WO2023056646A1 - 一种信道状态信息上报方法、装置及存储介质 - Google Patents

一种信道状态信息上报方法、装置及存储介质 Download PDF

Info

Publication number
WO2023056646A1
WO2023056646A1 PCT/CN2021/122915 CN2021122915W WO2023056646A1 WO 2023056646 A1 WO2023056646 A1 WO 2023056646A1 CN 2021122915 W CN2021122915 W CN 2021122915W WO 2023056646 A1 WO2023056646 A1 WO 2023056646A1
Authority
WO
WIPO (PCT)
Prior art keywords
pmi feedback
feedback parameter
dimension
different
cmr
Prior art date
Application number
PCT/CN2021/122915
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/122915 priority Critical patent/WO2023056646A1/zh
Priority to EP21959736.6A priority patent/EP4415449A1/en
Priority to CN202180003209.1A priority patent/CN116261832A/zh
Priority to JP2024521061A priority patent/JP2024535536A/ja
Priority to KR1020247014723A priority patent/KR20240089278A/ko
Publication of WO2023056646A1 publication Critical patent/WO2023056646A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a method, device and storage medium for reporting channel state information.
  • New Radio for example, when the communication frequency band is in frequency range 2, due to the fast attenuation of high-frequency channels, in order to ensure coverage, it is necessary to use beam-based transmission and reception.
  • a network device is configured with multiple channel measurement resources (channel measurement resource, CMR), such as multiple transmission and reception points (TRP).
  • CMR channel measurement resource
  • TRP transmission and reception points
  • the network device can use the multiple TRPs to provide services for the terminal, for example, use multiple TRPs to send a physical downlink shared channel (PDSCH) to the terminal.
  • PDSCH physical downlink shared channel
  • the terminal will independently feed back precoding matrix indicators (Precoding matrix indicator, PMI) of multiple TRPs to the network device.
  • the terminal independently feeds back the PMI for multiple TRPs to the network device, that is, it needs to feed back multiple PMIs, which causes a large signaling overhead.
  • the present disclosure provides a method, device and storage medium for reporting channel state information.
  • a method for reporting channel state information is provided, which is applied to a terminal, including:
  • each CMR in the at least one CMR corresponds to a CMR resource set, and at least two different CMRs correspond to different CMR resource sets.
  • the CMR resource set corresponds to a resource parameter
  • the resource parameter includes one or more of a control resource set pool index, a sending and receiving point, and a remote radio head, and resources corresponding to different CMR resource sets The parameters are different.
  • the PMI includes one or more PMI feedback parameters.
  • the PMI feedback parameters are carried in the X1 information domain and/or the X2 information domain; the X1 information domain It is used to carry the first wideband PMI feedback parameter, and the X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the first broadband PMI feedback parameter carried in the X1 information domain includes a first PMI feedback parameter group; the first PMI feedback parameter group includes at least one of the following:
  • the first PMI feedback parameter the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension;
  • the second PMI feedback parameter the The second PMI feedback parameter is determined based on the second dimension antenna port number and the second dimension oversampling number, or the second dimension antenna port number and the second dimension beam number;
  • the third PMI feedback parameter, the third PMI feedback parameter is used To indicate the relative difference between the first PMI feedback parameter and/or the second PMI feedback parameter of other layers and the first layer;
  • the fourth PMI feedback parameter the fourth PMI feedback parameter indicates at least two of the at least one CMR The phase shift between the V matrices corresponding to the CMR.
  • the first PMI feedback parameter group includes first PMI feedback parameters, and the first PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the first PMI feedback parameters
  • the parameter group includes a second PMI feedback parameter, and the second PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the first PMI feedback parameter group includes a third PMI feedback parameter, and the The third PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same.
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used for at least one of the following: selecting a beam, determining a phase offset, and indicating the position of the selected frequency domain unit, and indicate nonzero coefficient locations.
  • the first broadband PMI feedback parameter carried in the X1 information field includes a second PMI feedback parameter group
  • the second PMI feedback parameter set includes at least one of the following:
  • the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension;
  • the sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension and/or the number of selected beams;
  • the seventh PMI feedback parameter is used to indicate that other layers are different from the first The relative difference between the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the layer;
  • the eighth PMI feedback parameter, the eighth PMI feedback parameter indicates the V matrix corresponding to at least two CMRs in the at least one CMR phase offset;
  • a ninth PMI feedback parameter is used to adjust the relative magnitude of the wideband.
  • the second PMI feedback parameter group includes fifth PMI feedback parameters, and the fifth PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the second PMI feedback parameters The group includes a sixth PMI feedback parameter, and the sixth PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the second PMI feedback parameter group includes a seventh PMI feedback parameter, and the at least The seventh PMI feedback parameters corresponding to at least two CMRs in one CMR are the same; and/or the second PMI feedback parameter set includes a ninth PMI feedback parameter, and the ninth PMI corresponding to at least two CMRs in the at least one CMR The feedback parameters are the same.
  • the second PMI feedback parameter group includes one sixth PMI feedback parameter or multiple sixth PMI feedback parameters; the one sixth PMI feedback parameter is based on the same sending and receiving point/radio remote head at The number of antenna ports in the first dimension, the number of antenna ports in the second dimension, and/or the number of selected beams are determined;
  • the multiple sixth PMI feedback parameters are based on the number of antenna ports of multiple different transmitting and receiving points/radio remote heads in the first dimension, and the multiple different transmitting and receiving points/radio remote heads are in the antenna ports of the second dimension number, and/or the number of beams selected by multiple different sending and receiving points/radio remote heads.
  • the V matrices corresponding to the CMRs in the at least one CMR are different, and the PMI feedback parameters are carried in the X1 information field or the X2 information field; the X1 information field is used to carry the first broadband PMI feedback parameter, The X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the V matrices corresponding to the CMRs in the at least one CMR are different, and the first broadband PMI feedback parameters carried in the X1 information field include:
  • the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension; or the second PMI feedback parameter, The second PMI feedback parameter is determined based on the number of antenna ports in the second dimension and the number of oversampling in the second dimension, or the number of antenna ports in the second dimension and the number of beams in the second dimension; or the third PMI feedback parameter, the third PMI feedback The parameter is used to indicate a relative difference between the first PMI feedback parameter and/or the second PMI feedback parameter of the other layer and the first layer.
  • the V matrices corresponding to the CMRs in the at least one CMR are different, and the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information domain is used to select a beam or to determine a phase offset. shift.
  • the first wideband PMI feedback parameters carried in the X1 information field include multiple different first PMI feedback parameters, and different first PMI feedback parameters correspond to different CMRs; or the X1 information field
  • the first wideband PMI feedback parameter carried in the field includes a plurality of different second PMI feedback parameters, and the CMRs corresponding to different second PMI feedback parameters are different; or the first wideband PMI feedback parameter carried in the X1 information field includes There are multiple different third PMI feedback parameters, and different CMRs corresponding to different third PMI feedback parameters are different.
  • the V matrix corresponding to each CMR in the at least one CMR is different, and the PMI feedback parameters include at least one of the following:
  • the fifth PMI feedback parameter, the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension;
  • the sixth PMI feedback parameter, the The sixth PMI feedback parameter is based on the number of antenna ports in the first dimension, and the number of antenna ports in the second dimension is determined and/or the number of beams selected;
  • the seventh PMI feedback parameter is used to indicate that other layers are different from the first The relative difference of the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the layer;
  • the ninth PMI feedback parameter, the ninth PMI feedback parameter is used to adjust the relative magnitude of the broadband.
  • the V matrix corresponding to each CMR in the at least one CMR is different, and the PMI feedback parameters include:
  • a method for reporting channel state information is provided, which is applied to a network device, including: acquiring channel state information reported by a terminal, where the channel state information includes a measurement result based on at least one channel measurement resource CMR measurement , the measurement result includes the precoding matrix indication PMI shared by the at least one CMR.
  • each CMR in the at least one CMR corresponds to a CMR resource set, and at least two different CMRs correspond to different CMR resource sets.
  • the CMR resource set corresponds to a resource parameter
  • the resource parameter includes one or more of a control resource set pool index, a sending and receiving point, and a remote radio head, and resources corresponding to different CMR resource sets The parameters are different.
  • the PMI includes one or more PMI feedback parameters.
  • the PMI feedback parameters are carried in the X1 information domain and/or the X2 information domain; the X1 information domain It is used to carry the first wideband PMI feedback parameter, and the X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the first broadband PMI feedback parameter carried in the X1 information domain includes a first PMI feedback parameter group; the first PMI feedback parameter group includes at least one of the following:
  • the first PMI feedback parameter the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension;
  • the second PMI feedback parameter the The second PMI feedback parameter is determined based on the second dimension antenna port number and the second dimension oversampling number, or the second dimension antenna port number and the second dimension beam number;
  • the third PMI feedback parameter, the third PMI feedback parameter is used To indicate the relative difference between the first PMI feedback parameter and/or the second PMI feedback parameter of other layers and the first layer;
  • the fourth PMI feedback parameter the fourth PMI feedback parameter indicates at least two of the at least one CMR The phase shift between the V matrices corresponding to the CMR.
  • the first PMI feedback parameter group includes first PMI feedback parameters, and the first PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the first PMI feedback parameters
  • the parameter group includes a second PMI feedback parameter, and the second PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the first PMI feedback parameter group includes a third PMI feedback parameter, and the The third PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same.
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used for at least one of the following: selecting a beam, determining a phase offset, and indicating the position of the selected frequency domain unit, and indicate nonzero coefficient locations.
  • the first broadband PMI feedback parameter carried in the X1 information field includes a second PMI feedback parameter group
  • the second PMI feedback parameter set includes at least one of the following:
  • the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension;
  • the sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension and/or the number of selected beams;
  • the seventh PMI feedback parameter is used to indicate that other layers are different from the first The relative difference between the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the layer;
  • the eighth PMI feedback parameter, the eighth PMI feedback parameter indicates the V matrix corresponding to at least two CMRs in the at least one CMR phase offset;
  • a ninth PMI feedback parameter is used to adjust the relative magnitude of the wideband.
  • the second PMI feedback parameter group includes fifth PMI feedback parameters, and the fifth PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the second PMI feedback parameters The group includes a sixth PMI feedback parameter, and the sixth PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the second PMI feedback parameter group includes a seventh PMI feedback parameter, and the at least The seventh PMI feedback parameters corresponding to at least two CMRs in one CMR are the same; and/or the second PMI feedback parameter set includes a ninth PMI feedback parameter, and the ninth PMI corresponding to at least two CMRs in the at least one CMR The feedback parameters are the same.
  • the second PMI feedback parameter group includes one sixth PMI feedback parameter or multiple sixth PMI feedback parameters; the one sixth PMI feedback parameter is based on the same sending and receiving point/radio remote head at The number of antenna ports in the first dimension, the number of antenna ports in the second dimension, and/or the number of selected beams are determined;
  • the multiple sixth PMI feedback parameters are based on the number of antenna ports of multiple different transmitting and receiving points/radio remote heads in the first dimension, and the multiple different transmitting and receiving points/radio remote heads are in the antenna ports of the second dimension number, and/or the number of beams selected by multiple different sending and receiving points/radio remote heads.
  • the V matrices corresponding to the CMRs in the at least one CMR are different, and the PMI feedback parameters are carried in the X1 information field or the X2 information field; the X1 information field is used to carry the first broadband PMI feedback parameter, The X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the first broadband PMI feedback parameter carried in the X1 information field includes:
  • the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension; or the second PMI feedback parameter, The second PMI feedback parameter is determined based on the number of antenna ports in the second dimension and the number of oversampling in the second dimension, or the number of antenna ports in the second dimension and the number of beams in the second dimension; or the third PMI feedback parameter, the third PMI feedback The parameter is used to indicate a relative difference between the first PMI feedback parameter and/or the second PMI feedback parameter of the other layer and the first layer.
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used to select a beam or to determine a phase offset.
  • the first wideband PMI feedback parameters carried in the X1 information field include multiple different first PMI feedback parameters, and different first PMI feedback parameters correspond to different CMRs; or the X1 information field
  • the first wideband PMI feedback parameter carried in the field includes a plurality of different second PMI feedback parameters, and the CMRs corresponding to different second PMI feedback parameters are different; or the first wideband PMI feedback parameter carried in the X1 information field includes There are multiple different third PMI feedback parameters, and different CMRs corresponding to different third PMI feedback parameters are different.
  • the V matrix corresponding to each CMR in the at least one CMR is different, and the PMI feedback parameters include at least one of the following:
  • the fifth PMI feedback parameter, the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension;
  • the sixth PMI feedback parameter, the The sixth PMI feedback parameter is based on the number of antenna ports in the first dimension, and the number of antenna ports in the second dimension is determined and/or the number of beams selected;
  • the seventh PMI feedback parameter is used to indicate that other layers are different from the first The relative difference of the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the layer;
  • the ninth PMI feedback parameter, the ninth PMI feedback parameter is used to adjust the relative magnitude of the broadband.
  • the V matrix corresponding to each CMR in the at least one CMR is different, and the PMI feedback parameters include:
  • a device for reporting channel state information including:
  • the measuring unit is configured to measure channel state information based on at least one channel measurement resource CMR, where the channel state information includes a measurement result based on the at least one CMR measurement, and the measurement result includes the at least one CMR shared
  • the precoding matrix indicates PMI; the reporting unit is configured to report the channel state information.
  • each CMR in the at least one CMR corresponds to a CMR resource set, and at least two different CMRs correspond to different CMR resource sets.
  • the CMR resource set corresponds to a resource parameter
  • the resource parameter includes one or more of a control resource set pool index, a sending and receiving point, and a remote radio head, and resources corresponding to different CMR resource sets The parameters are different.
  • the PMI includes one or more PMI feedback parameters.
  • the PMI feedback parameters are carried in the X1 information domain and/or the X2 information domain; the X1 information domain It is used to carry the first wideband PMI feedback parameter, and the X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the first broadband PMI feedback parameter carried in the X1 information domain includes a first PMI feedback parameter group; the first PMI feedback parameter group includes at least one of the following:
  • the first PMI feedback parameter the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension;
  • the second PMI feedback parameter the The second PMI feedback parameter is determined based on the second dimension antenna port number and the second dimension oversampling number, or the second dimension antenna port number and the second dimension beam number;
  • the third PMI feedback parameter, the third PMI feedback parameter is used To indicate the relative difference between the first PMI feedback parameter and/or the second PMI feedback parameter of other layers and the first layer;
  • the fourth PMI feedback parameter the fourth PMI feedback parameter indicates at least two of the at least one CMR The phase shift between the V matrices corresponding to the CMR.
  • the first PMI feedback parameter group includes first PMI feedback parameters, and the first PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the first PMI feedback parameters
  • the parameter group includes a second PMI feedback parameter, and the second PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the first PMI feedback parameter group includes a third PMI feedback parameter, and the The third PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same.
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used for at least one of the following: selecting a beam, determining a phase offset, and indicating the position of the selected frequency domain unit, and indicate nonzero coefficient locations.
  • the first broadband PMI feedback parameter carried in the X1 information field includes a second PMI feedback parameter group
  • the second PMI feedback parameter set includes at least one of the following:
  • the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension;
  • the sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension and/or the number of selected beams;
  • the seventh PMI feedback parameter is used to indicate that other layers are different from the first The relative difference between the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the layer;
  • the eighth PMI feedback parameter, the eighth PMI feedback parameter indicates the V matrix corresponding to at least two CMRs in the at least one CMR phase offset;
  • a ninth PMI feedback parameter is used to adjust the relative magnitude of the wideband.
  • the second PMI feedback parameter group includes fifth PMI feedback parameters, and the fifth PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the second PMI feedback parameters The group includes a sixth PMI feedback parameter, and the sixth PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the second PMI feedback parameter group includes a seventh PMI feedback parameter, and the at least The seventh PMI feedback parameters corresponding to at least two CMRs in one CMR are the same; and/or the second PMI feedback parameter set includes a ninth PMI feedback parameter, and the ninth PMI corresponding to at least two CMRs in the at least one CMR The feedback parameters are the same.
  • the second PMI feedback parameter group includes one sixth PMI feedback parameter or multiple sixth PMI feedback parameters; the one sixth PMI feedback parameter is based on the same sending and receiving point/radio remote head at The number of antenna ports in the first dimension, the number of antenna ports in the second dimension, and/or the number of selected beams are determined;
  • the multiple sixth PMI feedback parameters are based on the number of antenna ports of multiple different transmitting and receiving points/radio remote heads in the first dimension, and the multiple different transmitting and receiving points/radio remote heads are in the antenna ports of the second dimension number, and/or the number of beams selected by multiple different sending and receiving points/radio remote heads.
  • the V matrices corresponding to the CMRs in the at least one CMR are different, and the PMI feedback parameters are carried in the X1 information field or the X2 information field; the X1 information field is used to carry the first broadband PMI feedback parameter, The X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the V matrices corresponding to the CMRs in the at least one CMR are different, and the first broadband PMI feedback parameters carried in the X1 information field include:
  • the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension; or the second PMI feedback parameter, The second PMI feedback parameter is determined based on the number of antenna ports in the second dimension and the number of oversampling in the second dimension, or the number of antenna ports in the second dimension and the number of beams in the second dimension; or the third PMI feedback parameter, the third PMI feedback The parameter is used to indicate a relative difference between the first PMI feedback parameter and/or the second PMI feedback parameter of the other layer and the first layer.
  • the V matrices corresponding to the CMRs in the at least one CMR are different, and the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information domain is used to select a beam or to determine a phase offset. shift.
  • the first wideband PMI feedback parameters carried in the X1 information field include multiple different first PMI feedback parameters, and different first PMI feedback parameters correspond to different CMRs; or the X1 information field
  • the first wideband PMI feedback parameter carried in the field includes a plurality of different second PMI feedback parameters, and the CMRs corresponding to different second PMI feedback parameters are different; or the first wideband PMI feedback parameter carried in the X1 information field includes There are multiple different third PMI feedback parameters, and different CMRs corresponding to different third PMI feedback parameters are different.
  • the V matrix corresponding to each CMR in the at least one CMR is different, and the PMI feedback parameters include at least one of the following:
  • the fifth PMI feedback parameter, the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension;
  • the sixth PMI feedback parameter, the The sixth PMI feedback parameter is based on the number of antenna ports in the first dimension, and the number of antenna ports in the second dimension is determined and/or the number of beams selected;
  • the seventh PMI feedback parameter is used to indicate that other layers are different from the first The relative difference of the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the layer;
  • the ninth PMI feedback parameter, the ninth PMI feedback parameter is used to adjust the relative magnitude of the broadband.
  • the V matrix corresponding to each CMR in the at least one CMR is different, and the PMI feedback parameters include:
  • a device for reporting channel state information including:
  • the acquiring unit is configured to acquire channel state information reported by the terminal, where the channel state information includes a measurement result based on at least one channel measurement resource CMR measurement, and the measurement result includes a precoding matrix indication PMI shared by the at least one CMR .
  • each CMR in the at least one CMR corresponds to a CMR resource set, and at least two different CMRs correspond to different CMR resource sets.
  • the CMR resource set corresponds to a resource parameter
  • the resource parameter includes one or more of a control resource set pool index, a sending and receiving point, and a remote radio head, and resources corresponding to different CMR resource sets The parameters are different.
  • the PMI includes one or more PMI feedback parameters.
  • the PMI feedback parameters are carried in the X1 information domain and/or the X2 information domain; the X1 information domain It is used to carry the first wideband PMI feedback parameter, and the X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the first broadband PMI feedback parameter carried in the X1 information domain includes a first PMI feedback parameter group; the first PMI feedback parameter group includes at least one of the following:
  • the first PMI feedback parameter the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension;
  • the second PMI feedback parameter the The second PMI feedback parameter is determined based on the second dimension antenna port number and the second dimension oversampling number, or the second dimension antenna port number and the second dimension beam number;
  • the third PMI feedback parameter, the third PMI feedback parameter is used To indicate the relative difference between the first PMI feedback parameter and/or the second PMI feedback parameter of other layers and the first layer;
  • the fourth PMI feedback parameter the fourth PMI feedback parameter indicates at least two of the at least one CMR The phase shift between the V matrices corresponding to the CMR.
  • the first PMI feedback parameter group includes first PMI feedback parameters, and the first PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the first PMI feedback parameters
  • the parameter group includes a second PMI feedback parameter, and the second PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the first PMI feedback parameter group includes a third PMI feedback parameter, and the The third PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same.
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used for at least one of the following: selecting a beam, determining a phase offset, and indicating the position of the selected frequency domain unit, and indicate nonzero coefficient locations.
  • the first broadband PMI feedback parameter carried in the X1 information field includes a second PMI feedback parameter group
  • the second PMI feedback parameter set includes at least one of the following:
  • the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension;
  • the sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension and/or the number of selected beams;
  • the seventh PMI feedback parameter is used to indicate that other layers are different from the first The relative difference between the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the layer;
  • the eighth PMI feedback parameter, the eighth PMI feedback parameter indicates the V matrix corresponding to at least two CMRs in the at least one CMR phase offset;
  • a ninth PMI feedback parameter is used to adjust the relative magnitude of the wideband.
  • the second PMI feedback parameter group includes fifth PMI feedback parameters, and the fifth PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the second PMI feedback parameters The group includes a sixth PMI feedback parameter, and the sixth PMI feedback parameters corresponding to at least two CMRs in the at least one CMR are the same; and/or the second PMI feedback parameter group includes a seventh PMI feedback parameter, and the at least The seventh PMI feedback parameters corresponding to at least two CMRs in one CMR are the same; and/or the second PMI feedback parameter set includes a ninth PMI feedback parameter, and the ninth PMI corresponding to at least two CMRs in the at least one CMR The feedback parameters are the same.
  • the second PMI feedback parameter group includes one sixth PMI feedback parameter or multiple sixth PMI feedback parameters; the one sixth PMI feedback parameter is based on the same sending and receiving point/radio remote head at The number of antenna ports in the first dimension, the number of antenna ports in the second dimension, and/or the number of selected beams are determined;
  • the multiple sixth PMI feedback parameters are based on the number of antenna ports of multiple different transmitting and receiving points/radio remote heads in the first dimension, and the multiple different transmitting and receiving points/radio remote heads are in the antenna ports of the second dimension number, and/or the number of beams selected by multiple different sending and receiving points/radio remote heads.
  • the V matrices corresponding to the CMRs in the at least one CMR are different, and the PMI feedback parameters are carried in the X1 information field or the X2 information field; the X1 information field is used to carry the first broadband PMI feedback parameter, The X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the first broadband PMI feedback parameter carried in the X1 information field includes:
  • the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension; or the second PMI feedback parameter, The second PMI feedback parameter is determined based on the number of antenna ports in the second dimension and the number of oversampling in the second dimension, or the number of antenna ports in the second dimension and the number of beams in the second dimension; or the third PMI feedback parameter, the third PMI feedback The parameter is used to indicate a relative difference between the first PMI feedback parameter and/or the second PMI feedback parameter of the other layer and the first layer.
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used to select a beam or to determine a phase offset.
  • the first wideband PMI feedback parameters carried in the X1 information field include multiple different first PMI feedback parameters, and different first PMI feedback parameters correspond to different CMRs; or the X1 information field
  • the first wideband PMI feedback parameter carried in the field includes a plurality of different second PMI feedback parameters, and the CMRs corresponding to different second PMI feedback parameters are different; or the first wideband PMI feedback parameter carried in the X1 information field includes There are multiple different third PMI feedback parameters, and different CMRs corresponding to different third PMI feedback parameters are different.
  • the V matrix corresponding to each CMR in the at least one CMR is different, and the PMI feedback parameters include at least one of the following:
  • the fifth PMI feedback parameter, the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension;
  • the sixth PMI feedback parameter, the The sixth PMI feedback parameter is based on the number of antenna ports in the first dimension, and the number of antenna ports in the second dimension is determined and/or the number of beams selected;
  • the seventh PMI feedback parameter is used to indicate that other layers are different from the first The relative difference of the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the layer;
  • the ninth PMI feedback parameter, the ninth PMI feedback parameter is used to adjust the relative magnitude of the broadband.
  • the V matrix corresponding to each CMR in the at least one CMR is different, and the PMI feedback parameters include:
  • an apparatus for reporting channel state information including:
  • processor ; memory for storing instructions executable by the processor;
  • the processor is configured to: execute the channel state information reporting method described in the first aspect or any one implementation manner of the first aspect.
  • an apparatus for reporting channel state information including:
  • processor ; memory for storing instructions executable by the processor;
  • the processor is configured to: execute the second aspect or the channel state information reporting method described in any implementation manner of the second aspect.
  • a storage medium stores instructions, and when the instructions in the storage medium are executed by the processor of the terminal, the terminal can execute the first aspect or the first The channel state information reporting method described in any one of the implementation manners of the aspect.
  • a storage medium stores instructions, and when the instructions in the storage medium are executed by the processor of the network device, the network device can execute the second aspect or The channel state information reporting method described in any one of the implementation manners of the second aspect.
  • the channel state information includes measurement results based on at least one CMR measurement, and the measurement results include at least one CMR-shared PMI, realizing joint PMI of at least one CMR Feedback method to reduce signaling overhead and improve transmission performance based on multiple CMRs.
  • Fig. 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 is a flow chart showing a method for reporting CSI according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing another method for reporting CSI according to an exemplary embodiment.
  • Fig. 4 is a block diagram of an apparatus for reporting CSI according to an exemplary embodiment.
  • Fig. 5 is a block diagram showing another apparatus for reporting CSI according to an exemplary embodiment.
  • Fig. 6 is a block diagram showing a device for reporting CSI according to an exemplary embodiment.
  • Fig. 7 is a block diagram of another apparatus for reporting CSI according to an exemplary embodiment.
  • the wireless communication system includes a terminal and a network device.
  • the terminal is connected to the network device through wireless resources, and sends and receives data.
  • the wireless communication system shown in FIG. 1 is only for schematic illustration, and the wireless communication system may also include other network devices, such as core network devices, wireless relay devices, and wireless backhaul devices, etc. Not shown in Figure 1.
  • the embodiment of the present disclosure does not limit the number of network devices and the number of terminals included in the wireless communication system.
  • the wireless communication system in the embodiment of the present disclosure is a network that provides a wireless communication function.
  • Wireless communication systems can use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (TDMA) , frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency-division multiple access (single Carrier FDMA, SC-FDMA), carrier sense Multiple Access/Conflict Avoidance (Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • single Carrier FDMA single Carrier FDMA
  • SC-FDMA carrier sense Multiple Access/Conflict Avoidance
  • Carrier Sense Multiple Access with Collision Avoidance Carrier Sense Multiple Access with Collision Avoidance
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network, 5G network can also be called a new wireless network ( New Radio, NR).
  • 2G International: generation
  • 3G network 4G network or future evolution network, such as 5G network
  • 5G network can also be called a new wireless network ( New Radio, NR).
  • New Radio New Radio
  • the present disclosure sometimes simply refers to a wireless communication network as a network.
  • the wireless access network device may be: a base station, an evolved base station (evolved node B, eNB), a home base station, an access point (access point, AP) in a wireless fidelity (wireless fidelity, WIFI) system, a wireless relay Node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be gNB in the NR system, or it can also be a component or a part of equipment that constitutes a base station wait.
  • the network device may also be a vehicle-mounted device.
  • V2X vehicle-to-everything
  • the network device may also be a vehicle-mounted device. It should be understood that in the embodiments of the present disclosure, no limitation is imposed on the specific technology and specific device form adopted by the network device.
  • terminals involved in this disclosure can also be referred to as terminal equipment, user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc.
  • a device providing voice and/or data connectivity for example, a terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • examples of some terminals are: smart phones (Mobile Phone), pocket computers (Pocket Personal Computer, PPC), handheld computers, personal digital assistants (Personal Digital Assistant, PDA), notebook computers, tablet computers, wearable devices, or Vehicle equipment, etc.
  • V2X vehicle-to-everything
  • the terminal device may also be a vehicle-mounted device. It should be understood that the embodiment of the present disclosure does not limit the specific technology and specific device form adopted by the terminal.
  • data transmission is performed between a network device and a terminal based on a beam.
  • a network device such as a base station
  • the terminal can configure multiple CMRs to provide services for terminals.
  • the terminal can also perform channel measurement based on multiple CMRs, and feed back channel state information (Channel state information, CSI).
  • CSI channel state information
  • the terminal independently feeds back the PMI for each of the multiple CMRs, that is, when multiple CMRs are used, multiple PMIs need to be independently fed back.
  • the channels of multiple CMRs are correlated, and multiple PMIs are independently fed back, which results in large signaling overhead and low transmission performance.
  • An embodiment of the present disclosure provides a CSI reporting method.
  • a terminal measures CSI based on at least one CMR, the CSI includes a measurement result based on at least one CMR measurement, and the measurement result includes a PMI shared by at least one CMR.
  • the terminal reports the CSI.
  • the network device acquires the CSI reported by the terminal and including the measurement result of the PMI shared by at least one CMR.
  • Fig. 2 is a flowchart showing a CSI reporting method according to an exemplary embodiment. As shown in Fig. 2 , the CSI reporting method is used in a terminal and includes the following steps.
  • step S11 CSI is measured based on at least one CMR.
  • the CSI includes a measurement result based on at least one CMR measurement, and the measurement result includes a PMI shared by at least one CMR.
  • step S12 report the CSI.
  • the CSI reported by the terminal includes the measurement result based on at least one CMR measurement, and the measurement result includes at least one CMR-shared PMI, so as to realize the PMI joint feedback method of multiple CMRs, reduce signaling overhead, and improve The transmission performance based on multiple CMRs is improved.
  • the quantity of at least one CMR for measuring CSI may be one or multiple.
  • each of the at least one CMR involved in the embodiments of the present disclosure corresponds to a CMR resource set, and different CMRs correspond to different CMR resource sets.
  • at least one CMR includes at least two different CMRs.
  • At least two different CMRs correspond to different CMR resource sets.
  • the CMR set involved in the embodiments of the present disclosure may be the CMR set configured by the network device, or may be a subset of the CMR set configured by the network device. That is, each of the at least one CMR corresponds to a different subset of CMRs or a different set of CMRs.
  • the CMR resource set corresponding to each CMR in at least one CMR corresponds to a resource parameter
  • the resource parameter includes a control resource set (Control Resource Set, CORESET) pool index (PoolIndex), a sending and receiving point ( One or more of Transmission reception Point (TRP) and remote radio header (RRH).
  • resource parameters corresponding to different CMR resource sets are different. It can be understood that different CMRs correspond to different resource parameters, for example, different CMRs correspond to different TRPs. It can be further understood that the terminal may perform CSI measurement based on different TRPs, and include the PMI shared by different TRPs in the measurement results. For another example, different CMRs correspond to different RRHs. It can be further understood that the terminal may perform CSI measurement based on different RRHs, and include the PMI shared by different RRHs in the measurement result.
  • the PMI shared by at least one CMR can be understood as one PMI.
  • the CSI includes measurement results based on at least one CMR measurement and includes a PMI.
  • a PMI included in a measurement result based on at least one CMR measurement may be understood as a set of PMI feedback parameters.
  • the set of PMI feedback parameters includes one or more PMI feedback parameters.
  • some parameters are the same for different CMRs, and some parameters are different for different CMRs.
  • the PMI feedback parameters included in the measurement results based on at least one CMR measurement may be determined based on V matrices corresponding to different CMRs.
  • the V matrix is generated by the U matrix.
  • the U matrix can be expressed as the following formula:
  • N2 in the U matrix is the number of antenna ports in the second dimension
  • O2 is the number of oversampling in the second dimension
  • N1 is the number of antenna ports in the first dimension
  • O1 is the number of oversampling in the first dimension.
  • L refers to the number of layers. Therefore, the V matrix corresponding to the CMR is related to the number of antenna ports in the first dimension, the number of antenna ports in the second dimension, the number of oversampling in the first dimension, the number of oversampling in the second dimension, and the number of layers.
  • the V matrix may also be composed of multiple column vectors, and only one element in each column vector is 1, and other elements are all 0.
  • the V matrix may also have other forms, which are not limited in the present disclosure.
  • the PMI feedback parameter is carried in the X1 information field and/or the X2 information field.
  • the X1 information field is used to carry the first wideband PMI feedback parameter
  • the X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the first broadband PMI feedback parameter carried in the X1 information field may be one or more PMI feedback parameter groups.
  • any two different PMI feedback parameter groups included in the first wideband PMI feedback parameter carried in the X1 information field are referred to as the first PMI feedback parameter group and the second PMI feedback parameter group.
  • the first broadband PMI feedback parameter carried in the X1 information field includes a first PMI feedback parameter group (Codebook index i 1 ).
  • the first PMI feedback parameter set includes at least one of the following:
  • the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension. That is, i 1,1 is related to N1 and O1, where N1 is the number of antenna ports in the first dimension, and O1 is the number of oversampling or beams in the first dimension.
  • the first PMI feedback parameter may be a parameter corresponding to a sampling position selected from the N1*O1 sampling positions.
  • the second PMI feedback parameter is determined based on the number of antenna ports in the second dimension and the number of oversampling in the second dimension, or the number of antenna ports in the second dimension and the number of beams in the second dimension. That is, i 1,2 is related to N2 and O2, where N2 is the number of antenna ports in the second dimension, and O2 is the number of oversampling or beams in the second dimension.
  • the second PMI feedback parameter may be a parameter corresponding to a sampling position selected from the N2*O2 sampling positions.
  • the third PMI feedback parameter is used to indicate a relative difference between the other layer and the first PMI feedback parameter and/or the second PMI feedback parameter of the first layer.
  • the third PMI feedback parameter is mainly for the case of RANK>1, that is, the case where the number of layers (layer) is greater than 1, and is mainly used for determining antenna ports between different layers.
  • the fourth PMI feedback parameter indicates a phase offset between V matrices corresponding to at least two of the at least one CMR.
  • i 1, 4 is used for adjusting the relative phase between different CMR subsets or different CMR sets.
  • i 1,4 includes at least one of the following parameters: i 1,4,1 , i 1,4,2 , i 1,4,3 .
  • i 1,4,1 represent the phase of layer 1.
  • i 1,4,2 means layer 2 is phase shifted relative to layer 1.
  • i 1,4,3 represent the phase offset of layer 3 relative to layer 1.
  • the first PMI feedback parameter group includes first PMI feedback parameters, and the first PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same. That is, for different CMR subsets or different CMR sets, the first PMI feedback parameters are the same.
  • the V matrix is related to the first PMI feedback parameter.
  • the first PMI feedback parameter group includes the second PMI feedback parameter, and the second PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same. That is, for different CMR subsets or different CMR sets, the second PMI feedback parameters are the same.
  • the V matrix is related to the second PMI feedback parameter.
  • the first PMI feedback parameter group includes a third PMI feedback parameter, and the third PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same. That is, for different CMR subsets or different CMR sets, the third PMI feedback parameter is the same.
  • the V matrix is related to the third PMI feedback parameter.
  • phase offset between V matrices corresponding to at least two CMRs in at least one CMR used to measure CSI there is a phase offset between V matrices corresponding to at least two CMRs in at least one CMR used to measure CSI.
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used for at least one of the following: selecting a beam, determining a phase offset, indicating the position of the selected frequency domain unit, and indicating the position of the non-zero coefficient.
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field may include at least one of i 2 , i 2,0 , i 2,1 , i 2,2 . . .
  • i 2 , i 2,0 , i 2,1 , i 2,2 can be understood as the 0th, 1st, 2nd, 3rd... PMI feedback parameters carried in the X2 information field.
  • the first broadband PMI feedback parameter carried in the X1 information domain includes the second PMI feedback parameter group (Codebook index i 1 ).
  • the second PMI feedback parameter set includes at least one of the following:
  • the fifth PMI feedback parameter (i 1,1 ).
  • the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension. That is, i 1,1 is related to O1 and O2, where O1 is the number of oversampling or beams in the first dimension, and O2 is the number of oversampling or beams in the second dimension.
  • the sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension and/or the number of selected beams. That is, i 1,2 is related to N2, N2 and L, where N1 is the number of antenna ports in the first dimension, N2 is the number of antenna ports in the second dimension, and L is the number of selected beams.
  • the second PMI feedback parameter group includes one sixth PMI feedback parameter or multiple sixth PMI feedback parameters.
  • a sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension, and/or the number of selected beams of the same TRP/RRH.
  • the multiple sixth PMI feedback parameters are based on multiple different TRP/RRH antenna port numbers in the first dimension, the multiple different TRP/RRH antenna port numbers in the second dimension, and/or multiple different TRP/RRH antenna port numbers in the second dimension, and/or multiple different TRP/RRH
  • the RRH is determined by the number of beams selected.
  • N1 is the number of antenna ports in the first dimension at one TRP/RRH
  • N2 is the number of antenna ports in the second dimension at the same TRP/RRH
  • L is L selected from N1*N2.
  • N1 can be the sum of all first-dimension antenna ports at multiple TRP/RRHs
  • N2 can be the sum of all second-dimension antenna ports at multiple TRP/RRHs
  • L is L selected from N1*N2.
  • TRP/RRHs there is no limitation on how many different TRP/RRHs are selected, and it may be L/N (N is the number of TRP/RRHs), or different TRP/RRHs may be different.
  • the seventh PMI feedback parameter (i 1,3 ).
  • the seventh PMI feedback parameter is used to indicate the relative difference between the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the other layer and the first layer.
  • the third PMI feedback parameter is mainly for the case of RANK>1, that is, the case where the number of layers (layer) is greater than 1, and is mainly used for determining antenna ports between different layers.
  • the eighth PMI feedback parameter indicates a phase offset between V matrices corresponding to at least two CMRs in the at least one CMR.
  • the eighth PMI feedback parameter indicates a phase offset between V matrices corresponding to at least two of the at least one CMR.
  • i 1, 4 is used for adjusting the relative phase between different CMR subsets or different CMR sets.
  • i 1,4 includes at least one of the following parameters: i 1,4,1 , i 1,4,2 , i 1,4,3 .
  • i 1,4,1 represent the phase of layer 1.
  • i 1,4,2 represent the phase offset of layer 2 relative to layer 1.
  • i 1,4,3 represent the phase offset of layer 3 relative to layer 1.
  • E ninth PMI feedback parameter (i 1,5 ).
  • a ninth PMI feedback parameter is used to adjust the relative magnitude of the wideband.
  • the second PMI feedback parameter group includes fifth PMI feedback parameters, and the fifth PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same. That is, for different CMR subsets or different CMR sets, the fifth PMI feedback parameter is the same.
  • the V matrix is related to the fifth PMI feedback parameter.
  • the second PMI feedback parameter group includes a sixth PMI feedback parameter, and the sixth PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same. That is, for different CMR subsets or different CMR sets, the sixth PMI feedback parameter is the same.
  • the V matrix is related to the sixth PMI feedback parameter.
  • the second PMI feedback parameter group includes a seventh PMI feedback parameter, and the seventh PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same. That is, for different CMR subsets or different CMR sets, the seventh PMI feedback parameter is the same.
  • the V matrix is related to the seventh PMI feedback parameter.
  • the second PMI feedback parameter group includes a ninth PMI feedback parameter, and the ninth PMI feedback parameter corresponding to at least two CMRs in at least one CMR is the same. That is, for different CMR subsets or different CMR sets, the ninth PMI feedback parameter is the same.
  • the V matrix is related to the ninth PMI feedback parameter.
  • phase offset between V matrices corresponding to at least two CMRs in at least one CMR used to measure CSI there is a phase offset between V matrices corresponding to at least two CMRs in at least one CMR used to measure CSI.
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used for at least one of the following: selecting a beam, determining a phase offset, indicating the position of the selected frequency domain unit, and indicating the position of the non-zero coefficient.
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field may include at least one of i 2 , i 2,0 , i 2,1 , i 2,2 . . .
  • i 2 , i 2,0 , i 2,1 , i 2,2 can be understood as the 0th, 1st, 2nd, 3rd... PMI feedback parameters carried in the X2 information field.
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information domain may include the position of the frequency domain unit selected for feedback, which may be referred to as i 1,6 .
  • the parameters i 1,6 are fed back uniformly (that is, the parameters i 1,6 are the same) or fed back independently.
  • the second wideband PMI feedback parameter or the narrowband PMI feedback parameter carried in the X2 information domain may include an indication of a non-zero coefficient position, which may be referred to as i 1,7 .
  • the parameter is fed back uniformly (that is, the parameter i 1, 7 is the same) or fed back independently.
  • V matrices corresponding to at least two CMRs in at least one CMR for measuring CSI are different.
  • Different V matrices include that V matrices corresponding to different CMRs can be determined through phase offsets, or V matrices corresponding to different CMRs cannot be determined through information such as phase offsets.
  • the PMI feedback parameters are carried in the X1 information domain or the X2 information domain.
  • the X1 information field is used to carry the first wideband PMI feedback parameter
  • the X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the first broadband PMI feedback parameter carried in the X1 information domain includes at least one of the following A, B, and C, and there is at least one PMI feedback parameter among the included PMI feedback parameters that includes multiple feedbacks value:
  • the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension. That is, i 1,1 is related to N1 and O1, where N1 is the number of antenna ports in the first dimension, and O1 is the number of oversampling or beams in the first dimension.
  • the first PMI feedback parameter may be a parameter corresponding to a sampling position selected from N1*O1 sampling positions.
  • the second PMI feedback parameter is determined based on the number of antenna ports in the second dimension and the number of oversampling in the second dimension, or the number of antenna ports in the second dimension and the number of beams in the second dimension. That is, i 1,2 is related to N2 and O2, where N2 is the number of antenna ports in the second dimension, and O2 is the number of oversampling or beams in the second dimension.
  • the second PMI feedback parameter may be a parameter corresponding to a sampling position selected from the N2*O2 sampling positions.
  • the third PMI feedback parameter is used to indicate a relative difference between the other layer and the first PMI feedback parameter and/or the second PMI feedback parameter of the first layer.
  • the third PMI feedback parameter is mainly for the case of RANK>1, that is, the case where the number of layers (layer) is greater than 1, and is mainly used for determining antenna ports between different layers.
  • the V matrix corresponding to each CMR in at least one CMR is different
  • the first broadband PMI feedback parameters carried in the X1 information domain include a plurality of different first PMI feedback parameters, and the different first PMI feedback parameters correspond to The CMRs are different.
  • the first broadband PMI feedback parameter carried in the X1 information field includes multiple different second PMI feedback parameters, and different second PMI feedback parameters correspond to different CMRs.
  • the first broadband PMI feedback parameter carried in the X1 information field includes multiple different third PMI feedback parameters, and different third PMI feedback parameters correspond to different CMRs.
  • different feedback values in the PMI feedback parameters including multiple feedback values correspond to different CMR subsets or different CMR sets, that is, correspond to different CORESETPoolindexes or different TRPs or different RRHs.
  • the V matrix corresponding to each CMR in at least one CMR is different
  • the first broadband PMI feedback parameter carried in the X1 information field includes at least one of the following A, B, C, and E, and includes There is at least one PMI feedback parameter in the PMI feedback parameter including multiple feedback values:
  • the fifth PMI feedback parameter (i 1,1 ).
  • the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension. That is, i 1,1 is related to O1 and O2, where O1 is the number of oversampling or beams in the first dimension, and O2 is the number of oversampling or beams in the second dimension.
  • the sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension and/or the number of selected beams. That is, i 1,2 is related to N2, N2 and L, where N1 is the number of antenna ports in the first dimension, N2 is the number of antenna ports in the second dimension, and L is the number of selected beams.
  • the second PMI feedback parameter group includes one sixth PMI feedback parameter or multiple sixth PMI feedback parameters.
  • a sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension, and/or the number of selected beams of the same TRP/RRH.
  • N1 and N2 of each TRP/RRH are the same as the selected L.
  • N1 is the number of antenna ports in the first dimension at one TRP/RRH
  • N2 is the number of antenna ports in the second dimension at the same TRP/RRH
  • L is L selected from N1*N2.
  • the multiple sixth PMI feedback parameters are based on multiple different TRP/RRH antenna port numbers in the first dimension, the multiple different TRP/RRH antenna port numbers in the second dimension, and/or multiple different TRP/RRH antenna port numbers in the second dimension, and/or multiple different TRP/RRH
  • the RRH is determined by the number of beams selected.
  • N1 can be the sum of all first-dimension antenna ports at multiple TRP/RRHs
  • N2 can be the sum of all second-dimension antenna ports at multiple TRP/RRHs
  • L is from L selected from N1*N2.
  • TRP/RRHs there is no limitation on how many different TRP/RRHs are selected, and it may be L/N (N is the number of TRP/RRHs), or different TRP/RRHs may be different.
  • the seventh PMI feedback parameter (i 1,3 ).
  • the seventh PMI feedback parameter is used to indicate a relative difference between the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the other layer and the first layer.
  • the third PMI feedback parameter is mainly for the case of RANK>1, that is, the case where the number of layers (layer) is greater than 1, and is mainly used for determining antenna ports between different layers.
  • E ninth PMI feedback parameter (i 1,5 ).
  • a ninth PMI feedback parameter is used to adjust the relative magnitude of the wideband.
  • fifth PMI feedback parameters there are multiple different fifth PMI feedback parameters, and different fifth PMI feedback parameters correspond to different CMRs. And/or multiple different sixth PMI feedback parameters, the CMRs corresponding to different sixth PMI feedback parameters are different. And/or multiple different seventh PMI feedback parameters, the CMRs corresponding to different seventh PMI feedback parameters are different. And/or a plurality of different ninth PMI feedback parameters, the CMRs corresponding to different ninth PMI feedback parameters are different.
  • V matrices corresponding to at least two CMRs in at least one CMR for measuring CSI are different, and the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information domain is used to select a beam or to determine a phase offset.
  • the terminal when the terminal performs communication transmission based on multiple CMRs, for example, multiple CORESETPoolIndexes, multiple TRPs or multiple RRHs, it can be implemented based on the CSI reporting method involved in the above-mentioned embodiments.
  • the embodiments of the present disclosure further provide a CSI reporting method applied to a network device.
  • Fig. 3 is a flowchart showing a method for reporting CSI according to an exemplary embodiment. As shown in Fig. 3 , the method for reporting CSI is used in a network device and includes the following steps.
  • step S21 the CSI reported by the terminal is acquired, the CSI includes a measurement result based on at least one CMR measurement, and the measurement result includes a PMI shared by at least one CMR.
  • each CMR in at least one CMR corresponds to a CMR resource set, and at least two different CMRs correspond to different CMR resource sets.
  • the CMR set involved in the embodiments of the present disclosure may be the CMR set configured by the network device, or may be a subset of the CMR set configured by the network device. That is, each of the at least one CMR corresponds to a different subset of CMRs or a different set of CMRs.
  • the CMR resource set corresponds to a resource parameter
  • the resource parameter includes one or more of control CORESETPoolIndex, TRP, and RRH, and different CMR resource sets correspond to different resource parameters.
  • resource parameters corresponding to different CMR resource sets are different. It can be understood that different CMRs correspond to different resource parameters, for example, different CMRs correspond to different TRPs. It can be further understood that the terminal may perform CSI measurement based on different TRPs, and include the PMI shared by different TRPs in the measurement results. For another example, different CMRs correspond to different RRHs. It can be further understood that the terminal may perform CSI measurement based on different RRHs, and include the PMI shared by different RRHs in the measurement result.
  • the PMI includes one or more PMI feedback parameters.
  • the one or more PMI feedback parameters can be understood as one or more PMI feedback parameters in a set of PMI feedback parameters. In the set of PMI feedback parameters, some parameters are the same for different CMRs, and some parameters are different for different CMRs.
  • the PMI feedback parameters are carried in the X1 information domain and/or the X2 information domain; the X1 information domain It is used to carry the first wideband PMI feedback parameter, and the X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the first broadband PMI feedback parameter carried in the X1 information domain includes a first PMI feedback parameter group; the first PMI feedback parameter group includes at least one of the following:
  • the first PMI feedback parameter, the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension.
  • the second PMI feedback parameter, the second PMI feedback parameter is determined based on the number of antenna ports in the second dimension and the number of oversampling in the second dimension, or the number of antenna ports in the second dimension and the number of beams in the second dimension.
  • a third PMI feedback parameter, where the third PMI feedback parameter is used to indicate a relative difference between the other layer and the first PMI feedback parameter and/or the second PMI feedback parameter of the first layer.
  • a fourth PMI feedback parameter, where the fourth PMI feedback parameter indicates a phase offset between V matrices corresponding to at least two CMRs in the at least one CMR.
  • the first PMI feedback parameter group includes the first PMI feedback parameter, and the first PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same; and/or the first PMI feedback parameter group includes the second PMI feedback parameter, The second PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same; and/or the first PMI feedback parameter group includes a third PMI feedback parameter, and the third PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same .
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used for at least one of the following: selecting a beam, determining a phase offset, indicating the position of the selected frequency domain unit, and indicating the position of the non-zero coefficient.
  • the first broadband PMI feedback parameter carried in the X1 information domain includes a second PMI feedback parameter group; the second PMI feedback parameter group includes at least one of the following:
  • the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension.
  • a sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension and/or the number of selected beams.
  • a seventh PMI feedback parameter where the seventh PMI feedback parameter is used to indicate a relative difference between the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the other layer and the first layer.
  • An eighth PMI feedback parameter where the eighth PMI feedback parameter indicates a phase offset between V matrices corresponding to at least two CMRs in the at least one CMR.
  • the ninth PMI feedback parameter, the ninth PMI feedback parameter is used to adjust the relative magnitude of the broadband.
  • the second PMI feedback parameter group includes fifth PMI feedback parameters, and the fifth PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second PMI feedback parameter set includes a sixth PMI feedback parameter, and the sixth PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second PMI feedback parameter group includes a seventh PMI feedback parameter, and the seventh PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second PMI feedback parameter group includes a ninth PMI feedback parameter, and the ninth PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second PMI feedback parameter set includes one sixth PMI feedback parameter or multiple sixth PMI feedback parameters.
  • a sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension, and/or the number of selected beams of the same TRP/RRH.
  • the plurality of sixth PMI feedback parameters are based on the number of antenna ports of a plurality of different TRP/RRHs in the first dimension, the number of antenna ports of a plurality of different TRP/RRHs in a second dimension, and/or a plurality of different TRP/RRHs are The number of beams selected is determined.
  • N1 is the number of antenna ports in the first dimension at one TRP/RRH
  • N2 is the number of antenna ports in the second dimension at the same TRP/RRH
  • L is L selected from N1*N2.
  • N1 can be the sum of all first-dimension antenna ports at multiple TRP/RRHs
  • N2 can be the sum of all second-dimension antenna ports at multiple TRP/RRHs
  • L is L selected from N1*N2.
  • the V matrices corresponding to each CMR in at least one CMR are different, and the PMI feedback parameters are carried in the X1 information field or the X2 information field; the X1 information field is used to carry the first broadband PMI feedback parameter, and the X2 information field is used to carry the The second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the V matrix corresponding to each CMR in at least one CMR is different, and the first broadband PMI feedback parameter carried in the X1 information field includes:
  • the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension.
  • the second PMI feedback parameter where the second PMI feedback parameter is determined based on the number of antenna ports in the second dimension and the number of oversampling in the second dimension, or the number of antenna ports in the second dimension and the number of beams in the second dimension.
  • a third PMI feedback parameter where the third PMI feedback parameter is used to indicate a relative difference between the other layer and the first PMI feedback parameter and/or the second PMI feedback parameter of the first layer.
  • the V matrices corresponding to the CMRs in at least one CMR are different, and the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used to select a beam or determine a phase offset.
  • the V matrix corresponding to each CMR in at least one CMR is different
  • the first broadband PMI feedback parameters carried in the X1 information domain include a plurality of different first PMI feedback parameters, and the different first PMI feedback parameters correspond to The CMRs are different.
  • the first wideband PMI feedback parameter carried in the X1 information field includes multiple different second PMI feedback parameters, and different second PMI feedback parameters correspond to different CMRs.
  • the first broadband PMI feedback parameter carried in the X1 information field includes multiple different third PMI feedback parameters, and different third PMI feedback parameters correspond to different CMRs.
  • the V matrix corresponding to each CMR in at least one CMR is different, and the PMI feedback parameters include at least one of the following:
  • the fifth PMI feedback parameter, the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension.
  • the sixth PMI feedback parameter, the sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension and/or the number of selected beams.
  • the seventh PMI feedback parameter, the seventh PMI feedback parameter is used to indicate the relative difference between the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the other layer and the first layer.
  • the ninth PMI feedback parameter, the ninth PMI feedback parameter is used to adjust the relative magnitude of the broadband.
  • the V matrix corresponding to each CMR in at least one CMR is different, and the PMI feedback parameters include:
  • fifth PMI feedback parameters There are multiple different fifth PMI feedback parameters, and different fifth PMI feedback parameters correspond to different CMRs. And/or multiple different sixth PMI feedback parameters, the CMRs corresponding to different sixth PMI feedback parameters are different. And/or multiple different seventh PMI feedback parameters, the CMRs corresponding to different seventh PMI feedback parameters are different. And/or a plurality of different ninth PMI feedback parameters, the CMRs corresponding to different ninth PMI feedback parameters are different.
  • the network device acquires the CSI reported by the terminal and including the measurement result of the PMI shared by at least one CMR.
  • the present disclosure joint sending of PMIs of multiple CMRs is realized, signaling overhead is reduced, and transmission performance is improved.
  • the implementation manners in some embodiments involved in the process of the network device performing the CSI reporting method may refer to the related description of the terminal performing the CSI reporting method, which will not be repeated here.
  • the CSI reporting method provided by the embodiments of the present disclosure is applicable to a process in which a terminal interacts with a network device to implement CSI reporting.
  • a terminal interacts with a network device to implement CSI reporting.
  • the method performed by the terminal and the network device involved in the process of the terminal and the network device interacting to realize the CSI reporting refer to the relevant description of the foregoing embodiments, and details are not repeated here.
  • an embodiment of the present disclosure further provides a CSI reporting device.
  • the apparatus for reporting CSI includes corresponding hardware structures and/or software modules for performing various functions.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 4 is a block diagram of an apparatus for reporting CSI according to an exemplary embodiment.
  • the CSI reporting apparatus 100 includes a measuring unit 101 and a reporting unit 102 .
  • the measuring unit 101 is configured to measure CSI based on at least one CMR.
  • the CSI includes a measurement result based on at least one CMR measurement, and the measurement result includes a PMI shared by at least one CMR.
  • the reporting unit 102 is configured to report CSI.
  • each CMR in at least one CMR corresponds to a CMR resource set, and at least two different CMRs correspond to different CMR resource sets.
  • the CMR resource set corresponds to a resource parameter
  • the resource parameter includes one or more of CORESETPoolIndex, TRP, and RRH
  • different CMR resource sets correspond to different resource parameters.
  • the PMI includes one or more PMI feedback parameters.
  • the PMI feedback parameters are carried in the X1 information field and/or the X2 information field.
  • the X1 information field is used to carry the first wideband PMI feedback parameter
  • the X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the first broadband PMI feedback parameter carried in the X1 information field includes the first PMI feedback parameter group.
  • the first PMI feedback parameter set includes at least one of the following:
  • the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension.
  • the second PMI feedback parameter is determined based on the number of antenna ports in the second dimension and the number of oversampling in the second dimension, or the number of antenna ports in the second dimension and the number of beams in the second dimension.
  • a third PMI feedback parameter where the third PMI feedback parameter is used to indicate a relative difference between the other layer and the first PMI feedback parameter and/or the second PMI feedback parameter of the first layer.
  • a fourth PMI feedback parameter where the fourth PMI feedback parameter indicates a phase offset between V matrices corresponding to at least two CMRs in the at least one CMR.
  • the first PMI feedback parameter group includes first PMI feedback parameters, and the first PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same. And/or the first PMI feedback parameter group includes the second PMI feedback parameter, and the second PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same. And/or the first PMI feedback parameter group includes a third PMI feedback parameter, and the third PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used for at least one of the following: selecting a beam, determining a phase offset, indicating the position of the selected frequency domain unit, and indicating Nonzero coefficient locations.
  • the first broadband PMI feedback parameter carried in the X1 information field includes the second PMI feedback parameter group.
  • the second PMI feedback parameter set includes at least one of the following:
  • the fifth PMI feedback parameter, the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension.
  • the sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension and/or the number of selected beams.
  • the seventh PMI feedback parameter, the seventh PMI feedback parameter is used to indicate the relative difference between the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the other layer and the first layer.
  • An eighth PMI feedback parameter where the eighth PMI feedback parameter indicates a phase offset between V matrices corresponding to at least two CMRs in the at least one CMR.
  • the ninth PMI feedback parameter, the ninth PMI feedback parameter is used to adjust the relative magnitude of the broadband.
  • the second PMI feedback parameter group includes fifth PMI feedback parameters, and the fifth PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second PMI feedback parameter set includes a sixth PMI feedback parameter, and the sixth PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second PMI feedback parameter group includes a seventh PMI feedback parameter, and the seventh PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second PMI feedback parameter group includes a ninth PMI feedback parameter, and the ninth PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second PMI feedback parameter set includes one sixth PMI feedback parameter or multiple sixth PMI feedback parameters.
  • a sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension, and/or the number of selected beams of the same TRP/RRH.
  • a plurality of sixth PMI feedback parameters are based on the number of antenna ports of a plurality of different TRP/RRHs in the first dimension, the number of antenna ports of a plurality of different TRP/RRHs in the second dimension, and/or the selected number of different TRP/RRHs The number of beams is determined.
  • the V matrices corresponding to the CMRs in at least one CMR are different, and the PMI feedback parameters are carried in the X1 information domain or the X2 information domain.
  • the X1 information field is used to carry the first wideband PMI feedback parameter
  • the X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the V matrix corresponding to each CMR in at least one CMR is different, and the first broadband PMI feedback parameter carried in the X1 information field includes:
  • the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension.
  • the second PMI feedback parameter where the second PMI feedback parameter is determined based on the number of antenna ports in the second dimension and the number of oversampling in the second dimension, or the number of antenna ports in the second dimension and the number of beams in the second dimension.
  • a third PMI feedback parameter where the third PMI feedback parameter is used to indicate a relative difference between the other layer and the first PMI feedback parameter and/or the second PMI feedback parameter of the first layer.
  • the V matrices corresponding to the CMRs in at least one CMR are different, and the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used to select a beam or determine a phase offset.
  • the V matrix corresponding to each CMR in at least one CMR is different
  • the first broadband PMI feedback parameters carried in the X1 information domain include a plurality of different first PMI feedback parameters, and the different first PMI feedback parameters correspond to The CMRs are different.
  • the first wideband PMI feedback parameter carried in the X1 information field includes multiple different second PMI feedback parameters, and different second PMI feedback parameters correspond to different CMRs.
  • the first broadband PMI feedback parameter carried in the X1 information field includes multiple different third PMI feedback parameters, and the CMRs corresponding to different third PMI feedback parameters are different.
  • the V matrix corresponding to each CMR in at least one CMR is different, and the PMI feedback parameters include at least one of the following:
  • the fifth PMI feedback parameter, the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension.
  • the sixth PMI feedback parameter, the sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension and/or the number of selected beams.
  • a seventh PMI feedback parameter, where the seventh PMI feedback parameter is used to indicate a relative difference between the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the other layer and the first layer.
  • the ninth PMI feedback parameter, the ninth PMI feedback parameter is used to adjust the relative magnitude of the broadband.
  • the V matrix corresponding to each CMR in at least one CMR is different, and the PMI feedback parameters include:
  • fifth PMI feedback parameters There are multiple different fifth PMI feedback parameters, and different fifth PMI feedback parameters correspond to different CMRs. And/or multiple different sixth PMI feedback parameters, the CMRs corresponding to different sixth PMI feedback parameters are different. And/or multiple different seventh PMI feedback parameters, the CMRs corresponding to different seventh PMI feedback parameters are different. And/or a plurality of different ninth PMI feedback parameters, the CMRs corresponding to different ninth PMI feedback parameters are different.
  • Fig. 5 is a block diagram of an apparatus for reporting CSI according to an exemplary embodiment.
  • the CSI reporting apparatus 200 includes an acquiring unit 201 .
  • the obtaining unit 201 is configured to obtain the CSI reported by the terminal, the CSI includes a measurement result based on at least one CMR measurement, and the measurement result includes at least one precoding matrix indication PMI shared by the CMR.
  • each CMR in at least one CMR corresponds to a CMR resource set, and at least two different CMRs correspond to different CMR resource sets.
  • the CMR resource set corresponds to a resource parameter
  • the resource parameter includes one or more of control CORESETPoolIndex, TRP, and RRH, and different CMR resource sets correspond to different resource parameters.
  • the PMI includes one or more PMI feedback parameters.
  • the PMI feedback parameters are carried in the X1 information field and/or the X2 information field.
  • the X1 information field is used to carry the first wideband PMI feedback parameter
  • the X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the first broadband PMI feedback parameter carried in the X1 information field includes the first PMI feedback parameter group.
  • the first PMI feedback parameter set includes at least one of the following:
  • the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension.
  • the second PMI feedback parameter is determined based on the number of antenna ports in the second dimension and the number of oversampling in the second dimension, or the number of antenna ports in the second dimension and the number of beams in the second dimension.
  • a third PMI feedback parameter where the third PMI feedback parameter is used to indicate a relative difference between the other layer and the first PMI feedback parameter and/or the second PMI feedback parameter of the first layer.
  • a fourth PMI feedback parameter where the fourth PMI feedback parameter indicates a phase offset between V matrices corresponding to at least two CMRs in the at least one CMR.
  • the first PMI feedback parameter group includes first PMI feedback parameters, and the first PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same. And/or the first PMI feedback parameter group includes the second PMI feedback parameter, and the second PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same. And/or the first PMI feedback parameter group includes a third PMI feedback parameter, and the third PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used for at least one of the following: selecting a beam, determining a phase offset, indicating the position of the selected frequency domain unit, and indicating Nonzero coefficient locations.
  • the first broadband PMI feedback parameter carried in the X1 information field includes the second PMI feedback parameter group.
  • the second PMI feedback parameter set includes at least one of the following:
  • the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension.
  • a sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension and/or the number of selected beams.
  • a seventh PMI feedback parameter where the seventh PMI feedback parameter is used to indicate a relative difference between the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the other layer and the first layer.
  • An eighth PMI feedback parameter where the eighth PMI feedback parameter indicates a phase offset between V matrices corresponding to at least two CMRs in the at least one CMR.
  • the ninth PMI feedback parameter, the ninth PMI feedback parameter is used to adjust the relative magnitude of the broadband.
  • the second PMI feedback parameter group includes fifth PMI feedback parameters, and the fifth PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second PMI feedback parameter set includes a sixth PMI feedback parameter, and the sixth PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second PMI feedback parameter group includes a seventh PMI feedback parameter, and the seventh PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second PMI feedback parameter group includes a ninth PMI feedback parameter, and the ninth PMI feedback parameters corresponding to at least two CMRs in at least one CMR are the same.
  • the second PMI feedback parameter set includes one sixth PMI feedback parameter or multiple sixth PMI feedback parameters.
  • a sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension, and/or the number of selected beams of the same TRP/RRH.
  • a plurality of sixth PMI feedback parameters are based on the number of antenna ports of a plurality of different TRP/RRHs in the first dimension, the number of antenna ports of a plurality of different TRP/RRHs in the second dimension, and/or the selected number of different TRP/RRHs The number of beams is determined.
  • the V matrices corresponding to the CMRs in at least one CMR are different, and the PMI feedback parameters are carried in the X1 information domain or the X2 information domain.
  • the X1 information field is used to carry the first wideband PMI feedback parameter
  • the X2 information field is used to carry the second wideband PMI feedback parameter or narrowband PMI feedback parameter.
  • the V matrix corresponding to each CMR in at least one CMR is different, and the first broadband PMI feedback parameter carried in the X1 information domain includes:
  • the first PMI feedback parameter is determined based on the number of antenna ports in the first dimension and the number of oversampling in the first dimension, or the number of antenna ports in the first dimension and the number of beams in the first dimension.
  • the second PMI feedback parameter where the second PMI feedback parameter is determined based on the number of antenna ports in the second dimension and the number of oversampling in the second dimension, or the number of antenna ports in the second dimension and the number of beams in the second dimension.
  • a third PMI feedback parameter where the third PMI feedback parameter is used to indicate a relative difference between the other layer and the first PMI feedback parameter and/or the second PMI feedback parameter of the first layer.
  • the V matrices corresponding to the CMRs in at least one CMR are different, and the second wideband PMI feedback parameter or narrowband PMI feedback parameter carried in the X2 information field is used to select a beam or determine a phase offset.
  • the V matrix corresponding to each CMR in at least one CMR is different
  • the first broadband PMI feedback parameters carried in the X1 information domain include a plurality of different first PMI feedback parameters, and the different first PMI feedback parameters correspond to The CMRs are different.
  • the first wideband PMI feedback parameter carried in the X1 information field includes multiple different second PMI feedback parameters, and different second PMI feedback parameters correspond to different CMRs.
  • the first broadband PMI feedback parameter carried in the X1 information field includes multiple different third PMI feedback parameters, and different third PMI feedback parameters correspond to different CMRs.
  • the V matrix corresponding to each CMR in at least one CMR is different, and the PMI feedback parameters include at least one of the following:
  • the fifth PMI feedback parameter, the fifth PMI feedback parameter is determined based on the number of oversampling in the first dimension/the number of beams in the first dimension, and the number of oversampling in the second dimension/the number of beams in the second dimension.
  • the sixth PMI feedback parameter, the sixth PMI feedback parameter is determined based on the number of antenna ports in the first dimension, the number of antenna ports in the second dimension and/or the number of selected beams.
  • a seventh PMI feedback parameter, where the seventh PMI feedback parameter is used to indicate a relative difference between the fifth PMI feedback parameter and/or the sixth PMI feedback parameter of the other layer and the first layer.
  • the ninth PMI feedback parameter, the ninth PMI feedback parameter is used to adjust the relative magnitude of the broadband.
  • the V matrix corresponding to each CMR in at least one CMR is different, and the PMI feedback parameters include:
  • fifth PMI feedback parameters There are multiple different fifth PMI feedback parameters, and different fifth PMI feedback parameters correspond to different CMRs. And/or multiple different sixth PMI feedback parameters, the CMRs corresponding to different sixth PMI feedback parameters are different. And/or multiple different seventh PMI feedback parameters, the CMRs corresponding to different seventh PMI feedback parameters are different. And/or a plurality of different ninth PMI feedback parameters, the CMRs corresponding to different ninth PMI feedback parameters are different.
  • Fig. 6 is a block diagram of an apparatus 300 for reporting CSI according to an exemplary embodiment.
  • the apparatus 300 may be provided as the terminal mentioned above.
  • the apparatus 300 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • apparatus 300 may include one or more of the following components: processing component 302, memory 304, power component 306, multimedia component 308, audio component 310, input/output (I/O) interface 312, sensor component 314, and communication component 316 .
  • the processing component 302 generally controls the overall operations of the device 300, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 302 may include one or more modules that facilitate interaction between processing component 302 and other components. For example, processing component 302 may include a multimedia module to facilitate interaction between multimedia component 308 and processing component 302 .
  • the memory 304 is configured to store various types of data to support operations at the device 300 . Examples of such data include instructions for any application or method operating on device 300, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 304 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 306 provides power to various components of device 300 .
  • Power components 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 300 .
  • the multimedia component 308 includes a screen that provides an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 308 includes a front camera and/or a rear camera. When the device 300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 310 is configured to output and/or input audio signals.
  • the audio component 310 includes a microphone (MIC), which is configured to receive external audio signals when the device 300 is in operation modes, such as call mode, recording mode, and voice recognition mode. Received audio signals may be further stored in memory 304 or sent via communication component 316 .
  • the audio component 310 also includes a speaker for outputting audio signals.
  • the I/O interface 312 provides an interface between the processing component 302 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 314 includes one or more sensors for providing various aspects of status assessment for device 300 .
  • the sensor component 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, and the sensor component 314 can also detect a change in the position of the device 300 or a component of the device 300 , the presence or absence of user contact with the device 300 , the device 300 orientation or acceleration/deceleration and the temperature change of the device 300 .
  • the sensor assembly 314 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 314 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 316 is configured to facilitate wired or wireless communication between the apparatus 300 and other devices.
  • the device 300 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 316 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 300 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • a storage medium including instructions, such as the memory 304 including instructions, which can be executed by the processor 320 of the device 300 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • Fig. 7 is a block diagram of an apparatus 400 for reporting CSI according to an exemplary embodiment.
  • apparatus 400 may be provided as a network device.
  • apparatus 400 includes processing component 422, which further includes one or more processors, and a memory resource represented by memory 432 for storing instructions executable by processing component 422, such as application programs.
  • the application program stored in memory 432 may include one or more modules each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above method.
  • Device 400 may also include a power component 426 configured to perform power management of device 400 , a wired or wireless network interface 450 configured to connect device 400 to a network, and an input-output (I/O) interface 458 .
  • the device 400 can operate based on an operating system stored in the memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • a storage medium including instructions, such as a memory 432 including instructions, which can be executed by the processing component 422 of the device 400 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • “plurality” in the present disclosure refers to two or more, and other quantifiers are similar thereto.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • the singular forms “a”, “said” and “the” are also intended to include the plural unless the context clearly dictates otherwise.
  • first, second, etc. are used to describe various information, but the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another, and do not imply a specific order or degree of importance. In fact, expressions such as “first” and “second” can be used interchangeably.
  • first information may also be called second information, and similarly, second information may also be called first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种信道状态信息上报方法、装置及存储介质。信道状态信息上报方法,应用于终端,包括:基于至少一个信道测量资源CMR,测量信道状态信息,所述信道状态信息中包括基于所述至少一个CMR测量的测量结果,所述测量结果中包括所述至少一个CMR共用的预编码矩阵指示PMI;上报所述信道状态信息。通过本公开实现至少一个CMR的联合PMI的反馈方法,减少信令开销,并提高基于多CMR的传输性能。

Description

一种信道状态信息上报方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种信道状态信息上报方法、装置及存储介质。
背景技术
在新无线技术(New Radio,NR)中,例如通信频段在frequency range 2时,由于高频信道衰减较快,为了保证覆盖范围,需要使用基于波束(beam)的发送和接收。
相关技术中,网络设备配置多个信道测量资源(channel measurement resource,CMR),例如多个发送接收点(transmission and reception point,TRP)。当网络设备有多个TRP时,网络设备可以使用多个TRP为终端提供服务,例如使用多个TRP向终端发送物理下行共享信道(physical downlink shared channel,PDSCH)。其中,网络设备使用多个TRP为终端提供服务时,终端会向网络设备独立反馈多个TRP的预编码矩阵指示(Precoding matrix indicator,PMI)。终端向网络设备针对多个TRP独立反馈PMI,即需要反馈多个PMI,造成信令开销较大。
发明内容
为克服相关技术中存在的问题,本公开提供一种信道状态信息上报方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种信道状态信息上报方法,应用于终端,包括:
基于至少一个信道测量资源CMR,测量信道状态信息,所述信道状态信息中包括基于所述至少一个CMR测量的测量结果,所述测量结果中包括所述至少一个CMR共用的预编码矩阵指示PMI;上报所述信道状态信息。
一种实施方式中,所述至少一个CMR中的每一CMR对应有CMR资源集合,且至少两个不同的CMR对应不同的CMR资源集合。
一种实施方式中,所述CMR资源集合对应有资源参数,所述资源参数包括控制资源集池索引、发送接收点以及射频拉远头中的一个或多个,不同的CMR资源集合对应的资源参数不同。
一种实施方式中,所述PMI中包括一个或多个PMI反馈参数。
一种实施方式中,所述至少一个CMR中至少两个CMR对应的V矩阵之间存在有相位偏移,所述PMI反馈参数承载在X1信息域和/或X2信息域;所述X1信息域用于承载第一宽带PMI反馈参数,所述X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括第一PMI反馈参数组;所述第一PMI反馈参数组中包括以下至少一项:
第一PMI反馈参数,所述第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定;第二PMI反馈参数,所述第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定;第三PMI反馈参数,所述第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异;第四PMI反馈参数,所述第四PMI反馈参数指示所述至少一个CMR中的至少两个CMR对应的V矩阵之间的相位偏移。
一种实施方式中,所述第一PMI反馈参数组中包括第一PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第一PMI反馈参数相同;和/或所述第一PMI反馈参数组中包括第二PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第二PMI反馈参数相同;和/或所述第一PMI反馈参数组中包括第三PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第三PMI反馈参数相同。
一种实施方式中,所述X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于以下至少一项:选择波束,确定相位偏移,指示选中的频域单元的位置,和指示非零系数位置。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括第二PMI反馈参数组;
所述第二PMI反馈参数组中包括以下至少一项:
第五PMI反馈参数,所述第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定;第六PMI反馈参数,所述第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数和/或被选择的波束数确定;第七PMI反馈参数,所述第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异;第八PMI反馈参数,所述第八PMI反馈参数指示所述至少一个CMR中至少两个CMR对应的V矩阵之间的相位偏移;第九PMI反馈参数,所述第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,所述第二PMI反馈参数组包括第五PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第五PMI反馈参数相同;和/或所述第二PMI反馈参数组中包括第六PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第六PMI反馈参数相同;和/或所述第二PMI反馈参数组中包括第七PMI反馈参数,所述至少一个CMR中 至少两个CMR对应的第七PMI反馈参数相同;和/或所述第二PMI反馈参数组中包括第九PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第九PMI反馈参数相同。
一种实施方式中,所述第二PMI反馈参数组中包括一个第六PMI反馈参数或多个第六PMI反馈参数;所述一个第六PMI反馈参数基于同一发送接收点/射频拉远头处于第一维度的天线端口数,处于第二维度的天线端口数,和/或被选择的波束数确定;
所述多个第六PMI反馈参数基于多个不同发送接收点/射频拉远头处于第一维度的天线端口数,所述多个不同发送接收点/射频拉远头处于第二维度的天线端口数,和/或多个不同发送接收点/射频拉远头被选择的波束数确定。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数承载在X1信息域或X2信息域;所述X1信息域用于承载第一宽带PMI反馈参数,所述X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述X1信息域中承载的第一宽带PMI反馈参数中包括:
第一PMI反馈参数,所述第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定;或第二PMI反馈参数,所述第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定;或第三PMI反馈参数,所述第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于选择波束或用于确定相位偏移。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第一PMI反馈参数,不同的第一PMI反馈参数对应的CMR不同;或所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第二PMI反馈参数,不同的第二PMI反馈参数对应的CMR不同;或所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第三PMI反馈参数,不同的第三PMI反馈参数对应的CMR不同。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数包括以下至少一项:
第五PMI反馈参数,所述第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定;第六PMI反馈参数,所述第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数确定和/或被选择的波束数;第七PMI 反馈参数,所述第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异;第九PMI反馈参数,所述第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数包括:
多个不同的第五PMI反馈参数,不同的第五PMI反馈参数对应的CMR不同;和/或多个不同的第六PMI反馈参数,不同的第六PMI反馈参数对应的CMR不同;和/或多个不同的第七PMI反馈参数,不同的第七PMI反馈参数对应的CMR不同;和/或多个不同的第九PMI反馈参数,不同的第九PMI反馈参数对应的CMR不同。
根据本公开实施例第二方面,提供一种信道状态信息上报方法,应用于网络设备,包括:获取终端上报的信道状态信息,所述信道状态信息包括基于至少一个信道测量资源CMR测量的测量结果,所述测量结果中包括所述至少一个CMR共用的预编码矩阵指示PMI。
一种实施方式中,所述至少一个CMR中的每一CMR对应有CMR资源集合,且至少两个不同的CMR对应不同的CMR资源集合。
一种实施方式中,所述CMR资源集合对应有资源参数,所述资源参数包括控制资源集池索引、发送接收点以及射频拉远头中的一个或多个,不同的CMR资源集合对应的资源参数不同。
一种实施方式中,所述PMI中包括一个或多个PMI反馈参数。
一种实施方式中,所述至少一个CMR中至少两个CMR对应的V矩阵之间存在有相位偏移,所述PMI反馈参数承载在X1信息域和/或X2信息域;所述X1信息域用于承载第一宽带PMI反馈参数,所述X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括第一PMI反馈参数组;所述第一PMI反馈参数组中包括以下至少一项:
第一PMI反馈参数,所述第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定;第二PMI反馈参数,所述第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定;第三PMI反馈参数,所述第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异;第四PMI反馈参数,所述第四PMI反馈参数指示所述至少一个CMR中的至少两个CMR对应的V矩阵之 间的相位偏移。
一种实施方式中,所述第一PMI反馈参数组中包括第一PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第一PMI反馈参数相同;和/或所述第一PMI反馈参数组中包括第二PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第二PMI反馈参数相同;和/或所述第一PMI反馈参数组中包括第三PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第三PMI反馈参数相同。
一种实施方式中,所述X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于以下至少一项:选择波束,确定相位偏移,指示选中的频域单元的位置,和指示非零系数位置。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括第二PMI反馈参数组;
所述第二PMI反馈参数组中包括以下至少一项:
第五PMI反馈参数,所述第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定;第六PMI反馈参数,所述第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数和/或被选择的波束数确定;第七PMI反馈参数,所述第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异;第八PMI反馈参数,所述第八PMI反馈参数指示所述至少一个CMR中至少两个CMR对应的V矩阵之间的相位偏移;第九PMI反馈参数,所述第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,所述第二PMI反馈参数组包括第五PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第五PMI反馈参数相同;和/或所述第二PMI反馈参数组中包括第六PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第六PMI反馈参数相同;和/或所述第二PMI反馈参数组中包括第七PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第七PMI反馈参数相同;和/或所述第二PMI反馈参数组中包括第九PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第九PMI反馈参数相同。
一种实施方式中,所述第二PMI反馈参数组中包括一个第六PMI反馈参数或多个第六PMI反馈参数;所述一个第六PMI反馈参数基于同一发送接收点/射频拉远头处于第一维度的天线端口数,处于第二维度的天线端口数,和/或被选择的波束数确定;
所述多个第六PMI反馈参数基于多个不同发送接收点/射频拉远头处于第一维度的天线端口数,所述多个不同发送接收点/射频拉远头处于第二维度的天线端口数,和/或多个不同发送接收点/射频拉远头被选择的波束数确定。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数承载在X1信息域或X2信息域;所述X1信息域用于承载第一宽带PMI反馈参数,所述X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括:
第一PMI反馈参数,所述第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定;或第二PMI反馈参数,所述第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定;或第三PMI反馈参数,所述第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。
一种实施方式中,所述X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于选择波束或用于确定相位偏移。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第一PMI反馈参数,不同的第一PMI反馈参数对应的CMR不同;或所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第二PMI反馈参数,不同的第二PMI反馈参数对应的CMR不同;或所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第三PMI反馈参数,不同的第三PMI反馈参数对应的CMR不同。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数包括以下至少一项:
第五PMI反馈参数,所述第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定;第六PMI反馈参数,所述第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数确定和/或被选择的波束数;第七PMI反馈参数,所述第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异;第九PMI反馈参数,所述第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数包括:
多个不同的第五PMI反馈参数,不同的第五PMI反馈参数对应的CMR不同;和/或多个不同的第六PMI反馈参数,不同的第六PMI反馈参数对应的CMR不同;和/或多个不同的第七PMI反馈参数,不同的第七PMI反馈参数对应的CMR不同;和/或多个不同的第九PMI反馈参数,不同的第九PMI反馈参数对应的CMR不同。
根据本公开实施例第三方面,提供一种信道状态信息上报装置,包括:
测量单元,被配置为基于至少一个信道测量资源CMR,测量信道状态信息,所述信道状态信息中包括基于所述至少一个CMR测量的测量结果,所述测量结果中包括所述至少一个CMR共用的预编码矩阵指示PMI;上报单元,被配置为上报所述信道状态信息。
一种实施方式中,所述至少一个CMR中的每一CMR对应有CMR资源集合,且至少两个不同的CMR对应不同的CMR资源集合。
一种实施方式中,所述CMR资源集合对应有资源参数,所述资源参数包括控制资源集池索引、发送接收点以及射频拉远头中的一个或多个,不同的CMR资源集合对应的资源参数不同。
一种实施方式中,所述PMI中包括一个或多个PMI反馈参数。
一种实施方式中,所述至少一个CMR中至少两个CMR对应的V矩阵之间存在有相位偏移,所述PMI反馈参数承载在X1信息域和/或X2信息域;所述X1信息域用于承载第一宽带PMI反馈参数,所述X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括第一PMI反馈参数组;所述第一PMI反馈参数组中包括以下至少一项:
第一PMI反馈参数,所述第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定;第二PMI反馈参数,所述第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定;第三PMI反馈参数,所述第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异;第四PMI反馈参数,所述第四PMI反馈参数指示所述至少一个CMR中的至少两个CMR对应的V矩阵之间的相位偏移。
一种实施方式中,所述第一PMI反馈参数组中包括第一PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第一PMI反馈参数相同;和/或所述第一PMI反馈参数组中包括第二PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第二PMI反馈参数相同;和/或所述第一PMI反馈参数组中包括第三PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第三PMI反馈参数相同。
一种实施方式中,所述X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于以下至少一项:选择波束,确定相位偏移,指示选中的频域单元的位置,和指示非零系数位置。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括第二PMI 反馈参数组;
所述第二PMI反馈参数组中包括以下至少一项:
第五PMI反馈参数,所述第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定;第六PMI反馈参数,所述第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数和/或被选择的波束数确定;第七PMI反馈参数,所述第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异;第八PMI反馈参数,所述第八PMI反馈参数指示所述至少一个CMR中至少两个CMR对应的V矩阵之间的相位偏移;第九PMI反馈参数,所述第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,所述第二PMI反馈参数组包括第五PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第五PMI反馈参数相同;和/或所述第二PMI反馈参数组中包括第六PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第六PMI反馈参数相同;和/或所述第二PMI反馈参数组中包括第七PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第七PMI反馈参数相同;和/或所述第二PMI反馈参数组中包括第九PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第九PMI反馈参数相同。
一种实施方式中,所述第二PMI反馈参数组中包括一个第六PMI反馈参数或多个第六PMI反馈参数;所述一个第六PMI反馈参数基于同一发送接收点/射频拉远头处于第一维度的天线端口数,处于第二维度的天线端口数,和/或被选择的波束数确定;
所述多个第六PMI反馈参数基于多个不同发送接收点/射频拉远头处于第一维度的天线端口数,所述多个不同发送接收点/射频拉远头处于第二维度的天线端口数,和/或多个不同发送接收点/射频拉远头被选择的波束数确定。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数承载在X1信息域或X2信息域;所述X1信息域用于承载第一宽带PMI反馈参数,所述X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述X1信息域中承载的第一宽带PMI反馈参数中包括:
第一PMI反馈参数,所述第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定;或第二PMI反馈参数,所述第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定;或第三PMI反馈参数,所述第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于选择波束或用于确定相位偏移。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第一PMI反馈参数,不同的第一PMI反馈参数对应的CMR不同;或所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第二PMI反馈参数,不同的第二PMI反馈参数对应的CMR不同;或所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第三PMI反馈参数,不同的第三PMI反馈参数对应的CMR不同。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数包括以下至少一项:
第五PMI反馈参数,所述第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定;第六PMI反馈参数,所述第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数确定和/或被选择的波束数;第七PMI反馈参数,所述第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异;第九PMI反馈参数,所述第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数包括:
多个不同的第五PMI反馈参数,不同的第五PMI反馈参数对应的CMR不同;和/或多个不同的第六PMI反馈参数,不同的第六PMI反馈参数对应的CMR不同;和/或多个不同的第七PMI反馈参数,不同的第七PMI反馈参数对应的CMR不同;和/或多个不同的第九PMI反馈参数,不同的第九PMI反馈参数对应的CMR不同。
根据本公开实施例第四方面,提供一种信道状态信息上报装置,包括:
获取单元,被配置为获取终端上报的信道状态信息,所述信道状态信息包括基于至少一个信道测量资源CMR测量的测量结果,所述测量结果中包括所述至少一个CMR共用的预编码矩阵指示PMI。
一种实施方式中,所述至少一个CMR中的每一CMR对应有CMR资源集合,且至少两个不同的CMR对应不同的CMR资源集合。
一种实施方式中,所述CMR资源集合对应有资源参数,所述资源参数包括控制资源集池索引、发送接收点以及射频拉远头中的一个或多个,不同的CMR资源集合对应的资源参数不同。
一种实施方式中,所述PMI中包括一个或多个PMI反馈参数。
一种实施方式中,所述至少一个CMR中至少两个CMR对应的V矩阵之间存在有相位偏移,所述PMI反馈参数承载在X1信息域和/或X2信息域;所述X1信息域用于承载第一宽带PMI反馈参数,所述X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括第一PMI反馈参数组;所述第一PMI反馈参数组中包括以下至少一项:
第一PMI反馈参数,所述第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定;第二PMI反馈参数,所述第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定;第三PMI反馈参数,所述第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异;第四PMI反馈参数,所述第四PMI反馈参数指示所述至少一个CMR中的至少两个CMR对应的V矩阵之间的相位偏移。
一种实施方式中,所述第一PMI反馈参数组中包括第一PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第一PMI反馈参数相同;和/或所述第一PMI反馈参数组中包括第二PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第二PMI反馈参数相同;和/或所述第一PMI反馈参数组中包括第三PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第三PMI反馈参数相同。
一种实施方式中,所述X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于以下至少一项:选择波束,确定相位偏移,指示选中的频域单元的位置,和指示非零系数位置。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括第二PMI反馈参数组;
所述第二PMI反馈参数组中包括以下至少一项:
第五PMI反馈参数,所述第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定;第六PMI反馈参数,所述第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数和/或被选择的波束数确定;第七PMI反馈参数,所述第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异;第八PMI反馈参数,所述第八PMI反馈参数指示所述至少一个CMR中至少两个CMR对应的V矩阵之间的相位偏移;第九PMI反馈参数,所述第 九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,所述第二PMI反馈参数组包括第五PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第五PMI反馈参数相同;和/或所述第二PMI反馈参数组中包括第六PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第六PMI反馈参数相同;和/或所述第二PMI反馈参数组中包括第七PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第七PMI反馈参数相同;和/或所述第二PMI反馈参数组中包括第九PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第九PMI反馈参数相同。
一种实施方式中,所述第二PMI反馈参数组中包括一个第六PMI反馈参数或多个第六PMI反馈参数;所述一个第六PMI反馈参数基于同一发送接收点/射频拉远头处于第一维度的天线端口数,处于第二维度的天线端口数,和/或被选择的波束数确定;
所述多个第六PMI反馈参数基于多个不同发送接收点/射频拉远头处于第一维度的天线端口数,所述多个不同发送接收点/射频拉远头处于第二维度的天线端口数,和/或多个不同发送接收点/射频拉远头被选择的波束数确定。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数承载在X1信息域或X2信息域;所述X1信息域用于承载第一宽带PMI反馈参数,所述X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括:
第一PMI反馈参数,所述第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定;或第二PMI反馈参数,所述第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定;或第三PMI反馈参数,所述第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。
一种实施方式中,所述X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于选择波束或用于确定相位偏移。
一种实施方式中,所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第一PMI反馈参数,不同的第一PMI反馈参数对应的CMR不同;或所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第二PMI反馈参数,不同的第二PMI反馈参数对应的CMR不同;或所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第三PMI反馈参数,不同的第三PMI反馈参数对应的CMR不同。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数包括以下至少一项:
第五PMI反馈参数,所述第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定;第六PMI反馈参数,所述第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数确定和/或被选择的波束数;第七PMI反馈参数,所述第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异;第九PMI反馈参数,所述第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数包括:
多个不同的第五PMI反馈参数,不同的第五PMI反馈参数对应的CMR不同;和/或多个不同的第六PMI反馈参数,不同的第六PMI反馈参数对应的CMR不同;和/或多个不同的第七PMI反馈参数,不同的第七PMI反馈参数对应的CMR不同;和/或多个不同的第九PMI反馈参数,不同的第九PMI反馈参数对应的CMR不同。
根据本公开实施例第五方面,提供一种信道状态信息上报装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第一方面或者第一方面任意一种实施方式中所述的信道状态信息上报方法。
根据本公开实施例第六方面,提供一种信道状态信息上报装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第二方面或者第二方面任意一种实施方式中所述的信道状态信息上报方法。
根据本公开实施例第七方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行第一方面或者第一方面任意一种实施方式中所述的信道状态信息上报方法。
根据本公开实施例第八方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行第二方面或者第二方面任意一种实施方式中所述的信道状态信息上报方法。
本公开的实施例提供的技术方案可以包括以下有益效果:信道状态信息中包括基于至少一个CMR测量的测量结果,并且在测量结果中包括至少一个CMR共用的PMI,实现至少一个CMR的联合PMI的反馈方法,减少信令开销,并提高基于多CMR的传输性能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统示意图。
图2是根据一示例性实施例示出的一种CSI上报方法的流程图。
图3是根据一示例性实施例示出的另一种CSI上报方法的流程图。
图4是根据一示例性实施例示出的一种CSI上报装置的框图。
图5是根据一示例性实施例示出的另一种CSI上报装置的框图。
图6是根据一示例性实施例示出的一种用于CSI上报的装置的框图。
图7是根据一示例性实施例示出的另一种用于CSI上报的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例提供的CSI上报方法可应用于图1所示的无线通信系统中。参阅图1所示,该无线通信系统中包括终端和网络设备。终端通过无线资源与网络设备相连接,并进行数据的发送与接收。
可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括的网络设备数目和终端数目不做限定。
进一步可以理解的是,本公开实施例的无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,eNB)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。当为车联网(V2X)通信系统时,网络设备还可以是车载设备。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
本公开中网络设备与终端之间基于波束进行数据传输。基于波束进行数据传输过程中,网络设备(例如基站)可以配置多个CMR为终端提供服务。终端也可以基于多个CMR,进行信道测量,并反馈信道状态信息(Channel state information,CSI)。相关技术中,终端针对多个CMR中每一个CMR独立反馈PMI,即,使用多个CMR时,需要独立反馈多个PMI。然而,对于同一终端而言,多个CMR的信道是有相关性的,独立反馈多个PMI,使得信令开销较大,传输性能较低。
本公开实施例提供一种CSI上报方法,终端基于至少一个CMR测量CSI,该CSI中包括基于至少一个CMR测量的测量结果,并且测量结果中包括至少一个CMR共用的PMI。终端上报CSI。网络设备获取终端上报并包括至少一个CMR共用的PMI的测量结果的CSI。通过本公开实现多个CMR的PMI的联合发送,减少信令开销,并提高传输性能。
图2是根据一示例性实施例示出的一种CSI上报方法的流程图,如图2所示,CSI上报方法用于终端中,包括以下步骤。
在步骤S11中,基于至少一个CMR测量CSI。CSI中包括基于至少一个CMR测量的测量结果,测量结果中包括至少一个CMR共用的PMI。
在步骤S12中,上报CSI。
本公开实施例中,终端上报的CSI中包括基于至少一个CMR测量的测量结果,并在 测量结果中包括至少一个CMR共用的PMI,实现多CMR的PMI联合反馈方法,减少信令开销,并提高了基于多CMR的传输性能。
本公开实施例中,测量CSI的至少一个CMR的数量可以是一个也可以是多个。
其中,本公开实施例中涉及的至少一个CMR中的每一CMR对应有CMR资源集合,不同的CMR对应不同的CMR资源集合。其中,至少一个CMR中包括至少两个不同的CMR。至少两个不同的CMR对应不同的CMR资源集合。本公开实施例中涉及的CMR集合可以是网络设备配置的CMR集合,也可以是网络设备配置的CMR集合的子集。即,至少一个CMR中的每个CMR对应不同的CMR子集或不同的CMR集合。
本公开实施例一种实施方式中,至少一个CMR中各CMR对应的CMR资源集合对应有资源参数,该资源参数包括控制资源集(Control Resource Set,CORESET)池索引(PoolIndex)、发送接收点(Transmission reception Point,TRP)以及射频拉远头(remote radio header,RRH)中的一个或多个。
本公开实施例中,不同的CMR资源集合对应的资源参数不同。可以理解为不同的CMR对应不同的资源参数,比如,不同的CMR对应不同的TRP。进一步可以理解的是,终端可以基于不同TRP进行CSI测量,并在测量结果中包括不同TRP共用的PMI。又比如,不同的CMR对应不同的RRH。进一步可以理解的是,终端可以基于不同RRH进行CSI测量,并在测量结果中包括不同RRH共用的PMI。
本公开实施例中至少一个CMR共用的PMI可以理解为是一个PMI。CSI中包括基于至少一个CMR测量得到的测量结果,并包含一个PMI。
本公开实施例中,基于至少一个CMR测量的测量结果中包括的一个PMI可以理解为是一套PMI反馈参数。该一套PMI反馈参数中包括一个或多个PMI反馈参数。而该一套PMI反馈参数中,有些参数对于不同CMR是相同的,有些参数对于不同CMR是不同的。
进一步的,本公开实施例中基于至少一个CMR测量的测量结果中包括的PMI反馈参数可以基于不同CMR对应的V矩阵确定。
本公开实施例中,V矩阵是由U矩阵生成的。其中,U矩阵可以表示为如下公式:
Figure PCTCN2021122915-appb-000001
Figure PCTCN2021122915-appb-000002
其中,U矩阵里的N2是第二维度的天线端口数,O2是第二维度的过采样数,N1是第一维度的天线端口数,O1是第一维度的过采样数。L是指层数。故,CMR对应的V矩阵与第一维度天线端口数、第二维度天线端口数、第一维度过采样数、第二维度过采样数,以及层数都是相关的。
本公开实施例中,V矩阵还可以是由多个列向量组成,每个列向量中只有一个元素为1,其它元素都为0。
本公开实施例中,V矩阵还可以有其它形式,本公开不作限制。
本公开实施例一种实施方式中,测量CSI的至少一个CMR中至少两个CMR对应的V矩阵之间存在有一个相位偏移。即,不同的V矩阵可以通过不同相位偏移进行确定。其中,至少两个不同的CMR对应不同的CMR子集或不同的CMR集合。故,不同的CMR子集或不同的CMR集合对应的V矩阵之间存在有相位偏移。PMI反馈参数承载在X1信息域和/或X2信息域。其中,X1信息域用于承载第一宽带PMI反馈参数,X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
本公开实施例中,X1信息域中承载的第一宽带PMI反馈参数可以是一个或多个PMI反馈参数组。本公开实施例中为描述方便,将X1信息域中承载的第一宽带PMI反馈参数中包括的任意两个不同的PMI反馈参数组称为第一PMI反馈参数组和第二PMI反馈参数组。
一示例中,X1信息域中承载的第一宽带PMI反馈参数中包括第一PMI反馈参数组(Codebook index i 1)。第一PMI反馈参数组中包括以下至少一项:
A:第一PMI反馈参数(i 1,1)。第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定。即,i 1,1与N1和O1相关,其中,N1为第一维度天线端口数,O1为第一维度过采样数或波束数。
本公开实施例中,第一PMI反馈参数可以是在N1*O1个采样位置中选择的一个采样 位置对应的参数。
B:第二PMI反馈参数(i 1,2)。第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定。即,i 1,2与N2和O2相关,其中,N2为第二维度天线端口数,O2为第二维度过采样数或波束数。
本公开实施例中,第二PMI反馈参数可以是在N2*O2个采样位置中选择的一个采样位置对应的参数。
C:第三PMI反馈参数(i 1,3)。第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。其中,第三PMI反馈参数主要针对RANK>1的情况,即层(layer)数大于1的情况,主要用于确定不同layer之间的天线端口。
D:第四PMI反馈参数(i 1,4)。第四PMI反馈参数指示至少一个CMR中的至少两个CMR对应的V矩阵之间的相位偏移。
其中,i 1,4用于不同的CMR子集或不同的CMR集合之间的相对相位的调整。一示例中,i 1,4包括以下参数中至少之一:i 1,4,1,i 1,4,2,i 1,4,3。其中,i 1,4,1表示层layer 1的相位。i 1,4,2表示层2相对层1相位偏移。i 1,4,3表示层3相对层1的相位偏移。
本公开实施例中,第一PMI反馈参数组中包括第一PMI反馈参数,至少一个CMR中至少两个CMR对应的第一PMI反馈参数相同。即,针对不同的CMR子集或不同CMR集合,该第一PMI反馈参数相同。V矩阵与该第一PMI反馈参数相关。
本公开实施例中,第一PMI反馈参数组中包括第二PMI反馈参数,至少一个CMR中至少两个CMR对应的第二PMI反馈参数相同。即,针对不同的CMR子集或不同CMR集合,该第二PMI反馈参数相同。V矩阵与该第二PMI反馈参数相关。
本公开实施例中,第一PMI反馈参数组中包括第三PMI反馈参数,至少一个CMR中至少两个CMR对应的第三PMI反馈参数相同。即,针对不同的CMR子集或不同CMR集合,该第三PMI反馈参数相同。V矩阵与该第三PMI反馈参数相关。
本公开实施例中,用于测量CSI的至少一个CMR中至少两个CMR对应的V矩阵之间存在有一个相位偏移。X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于以下至少一项:选择波束,确定相位偏移,指示选中的频域单元的位置,和指示非零系数位置。
其中,X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数可以包括i 2,i 2,0,i 2,1,i 2,2……中的至少一个。其中,i 2,i 2,0,i 2,1,i 2,2可以理解为是X2信息域中承载的第0个、第1个、第2个、第3个……PMI反馈参数。
本公开另一示例中,用于测量CSI的至少一个CMR中至少两个CMR对应的V矩阵 之间存在有一个相位偏移。X1信息域中承载的第一宽带PMI反馈参数中包括第二PMI反馈参数组(Codebook index i 1)。第二PMI反馈参数组中包括以下至少一项:
A:第五PMI反馈参数(i 1,1)。第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定。即,i 1,1与O1和O2相关,其中,O1为第一维度过采样数或波束数,O2为第二维度过采样数或波束数。
B:第六PMI反馈参数(i 1,2)。第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数和/或被选择的波束数确定。即,i 1,2与N2、N2和L相关,其中,N1为第一维度天线端口数,N2为第二维度天线端口数,L为被选择的波束数。
本公开实施例中第二PMI反馈参数组中包括一个第六PMI反馈参数或多个第六PMI反馈参数。
其中,一个第六PMI反馈参数基于同一TRP/RRH处于第一维度的天线端口数,处于第二维度的天线端口数,和/或被选择的波束数确定。
其中,多个第六PMI反馈参数基于多个不同TRP/RRH处于第一维度的天线端口数,所述多个不同TRP/RRH处于第二维度的天线端口数,和/或多个不同TRP/RRH被选择的波束数确定。
一示例中,当只反馈一个L值时,一方面,假设每个TRP/RRH的N1,N2,和选出来的L都相同。N1为其中一个TRP/RRH处第一维度天线端口数,N2为同一个TRP/RRH处第二维度天线端口数,L为从N1*N2中选择出来的L个。另一方面,当只反馈一个L值时,N1可以为多个TRP/RRH处所有第一维度天线端口数的和,N2可以为多个TRP/RRH处所有第二维度天线端口数的和,而L为从N1*N2中选择出来的L个。
本公开实施例中,对不同的TRP/RRH中选择了多少个,不做限制,可能是L/N个(N为TRP/RRH的个数),也可能各个TRP/RRH不等。
C:第七PMI反馈参数(i 1,3)。第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异。其中,第三PMI反馈参数主要针对RANK>1的情况,即层(layer)数大于1的情况,主要用于确定不同layer之间的天线端口。
D:第八PMI反馈参数(i 1,4)。第八PMI反馈参数指示至少一个CMR中至少两个CMR对应的V矩阵之间的相位偏移。第八PMI反馈参数指示至少一个CMR中的至少两个CMR对应的V矩阵之间的相位偏移。
其中,i 1,4用于不同的CMR子集或不同的CMR集合之间的相对相位的调整。一示例中,i 1,4包括以下参数中至少之一:i 1,4,1,i 1,4,2,i 1,4,3。其中,i 1,4,1表示层1的相位。i 1,4,2表示层2相对层1的相位偏移。i 1,4,3表示层3的相对层1的相位偏移。
E:第九PMI反馈参数(i 1,5)。第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,第二PMI反馈参数组包括第五PMI反馈参数,至少一个CMR中至少两个CMR对应的第五PMI反馈参数相同。即,针对不同的CMR子集或不同CMR集合,该第五PMI反馈参数相同。V矩阵与该第五PMI反馈参数相关。
一种实施方式中,第二PMI反馈参数组中包括第六PMI反馈参数,至少一个CMR中至少两个CMR对应的第六PMI反馈参数相同。即,针对不同的CMR子集或不同CMR集合,该第六PMI反馈参数相同。V矩阵与该第六PMI反馈参数相关。
一种实施方式中,第二PMI反馈参数组中包括第七PMI反馈参数,至少一个CMR中至少两个CMR对应的第七PMI反馈参数相同。即,针对不同的CMR子集或不同CMR集合,该第七PMI反馈参数相同。V矩阵与该第七PMI反馈参数相关。
一种实施方式中,第二PMI反馈参数组中包括第九PMI反馈参数,至少一个CMR中至少两个CMR对应的第九PMI反馈参数相同。即,针对不同的CMR子集或不同CMR集合,该第九PMI反馈参数相同。V矩阵与该第九PMI反馈参数相关。
本公开实施例中,用于测量CSI的至少一个CMR中至少两个CMR对应的V矩阵之间存在有一个相位偏移。X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于以下至少一项:选择波束,确定相位偏移,指示选中的频域单元的位置,和指示非零系数位置。
其中,X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数可以包括i 2,i 2,0,i 2,1,i 2,2……中的至少一个。其中,i 2,i 2,0,i 2,1,i 2,2可以理解为是X2信息域中承载的第0个、第1个、第2个、第3个……PMI反馈参数。
其中,X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数可以包括反馈选中的频域单元的位置,可以称为是i 1,6。其中,针对不同的CMR子集或不同CMR集合,该参数i 1,6统一反馈(即参数i 1,6相同)或独立反馈。
其中,X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数可以包括指示非零系数位置,可以称为i 1,7。其中,针对不同的CMR子集或不同CMR集合,该参数统一反馈(即该参数i 1,7相同)或独立反馈。
本公开实施例另一种实施方式中,测量CSI的至少一个CMR中至少两个CMR对应的V矩阵不同。V矩阵不同包括不同的CMR对应的V矩阵可以通过相位偏移来进行确定,或不同的CMR对应的V矩阵相互之间不能通过相位偏移等信息进行确定。PMI反馈参数承载在X1信息域或X2信息域。X1信息域用于承载第一宽带PMI反馈参数,X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,X1信息域中承载的第一宽带PMI反馈参数中包括以下A、B和C中的至少一项,并且包括的PMI反馈参数中存在至少一个PMI反馈参数中包括多个反馈值:
A:第一PMI反馈参数(i 1,1)。第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定。即,i 1,1与N1和O1相关,其中,N1为第一维度天线端口数,O1为第一维度过采样数或波束数。
本公开实施例中,第一PMI反馈参数可以是在N1*O1个采样位置中选择的一个采样位置对应的参数。
B:第二PMI反馈参数(i 1,2)。第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定。即,i 1,2与N2和O2相关,其中,N2为第二维度天线端口数,O2为第二维度过采样数或波束数。
本公开实施例中,第二PMI反馈参数可以是在N2*O2个采样位置中选择的一个采样位置对应的参数。
C:第三PMI反馈参数(i 1,3)。第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。其中,第三PMI反馈参数主要针对RANK>1的情况,即层(layer)数大于1的情况,主要用于确定不同layer之间的天线端口。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第一PMI反馈参数,不同的第一PMI反馈参数对应的CMR不同。和/或X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第二PMI反馈参数,不同的第二PMI反馈参数对应的CMR不同。和/或X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第三PMI反馈参数,不同的第三PMI反馈参数对应的CMR不同。
本公开实施例中,包括多个反馈值的PMI反馈参数中不同反馈值对应不同的CMR子集或不同CMR集合,即对应不同的CORESETPoolindex或不同TRP或不同RRH。
另一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,X1信息域中承载的第一宽带PMI反馈参数中包括以下A、B、C和E中的至少一项,并且包括的PMI反馈参数中存在至少一个PMI反馈参数中包括多个反馈值:
A:第五PMI反馈参数(i 1,1)。第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定。即,i 1,1与O1和O2相关,其中,O1为第一维度过采样数或波束数,O2为第二维度过采样数或波束数。
B:第六PMI反馈参数(i 1,2)。第六PMI反馈参数基于第一维度天线端口数,第二维 度天线端口数和/或被选择的波束数确定。即,i 1,2与N2、N2和L相关,其中,N1为第一维度天线端口数,N2为第二维度天线端口数,L为被选择的波束数。
本公开实施例中第二PMI反馈参数组中包括一个第六PMI反馈参数或多个第六PMI反馈参数。
其中,一个第六PMI反馈参数基于同一TRP/RRH处于第一维度的天线端口数,处于第二维度的天线端口数,和/或被选择的波束数确定。当只反馈一个L值时,假设每个TRP/RRH的N1,N2,和选出来的L都相同。N1为其中一个TRP/RRH处第一维度天线端口数,N2为同一个TRP/RRH处第二维度天线端口数,L为从N1*N2中选择出来的L个。
其中,多个第六PMI反馈参数基于多个不同TRP/RRH处于第一维度的天线端口数,所述多个不同TRP/RRH处于第二维度的天线端口数,和/或多个不同TRP/RRH被选择的波束数确定。当只反馈一个L值时,N1可以为多个TRP/RRH处所有第一维度天线端口数的和,N2可以为多个TRP/RRH处所有第二维度天线端口数的和,而L为从N1*N2中选择出来的L个。
本公开实施例中,对不同的TRP/RRH中选择了多少个,不做限制,可能是L/N个(N为TRP/RRH的个数),也可能各个TRP/RRH不等。
C:第七PMI反馈参数(i 1,3)。第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异。其中,第三PMI反馈参数主要针对RANK>1的情况,即层(layer)数大于1的情况,主要用于确定不同layer之间的天线端口。
E:第九PMI反馈参数(i 1,5)。第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,多个不同的第五PMI反馈参数,不同的第五PMI反馈参数对应的CMR不同。和/或多个不同的第六PMI反馈参数,不同的第六PMI反馈参数对应的CMR不同。和/或多个不同的第七PMI反馈参数,不同的第七PMI反馈参数对应的CMR不同。和/或多个不同的第九PMI反馈参数,不同的第九PMI反馈参数对应的CMR不同。
进一步的,测量CSI的至少一个CMR中至少两个CMR对应的V矩阵不同,X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于选择波束或用于确定相位偏移。
本公开实施例提供的CSI上报方法,终端基于多个CMR进行通信传输时,例如基于多个CORESETPoolIndex、多个TRP或多个RRH进行通信传输时,可以基于上述实施例涉及的CSI上报方法,实现多个CORESETPoolIndex之间PMI联合反馈、多个TRP之间PMI联合反馈或多个RRH之间PMI联合反馈。故,通过本公开提供的联合反馈PMI的方式,相对独立反馈PMI的方式能够减少信令开销,并提高基于多个CMR进行通信传输的 传输性能。
基于以上实施例,本公开实施例还提供一种应用于网络设备的CSI上报方法。
图3是根据一示例性实施例示出的一种CSI上报方法的流程图,如图3所示,CSI上报方法用于网络设备中,包括以下步骤。
在步骤S21中,获取终端上报的CSI,CSI包括基于至少一个CMR测量的测量结果,测量结果中包括至少一个CMR共用的PMI。
一种实施方式中,至少一个CMR中的每一CMR对应有CMR资源集合,且至少两个不同的CMR对应不同的CMR资源集合。
本公开实施例中涉及的CMR集合可以是网络设备配置的CMR集合,也可以是网络设备配置的CMR集合的子集。即,至少一个CMR中的每个CMR对应不同的CMR子集或不同的CMR集合。
一种实施方式中,CMR资源集合对应有资源参数,资源参数包括控制CORESETPoolIndex、TRP以及RRH中的一个或多个,不同的CMR资源集合对应的资源参数不同。
本公开实施例中,不同的CMR资源集合对应的资源参数不同。可以理解为不同的CMR对应不同的资源参数,比如,不同的CMR对应不同的TRP。进一步可以理解的是,终端可以基于不同TRP进行CSI测量,并在测量结果中包括不同TRP共用的PMI。又比如,不同的CMR对应不同的RRH。进一步可以理解的是,终端可以基于不同RRH进行CSI测量,并在测量结果中包括不同RRH共用的PMI。
一种实施方式中,PMI中包括一个或多个PMI反馈参数。一个或多个PMI反馈参数可以理解为是一套PMI反馈参数中的一个或多个PMI反馈参数。而该一套PMI反馈参数中,有些参数对于不同CMR是相同的,有些参数对于不同CMR是不同的。
一种实施方式中,用于测量CSI的至少一个CMR中至少两个CMR对应的V矩阵之间存在有一个相位偏移,PMI反馈参数承载在X1信息域和/或X2信息域;X1信息域用于承载第一宽带PMI反馈参数,X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,X1信息域中承载的第一宽带PMI反馈参数中包括第一PMI反馈参数组;第一PMI反馈参数组中包括以下至少一项:
第一PMI反馈参数,第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定。第二PMI反馈参数,第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及 第二维度波束数确定。第三PMI反馈参数,第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。第四PMI反馈参数,第四PMI反馈参数指示至少一个CMR中的至少两个CMR对应的V矩阵之间的相位偏移。
其中,第一PMI反馈参数组中包括第一PMI反馈参数,至少一个CMR中至少两个CMR对应的第一PMI反馈参数相同;和/或第一PMI反馈参数组中包括第二PMI反馈参数,至少一个CMR中至少两个CMR对应的第二PMI反馈参数相同;和/或第一PMI反馈参数组中包括第三PMI反馈参数,至少一个CMR中至少两个CMR对应的第三PMI反馈参数相同。
一种实施方式中,用于测量CSI的至少一个CMR中至少两个CMR对应的V矩阵之间存在有一个相位偏移。X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于以下至少一项:选择波束,确定相位偏移,指示选中的频域单元的位置,和指示非零系数位置。
一种实施方式中,X1信息域中承载的第一宽带PMI反馈参数中包括第二PMI反馈参数组;第二PMI反馈参数组中包括以下至少一项:
第五PMI反馈参数,第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定。第六PMI反馈参数,第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数和/或被选择的波束数确定。第七PMI反馈参数,第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异。第八PMI反馈参数,第八PMI反馈参数指示至少一个CMR中至少两个CMR对应的V矩阵之间的相位偏移。第九PMI反馈参数,第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,第二PMI反馈参数组包括第五PMI反馈参数,至少一个CMR中至少两个CMR对应的第五PMI反馈参数相同。和/或第二PMI反馈参数组中包括第六PMI反馈参数,至少一个CMR中至少两个CMR对应的第六PMI反馈参数相同。和/或第二PMI反馈参数组中包括第七PMI反馈参数,至少一个CMR中至少两个CMR对应的第七PMI反馈参数相同。和/或第二PMI反馈参数组中包括第九PMI反馈参数,至少一个CMR中至少两个CMR对应的第九PMI反馈参数相同。
一种实施方式中,第二PMI反馈参数组中包括一个第六PMI反馈参数或多个第六PMI反馈参数。
其中,一个第六PMI反馈参数基于同一TRP/RRH处于第一维度的天线端口数,处于第二维度的天线端口数,和/或被选择的波束数确定。
其中,多个第六PMI反馈参数基于多个不同TRP/RRH处于第一维度的天线端口数,多个不同TRP/RRH处于第二维度的天线端口数,和/或多个不同TRP/RRH被选择的波束数确定。
一示例中,当只反馈一个L值时,一方面,假设每个TRP/RRH的N1,N2,和选出来的L都相同。N1为其中一个TRP/RRH处第一维度天线端口数,N2为同一个TRP/RRH处第二维度天线端口数,L为从N1*N2中选择出来的L个。另一方面,当只反馈一个L值时,N1可以为多个TRP/RRH处所有第一维度天线端口数的和,N2可以为多个TRP/RRH处所有第二维度天线端口数的和,而L为从N1*N2中选择出来的L个。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,PMI反馈参数承载在X1信息域或X2信息域;X1信息域用于承载第一宽带PMI反馈参数,X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,X1信息域中承载的第一宽带PMI反馈参数中包括:
第一PMI反馈参数,第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定。或第二PMI反馈参数,第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定。或第三PMI反馈参数,第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于选择波束或用于确定相位偏移。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第一PMI反馈参数,不同的第一PMI反馈参数对应的CMR不同。或X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第二PMI反馈参数,不同的第二PMI反馈参数对应的CMR不同。或X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第三PMI反馈参数,不同的第三PMI反馈参数对应的CMR不同。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,PMI反馈参数包括以下至少一项:
第五PMI反馈参数,第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定。第六PMI反馈参数,第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数确定和/或被选择的波束数。第七PMI反馈参 数,第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异。第九PMI反馈参数,第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,PMI反馈参数包括:
多个不同的第五PMI反馈参数,不同的第五PMI反馈参数对应的CMR不同。和/或多个不同的第六PMI反馈参数,不同的第六PMI反馈参数对应的CMR不同。和/或多个不同的第七PMI反馈参数,不同的第七PMI反馈参数对应的CMR不同。和/或多个不同的第九PMI反馈参数,不同的第九PMI反馈参数对应的CMR不同。
本公开实施例中,网络设备获取终端上报并包括至少一个CMR共用的PMI的测量结果的CSI。通过本公开实现多个CMR的PMI的联合发送,减少信令开销,并提高传输性能。
需要说明的是,本公开实施例中,网络设备执行CSI上报方法过程中涉及的一些实施例中的实现方式可以参照终端执行CSI上报方法的相关描述,在此不再赘述。
可以理解的是,本公开实施例提供的CSI上报方法适用于终端与网络设备交互实现CSI上报的过程。对于终端与网络设备交互实现CSI上报过程中涉及的终端与网络设备执行的方法,可参阅上述实施例相关描述,在此不再赘述。
进一步需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种CSI上报装置。
可以理解的是,本公开实施例提供的CSI上报装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图4是根据一示例性实施例示出的一种CSI上报装置框图。参照图4,该CSI上报装置100,包括测量单元101和上报单元102。
测量单元101,被配置为基于至少一个CMR,测量CSI。CSI中包括基于至少一个CMR测量的测量结果,测量结果中包括至少一个CMR共用的PMI。上报单元102,被配置为 上报CSI。
一种实施方式中,至少一个CMR中的每一CMR对应有CMR资源集合,且至少两个不同的CMR对应不同的CMR资源集合。
一种实施方式中,CMR资源集合对应有资源参数,资源参数包括CORESETPoolIndex、TRP以及RRH中的一个或多个,不同的CMR资源集合对应的资源参数不同。
一种实施方式中,PMI中包括一个或多个PMI反馈参数。
一种实施方式中,至少一个CMR中至少两个CMR对应的V矩阵之间存在有相位偏移,PMI反馈参数承载在X1信息域和/或X2信息域。X1信息域用于承载第一宽带PMI反馈参数,X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,X1信息域中承载的第一宽带PMI反馈参数中包括第一PMI反馈参数组。第一PMI反馈参数组中包括以下至少一项:
第一PMI反馈参数,第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定。第二PMI反馈参数,第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定。第三PMI反馈参数,第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。第四PMI反馈参数,第四PMI反馈参数指示至少一个CMR中的至少两个CMR对应的V矩阵之间的相位偏移。
一种实施方式中,第一PMI反馈参数组中包括第一PMI反馈参数,至少一个CMR中至少两个CMR对应的第一PMI反馈参数相同。和/或第一PMI反馈参数组中包括第二PMI反馈参数,至少一个CMR中至少两个CMR对应的第二PMI反馈参数相同。和/或第一PMI反馈参数组中包括第三PMI反馈参数,至少一个CMR中至少两个CMR对应的第三PMI反馈参数相同。
一种实施方式中,X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于以下至少一项:选择波束,确定相位偏移,指示选中的频域单元的位置,和指示非零系数位置。
一种实施方式中,X1信息域中承载的第一宽带PMI反馈参数中包括第二PMI反馈参数组。
第二PMI反馈参数组中包括以下至少一项:
第五PMI反馈参数,第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定。第六PMI反馈参数,第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数和/或被选择的波束数确定。第七PMI反馈参 数,第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异。第八PMI反馈参数,第八PMI反馈参数指示至少一个CMR中至少两个CMR对应的V矩阵之间的相位偏移。第九PMI反馈参数,第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,第二PMI反馈参数组包括第五PMI反馈参数,至少一个CMR中至少两个CMR对应的第五PMI反馈参数相同。和/或第二PMI反馈参数组中包括第六PMI反馈参数,至少一个CMR中至少两个CMR对应的第六PMI反馈参数相同。和/或第二PMI反馈参数组中包括第七PMI反馈参数,至少一个CMR中至少两个CMR对应的第七PMI反馈参数相同。和/或第二PMI反馈参数组中包括第九PMI反馈参数,至少一个CMR中至少两个CMR对应的第九PMI反馈参数相同。
一种实施方式中,第二PMI反馈参数组中包括一个第六PMI反馈参数或多个第六PMI反馈参数。一个第六PMI反馈参数基于同一TRP/RRH处于第一维度的天线端口数,处于第二维度的天线端口数,和/或被选择的波束数确定。
多个第六PMI反馈参数基于多个不同TRP/RRH处于第一维度的天线端口数,多个不同TRP/RRH处于第二维度的天线端口数,和/或多个不同TRP/RRH被选择的波束数确定。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,PMI反馈参数承载在X1信息域或X2信息域。X1信息域用于承载第一宽带PMI反馈参数,X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,X1信息域中承载的第一宽带PMI反馈参数中包括:
第一PMI反馈参数,第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定。或第二PMI反馈参数,第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定。或第三PMI反馈参数,第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于选择波束或用于确定相位偏移。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第一PMI反馈参数,不同的第一PMI反馈参数对应的CMR不同。或X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第二PMI反馈参数,不同的第二PMI反馈参数对应的CMR不同。或X1信息域中承载的第一 宽带PMI反馈参数中包括多个不同的第三PMI反馈参数,不同的第三PMI反馈参数对应的CMR不同。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,PMI反馈参数包括以下至少一项:
第五PMI反馈参数,第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定。第六PMI反馈参数,第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数确定和/或被选择的波束数。第七PMI反馈参数,第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异。第九PMI反馈参数,第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,PMI反馈参数包括:
多个不同的第五PMI反馈参数,不同的第五PMI反馈参数对应的CMR不同。和/或多个不同的第六PMI反馈参数,不同的第六PMI反馈参数对应的CMR不同。和/或多个不同的第七PMI反馈参数,不同的第七PMI反馈参数对应的CMR不同。和/或多个不同的第九PMI反馈参数,不同的第九PMI反馈参数对应的CMR不同。
图5是根据一示例性实施例示出的一种CSI上报装置框图。参照图5,该CSI上报装置200,包括获取单元201。
获取单元201,被配置为获取终端上报的CSI,CSI包括基于至少一个CMR测量的测量结果,测量结果中包括至少一个CMR共用的预编码矩阵指示PMI。
一种实施方式中,至少一个CMR中的每一CMR对应有CMR资源集合,且至少两个不同的CMR对应不同的CMR资源集合。
一种实施方式中,CMR资源集合对应有资源参数,资源参数包括控制CORESETPoolIndex、TRP以及RRH中的一个或多个,不同的CMR资源集合对应的资源参数不同。
一种实施方式中,PMI中包括一个或多个PMI反馈参数。
一种实施方式中,至少一个CMR中至少两个CMR对应的V矩阵之间存在有相位偏移,PMI反馈参数承载在X1信息域和/或X2信息域。X1信息域用于承载第一宽带PMI反馈参数,X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,X1信息域中承载的第一宽带PMI反馈参数中包括第一PMI反馈参数组。第一PMI反馈参数组中包括以下至少一项:
第一PMI反馈参数,第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定。第二PMI反馈参数,第二PMI 反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定。第三PMI反馈参数,第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。第四PMI反馈参数,第四PMI反馈参数指示至少一个CMR中的至少两个CMR对应的V矩阵之间的相位偏移。
一种实施方式中,第一PMI反馈参数组中包括第一PMI反馈参数,至少一个CMR中至少两个CMR对应的第一PMI反馈参数相同。和/或第一PMI反馈参数组中包括第二PMI反馈参数,至少一个CMR中至少两个CMR对应的第二PMI反馈参数相同。和/或第一PMI反馈参数组中包括第三PMI反馈参数,至少一个CMR中至少两个CMR对应的第三PMI反馈参数相同。
一种实施方式中,X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于以下至少一项:选择波束,确定相位偏移,指示选中的频域单元的位置,和指示非零系数位置。
一种实施方式中,X1信息域中承载的第一宽带PMI反馈参数中包括第二PMI反馈参数组。第二PMI反馈参数组中包括以下至少一项:
第五PMI反馈参数,第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定。第六PMI反馈参数,第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数和/或被选择的波束数确定。第七PMI反馈参数,第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异。第八PMI反馈参数,第八PMI反馈参数指示至少一个CMR中至少两个CMR对应的V矩阵之间的相位偏移。第九PMI反馈参数,第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,第二PMI反馈参数组包括第五PMI反馈参数,至少一个CMR中至少两个CMR对应的第五PMI反馈参数相同。和/或第二PMI反馈参数组中包括第六PMI反馈参数,至少一个CMR中至少两个CMR对应的第六PMI反馈参数相同。和/或第二PMI反馈参数组中包括第七PMI反馈参数,至少一个CMR中至少两个CMR对应的第七PMI反馈参数相同。和/或第二PMI反馈参数组中包括第九PMI反馈参数,至少一个CMR中至少两个CMR对应的第九PMI反馈参数相同。
一种实施方式中,第二PMI反馈参数组中包括一个第六PMI反馈参数或多个第六PMI反馈参数。一个第六PMI反馈参数基于同一TRP/RRH处于第一维度的天线端口数,处于第二维度的天线端口数,和/或被选择的波束数确定。
多个第六PMI反馈参数基于多个不同TRP/RRH处于第一维度的天线端口数,多个不 同TRP/RRH处于第二维度的天线端口数,和/或多个不同TRP/RRH被选择的波束数确定。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,PMI反馈参数承载在X1信息域或X2信息域。X1信息域用于承载第一宽带PMI反馈参数,X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,X1信息域中承载的第一宽带PMI反馈参数中包括:
第一PMI反馈参数,第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定。或第二PMI反馈参数,第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定。或第三PMI反馈参数,第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于选择波束或用于确定相位偏移。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第一PMI反馈参数,不同的第一PMI反馈参数对应的CMR不同。或X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第二PMI反馈参数,不同的第二PMI反馈参数对应的CMR不同。或X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第三PMI反馈参数,不同的第三PMI反馈参数对应的CMR不同。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,PMI反馈参数包括以下至少一项:
第五PMI反馈参数,第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定。第六PMI反馈参数,第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数确定和/或被选择的波束数。第七PMI反馈参数,第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异。第九PMI反馈参数,第九PMI反馈参数用于调整宽带的相对幅度。
一种实施方式中,至少一个CMR中各CMR对应的V矩阵不同,PMI反馈参数包括:
多个不同的第五PMI反馈参数,不同的第五PMI反馈参数对应的CMR不同。和/或多个不同的第六PMI反馈参数,不同的第六PMI反馈参数对应的CMR不同。和/或多个不同的第七PMI反馈参数,不同的第七PMI反馈参数对应的CMR不同。和/或多个不同的第九PMI反馈参数,不同的第九PMI反馈参数对应的CMR不同。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图6是根据一示例性实施例示出的一种用于CSI上报的装置300的框图。其中,装置300可以被提供为上述涉及的终端。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图6,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被 配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图7是根据一示例性实施例示出的一种用于CSI上报的装置400的框图。例如,装置400可以被提供为一网络设备。参照图7,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口450被配置为将装置400连接到网络,和一个输入输出(I/O)接口458。装置400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的存储介质,例如包括指令的存储器432,上述指令可由装置400的处理组件422执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利范围来限制。

Claims (40)

  1. 一种信道状态信息上报方法,其特征在于,应用于终端,包括:
    基于至少一个信道测量资源CMR,测量信道状态信息,所述信道状态信息中包括基于所述至少一个CMR测量的测量结果,所述测量结果中包括所述至少一个CMR共用的预编码矩阵指示PMI;
    上报所述信道状态信息。
  2. 根据权利要求1所述的信道状态信息上报方法,其特征在于,所述至少一个CMR中的每一CMR对应有CMR资源集合,且至少两个不同的CMR对应不同的CMR资源集合。
  3. 根据权利要求2所述的信道状态信息上报方法,其特征在于,所述CMR资源集合对应有资源参数,所述资源参数包括控制资源集池索引、发送接收点以及射频拉远头中的一个或多个,不同的CMR资源集合对应的资源参数不同。
  4. 根据权利要求1至3中任意一项所述的信道状态信息上报方法,其特征在于,所述PMI中包括一个或多个PMI反馈参数。
  5. 根据权利要求4所述的信道状态信息上报方法,其特征在于,所述至少一个CMR中至少两个CMR对应的V矩阵之间存在有相位偏移,所述PMI反馈参数承载在X1信息域和/或X2信息域;
    所述X1信息域用于承载第一宽带PMI反馈参数,所述X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
  6. 根据权利要求5所述的信道状态信息上报方法,其特征在于,所述X1信息域中承载的第一宽带PMI反馈参数中包括第一PMI反馈参数组;
    所述第一PMI反馈参数组中包括以下至少一项:
    第一PMI反馈参数,所述第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定;
    第二PMI反馈参数,所述第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定;
    第三PMI反馈参数,所述第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异;
    第四PMI反馈参数,所述第四PMI反馈参数指示所述至少一个CMR中的至少两个CMR对应的V矩阵之间的相位偏移。
  7. 根据权利要求6所述的信道状态信息上报方法,其特征在于,所述第一PMI反馈参数组中包括第一PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第一PMI反馈参数相同;和/或
    所述第一PMI反馈参数组中包括第二PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第二PMI反馈参数相同;和/或
    所述第一PMI反馈参数组中包括第三PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第三PMI反馈参数相同。
  8. 根据权利要求5所述的信道状态信息上报方法,其特征在于,所述X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于以下至少一项:选择波束,确定相位偏移,指示选中的频域单元的位置,和指示非零系数位置。
  9. 根据权利要求5所述的信道状态信息上报方法,其特征在于,所述X1信息域中承载的第一宽带PMI反馈参数中包括第二PMI反馈参数组;
    所述第二PMI反馈参数组中包括以下至少一项:
    第五PMI反馈参数,所述第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定;
    第六PMI反馈参数,所述第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数和/或被选择的波束数确定;
    第七PMI反馈参数,所述第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异;
    第八PMI反馈参数,所述第八PMI反馈参数指示所述至少一个CMR中至少两个CMR对应的V矩阵之间的相位偏移;
    第九PMI反馈参数,所述第九PMI反馈参数用于调整宽带的相对幅度。
  10. 根据权利要求9所述的信道状态信息上报方法,其特征在于,
    所述第二PMI反馈参数组包括第五PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第五PMI反馈参数相同;和/或
    所述第二PMI反馈参数组中包括第六PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第六PMI反馈参数相同;和/或
    所述第二PMI反馈参数组中包括第七PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第七PMI反馈参数相同;和/或
    所述第二PMI反馈参数组中包括第九PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第九PMI反馈参数相同。
  11. 根据权利要求9所述的信道状态信息上报方法,其特征在于,所述第二PMI反馈参数组中包括一个第六PMI反馈参数或多个第六PMI反馈参数;
    所述一个第六PMI反馈参数基于同一发送接收点/射频拉远头处于第一维度的天线端口数,处于第二维度的天线端口数,和/或被选择的波束数确定;
    所述多个第六PMI反馈参数基于多个不同发送接收点/射频拉远头处于第一维度的天线端口数,所述多个不同发送接收点/射频拉远头处于第二维度的天线端口数,和/或多个不同发送接收点/射频拉远头被选择的波束数确定。
  12. 根据权利要求4所述的信道状态信息上报方法,其特征在于,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数承载在X1信息域或X2信息域;
    所述X1信息域用于承载第一宽带PMI反馈参数,所述X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
  13. 根据权利要求12所述的信道状态信息上报方法,其特征在于,所述X1信息域中承载的第一宽带PMI反馈参数中包括:
    第一PMI反馈参数,所述第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定;或
    第二PMI反馈参数,所述第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定;或
    第三PMI反馈参数,所述第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。
  14. 根据权利要求12所述的信道状态信息上报方法,其特征在于,所述X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于选择波束或用于确定相位偏移。
  15. 根据权利要求13所述的信道状态信息上报方法,其特征在于,
    所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第一PMI反馈参数,不同的第一PMI反馈参数对应的CMR不同;或
    所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第二PMI反馈参数,不同的第二PMI反馈参数对应的CMR不同;或
    所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第三PMI反馈参数,不同的第三PMI反馈参数对应的CMR不同。
  16. 根据权利要求4所述的信道状态信息上报方法,其特征在于,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数包括以下至少一项:
    第五PMI反馈参数,所述第五PMI反馈参数基于第一维度过采样数/第一维度波束数, 以及第二维度过采样数/第二维度波束数确定;
    第六PMI反馈参数,所述第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数确定和/或被选择的波束数;
    第七PMI反馈参数,所述第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异;
    第九PMI反馈参数,所述第九PMI反馈参数用于调整宽带的相对幅度。
  17. 根据权利要求16所述的信道状态信息上报方法,其特征在于,所述PMI反馈参数包括:
    多个不同的第五PMI反馈参数,不同的第五PMI反馈参数对应的CMR不同;和/或
    多个不同的第六PMI反馈参数,不同的第六PMI反馈参数对应的CMR不同;和/或
    多个不同的第七PMI反馈参数,不同的第七PMI反馈参数对应的CMR不同;和/或
    多个不同的第九PMI反馈参数,不同的第九PMI反馈参数对应的CMR不同。
  18. 一种信道状态信息上报方法,其特征在于,应用于网络设备,包括:
    获取终端上报的信道状态信息,所述信道状态信息包括基于至少一个信道测量资源CMR测量的测量结果,所述测量结果中包括所述至少一个CMR共用的预编码矩阵指示PMI。
  19. 根据权利要求18所述的信道状态信息上报方法,其特征在于,所述至少一个CMR中的每一CMR对应有CMR资源集合,且至少两个不同的CMR对应不同的CMR资源集合。
  20. 根据权利要求19所述的信道状态信息上报方法,其特征在于,所述CMR资源集合对应有资源参数,所述资源参数包括控制资源集池索引、发送接收点以及射频拉远头中的一个或多个,不同的CMR资源集合对应的资源参数不同。
  21. 根据权利要求18至20中任意一项所述的信道状态信息上报方法,其特征在于,所述PMI中包括一个或多个PMI反馈参数。
  22. 根据权利要求21所述的信道状态信息上报方法,其特征在于,所述至少一个CMR中至少两个CMR对应的V矩阵之间存在有相位偏移,所述PMI反馈参数承载在X1信息域和/或X2信息域;
    所述X1信息域用于承载第一宽带PMI反馈参数,所述X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
  23. 根据权利要求22所述的信道状态信息上报方法,其特征在于,所述X1信息域中 承载的第一宽带PMI反馈参数中包括第一PMI反馈参数组;
    所述第一PMI反馈参数组中包括以下至少一项:
    第一PMI反馈参数,所述第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定;
    第二PMI反馈参数,所述第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定;
    第三PMI反馈参数,所述第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异;
    第四PMI反馈参数,所述第四PMI反馈参数指示所述至少一个CMR中的至少两个CMR对应的V矩阵之间的相位偏移。
  24. 根据权利要求23所述的信道状态信息上报方法,其特征在于,所述第一PMI反馈参数组中包括第一PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第一PMI反馈参数相同;和/或
    所述第一PMI反馈参数组中包括第二PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第二PMI反馈参数相同;和/或
    所述第一PMI反馈参数组中包括第三PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第三PMI反馈参数相同。
  25. 根据权利要求22所述的信道状态信息上报方法,其特征在于,所述X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于以下至少一项:选择波束,确定相位偏移,指示选中的频域单元的位置,和指示非零系数位置。
  26. 根据权利要求22所述的信道状态信息上报方法,其特征在于,所述X1信息域中承载的第一宽带PMI反馈参数中包括第二PMI反馈参数组;
    所述第二PMI反馈参数组中包括以下至少一项:
    第五PMI反馈参数,所述第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定;
    第六PMI反馈参数,所述第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数和/或被选择的波束数确定;
    第七PMI反馈参数,所述第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异;
    第八PMI反馈参数,所述第八PMI反馈参数指示所述至少一个CMR中至少两个CMR对应的V矩阵之间的相位偏移;
    第九PMI反馈参数,所述第九PMI反馈参数用于调整宽带的相对幅度。
  27. 根据权利要求26所述的信道状态信息上报方法,其特征在于,
    所述第二PMI反馈参数组包括第五PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第五PMI反馈参数相同;和/或
    所述第二PMI反馈参数组中包括第六PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第六PMI反馈参数相同;和/或
    所述第二PMI反馈参数组中包括第七PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第七PMI反馈参数相同;和/或
    所述第二PMI反馈参数组中包括第九PMI反馈参数,所述至少一个CMR中至少两个CMR对应的第九PMI反馈参数相同。
  28. 根据权利要求27所述的信道状态信息上报方法,其特征在于,所述第二PMI反馈参数组中包括一个第六PMI反馈参数或多个第六PMI反馈参数;
    所述一个第六PMI反馈参数基于同一发送接收点/射频拉远头处于第一维度的天线端口数,处于第二维度的天线端口数,和/或被选择的波束数确定;
    所述多个第六PMI反馈参数基于多个不同发送接收点/射频拉远头处于第一维度的天线端口数,所述多个不同发送接收点/射频拉远头处于第二维度的天线端口数,和/或多个不同发送接收点/射频拉远头被选择的波束数确定。
  29. 根据权利要求21所述的信道状态信息上报方法,其特征在于,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数承载在X1信息域或X2信息域;
    所述X1信息域用于承载第一宽带PMI反馈参数,所述X2信息域用于承载第二宽带PMI反馈参数或窄带PMI反馈参数。
  30. 根据权利要求29所述的信道状态信息上报方法,其特征在于,所述X1信息域中承载的第一宽带PMI反馈参数中包括:
    第一PMI反馈参数,所述第一PMI反馈参数基于第一维度天线端口数以及第一维度过采样数,或者第一维度天线端口数以及第一维度波束数确定;或
    第二PMI反馈参数,所述第二PMI反馈参数基于第二维度天线端口数以及第二维度过采样数,或者第二维度天线端口数以及第二维度波束数确定;或
    第三PMI反馈参数,所述第三PMI反馈参数用于指示其它层与第一层的第一PMI反馈参数和/或第二PMI反馈参数的相对差异。
  31. 根据权利要求29所述的信道状态信息上报方法,其特征在于,所述X2信息域中承载的第二宽带PMI反馈参数或窄带PMI反馈参数,用于选择波束或用于确定相位偏移。
  32. 根据权利要求30所述的信道状态信息上报方法,其特征在于,
    所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第一PMI反馈参数,不同的第一PMI反馈参数对应的CMR不同;或
    所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第二PMI反馈参数,不同的第二PMI反馈参数对应的CMR不同;或
    所述X1信息域中承载的第一宽带PMI反馈参数中包括多个不同的第三PMI反馈参数,不同的第三PMI反馈参数对应的CMR不同。
  33. 根据权利要求21所述的信道状态信息上报方法,其特征在于,所述至少一个CMR中各CMR对应的V矩阵不同,所述PMI反馈参数包括以下至少一项:
    第五PMI反馈参数,所述第五PMI反馈参数基于第一维度过采样数/第一维度波束数,以及第二维度过采样数/第二维度波束数确定;
    第六PMI反馈参数,所述第六PMI反馈参数基于第一维度天线端口数,第二维度天线端口数确定和/或被选择的波束数;
    第七PMI反馈参数,所述第七PMI反馈参数用于指示其它层与第一层的第五PMI反馈参数和/或第六PMI反馈参数的相对差异;
    第九PMI反馈参数,所述第九PMI反馈参数用于调整宽带的相对幅度。
  34. 根据权利要求23所述的信道状态信息上报方法,其特征在于,所述PMI反馈参数包括:
    多个不同的第五PMI反馈参数,不同的第五PMI反馈参数对应的CMR不同;和/或
    多个不同的第六PMI反馈参数,不同的第六PMI反馈参数对应的CMR不同;和/或
    多个不同的第七PMI反馈参数,不同的第七PMI反馈参数对应的CMR不同;和/或
    多个不同的第九PMI反馈参数,不同的第九PMI反馈参数对应的CMR不同。
  35. 一种信道状态信息上报装置,其特征在于,包括:
    测量单元,被配置为基于至少一个信道测量资源CMR,测量信道状态信息,所述信道状态信息中包括基于所述至少一个CMR测量的测量结果,所述测量结果中包括所述至少一个CMR共用的预编码矩阵指示PMI;
    上报单元,被配置为上报所述信道状态信息。
  36. 一种信道状态信息上报装置,其特征在于,包括:
    获取单元,被配置为获取终端上报的信道状态信息,所述信道状态信息包括基于至少一个信道测量资源CMR测量的测量结果,所述测量结果中包括所述至少一个CMR共用的预编码矩阵指示PMI。
  37. 一种信道状态信息上报装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至17中任意一项所述的信道状态信息上报方法。
  38. 一种信道状态信息上报装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求18至34中任意一项所述的信道状态信息上报方法。
  39. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行权利要求1至17中任意一项所述的信道状态信息上报方法。
  40. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行权利要求18至34中任意一项所述的信道状态信息上报方法。
PCT/CN2021/122915 2021-10-09 2021-10-09 一种信道状态信息上报方法、装置及存储介质 WO2023056646A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2021/122915 WO2023056646A1 (zh) 2021-10-09 2021-10-09 一种信道状态信息上报方法、装置及存储介质
EP21959736.6A EP4415449A1 (en) 2021-10-09 2021-10-09 Channel state information reporting method and apparatus, and storage medium
CN202180003209.1A CN116261832A (zh) 2021-10-09 2021-10-09 一种信道状态信息上报方法、装置及存储介质
JP2024521061A JP2024535536A (ja) 2021-10-09 2021-10-09 チャネル状態情報報告方法、装置および記憶媒体
KR1020247014723A KR20240089278A (ko) 2021-10-09 2021-10-09 채널 상태 정보 보고 방법, 장치 및 저장 매체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122915 WO2023056646A1 (zh) 2021-10-09 2021-10-09 一种信道状态信息上报方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023056646A1 true WO2023056646A1 (zh) 2023-04-13

Family

ID=85803868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122915 WO2023056646A1 (zh) 2021-10-09 2021-10-09 一种信道状态信息上报方法、装置及存储介质

Country Status (5)

Country Link
EP (1) EP4415449A1 (zh)
JP (1) JP2024535536A (zh)
KR (1) KR20240089278A (zh)
CN (1) CN116261832A (zh)
WO (1) WO2023056646A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193993A1 (zh) * 2016-05-13 2017-11-16 中兴通讯股份有限公司 信道状态信息的反馈方法及装置
CN109150265A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 发送和接收参考信号的方法、网络设备和终端设备
US20190260453A1 (en) * 2016-11-03 2019-08-22 Huawei Technologies Co., Ltd. Precoding matrix indication method, apparatus, and system
WO2020156103A1 (zh) * 2019-01-30 2020-08-06 华为技术有限公司 信息反馈方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193993A1 (zh) * 2016-05-13 2017-11-16 中兴通讯股份有限公司 信道状态信息的反馈方法及装置
US20190260453A1 (en) * 2016-11-03 2019-08-22 Huawei Technologies Co., Ltd. Precoding matrix indication method, apparatus, and system
CN109150265A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 发送和接收参考信号的方法、网络设备和终端设备
WO2020156103A1 (zh) * 2019-01-30 2020-08-06 华为技术有限公司 信息反馈方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "CSI enhancements for Multi-TRP and FR1 FDD reciprocity", 3GPP DRAFT; R1-2103543, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052178256 *

Also Published As

Publication number Publication date
CN116261832A (zh) 2023-06-13
KR20240089278A (ko) 2024-06-20
JP2024535536A (ja) 2024-09-30
EP4415449A1 (en) 2024-08-14

Similar Documents

Publication Publication Date Title
WO2023070563A1 (zh) 传输配置指示状态确定方法、装置及存储介质
US20210336737A1 (en) Measurement configuration method, apparatus, devices, system, and storage medium
WO2023070562A1 (zh) 传输配置指示状态确定方法、装置及存储介质
US20240063979A1 (en) Beam indication method, beam indication apparatus and storage medium
WO2022082373A1 (zh) Pusch指示方法和装置、pusch发送方法和装置
WO2020258041A1 (zh) 数据传输方法、装置、系统及存储介质
WO2021155511A1 (zh) 一种通信方法及装置
WO2023123123A1 (zh) 一种频域资源确定方法、装置及存储介质
WO2022205229A1 (zh) 用于pusch的通信方法、装置及存储介质
WO2023056646A1 (zh) 一种信道状态信息上报方法、装置及存储介质
US20240323935A1 (en) Message configuration method, message configuration apparatus, and storage medium
WO2022233057A1 (zh) 信道状态信息测量方法、装置及存储介质
WO2022016465A1 (zh) 定位测量方法、定位测量装置及存储介质
CN111480357B (zh) 多输入多输出模式配置方法、装置及存储介质
WO2024119382A1 (zh) 信道状态信息上报方法、装置及存储介质
WO2024087118A1 (zh) 幅度系数的上报方法、装置及存储介质
WO2024082315A1 (zh) 一种信道状态信息反馈方法、装置、设备及存储介质
WO2024130747A1 (zh) 一种资源限制指示方法、装置及存储介质
US12126409B2 (en) Multiple-input multiple-output mode configuration method and apparatus, and storage medium
WO2024168634A1 (zh) 一种传输配置指示状态确定方法、装置及存储介质
WO2024168557A1 (zh) 传输配置指示状态确定方法、配置方法、装置及存储介质
WO2022236502A1 (zh) 通信方法、通信装置及存储介质
WO2024216466A1 (zh) 通信参数确定方法、装置、设备及存储介质
WO2024082312A1 (zh) 传输配置指示状态的确定方法、装置及存储介质
WO2024148638A1 (zh) 信道状态信息上报方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024521061

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024006657

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20247014723

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202447036069

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021959736

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021959736

Country of ref document: EP

Effective date: 20240510

WWE Wipo information: entry into national phase

Ref document number: 11202402370U

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 112024006657

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240404