and the passive coupling circuit 124, respectively.
  • the phase shifting circuit 123 is connected to the digital gate logic circuit 121 and the missing edge coupling circuit 124, respectively.
  • a digital gate logic circuit control 121 is provided for controlling the active gain circuit 122 to generate a real value of the matrix element.
  • the digital gate logic circuit control 121 is further configured to control the phase shift circuit 123 to generate an imaginary part value of the matrix element.
  • the digital gate logic circuit 121 is also used to control the coupling coefficients of the plurality of couplers in the passive coupling circuit 124.
  • the passive coupling circuit 124 includes a plurality of couplers for coupling the real value generated by the active gain circuit 122 and the imaginary value generated by the phase shifting circuit 123 such that the passive coupling circuit 124 generates a multi-port matrix.
  • the terminal further includes a power supply circuit (not shown), the power supply circuit is connected to the multi-port matrix IC chip, and the power supply circuit is used to supply power to the multi-port matrix IC chip.
  • the multi-port matrix generated by the multi-port matrix IC chip is any one of an impedance parameter matrix Z, an admittance parameter matrix Y, and a transmission parameter matrix S. These three matrices can pass predetermined conversions Relationships are transformed into each other.
  • FIG. 5 is a flowchart of a signal processing method according to an exemplary embodiment. As shown in FIG. 5, the method is applied to the terminal shown in FIG. 1, and the method includes the following steps:
  • step 501 n wireless signals are received through n receiving antennas.
  • step 502 the signal parameters of the n-way wireless signals are adjusted through the multi-port matrix to obtain the adjusted n-way wireless signals.
  • the multi-port matrix IC chip and the RF processing circuit are connected through the n-channel, and the signal parameters of each of the n-way wireless signals are adjusted through the multi-port matrix to obtain n wireless signals.
  • the multi-port matrix IC chip transmits the adjusted n-way wireless signal to the RF processing circuit through the n-way.
  • step 503 the adjusted n-way wireless signal is converted into n analog signals by a radio frequency processing circuit.
  • the RF processing circuit includes an amplifier and a filter for converting the adjusted n wireless signals into n analog signals.
  • n analog signals are converted to communication data by a baseband processing chip.
  • the RF processing circuit converts the analog signal into communication data by demodulating, descrambling, despreading, and decoding.
  • the n-channel analog signal is converted into n-way communication data by the baseband processing chip, or the n-channel analog signal is converted into k-way communication data by the baseband processing chip, where k is less than n and greater than or equal to 1.
  • the signal processing method connects the n receiving antennas to the multi-port matrix IC chip, generates the multi-port matrix through the multi-port matrix IC chip, and receives n wireless channels received by the n receiving antennas.
  • the signal parameters of the signal are adjusted to solve the problem that it is very difficult to set the n receiving antennas with relatively close and consistent performance on the UE.
  • the inconsistent performance of each receiving antenna may result in poor performance during MIMO transmission;
  • the port matrix adjusts the signal parameters of the n-way wireless signals, indirectly balancing the performance between the n receiving antennas, thereby improving the throughput during MIMO transmission.
  • the actual performance of each of the received antennas determines a first programming instruction that is pre-stored in the digital gate logic.
  • the first programming instruction is an instruction for generating a multi-port matrix.
  • FIG. 6 is a flowchart of another signal processing method according to an exemplary embodiment. As shown in FIG. 6, the method is applied to the terminal shown in FIG. 1, and the method includes the following steps:
  • step 601 the real gain circuit is controlled by the digital gate logic to generate the real value of the matrix element.
  • the multi-port matrix generated by the multi-port matrix IC chip includes n rows and n columns of matrix elements, and each matrix element includes a real part value and an imaginary part value.
  • the terminal controls the active gain circuit to generate the real value of the matrix element through the digital gate logic circuit.
  • the real value is used to adjust the signal gain of the wireless signal.
  • the real gain circuit is controlled by the digital gate logic to generate a real value of the matrix element according to the pre-stored first programming instruction.
  • step 602 the imaginary part value of the matrix element is generated by the digital gate logic controlling the phase shifting circuit.
  • the terminal controls the active gain circuit to generate the imaginary part value of the matrix element through the digital gate logic circuit.
  • the imaginary part value is used to adjust at least one of a spatial phase difference, a distance difference, and a polarization direction of the wireless signal.
  • the imaginary part value of the matrix element is controlled by the phase shifting circuit by the digital gate logic circuit according to the pre-stored first programming instruction.
  • step 601 and step 602 are mutually juxtaposed steps, and the order of execution of the two steps in this embodiment is not limited.
  • step 603 the coupling coefficients of the plurality of couplers in the passive coupling circuit are controlled by the digital gate logic circuit according to the pre-stored first programming instruction, and the real part value and the imaginary part value are coupled by the coupler to obtain the multi-port matrix.
  • Matrix element
  • the passive coupling circuit includes a plurality of couplers, and the digital gate logic circuit controls the coupling coefficient of each coupler in the passive coupling circuit according to the first stored programming instruction, and the real part and the imaginary part of the matrix element are coupled by the coupler Value, generating a multiport matrix.
  • step 604 n wireless signals are received through the n receiving antennas.
  • step 605 the signal gain of the i-th wireless signal in the n-way wireless signal is adjusted by the real value of the ith column matrix element in the multi-port matrix.
  • the multi-port matrix includes four rows and four columns of matrix elements, and the first channel is adjusted by the real value of the matrix element of the first column in the multi-port matrix.
  • the signal gain of the wireless signal through the real value of the matrix element of the second column in the multiport matrix Adjusting the signal gain of the second wireless signal, adjusting the signal gain of the third wireless signal through the real value of the matrix element of the third column in the multi-port matrix, and passing the real value of the matrix element of the fourth column in the multi-port matrix Adjust the signal gain of the 4th wireless signal.
  • step 606 at least one of a spatial phase difference, a distance difference, and a polarization direction of the i-th wireless signal in the n-way wireless signal is adjusted by an imaginary part value of the i-th column matrix element in the multi-port matrix.
  • the spatial phase difference or the distance difference or the polarization direction of the i-th wireless signal in the n-way wireless signal is adjusted by the imaginary part value of the ith column matrix element in the multi-port matrix.
  • adjusting a spatial phase difference and a distance difference, or a spatial phase difference and a polarization direction, or a distance difference of the i-th wireless signal in the n-way wireless signal by using an imaginary part value of the ith column matrix element in the multi-port matrix And the direction of polarization.
  • the spatial phase difference, the distance difference, and the polarization direction of the i-th wireless signal in the n-way wireless signal are adjusted by the imaginary part value of the ith column matrix element in the multi-port matrix.
  • step 605 and step 606 are mutually juxtaposed steps, and the order of execution of the two steps in this embodiment is not limited.
  • step 607 the adjusted n-way wireless signal is converted into n analog signals by a radio frequency processing circuit.
  • step 608 the n analog signals are converted to communication data by the baseband processing chip.
  • the signal processing method connects the n receiving antennas to the multi-port matrix IC chip, generates the multi-port matrix through the multi-port matrix IC chip, and receives n wireless channels received by the n receiving antennas.
  • the signal parameters of the signal are adjusted to solve the problem that it is very difficult to set the n receiving antennas with relatively close and consistent performance on the UE.
  • the inconsistent performance of each receiving antenna may result in poor performance during MIMO transmission;
  • the port matrix adjusts the signal parameters of the n-way wireless signals, indirectly balancing the performance between the n receiving antennas, thereby improving the throughput during MIMO transmission.
  • the signal gain of the i-th wireless signal is also adjusted by the real value of the i-th column matrix element in the multi-port matrix, thereby improving the throughput of the MIMO system.
  • At least one of a spatial phase difference, a distance difference, and a polarization direction of the i-th wireless signal is further adjusted by an imaginary part value of the i-th column matrix element in the multi-port matrix, so that the arrangement can be arranged in a smaller space. More receiving antennas.
  • the terminal Since the terminal is in a different spatial position, the transmission space is changing, that is, the spatial fading model is changing.
  • the terminal may estimate the spatial fading model according to the received wireless signal by using the baseband processing chip, and then determine the programming instruction in the digital gate logic circuit according to the spatial fading model, that is, the programming in the digital gate logic circuit.
  • the instructions are dynamically changed based on the actual spatial fading model.
  • FIG. 7 is a flowchart of another signal processing method according to an exemplary embodiment. As shown in FIG. 7, the method is applied to the terminal shown in FIG. 1, and the method includes the following steps:
  • step 701 a second programming instruction is received by the digital gate logic.
  • the second programming instruction is generated and transmitted by the baseband processing chip according to the spatial fading model, and the spatial fading model is calculated by the baseband processing chip according to the received n wireless signals.
  • the multi-port matrix generated by the multi-port matrix IC chip in the initial state is a matrix that does not make any adjustment to the signal parameters of the wireless signal, so that the baseband processing chip estimates the actual spatial fading model.
  • n pilot signals are received through n receiving antennas before receiving n wireless signals for transmitting data through the n receiving antennas.
  • the baseband processing chip calculates a spatial fading model according to the received n-channel pilot signals, generates a second programming instruction according to the spatial fading model, and sends the generated second programming instruction to the digital gate logic circuit.
  • the second programming instruction also changes when the spatial fading model changes.
  • step 702 the real gain circuit is controlled by the digital gate logic to generate a real value of the matrix element.
  • the terminal controls the active gain circuit to generate a real part value of the matrix element according to the second programming instruction through the digital gate logic circuit.
  • step 703 the imaginary part value of the matrix element is generated by the digital gate logic controlling the phase shifting circuit.
  • the terminal controls the phase shifting circuit to generate the imaginary part value of the matrix element according to the second programming instruction through the digital gate logic circuit.
  • step 702 and step 703 are mutually juxtaposed steps, and the order of execution of the two steps in this embodiment is not limited.
  • step 704 the coupling coefficients of the plurality of couplers in the passive coupling circuit are controlled by the digital gate logic circuit according to the second programming instruction, and the real part value and the imaginary part value are coupled by the coupler to obtain the multi-port matrix.
  • Matrix element
  • the passive coupling circuit includes a plurality of couplers, and the digital gate logic circuit controls the coupling coefficient of each coupler in the passive coupling circuit according to the received second programming instruction, and the real part and the imaginary part of the matrix element by the coupler The values are coupled to generate a multiport matrix.
  • step 705 n wireless signals are received through the n receiving antennas.
  • step 706 the signal gain of the i-th wireless signal in the n-way wireless signal is adjusted by the real value of the i-th column matrix element in the multi-port matrix.
  • step 605 This step has been elaborated in step 605 and will not be described here.
  • step 707 at least one of a spatial phase difference, a distance difference, and a polarization direction of the i-th wireless signal in the n-way wireless signal is adjusted by an imaginary part value of the i-th column matrix element in the multi-port matrix.
  • step 606 This step has been elaborated in step 606 and will not be described again here.
  • step 706 and step 707 are mutually juxtaposed steps, and the order of execution of the two steps in this embodiment is not limited.
  • step 708 the adjusted n wireless signals are converted to n analog signals by a radio frequency processing circuit.
  • step 709 the n analog signals are converted to communication data by the baseband processing chip.
  • the signal processing method connects the n receiving antennas to the multi-port matrix IC chip, generates the multi-port matrix through the multi-port matrix IC chip, and receives n wireless channels received by the n receiving antennas.
  • the signal parameters of the signal are adjusted to solve the problem that it is very difficult to set the n receiving antennas with relatively close and consistent performance on the UE.
  • the inconsistent performance of each receiving antenna may result in poor performance during MIMO transmission;
  • the port matrix adjusts the signal parameters of the n-way wireless signals, indirectly balancing the performance between the n receiving antennas, thereby improving the throughput during MIMO transmission.
  • the signal gain of the i-th wireless signal is also adjusted by the real value of the i-th column matrix element in the multi-port matrix, thereby improving the throughput of the MIMO system.
  • At least one of a spatial phase difference, a distance difference, and a polarization direction of the i-th wireless signal is further adjusted by an imaginary part value of the i-th column matrix element in the multi-port matrix, so that the arrangement can be arranged in a smaller space. More receiving antennas.
  • FIG. 8 is a block diagram of a signal processing apparatus according to an exemplary embodiment. As shown in FIG. 8, the apparatus may be implemented as a whole or a part of the terminal shown in FIG. 1 by software, hardware or a combination of both. Devices include but are not limited to:
  • the first receiving module 810 is configured to receive n wireless signals through the n receiving antennas.
  • the adjustment module 820 is configured to adjust the signal parameters of the n wireless signals through the multi-port matrix to obtain the adjusted n wireless signals.
  • the first conversion module 830 is configured to convert the adjusted n wireless signals into n analog signals by using a radio frequency processing circuit.
  • the second conversion module 840 is configured to convert the n analog signals into communication data through the baseband processing chip.
  • the signal processing apparatus connects the n receiving antennas to the multi-port matrix IC chip, generates a multi-port matrix through the multi-port matrix IC chip, and receives n wireless channels received by the n receiving antennas.
  • the signal parameters of the signal are adjusted to solve the problem that it is very difficult to set the n receiving antennas with relatively close and consistent performance on the UE.
  • the inconsistent performance of each receiving antenna may result in poor performance during MIMO transmission;
  • the port matrix adjusts the signal parameters of the n-way wireless signals, indirectly balancing the performance between the n receiving antennas, thereby improving the throughput of the MIMO transmission.
  • FIG. 9 is a block diagram of another signal processing apparatus according to an exemplary embodiment. As shown in FIG. 9, the apparatus may be implemented as a whole or a part of the terminal shown in FIG. 1 by software, hardware, or a combination of both.
  • the device includes but is not limited to:
  • the first receiving module 910 is configured to receive n wireless signals through the n receiving antennas.
  • the adjustment module 920 is configured to adjust the signal parameters of the n wireless signals through the multi-port matrix to obtain the adjusted n wireless signals.
  • the first conversion module 930 is configured to convert the adjusted n wireless signals into n analog signals by using a radio frequency processing circuit.
  • the second conversion module 940 is configured to convert the analog signal into a communication number through the baseband processing chip according to.
  • the multi-port matrix includes n rows and n columns of matrix elements, and each matrix element includes an imaginary part value and a real part value;
  • the adjustment module 920 includes:
  • the first adjustment submodule 921 is configured to adjust a signal gain of the i-th wireless signal in the n-way wireless signal by using a real part value of the ith column matrix element number in the multi-port matrix;
  • the second adjustment sub-module 922 is configured to adjust a spatial phase difference, a distance difference, and a polarization direction of the i-th wireless signal in the n-way wireless signal by using an imaginary part value of the ith column matrix element number in the multi-port matrix At least one.
  • the device further includes:
  • the first generation module 950 is configured to control the active gain circuit to generate a real value of the matrix element through the digital gate logic.
  • the second generation module 960 is configured to control the phase shift circuit to generate an imaginary part value of the matrix element through the digital gate logic circuit.
  • the third generation module 970 is configured to control, by the digital gate logic circuit, the coupling coefficient of the plurality of couplers in the passive coupling circuit according to the pre-stored first programming instruction, and obtain the coupling between the real part value and the imaginary part value by the coupler The matrix element in the port matrix.
  • the device further includes:
  • the second receiving module 980 is configured to receive the second programming instruction by the digital gate logic circuit; the second programming instruction is generated and transmitted by the baseband processing chip according to the spatial fading model, and the spatial fading model is the baseband processing chip according to the received n path Calculated by wireless signals;
  • a first generation module 950 configured to control, by the digital gate logic circuit, an active gain circuit to generate a real part value of the matrix element
  • a second generation module 960 configured to control, by the digital gate logic circuit, the phase shift circuit to generate an imaginary part value of the matrix element
  • the third generation module 970 is configured to control, by the digital gate logic circuit, the coupling coefficient of the plurality of couplers in the passive coupling circuit according to the second programming instruction, and obtain the multi-port matrix by coupling the real part value and the imaginary part value by the coupler Matrix element.
  • the signal processing transposed by the embodiment of the present disclosure is to connect the n receiving antennas to the multi-port matrix IC chip, and generate the multi-port matrix to the n receiving days through the multi-port matrix IC chip.
  • the signal parameters of the n-way wireless signals received by the line are adjusted to solve the problem that it is very difficult to set n receiving antennas with relatively close and consistent performance on the UE.
  • the inconsistent performance of each receiving antenna may result in poor performance during MIMO transmission.
  • the problem is achieved by adjusting the signal parameters of the n-way wireless signals through the multi-port matrix, indirectly balancing the performance between the n receiving antennas, thereby improving the throughput of the MIMO transmission.
  • the signal gain of the i-th wireless signal is also adjusted by the real value of the i-th column matrix element in the multi-port matrix, thereby improving the throughput of the MIMO system.
  • At least one of a spatial phase difference, a distance difference, and a polarization direction of the i-th wireless signal is further adjusted by an imaginary part value of the i-th column matrix element in the multi-port matrix, so that the arrangement can be arranged in a smaller space. More receiving antennas.
  • FIG. 10 is a block diagram of a signal processing apparatus according to an exemplary embodiment.
  • device 1000 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a gaming console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • apparatus 1000 can include one or more of the following components: processing component 1002, memory 1004, power component 1006, multimedia component 1008, audio component 1010, input/output (I/O) interface 1012, sensor component 1014, and Communication component 1016.
  • Processing component 1002 typically controls the overall operation of device 1000, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 1002 can include one or more processors 1018 to execute instructions to perform all or part of the steps of the above described methods.
  • processing component 1002 can include one or more modules to facilitate interaction between component 1002 and other components.
  • processing component 1002 can include a multimedia module to facilitate interaction between multimedia component 1008 and processing component 1002.
  • the memory 1004 is configured to store various types of data to support operation at the device 1000. Examples of such data include instructions for any application or method operating on device 1000, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 1004 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk
  • Optical Disk Optical Disk
  • Power component 1006 provides power to various components of device 1000.
  • Power component 1006 can be packaged A power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 1000.
  • the multimedia component 1008 includes a screen between the device 1000 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor can sense not only the boundaries of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1008 includes a front camera and/or a rear camera. When the device 1000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1010 is configured to output and/or input an audio signal.
  • the audio component 1010 includes a microphone (MIC) that is configured to receive an external audio signal when the device 1000 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 1004 or transmitted via communication component 1016.
  • the audio component 1010 also includes a speaker for outputting an audio signal.
  • the I/O interface 1012 provides an interface between the processing component 1002 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 1014 includes one or more sensors for providing device 1000 with various aspects of state assessment.
  • the sensor assembly 1014 can detect an open/closed state of the device 1000, the relative positioning of the components, such as a display and a keypad of the device 1000, and the sensor assembly 1014 can also detect a change in position of a component of the device 1000 or device 1000, the user The presence or absence of contact with device 1000, device 1000 orientation or acceleration/deceleration and temperature variation of device 1000.
  • Sensor assembly 1014 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1014 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1016 is configured to facilitate wired or wireless mode between device 1000 and other devices Communication.
  • the device 1000 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • communication component 1016 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • communication component 1016 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • communication component 1016 includes a receive antenna, a multi-port matrix IC chip, a radio frequency processing circuit, and a baseband processing chip as shown in FIG.
  • apparatus 1000 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the signal processing methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the signal processing methods described above.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 1004 comprising instructions executable by processor 1018 of apparatus 1000 to perform the signal processing method described above.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开实施例提供了一种终端、信号处理方法及装置,涉及通信技术领域,该终端包括:n条接收天线,n为正整数;与接收天线相连的多端口矩阵集成电路IC芯片,多端口矩阵IC芯片用于通过多端口矩阵对n条接收天线接收到的n路无线信号的信号参数进行调整;与多端口矩阵IC芯片相连的射频处理电路;与射频处理电路相连的基带处理芯片;解决了在UE上的各个接收天线的性能不一致会导致MIMO传输时的性能较差的问题;达到了通过多端口矩阵对n路无线信号的信号参数进行调整,间接地平衡了n条接收天线之间的性能,从而提高MIMO传输时的吞吐量。

Description

终端、信号处理方法及装置 技术领域
本公开实施例涉及通信技术领域,特别涉及一种终端、信号处理方法及装置。
背景技术
天线是终端中用来发射或接收电磁波的器件,终端通过天线发射或接收电磁波实现数据传递。
在MIMO(Multi-input Multi-output,多输入多输出)系统中,第一终端的各个天线发射不同的数据,第二终端的各个天线接收不同的数据,当第二终端的各个天线的性能相近或一致时,能够提高MIMO系统的吞吐量。可选地,第一终端是演进型基站(evolutional Node B,eNB或e-NodeB),第二终端是用户设备(User Equipment,UE)。
由于UE的结构限制,在UE上设置性能较为接近和一致的n条接收天线是非常困难的,各个接收天线的性能不一致会导致MIMO传输时的性能较差。
发明内容
为了解决在UE上设置性能较为接近和一致的n条接收天线是非常困难的,各个接收天线的性能不一致会导致MIMO传输时的性能较差的问题,本公开提供了一种终端、信号处理方法及装置。该技术方案如下:
第一方面,本公开实施例提供了一种终端,该终端包括:
n条接收天线,n为正整数;
与n条接收天线相连的多端口矩阵集成电路IC芯片,多端口矩阵IC芯片用于通过多端口矩阵对所述n条接收天线接收到的n路无线信号的信号参数进行调整;
与多端口矩阵IC芯片相连的射频处理电路;
与射频处理电路相连的基带处理芯片。
可选的,多端口矩阵包括n行n列个矩阵元素,每个矩阵元素包括实部值 和虚部值;
多端口矩阵IC芯片包括数字门逻辑电路、有源增益电路、移相电路和无源耦合电路;
数字门逻辑电路与无源耦合电路相连;
有源增益电路分别与无源耦合电路和数字门逻辑电路相连;
移相电路分别与无源耦合电路和数字门逻辑电路相连;
数字门逻辑电路用于控制有源增益电路生成矩阵元素的实部值;
数字门逻辑电路还用于控制移相电路生成矩阵元素的虚部值;
数字门逻辑电路,还用于控制无源耦合电路中的多个耦合器的耦合系数,耦合器用于耦合实部值和虚部值得到矩阵元素,使得无源耦合电路生成多端口矩阵。
可选的,终端还包括供电电路;
供电电路与多端口矩阵IC芯片相连;
供电电路用于为多端口矩阵IC芯片供电。
可选的,多端口矩阵为阻抗参数矩阵、导纳参数矩阵和传输参数矩阵中的任意一种。
第二方面,本公开实施例提供了一种信号处理方法,该方法应用与如第一方面所示的终端中,该方法包括:
通过n条接收天线接收n路无线信号;
通过多端口矩阵调整n路无线信号的信号参数,得到调整后的n路无线信号;
通过射频处理电路将调整后的n路无线信号转化为n路模拟信号;
通过基带处理芯片将n路模拟信号转化为通信数据。
可选的,多端口矩阵包括n行n列个矩阵元素,每个矩阵元素包括虚部值和实部值;
通过多端口矩阵调整n路无线信号,包括:
通过多端口矩阵中第i列矩阵元素的实部值调整n路无线信号中的第i路无线信号的信号增益;
通过多端口矩阵中第i列矩阵元素的虚部值调整n路无线信号中的第i路无线信号的空间相位差、距离差和极化方向中的至少一种。
可选的,通过多端口矩阵调整n路无线信号,得到调整后的n路无线信号之前,该方法还包括:
通过数字门逻辑电路控制有源增益电路生成矩阵元素的实部值;
通过数字门逻辑电路控制移相电路生成矩阵元素的虚部值;
通过数字门逻辑电路根据预存储的第一编程指令控制无源耦合电路中的多个耦合器的耦合系数,由耦合器耦合实部值和虚部值得到多端口矩阵中的矩阵元素。
可选的,该方法还包括:
通过数字门逻辑电路接收第二编程指令;第二编程指令是基带处理芯片根据空间衰落模型生成并发送的,空间衰落模型是基带处理芯片根据接收到的n路无线信号计算得到的;
通过数字门逻辑电路控制有源增益电路生成矩阵元素的实部值;
通过数字门逻辑电路控制移相电路生成矩阵元素的虚部值;
通过数字门逻辑电路根据第二编程指令控制无源耦合电路中的多个耦合器耦合系数,由耦合器耦合实部值和虚部值得到多端口矩阵中的矩阵元素。
第三方面,本公开实施例提供了一种信号处理装置,应用与如第一方面所示的终端中,该装置包括:
第一接收模块,被配置为通过n条接收天线接收n路无线信号;
调整模块,被配置为通过多端口矩阵调整n路无线信号的信号参数,得到调整后的n路无线信号;
第一转换模块,被配置通过射频处理电路将调整后的n路无线信号转化为n路模拟信号;
第二转换模块,被配置为通过基带处理芯片将n路模拟信号转化为通信数据。
可选的,多端口矩阵包括n行n列个矩阵元素,每个矩阵元素包括虚部值和实部值;
调整模块,包括:
第一调整子模块,被配置为通过多端口矩阵中第i列矩阵元素的实部值调整n路无线信号中的第i路无线信号的信号增益;
第二调整子模块,被配置为通过多端口矩阵中第i列矩阵元素的虚部值调 整n路无线信号中的第i路无线信号的空间相位差、距离差和极化方向中的至少一种。
可选的,该装置还包括:
第一生成模块,被配置为通过数字门逻辑电路控制有源增益电路生成矩阵元素的实部值;
第二生成模块,被配置为通过数字门逻辑电路控制移相电路生成矩阵元素的虚部值;
第三生成模块,被配置为通过数字门逻辑电路根据预存储的第一编程指令控制无源耦合电路中的多个耦合器的耦合系数,由耦合器耦合实部值和虚部值得到多端口矩阵中的矩阵元素。
可选的,该装置还包括:
第二接收模块,被配置为通过数字门逻辑电路接收第二编程指令;第二编程指令是基带处理芯片根据空间衰落模型生成并发送的,空间衰落模型是基带处理芯片根据接收到的n路无线信号计算得到的;
第一生成模块,被配置为通过数字门逻辑电路控制有源增益电路生成矩阵元素的实部值;
第二生成模块,被配置为通过数字门逻辑电路控制移相电路生成矩阵元素的虚部值;
第三生成模块,被配置为通过数字门逻辑电路根据第二编程指令控制无源耦合电路中的多个耦合器的耦合系数,由耦合器耦合实部值和虚部值得到多端口矩阵中的矩阵元素。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过将n条接收天线与多端口矩阵IC芯片相连,通过多端口矩阵IC芯片生成多端口矩阵对n条接收天线接收到的n路无线信号的信号参数进行调整,解决了在UE上设置性能较为接近和一致的n条接收天线是非常困难的,各个接收天线的性能不一致会导致MIMO传输时的性能较差的问题;达到了通过多端口矩阵对n路无线信号的信号参数进行调整,间接地平衡了n条接收天线之间的性能,从而提高MIMO传输时的吞吐量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据部分示例性实施例示出的一种终端的结构示意图;
图2是本公开一个实施例提供的无线信号传输系统的结构示意图;
图3是根据一示例性实施例示出的一种多端口矩阵的工作示意图;
图4是根据一示例性实施例示出的一种终端中的多端口矩阵IC芯片的结构示意图;
图5是根据一示例性实施例示出的一种信号处理方法的流程图;
图6是根据另一示例性实施例示出的一种信号处理方法的流程图;
图7是根据另一示例性实施例示出的一种信号处理方法的流程图;
图8是根据一示例性实施例示出的一种信号处理装置的结构方框图;
图9是根据另一示例性实施例示出的一种信号处理装置的结构方框图;
图10是根据一示例性实施例示出的一种信号处理装置的结构方框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在MIMO系统中,基站通过m路发射天线向终端发送数据,基站上的不同发射天线用于发射不同的数据;终端通过n条接收天线接收基站发送的数据,终端上的不同接收天线用于接收不同的数据。
基站发射无线信号后,无线信号在传输空间内传播时会受到空气和障碍物的影响产生传播损耗,终端接收到的无线信号与基站发射的无线信号相比,无线信号的幅度发生了变化,也即无线信号产生了衰落。可选的,将传输空间对 无线信号的作用抽象为空间衰落模型。
为了提高MIMO系统的吞吐量,通常要求终端中各条接收天线的性能一致。在实际实现中,由于终端的空间和边框的限制,以及制造工艺等因素,很难实现各个接收天线的性能完全一致,而终端中某条接收天线的性能好坏可能会影响数据的传输,从而影响MIMO系统的吞吐量。比如,基站向终端同时传输两路数据,由于终端中的两条接收天线中的一条接收天线的性能较差,导致其中一路数据传输失败,则整体的两路数据的传输均失败。为此,本公开提供有如下实施例。
图1是根据一示例性实施例示出的一种终端的结构示意图,如图1所示,该终端100至少包括:n条接收天线110、多端口矩阵IC(Integrated Circuit,集成电路)芯片120、射频处理电路130和基带处理芯片140,n为正整数。
n条接收天线110分别与多端口矩阵IC芯片120相连,多端口矩阵IC芯片120与射频处理电路130相连,射频处理电路130与基带处理芯片140相连。
接收天线110,用于接收无线信号。n条接收天线110接收到n路无线信号。可选的,接收天线110是由合金材料和/或氧化物超导材料制成的天线,接收天线110是垂直天线、倒L天线、T形天线、伞形天线、鞭状天线、异形天线中的任意一种,本实施例对接收天线110的形状不作限定。接收天线110的形状通常受终端的空间和外框的限制,每条接收天线110的形状是相同的或不同的。可选地,n为2的幂次。
多端口矩阵IC芯片120,用于生成多端口矩阵来调整n条天线接收到的n路无线信号的信号参数,将调整后的n路无线信号发送给射频处理电路130。信号参数包括:信号增益、相位差、距离差和极化方向中的至少一种。
射频处理电路130,用于接收多端口矩阵IC芯片120发送的调整后的n路无线信号,将调整后的n路无线信号放大调整为n路模拟信号后发送给基带处理芯片140。
基带处理芯片140,用于接收射频处理电路130发送的调整后的模拟信号,通过解调、解扰、解扩和解码中的至少一种操作将n路模拟信号转换为通信数据。
如图2所示,其示例性地示出了一种无线信号传输系统的结构示意图。当基站22发送无线信号后,无线信号在传输传输空间24中进行传播。终端接收 在传输空间传输空间24内传播的无线信号,接收到的无线信号经过多端口矩阵IC芯片26的调整后,发送至射频处理电路和基带处理芯片进行后续处理。
将传输空间传输空间24对无线信号的作用抽象为空间衰落模型[Z]space,终端接收到的无线信号可以看做是经过空间衰落模型[Z]space处理后的无线信号。将多端口矩阵IC芯片26对无线信号的作用抽象为多端口矩阵[Z]trx,也即基带处理芯片在处理无线信号之前,该无线信号受到空间衰落模型[Z]space和多端口矩阵[Z]trx的共同作用,该共同作用可以抽象为空间衰落模型和多端口矩阵级联,也即[Z]total=[Z]space×[Z]trx
其中,空间衰落模型[Z]space是m行n列的矩阵,m等于基站的发射天线数,n等于终端的接收天线数。多端口矩阵[Z]trx是n行n列的矩阵,n等于终端的接收天线数。空间衰落模型[Z]space由基站和终端之间的传输空间所决定,终端无法对空间衰落模型[Z]space进行改变,但终端可以改变多端口矩阵[Z]space的矩阵元素的取值,从而改变接收到的各路无线信号的信号参数。
综上所述,本公开实施例提供的终端,通过将n条接收天线与多端口矩阵IC芯片相连,通过多端口矩阵IC芯片生成多端口矩阵对n条接收天线接收到的n路无线信号的信号参数进行调整,解决了在UE上设置性能较为接近和一致的n条接收天线是非常困难的,各个接收天线的性能不一致会导致MIMO传输时的性能较差的问题;达到了通过多端口矩阵对n路无线信号的信号参数进行调整,间接地平衡了n条接收天线之间的性能,从而提高MIMO传输时的吞吐量。
可选的,多端口矩阵IC电路生成的多端口矩阵包括n行n列个矩阵元素,每个矩阵元素是复数,也即每个矩阵元素包括实部值和虚部值。
比如:多端口矩阵
Figure PCTCN2016092732-appb-000001
每个矩阵元素z11、.......、z44均为一个复数,每个矩阵元素包括实部值和虚部值。
多端口矩阵用于调节n条天线接收到的n路无线信号的信号参数。其中,矩阵元素的实部值用于调整无线信号的信号增益,矩阵元素的虚部值用于调整无线信号的空间相位差、距离差、极化方向中的任意一种。通过设置合理的实部值和/或虚部值,能够对接收天线的信号参数进行调整。也即,通过调整多端 口矩阵的矩阵元素的取值,能够调整接收到的每个无线信号的信号增益、空间相位差、距离差、极化方向中的任意一种。
假设终端共有4条接收天线,则多端口矩阵共有4行4列个矩阵元素,如图3所示,4条接收天线接收到4路无线信号,每路无线信号经过多端口矩阵调整后在4个通路上传输,多端口矩阵调整每路无线信号的增益、空间相位差、距离差、极化方向中的任意一种信号参数。
即使终端的各个接收天线的性能不一致,也能够通过多端口矩阵将各个接收天线接收的到无线信号的增益、空间相位差、距离差、极化方向中的任意一种进行调节,从而平衡各个接收天线之间的性能,或者,使得终端在更小的空间内设置更多条MIMO天线。
可选的,在图1所示的终端100中,如图4所示,多端口矩阵IC芯片120至少包括数字门逻辑电路121、有源增益电路122、移相电路123和无源耦合电路124。
数字门逻辑电路121与无源耦合电路124相连。
有源增益电路122与数字门逻辑电路121和无源耦合电路124分别相连。
移相电路123与数字门逻辑电路121和无缘耦合电路124分别相连。
数字门逻辑电路控制121,用于控制有源增益电路122生成矩阵元素的实部值。
数字门逻辑电路控制121,还用于控制移相电路123生成矩阵元素的虚部值。
数字门逻辑电路121,还用于控制无源耦合电路124中的多个耦合器的耦合系数。
无源耦合电路124中包括多个耦合器,耦合器用于耦合有源增益电路122产生的实部值和移相电路123产生的虚部值,使得无源耦合电路124生成多端口矩阵。
可选的,终端还包括供电电路(图中未示出),供电电路与多端口矩阵IC芯片相连,供电电路用于为多端口矩阵IC芯片供电。
可选的,多端口矩阵IC芯片生成的多端口矩阵为阻抗参数矩阵Z、导纳参数矩阵Y和传输参数矩阵S中的任意一种。这三种矩阵可以通过预定的转换 关系进行互相转化。
图5是根据一示例性实施例示出的一种信号处理方法的流程图,如图5所示,该方法应用于图1所示的终端中,该方法包括如下几个步骤:
在步骤501中,通过n条接收天线接收n路无线信号。
在步骤502中,通过多端口矩阵调整n路无线信号的信号参数,得到调整后的n路无线信号。
多端口矩阵IC芯片与射频处理电路通过n路通路相连,通过多端口矩阵将n路无线信号中的每一路无线信号的信号参数进行调整,得到n路无线信号。多端口矩阵IC芯片通过n路通路将调整后的n路无线信号传输至射频处理电路。
在步骤503中,通过射频处理电路将调整后的n路无线信号转化为n路模拟信号。
可选地,射频处理电路包括放大器和滤波器,用于将调整后的n路无线信号转化为n路模拟信号。
在步骤504中,通过基带处理芯片将n路模拟信号转化为通信数据。
可选的,射频处理电路通过解调、解扰、解扩和解码将模拟信号换为通信数据。
可选的,通过基带处理芯片将n路模拟信号转换为n路通信数据,或者,通过基带处理芯片将n路模拟信号转换为k路通信数据,其中,k小于n大于等于1。
综上所述,本公开实施例提供的信号处理方法,通过将n条接收天线与多端口矩阵IC芯片相连,通过多端口矩阵IC芯片生成多端口矩阵对n条接收天线接收到的n路无线信号的信号参数进行调整,解决了在UE上设置性能较为接近和一致的n条接收天线是非常困难的,各个接收天线的性能不一致会导致MIMO传输时的性能较差的问题;达到了通过多端口矩阵对n路无线信号的信号参数进行调整,间接地平衡了n条接收天线之间的性能,从而提高MIMO传输时的吞吐量。
由于终端上的各条接收天线的天线性能在制造或安装后就无法改变,但可以通过天线测试,获得终端中各条接收天线的实际性能。由开发人员根据检测 到的各条接收天线的实际性能确定第一编程指令,将第一编程指令预先存储在数字门逻辑电路中。第一编程指令是用于生成多端口矩阵的指令。
图6是根据一示例性实施例示出的另一种信号处理方法的流程图,如图6所示,该方法应用于图1所示的终端中,该方法包括如下几个步骤:
在步骤601中,通过数字门逻辑电路控制有源增益电路生成矩阵元素的实部值。
多端口矩阵IC芯片生成的多端口矩阵包括n行n列个矩阵元素,每个矩阵元素包括实部值和虚部值。
终端通过数字门逻辑电路控制有源增益电路生成矩阵元素的实部值。实部值用于调整无线信号的信号增益。
可选地,通过数字门逻辑电路根据预存储的第一编程指令,控制有源增益电路生成矩阵元素的实部值。
在步骤602中,通过数字门逻辑电路控制移相电路生成矩阵元素的虚部值。
终端通过数字门逻辑电路控制有源增益电路生成矩阵元素的虚部值。虚部值用于调整无线信号的空间相位差、距离差和极化方向中的至少一种。
可选地,通过数字门逻辑电路根据预存储的第一编程指令,控制移相电路生成矩阵元素的虚部值。
可选地,步骤601和步骤602是互相并列的步骤,本实施例对这两个步骤的执行先后顺序不加以限定。
在步骤603中,通过数字门逻辑电路根据预存储的第一编程指令控制无源耦合电路中的多个耦合器的耦合系数,由耦合器耦合实部值和虚部值得到多端口矩阵中的矩阵元素。
无源耦合电路中包括多个耦合器,数字门逻辑电路根据预先存储的第一编程指令控制无源耦合电路中各个耦合器的耦合系数,由耦合器耦合矩阵元素中的实部值和虚部值,生成多端口矩阵。
在步骤604中,通过n条接收天线接收n路无线信号。
在步骤605中,通过多端口矩阵中第i列矩阵元素的实部值调整n路无线信号中的第i路无线信号的信号增益。
比如:终端上设置有4路接收天线,能够接收到4路无线信号,则多端口矩阵包括4行4列矩阵元素,通过多端口矩阵中的第1列矩阵元素的实部值调整第1路无线信号的信号增益,通过多端口矩阵中的第2列矩阵元素的实部值 调整第2路无线信号的信号增益,通过多端口矩阵中的第3列矩阵元素的实部值调整第3路无线信号的信号增益,通过多端口矩阵中的第4列矩阵元素的实部值调整第4路无线信号的信号增益。
在步骤606中,通过多端口矩阵中第i列矩阵元素的虚部值调整n路无线信号中的第i路无线信号的空间相位差、距离差和极化方向中的至少一种。
可选的,通过多端口矩阵中第i列矩阵元素的虚部值调整n路无线信号中的第i路无线信号的空间相位差或距离差或极化方向。
可选地,通过多端口矩阵中第i列矩阵元素的虚部值调整n路无线信号中的第i路无线信号的空间相位差和距离差,或空间相位差和极化方向,或距离差和极化方向。
可选地,通过多端口矩阵中第i列矩阵元素的虚部值调整n路无线信号中的第i路无线信号的空间相位差、距离差和极化方向。
可选地,步骤605和步骤606是互相并列的步骤,本实施例对这两个步骤的执行先后顺序不加以限定。
在步骤607中,通过射频处理电路将调整后的n路无线信号转化为n路模拟信号。
该步骤已在上述步骤503中详细阐述,这里不再赘述。
在步骤608中,通过基带处理芯片将n路模拟信号转化为通信数据。
该步骤已在上述步骤504中详细阐述,这里不再赘述。
综上所述,本公开实施例提供的信号处理方法,通过将n条接收天线与多端口矩阵IC芯片相连,通过多端口矩阵IC芯片生成多端口矩阵对n条接收天线接收到的n路无线信号的信号参数进行调整,解决了在UE上设置性能较为接近和一致的n条接收天线是非常困难的,各个接收天线的性能不一致会导致MIMO传输时的性能较差的问题;达到了通过多端口矩阵对n路无线信号的信号参数进行调整,间接地平衡了n条接收天线之间的性能,从而提高MIMO传输时的吞吐量。
此外,还通过多端口矩阵中的第i列矩阵元素的实部值调整第i路无线信号的信号增益,提高了MIMO系统的吞吐量。
此外,还通过多端口矩阵中的第i列矩阵元素的虚部值调整第i路无线信号的空间相位差、距离差和极化方向中的至少一种,使得在更小的空间内能够布置更多的接收天线。
由于终端处于不同的空间位置时,传输空间在发生改变,也即空间衰落模型在发生改变。在可选的实现方式中,终端可以通过基带处理芯片根据接收到无线信号对空间衰落模型进行估计,再根据空间衰落模型确定数字门逻辑电路中的编程指令,也即数字门逻辑电路中的编程指令是根据实际的空间衰落模型而动态变化的。
图7是根据一示例性实施例示出的另一种信号处理方法的流程图,如图7所示,该方法应用于图1所示的终端中,该方法包括如下几个步骤:
在步骤701中,通过数字门逻辑电路接收第二编程指令。
第二编程指令是基带处理芯片根据空间衰落模型生成并发送的,空间衰落模型是基带处理芯片根据接收到的n路无线信号计算得到的。
可选地,多端口矩阵IC芯片在初始状态下所生成的多端口矩阵是对无线信号的信号参数不进行任何调整的矩阵,以便基带处理芯片对实际的空间衰落模型进行估计。
可选地,在通过n条接收天线接收n路用于传输数据的无线信号之前,通过n条接收天线接收n路导频信号。基带处理芯片根据接收到的n路导频信号计算出空间衰落模型,再根据空间衰落模型生成第二编程指令,并将生成的第二编程指令发送至数字门逻辑电路。
可选的,当空间衰落模型发生变化时,第二编程指令也发生变化。
在步骤702中,通过数字门逻辑电路控制有源增益电路生成矩阵元素的实部值。
终端通过数字门逻辑电路根据第二编程指令,控制有源增益电路生成矩阵元素的实部值。
在步骤703中,通过数字门逻辑电路控制移相电路生成矩阵元素的虚部值。
终端通过数字门逻辑电路根据第二编程指令,控制移相电路生成矩阵元素的虚部值。
可选地,步骤702和步骤703是互相并列的步骤,本实施例对这两个步骤的执行先后顺序不加以限定。
在步骤704中,通过数字门逻辑电路根据第二编程指令控制无源耦合电路中的多个耦合器的耦合系数,由耦合器耦合实部值和虚部值得到多端口矩阵中 的矩阵元素。
无源耦合电路中包括多个耦合器,数字门逻辑电路根据接收到的第二编程指令控制无源耦合电路中各个耦合器的耦合系数,由耦合器对矩阵元素中的实部值和虚部值进行耦合,生成多端口矩阵。
在步骤705中,通过n条接收天线接收n路无线信号。
在步骤706中,通过多端口矩阵中第i列矩阵元素的实部值调整n路无线信号中的第i路无线信号的信号增益。
该步骤已在步骤605中详细阐述,这里不再赘述。
在步骤707中,通过多端口矩阵中第i列矩阵元素的虚部值调整n路无线信号中的第i路无线信号的空间相位差、距离差和极化方向中的至少一种。
该步骤已在步骤606中详细阐述,这里不再赘述。
可选地,步骤706和步骤707是互相并列的步骤,本实施例对这两个步骤的执行先后顺序不加以限定。
在步骤708中,通过射频处理电路将调整后的n路无线信号转化为n路模拟信号。
该步骤已在上述步骤503中详细阐述,这里不再赘述。
在步骤709中,通过基带处理芯片将n路模拟信号转化为通信数据。
该步骤已在上述步骤504中详细阐述,这里不再赘述。
综上所述,本公开实施例提供的信号处理方法,通过将n条接收天线与多端口矩阵IC芯片相连,通过多端口矩阵IC芯片生成多端口矩阵对n条接收天线接收到的n路无线信号的信号参数进行调整,解决了在UE上设置性能较为接近和一致的n条接收天线是非常困难的,各个接收天线的性能不一致会导致MIMO传输时的性能较差的问题;达到了通过多端口矩阵对n路无线信号的信号参数进行调整,间接地平衡了n条接收天线之间的性能,从而提高MIMO传输时的吞吐量。
此外,还通过多端口矩阵中的第i列矩阵元素的实部值调整第i路无线信号的信号增益,提高了MIMO系统的吞吐量。
此外,还通过多端口矩阵中的第i列矩阵元素的虚部值调整第i路无线信号的空间相位差、距离差和极化方向中的至少一种,使得在更小的空间内能够布置更多的接收天线。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图8是根据一示例性实施例示出的一种信号处理装置的框图,如图8所示,该装置可以通过软件、硬件或者两者的结合实现成为图1所示的终端全部或者一部分,该装置包括但不限于:
第一接收模块810,被配置为通过n条接收天线接收n路无线信号。
调整模块820,被配置为通过多端口矩阵调整n路无线信号的信号参数,得到调整后的n路无线信号。
第一转换模块830,被配置为通过射频处理电路将调整后的n路无线信号转化为n路模拟信号。
第二转换模块840,被配置为通过基带处理芯片将n路模拟信号转化为通信数据。
综上所述,本公开实施例提供的信号处理装置,通过将n条接收天线与多端口矩阵IC芯片相连,通过多端口矩阵IC芯片生成多端口矩阵对n条接收天线接收到的n路无线信号的信号参数进行调整,解决了在UE上设置性能较为接近和一致的n条接收天线是非常困难的,各个接收天线的性能不一致会导致MIMO传输时的性能较差的问题;达到了通过多端口矩阵对n路无线信号的信号参数进行调整,间接地平衡了n条接收天线之间的性能,从而提高MIMO传输时的吞吐量的效果。
图9是根据一示例性实施例示出的另一种信号处理装置的框图,如图9所示,该装置可以通过软件、硬件或者两者的结合实现成为图1所示的终端全部或者一部分,该装置包括但不限于:
第一接收模块910,被配置为通过n条接收天线接收n路无线信号。
调整模块920,被配置为通过多端口矩阵调整n路无线信号的信号参数,得到调整后的n路无线信号。
第一转换模块930,被配置为通过射频处理电路将调整后的n路无线信号转化为n路模拟信号。
第二转换模块940,被配置为通过基带处理芯片将模拟信号转化为通信数 据。
可选的,多端口矩阵包括n行n列个矩阵元素,每个矩阵元素包括虚部值和实部值;
调整模块920,包括:
第一调整子模块921,被配置为通过多端口矩阵中第i列矩阵元数的实部值调整n路无线信号中的第i路无线信号的信号增益;
第二调整子模块922,被配置为通过多端口矩阵中第i列矩阵元数的虚部值调整n路无线信号中的第i路无线信号的空间相位差、距离差和极化方向中的至少一种。
可选的,该装置还包括:
第一生成模块950,被配置为通过数字门逻辑电路控制有源增益电路生成矩阵元素的实部值。
第二生成模块960,被配置为通过数字门逻辑电路控制移相电路生成矩阵元素的虚部值。
第三生成模块970,被配置为通过数字门逻辑电路根据预存储的第一编程指令控制无源耦合电路中的多个耦合器的耦合系数,由耦合器耦合实部值和虚部值得到多端口矩阵中的矩阵元素。
可选的,该装置还包括:
第二接收模块980,被配置为通过数字门逻辑电路接收第二编程指令;第二编程指令是基带处理芯片根据空间衰落模型生成并发送的,空间衰落模型是基带处理芯片根据接收到的n路无线信号计算得到的;
第一生成模块950,被配置为通过数字门逻辑电路控制有源增益电路生成矩阵元素的实部值;
第二生成模块960,被配置为通过数字门逻辑电路控制移相电路生成矩阵元素的虚部值;
第三生成模块970,被配置为通过数字门逻辑电路根据第二编程指令控制无源耦合电路中的多个耦合器的耦合系数,由耦合器耦合实部值和虚部值得到多端口矩阵中的矩阵元素。
综上所述,本公开实施例提供的信号处理转置,通过将n条接收天线与多端口矩阵IC芯片相连,通过多端口矩阵IC芯片生成多端口矩阵对n条接收天 线接收到的n路无线信号的信号参数进行调整,解决了在UE上设置性能较为接近和一致的n条接收天线是非常困难的,各个接收天线的性能不一致会导致MIMO传输时的性能较差的问题;达到了通过多端口矩阵对n路无线信号的信号参数进行调整,间接地平衡了n条接收天线之间的性能,从而提高MIMO传输时的吞吐量的效果。
此外,还通过多端口矩阵中的第i列矩阵元素的实部值调整第i路无线信号的信号增益,提高了MIMO系统的吞吐量。
此外,还通过多端口矩阵中的第i列矩阵元素的虚部值调整第i路无线信号的空间相位差、距离差和极化方向中的至少一种,使得在更小的空间内能够布置更多的接收天线。
图10是根据一示例性实施例示出的一种信号处理装置的框图。例如,装置1000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图10,装置1000可以包括以下一个或多个组件:处理组件1002,存储器1004,电源组件1006,多媒体组件1008,音频组件1010,输入/输出(I/O)接口1012,传感器组件1014,以及通信组件1016。
处理组件1002通常控制装置1000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1002可以包括一个或多个处理器1018来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1002可以包括一个或多个模块,便于处理组件1002和其他组件之间的交互。例如,处理组件1002可以包括多媒体模块,以方便多媒体组件1008和处理组件1002之间的交互。
存储器1004被配置为存储各种类型的数据以支持在装置1000的操作。这些数据的示例包括用于在装置1000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1006为装置1000的各种组件提供电力。电源组件1006可以包 括电源管理系统,一个或多个电源,及其他与为装置1000生成、管理和分配电力相关联的组件。
多媒体组件1008包括在装置1000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1008包括一个前置摄像头和/或后置摄像头。当装置1000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1010被配置为输出和/或输入音频信号。例如,音频组件1010包括一个麦克风(MIC),当装置1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1004或经由通信组件1016发送。在一些实施例中,音频组件1010还包括一个扬声器,用于输出音频信号。
I/O接口1012为处理组件1002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1014包括一个或多个传感器,用于为装置1000提供各个方面的状态评估。例如,传感器组件1014可以检测到装置1000的打开/关闭状态,组件的相对定位,例如组件为装置1000的显示器和小键盘,传感器组件1014还可以检测装置1000或装置1000一个组件的位置改变,用户与装置1000接触的存在或不存在,装置1000方位或加速/减速和装置1000的温度变化。传感器组件1014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1016被配置为便于装置1000和其他设备之间有线或无线方式的 通信。装置1000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件1016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。可选地,通信组件1016包括如图1所示的接收天线、多端口矩阵IC芯片、射频处理电路和基带处理芯片。
在示例性实施例中,装置1000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述信号处理方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1004,上述指令可由装置1000的处理器1018执行以完成上述信号处理方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (12)

  1. 一种终端,其特征在于,所述终端包括:
    n条接收天线,n为正整数;
    与所述接收天线相连的多端口矩阵集成电路IC芯片,所述多端口矩阵IC芯片用于通过多端口矩阵对所述n条接收天线接收到的n路无线信号的信号参数进行调整;
    与所述多端口矩阵IC芯片相连的射频处理电路;
    与所述射频处理电路相连的基带处理芯片。
  2. 根据权利要求1所述的终端,其特征在于,所述多端口矩阵包括n行n列个矩阵元素,每个所述矩阵元素包括实部值和虚部值;
    所述多端口矩阵IC芯片包括数字门逻辑电路、有源增益电路、移相电路和无源耦合电路;
    所述数字门逻辑电路与所述无源耦合电路相连;
    所述有源增益电路分别与所述无源耦合电路和所述数字门逻辑电路相连;
    所述移相电路分别与所述无源耦合电路和所述数字门逻辑电路相连;
    所述数字门逻辑电路,用于控制所述有源增益电路生成所述矩阵元素的实部值;
    所述数字门逻辑电路,还用于控制所述移相电路生成所述矩阵元素的虚部值;
    所述数字门逻辑电路,还用于控制所述无源耦合电路中的多个耦合器的耦合系数,所述耦合器用于耦合所述实部值和所述虚部值得到所述矩阵元素,使得所述无源耦合电路生成所述多端口矩阵。
  3. 根据权利要求2所述的终端,其特征在于,所述终端还包括供电电路;
    所述供电电路与所述多端口矩阵IC芯片相连;
    所述供电电路用于为所述多端口矩阵IC芯片供电。
  4. 根据权利要求2或3所述的终端,其特征在于,所述多端口矩阵为阻抗参数矩阵、导纳参数矩阵和传输参数矩阵中的任意一种。
  5. 一种信号处理方法,其特征在于,应用于如权利要求1至4任一所述的终端中,所述方法包括:
    通过所述n条接收天线接收所述n路无线信号;
    通过所述多端口矩阵调整所述n路无线信号的信号参数,得到调整后的n路无线信号;
    通过所述射频处理电路将所述调整后的n路无线信号转化为n路模拟信号;
    通过所述基带处理芯片将所述n路模拟信号转化为通信数据。
  6. 根据权利要求5所述的方法,其特征在于,所述多端口矩阵包括n行n列个矩阵元素,每个所述矩阵元素包括虚部值和实部值;
    所述通过所述多端口矩阵调整所述n路无线信号的信号参数,包括:
    通过所述多端口矩阵中第i列所述矩阵元素的实部值调整所述n路无线信号中的第i路所述无线信号的信号增益;
    和/或;
    通过所述多端口矩阵中第i列所述矩阵元素的虚部值调整所述n路无线信号中的第i路所述无线信号的空间相位差、距离差和极化方向中的至少一种。
  7. 根据权利要求6所述的方法,其特征在于,所述通过所述多端口矩阵调整所述n路无线信号的信号参数,得到调整后的n路无线信号之前,所述方法还包括:
    通过所述数字门逻辑电路控制所述有源增益电路生成所述矩阵元素的实部值;
    通过所述数字门逻辑电路控制所述移相电路生成所述矩阵元素的虚部值;
    通过所述数字门逻辑电路根据预存储的第一编程指令控制所述无源耦合电路中的多个耦合器的耦合系数,由所述耦合器耦合所述实部值和所述虚部值得到所述多端口矩阵中的所述矩阵元素。
  8. 根据权利要求6所述的方法,其特征在于,所述通过所述多端口矩阵调整所述n路无线信号,得到调整后的n路无线信号之前,所述方法还包括:
    通过所述数字门逻辑电路接收第二编程指令;所述第二编程指令是所述基带处理芯片根据所述空间衰落模型生成并发送的,所述空间衰落模型是所述基带处理芯片根据接收到的所述n路无线信号计算得到的;
    通过所述数字门逻辑电路控制所述有源增益电路生成所述矩阵元素的实部值;
    通过所述数字门逻辑电路控制所述移相电路生成所述矩阵元素的虚部值;
    通过所述数字门逻辑电路根据第二编程指令控制所述无源耦合电路中的多个耦合器的耦合系数,由所述耦合器耦合所述实部值和所述虚部值得到所述多端口矩阵中的所述矩阵元素。
  9. 一种信号处理装置,其特征在于,应用于如权利要求1至4任一所述的终端中,所述装置包括:
    第一接收模块,被配置为通过所述n条接收天线接收所述n路无线信号;
    调整模块,被配置为通过所述多端口矩阵调整所述n路无线信号的信号参数,得到调整后的n路无线信号;
    第一转换模块,被配置为通过所述射频处理电路将所述调整后的n路无线信号转化为n路模拟信号;
    第二转换模块,被配置为通过所述基带处理芯片将所述n路模拟信号转化为通信数据。
  10. 根据权利要求9所述的装置,其特征在于,所述多端口矩阵包括n行n列个矩阵元素,每个所述矩阵元素包括虚部值和实部值;
    所述调整模块,包括:
    第一调整子模块,被配置为通过所述多端口矩阵中第i列所述矩阵元素的实部值调整所述n路无线信号中的第i路所述无线信号的信号增益;
    第二调整子模块,被配置为通过所述多端口矩阵中第i列所述矩阵元素的虚 部值调整所述n路无线信号中的第i路所述无线信号的空间相位差、距离差和极化方向中的至少一种。
  11. 根据权利要求10所述的装置,其特征在于,所述装置还包括:
    第一生成模块,被配置为通过所述数字门逻辑电路控制所述有源增益电路生成所述矩阵元素的实部值;
    第二生成模块,被配置为通过所述数字门逻辑电路控制所述移相电路生成所述矩阵元素的虚部值;
    第三生成模块,被配置为通过所述数字门逻辑电路根据预存储的第一编程指令控制所述无源耦合电路中的多个耦合器的耦合系数,由所述耦合器耦合所述实部值和所述虚部值得到所述多端口矩阵中的所述矩阵元素。
  12. 根据权利要求10所述的装置,其特征在于,所述装置还包括:
    第二接收模块,被配置为通过所述数字门逻辑电路接收第二编程指令;所述第二编程指令是所述基带处理芯片根据所述空间衰落模型生成并发送的,所述空间衰落模型是所述基带处理芯片根据接收到的所述n路无线信号计算得到的;
    第一生成模块,被配置为通过所述数字门逻辑电路控制所述有源增益电路生成所述矩阵元素的实部值;
    第二生成模块,被配置为通过所述数字门逻辑电路控制所述移相电路生成所述矩阵元素的虚部值;
    第三生成模块,被配置为通过所述数字门逻辑电路根据第二编程指令控制所述无源耦合电路中的多个耦合器的耦合系数,由所述耦合器耦合所述实部值和所述虚部值得到所述多端口矩阵中的所述矩阵元素。
PCT/CN2016/092732 2016-08-01 2016-08-01 终端、信号处理方法及装置 WO2018023340A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/092732 WO2018023340A1 (zh) 2016-08-01 2016-08-01 终端、信号处理方法及装置
CN201680000698.4A CN106464326B (zh) 2016-08-01 2016-08-01 终端、信号处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092732 WO2018023340A1 (zh) 2016-08-01 2016-08-01 终端、信号处理方法及装置

Publications (1)

Publication Number Publication Date
WO2018023340A1 true WO2018023340A1 (zh) 2018-02-08

Family

ID=58215613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092732 WO2018023340A1 (zh) 2016-08-01 2016-08-01 终端、信号处理方法及装置

Country Status (2)

Country Link
CN (1) CN106464326B (zh)
WO (1) WO2018023340A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100561884C (zh) * 2004-04-14 2009-11-18 Ut斯达康通讯有限公司 基于分布式发射源的多输入多输出通信方式
EP2445288A1 (en) * 2009-06-19 2012-04-25 Huawei Technologies Co., Ltd. Method and apparatus for obtaining channel state information
CN103188006A (zh) * 2011-12-31 2013-07-03 中兴通讯股份有限公司 一种下行协作多点传输方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096759C (zh) * 1997-12-17 2002-12-18 明碁电脑股份有限公司 具有可调整式天线的无线电收发装置
GB2507788A (en) * 2012-11-09 2014-05-14 Univ Birmingham Vehicle roof mounted reconfigurable MIMO antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100561884C (zh) * 2004-04-14 2009-11-18 Ut斯达康通讯有限公司 基于分布式发射源的多输入多输出通信方式
EP2445288A1 (en) * 2009-06-19 2012-04-25 Huawei Technologies Co., Ltd. Method and apparatus for obtaining channel state information
CN103188006A (zh) * 2011-12-31 2013-07-03 中兴通讯股份有限公司 一种下行协作多点传输方法和系统

Also Published As

Publication number Publication date
CN106464326A (zh) 2017-02-22
CN106464326B (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
JP6208384B2 (ja) アンテナモジュール及び移動端末
WO2021129525A1 (zh) 天线电路、电子设备及天线性能的调整方法
US11671809B2 (en) Bluetooth profile fast connect
US10798483B2 (en) Audio signal processing method and device, electronic equipment and storage medium
US20230208589A1 (en) Srs resource configuration method, srs resource determination method, and apparatuses
WO2022082373A1 (zh) Pusch指示方法和装置、pusch发送方法和装置
WO2021103672A1 (zh) 一种音频数据处理的方法及装置、电子设备、存储介质
WO2018133341A1 (zh) 发射上行信号的方法及装置
WO2019061158A1 (zh) 干扰协调方法及装置、用户设备和基站
US11917562B2 (en) Vehicle-to-everything synchronization method and device
CN108964800B (zh) 移动终端的天线性能检测方法及系统
WO2022082372A1 (zh) Pusch指示方法和装置、pusch发送方法和装置
US20140146192A1 (en) Acoustic configuration of a wireless camera
US11770814B2 (en) Antenna adjustment method and apparatus, gateway, terminal, adjustment system, and storage medium
WO2018023340A1 (zh) 终端、信号处理方法及装置
WO2019041151A1 (zh) 最佳波束上报和确定方法及装置、用户设备、基站
US12126409B2 (en) Multiple-input multiple-output mode configuration method and apparatus, and storage medium
WO2022205008A1 (zh) 能力获取方法和装置、能力指示方法和装置
WO2020244118A1 (zh) 天线结构和电子设备、天线结构的组阵方法和装置
WO2021057498A1 (zh) 探头天线确定方法及装置
WO2019136686A1 (zh) 数据传输方法、装置及数据发送端
WO2022217609A1 (zh) 信号检测网络的确定方法和装置
CN114915300B (zh) 天线模组、终端设备、天线调节方法及装置
CN114915301B (zh) 天线模组、终端设备、天线调节方法及装置
WO2023056646A1 (zh) 一种信道状态信息上报方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910938

Country of ref document: EP

Kind code of ref document: A1