WO2018023214A1 - 一种天线阵列的校准方法及装置 - Google Patents

一种天线阵列的校准方法及装置 Download PDF

Info

Publication number
WO2018023214A1
WO2018023214A1 PCT/CN2016/092466 CN2016092466W WO2018023214A1 WO 2018023214 A1 WO2018023214 A1 WO 2018023214A1 CN 2016092466 W CN2016092466 W CN 2016092466W WO 2018023214 A1 WO2018023214 A1 WO 2018023214A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
target
calibration
amplitude
array
Prior art date
Application number
PCT/CN2016/092466
Other languages
English (en)
French (fr)
Inventor
王小毅
杜多洛夫谢尔盖·尼古拉耶维奇
李鹏怀
肖宇翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680064075.3A priority Critical patent/CN108352908B/zh
Priority to PCT/CN2016/092466 priority patent/WO2018023214A1/zh
Priority to EP16910812.3A priority patent/EP3484070B1/en
Publication of WO2018023214A1 publication Critical patent/WO2018023214A1/zh
Priority to US16/261,056 priority patent/US10432327B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for calibrating an antenna array.
  • Massive Multiple Input Multiple Output Massive Multiple Input Multiple Output
  • beamforming are important technical means to improve system throughput.
  • the prerequisite for effective beamforming is to antenna array and transmit and receive.
  • the channel is calibrated.
  • the antenna calibration includes consistency calibration and reciprocity calibration.
  • the goal of the consistency calibration is that the amplitude and phase characteristics of all the receiving channels are the same and the amplitude and phase characteristics of all the transmitting channels are the same; the goal of the reciprocity calibration is the same transceiver channel.
  • the amplitude and phase characteristics are the same.
  • the traditional implementation process is generally: the transmitting side antenna sequentially broadcasts the calibration signal in sequence, and receives the calibration signal sent by other antennas; initializes the calibration coefficient; the calibration coefficients of all the antennas are iterated sequentially Update; determine whether the error of the adjacent two rounds of calibration coefficients meets the preset threshold, and if so, generate a calibration matrix and the calibration ends.
  • the above conventional air-to-mouth coupling calibration method can only calibrate the reciprocity of the antenna array and the RF channel, and cannot calibrate the consistency of the antenna array, only the reciprocity calibration and ignore the consistency calibration will be the broadcast beam.
  • the shaping has a large impact and at the same time brings a certain loss to the transmission power of the signal. Therefore, how to use the antenna air port coupling characteristics to achieve the antenna consistency calibration is a key problem that needs to be solved.
  • the embodiment of the invention discloses a method and a device for calibrating an antenna array, which can realize the consistency calibration of the antenna array by using the coupling characteristics of the antenna air interface.
  • a first aspect of the embodiments of the present invention discloses a method for calibrating an antenna array.
  • the antenna array is composed of a first target antenna and a second target antenna, and a first antenna dummy element and a first antenna are added at one end of the antenna array.
  • a second antenna dummy element, and a third antenna dummy element and a fourth antenna dummy element are added to the other end of the antenna array, wherein the first antenna dummy element and the fourth antenna dummy element are used for receiving a calibration signal,
  • the second antenna dummy and the third antenna dummy are used to transmit a calibration signal, and the amplitude response of the first antenna dummy is the same as the amplitude response of the fourth antenna dummy, the second The amplitude response of the antenna dummy is the same as the amplitude response of the third antenna dummy.
  • the difference between the coupling coefficients of the adjacent antennas in the antenna array is less than a preset value, and the method includes:
  • the second target antenna receives the calibration signal, according to the amplitude and phase response of the corresponding transmission channel of each antenna in the first target antenna and the amplitude of the third antenna dummy a difference value of the phase response, respectively determining a calibration compensation value of the corresponding transmission channel of each antenna in the first target antenna, and performing calibration processing on the corresponding transmission channel of each antenna in the first target antenna, thereby making the first
  • the amplitude response of the corresponding transmission channel of each antenna in a target antenna is consistent;
  • the second target antenna transmits a calibration signal
  • the first target antenna receives the calibration signal, according to the amplitude and phase response of the corresponding transmission channel of each antenna in the second target antenna and the amplitude of the second antenna dummy a difference value of the phase response, respectively determining a calibration compensation value of the corresponding transmission channel of each antenna in the second target antenna, and performing calibration processing on the corresponding transmission channel of each antenna in the second target antenna, so that the first The amplitude response of the corresponding transmission channel of each antenna in the two target antennas is consistent;
  • the amplitude response of the first antenna dummy is the same as the amplitude response of the fourth antenna dummy
  • the amplitude and phase response of the receiving channel corresponding to each antenna in the first target antenna is also consistent with the amplitude and phase response of the receiving channel corresponding to each antenna in the second target antenna, that is, the amplitude and phase responses of the receiving channels corresponding to the antennas included in the antenna array are both Consistent to achieve calibration of the receiving channels of each antenna.
  • the amplitude response of the second antenna dummy is the same as the amplitude response of the third antenna dummy, so that the amplitude response of the corresponding transmission channel of each antenna in the first target antenna corresponds to each antenna in the second target antenna.
  • the amplitude and phase responses of the transmitting channels are also the same, that is, the amplitude and phase responses of the corresponding transmitting channels of the antennas included in the antenna array are consistent to achieve calibration of the transmitting channels of the respective antennas. Based on this, a consistent calibration of the antenna array can be achieved.
  • the calibration signal sent by the antenna in the antenna array is an orthogonal frequency division multiplexing OFDM signal
  • the subcarriers corresponding to the antennas in the antenna array are frequency-divided in such a manner that the transmission comb Comb is N, where N is greater than or equal to the number of antennas included in the antenna array.
  • the first target antenna is the antenna array.
  • the second target antenna is an antenna numbered as an even number in the antenna array.
  • the first target antenna is the antenna array.
  • the second target antenna is an antenna numbered as an odd number in the antenna array.
  • a second aspect of the embodiments of the present invention discloses a method for calibrating an antenna array, where the antenna array is composed of a first target antenna and a second target antenna, and the first antenna and the second target antenna in the first target antenna Adding a receiving coupling device between the second antennas, and adding a transmitting coupling device between the third antenna of the first target antenna and the fourth antenna of the second target antenna, the receiving coupling device For coupling and receiving a calibration signal, the transmitting coupling device is configured to transmit a calibration signal and coupled out, and a difference value of a coupling coefficient between adjacent antennas in the antenna array is less than a preset value, and the method includes:
  • the transmitting channel and the transmitting channel corresponding to the second antenna are subjected to a calibration process, so that the amplitude response of the corresponding transmitting channel of the first antenna is consistent with the amplitude response of the corresponding transmitting channel of the second antenna;
  • the second target antenna receives the calibration signal, determining the first according to the difference value of the amplitude and phase responses of the transmission channels corresponding to the antennas in the first target antenna, respectively. a calibration compensation value of the corresponding transmission channel of each antenna in the target antenna, and performing calibration processing on the corresponding transmission channel of each antenna in the first target antenna, so that the amplitude of the corresponding transmission channel of each antenna in the first target antenna Consistent in response; and,
  • the receiving channels corresponding to the antennas are subjected to calibration processing, so that the amplitude response of the receiving channels corresponding to the antennas in the second target antenna is consistent;
  • the second target antenna transmits a calibration signal
  • the first target antenna receives the calibration signal, determining the second according to the difference value of the amplitude response of the corresponding transmission channel of each antenna in the second target antenna.
  • a calibration compensation value of the corresponding transmission channel of each antenna in the target antenna and performing calibration processing on the corresponding transmission channel of each antenna in the second target antenna, so that the amplitude of the corresponding transmission channel of each antenna in the second target antenna Consistent in response;
  • the amplitude and phase response of the transmission channel corresponding to the first antenna is consistent with the amplitude response of the corresponding transmission channel of the second antenna, so that the amplitude and phase response of the corresponding transmission channel of each antenna in the first target antenna is different from that in the second target antenna.
  • the amplitude and phase responses of the corresponding transmission channels of the antenna are also the same, that is, the amplitude and phase responses of the corresponding transmission channels of the antennas included in the antenna array are the same, so as to achieve calibration of the transmission channels of the respective antennas.
  • the amplitude response of the receiving channel corresponding to the third antenna is consistent with the amplitude response of the receiving channel corresponding to the fourth antenna, so that the amplitude response of the receiving channel corresponding to each antenna in the first target antenna is different from that in the second target antenna.
  • the amplitude and phase responses of the receiving channels corresponding to the antennas are also the same, that is, the amplitude and phase responses of the receiving channels corresponding to the antennas included in the antenna array are the same, so as to achieve calibration of the receiving channels of the antennas. Based on this, a consistent calibration of the antenna array can be achieved.
  • the calibration signal transmitted by the antenna in the antenna array is an orthogonal frequency division multiplexing OFDM signal
  • the subcarriers corresponding to the antennas in the antenna array are frequency-divided in such a manner that the transmission comb Comb is M, where M is greater than or equal to the number of antennas included in the antenna array.
  • the first target antenna is the antenna array.
  • the second target antenna is an antenna numbered as an even number in the antenna array.
  • the first target antenna is the antenna array.
  • the second target antenna is an antenna numbered as an odd number in the antenna array.
  • a third aspect of the embodiments of the present invention discloses a calibration apparatus for an antenna array, including: a processor, a memory, an antenna array, a first antenna dummy, a second antenna dummy, a third antenna dummy, and a fourth antenna dummy.
  • the antenna array is composed of a first target antenna and a second target antenna
  • the first antenna dummy and the fourth antenna dummy are used to receive a calibration signal
  • the third antenna dummy is used to transmit a calibration signal
  • the amplitude response of the first antenna dummy is the same as the amplitude response of the fourth antenna dummy
  • the amplitude response of the second antenna dummy is The amplitude of the third antenna dummy
  • the response is the same
  • the difference value of the coupling coefficient between adjacent antennas in the antenna array is smaller than a preset value
  • the memory is used to store programs and data
  • the processor is used to invoke the program stored in the memory, and the following steps are performed:
  • the second target antenna receives the calibration signal, according to the amplitude and phase response of the corresponding transmission channel of each antenna in the first target antenna and the amplitude of the third antenna dummy a difference value of the phase response, respectively determining a calibration compensation value of the corresponding transmission channel of each antenna in the first target antenna, and performing calibration processing on the corresponding transmission channel of each antenna in the first target antenna;
  • the second target antenna transmits a calibration signal
  • the first target antenna receives the calibration signal, according to the amplitude and phase response of the corresponding transmission channel of each antenna in the second target antenna and the amplitude of the second antenna dummy a difference value of the phase response, respectively determining a calibration compensation value of the corresponding transmission channel of each antenna in the second target antenna, and performing calibration processing on the corresponding transmission channel of each antenna in the second target antenna;
  • the compensation value is calibrated, and the receiving channel corresponding to each antenna in the first target antenna is calibrated.
  • the calibration signal transmitted by the antenna in the antenna array is an orthogonal frequency division multiplexing OFDM signal
  • the subcarriers corresponding to the antennas in the antenna array are frequency-divided in such a manner that the transmission comb Comb is N, where N is greater than or equal to the number of antennas included in the antenna array.
  • the first target antenna is the antenna array.
  • the second target antenna is an antenna numbered as an even number in the antenna array.
  • the first target antenna is the antenna array.
  • the second target antenna is an antenna numbered as an odd number in the antenna array.
  • a fourth aspect of the embodiments of the present invention discloses a calibration apparatus for an antenna array, including: a processor, a memory, an antenna array, a receiving coupling device, and a transmitting coupling device; wherein the antenna array is configured by a first target antenna and a second target An antenna component, wherein the receiving coupling device is respectively connected to a first antenna of the first target antenna and a second antenna of the second target antenna for coupling and receiving a calibration signal, where the transmitting coupling device is respectively connected a third antenna of the first target antenna and a fourth antenna of the second target antenna are configured to transmit a calibration signal and are coupled out, and a difference value of a coupling coefficient between adjacent antennas in the antenna array is smaller than a preset a value, the memory is used to store programs and data, and the processor is configured to invoke the program stored in the memory, and perform the following steps:
  • the first target antenna transmits a calibration signal and the second target antenna receives a calibration signal
  • the second target antenna transmits a calibration signal
  • the first target antenna receives the calibration signal, determining the second according to the difference value of the amplitude response of the corresponding transmission channel of each antenna in the second target antenna.
  • a calibration compensation value of a transmission channel corresponding to each antenna in the target antenna and performing calibration processing on a transmission channel corresponding to each antenna in the second target antenna;
  • the receiving channels corresponding to the respective antennas are subjected to calibration processing.
  • the calibration signal sent by the antenna in the antenna array is an orthogonal frequency division multiplexing OFDM signal
  • the subcarriers corresponding to the antennas in the antenna array are frequency-divided in such a manner that the transmission comb Comb is M, where M is greater than or equal to the number of antennas included in the antenna array.
  • the first target antenna is the antenna array.
  • the second target antenna is an antenna numbered as an even number in the antenna array.
  • the first target antenna is the antenna array.
  • the second target antenna is an antenna numbered as an odd number in the antenna array.
  • a fifth aspect of the embodiments of the present invention discloses a calibration apparatus for an antenna array.
  • the antenna array is composed of a first target antenna and a second target antenna, and the first antenna dummy and the fourth antenna dummy are used for receiving calibration.
  • a signal, the second antenna dummy and the third antenna dummy are used to transmit a calibration signal
  • the amplitude response of the first antenna dummy is the same as the amplitude response of the fourth antenna dummy
  • Second antenna The amplitude response of the dummy element is the same as the amplitude response of the third antenna dummy
  • the difference value of the coupling coefficient between adjacent antennas in the antenna array is less than a preset value
  • the apparatus includes:
  • a first calibration unit configured to: when the first target antenna transmits a calibration signal, and when the second target antenna receives the calibration signal, according to an amplitude and phase response of a corresponding transmit channel of each antenna in the first target antenna, and The difference value of the amplitude response of the third antenna dummy element respectively determines a calibration compensation value of the corresponding transmission channel of each antenna in the first target antenna, and calibrates the corresponding transmission channel of each antenna in the first target antenna Processing, so that the amplitude response of the corresponding transmission channel of each antenna in the first target antenna is consistent;
  • a second calibration unit configured to determine, according to a magnitude response of a receiving channel corresponding to each antenna in the second target antenna and a difference value of a phase response of the fourth antenna dummy, respectively, in the second target antenna a calibration compensation value of the receiving channel corresponding to each antenna, and performing calibration processing on the receiving channel corresponding to each antenna in the second target antenna, so that the amplitude response of the receiving channel corresponding to each antenna in the second target antenna is consistent ;
  • a third calibration unit configured to: when the second target antenna transmits a calibration signal, when the first target antenna receives the calibration signal, according to a phase response of the corresponding transmit channel of each antenna in the second target antenna, and a difference value of the amplitude and phase responses of the second antenna dummy, respectively determining a calibration compensation value of the corresponding transmission channel of each antenna in the second target antenna, and calibrating the corresponding transmission channel of each antenna in the second target antenna Processing, so that the amplitude response of the corresponding transmission channel of each antenna in the second target antenna is consistent;
  • a fourth calibration unit configured to determine, according to the amplitude and phase response of the receiving channel corresponding to each antenna in the first target antenna and the difference value of the amplitude and phase responses of the first antenna dummy, respectively, in the first target antenna a calibration compensation value of the receiving channel corresponding to each antenna, and performing calibration processing on the receiving channels corresponding to the antennas in the first target antenna, so that the amplitude response of the receiving channel corresponding to each antenna in the first target antenna is consistent .
  • the calibration signal that is sent by the antenna in the antenna array is an orthogonal frequency division multiplexing OFDM signal
  • the subcarriers corresponding to the antennas in the antenna array are frequency-divided in such a manner that the transmission comb Comb is N, where N is greater than or equal to the number of antennas included in the antenna array.
  • the first target antenna is an antenna numbered in the antenna array
  • the second target antenna is an even number in the antenna array. antenna.
  • the first target antenna is the antenna array.
  • the second target antenna is an antenna numbered as an odd number in the antenna array.
  • a sixth aspect of the embodiments of the present invention discloses a calibration apparatus for an antenna array, where the antenna array is composed of a first target antenna and a second target antenna, and the first antenna and the second target antenna in the first target antenna Adding a receiving coupling device between the second antennas, and adding a transmitting coupling device between the third antenna of the first target antenna and the fourth antenna of the second target antenna, the receiving coupling device For coupling and receiving a calibration signal, the transmitting coupling device is configured to transmit a calibration signal and coupled out, and a difference value of a coupling coefficient between adjacent antennas in the antenna array is less than a preset value, and the device includes:
  • a first control unit configured to control the first antenna and the second antenna to respectively transmit a calibration signal, and receive, by using the receiving coupling device, a calibration signal
  • a first calibration unit configured to determine, according to the calibration signal received by the receiving coupling device, the calibration signal transmitted by the first antenna, and the calibration signal transmitted by the second antenna, respectively, a corresponding transmitting channel of the first antenna a calibration compensation value and a calibration compensation value of the transmission channel corresponding to the second antenna, and respectively calibrating the transmission channel corresponding to the first antenna and the transmission channel corresponding to the second antenna, so that the The amplitude response of the transmission channel corresponding to one antenna is consistent with the amplitude response of the corresponding transmission channel of the second antenna;
  • a second control unit configured to transmit a calibration signal by using the transmitting coupling device, and control the third antenna and the fourth antenna to respectively receive a calibration signal
  • a second calibration unit configured to determine, according to the calibration signal transmitted by the transmitting coupling device, the calibration signal received by the third antenna, and the calibration signal received by the fourth antenna, respectively, the receiving of the third antenna a calibration compensation value of the channel and a calibration compensation value of the receiving channel corresponding to the fourth antenna, and respectively performing calibration processing on the receiving channel corresponding to the third antenna and the receiving channel corresponding to the fourth antenna, so that the Amplitude and phase response of the receiving channel corresponding to the third antenna and the fourth day The amplitude response of the receiving channel corresponding to the line is consistent;
  • a third calibration unit configured to: when the first target antenna transmits a calibration signal, and when the second target antenna receives the calibration signal, according to a difference value of a phase response of a corresponding transmit channel of each antenna in the first target antenna Determining, respectively, a calibration compensation value of a transmission channel corresponding to each antenna in the first target antenna, and performing a calibration process on a transmission channel corresponding to each antenna in the first target antenna; and, according to the second target antenna And determining a calibration compensation value of the receiving channel corresponding to each antenna in the second target antenna, and determining a receiving channel corresponding to each antenna in the second target antenna, respectively. Calibration process
  • a fourth calibration unit configured to: when the second target antenna transmits a calibration signal, when the first target antenna receives the calibration signal, according to a difference value of a phase response of a corresponding transmission channel of each antenna in the second target antenna And respectively determining a calibration compensation value of the corresponding transmission channel of each antenna in the second target antenna, and performing calibration processing on the corresponding transmission channel of each antenna in the second target antenna; and, according to the first target antenna And determining a calibration compensation value of the receiving channel corresponding to each antenna in the first target antenna, and determining a receiving channel corresponding to each antenna in the first target antenna, respectively. Calibration process.
  • the calibration signal that is sent by the antenna in the antenna array is an orthogonal frequency division multiplexing OFDM signal
  • the subcarriers corresponding to the antennas in the antenna array are frequency-divided in such a manner that the transmission comb Comb is M, where M is greater than or equal to the number of antennas included in the antenna array.
  • the first target antenna is the antenna array.
  • the second target antenna is an antenna numbered as an even number in the antenna array.
  • the first target antenna is the antenna array.
  • the second target antenna is an antenna numbered as an odd number in the antenna array.
  • the antenna array design process needs to ensure that the coupling coefficients between the antenna arrays are similar. By adding antenna dummy elements in the antenna array, the coupling between adjacent antennas in the antenna array can be further ensured. The combination of the coefficients is uniform, thereby enabling consistency calibration of the antenna array utilizing antenna air port coupling characteristics.
  • FIG. 1 is a schematic flow chart of a method for calibrating an antenna array according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a working principle of a base station device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an antenna array according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another antenna array according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a process of signal transmission between antennas according to an embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of another method for calibrating an antenna array according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of still another antenna array according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a calibration apparatus for an antenna array according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another calibration apparatus for an antenna array according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another calibration apparatus for an antenna array according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of still another calibration apparatus for an antenna array according to an embodiment of the present invention.
  • the embodiment of the invention discloses a method and a device for calibrating an antenna array, which can realize the consistency calibration of the antenna array by using the coupling characteristics of the antenna air interface. The details are described below separately.
  • FIG. 1 is a schematic flow chart of a method for calibrating an antenna array according to an embodiment of the present invention.
  • the calibration method of the antenna array can be applied to a Massive MIMO wireless communication system or a radar communication system to achieve consistency calibration of the antenna array.
  • the antenna array can be made by the first a target antenna and a second target antenna are configured, a first antenna dummy element and a second antenna dummy element are added at one end of the antenna array, and a third antenna dummy element and a fourth antenna dummy element are added to the other end of the antenna array; the first antenna The dummy element and the fourth antenna dummy may be used to receive the calibration signal, and the second antenna dummy and the third antenna dummy may be used to transmit the calibration signal, the amplitude response of the first antenna dummy and the amplitude of the fourth antenna dummy The phase response is the same, the amplitude response of the second antenna dummy is the same as the amplitude response of the third antenna dummy, and the difference of the coupling coefficient between adjacent antennas in the antenna array is less than a preset value.
  • the calibration method of the antenna array may include the following steps:
  • the first target antenna of the antenna array transmits the calibration signal
  • the second target antenna of the antenna array receives the calibration signal, according to the amplitude and phase response of the corresponding transmission channel of each antenna in the first target antenna and the amplitude of the third antenna dummy
  • the difference value of the phase response respectively determines the calibration compensation value of the corresponding transmission channel of each antenna in the first target antenna, and performs calibration processing on the corresponding transmission channel of each antenna in the first target antenna.
  • the calibration apparatus of the antenna array may first control the corresponding transmission channel of each antenna in the first target antenna of the antenna array to be turned on, and transmit a calibration signal, and control corresponding reception of each antenna in the second target antenna of the antenna array.
  • the channel is turned on and receives the calibration signal; and the first phase can be calculated according to the amplitude and phase response of the corresponding transmission channel of each antenna in the first target antenna and the difference of the amplitude response of the third antenna dummy element or the second antenna dummy element
  • the calibration compensation value of the corresponding transmission channel of each antenna in the target antenna and using the calibration compensation values of the corresponding transmission channels of the antennas in the first target antenna to respectively calibrate the corresponding transmission channels, so that the first target antenna
  • the amplitude response of the corresponding transmission channel of each antenna is the same.
  • the amplitude and phase response involved in the embodiments of the present invention can also be regarded as the amplitude and phase gain.
  • an antenna dummy element is separately added to the antenna array as a reference channel, wherein the first antenna dummy element can be connected to the fourth antenna dummy element, and the second antenna dummy element can be connected to the third antenna dummy element.
  • the hardware design can ensure that the amplitude and phase response of the connected antenna dummy are consistent, that is, the amplitude response of the first antenna dummy is consistent with the amplitude response of the fourth antenna dummy, and the amplitude response of the second antenna dummy is the same.
  • the three-antenna dummy has the same amplitude and phase response.
  • the difference value of the coupling coefficient between adjacent antennas in the antenna array is smaller than a preset value, and the preset value is small, and may be approximately 0, so that the coupling coefficients between adjacent antennas are approximately the same.
  • the calibration device of the antenna array may be a base station device.
  • FIG. 2 is a schematic diagram of a working principle of a base station device according to an embodiment of the present invention.
  • the base station device may include at least a Baseband Unit (BBU) and a Radio Remote Unit (RRU), wherein the baseband unit transmits the baseband signal through the downlink radio frequency channel through the antenna.
  • the air interface signal can be received through the antenna and transmitted to the baseband unit via the uplink radio frequency channel for signal processing.
  • the downlink radio channel can be regarded as the corresponding transmission channel of the antenna
  • the uplink radio channel can be regarded as the receiving channel corresponding to the antenna.
  • Each antenna may correspond to a transmitting channel and a receiving channel. When a signal needs to be transmitted, the corresponding transmitting channel is turned on; when a signal needs to be received, the corresponding receiving channel is turned on.
  • the amplitude and phase response of the corresponding transmission channel of each antenna in the first target antenna and the difference in amplitude and phase response of the third antenna dummy element may be the amplitude and phase of the transmission channel between adjacent antennas in the first target antenna.
  • the calibration compensation value of the corresponding transmission channel of each antenna in the first target antenna may be obtained according to the foregoing ratio.
  • the amplitude response of the receiving channel corresponding to each antenna in the second target antenna and the fourth antenna dummy or the first may be The difference value of the amplitude and phase response of the antenna dummy element is used to calculate the calibration compensation value of the receiving channel corresponding to each antenna in the second target antenna; and the calibration compensation values of the receiving channels corresponding to the antennas in the obtained second target antenna are respectively used.
  • the respective receiving channels are calibrated so that the amplitude response of the receiving channels corresponding to the antennas in the second target antenna is consistent.
  • the amplitude and phase response of the receiving channel corresponding to each antenna in the second target antenna and the difference in amplitude and phase response of the fourth antenna dummy may be the amplitude and phase of the receiving channel between adjacent antennas in the second target antenna.
  • the calibration compensation value of the receiving channel corresponding to each antenna in the second target antenna may be obtained according to the foregoing ratio.
  • step 101 may be performed before the step 102, or may be performed after the step 102, and may be performed in synchronization with the step 102, which is not limited by the embodiment of the present invention.
  • the second target antenna transmits the calibration signal
  • the first target antenna receives the calibration signal, according to the amplitude and phase response of the corresponding transmission channel of each antenna in the second target antenna and the difference value of the amplitude response of the second antenna dummy element, And respectively determining calibration compensation values of the corresponding transmission channels of the antennas in the second target antenna, and performing calibration processing on the corresponding transmission channels of the antennas in the second target antenna.
  • the calibration apparatus of the antenna array may control the corresponding transmission channel of each antenna in the second target antenna of the antenna array to be turned on, and transmit a calibration signal, and control corresponding to each antenna in the first target antenna of the antenna array.
  • the receive channel is turned on and receives a calibration signal.
  • the corresponding transmissions of the antennas in the second target antenna may be respectively calculated according to the amplitude and phase responses of the corresponding transmit channels of the antennas in the second target antenna and the difference values of the amplitude response of the second antenna dummy or the third antenna dummy.
  • the calibration compensation value of the channel is used to calibrate the corresponding transmission channel by using the calibration compensation values of the corresponding transmission channels of the antennas in the second target antenna, so that the corresponding transmission channels of the antennas in the second target antenna are The amplitude response is consistent.
  • the amplitude phase response of the corresponding transmission channel of each antenna in the second target antenna and the difference in amplitude and phase response of the second antenna dummy element may be the amplitude phase of the transmission channel between adjacent antennas in the second target antenna.
  • the calibration compensation value of the corresponding transmission channel of each antenna in the second target antenna may be obtained according to the foregoing ratio.
  • the amplitude and phase responses of the corresponding transmission channels of the antennas in the first target antenna are consistent.
  • the amplitude response of the corresponding transmission channels of the antennas in the second target antenna can be made. Consistently, and because the amplitude and phase response of the second antenna dummy is the same as the amplitude response of the third antenna, the amplitude and phase response of the corresponding transmission channel of each antenna in the first target antenna and the antennas in the second target antenna can be obtained.
  • the amplitude and phase responses of the corresponding transmitting channels are also the same, that is, the amplitude and phase responses of the corresponding transmitting channels of the antennas included in the antenna array are the same, so as to achieve calibration of the transmitting channels of the respective antennas.
  • the first target antenna when the second target antenna transmits the calibration signal, receives the calibration signal, and may according to the amplitude and phase response of the receiving channel corresponding to each antenna in the first target antenna, and the first antenna dummy or the fourth antenna.
  • the difference value of the amplitude and phase response of the antenna dummy element is used to calculate the calibration compensation value of the receiving channel corresponding to each antenna in the first target antenna; and the calibration compensation values of the receiving channels corresponding to the antennas in the obtained first target antenna are respectively used.
  • the respective receiving channels are calibrated so that the amplitude response of the receiving channels corresponding to the antennas in the first target antenna is consistent.
  • the amplitude and phase response of the receiving channel corresponding to each antenna in the first target antenna and the difference in amplitude and phase response of the first antenna dummy may be the amplitude and phase of the receiving channel between adjacent antennas in the first target antenna.
  • the calibration compensation value of the receiving channel corresponding to each antenna in the first target antenna may be obtained according to the foregoing ratio.
  • step 103 may be performed before the step 104, or may be performed after the step 104, and may be performed in synchronization with the step 104, which is not limited by the embodiment of the present invention.
  • the amplitude and phase responses of the receiving channels corresponding to the antennas in the second target antenna may be consistent.
  • the amplitude and phase response of the receiving channels corresponding to the antennas in the first target antenna may be made. Consistently, and because the amplitude and phase response of the first antenna dummy is the same as the amplitude response of the fourth antenna, the amplitude and phase response of the receiving channel corresponding to each antenna in the first target antenna and the antennas in the second target antenna can be obtained.
  • the amplitude and phase responses of the corresponding receiving channels are also the same, that is, the amplitude and phase responses of the receiving channels corresponding to the antennas included in the antenna array are the same, so as to achieve calibration of the receiving channels of the antennas.
  • the first target antenna may be controlled to receive the calibration signal
  • the second target antenna may receive the calibration signal
  • the second target antenna may be used to transmit the calibration signal
  • the first target antenna receives the calibration signal
  • the calibration signal transmitted by the antenna in the antenna array may be an OFDM (Orthogonal Frequency Division Multiplexing) signal, and the corresponding subcarriers of each antenna in the antenna array are used as a transmission comb.
  • the frequency at which Comb is N is frequency division, wherein N may be greater than or equal to the number of antennas included in the antenna array.
  • N is greater than or equal to the number of antennas included in the antenna array, and interference between the antennas in the antenna array can be avoided.
  • N can be the number of antennas included in the antenna array, so that waste of resources can be avoided.
  • a total of 32 digital channels 1 channel occupies subcarriers such as 1, 33, 65, etc., 2 channels occupy 2, 34, 66, etc. subcarriers, ..., 32 channels occupy 32, 64, 96, etc. Subcarriers so that they do not interfere with each other.
  • the first target antenna may be an antenna numbered as an odd number in the antenna array
  • the second target antenna may be an antenna numbered in the antenna array
  • FIG. 3 is a schematic structural diagram of an antenna array according to an embodiment of the present invention.
  • the antenna array is composed of 32 antennas (such as antenna 1, antenna 2, ..., antenna 32), and two antenna dummy elements are respectively added at two ends of the antenna array, as shown in the figure.
  • Antenna dummy 1 (ie, first antenna dummy), antenna dummy 2 (ie, second antenna dummy), antenna dummy 3 (ie, third antenna dummy), and antenna dummy 4 (ie, fourth antenna dummy)
  • the antenna dummy 1 is connected to the antenna dummy 4 for receiving the calibration signal
  • the antenna dummy 2 is connected to the antenna dummy 3 for transmitting the calibration signal.
  • the amplitude response of the amplitude, Gtx0 is the amplitude response of the transmitting channel of the antenna dummy 2
  • Gtx33 is the amplitude response of the transmitting channel of the antenna dummy 3.
  • the first target antenna is an antenna numbered as an odd number, that is, the antenna 1, the antenna 3, the antenna 29, the antenna 31, and the second target antenna is an antenna numbered even, that is, the antenna 2, the antenna 4, ..., the antenna 30 , antenna 32.
  • the first target antenna, the antenna dummy element 2, and the antenna dummy element 3 are controlled to transmit a calibration signal
  • the calibration compensation values of the obtained odd-numbered antenna transmission channels are respectively compensated for the respective transmission channels, so that the amplitude and phase responses of the odd-numbered transmission channels are consistent.
  • n is 2, 4, 6, ..., 32
  • the even antenna itself receives the ratio of the amplitude response of the channel corresponding to the channel. After the obtained calibration compensation values of the even antenna receiving channels are respectively compensated for the respective receiving channels, the amplitude and phase responses of the receiving channels of the even antennas are consistent.
  • FIG. 4 is a schematic structural diagram of another antenna array according to an embodiment of the present invention.
  • the second target antenna, the antenna dummy 2, and the antenna dummy 3 are controlled to transmit a calibration signal
  • the first target antenna, the antenna dummy 1, and the antenna dummy 4 receive a calibration signal, which is calculated by a preset algorithm.
  • the calibration compensation values of the even-numbered antenna transmission channels are respectively compensated for the respective transmission channels, so that the amplitude-phase responses of the transmission channels of the even-numbered antennas are consistent.
  • the amplitude and phase response of the odd antenna transmission channel can be made consistent with the amplitude and phase response of the even antenna transmission channel, and the amplitude response and even number of the odd antenna receiving channel can be made.
  • the amplitude and phase response of the antenna receiving channel are also the same, that is, the amplitude and phase response of all the transmitting channels in the antenna array are consistent and the amplitude and phase responses of all the receiving channels are consistent. Thereby the consistency calibration of the antenna is achieved.
  • FIG. 5 is a schematic diagram of a process of signal transmission between antennas according to an embodiment of the present invention. As shown in FIG.
  • antenna 1 and antenna 3 transmit a calibration signal
  • antenna 2 and antenna 4 receive a calibration signal
  • the calibration signal transmitted by antenna 1 is Stx1
  • the calibration signal transmitted by antenna 3 is Stx3, and antenna 2 receives antenna 1
  • the calibration signal is Srx21
  • the calibration signal received by the antenna 3 is Srx23
  • H 21 Can be approximately equal to H 23 .
  • the calibration compensation value of the transmit channel is (Srx23/Stx3)/(Srx21/Stx1). According to the above calculation method, the calibration compensation values of the respective antennas can be obtained in sequence.
  • the first target antenna may be an even numbered antenna in the antenna array
  • the second target antenna may be an odd numbered antenna in the antenna array.
  • the method described in FIG. 1 is implemented, and antenna dummy elements are respectively added at two ends of the antenna array to ensure the characteristics of the coupling coefficients of adjacent antennas, thereby avoiding the inconsistent coupling characteristics of adjacent antennas of the edge array.
  • Calibration error in addition, the connected antenna dummy can ensure the consistency of the amplitude and phase response through hardware processing, and it provides the possibility of aligning the amplitude and phase responses of the odd and even channels, thus achieving the consistency calibration of the antenna array, and ensuring The reciprocity calibration is also satisfied on the basis of the consistency calibration.
  • FIG. 6 is a schematic flowchart diagram of another method for calibrating an antenna array according to an embodiment of the present invention.
  • the calibration method of the antenna array can be applied to a Massive MIMO wireless communication system or a radar communication system to achieve consistency calibration of the antenna array.
  • the antenna array may be composed of a first target antenna and a second target antenna, and a receiving coupling device is added between the first antenna of the first target antenna and the second antenna of the second target antenna, in the first target antenna A transmitting coupling device is added between the third antenna and the fourth antenna of the second target antenna, the receiving coupling device can be used to couple and receive the calibration signal, and the transmitting coupling device can be used to transmit the calibration signal and be coupled out in the antenna array.
  • the difference value of the coupling coefficient between adjacent antennas is smaller than a preset value.
  • the calibration method of the antenna array may include the following steps:
  • the calibration apparatus of the antenna array may control that the first antenna in the first target antenna and the second antenna in the second target antenna are turned on to transmit a calibration signal, and connect to the first antenna. And a receiving coupling device of the second antenna couples and receives the calibration signal transmitted by the first antenna and the second antenna.
  • the calibration compensation value of the first antenna transmission channel compensates the transmission channel of the first antenna, and after the compensation channel of the second antenna is compensated by the calibration compensation value of the second antenna transmission channel, the corresponding transmission channel of the first antenna may be made.
  • the amplitude response of the amplitude is consistent with the amplitude response of the transmission channel corresponding to the second antenna.
  • the difference value of the coupling coefficient between adjacent antennas in the antenna array is smaller than a preset value, and the preset value is small, and may be approximately 0, so that the coupling coefficients between adjacent antennas are approximately the same.
  • the calibration apparatus of the antenna array may transmit a calibration signal and couple it to the third by using a coupling coupling device connected between the third antenna in the first target antenna and the fourth antenna in the second target antenna.
  • the receiving channels of the antenna and the fourth antenna are controlled, and the receiving channels corresponding to the third antenna and the fourth antenna are controlled to be turned on to receive the calibration signal.
  • the third day can be calculated according to the calibration signal transmitted by the transmitting coupling device, the calibration signal received by the third antenna, and the calibration signal received by the fourth antenna.
  • the amplitude response of the receiving channel corresponding to the third antenna is consistent with the amplitude response of the receiving channel corresponding to the fourth antenna.
  • steps 601-602 may be performed before the steps 603-604, or may be performed after the steps 603-604, and may be performed in the crossover or the synchronization with the steps 603-604.
  • the first target antenna transmits the calibration signal
  • the second target antenna receives the calibration signal, determine, according to the difference value of the amplitude and phase responses of the corresponding transmission channels of the antennas in the first target antenna, respectively, determine corresponding antennas in the first target antenna.
  • a calibration compensation value of the transmission channel and performing calibration processing on the transmission channels corresponding to the antennas in the first target antenna; and determining, according to the difference value of the amplitude and phase responses of the reception channels corresponding to the antennas in the second target antenna, respectively.
  • the calibration apparatus of the antenna array can control the transmission channels of the antennas in the first target antenna to be turned on, and transmit the calibration signal, and control the receiving channels corresponding to the antennas in the second target antenna to be turned on, and receive the calibration signal.
  • a calibration compensation value of each antenna transmission channel in the first target antenna according to a difference value of amplitude and phase responses of each antenna transmission channel in the first target antenna, and according to a phase response of each antenna receiving channel in the second target antenna
  • the difference value is used to determine a calibration compensation value of each antenna receiving channel in the second target antenna
  • the calibration compensation values of the antenna transmission channels in the first target antenna are respectively used to compensate respective corresponding transmission channels, so that the first target antenna is
  • the amplitude response of each antenna transmitting channel is consistent, and the calibration compensation values of the receiving channels of the antennas in the second target antenna are respectively compensated for corresponding receiving channels, so that the amplitude and phase responses of the receiving channels of the antennas in the second target antenna are respectively Consistent.
  • the difference of the amplitude and phase responses of the transmit channels corresponding to the antennas in the first target antenna may be the ratio of the amplitude and phase responses of the transmit channels between adjacent antennas in the first target antenna.
  • the calibration compensation value of the corresponding transmission channel of each antenna in the first target antenna may be obtained according to a ratio of amplitude and phase responses of the transmission channels between adjacent antennas in the first target antenna.
  • the difference value of the amplitude and phase responses of the receiving channels corresponding to the antennas in the second target antenna may be a ratio of the amplitude and phase responses of the receiving channels between adjacent antennas in the second target antenna.
  • the calibration compensation of the receiving channel corresponding to each antenna in the second target antenna The value may be obtained from a ratio of the amplitude response of the receiving channel between adjacent ones of the second target antennas.
  • the second target antenna transmits the calibration signal
  • the first target antenna receives the calibration signal
  • a calibration compensation value of the transmission channel and performing calibration processing on the transmission channels corresponding to the antennas in the second target antenna; and determining, according to the difference value of the amplitude and phase responses of the reception channels corresponding to the antennas in the first target antenna, respectively
  • the calibration apparatus of the antenna array may control the transmission channels of the antennas in the second target antenna to be turned on, and transmit the calibration signals, and control the reception channels of the antennas in the first target antenna to be turned on, and receive the calibration signals.
  • the calibration compensation value of each antenna transmission channel in the second target antenna may be determined according to the difference value of the amplitude and phase responses of the antenna transmission channels in the second target antenna, and the amplitude and phase of the receiving channels according to the antennas in the first target antenna Determining, by the difference value of the response, a calibration compensation value of the receiving channel of each antenna in the first target antenna; and compensating the corresponding transmitting channel by using the calibration compensation value of each antenna transmitting channel in the second target antenna, so that the second The amplitude and phase responses of the antenna transmission channels in the target antenna are consistent, and the respective receiving channels are compensated by using the calibration compensation values of the receiving channels of the antennas in the first target antenna, so that the antennas in the first target antenna are The amplitude response of the receiving channel is consistent.
  • the difference of the amplitude and phase responses of the transmission channels corresponding to the antennas in the second target antenna may be the ratio of the amplitude and phase responses of the transmission channels between adjacent antennas in the second target antenna.
  • the calibration compensation value of the corresponding transmission channel of each antenna in the second target antenna may be obtained according to a ratio of amplitude and phase responses of the transmission channels between adjacent antennas in the second target antenna.
  • the difference value of the amplitude and phase responses of the receiving channels corresponding to the antennas in the first target antenna may be a ratio of the amplitude and phase responses of the receiving channels between adjacent antennas in the first target antenna.
  • the calibration compensation value of the receiving channel corresponding to each antenna in the first target antenna may be obtained according to a ratio of amplitude and phase responses of the receiving channels between adjacent antennas in the first target antenna.
  • the first target antenna may be controlled to receive the calibration signal
  • the second target antenna may receive the calibration signal
  • the second target antenna may be used to transmit the calibration signal
  • the first target antenna receives the calibration signal
  • the calibration signal transmitted by the antenna in the antenna array may be an OFDM signal, and the subcarriers corresponding to the antennas in the antenna array are frequency-divided in a manner that the transmission comb Comb is M, where It is greater than or equal to the number of antennas included in the antenna array.
  • M is greater than or equal to the number of antennas included in the antenna array, and interference between the antennas in the antenna array can be avoided.
  • M can be the number of antennas included in the antenna array, so that waste of resources can be avoided.
  • the first target antenna may be an antenna numbered as an odd number in the antenna array
  • the second target antenna may be an antenna numbered in the antenna array
  • the first target antenna may be an even numbered antenna in the antenna array
  • the second target antenna may be an odd numbered antenna in the antenna array
  • FIG. 7 is a schematic structural diagram of another antenna array according to an embodiment of the present invention.
  • the antenna array is composed of 32 antennas (such as antenna 1, antenna 2, ..., antenna 32), and it is assumed that the first target antenna is an odd-numbered antenna, that is, antenna 1, antenna 3, ..., The antenna 31, the second target antenna is an even-numbered antenna, that is, the antenna 2, the antenna 4, ..., the antenna 32, and an antenna is added between the antenna 1 (ie, the first antenna) and the antenna 2 (ie, the second antenna).
  • a receiving coupling device for coupling the calibration signal and receiving, a transmitting coupling device is added between the antenna 31 (ie, the third antenna) and the antenna 32 (ie, the fourth antenna) for transmitting the calibration signal and coupling out.
  • the calibration signal transmitted by the antenna 1 is Stx1
  • the calibration signal transmitted by the antenna 2 is Stx2
  • the calibration signal received by the receiving coupling device to the antenna 1 is Srx01
  • the calibration signal of the antenna 2 is received, Srx02
  • there is a formula 1: Srx01 /Stx1 Gtx1*H 01 *Grx0
  • Gtx1 and Gtx2 are the amplitude and phase responses of the antenna 1 and antenna 2 transmit channels respectively
  • H 01 is the antenna 1 and receive The amplitude and phase response of the communication channel between the coupled devices
  • H 02 is the amplitude response of the communication channel between the antenna 2 and
  • Grx0 is the amplitude and phase response of the receiving channel of the receiving coupling device.
  • the transmitting channel of the antenna 1 and the transmitting channel of the antenna 2 are respectively compensated according to the respective calibration compensation values, so that the amplitude and phase response of the transmitting channel of the antenna 1 is consistent with the amplitude response of the transmitting channel of the antenna 2.
  • the amplitude and phase response of the receiving channel of the antenna 31 coincides with the amplitude response of the receiving channel of the antenna 32.
  • calculating a calibration compensation value of each antenna transmitting channel in the first target antenna, a calibration compensation value of each antenna receiving channel, and a calibration compensation value of each antenna receiving channel in the second target antenna, and a calibration compensation value of each antenna transmitting channel may be Referring to the calculation process in the previous embodiment, details will not be described herein. After the calculated compensation values of the antenna transmission channels of the first target antenna are respectively compensated for the corresponding transmission channels, the amplitude and phase responses of the antenna transmission channels of the first target antenna can be made consistent; After the calibration compensation values of the receiving channels of the antennas in the two target antennas respectively compensate the corresponding receiving channels, the amplitude and phase responses of the receiving channels of the antennas in the second target antenna may be consistent; and the calculated first target antennas are used.
  • the amplitude and phase responses of the receiving channels of the antennas in the first target antenna may be consistent; and the calculated calibration of the transmitting channels of the antennas in the second target antenna is used.
  • the compensation values respectively compensate the corresponding transmission channels the amplitude response of each of the antenna transmission channels in the second target antenna can be made uniform.
  • the amplitude response of the transmitting channel of the antenna 1 is consistent with the amplitude response of the transmitting channel of the antenna 2, and the antenna 1 belongs to the first target antenna and the antenna 2 belongs to the second target antenna, the amplitude and phase of each antenna transmitting channel in the first target antenna
  • the response is consistent with the amplitude and phase response of each antenna transmission channel in the second target antenna, that is, the amplitude response of the corresponding transmission channel of each antenna included in the antenna array is uniform; in addition, the antenna 31 receives the amplitude response of the channel and the antenna 32 receives the channel.
  • the amplitude and phase responses are consistent, and the antenna 31 belongs to the first target antenna, and the antenna 32 belongs to the second target antenna, so the amplitude and phase response of each antenna receiving channel in the first target antenna and the amplitude of each antenna receiving channel in the second target antenna
  • the response is consistent, that is, the amplitude response of the receiving channel corresponding to each antenna included in the antenna array is consistent. Based on this, consistency calibration of the antenna array can be achieved.
  • the method described in FIG. 6 is implemented, and by adding a radio frequency coupling device in the antenna array, the characteristics of the coupling coefficient of the adjacent antenna are ensured, so that the consistency calibration of the antenna array using the antenna air port coupling characteristic can be realized.
  • the reciprocity calibration is also satisfied on the basis of the consistency calibration.
  • FIG. 8 is a structural diagram of a calibration apparatus for an antenna array according to an embodiment of the present invention. It is intended that the calibration method of the antenna array disclosed in the embodiments of the present invention can be performed. As shown in FIG. 8, the calibration device of the antenna array may include:
  • a first calibration unit 801 configured to: when the first target antenna of the antenna array transmits the calibration signal, and the second target antenna of the antenna array receives the calibration signal, according to the amplitude and phase response of the corresponding transmission channel of each antenna in the first target antenna.
  • the difference value of the amplitude response of the three antenna dummy elements respectively determines the calibration compensation value of the corresponding transmission channel of each antenna in the first target antenna, and performs calibration processing on the corresponding transmission channel of each antenna in the first target antenna, so that the first The amplitude response of the corresponding transmission channel of each antenna in a target antenna is consistent.
  • the antenna array calibrated by the calibration device of the antenna array may be composed of a first target antenna and a second target antenna, and a first antenna dummy element and a second antenna dummy element are added at one end of the antenna array, and the antenna is The third antenna dummy and the fourth antenna dummy are added to the other end of the array, wherein the first antenna dummy and the fourth antenna dummy are used for receiving the calibration signal, and the second antenna dummy and the third antenna dummy are used for transmitting.
  • the amplitude response of the first antenna dummy is the same as the amplitude response of the fourth antenna dummy
  • the amplitude response of the second antenna dummy is the same as the amplitude response of the third antenna dummy
  • the phase in the antenna array The difference between the coupling coefficients of the adjacent antennas is smaller than the preset value, wherein the preset value is small and can be approximated to 0, so that the coupling coefficients between adjacent antennas are approximately the same, by adding antenna dummy elements at both ends of the antenna array. It is possible to further reduce the difference value of the coupling coefficient between adjacent antennas.
  • the amplitude and phase response of the corresponding transmission channel of each antenna in the first target antenna and the difference in amplitude and phase response of the third antenna dummy element may be the amplitude and phase of the transmission channel between adjacent antennas in the first target antenna.
  • the calibration compensation value of the corresponding transmission channel of each antenna in the first target antenna may be obtained according to the foregoing ratio.
  • the second calibration unit 802 is configured to determine, according to the amplitude and phase response of the receiving channel corresponding to each antenna in the second target antenna and the difference value of the amplitude and phase responses of the fourth antenna dummy, respectively, corresponding reception of each antenna in the second target antenna.
  • the calibration compensation value of the channel is calibrated to the receiving channel corresponding to each antenna in the second target antenna, so that the amplitude response of the receiving channel corresponding to each antenna in the second target antenna is consistent.
  • the amplitude and phase response of the receiving channel corresponding to each antenna in the second target antenna and the difference in amplitude and phase response of the fourth antenna dummy may be the amplitude and phase of the receiving channel between adjacent antennas in the second target antenna.
  • the ratio of the response and the amplitude response of the fourth antenna dummy with the second target antenna and the fourth The ratio of the amplitude response of the receiving channel corresponding to the antenna adjacent to the antenna dummy.
  • the calibration compensation value of the receiving channel corresponding to each antenna in the second target antenna may be obtained according to the foregoing ratio.
  • a third calibration unit 803, configured to: when the second target antenna transmits the calibration signal, when the first target antenna receives the calibration signal, according to the amplitude and phase response of the corresponding transmission channel of each antenna in the second target antenna and the amplitude of the second antenna dummy The difference value of the phase response respectively determines a calibration compensation value of the corresponding transmission channel of each antenna in the second target antenna, and performs calibration processing on the corresponding transmission channel of each antenna in the second target antenna, so that each antenna in the second target antenna The corresponding phase response of the transmitting channel is consistent.
  • the amplitude phase response of the corresponding transmission channel of each antenna in the second target antenna and the difference in amplitude and phase response of the second antenna dummy element may be the amplitude phase of the transmission channel between adjacent antennas in the second target antenna.
  • the calibration compensation value of the corresponding transmission channel of each antenna in the second target antenna may be obtained according to the foregoing ratio.
  • the fourth calibration unit 804 is configured to determine, according to the amplitude and phase response of the receiving channel corresponding to each antenna in the first target antenna and the difference value of the amplitude and phase responses of the first antenna dummy, respectively, corresponding reception of each antenna in the first target antenna.
  • the calibration compensation value of the channel is calibrated to the receiving channel corresponding to each antenna in the first target antenna, so that the amplitude response of the receiving channel corresponding to each antenna in the first target antenna is consistent.
  • the amplitude and phase response of the receiving channel corresponding to each antenna in the first target antenna and the difference in amplitude and phase response of the first antenna dummy may be the amplitude and phase of the receiving channel between adjacent antennas in the first target antenna.
  • the calibration compensation value of the receiving channel corresponding to each antenna in the first target antenna may be obtained according to the foregoing ratio.
  • the amplitude response of the corresponding transmission channel of each antenna in the first target antenna is consistent
  • the amplitude response of the corresponding transmission channel of each antenna in the second target antenna is consistent
  • the second antenna dummy element is The amplitude and phase response of the antenna is the same as the amplitude response of the third antenna, so that the amplitude and phase response of the corresponding transmission channel of each antenna in the first target antenna and the amplitude response of the corresponding transmission channel of each antenna in the second target antenna are also obtained.
  • the amplitude and phase responses of the corresponding transmission channels of the antennas included in the antenna array are consistent to achieve calibration of the transmission channels of the respective antennas.
  • the amplitude and phase responses of the receiving channels corresponding to the antennas in the second target antenna are consistent, and the amplitude and phase responses of the receiving channels corresponding to the antennas in the first target antenna are consistent, and
  • the amplitude response of the first antenna dummy is the same as the amplitude response of the fourth antenna, so that the amplitude response of the receiving channel corresponding to each antenna in the first target antenna and the receiving channel corresponding to each antenna in the second target antenna can be obtained.
  • the amplitude and phase responses are also consistent, that is, the amplitude and phase responses of the receiving channels corresponding to the antennas included in the antenna array are the same, so as to achieve calibration of the receiving channels of the antennas.
  • the calibration signal transmitted by the antenna in the antenna array may be an OFDM signal, and the subcarriers corresponding to the antennas in the antenna array are frequency-divided in a manner that the transmission comb Comb is N, where It is greater than or equal to the number of antennas included in the antenna array.
  • the first target antenna may be an antenna numbered as an odd number in the antenna array
  • the second target antenna may be an antenna numbered in the antenna array
  • the first target antenna may be an even numbered antenna in the antenna array
  • the second target antenna may be an odd numbered antenna in the antenna array
  • the calibration apparatus for the antenna array shown in FIG. 8 is implemented by adding antenna dummy elements at both ends of the antenna array to ensure the characteristics of the coupling coefficients of adjacent antennas, and avoiding the coupling characteristics of adjacent antennas of the edge arrays.
  • the connected antenna dummy can ensure the consistency of the amplitude and phase response through hardware processing, and it provides the possibility of aligning the amplitude and phase responses of the odd and even channels, thus achieving the consistency calibration of the antenna array. Reciprocity calibration is also satisfied on the basis of ensuring consistency calibration.
  • FIG. 9 is a schematic structural diagram of another apparatus for aligning an antenna array according to an embodiment of the present invention, which may be used to perform a calibration method for an antenna array disclosed in an embodiment of the present invention.
  • the calibration apparatus of the antenna array may include at least one processor 901, at least one transceiver 902, an antenna array 903, a memory 904, and the like.
  • the structure of the calibration apparatus of the antenna array shown in FIG. 9 does not constitute a limitation of the embodiment of the present invention, and it may be a bus-shaped structure or a star-shaped structure, and may also include a comparison diagram. Show more or fewer parts, or combine some parts, or different parts. among them:
  • the processor 901 is a control center of the calibration device of the antenna array, by executing or executing a program and/or a module stored in the memory 904, and calling data stored in the memory 904 to perform an antenna array. Calibrate the various functions and processing data of the device.
  • the processor 901 may be composed of an integrated circuit (IC), for example, an IC packaged in a single package. It can also be composed of a packaged IC that connects multiple identical functions or different functions.
  • the processor 901 may be a SOC chip including an application processor, a baseband processor, a digital signal processor (DSP), a graphic processing unit (GPU), and the like. It may be a baseband processor used only for baseband signal processing or an application specific integrated circuit (Application Specific Integrated Circuit).
  • the transceiver 902 can be configured to receive an air interface signal and transmit a radio frequency signal.
  • the antenna array 903 is composed of a first target antenna and a second target antenna, and a first antenna dummy and a second antenna dummy (not shown in FIG. 9) are added at one end of the antenna array.
  • the third antenna dummy and the fourth antenna dummy (not shown in FIG. 9) are added to the other end of the antenna array 903.
  • the first antenna dummy element and the fourth antenna dummy element are used for receiving the calibration signal
  • the second antenna dummy element and the third antenna dummy element are used for transmitting the calibration signal
  • the amplitude response of the first antenna dummy element and the fourth antenna dummy are used.
  • the amplitude and phase responses of the elements are the same, the amplitude response of the second antenna dummy is the same as the amplitude response of the third antenna dummy, and the difference of the coupling coefficients between adjacent antennas in the antenna array 903 is less than a preset value.
  • the memory 904 may be a high speed RAM memory or a non-volatile memory, such as at least one disk memory.
  • the memory 904 can also optionally be at least one storage device located remotely from the aforementioned processor 901.
  • the memory 904 may include a communication protocol, an application, data, and the like, which are not limited in the embodiment of the present invention.
  • the processor 901 can be used to call an application stored in the memory 904 to perform the following operations:
  • control transceiver 902 transmits the calibration signal by using the first target antenna in the antenna array 903 and receives the calibration signal by using the second target antenna in the antenna array 903, according to the amplitude of the transmission channel corresponding to each antenna in the first target antenna.
  • the phase response and the difference value of the amplitude and phase responses of the third antenna dummy element respectively determine calibration compensation values of the corresponding transmission channels of the antennas in the first target antenna, and perform calibration processing on the corresponding transmission channels of the antennas in the first target antenna ;as well as,
  • the control transceiver 902 transmits a calibration signal using the second target antenna in the antenna array 903, and
  • the second target is determined according to the amplitude response of the corresponding transmission channel of each antenna in the second target antenna and the difference of the amplitude response of the second antenna dummy.
  • the calibration signal transmitted by the antenna in the antenna array 903 is an orthogonal frequency division multiplexing OFDM signal, and the subcarriers corresponding to the antennas in the antenna array 903 are transmitted in a manner that the transmission comb Comb is N. And wherein N is greater than or equal to the number of antennas included in the antenna array 903.
  • the first target antenna is an antenna numbered as an odd number in the antenna array 903
  • the second target antenna is an antenna numbered as an even number in the antenna array 903.
  • the first target antenna is an antenna numbered as an even number in the antenna array 903
  • the second target antenna is an antenna numbered as an odd number in the antenna array 903.
  • the calibration apparatus of the antenna array introduced in the embodiment of the present invention may implement some or all of the processes in the embodiment of the calibration method of the antenna array introduced by the present invention in conjunction with FIG.
  • the calibration apparatus for the antenna array shown in FIG. 9 is implemented by adding antenna dummy elements at both ends of the antenna array to ensure the characteristics of the coupling coefficients of adjacent antennas, and avoiding the coupling characteristics of adjacent antennas of the edge array. Inconsistent calibration error; in addition, the connected antenna dummy can ensure the consistency of the amplitude and phase response through hardware processing, and it provides the possibility of aligning the amplitude and phase responses of the odd and even channels, thus achieving the consistency calibration of the antenna array. Reciprocity calibration is also satisfied on the basis of ensuring consistency calibration.
  • FIG. 10 is a schematic structural diagram of another apparatus for aligning an antenna array according to an embodiment of the present invention, which may be used to perform a calibration method for an antenna array disclosed in an embodiment of the present invention.
  • the calibration device of the antenna array may include:
  • the first control unit 1001 is configured to control the first antenna and the second antenna to respectively transmit a calibration signal, and receive the calibration signal by using the receiving coupling device.
  • a first calibration unit 1002 configured to receive, according to the calibration signal received by the coupling device, the first antenna
  • the calibration signal transmitted by the second antenna and the calibration signal transmitted by the second antenna respectively determine a calibration compensation value of the transmission channel corresponding to the first antenna and a calibration compensation value of the transmission channel corresponding to the second antenna, and respectively respectively correspond to the transmission channel corresponding to the first antenna and
  • the transmitting channel corresponding to the second antenna performs calibration processing such that the amplitude response of the corresponding transmitting channel of the first antenna is consistent with the amplitude response of the corresponding transmitting channel of the second antenna.
  • the second control unit 1003 is configured to transmit a calibration signal by using the transmitting coupling device, and control the third antenna and the fourth antenna to respectively receive the calibration signal.
  • the second calibration unit 1004 is configured to determine, according to the calibration signal transmitted by the transmitting coupling device, the calibration signal received by the third antenna, and the calibration signal received by the fourth antenna, respectively, the calibration compensation value of the receiving channel corresponding to the third antenna and the first a calibration compensation value of the receiving channel corresponding to the four antennas, and respectively calibrating the receiving channel corresponding to the third antenna and the receiving channel corresponding to the fourth antenna, so that the amplitude response of the receiving channel corresponding to the third antenna and the fourth antenna The amplitude response of the corresponding receiving channel is consistent.
  • the antenna array calibrated by the calibration apparatus of the antenna array may be composed of a first target antenna and a second target antenna, and a second antenna in the first antenna and the second target antenna in the first target antenna
  • a receiving coupling device is additionally disposed, and a transmitting coupling device is added between the third antenna of the first target antenna and the fourth antenna of the second target antenna, and the receiving coupling device can be used for the first antenna and the second antenna
  • the transmitted calibration signal is coupled and received, and the transmit coupling device can be used to transmit the calibration signal and couple it to the receive channels of the third antenna and the fourth antenna.
  • the difference in the coupling coefficient between adjacent antennas in the antenna array is less than A value is set, wherein the preset value is small and can be approximated to 0, so that the coupling coefficients between adjacent antennas are approximately the same.
  • the third calibration unit 1005 is configured to: when the first target antenna transmits the calibration signal, and when the second target antenna receives the calibration signal, determine the first according to the difference value of the amplitude response of the corresponding transmission channel of each antenna in the first target antenna a calibration compensation value of the corresponding transmission channel of each antenna in the target antenna, and performing calibration processing on the corresponding transmission channel of each antenna in the first target antenna; and, according to the amplitude response of the receiving channel corresponding to each antenna in the second target antenna The difference value respectively determines a calibration compensation value of the receiving channel corresponding to each antenna in the second target antenna, and performs calibration processing on the receiving channel corresponding to each antenna in the second target antenna.
  • the fourth calibration unit 1006 is configured to: when the second target antenna transmits the calibration signal, when the first target antenna receives the calibration signal, determine the second according to the difference value of the amplitude response of the corresponding transmission channel of each antenna in the second target antenna.
  • the compensation value is used to calibrate the receiving channel corresponding to each antenna in the first target antenna.
  • the corresponding antennas in the first target antenna may be corresponding.
  • the amplitude and phase responses of the transmitting channel are consistent; and the calibration compensation values of the receiving channels corresponding to the antennas in the second target antenna are respectively calibrated to the corresponding receiving channels, so that the receiving channels corresponding to the antennas in the second target antenna can be made.
  • the amplitude response of the amplitude is consistent.
  • the fourth calibration unit 1006 can perform calibration processing on the corresponding transmission channels by using the calibration compensation values of the corresponding transmission channels of the antennas in the second target antenna, and then corresponding to the antennas in the second target antenna.
  • the amplitude and phase responses of the transmitting channel are consistent; and the calibration compensation values of the receiving channels corresponding to the antennas in the first target antenna are respectively calibrated to the corresponding receiving channels, so that the receiving channels corresponding to the antennas in the first target antenna can be made.
  • the amplitude response of the amplitude is consistent.
  • the first calibration unit 1002 makes the amplitude response of the transmission channel corresponding to the first antenna consistent with the amplitude response of the transmission channel corresponding to the second antenna
  • the first antenna belongs to the first target antenna
  • the second antenna belongs to the second antenna. It belongs to the second target antenna, so the amplitude response of the corresponding transmission channel of each antenna in the first target antenna is consistent with the amplitude response of the corresponding transmission channel of each antenna in the second target antenna, that is, the transmission channel of all antennas in the antenna array
  • the amplitude response is consistent.
  • the second calibration unit 1004 makes the amplitude response of the receiving channel corresponding to the third antenna consistent with the amplitude response of the receiving channel corresponding to the fourth antenna, the third antenna belongs to the first target antenna, and the fourth antenna belongs to the second target antenna. Therefore, the amplitude response of the receiving channel corresponding to each antenna in the first target antenna is consistent with the amplitude response of the receiving channel corresponding to each antenna in the second target antenna. Based on this, consistency calibration of the antenna array can be achieved.
  • the calibration signal transmitted by the antenna in the antenna array may be an OFDM signal, and the subcarriers corresponding to the antennas in the antenna array are frequency-divided in a manner that the transmission comb Comb is M, where It is greater than or equal to the number of antennas included in the antenna array.
  • the first target antenna may be an antenna numbered as an odd number in the antenna array
  • the second target antenna may be an antenna numbered in the antenna array
  • the first target antenna may be an even number in the antenna array.
  • the antenna, the second target antenna may be an antenna numbered as an odd number in the antenna array.
  • the calibration apparatus for the antenna array shown in FIG. 10 is implemented, and the RF coupling device is added to the antenna array to ensure the characteristics of the coupling coefficients of the adjacent antennas, thereby realizing the antenna array using the antenna air port coupling characteristics. Consistency calibration, and reciprocity calibration is also met on the basis of guaranteed conformance calibration.
  • FIG. 11 is a schematic structural diagram of another apparatus for calibrating an antenna array according to an embodiment of the present invention, which may be used to perform a calibration method for an antenna array disclosed in an embodiment of the present invention.
  • the calibration apparatus of the antenna array may include at least one processor 1101, at least one transceiver 1102, an antenna array 1103, a memory 1104, and the like.
  • the structure of the calibration apparatus of the antenna array shown in FIG. 11 does not constitute a limitation of the embodiment of the present invention, and it may be a bus-shaped structure or a star-shaped structure, and may also include a comparison diagram. Show more or fewer parts, or combine some parts, or different parts. among them:
  • the processor 1101 is a control center of the calibration device of the antenna array, by executing or executing programs and/or modules stored in the memory 1104, and calling data stored in the memory 1104 to perform the antenna array. Calibrate the various functions and processing data of the device.
  • the processor 1101 may be composed of an integrated circuit IC, for example, may be composed of a single packaged IC, or may be composed of a plurality of packaged ICs that have the same function or different functions.
  • the processor 1101 may be a SOC chip including an application processor, a baseband processor, a digital signal processor DSP, an image processor GPU, etc., or may be a baseband processor used only for baseband signal processing or a specific Use ASIC, etc.
  • the transceiver 1102 can be configured to receive an air interface signal and transmit a radio frequency signal.
  • the antenna array 1103 is composed of a first target antenna and a second target antenna, and a receiving coupling device is added between the first antenna of the first target antenna and the second antenna of the second target antenna ( Not shown in Fig. 11), a transmitting coupling device (not shown in Fig. 11) is added between the third antenna in the first target antenna and the fourth antenna in the second target antenna.
  • the receiving coupling device can be used to couple and receive the calibration signal, and the transmitting coupling device can be used to transmit the calibration signal and be coupled out.
  • the difference of the coupling coefficient between adjacent antennas in the antenna array 1103 is less than a preset value.
  • the memory 1104 may be a high speed RAM memory or a non-volatile memory, such as at least one disk memory. Memory 1104 optional It may also be at least one storage device located remotely from the aforementioned processor 1101. As shown in FIG. 11, the communication protocol, the application program, the data, and the like may be included in the memory 1104, which is not limited in the embodiment of the present invention.
  • the processor 1101 can be used to call an application stored in the memory 1104 to perform the following operations:
  • the control transceiver 1102 transmits a calibration signal by using the first antenna and the second antenna in the antenna array 1103, respectively, and receives the calibration signal by using the receiving coupling device;
  • the control transceiver 1102 uses the transmit coupling device to transmit a calibration signal to transmit a calibration signal to transmit a calibration signal;
  • control transceiver 1102 transmits the calibration signal using the first target antenna in the antenna array 1103 and the calibration signal is received by the second target antenna in the antenna array 1103, according to the amplitude of the transmission channel corresponding to each antenna in the first target antenna
  • the difference value of the phase response respectively determines the calibration compensation value of the corresponding transmission channel of each antenna in the first target antenna, and performs calibration processing on the corresponding transmission channel of each antenna in the first target antenna;
  • control transceiver 1102 transmits the calibration signal using the second target antenna in the antenna array 1103, and receives the calibration signal using the first target antenna in the antenna array 1103, according to the second target antenna
  • the difference value of the amplitude and phase responses of the corresponding transmission channels of the antennas respectively determines the calibration compensation values of the corresponding transmission channels of the antennas in the second target antenna, and performs calibration processing on the corresponding transmission channels of the antennas in the second target antenna; as well as,
  • the calibration signal transmitted by the antenna in the antenna array 1103 is an orthogonal frequency division multiplexing OFDM signal, and the subcarriers corresponding to the antennas in the antenna array 1103 are transmitted in a manner that the transmission comb Comb is M. And wherein M is greater than or equal to the number of antennas included in the antenna array 1103.
  • the first target antenna is an antenna numbered as an odd number in the antenna array 1103, and the second target antenna is an antenna numbered as an even number in the antenna array 1103.
  • the first target antenna is an antenna numbered as an even number in the antenna array 1103, and the second target antenna is an antenna numbered as an odd number in the antenna array 1103.
  • the calibration apparatus of the antenna array introduced in the embodiment of the present invention may implement some or all of the processes in the embodiment of the calibration method of the antenna array introduced in conjunction with FIG. 6 of the present invention.
  • the calibration apparatus for the antenna array shown in FIG. 11 is implemented, and the RF coupling device is added to the antenna array to ensure the characteristics of the coupling coefficients of the adjacent antennas, thereby realizing the antenna array using the antenna air port coupling characteristics. Consistency calibration, and reciprocity calibration is also met on the basis of guaranteed conformance calibration.
  • the units in the apparatus of the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-Time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线阵列的校准方法及装置,包括:天线阵列的第一目标天线发射信号,第二目标天线接收信号时,计算第一目标天线中各发射通道和第二目标天线中各接收通道的校准补偿值,通道补偿后,第一目标天线中各发射通道的幅相响应一致且第二目标天线中各接收通道的幅相响应一致;第二目标天线发射信号,第一目标天线接收信号时,计算第二目标天线中各发射通道和第一目标天线中各接收通道的校准补偿值,通道补偿后,第二目标天线中各发射通道的幅相响应一致且第一目标天线中各接收通道的幅相响应一致。本发明实施例在天线阵列中增设天线哑元或射频耦合器件,使所有天线发射通道的幅相响应一致且接收通道的幅相响应也一致,从而实现天线阵列的一致性校准。

Description

一种天线阵列的校准方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种天线阵列的校准方法及装置。
背景技术
随着通信业务量的急剧增加,对于通信系统吞吐率的要求也越来越高。在无线通信系统中,大规模多输入多输出(Massive Multiple Input Multiple Output,MassiveMIMO)和波束赋型是提升系统吞吐率的重要技术手段,而有效实现波束赋型的前提是要对天线阵列及收发通道进行校准。天线校准包括一致性校准和互易性校准,其中,一致性校准的目标为所有收通道的幅相特征相同以及所有发通道的幅相特征也相同;互易性校准的目标为同一收发通道的幅相特征比值相同。目前,常见的是采用硬件耦合网络的方法来进行校准,然而,随着天线数目的增多和硬件尺寸的减小,采用传统的硬件耦合网络的校准方法将会对硬件设计的难度和算法的要求越来越高。基于此,利用天线空口耦合特性的校准逐渐兴起,传统的实现过程一般为:发送侧天线依次无线广播校准信号,并接收其他天线发送的校准信号;初始化校准系数;所有天线的校准系数依次进行迭代更新;判断相邻两轮校准系数的误差是否符合预设阈值,若符合,生成校准矩阵且校准结束。然而,上述传统的空口耦合校准方法仅能对天线阵列及射频通道的互易性进行校准,而无法对天线阵列的一致性进行校准,只进行互易性校准而忽略一致性校准会对广播波束赋型产生较大的影响,同时对信号的发射功率带来一定的损失。因此,如何利用天线空口耦合特性实现天线的一致性校准是当前亟需解决的关键问题。
发明内容
本发明实施例公开了一种天线阵列的校准方法及装置,能够利用天线空口耦合特性实现对天线阵列的一致性校准。
本发明实施例第一方面公开了一种天线阵列的校准方法,天线阵列由第一目标天线和第二目标天线组成,在所述天线阵列的一端增设第一天线哑元和第 二天线哑元,且在所述天线阵列的另一端增设第三天线哑元和第四天线哑元,其中,所述第一天线哑元和所述第四天线哑元用于接收校准信号,所述第二天线哑元和所述第三天线哑元用于发射校准信号,所述第一天线哑元的幅相响应与所述第四天线哑元的幅相响应相同,所述第二天线哑元的幅相响应与所述第三天线哑元的幅相响应相同,所述天线阵列中相邻天线间的耦合系数的差异值小于预设值,所述方法包括:
当所述第一目标天线发射校准信号,所述第二目标天线接收校准信号时,根据所述第一目标天线中各天线对应的发射通道的幅相响应以及所述第三天线哑元的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的发射通道的校准补偿值,并对所述第一目标天线中各天线对应的发射通道进行校准处理,从而使得所述第一目标天线中各天线对应的发射通道的幅相响应一致;以及,
根据所述第二目标天线中各天线对应的接收通道的幅相响应以及所述第四天线哑元的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的接收通道的校准补偿值,并对所述第二目标天线中各天线对应的接收通道进行校准处理,从而使得所述第二目标天线中各天线对应的接收通道的幅相响应一致;
当所述第二目标天线发射校准信号,所述第一目标天线接收校准信号时,根据所述第二目标天线中各天线对应的发射通道的幅相响应以及所述第二天线哑元的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的发射通道的校准补偿值,并对所述第二目标天线中各天线对应的发射通道进行校准处理,从而使得所述第二目标天线中各天线对应的发射通道的幅相响应一致;以及,
根据所述第一目标天线中各天线对应的接收通道的幅相响应以及所述第一天线哑元的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的接收通道的校准补偿值,并对所述第一目标天线中各天线对应的接收通道进行校准处理,从而使得所述第一目标天线中各天线对应的接收通道的幅相响应一致。
由于第一天线哑元的幅相响应与第四天线哑元的幅相响应相同,从而使得 第一目标天线中各天线对应的接收通道的幅相响应与第二目标天线中各天线对应的接收通道的幅相响应也一致,即天线阵列包含的各天线对应的接收通道的幅相响应均一致,以实现对各天线接收通道的校准。且第二天线哑元的幅相响应与所述第三天线哑元的幅相响应相同,从而使得第一目标天线中各天线对应的发射通道的幅相响应与第二目标天线中各天线对应的发射通道的幅相响应也一致,即天线阵列包含的各天线对应的发射通道的幅相响应均一致,以实现对各天线发射通道的校准。基于此,从而可以实现天线阵列的一致性校准。
结合本发明实施例第一方面,在本发明实施例第一方面的第一种可能的实施方式中,所述天线阵列中的天线发射的校准信号为正交频分复用OFDM信号,所述天线阵列中的各天线对应的子载波以传输梳Comb为N的方式进行频分,其中,N大于等于所述天线阵列中包含的天线的个数。
结合本发明实施例第一方面或第一方面的第一种可能的实施方式,在本发明实施例第一方面的第二种可能的实施方式中,所述第一目标天线为所述天线阵列中编号为奇数的天线,所述第二目标天线为所述天线阵列中编号为偶数的天线。
结合本发明实施例第一方面或第一方面的第一种可能的实施方式,在本发明实施例第一方面的第三种可能的实施方式中,所述第一目标天线为所述天线阵列中编号为偶数的天线,所述第二目标天线为所述天线阵列中编号为奇数的天线。
本发明实施例第二方面公开了一种天线阵列的校准方法,天线阵列由第一目标天线和第二目标天线组成,在所述第一目标天线中的第一天线和所述第二目标天线中的第二天线之间增设一个接收耦合器件,在所述第一目标天线中的第三天线和所述第二目标天线中的第四天线之间增设一个发射耦合器件,所述接收耦合器件用于耦合校准信号并接收,所述发射耦合器件用于发射校准信号并耦合出去,所述天线阵列中相邻天线间的耦合系数的差异值小于预设值,所述方法包括:
控制所述第一天线和所述第二天线分别发射校准信号,利用所述接收耦合器件接收校准信号;
根据所述接收耦合器件接收到的校准信号、所述第一天线发射的校准信号 以及所述第二天线发射的校准信号,分别确定所述第一天线对应的发射通道的校准补偿值和所述第二天线对应的发射通道的校准补偿值,并分别对所述第一天线对应的发射通道和所述第二天线对应的发射通道进行校准处理,以使所述第一天线对应的发射通道的幅相响应与所述第二天线对应的发射通道的幅相响应一致;
利用所述发射耦合器件发射校准信号,控制所述第三天线和所述第四天线分别接收校准信号;
根据所述发射耦合器件发射的校准信号、所述第三天线接收到的校准信号以及所述第四天线接收到的校准信号,分别确定所述第三天线对应的接收通道的校准补偿值和所述第四天线对应的接收通道的校准补偿值,并分别对所述第三天线对应的接收通道和所述第四天线对应的接收通道进行校准处理,以使得所述第三天线对应的接收通道的幅相响应与所述第四天线对应的接收通道的幅相响应一致;
当所述第一目标天线发射校准信号,所述第二目标天线接收校准信号时,根据所述第一目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的发射通道的校准补偿值,并对所述第一目标天线中各天线对应的发射通道进行校准处理,从而使得所述第一目标天线中各天线对应的发射通道的幅相响应一致;以及,
根据所述第二目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的接收通道的校准补偿值,并对所述第二目标天线中各天线对应的接收通道进行校准处理,从而使得所述第二目标天线中各天线对应的接收通道的幅相响应一致;
当所述第二目标天线发射校准信号,所述第一目标天线接收校准信号时,根据所述第二目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的发射通道的校准补偿值,并对所述第二目标天线中各天线对应的发射通道进行校准处理,从而使得所述第二目标天线中各天线对应的发射通道的幅相响应一致;以及,
根据所述第一目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的接收通道的校准补偿值,并对所述第 一目标天线中各天线对应的接收通道进行校准处理,从而使得所述第一目标天线中各天线对应的接收通道的幅相响应一致。
由于第一天线对应的发射通道的幅相响应与第二天线对应的发射通道的幅相响应一致,从而使得第一目标天线中各天线对应的发射通道的幅相响应与第二目标天线中各天线对应的发射通道的幅相响应也一致,即天线阵列中包含的各天线对应的发射通道的幅相响应均一致,以实现对各天线发射通道的校准。且第三天线对应的接收通道的幅相响应与第四天线对应的接收通道的幅相响应一致,从而使得第一目标天线中各天线对应的接收通道的幅相响应与第二目标天线中各天线对应的接收通道的幅相响应也一致,即天线阵列中包含的各天线对应的接收通道的幅相响应均一致,以实现对各天线接收通道的校准。基于此,从而可以实现天线阵列的一致性校准。
结合本发明实施例第二方面,在本发明实施例第二方面的第一种可能的实施方式中,所述天线阵列中的天线发射的校准信号为正交频分复用OFDM信号,所述天线阵列中的各天线对应的子载波以传输梳Comb为M的方式进行频分,其中,M大于等于所述天线阵列中包含的天线的个数。
结合本发明实施例第二方面或第二方面的第一种可能的实施方式,在本发明实施例第二方面的第二种可能的实施方式中,所述第一目标天线为所述天线阵列中编号为奇数的天线,所述第二目标天线为所述天线阵列中编号为偶数的天线。
结合本发明实施例第二方面或第二方面的第一种可能的实施方式,在本发明实施例第二方面的第三种可能的实施方式中,所述第一目标天线为所述天线阵列中编号为偶数的天线,所述第二目标天线为所述天线阵列中编号为奇数的天线。
本发明实施例第三方面公开了一种天线阵列的校准装置,包括:处理器、存储器、天线阵列、第一天线哑元、第二天线哑元、第三天线哑元和第四天线哑元;其中,所述天线阵列由第一目标天线和第二目标天线组成,所述第一天线哑元和所述第四天线哑元用于接收校准信号,所述第二天线哑元和所述第三天线哑元用于发射校准信号,所述第一天线哑元的幅相响应与所述第四天线哑元的幅相响应相同,所述第二天线哑元的幅相响应与所述第三天线哑元的幅相 响应相同,所述天线阵列中相邻天线间的耦合系数的差异值小于预设值,所述存储器用于存储程序和数据,所述处理器用于调用所述存储器存储的程序,执行如下步骤:
当所述第一目标天线发射校准信号,所述第二目标天线接收校准信号时,根据所述第一目标天线中各天线对应的发射通道的幅相响应以及所述第三天线哑元的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的发射通道的校准补偿值,并对所述第一目标天线中各天线对应的发射通道进行校准处理;以及,
根据所述第二目标天线中各天线对应的接收通道的幅相响应以及所述第四天线哑元的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的接收通道的校准补偿值,并对所述第二目标天线中各天线对应的接收通道进行校准处理;
当所述第二目标天线发射校准信号,所述第一目标天线接收校准信号时,根据所述第二目标天线中各天线对应的发射通道的幅相响应以及所述第二天线哑元的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的发射通道的校准补偿值,并对所述第二目标天线中各天线对应的发射通道进行校准处理;以及,
根据所述第一目标天线中各天线对应的接收通道的幅相响应以及所述第一天线哑元的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的接收通道的校准补偿值,并对所述第一目标天线中各天线对应的接收通道进行校准处理。
结合本发明实施例第三方面,在本发明实施例第三方面的第一种可能的实施方式中,所述天线阵列中的天线发射的校准信号为正交频分复用OFDM信号,所述天线阵列中的各天线对应的子载波以传输梳Comb为N的方式进行频分,其中,N大于等于所述天线阵列中包含的天线的个数。
结合本发明实施例第三方面或第三方面的第一种可能的实施方式,在本发明实施例第三方面的第一种可能的实施方式中,所述第一目标天线为所述天线阵列中编号为奇数的天线,所述第二目标天线为所述天线阵列中编号为偶数的天线。
结合本发明实施例第三方面或第三方面的第一种可能的实施方式,在本发明实施例第三方面的第二种可能的实施方式中,所述第一目标天线为所述天线阵列中编号为偶数的天线,所述第二目标天线为所述天线阵列中编号为奇数的天线。
本发明实施例第四方面公开了一种天线阵列的校准装置,包括:处理器、存储器、天线阵列、接收耦合器件和发射耦合器件;其中,所述天线阵列由第一目标天线和第二目标天线组成,所述接收耦合器件分别连接所述第一目标天线中的第一天线和所述第二目标天线中的第二天线,用于耦合校准信号并接收,所述发射耦合器件分别连接所述第一目标天线中的第三天线和所述第二目标天线中的第四天线,用于发射校准信号并耦合出去,所述天线阵列中相邻天线间的耦合系数的差异值小于预设值,所述存储器用于存储程序和数据,所述处理器用于调用所述存储器存储的程序,执行如下步骤:
控制所述第一天线和所述第二天线分别发射校准信号,利用所述接收耦合器件接收校准信号;
根据所述接收耦合器件接收到的校准信号、所述第一天线发射的校准信号以及所述第二天线发射的校准信号,分别确定所述第一天线对应的发射通道的校准补偿值和所述第二天线对应的发射通道的校准补偿值,并分别对所述第一天线对应的发射通道和所述第二天线对应的发射通道进行校准处理,以使所述第一天线对应的发射通道的幅相响应与所述第二天线对应的发射通道的幅相响应一致;
利用所述发射耦合器件发射校准信号,控制所述第三天线和所述第四天线分别接收校准信号;
根据所述发射耦合器件发射的校准信号、所述第三天线接收到的校准信号以及所述第四天线接收到的校准信号,分别确定所述第三天线对应的接收通道的校准补偿值和所述第四天线对应的接收通道的校准补偿值,并分别对所述第三天线对应的接收通道和所述第四天线对应的接收通道进行校准处理,以使得所述第三天线对应的接收通道的幅相响应与所述第四天线对应的接收通道的幅相响应一致;
当所述第一目标天线发射校准信号,所述第二目标天线接收校准信号时, 根据所述第一目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的发射通道的校准补偿值,并对所述第一目标天线中各天线对应的发射通道进行校准处理;以及,
根据所述第二目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的接收通道的校准补偿值,并对所述第二目标天线中各天线对应的接收通道进行校准处理;
当所述第二目标天线发射校准信号,所述第一目标天线接收校准信号时,根据所述第二目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的发射通道的校准补偿值,并对所述第二目标天线中各天线对应的发射通道进行校准处理;以及,
根据所述第一目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的接收通道的校准补偿值,并对所述第一目标天线中各天线对应的接收通道进行校准处理。
结合本发明实施例第四方面,在本发明实施例第四方面的第一种可能的实施方式中,所述天线阵列中的天线发射的校准信号为正交频分复用OFDM信号,所述天线阵列中的各天线对应的子载波以传输梳Comb为M的方式进行频分,其中,M大于等于所述天线阵列中包含的天线的个数。
结合本发明实施例第四方面或第四方面的第一种可能的实施方式,在本发明实施例第四方面的第二种可能的实施方式中,所述第一目标天线为所述天线阵列中编号为奇数的天线,所述第二目标天线为所述天线阵列中编号为偶数的天线。
结合本发明实施例第四方面或第四方面的第一种可能的实施方式,在本发明实施例第四方面的第三种可能的实施方式中,所述第一目标天线为所述天线阵列中编号为偶数的天线,所述第二目标天线为所述天线阵列中编号为奇数的天线。
本发明实施例第五方面公开了一种天线阵列的校准装置,天线阵列由第一目标天线和第二目标天线组成,所述第一天线哑元和所述第四天线哑元用于接收校准信号,所述第二天线哑元和所述第三天线哑元用于发射校准信号,所述第一天线哑元的幅相响应与所述第四天线哑元的幅相响应相同,所述第二天线 哑元的幅相响应与所述第三天线哑元的幅相响应相同,所述天线阵列中相邻天线间的耦合系数的差异值小于预设值,所述装置包括:
第一校准单元,用于当所述第一目标天线发射校准信号,所述第二目标天线接收校准信号时,根据所述第一目标天线中各天线对应的发射通道的幅相响应以及所述第三天线哑元的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的发射通道的校准补偿值,并对所述第一目标天线中各天线对应的发射通道进行校准处理,以使得所述第一目标天线中各天线对应的发射通道的幅相响应一致;
第二校准单元,用于根据所述第二目标天线中各天线对应的接收通道的幅相响应以及所述第四天线哑元的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的接收通道的校准补偿值,并对所述第二目标天线中各天线对应的接收通道进行校准处理,以使得所述第二目标天线中各天线对应的接收通道的幅相响应一致;
第三校准单元,用于当所述第二目标天线发射校准信号,所述第一目标天线接收校准信号时,根据所述第二目标天线中各天线对应的发射通道的幅相响应以及所述第二天线哑元的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的发射通道的校准补偿值,并对所述第二目标天线中各天线对应的发射通道进行校准处理,以使得所述第二目标天线中各天线对应的发射通道的幅相响应一致;
第四校准单元,用于根据所述第一目标天线中各天线对应的接收通道的幅相响应以及所述第一天线哑元的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的接收通道的校准补偿值,并对所述第一目标天线中各天线对应的接收通道进行校准处理,以使得所述第一目标天线中各天线对应的接收通道的幅相响应一致。
结合本发明实施例第五方面,在本发明实施例第五方面的第一种可能的实施方式中,所述天线阵列中的天线发射的校准信号为正交频分复用OFDM信号,所述天线阵列中的各天线对应的子载波以传输梳Comb为N的方式进行频分,其中,N大于等于所述天线阵列中包含的天线的个数。
结合本发明实施例第五方面或第五方面的第一种可能的实施方式,在本发 明实施例第五方面的第二种可能的实施方式中,所述第一目标天线为所述天线阵列中编号为奇数的天线,所述第二目标天线为所述天线阵列中编号为偶数的天线。
结合本发明实施例第五方面或第五方面的第一种可能的实施方式,在本发明实施例第五方面的第三种可能的实施方式中,所述第一目标天线为所述天线阵列中编号为偶数的天线,所述第二目标天线为所述天线阵列中编号为奇数的天线。
本发明实施例第六方面公开了一种天线阵列的校准装置,天线阵列由第一目标天线和第二目标天线组成,在所述第一目标天线中的第一天线和所述第二目标天线中的第二天线之间增设一个接收耦合器件,在所述第一目标天线中的第三天线和所述第二目标天线中的第四天线之间增设一个发射耦合器件,所述接收耦合器件用于耦合校准信号并接收,所述发射耦合器件用于发射校准信号并耦合出去,所述天线阵列中相邻天线间的耦合系数的差异值小于预设值,所述装置包括:
第一控制单元,用于控制所述第一天线和所述第二天线分别发射校准信号,利用所述接收耦合器件接收校准信号;
第一校准单元,用于根据所述接收耦合器件接收到的校准信号、所述第一天线发射的校准信号以及所述第二天线发射的校准信号,分别确定所述第一天线对应的发射通道的校准补偿值和所述第二天线对应的发射通道的校准补偿值,并分别对所述第一天线对应的发射通道和所述第二天线对应的发射通道进行校准处理,以使所述第一天线对应的发射通道的幅相响应与所述第二天线对应的发射通道的幅相响应一致;
第二控制单元,用于利用所述发射耦合器件发射校准信号,控制所述第三天线和所述第四天线分别接收校准信号;
第二校准单元,用于根据所述发射耦合器件发射的校准信号、所述第三天线接收到的校准信号以及所述第四天线接收到的校准信号,分别确定所述第三天线对应的接收通道的校准补偿值和所述第四天线对应的接收通道的校准补偿值,并分别对所述第三天线对应的接收通道和所述第四天线对应的接收通道进行校准处理,以使得所述第三天线对应的接收通道的幅相响应与所述第四天 线对应的接收通道的幅相响应一致;
第三校准单元,用于当所述第一目标天线发射校准信号,所述第二目标天线接收校准信号时,根据所述第一目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的发射通道的校准补偿值,并对所述第一目标天线中各天线对应的发射通道进行校准处理;以及,根据所述第二目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的接收通道的校准补偿值,并对所述第二目标天线中各天线对应的接收通道进行校准处理;
第四校准单元,用于当所述第二目标天线发射校准信号,所述第一目标天线接收校准信号时,根据所述第二目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的发射通道的校准补偿值,并对所述第二目标天线中各天线对应的发射通道进行校准处理;以及,根据所述第一目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的接收通道的校准补偿值,并对所述第一目标天线中各天线对应的接收通道进行校准处理。
结合本发明实施例第六方面,在本发明实施例第六方面的第一种可能的实施方式中,所述天线阵列中的天线发射的校准信号为正交频分复用OFDM信号,所述天线阵列中的各天线对应的子载波以传输梳Comb为M的方式进行频分,其中,M大于等于所述天线阵列中包含的天线的个数。
结合本发明实施例第六方面或第六方面的第一种可能的实施方式,在本发明实施例第六方面的第二种可能的实施方式中,所述第一目标天线为所述天线阵列中编号为奇数的天线,所述第二目标天线为所述天线阵列中编号为偶数的天线。
结合本发明实施例第六方面或第六方面的第一种可能的实施方式,在本发明实施例第六方面的第三种可能的实施方式中,所述第一目标天线为所述天线阵列中编号为偶数的天线,所述第二目标天线为所述天线阵列中编号为奇数的天线。
本发明实施例中,天线阵列设计过程中需保证天线阵列间耦合系数相近,通过在天线阵列中增设天线哑元,能够进一步保证天线阵列中相邻天线间的耦 合系数一致,从而能够实现利用天线空口耦合特性的天线阵列的一致性校准。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种天线阵列的校准方法的流程示意图;
图2是本发明实施例公开的一种基站设备工作原理图;
图3是本发明实施例公开的一种天线阵列的结构示意图;
图4是本发明实施例公开的另一种天线阵列的结构示意图;
图5是本发明实施例公开的一种天线间信号传输的过程示意图;
图6是本发明实施例公开的另一种天线阵列的校准方法的流程示意图;
图7是本发明实施例公开的又一种天线阵列的结构示意图;
图8是本发明实施例公开的一种天线阵列的校准装置的结构示意图;
图9是本发明实施例公开的另一种天线阵列的校准装置的结构示意图;
图10是本发明实施例公开的另一种天线阵列的校准装置的结构示意图;
图11是本发明实施例公开的又一种天线阵列的校准装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种天线阵列的校准方法及装置,能够利用天线空口耦合特性实现对天线阵列的一致性校准。以下分别进行详细说明。
请参阅图1,图1是本发明实施例公开的一种天线阵列的校准方法的流程示意图。其中,该天线阵列的校准方法可以应用于MassiveMIMO无线通信系统或雷达通信系统中,以实现对天线阵列的一致性校准。该天线阵列可以由第一 目标天线和第二目标天线组成,在天线阵列的一端增设第一天线哑元和第二天线哑元,且在天线阵列的另一端增设第三天线哑元和第四天线哑元;第一天线哑元和第四天线哑元可以用于接收校准信号,第二天线哑元和第三天线哑元可以用于发射校准信号,第一天线哑元的幅相响应与第四天线哑元的幅相响应相同,第二天线哑元的幅相响应与第三天线哑元的幅相响应相同,天线阵列中相邻天线间的耦合系数的差异值小于预设值。如图1所示,该天线阵列的校准方法可以包括以下步骤:
101、当天线阵列的第一目标天线发射校准信号,天线阵列的第二目标天线接收校准信号时,根据第一目标天线中各天线对应的发射通道的幅相响应以及第三天线哑元的幅相响应的差异值,分别确定第一目标天线中各天线对应的发射通道的校准补偿值,并对第一目标天线中各天线对应的发射通道进行校准处理。
本发明实施例中,天线阵列的校准装置可以先控制天线阵列的第一目标天线中各天线对应的发射通道开启,并发射校准信号,以及控制天线阵列的第二目标天线中各天线对应的接收通道开启,并接收校准信号;可以根据第一目标天线中各天线对应的发射通道的幅相响应以及第三天线哑元或第二天线哑元的幅相响应的差异值,分别计算出第一目标天线中各天线对应的发射通道的校准补偿值;并利用得到的第一目标天线中各天线对应的发射通道的校准补偿值分别对各自对应的发射通道进行校准处理,以使得第一目标天线中各天线对应的发射通道的幅相响应一致。本发明实施例中涉及的幅相响应也可以看作是幅相增益。
本发明实施例中,在天线阵列两端分别增设天线哑元,作为参考通道,其中,第一天线哑元可以与第四天线哑元相连,第二天线哑元可以与第三天线哑元相连。通过硬件设计可以保证相连的天线哑元的幅相响应保持一致,即第一天线哑元的幅相响应与第四天线哑元的幅相响应一致,第二天线哑元的幅相响应与第三天线哑元的幅相响应一致。
本发明实施例中,天线阵列中相邻天线间的耦合系数的差异值小于预设值,该预设值很小,可以近似为0,从而使得相邻天线间的耦合系数近似相同。通过在天线阵列两端增设天线哑元,能够进一步减小相邻天线间耦合系数的差异 值。
本发明实施例中,天线阵列的校准装置可以是基站设备,请参阅图2,图2是本发明实施例公开的一种基站设备工作原理图。如图2所示,该基站设备至少可以包括基带单元(Building Baseband Unit,BBU)和射频拉远单元(Radio Remote Unit,RRU),其中,基带单元将基带信号通过下行中射频通道经由天线发射出去,以及可以通过天线接收空口信号并经由上行中射频通道传输至基带单元并进行信号处理。这里,可以将下行中射频通道看作是天线对应的发射通道,上行中射频通道可以看作是天线对应的接收通道。每一天线可以对应有发射通道和接收通道,当需要发送信号时,则开启相应的发射通道;当需要接收信号时,则开启相应的接收通道。
本发明实施例中,第一目标天线中各天线对应的发射通道的幅相响应以及第三天线哑元的幅相响应的差异值可以是第一目标天线中相邻天线间发射通道的幅相响应的比值以及第三天线哑元的幅相响应与第一目标天线中与第三天线哑元相邻的天线对应的发射通道的幅相响应的比值。其中,第一目标天线中各天线对应的发射通道的校准补偿值可以是根据上述比值求得的。
102、根据第二目标天线中各天线对应的接收通道的幅相响应以及第四天线哑元的幅相响应的差异值,分别确定第二目标天线中各天线对应的接收通道的校准补偿值,并对第二目标天线中各天线对应的接收通道进行校准处理。
本发明实施例中,当第一目标天线发射校准信号,第二目标天线接收校准信号时,可以根据第二目标天线中各天线对应的接收通道的幅相响应以及第四天线哑元或第一天线哑元的幅相响应的差异值,分别计算出第二目标天线中各天线对应的接收通道的校准补偿值;并利用得到的第二目标天线中各天线对应的接收通道的校准补偿值分别对各自对应的接收通道进行校准处理,以使得第二目标天线中各天线对应的接收通道的幅相响应一致。
本发明实施例中,第二目标天线中各天线对应的接收通道的幅相响应以及第四天线哑元的幅相响应的差异值可以是第二目标天线中相邻天线间接收通道的幅相响应的比值以及第四天线哑元的幅相响应与第二目标天线中与第四天线哑元相邻的天线对应的接收通道的幅相响应的比值。其中,第二目标天线中各天线对应的接收通道的校准补偿值可以是根据上述比值求得的。
可以理解的是,步骤101可以先于步骤102执行,也可以后于步骤102执行,还可以与步骤102同步执行,本发明实施例不作限定。
103、当第二目标天线发射校准信号,第一目标天线接收校准信号时,根据第二目标天线中各天线对应的发射通道的幅相响应以及第二天线哑元的幅相响应的差异值,分别确定第二目标天线中各天线对应的发射通道的校准补偿值,并对第二目标天线中各天线对应的发射通道进行校准处理。
本发明实施例中,天线阵列的校准装置可以控制天线阵列的第二目标天线中的各天线对应的发射通道开启,并发射校准信号,以及控制天线阵列的第一目标天线中的各天线对应的接收通道开启,并接收校准信号。可以根据第二目标天线中各天线对应的发射通道的幅相响应以及第二天线哑元或第三天线哑元的幅相响应的差异值,分别计算出第二目标天线中各天线对应的发射通道的校准补偿值;并利用得到的第二目标天线中各天线对应的发射通道的校准补偿值分别对自身对应的发射通道进行校准处理,以使得第二目标天线中各天线对应的发射通道的幅相响应一致。
本发明实施例中,第二目标天线中各天线对应的发射通道的幅相响应以及第二天线哑元的幅相响应的差异值可以是第二目标天线中相邻天线间发射通道的幅相响应的比值以及第二天线哑元的幅相响应与第二目标天线中与第二天线哑元相邻的天线对应的发射通道的幅相响应的比值。其中,第二目标天线中各天线对应的发射通道的校准补偿值可以是根据上述比值求得的。
本发明实施例中,通过执行步骤101可以使得第一目标天线中各天线对应的发射通道的幅相响应一致,通过执行步骤103可以使得第二目标天线中各天线对应的发射通道的幅相响应一致,且由于第二天线哑元的幅相响应与第三天线的幅相响应相同,从而可以得出第一目标天线中各天线对应的发射通道的幅相响应与第二目标天线中各天线对应的发射通道的幅相响应也一致,即天线阵列包含的各天线对应的发射通道的幅相响应均一致,以实现对各天线发射通道的校准。
104、根据第一目标天线中各天线对应的接收通道的幅相响应以及第一天线哑元的幅相响应的差异值,分别确定第一目标天线中各天线对应的接收通道的校准补偿值,并对第一目标天线中各天线对应的接收通道进行校准处理。
本发明实施例中,当第二目标天线发射校准信号,第一目标天线接收校准信号时,可以根据第一目标天线中各天线对应的接收通道的幅相响应以及第一天线哑元或第四天线哑元的幅相响应的差异值,分别计算出第一目标天线中各天线对应的接收通道的校准补偿值;并利用得到的第一目标天线中各天线对应的接收通道的校准补偿值分别对各自对应的接收通道进行校准处理,以使得第一目标天线中各天线对应的接收通道的幅相响应一致。
本发明实施例中,第一目标天线中各天线对应的接收通道的幅相响应以及第一天线哑元的幅相响应的差异值可以是第一目标天线中相邻天线间接收通道的幅相响应的比值以及第一天线哑元的幅相响应与第一目标天线中与第一天线哑元相邻的天线对应的接收通道的幅相响应的比值。其中,第一目标天线中各天线对应的接收通道的校准补偿值可以是根据上述比值求得的。
可以理解的是,步骤103可以先于步骤104执行,也可以后于步骤104执行,还可以与步骤104同步执行,本发明实施例不作限定。
本发明实施例中,通过执行步骤102可以使得第二目标天线中各天线对应的接收通道的幅相响应一致,通过执行步骤104可以使得第一目标天线中各天线对应的接收通道的幅相响应一致,且由于第一天线哑元的幅相响应与第四天线的幅相响应相同,从而可以得出第一目标天线中各天线对应的接收通道的幅相响应与第二目标天线中各天线对应的接收通道的幅相响应也一致,即天线阵列包含的各天线对应的接收通道的幅相响应均一致,以实现对各天线接收通道的校准。
本发明实施例中,可以先控制第一目标天线发射校准信号,第二目标天线接收校准信号,也可以是先控制第二目标天线发射校准信号,第一目标天线接收校准信号,本发明实施例不作限定。
作为一种可选的实施方式,天线阵列中的天线发射的校准信号可以为OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)信号,且天线阵列中的各天线对应的子载波以传输梳Comb为N的方式进行频分,其中,N可以大于等于天线阵列中包含的天线的个数。
在该实施方式中,使用OFDM信号作为校准信号源,可以方便进行宽带信号的校准,在频域进行补偿。且最少仅需两个OFDM符号时间即可完成所有通 道的同时校准,校准时间短。此外,规定N大于等于天线阵列中包含的天线的个数,可以避免天线阵列中各天线之间的干扰。优选的,N可以为天线阵列中包含的天线的个数,从而可以避免资源的浪费。例如,一共32个数字通道,1通道占用1、33、65……等子载波,2通道占用2、34、66……等子载波,……,32通道占用32、64、96……等子载波,从而使得彼此之间互不干扰。
作为一种可选的实施方式,第一目标天线可以为天线阵列中编号为奇数的天线,第二目标天线可以为天线阵列中编号为偶数的天线。
下面以32根天线组成的天线阵列为例进行详细说明,请参阅图3,图3是本发明实施例公开的一种天线阵列的结构示意图。如图3所示,天线阵列由32根天线(如天线1、天线2、……、天线32)组成,且在天线阵列的两端分别增设了两个天线哑元,如图中所示的天线哑元1(即第一天线哑元)、天线哑元2(即第二天线哑元)、天线哑元3(即第三天线哑元)和天线哑元4(即第四天线哑元),且天线哑元1与天线哑元4相连,用于接收校准信号,天线哑元2与天线哑元3相连,用于发射校准信号。天线哑元通过硬件加工保证其幅相响应的一致性:Grx0=Grx33,Gtx0=Gtx33,其中,Grx0为天线哑元1的接收通道对应的幅相响应,Grx33为天线哑元4的接收通道对应的幅相响应,Gtx0为天线哑元2的发射通道对应的幅相响应,Gtx33为天线哑元3的发射通道对应的幅相响应。第一目标天线为编号是奇数的天线,即天线1、天线3、……、天线29、天线31,第二目标天线为编号是偶数的天线,即天线2、天线4、……、天线30、天线32。首先,控制第一目标天线、天线哑元2、天线哑元3发射校准信号,第二目标天线、天线哑元1、天线哑元4接收校准信号,通过预设算法计算可得:Ctx31=Gtx33/Gtx31,Ctx29=Gtx31/Gtx29,……,Ctx1=Gtx3/Gtx1,其中,Ctxn为奇数天线发射通道的校准补偿值,Gtxn为奇数天线发射通道对应的幅相响应,这里的n为1、3、5、……、31,可见,一个奇数天线发射通道的校准补偿值为与它相邻奇数天线发射通道对应的幅相响应与该奇数天线自身发射通道对应的幅相响应的比值。将求得的奇数天线发射通道的校准补偿值分别对各自的发射通道进行补偿后,使得各奇数发射通道的幅相响应一致。此外,对于偶数天线接收通道有:Crx32=Grx33/Grx32,Crx30=Grx32/Grx30,……,Crx2=Grx4/Grx2,其中,Crxn为偶数天线接收通道的校准补偿值,Grxn为偶数 天线接收通道对应的幅相响应,这里的n为2、4、6、……、32,可见,一个偶数天线接收通道的校准补偿值为与它相邻偶数天线接收通道对应的幅相响应与该偶数天线自身接收通道对应的幅相响应的比值。将求得的偶数天线接收通道的校准补偿值分别对各自的接收通道进行补偿后,使得各偶数天线接收通道的幅相响应一致。
进一步地,请参阅图4,图4是本发明实施例公开的另一种天线阵列的结构示意图。如图4所示,控制第二目标天线、天线哑元2、天线哑元3发射校准信号,第一目标天线、天线哑元1、天线哑元4接收校准信号,通过预设算法计算可得:Ctx2=Gtx0/Gtx2,Ctx4=Gtx2/Gtx4,……,Ctx32=Gtx30/Gtx32,其中,Ctxn为偶数天线发射通道的校准补偿值,Gtxn为偶数天线发射通道对应的幅相响应,这里的n为2、4、6、……、32,可见,一个偶数天线发射通道的校准补偿值为与它相邻偶数天线发射通道对应的幅相响应与该偶数天线自身发射通道对应的幅相响应的比值。将求得的偶数天线发射通道的校准补偿值分别对各自的发射通道进行补偿后,使得各偶数天线发射通道的幅相响应一致。此外,对于奇数天线接收通道有:Crx1=Grx0/Grx1,Crx3=Grx1/Grx3,……,Crx31=Grx29/Grx31,其中,Crxn为奇数天线接收通道的校准补偿值,Grxn为奇数天线接收通道对应的幅相响应,这里的n为1、3、5、……、31,可见,一个奇数天线接收通道的校准补偿值为与它相邻奇数天线接收通道对应的幅相响应与该奇数天线自身接收通道对应的幅相响应的比值。将求得的奇数天线接收通道的校准补偿值分别对各自的接收通道进行补偿后,使得各奇数天线接收通道的幅相响应一致。
由于天线哑元硬件加工时保证了Grx0=Grx33和Gtx0=Gtx33,可以使得奇数天线发射通道的幅相响应与偶数天线发射通道的幅相响应也一致,以及奇数天线接收通道的幅相响应与偶数天线接收通道的幅相响应也一致,即保证了天线阵列中所有发射通道的幅相响应一致以及所有接收通道的幅相响应一致。从而实现了天线的一致性校准。
具体地,下面将进一步描述各天线的校准补偿值的计算过程,以天线1对应的发射通道的校准补偿值为例进行说明。请参阅图5,图5是本发明实施例公开的一种天线间信号传输的过程示意图。如图5所示,天线1和天线3发射校准 信号,天线2和天线4接收校准信号,假设天线1发射的校准信号为Stx1,天线3发射的校准信号为Stx3,天线2接收到天线1的校准信号为Srx21,接收到天线3的校准信号为Srx23,可以有式一:Srx21/Stx1=Gtx1*H21*Grx2,式二:Srx23/Stx3=Gtx3*H23*Grx2,其中,H21为天线1与天线2间的无线信道幅相响应,H23为天线2与天线3间的无线信道幅相响应,由于天线阵列中相邻天线间的耦合系数差异较小,近似相同,则H21可以近似等于H23。将式二比上式一,可以得到(Srx23/Stx3)/(Srx21/Stx1)=Gtx3/Gtx1,从而可知Ctx1=Gtx3/Gtx1=(Srx23/Stx3)/(Srx21/Stx1),即天线1对应的发射通道的校准补偿值为(Srx23/Stx3)/(Srx21/Stx1)。按照上述计算方法,依次可以求得各天线的校准补偿值。
作为一种可选的实施方式,第一目标天线可以为天线阵列中编号为偶数的天线,第二目标天线可以为天线阵列中编号为奇数的天线。其具体的实施过程与上述过程相似,可以参考上述内容,在此不再赘述。
本发明实施例中,实施图1所描述的方法,通过在天线阵列的两端分别增设天线哑元,保证了相邻天线耦合系数的特性,避免因为边缘阵列相邻天线耦合特性不一致而导致的校准误差;此外,相连的天线哑元可以通过硬件加工保证幅相响应的一致性,给奇数和偶数通道的幅相响应对齐提供了可能性,从而实现了天线阵列的一致性校准,且在保证了一致性校准的基础上也满足互易性校准。
请参阅图6,图6是本发明实施例公开的另一种天线阵列的校准方法的流程示意图。其中,该天线阵列的校准方法可以应用于MassiveMIMO无线通信系统或雷达通信系统中,以实现对天线阵列的一致性校准。该天线阵列可以由第一目标天线和第二目标天线组成,在第一目标天线中的第一天线和第二目标天线中的第二天线之间增设一个接收耦合器件,在第一目标天线中的第三天线和第二目标天线中的第四天线之间增设一个发射耦合器件,接收耦合器件可以用于耦合校准信号并接收,发射耦合器件可以用于发射校准信号并耦合出去,天线阵列中相邻天线间的耦合系数的差异值小于预设值。如图6所示,该天线阵列的校准方法可以包括以下步骤:
601、控制第一天线和第二天线分别发射校准信号,利用接收耦合器件接 收校准信号。
602、根据接收耦合器件接收到的校准信号、第一天线发射的校准信号以及第二天线发射的校准信号,分别确定第一天线对应的发射通道的校准补偿值和第二天线对应的发射通道的校准补偿值,并分别对第一天线对应的发射通道和第二天线对应的发射通道进行校准处理,以使第一天线对应的发射通道的幅相响应与第二天线对应的发射通道的幅相响应一致。
本发明实施例中,天线阵列的校准装置可以控制第一目标天线中的第一天线和第二目标天线中的第二天线对应的发射通道开启,以发射校准信号,并利用连接于第一天线和第二天线的接收耦合器件将第一天线和第二天线发射的校准信号耦合下来并接收。可以根据接收耦合器件接收到的校准信号、第一天线发射的校准信号以及第二天线发射的校准信号来计算出第一天线发射通道的校准补偿值和第二天线发射通道的校准补偿值;利用第一天线发射通道的校准补偿值对第一天线的发射通道进行补偿,以及利用第二天线发射通道的校准补偿值对第二天线的发射通道进行补偿后,可以使得第一天线对应的发射通道的幅相响应与第二天线对应的发射通道的幅相响应一致。
本发明实施例中,天线阵列中相邻天线间的耦合系数的差异值小于预设值,该预设值很小,可以近似为0,从而使得相邻天线间的耦合系数近似相同。
603、利用发射耦合器件发射校准信号,控制第三天线和第四天线分别接收校准信号。
604、根据发射耦合器件发射的校准信号、第三天线接收到的校准信号以及第四天线接收到的校准信号,分别确定第三天线对应的接收通道的校准补偿值和第四天线对应的接收通道的校准补偿值,并分别对第三天线对应的接收通道和第四天线对应的接收通道进行校准处理,以使得第三天线对应的接收通道的幅相响应与第四天线对应的接收通道的幅相响应一致。
本发明实施例中,天线阵列的校准装置可以利用连接于第一目标天线中的第三天线和第二目标天线中的第四天线之间的发射耦合器件发射校准信号并将其耦合至第三天线和第四天线的接收通道上,并控制第三天线和第四天线对应的接收通道开启,以接收校准信号。可以根据发射耦合器件发射的校准信号、第三天线接收到的校准信号以及第四天线接收到的校准信号来计算出第三天 线接收通道的校准补偿值和第四天线接收通道的校准补偿值;利用第三天线接收通道的校准补偿值对第三天线的接收通道进行补偿,以及利用第四天线接收通道的校准补偿值对第四天线的接收通道进行补偿后,可以使得第三天线对应的接收通道的幅相响应与第四天线对应的接收通道的幅相响应一致。
可以理解的是,步骤601~602可以先于步骤603~604执行,也可以后于步骤603~604执行,还可以与步骤603~604执行交叉或同步执行,本发明实施例不作限定。
605、当第一目标天线发射校准信号,第二目标天线接收校准信号时,根据第一目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定第一目标天线中各天线对应的发射通道的校准补偿值,并对第一目标天线中各天线对应的发射通道进行校准处理;以及,根据第二目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定第二目标天线中各天线对应的接收通道的校准补偿值,并对第二目标天线中各天线对应的接收通道进行校准处理。
本发明实施例中,天线阵列的校准装置可以控制第一目标天线中各天线的发射通道开启,并发射校准信号,以及控制第二目标天线中各天线对应的接收通道开启,并接收校准信号。可以根据第一目标天线中各天线发射通道的幅相响应的差异值来确定第一目标天线中各天线发射通道的校准补偿值,以及根据第二目标天线中各天线接收通道的幅相响应的差异值来确定第二目标天线中各天线接收通道的校准补偿值;并利用第一目标天线中各天线发射通道的校准补偿值分别对各自对应的发射通道进行补偿,以使得第一目标天线中各天线发射通道的幅相响应一致,以及利用第二目标天线中各天线接收通道的校准补偿值分别对各自对应的接收通道进行补偿,以使得第二目标天线中各天线接收通道的幅相响应一致。
本发明实施例中,第一目标天线中各天线对应的发射通道的幅相响应的差异值可以是第一目标天线中相邻天线间发射通道的幅相响应的比值。其中,第一目标天线中各天线对应的发射通道的校准补偿值可以是根据第一目标天线中相邻天线间发射通道的幅相响应的比值求得的。第二目标天线中各天线对应的接收通道的幅相响应的差异值可以是第二目标天线中相邻天线间接收通道的幅相响应的比值。其中,第二目标天线中各天线对应的接收通道的校准补偿 值可以是根据第二目标天线中的相邻天线间的接收通道的幅相响应的比值求得的。
606、当第二目标天线发射校准信号,第一目标天线接收校准信号时,根据第二目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定第二目标天线中各天线对应的发射通道的校准补偿值,并对第二目标天线中各天线对应的发射通道进行校准处理;以及,根据第一目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定第一目标天线中各天线对应的接收通道的校准补偿值,并对第一目标天线中各天线对应的接收通道进行校准处理。
本发明实施例中,天线阵列的校准装置可以控制第二目标天线中各天线的发射通道开启,并发射校准信号,以及控制第一目标天线中的各天线的接收通道开启,并接收校准信号。可以根据第二目标天线中各天线发射通道的幅相响应的差异值来确定第二目标天线中各天线发射通道的校准补偿值,以及根据第一目标天线中的各天线的接收通道的幅相响应的差异值来确定第一目标天线中的各天线的接收通道的校准补偿值;并利用第二目标天线中各天线发射通道的校准补偿值对各自对应的发射通道进行补偿,以使得第二目标天线中各天线发射通道的幅相响应一致,以及利用第一目标天线中的各天线的接收通道的校准补偿值对各自对应的接收通道进行补偿,以使得第一目标天线中的各天线的接收通道的幅相响应一致。
本发明实施例中,第二目标天线中各天线对应的发射通道的幅相响应的差异值可以是第二目标天线中相邻天线间发射通道的幅相响应的比值。其中,第二目标天线中各天线对应的发射通道的校准补偿值可以是根据第二目标天线中的相邻天线间的发射通道的幅相响应的比值求得的。第一目标天线中各天线对应的接收通道的幅相响应的差异值可以是第一目标天线中相邻天线间接收通道的幅相响应的比值。其中,第一目标天线中各天线对应的接收通道的校准补偿值可以是根据第一目标天线中的相邻天线间的接收通道的幅相响应的比值求得的。
本发明实施例中,可以先控制第一目标天线发射校准信号,第二目标天线接收校准信号,也可以是先控制第二目标天线发射校准信号,第一目标天线接收校准信号,本发明实施例不作限定。
作为一种可选的实施方式,天线阵列中的天线发射的校准信号可以为OFDM信号,且天线阵列中的各天线对应的子载波以传输梳Comb为M的方式进行频分,其中,M可以大于等于天线阵列中包含的天线的个数。
其中,使用OFDM信号作为校准信号源,可以方便进行宽带信号的校准,在频域进行补偿。M大于等于天线阵列中包含的天线的个数,可以避免天线阵列中各天线之间的干扰。优选的,M可以为天线阵列中包含的天线的个数,从而可以避免资源的浪费。
作为一种可选的实施方式,第一目标天线可以为天线阵列中编号为奇数的天线,第二目标天线可以为天线阵列中编号为偶数的天线。
作为一种可选的实施方式,第一目标天线可以为天线阵列中编号为偶数的天线,第二目标天线可以为天线阵列中编号为奇数的天线。
下面以32根天线组成的天线阵列为例进行详细说明,请参阅图7,图7是本发明实施例公开的又一种天线阵列的结构示意图。如图7所示,天线阵列由32根天线(如天线1、天线2、……、天线32)组成,假设第一目标天线为编号为奇数的天线,即天线1、天线3、……、天线31,第二目标天线为编号为偶数的天线,即天线2、天线4、……、天线32,且在天线1(即第一天线)和天线2(即第二天线)之间增设了一个接收耦合器件,用于耦合校准信号并接收,在天线31(即第三天线)和天线32(即第四天线)之间增设一个发射耦合器件,用于发射校准信号并耦合出去。当天线1发射的校准信号为Stx1,天线2发射的校准信号为Stx2,接收耦合器件接收到天线1的校准信号为Srx01,接收到天线2的校准信号的Srx02,因此,可以有式一:Srx01/Stx1=Gtx1*H01*Grx0,式二:Srx02/Stx2=Gtx2*H02*Grx0,其中,Gtx1、Gtx2分别为天线1、天线2发射通道的幅相响应,H01为天线1与接收耦合器件间通信信道的幅相响应,H02为天线2与接收耦合器件间通信信道的幅相响应,由于接收耦合器件的H01和H02可以通过出厂测量做表获取,即可以是已知的,Grx0为接收耦合器件的接收通道的幅相响应。式一和式二相比后,可以计算出天线1和天线2发射通道的幅相响应的差异值为Gtx1/Gtx2=(Srx01/Stx1)/(Srx02/Stx2)*H02/H01,则可以得出天线1发射通道的校准补偿值为1,天线2发射通道的校准补偿值为Gtx1/Gtx2。按照各自对应的校准补偿值分别对天线1的发射通道和天线2的发射通道进行补 偿,使得天线1发射通道的幅相响应与天线2发射通道的幅相响应一致。同理,按照上述计算过程,可以得出天线31接收通道的幅相响应与天线32接收通道的幅相响应一致。
此外,计算第一目标天线中各天线发射通道的校准补偿值、各天线接收通道的校准补偿值以及第二目标天线中各天线接收通道的校准补偿值、各天线发射通道的校准补偿值,可以参考前一实施例中的计算过程,这里将不再赘述。利用计算出的第一目标天线中各天线发射通道的校准补偿值分别对各自对应的发射通道进行补偿后,可以使得第一目标天线中各天线发射通道的幅相响应一致;利用计算出的第二目标天线中各天线接收通道的校准补偿值分别对各自对应的接收通道进行补偿后,可以使得第二目标天线中各天线接收通道的幅相响应一致;利用计算出的第一目标天线中各天线接收通道的校准补偿值分别对各自对应的接收通道进行补偿后,可以使得第一目标天线中各天线接收通道的幅相响应一致;利用计算出的第二目标天线中各天线发射通道的校准补偿值分别对各自对应的发射通道进行补偿后,可以使得第二目标天线中各天线发射通道的幅相响应一致。由于天线1发射通道的幅相响应与天线2发射通道的幅相响应一致,且天线1属于第一目标天线,天线2属于第二目标天线,所以第一目标天线中各天线发射通道的幅相响应与第二目标天线中各天线发射通道的幅相响应一致,即天线阵列包含的各天线对应的发射通道的幅相响应均一致;此外,天线31接收通道的幅相响应与天线32接收通道的幅相响应一致,且天线31属于第一目标天线,天线32属于第二目标天线,所以第一目标天线中各天线接收通道的幅相响应与第二目标天线中各天线接收通道的幅相响应一致,即天线阵列包含的各天线对应的接收通道的幅相响应均一致。基于此,可以实现天线阵列的一致性校准。
本发明实施例中,实施图6所描述的方法,通过在天线阵列中增设射频耦合器件,保证了相邻天线耦合系数的特性,从而能够实现利用天线空口耦合特性的天线阵列的一致性校准,且在保证了一致性校准的基础上也满足互易性校准。
请参阅图8,图8是本发明实施例公开的一种天线阵列的校准装置的结构示 意图,可以用于执行本发明实施例公开的天线阵列的校准方法。如图8所示,该天线阵列的校准装置可以包括:
第一校准单元801,用于当天线阵列的第一目标天线发射校准信号,天线阵列的第二目标天线接收校准信号时,根据第一目标天线中各天线对应的发射通道的幅相响应以及第三天线哑元的幅相响应的差异值,分别确定第一目标天线中各天线对应的发射通道的校准补偿值,并对第一目标天线中各天线对应的发射通道进行校准处理,以使得第一目标天线中各天线对应的发射通道的幅相响应一致。
本发明实施例中,该天线阵列的校准装置校准的天线阵列可以由第一目标天线和第二目标天线组成,在天线阵列的一端增设第一天线哑元和第二天线哑元,且在天线阵列的另一端增设第三天线哑元和第四天线哑元,其中,第一天线哑元和第四天线哑元用于接收校准信号,第二天线哑元和第三天线哑元用于发射校准信号,第一天线哑元的幅相响应与第四天线哑元的幅相响应相同,第二天线哑元的幅相响应与第三天线哑元的幅相响应相同,且天线阵列中相邻天线间的耦合系数的差异值小于预设值,其中,预设值很小,可以近似为0,从而使得相邻天线间的耦合系数近似相同,通过在天线阵列两端增设天线哑元,能够进一步减小相邻天线间耦合系数的差异值。
本发明实施例中,第一目标天线中各天线对应的发射通道的幅相响应以及第三天线哑元的幅相响应的差异值可以是第一目标天线中相邻天线间发射通道的幅相响应的比值以及第三天线哑元的幅相响应与第一目标天线中与第一天线哑元相邻的天线对应的发射通道的幅相响应的比值。其中,第一目标天线中各天线对应的发射通道的校准补偿值可以是根据上述比值求得的。
第二校准单元802,用于根据第二目标天线中各天线对应的接收通道的幅相响应以及第四天线哑元的幅相响应的差异值,分别确定第二目标天线中各天线对应的接收通道的校准补偿值,并对第二目标天线中各天线对应的接收通道进行校准处理,以使得第二目标天线中各天线对应的接收通道的幅相响应一致。
本发明实施例中,第二目标天线中各天线对应的接收通道的幅相响应以及第四天线哑元的幅相响应的差异值可以是第二目标天线中相邻天线间接收通道的幅相响应的比值以及第四天线哑元的幅相响应与第二目标天线中与第四 天线哑元相邻的天线对应的接收通道的幅相响应的比值。其中,第二目标天线中各天线对应的接收通道的校准补偿值可以是根据上述比值求得的。
第三校准单元803,用于当第二目标天线发射校准信号,第一目标天线接收校准信号时,根据第二目标天线中各天线对应的发射通道的幅相响应以及第二天线哑元的幅相响应的差异值,分别确定第二目标天线中各天线对应的发射通道的校准补偿值,并对第二目标天线中各天线对应的发射通道进行校准处理,以使得第二目标天线中各天线对应的发射通道的幅相响应一致。
本发明实施例中,第二目标天线中各天线对应的发射通道的幅相响应以及第二天线哑元的幅相响应的差异值可以是第二目标天线中相邻天线间发射通道的幅相响应的比值以及第二天线哑元的幅相响应与第二目标天线中与第二天线哑元相邻的天线对应的发射通道的幅相响应的比值。其中,第二目标天线中各天线对应的发射通道的校准补偿值可以是根据上述比值求得的。
第四校准单元804,用于根据第一目标天线中各天线对应的接收通道的幅相响应以及第一天线哑元的幅相响应的差异值,分别确定第一目标天线中各天线对应的接收通道的校准补偿值,并对第一目标天线中各天线对应的接收通道进行校准处理,以使得第一目标天线中各天线对应的接收通道的幅相响应一致。
本发明实施例中,第一目标天线中各天线对应的接收通道的幅相响应以及第一天线哑元的幅相响应的差异值可以是第一目标天线中相邻天线间接收通道的幅相响应的比值以及第一天线哑元的幅相响应与第一目标天线中与第一天线哑元相邻的天线对应的接收通道的幅相响应的比值。其中,第一目标天线中各天线对应的接收通道的校准补偿值可以是根据上述比值求得的。
本发明实施例中,保证了第一目标天线中各天线对应的发射通道的幅相响应一致,以及第二目标天线中各天线对应的发射通道的幅相响应一致,且由于第二天线哑元的幅相响应与第三天线的幅相响应相同,从而可以得出第一目标天线中各天线对应的发射通道的幅相响应与第二目标天线中各天线对应的发射通道的幅相响应也一致,即天线阵列包含的各天线对应的发射通道的幅相响应均一致,以实现对各天线发射通道的校准。
本发明实施例中,保证了第二目标天线中各天线对应的接收通道的幅相响应一致,以及第一目标天线中各天线对应的接收通道的幅相响应一致,且由于 第一天线哑元的幅相响应与第四天线的幅相响应相同,从而可以得出第一目标天线中各天线对应的接收通道的幅相响应与第二目标天线中各天线对应的接收通道的幅相响应也一致,即天线阵列包含的各天线对应的接收通道的幅相响应均一致,以实现对各天线接收通道的校准。
作为一种可选的实施方式,天线阵列中的天线发射的校准信号可以为OFDM信号,且天线阵列中的各天线对应的子载波以传输梳Comb为N的方式进行频分,其中,N可以大于等于天线阵列中包含的天线的个数。
作为一种可选的实施方式,第一目标天线可以为天线阵列中编号为奇数的天线,第二目标天线可以为天线阵列中编号为偶数的天线。
作为一种可选的实施方式,第一目标天线可以为天线阵列中编号为偶数的天线,第二目标天线可以为天线阵列中编号为奇数的天线。
本发明实施例中,实施图8所示的天线阵列的校准装置,通过在天线阵列的两端分别增设天线哑元,保证了相邻天线耦合系数的特性,避免因为边缘阵列相邻天线耦合特性不一致而导致的校准误差;此外,相连的天线哑元可以通过硬件加工保证幅相响应的一致性,给奇数和偶数通道的幅相响应对齐提供了可能性,从而实现了天线阵列的一致性校准,且在保证了一致性校准的基础上也满足互易性校准。
请参阅图9,图9是本发明实施例公开的另一种天线阵列的校准装置的结构示意图,可以用于执行本发明实施例公开的天线阵列的校准方法。如图9所示,该天线阵列的校准装置可以包括:至少一个处理器901,至少一个收发信机902,天线阵列903,存储器904等组件。本领域技术人员可以理解,图9中示出的天线阵列的校准装置的结构并不构成对本发明实施例的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
本发明实施例中,处理器901为天线阵列的校准装置的控制中心,通过运行或执行存储在存储器904内的程序和/或模块,以及调用存储在存储器904内的数据,以执行天线阵列的校准装置的各种功能和处理数据。处理器901可以由集成电路(Integrated Circuit,简称IC)组成,例如可以由单颗封装的IC所组 成,也可以由连接多颗相同功能或不同功能的封装IC而组成。举例来说,处理器901可以为包括应用处理器、基带处理器、数字信号处理器(Digital Signal Processor,简称DSP)、图像处理器(Graphic Processing Unit,简称GPU)等在内的SOC芯片,也可以是只用于基带信号处理的基带处理器或者特定用途ASIC(Application Specific Integrated Circuit,专用集成电路)等。
本发明实施例中,收发信机902可以用于接收空口信号和发射射频信号。
本发明实施例中,天线阵列903由第一目标天线和第二目标天线组成,且在天线阵列的一端增设了第一天线哑元和第二天线哑元(图9中未示出),在天线阵列903的另一端增设了第三天线哑元和第四天线哑元(图9中未示出)。其中,第一天线哑元和第四天线哑元用于接收校准信号,第二天线哑元和第三天线哑元用于发射校准信号,第一天线哑元的幅相响应与第四天线哑元的幅相响应相同,第二天线哑元的幅相响应与第三天线哑元的幅相响应相同,天线阵列903中相邻天线间的耦合系数的差异值小于预设值。
本发明实施例中,存储器904可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器904可选的还可以是至少一个位于远离前述处理器901的存储装置。如图9所示,存储器904中可以包括通信协议、应用程序和数据等,本发明实施例不作限定。
在图9所示的天线阵列的校准装置中,处理器901可以用于调用存储器904中存储的应用程序以执行以下操作:
当控制收发信机902利用天线阵列903中的第一目标天线发射校准信号,且利用天线阵列903中的第二目标天线接收校准信号时,根据第一目标天线中各天线对应的发射通道的幅相响应以及第三天线哑元的幅相响应的差异值,分别确定第一目标天线中各天线对应的发射通道的校准补偿值,并对第一目标天线中各天线对应的发射通道进行校准处理;以及,
根据第二目标天线中各天线对应的接收通道的幅相响应以及第四天线哑元的幅相响应的差异值,分别确定第二目标天线中各天线对应的接收通道的校准补偿值,并对第二目标天线中各天线对应的接收通道进行校准处理;
当控制收发信机902利用天线阵列903中的第二目标天线发射校准信号,且 利用天线阵列903中的第一目标天线接收校准信号时,根据第二目标天线中各天线对应的发射通道的幅相响应以及第二天线哑元的幅相响应的差异值,分别确定第二目标天线中各天线对应的发射通道的校准补偿值,并对第二目标天线中各天线对应的发射通道进行校准处理;以及,
根据第一目标天线中各天线对应的接收通道的幅相响应以及第一天线哑元的幅相响应的差异值,分别确定第一目标天线中各天线对应的接收通道的校准补偿值,并对第一目标天线中各天线对应的接收通道进行校准处理。
作为一种可选的实施方式,天线阵列903中的天线发射的校准信号为正交频分复用OFDM信号,天线阵列903中的各天线对应的子载波以传输梳Comb为N的方式进行频分,其中,N大于等于天线阵列903中包含的天线的个数。
作为一种可选的实施方式,第一目标天线为天线阵列903中编号为奇数的天线,第二目标天线为天线阵列903中编号为偶数的天线。
作为一种可选的实施方式,第一目标天线为天线阵列903中编号为偶数的天线,第二目标天线为天线阵列903中编号为奇数的天线。
具体地,本发明实施例中介绍的天线阵列的校准装置可以实施本发明结合图1介绍的天线阵列的校准方法实施例中的部分或全部流程。
本发明实施例中,实施图9所示的天线阵列的校准装置,通过在天线阵列的两端分别增设天线哑元,保证了相邻天线耦合系数的特性,避免因为边缘阵列相邻天线耦合特性不一致而导致的校准误差;此外,相连的天线哑元可以通过硬件加工保证幅相响应的一致性,给奇数和偶数通道的幅相响应对齐提供了可能性,从而实现了天线阵列的一致性校准,且在保证了一致性校准的基础上也满足互易性校准。
请参阅图10,图10是本发明实施例公开的另一种天线阵列的校准装置的结构示意图,可以用于执行本发明实施例公开的天线阵列的校准方法。如图10所示,该天线阵列的校准装置可以包括:
第一控制单元1001,用于控制第一天线和第二天线分别发射校准信号,利用接收耦合器件接收校准信号。
第一校准单元1002,用于根据接收耦合器件接收到的校准信号、第一天线 发射的校准信号以及第二天线发射的校准信号,分别确定第一天线对应的发射通道的校准补偿值和第二天线对应的发射通道的校准补偿值,并分别对第一天线对应的发射通道和第二天线对应的发射通道进行校准处理,以使第一天线对应的发射通道的幅相响应与第二天线对应的发射通道的幅相响应一致。
第二控制单元1003,用于利用发射耦合器件发射校准信号,控制第三天线和第四天线分别接收校准信号。
第二校准单元1004,用于根据发射耦合器件发射的校准信号、第三天线接收到的校准信号以及第四天线接收到的校准信号,分别确定第三天线对应的接收通道的校准补偿值和第四天线对应的接收通道的校准补偿值,并分别对第三天线对应的接收通道和第四天线对应的接收通道进行校准处理,以使得第三天线对应的接收通道的幅相响应与第四天线对应的接收通道的幅相响应一致。
本发明实施例中,该天线阵列的校准装置校准的天线阵列可以由第一目标天线和第二目标天线组成,且在第一目标天线中的第一天线和第二目标天线中的第二天线之间增设一个接收耦合器件,在第一目标天线中的第三天线和第二目标天线中的第四天线之间增设一个发射耦合器件,接收耦合器件可以用于将第一天线和第二天线发射的校准信号耦合下来并接收,发射耦合器件可以用于发射校准信号并将其耦合至第三天线和第四天线的接收通道上,天线阵列中相邻天线间的耦合系数的差异值小于预设值,其中,该预设值很小,可以近似为0,从而使得相邻天线间的耦合系数近似相同。
第三校准单元1005,用于当第一目标天线发射校准信号,第二目标天线接收校准信号时,根据第一目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定第一目标天线中各天线对应的发射通道的校准补偿值,并对第一目标天线中各天线对应的发射通道进行校准处理;以及,根据第二目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定第二目标天线中各天线对应的接收通道的校准补偿值,并对第二目标天线中各天线对应的接收通道进行校准处理。
第四校准单元1006,用于当第二目标天线发射校准信号,第一目标天线接收校准信号时,根据第二目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定第二目标天线中各天线对应的发射通道的校准补偿值,并对第二 目标天线中各天线对应的发射通道进行校准处理;以及,根据第一目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定第一目标天线中各天线对应的接收通道的校准补偿值,并对第一目标天线中各天线对应的接收通道进行校准处理。
本发明实施例中,第三校准单元1005利用第一目标天线中各天线对应的发射通道的校准补偿值分别对各自对应的发射通道进程校准处理后,可以使得第一目标天线中各天线对应的发射通道的幅相响应一致;以及利用第二目标天线中各天线对应的接收通道的校准补偿值分别对各自对应的接收通道进行校准处理后,可以使得第二目标天线中各天线对应的接收通道的幅相响应一致。
本发明实施例中,第四校准单元1006利用第二目标天线中各天线对应的发射通道的校准补偿值分别对各自对应的发射通道进行校准处理后,可以使得第二目标天线中各天线对应的发射通道的幅相响应一致;以及利用第一目标天线中各天线对应的接收通道的校准补偿值分别对各自对应的接收通道进行校准处理后,可以使得第一目标天线中各天线对应的接收通道的幅相响应一致。
本发明实施例中,由于第一校准单元1002使得第一天线对应的发射通道的幅相响应与第二天线对应的发射通道的幅相响应一致,第一天线属于第一目标天线,第二天线属于第二目标天线,所以第一目标天线中各天线对应的发射通道的幅相响应与第二目标天线中各天线对应的发射通道的幅相响应一致,即天线阵列中所有天线的发射通道的幅相响应一致。且第二校准单元1004使得第三天线对应的接收通道的幅相响应与第四天线对应的接收通道的幅相响应一致,第三天线属于第一目标天线,第四天线属于第二目标天线,所以第一目标天线中各天线对应的接收通道的幅相响应与第二目标天线中各天线对应的接收通道的幅相响应一致。基于此,可以实现天线阵列的一致性校准。
作为一种可选的实施方式,天线阵列中的天线发射的校准信号可以为OFDM信号,且天线阵列中的各天线对应的子载波以传输梳Comb为M的方式进行频分,其中,M可以大于等于天线阵列中包含的天线的个数。
作为一种可选的实施方式,第一目标天线可以为天线阵列中编号为奇数的天线,第二目标天线可以为天线阵列中编号为偶数的天线。
作为一种可选的实施方式,第一目标天线可以为天线阵列中编号为偶数的 天线,第二目标天线可以为天线阵列中编号为奇数的天线。
本发明实施例中,实施图10所示的天线阵列的校准装置,通过在天线阵列中增设射频耦合器件,保证了相邻天线耦合系数的特性,从而能够实现利用天线空口耦合特性的天线阵列的一致性校准,且在保证了一致性校准的基础上也满足互易性校准。
请参阅图11,图11是本发明实施例公开的又一种天线阵列的校准装置的结构示意图,可以用于执行本发明实施例公开的天线阵列的校准方法。如图11所示,该天线阵列的校准装置可以包括:至少一个处理器1101,至少一个收发信机1102,天线阵列1103,存储器1104等组件。本领域技术人员可以理解,图11中示出的天线阵列的校准装置的结构并不构成对本发明实施例的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
本发明实施例中,处理器1101为天线阵列的校准装置的控制中心,通过运行或执行存储在存储器1104内的程序和/或模块,以及调用存储在存储器1104内的数据,以执行天线阵列的校准装置的各种功能和处理数据。处理器1101可以由集成电路IC组成,例如可以由单颗封装的IC所组成,也可以由连接多颗相同功能或不同功能的封装IC而组成。举例来说,处理器1101可以为包括应用处理器、基带处理器、数字信号处理器DSP、图像处理器GPU等在内的SOC芯片,也可以是只用于基带信号处理的基带处理器或者特定用途ASIC等。
本发明实施例中,收发信机1102可以用于接收空口信号和发射射频信号。
本发明实施例中,天线阵列1103由第一目标天线和第二目标天线组成,且在第一目标天线中的第一天线和第二目标天线中的第二天线之间增设一个接收耦合器件(图11中未示出),在第一目标天线中的第三天线和第二目标天线中的第四天线之间增设一个发射耦合器件(图11中未示出)。其中,接收耦合器件可以用于耦合校准信号并接收,发射耦合器件可以用于发射校准信号并耦合出去,天线阵列1103中相邻天线间的耦合系数的差异值小于预设值。
本发明实施例中,存储器1104可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1104可选 的还可以是至少一个位于远离前述处理器1101的存储装置。如图11所示,存储器1104中可以包括通信协议、应用程序和数据等,本发明实施例不作限定。
在图11所示的天线阵列的校准装置中,处理器1101可以用于调用存储器1104中存储的应用程序以执行以下操作:
控制收发信机1102利用天线阵列1103中的第一天线和第二天线分别发射校准信号,利用接收耦合器件接收校准信号;
根据接收耦合器件接收到的校准信号、第一天线发射的校准信号以及第二天线发射的校准信号,分别确定第一天线对应的发射通道的校准补偿值和第二天线对应的发射通道的校准补偿值,并分别对第一天线对应的发射通道和第二天线对应的发射通道进行校准处理,以使第一天线对应的发射通道的幅相响应与第二天线对应的发射通道的幅相响应一致;
利用发射耦合器件发射校准信号,控制收发信机1102利用天线阵列1103中的第三天线和第四天线分别接收校准信号;
根据发射耦合器件发射的校准信号、第三天线接收到的校准信号以及第四天线接收到的校准信号,分别确定第三天线对应的接收通道的校准补偿值和第四天线对应的接收通道的校准补偿值,并分别对第三天线对应的接收通道和第四天线对应的接收通道进行校准处理,以使得第三天线对应的接收通道的幅相响应与第四天线对应的接收通道的幅相响应一致;
当控制收发信机1102利用天线阵列1103中的第一目标天线发射校准信号,以及利用天线阵列1103中的第二目标天线接收校准信号时,根据第一目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定第一目标天线中各天线对应的发射通道的校准补偿值,并对第一目标天线中各天线对应的发射通道进行校准处理;以及,
根据第二目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定第二目标天线中各天线对应的接收通道的校准补偿值,并对第二目标天线中各天线对应的接收通道进行校准处理;
当控制收发信机1102利用天线阵列1103中的第二目标天线发射校准信号,以及利用天线阵列1103中的第一目标天线接收校准信号时,根据第二目标天线 中各天线对应的发射通道的幅相响应的差异值,分别确定第二目标天线中各天线对应的发射通道的校准补偿值,并对第二目标天线中各天线对应的发射通道进行校准处理;以及,
根据第一目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定第一目标天线中各天线对应的接收通道的校准补偿值,并对第一目标天线中各天线对应的接收通道进行校准处理。
作为一种可选的实施方式,天线阵列1103中的天线发射的校准信号为正交频分复用OFDM信号,天线阵列1103中的各天线对应的子载波以传输梳Comb为M的方式进行频分,其中,M大于等于天线阵列1103中包含的天线的个数。
作为一种可选的实施方式,第一目标天线为天线阵列1103中编号为奇数的天线,第二目标天线为天线阵列1103中编号为偶数的天线。
作为一种可选的实施方式,第一目标天线为天线阵列1103中编号为偶数的天线,第二目标天线为天线阵列1103中编号为奇数的天线。
具体地,本发明实施例中介绍的天线阵列的校准装置可以实施本发明结合图6介绍的天线阵列的校准方法实施例中的部分或全部流程。
本发明实施例中,实施图11所示的天线阵列的校准装置,通过在天线阵列中增设射频耦合器件,保证了相邻天线耦合系数的特性,从而能够实现利用天线空口耦合特性的天线阵列的一致性校准,且在保证了一致性校准的基础上也满足互易性校准。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本发明实施例的方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例的装置中的单元可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本发明实施例所提供的天线阵列的校准方法及装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (16)

  1. 一种天线阵列的校准方法,其特征在于,天线阵列由第一目标天线和第二目标天线组成,在所述天线阵列的一端增设第一天线哑元和第二天线哑元,且在所述天线阵列的另一端增设第三天线哑元和第四天线哑元,其中,所述第一天线哑元和所述第四天线哑元用于接收校准信号,所述第二天线哑元和所述第三天线哑元用于发射校准信号,所述第一天线哑元的幅相响应与所述第四天线哑元的幅相响应相同,所述第二天线哑元的幅相响应与所述第三天线哑元的幅相响应相同,所述天线阵列中相邻天线间的耦合系数的差异值小于预设值,所述方法包括:
    当所述第一目标天线发射校准信号,所述第二目标天线接收校准信号时,根据所述第一目标天线中各天线对应的发射通道的幅相响应以及所述第三天线哑元的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的发射通道的校准补偿值,并对所述第一目标天线中各天线对应的发射通道进行校准处理;以及,
    根据所述第二目标天线中各天线对应的接收通道的幅相响应以及所述第四天线哑元的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的接收通道的校准补偿值,并对所述第二目标天线中各天线对应的接收通道进行校准处理;
    当所述第二目标天线发射校准信号,所述第一目标天线接收校准信号时,根据所述第二目标天线中各天线对应的发射通道的幅相响应以及所述第二天线哑元的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的发射通道的校准补偿值,并对所述第二目标天线中各天线对应的发射通道进行校准处理;以及,
    根据所述第一目标天线中各天线对应的接收通道的幅相响应以及所述第一天线哑元的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的接收通道的校准补偿值,并对所述第一目标天线中各天线对应的接收通道进行校准处理。
  2. 根据权利要求1所述的方法,其特征在于,所述天线阵列中的天线发射 的校准信号为正交频分复用OFDM信号,所述天线阵列中的各天线对应的子载波以传输梳Comb为N的方式进行频分,其中,N大于等于所述天线阵列中包含的天线的个数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一目标天线为所述天线阵列中编号为奇数的天线,所述第二目标天线为所述天线阵列中编号为偶数的天线。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一目标天线为所述天线阵列中编号为偶数的天线,所述第二目标天线为所述天线阵列中编号为奇数的天线。
  5. 一种天线阵列的校准方法,其特征在于,天线阵列由第一目标天线和第二目标天线组成,在所述第一目标天线中的第一天线和所述第二目标天线中的第二天线之间增设一个接收耦合器件,在所述第一目标天线中的第三天线和所述第二目标天线中的第四天线之间增设一个发射耦合器件,所述接收耦合器件用于耦合校准信号并接收,所述发射耦合器件用于发射校准信号并耦合出去,所述天线阵列中相邻天线间的耦合系数的差异值小于预设值,所述方法包括:
    控制所述第一天线和所述第二天线分别发射校准信号,利用所述接收耦合器件接收校准信号;
    根据所述接收耦合器件接收到的校准信号、所述第一天线发射的校准信号以及所述第二天线发射的校准信号,分别确定所述第一天线对应的发射通道的校准补偿值和所述第二天线对应的发射通道的校准补偿值,并分别对所述第一天线对应的发射通道和所述第二天线对应的发射通道进行校准处理,以使所述第一天线对应的发射通道的幅相响应与所述第二天线对应的发射通道的幅相响应一致;
    利用所述发射耦合器件发射校准信号,控制所述第三天线和所述第四天线分别接收校准信号;
    根据所述发射耦合器件发射的校准信号、所述第三天线接收到的校准信号 以及所述第四天线接收到的校准信号,分别确定所述第三天线对应的接收通道的校准补偿值和所述第四天线对应的接收通道的校准补偿值,并分别对所述第三天线对应的接收通道和所述第四天线对应的接收通道进行校准处理,以使得所述第三天线对应的接收通道的幅相响应与所述第四天线对应的接收通道的幅相响应一致;
    当所述第一目标天线发射校准信号,所述第二目标天线接收校准信号时,根据所述第一目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的发射通道的校准补偿值,并对所述第一目标天线中各天线对应的发射通道进行校准处理;以及,
    根据所述第二目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的接收通道的校准补偿值,并对所述第二目标天线中各天线对应的接收通道进行校准处理;
    当所述第二目标天线发射校准信号,所述第一目标天线接收校准信号时,根据所述第二目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的发射通道的校准补偿值,并对所述第二目标天线中各天线对应的发射通道进行校准处理;以及,
    根据所述第一目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的接收通道的校准补偿值,并对所述第一目标天线中各天线对应的接收通道进行校准处理。
  6. 根据权利要求5所述的方法,其特征在于,所述天线阵列中的天线发射的校准信号为正交频分复用OFDM信号,所述天线阵列中的各天线对应的子载波以传输梳Comb为M的方式进行频分,其中,M大于等于所述天线阵列中包含的天线的个数。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一目标天线为所述天线阵列中编号为奇数的天线,所述第二目标天线为所述天线阵列中编号为偶数的天线。
  8. 根据权利要求5或6所述的方法,其特征在于,所述第一目标天线为所述天线阵列中编号为偶数的天线,所述第二目标天线为所述天线阵列中编号为奇数的天线。
  9. 一种天线阵列的校准装置,其特征在于,包括:处理器、存储器、天线阵列、第一天线哑元、第二天线哑元、第三天线哑元和第四天线哑元;其中,所述天线阵列由第一目标天线和第二目标天线组成,所述第一天线哑元和所述第四天线哑元用于接收校准信号,所述第二天线哑元和所述第三天线哑元用于发射校准信号,所述第一天线哑元的幅相响应与所述第四天线哑元的幅相响应相同,所述第二天线哑元的幅相响应与所述第三天线哑元的幅相响应相同,所述天线阵列中相邻天线间的耦合系数的差异值小于预设值,所述存储器用于存储程序和数据,所述处理器用于调用所述存储器存储的程序,执行如下步骤:
    当所述第一目标天线发射校准信号,所述第二目标天线接收校准信号时,根据所述第一目标天线中各天线对应的发射通道的幅相响应以及所述第三天线哑元的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的发射通道的校准补偿值,并对所述第一目标天线中各天线对应的发射通道进行校准处理;以及,
    根据所述第二目标天线中各天线对应的接收通道的幅相响应以及所述第四天线哑元的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的接收通道的校准补偿值,并对所述第二目标天线中各天线对应的接收通道进行校准处理;
    当所述第二目标天线发射校准信号,所述第一目标天线接收校准信号时,根据所述第二目标天线中各天线对应的发射通道的幅相响应以及所述第二天线哑元的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的发射通道的校准补偿值,并对所述第二目标天线中各天线对应的发射通道进行校准处理;以及,
    根据所述第一目标天线中各天线对应的接收通道的幅相响应以及所述第一天线哑元的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的接收通道的校准补偿值,并对所述第一目标天线中各天线对应的接收通道进行 校准处理。
  10. 根据权利要求9所述的装置,其特征在于,所述天线阵列中的天线发射的校准信号为正交频分复用OFDM信号,所述天线阵列中的各天线对应的子载波以传输梳Comb为N的方式进行频分,其中,N大于等于所述天线阵列中包含的天线的个数。
  11. 根据权利要求9或10所述的装置,其特征在于,所述第一目标天线为所述天线阵列中编号为奇数的天线,所述第二目标天线为所述天线阵列中编号为偶数的天线。
  12. 根据权利要求9或10所述的装置,其特征在于,所述第一目标天线为所述天线阵列中编号为偶数的天线,所述第二目标天线为所述天线阵列中编号为奇数的天线。
  13. 一种天线阵列的校准装置,其特征在于,包括:处理器、存储器、天线阵列、接收耦合器件和发射耦合器件;其中,所述天线阵列由第一目标天线和第二目标天线组成,所述接收耦合器件分别连接所述第一目标天线中的第一天线和所述第二目标天线中的第二天线,用于耦合校准信号并接收,所述发射耦合器件分别连接所述第一目标天线中的第三天线和所述第二目标天线中的第四天线,用于发射校准信号并耦合出去,所述天线阵列中相邻天线间的耦合系数的差异值小于预设值,所述存储器用于存储程序和数据,所述处理器用于调用所述存储器存储的程序,执行如下步骤:
    控制所述第一天线和所述第二天线分别发射校准信号,利用所述接收耦合器件接收校准信号;
    根据所述接收耦合器件接收到的校准信号、所述第一天线发射的校准信号以及所述第二天线发射的校准信号,分别确定所述第一天线对应的发射通道的校准补偿值和所述第二天线对应的发射通道的校准补偿值,并分别对所述第一天线对应的发射通道和所述第二天线对应的发射通道进行校准处理,以使所述 第一天线对应的发射通道的幅相响应与所述第二天线对应的发射通道的幅相响应一致;
    利用所述发射耦合器件发射校准信号,控制所述第三天线和所述第四天线分别接收校准信号;
    根据所述发射耦合器件发射的校准信号、所述第三天线接收到的校准信号以及所述第四天线接收到的校准信号,分别确定所述第三天线对应的接收通道的校准补偿值和所述第四天线对应的接收通道的校准补偿值,并分别对所述第三天线对应的接收通道和所述第四天线对应的接收通道进行校准处理,以使得所述第三天线对应的接收通道的幅相响应与所述第四天线对应的接收通道的幅相响应一致;
    当所述第一目标天线发射校准信号,所述第二目标天线接收校准信号时,根据所述第一目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的发射通道的校准补偿值,并对所述第一目标天线中各天线对应的发射通道进行校准处理;以及,
    根据所述第二目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的接收通道的校准补偿值,并对所述第二目标天线中各天线对应的接收通道进行校准处理;
    当所述第二目标天线发射校准信号,所述第一目标天线接收校准信号时,根据所述第二目标天线中各天线对应的发射通道的幅相响应的差异值,分别确定所述第二目标天线中各天线对应的发射通道的校准补偿值,并对所述第二目标天线中各天线对应的发射通道进行校准处理;以及,
    根据所述第一目标天线中各天线对应的接收通道的幅相响应的差异值,分别确定所述第一目标天线中各天线对应的接收通道的校准补偿值,并对所述第一目标天线中各天线对应的接收通道进行校准处理。
  14. 根据权利要求13所述的装置,其特征在于,所述天线阵列中的天线发射的校准信号为正交频分复用OFDM信号,所述天线阵列中的各天线对应的子载波以传输梳Comb为M的方式进行频分,其中,M大于等于所述天线阵列中包含的天线的个数。
  15. 根据权利要求13或14所述的装置,其特征在于,所述第一目标天线为所述天线阵列中编号为奇数的天线,所述第二目标天线为所述天线阵列中编号为偶数的天线。
  16. 根据权利要求13或14所述的装置,其特征在于,所述第一目标天线为所述天线阵列中编号为偶数的天线,所述第二目标天线为所述天线阵列中编号为奇数的天线。
PCT/CN2016/092466 2016-07-30 2016-07-30 一种天线阵列的校准方法及装置 WO2018023214A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680064075.3A CN108352908B (zh) 2016-07-30 2016-07-30 一种天线阵列的校准方法及装置
PCT/CN2016/092466 WO2018023214A1 (zh) 2016-07-30 2016-07-30 一种天线阵列的校准方法及装置
EP16910812.3A EP3484070B1 (en) 2016-07-30 2016-07-30 Method and device for calibrating antenna array
US16/261,056 US10432327B2 (en) 2016-07-30 2019-01-29 Antenna array calibration method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092466 WO2018023214A1 (zh) 2016-07-30 2016-07-30 一种天线阵列的校准方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/261,056 Continuation US10432327B2 (en) 2016-07-30 2019-01-29 Antenna array calibration method and apparatus

Publications (1)

Publication Number Publication Date
WO2018023214A1 true WO2018023214A1 (zh) 2018-02-08

Family

ID=61072179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092466 WO2018023214A1 (zh) 2016-07-30 2016-07-30 一种天线阵列的校准方法及装置

Country Status (4)

Country Link
US (1) US10432327B2 (zh)
EP (1) EP3484070B1 (zh)
CN (1) CN108352908B (zh)
WO (1) WO2018023214A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055058A (zh) * 2019-12-27 2021-06-29 中兴通讯股份有限公司 一种基站、多天线收发装置及其控制方法
CN115865230A (zh) * 2023-02-17 2023-03-28 成都熵泱科技有限公司 幅相测试方法及设备、电磁信号收发系统、幅相校准方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180062260A1 (en) 2016-08-26 2018-03-01 Analog Devices Global Antenna array calibration systems and methods
US11177567B2 (en) * 2018-02-23 2021-11-16 Analog Devices Global Unlimited Company Antenna array calibration systems and methods
US11349208B2 (en) 2019-01-14 2022-05-31 Analog Devices International Unlimited Company Antenna apparatus with switches for antenna array calibration
US11404779B2 (en) 2019-03-14 2022-08-02 Analog Devices International Unlimited Company On-chip phased array calibration systems and methods
CN110429994B (zh) * 2019-07-29 2021-09-14 上海磐启微电子有限公司 基于偶数根天线的均匀圆阵幅相误差自校正装置及方法
CN110518990B (zh) * 2019-08-19 2021-10-22 深圳创维数字技术有限公司 多天线WiFi产品的校准方法、系统及计算机可读存储介质
US11450952B2 (en) 2020-02-26 2022-09-20 Analog Devices International Unlimited Company Beamformer automatic calibration systems and methods
CN111490835B (zh) * 2020-03-05 2022-08-26 西安宇飞电子技术有限公司 一种窄带信号自校准方法、装置及设备
CN111596274A (zh) * 2020-06-09 2020-08-28 成都微联云智科技有限责任公司 一种圆阵天线实时校准方法
US11115136B1 (en) * 2020-07-10 2021-09-07 Lg Electronics Inc. Method for calibrating an array antenna in a wireless communication system and apparatus thereof
US11212016B1 (en) * 2020-09-11 2021-12-28 Xilinx, Inc. Distribution of inter/intra calibration signals for antenna beamforming signals
CN114252707B (zh) * 2020-09-23 2024-03-15 上海华为技术有限公司 一种阵列天线校准装置、方法及系统
CN112566257B (zh) * 2020-12-02 2022-09-20 网络通信与安全紫金山实验室 时分双工无蜂窝分布式mimo系统的实现方法、基站及系统
CN112881992B (zh) * 2021-02-25 2022-02-11 四川九洲电器集团有限责任公司 一种通道幅相一致性自检方法、装置及计算机设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623805A (zh) * 2012-04-11 2012-08-01 电子科技大学 一种基于互耦控制的低成本相控阵天线
US20130016003A1 (en) * 2011-07-11 2013-01-17 Sony Corporation Beam forming device and method using frequency-dependent calibration
CN103916168A (zh) * 2013-01-04 2014-07-09 中国移动通信集团公司 一种天线校准方法及装置
CN104954083A (zh) * 2015-06-16 2015-09-30 上海华为技术有限公司 一种天线阵列校准的方法、装置及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8280430B2 (en) 2005-11-02 2012-10-02 Qualcomm Incorporated Antenna array calibration for multi-input multi-output wireless communication systems
CN101479885B (zh) * 2006-06-27 2013-02-06 爱尔兰梅努斯国立大学 天线阵列校准
US7714775B2 (en) * 2007-12-17 2010-05-11 The Boeing Company Method for accurate auto-calibration of phased array antennas
GB2465752B (en) * 2008-11-26 2012-11-14 Ubidyne Inc A calibration apparatus and a method for generating at least one calibration signal for an antenna array
CN102315868B (zh) 2010-07-08 2014-09-10 中兴通讯股份有限公司 一种分布式基站的天线校正方法及系统
CN102683899B (zh) * 2012-05-19 2014-09-17 中国电子科技集团公司第十研究所 相控阵天线它元矢量旋转校准方法
CN103475395A (zh) 2012-06-06 2013-12-25 中兴通讯股份有限公司 一种天线校正方法、装置和系统
CN102857309B (zh) * 2012-07-27 2016-09-28 中兴通讯股份有限公司 一种有源天线系统射频指标的测试方法和装置
TWI540792B (zh) * 2014-11-14 2016-07-01 亞東技術學院 天線系統的遠場調校系統
CN104601257B (zh) 2015-01-14 2017-03-29 东南大学 一种时分双工通信模式下多天线系统的互易性校准方法
CN105467371A (zh) * 2015-12-03 2016-04-06 中国电子科技集团公司第二十研究所 半封闭回路耦合的相控阵通道幅相校准装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130016003A1 (en) * 2011-07-11 2013-01-17 Sony Corporation Beam forming device and method using frequency-dependent calibration
CN102623805A (zh) * 2012-04-11 2012-08-01 电子科技大学 一种基于互耦控制的低成本相控阵天线
CN103916168A (zh) * 2013-01-04 2014-07-09 中国移动通信集团公司 一种天线校准方法及装置
CN104954083A (zh) * 2015-06-16 2015-09-30 上海华为技术有限公司 一种天线阵列校准的方法、装置及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055058A (zh) * 2019-12-27 2021-06-29 中兴通讯股份有限公司 一种基站、多天线收发装置及其控制方法
CN115865230A (zh) * 2023-02-17 2023-03-28 成都熵泱科技有限公司 幅相测试方法及设备、电磁信号收发系统、幅相校准方法
CN115865230B (zh) * 2023-02-17 2023-05-16 成都熵泱科技有限公司 幅相测试方法及设备、电磁信号收发系统、幅相校准方法

Also Published As

Publication number Publication date
EP3484070A1 (en) 2019-05-15
US10432327B2 (en) 2019-10-01
EP3484070A4 (en) 2019-10-30
EP3484070B1 (en) 2021-05-19
US20190158194A1 (en) 2019-05-23
CN108352908A (zh) 2018-07-31
CN108352908B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2018023214A1 (zh) 一种天线阵列的校准方法及装置
US10056685B2 (en) Antenna array self-calibration
WO2016027398A1 (ja) Mimoトレーニング方法及び無線装置
US11469498B2 (en) Systems and methods for self-calibration of an analog beamforming transceiver
WO2016074585A1 (zh) 一种射频通道的校正方法及装置
US20160329938A1 (en) Beamforming training using polarization
WO2011074031A1 (ja) 無線信号処理装置及び無線装置
WO2000031823A1 (fr) Antenne reseau adaptative
KR20060129241A (ko) 배열 안테나 전송 링크의 조정 설비 및 방법
KR101513846B1 (ko) 아날로그 빔 조향을 이용하여 신호를 전달하기 위한 방법, 송신 스테이션, 수신 스테이션 및 프리앰블 구조
US9954662B2 (en) Board, wireless communications system, and method for channel correction inside or outside board
CN108512612B (zh) 发射和接收校准装置、系统及方法
US10340994B2 (en) Method for beam training in multiuser scenario and apparatus
CN103916168B (zh) 一种天线校准方法及装置
US10686511B2 (en) Simultaneous communication through multiple beams of a wireless node
WO2018228356A1 (zh) 通道校正的方法和网络设备
WO2017063497A1 (zh) 信号通道校正补偿方法、装置和系统
CN109150323B (zh) 一种天线校准方法、待校准无线远程单元及基站
CN110417488B (zh) 一种5g协作通信系统的中继校准方法、装置、存储介质和服务器
CN102972090B (zh) Trx校准设备和trx引起的信号特征差异情况确定方法
US20240333361A1 (en) Hierarchical beamforming and reciprocity calibration for hybrid mimo systems
US20230403065A1 (en) Communication using a dual polarized antenna array
CN116488742A (zh) 一种基于终端辅助的通道校正方法
CN115378478A (zh) 信道校准方法、装置、基站及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016910812

Country of ref document: EP

Effective date: 20190211