WO2018021687A1 - Wireless power transmitter and wireless power receiver - Google Patents

Wireless power transmitter and wireless power receiver Download PDF

Info

Publication number
WO2018021687A1
WO2018021687A1 PCT/KR2017/006347 KR2017006347W WO2018021687A1 WO 2018021687 A1 WO2018021687 A1 WO 2018021687A1 KR 2017006347 W KR2017006347 W KR 2017006347W WO 2018021687 A1 WO2018021687 A1 WO 2018021687A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
wireless power
connector
transmitting
pin
Prior art date
Application number
PCT/KR2017/006347
Other languages
French (fr)
Korean (ko)
Inventor
임성현
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Publication of WO2018021687A1 publication Critical patent/WO2018021687A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20509Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials

Definitions

  • the present invention relates to a wireless power transmission technology, and more particularly, to a method of removing noise of a coil for transmitting and receiving wireless power.
  • Wireless power transmission or wireless energy transfer is a technology that transmits electrical energy wirelessly from a transmitter to a receiver using the principle of induction of magnetic field, which is already used by electric motors or transformers using the electromagnetic induction principle in the 1800s. Since then, there have been attempts to transmit electrical energy by radiating electromagnetic waves such as radio waves and lasers. Electric toothbrushes and some wireless razors that we commonly use are actually charged with the principle of electromagnetic induction.
  • energy transmission using wireless may be classified into magnetic induction, electromagnetic resonance, and RF transmission using short wavelength radio frequency.
  • the magnetic induction method uses the phenomenon that magnetic flux generated at this time causes electromotive force to other coils when two coils are adjacent to each other and current flows to one coil, and is rapidly commercialized in small devices such as mobile phones. Is going on. Magnetic induction is capable of transmitting power of up to several hundred kilowatts (kW) and has high efficiency, but the maximum transmission distance is less than 1 centimeter (cm).
  • the magnetic resonance method is characterized by using an electric or magnetic field instead of using electromagnetic waves or current. Since the magnetic resonance method is hardly affected by the electromagnetic wave problem, it has the advantage of being safe for other electronic devices or the human body. On the other hand, it can be utilized only in limited distances and spaces, and has a disadvantage in that energy transmission efficiency is rather low.
  • the short wavelength wireless power transmission scheme implies, the RF transmission scheme— takes advantage of the fact that energy can be transmitted and received directly in the form of RadioWave.
  • This technology is a wireless power transmission method of the RF method using a rectenna, a compound word of an antenna and a rectifier (rectifier) refers to a device that converts RF power directly into direct current power.
  • the RF method is a technology that converts AC radio waves to DC and uses them. Recently, research on commercialization has been actively conducted as efficiency is improved.
  • Wireless power transfer technology can be used in various industries, such as the mobile, IT, railroad and consumer electronics industries.
  • a wireless power transmitter equipped with a plurality of coils has been introduced to increase the recognition rate of the wireless power receiver placed in the charging bed.
  • Each of the plurality of coils may transmit a wireless power signal and various signals, or may receive various signals from a wireless power receiver.
  • high-frequency noise as well as the wireless power signal and various control signals may also be introduced into the plurality of coils.
  • the high-frequency noise may cause a decrease in wireless power reception efficiency and an error in recognition of the control signal. It can have a big impact.
  • the present invention has been devised to solve the above-mentioned problems of the prior art, and an object of the present invention is to effectively remove high-frequency noise present in a coil for transmitting and receiving a wireless power signal or various control signals, and a wireless power transmitter and a wireless power receiver. To provide.
  • Wireless power transmitter includes a transmission coil for transmitting power wirelessly; A connector to electrically connect the circuit board controlling the transmitting coil and the transmitting coil; And a noise removing circuit inserted between a lead coil of the transmitting coil and the high frequency noise between the transmitting coil and the connector.
  • the noise canceling circuit is a bead connected in series with a lead of the transmitting coil.
  • the bead includes an inductor and a resistor connected in parallel to each other, and when the signal applied to the transmitting coil is a high frequency, the resistor may absorb the signal to remove high frequency noise.
  • the connector comprises: a substrate; And at least one pin inserted on the substrate, wherein the at least one pin includes: an upper connection part connected to a lead wire of the transmission coil; And a lower connection part connected to the circuit board such that the circuit board and the transmitting coil are electrically connected to each other.
  • a wireless power transmitter according to another embodiment of the present invention, a transmission coil for transmitting power wirelessly; And a connector for electrically connecting the circuit board controlling the transmitting coil and the transmitting coil, wherein the connector is connected to a pin to which the first lead of the transmitting coil is connected and the second lead of the transmitting coil is connected. It may include a noise cancellation circuit connected between the pins to remove high frequency noise.
  • a wireless power receiver according to an embodiment of the present invention, the receiving coil for receiving power wirelessly; A connector for electrically connecting the circuit board controlling the receiving coil and the receiving coil; And a noise removing circuit inserted between the receiving coil and the connector and inserted into a lead wire of the receiving coil to remove high frequency noise.
  • a wireless power receiver includes: a receiving coil for wirelessly receiving power; And a connector for electrically connecting the circuit board for controlling the receiving coil and the receiving coil, wherein the connector includes a pin connected to a first lead of the receiving coil and a second lead of the receiving coil. It may include a noise cancellation circuit connected between the pins to remove high frequency noise.
  • the wireless power transmitter and the wireless power receiver according to an embodiment of the present invention, by implementing a circuit capable of removing high frequency noise on the transmitting coil side, it is possible to more effectively remove the high frequency noise.
  • FIG. 1 is a view for explaining a detection signal transmission procedure in a wireless power transmitter according to an embodiment of the present invention.
  • FIG. 2 is a state transition diagram for explaining a wireless power transmission procedure defined in the WPC standard.
  • 3 is a state transition diagram for explaining a wireless power transmission procedure defined in the PMA standard.
  • FIG. 4 is a block diagram illustrating a structure of an induction transmitter according to an embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 4.
  • FIG. 6 is a diagram for describing a transmitting coil module according to an exemplary embodiment of the present invention.
  • FIG. 7 illustrates an embodiment of the bead shown in FIG. 6 in more detail.
  • FIG. 8 is a view schematically showing a connector according to another embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an embodiment of an embedded circuit illustrated in FIG. 8.
  • a wireless power transmitter includes a transmission coil for transmitting power wirelessly; A connector to electrically connect the circuit board controlling the transmitting coil and the transmitting coil; And a noise removing circuit inserted between a lead coil of the transmitting coil and the high frequency noise between the transmitting coil and the connector.
  • the top (bottom) or the bottom (bottom) is the two components are in direct contact with each other or One or more other components are all included disposed between the two components.
  • up (up) or down (down) may include the meaning of the down direction as well as the up direction based on one component.
  • the apparatus for transmitting wireless power on the wireless power system is a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a transmitter, a transmitter, a transmitter, a transmitter, a transmitter, A wireless power transmitter, a wireless power transmitter, and the like will be used interchangeably.
  • a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver terminal, a receiver, a receiver, a receiver Or the like can be used in combination.
  • the transmitter according to the present invention may be configured in a pad form, a cradle form, an access point (AP) form, a small base station form, a stand form, a ceiling buried form, a wall hanging form, and the like. You can also transfer power.
  • the transmitter may comprise at least one wireless power transmission means.
  • the wireless power transmission means may use various wireless power transmission standards based on an electromagnetic induction method that generates a magnetic field in the power transmitter coil and charges using the electromagnetic induction principle in which electricity is induced in the receiver coil under the influence of the magnetic field.
  • the wireless power transmission means may include a wireless charging technology of the electromagnetic induction method defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA) which is a wireless charging technology standard apparatus.
  • WPC Wireless Power Consortium
  • PMA Power Matters Alliance
  • the receiver according to an embodiment of the present invention may be provided with at least one wireless power receiving means, and may simultaneously receive wireless power from two or more transmitters.
  • the wireless power receiving means may include an electromagnetic induction wireless charging technology defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA), which are wireless charging technology standard organizations.
  • WPC Wireless Power Consortium
  • PMA Power Matters Alliance
  • the receiver according to the present invention is a mobile phone, smart phone, laptop computer, digital broadcasting terminal, PDA (Personal Digital Assistants), PMP (Portable Multimedia Player), navigation, MP3 player, electric It may be used in a small electronic device such as a toothbrush, an electronic tag, a lighting device, a remote control, a fishing bobber, a wearable device such as a smart watch, but is not limited thereto. If the device is equipped with a wireless power receiver according to the present invention, the battery can be charged. It is enough.
  • FIG. 1 is a view for explaining a detection signal transmission procedure in a wireless power transmitter according to an embodiment of the present invention.
  • the wireless power transmitter may be equipped with three transmitting coils 111, 112, and 113. Each transmission coil may overlap some other area with another transmission coil, and the wireless power transmitter may detect a predetermined detection signal 117, 127 for detecting the presence of the wireless power receiver through each transmission coil, for example, Digital ping signals are sent sequentially in a predefined order.
  • the wireless power transmitter sequentially transmits a sensing signal 117 through a primary sensing signal transmitting procedure shown in FIG. 110, and receives a signal strength indicator from the wireless power receiver 115.
  • the strength indicator 116 can identify the received transmission coils 111, 112.
  • the wireless power transmitter sequentially transmits the detection signal 127 through the secondary detection signal transmission procedure shown in FIG. 120, and transmits power among the transmission coils 111 and 112 where the signal strength indicator 126 is received.
  • the reason why the wireless power transmitter performs two sensing signal transmission procedures is to more accurately identify which transmitting coil is well aligned with the receiving coil of the wireless power receiver.
  • the wireless power transmitter If the signal strength indicators 116 and 126 are received in the first transmitting coil 111 and the second transmitting coil 112, as shown in reference numerals 110 and 120 of FIG. 1, the wireless power transmitter. Based on the signal strength indicator 126 received at each of the first transmitting coil 111 and the second transmitting coil 112 selects the best-aligned transmitting coil, and performs wireless charging using the selected transmitting coil. .
  • FIG. 2 is a state transition diagram for explaining a wireless power transmission procedure defined in the WPC standard.
  • power transmission from a transmitter to a receiver according to the WPC standard can be divided into a selection phase 210, a ping phase 220, an identification and configuration phase 230, It may be divided into a power transfer phase 240.
  • the selection step 210 may be a step of transitioning when a specific error or a specific event is detected while starting or maintaining power transmission.
  • the transmitter may monitor whether an object exists on the interface surface. If the transmitter detects that an object is placed on the interface surface, the transmitter may transition to the ping step 220 (S201).
  • the transmitter transmits an analog ping signal of a very short pulse, and detects whether an object exists in an active area of the interface surface based on a change in current of a transmitting coil.
  • the transmitter activates the receiver and sends a digital ping to identify whether the receiver is a receiver that is compliant with the WPC standard. If the transmitter does not receive a response signal to the digital ping (eg, signal strength indicator) from the receiver in the ping step 220, it may transition back to the selection step 210 (S202). In addition, in the ping step 220, when the transmitter receives a signal indicating that the power transmission is completed, that is, the charging completion signal, the transmitter may transition to the selection step 210 (S203).
  • the digital ping eg, signal strength indicator
  • the transmitter may transition to the identification and configuration step 230 for collecting receiver identification and receiver configuration and status information (S204).
  • the transmitter receives an unexpected packet, a desired packet has not been received for a predefined time, a packet transmission error, or a power transmission contract. If this is not set (no power transfer contract) it may transition to the selection step 210 (S205).
  • the transmitter may transition to the power transmission step 240 for transmitting the wireless power (S206).
  • the transmitter receives an unexpected packet, an outgoing desired packet for a predefined time, or a violation of a preset power transmission contract. transfer contract violation), if the filling is completed, the transition to the selection step (210) (S207).
  • the transmitter may transition to the identification and configuration step 230 (S208).
  • the power transmission contract may be set based on state and characteristic information of the transmitter and the receiver.
  • the transmitter state information may include information about the maximum amount of power that can be transmitted, information about the maximum number of receivers that can be accommodated, and the receiver state information may include information about required power.
  • 3 is a state transition diagram for explaining a wireless power transmission procedure defined in the PMA standard.
  • power transmission from a transmitter to a receiver according to the PMA standard is divided into a standby phase (310), a digital ping phase (320), an identification phase (330), and a power transmission.
  • the operation may be divided into a power transfer phase 340 and an end of charge phase 350.
  • the waiting step 310 may be a step of transitioning when a specific error or a specific event is detected while performing a receiver identification procedure for power transmission or maintaining power transmission.
  • specific errors and specific events will be apparent from the following description.
  • the transmitter may monitor whether an object exists on a charging surface. If the transmitter detects that an object is placed on the charging surface or the RXID retry is in progress, the transmitter may transition to the digital ping step 320 (S301).
  • RXID is a unique identifier assigned to a PMA compatible receiver.
  • the transmitter transmits a very short pulse of analog ping, and an object is placed on the active surface of the interface surface-for example, the charging bed-based on the current change of the transmitting coil. You can detect if it exists.
  • the transmitter transitioned to the digital ping step 320 sends a digital ping signal to identify whether the detected object is a PMA compatible receiver.
  • the receiver may modulate the received digital ping signal according to the PMA communication protocol to transmit a predetermined response signal to the transmitter.
  • the response signal may include a signal strength indicator indicating the strength of the power received by the receiver.
  • the receiver may transition to the identification step 330 (S302).
  • the transmitter may transition to the standby step 310.
  • the Foreign Object may be a metallic object including coins, keys, and the like.
  • the transmitter may transition to the waiting step 310 if the receiver identification procedure fails or the receiver identification procedure needs to be re-executed and if the receiver identification procedure has not been completed for a predefined time ( S304).
  • the transmitter transitions from the identification step 330 to the power transmission step 340 to start charging (S305).
  • the transmitter goes to standby step 310 if the desired signal is not received within a predetermined time (Time Out), or if the FO is detected or the voltage of the transmitting coil exceeds a predefined reference value. It may transition (S306).
  • the transmitter may transition to the charging completion step 350 (S307).
  • the transmitter may transition to the standby state 310 (S309).
  • the transmitter may transition from the charging completion step 350 to the digital ping step 320 (S310).
  • the transmitter when the transmitter receives an end of charge (EOC) request from the receiver, the transmitter may transition to the charging completion step 350 (S308 and S311).
  • EOC end of charge
  • FIG. 4 is a block diagram illustrating a structure of an induction transmitter according to an embodiment of the present invention.
  • the wireless power transmitter 400 may be largely configured to include a power converter 410, a power transmitter 420, a communicator 430, a controller 440, and a sensor 450. have. It should be noted that the configuration of the wireless power transmitter 400 is not necessarily required, and may include more or fewer components.
  • the power converter 410 may perform a function of converting the power into power of a predetermined intensity.
  • the power converter 410 may include a DC / DC converter 411 and an amplifier 412.
  • the DC / DC converter 411 may perform a function of converting DC power supplied from the power supply unit 450 into DC power having a specific intensity according to a control signal of the controller 440.
  • the sensing unit 450 may measure the voltage / current of the DC-converted power and provide the same to the controller 440.
  • the sensing unit 450 may measure the internal temperature of the wireless power transmitter 400 to determine whether overheating occurs, and provide the measurement result to the controller 440.
  • the controller 440 may adaptively block power supply from the power supply unit 450 or block power from being supplied to the amplifier 412 based on the voltage / current value measured by the sensing unit 450. Can be.
  • one side of the power converter 410 may be further provided with a predetermined power cut-off circuit for cutting off the power supplied from the power source 450, or cut off the power supplied to the amplifier 412.
  • the amplifier 412 may adjust the intensity of the DC / DC converted power according to the control signal of the controller 440.
  • the controller 440 may receive power reception state information and / or power control signal of the wireless power receiver through the communication unit 430, and may be based on the received power reception state information or (and) power control signal.
  • the amplification factor of the amplifier 412 can be dynamically adjusted.
  • the power reception state information may include, but is not limited to, strength information of the rectifier output voltage and strength information of a current applied to the receiving coil.
  • the power control signal may include a signal for requesting power increase, a signal for requesting power reduction, and the like.
  • the power transmitter 420 may include a multiplexer 421 (or multiplexer) and a transmission coil 422. In addition, the power transmitter 420 may further include a carrier generator (not shown) for generating a specific operating frequency for power transmission.
  • the carrier generator may generate a specific frequency for converting the output DC power of the amplifier 412 received through the multiplexer 421 into AC power having a specific frequency.
  • the AC signal generated by the carrier generator is mixed with the output terminal of the multiplexer 421 to generate AC power.
  • this is only one embodiment, and the other example is before the amplifier 412. Note that it may be mixed in stages or later.
  • the frequencies of AC power delivered to each transmitting coil in accordance with one embodiment of the present invention may be different from each other.
  • the resonance frequency of each transmission coil may be set differently by using a predetermined frequency controller having a function of differently adjusting the LC resonance characteristics for each transmission coil.
  • the power transmitter 420 includes a multiplexer 421 and a plurality of transmit coils 422—that is, first to nth transmit coils—for controlling the output power of the amplifier 412 to be transmitted to the transmit coil. Can be configured.
  • the controller 440 may transmit power through time division multiplexing for each transmission coil.
  • three wireless power receivers i.e., the first to third wireless power receivers, are each identified through three different transmitting coils, i.e., the first to third transmitting coils.
  • the controller 440 may control the multiplexer 421 to control power to be transmitted through a specific transmission coil in a specific time slot.
  • the amount of power transmitted to the corresponding wireless power receiver may be controlled according to the length of the time slot allocated to each transmitting coil, but this is only one embodiment.
  • By controlling the amplification factor of the amplifier 412 of the wireless power receiver can also control the transmission power.
  • the controller 440 may control the multiplexer 421 to sequentially transmit the sensing signals through the first to nth transmitting coils 422 during the first sensing signal transmission procedure.
  • the controller 440 may identify a time point at which the detection signal is transmitted by using the timer 455.
  • the control unit 440 controls the multiplexer 421 to detect the detection signal through the corresponding transmission coil. Can be controlled to be sent.
  • the timer 450 may transmit a specific event signal to the controller 440 at a predetermined period during the ping transmission step.
  • the controller 440 controls the multiplexer 421 to transmit the specific event signal.
  • the digital ping can be sent through the coil.
  • control unit 440 may identify a predetermined transmission coil identifier and a corresponding transmission coil for identifying which transmission coil has received a signal strength indicator from the demodulator 432 during the first detection signal transmission procedure. Signal strength indicator received through the can be received. Subsequently, in the second detection signal transmission procedure, the control unit 440 controls the multiplexer 421 so that the detection signal is transmitted only through the transmission coil (s) in which the signal strength indicator is received during the first detection signal transmission procedure. You may. As another example, when there are a plurality of transmitting coils receiving the signal strength indicator during the first sensing signal transmitting procedure, the controller 440 sends the second sensing signal to the transmitting coil in which the signal strength indicator having the largest value is received. In the procedure, the detection signal may be determined as the transmission coil to be transmitted first, and the multiplexer 421 may be controlled according to the determination result.
  • the modulator 431 may modulate the control signal generated by the controller 440 and transmit the modulated control signal to the multiplexer 421.
  • the modulation scheme for modulating the control signal is a frequency shift keying (FSK) modulation scheme, a Manchester coding modulation scheme, a PSK (Phase Shift Keying) modulation scheme, a pulse width modulation scheme, a differential 2 Differential bi-phase modulation schemes may be included, but is not limited thereto.
  • the demodulator 432 may demodulate the detected signal and transmit the demodulated signal to the controller 440.
  • the demodulated signal may include a signal strength indicator, an error correction (EC) indicator for controlling power during wireless power transmission, an end of charge (EOC) indicator, an overvoltage / overcurrent / overheat indicator, and the like.
  • EC error correction
  • EOC end of charge
  • the present invention is not limited thereto, and may include various state information for identifying a state of the wireless power receiver.
  • the demodulator 432 may identify from which transmission coil the demodulated signal is received, and may provide the control unit 440 with a predetermined transmission coil identifier corresponding to the identified transmission coil.
  • the demodulator 432 may demodulate a signal received through the transmission coil 422 and transmit the demodulated signal to the controller 440.
  • the demodulated signal may include a signal strength indicator, but is not limited thereto.
  • the demodulated signal may include various state information of the wireless power receiver.
  • the wireless power transmitter 400 may obtain the signal strength indicator through in-band communication that communicates with the wireless power receiver using the same frequency used for wireless power transmission.
  • the wireless power transmitter 400 may transmit wireless power using the transmission coil 422 and may exchange various information with the wireless power receiver through the transmission coil 422.
  • the wireless power transmitter 400 further includes a separate coil corresponding to each of the transmission coils 422 (that is, the first to nth transmission coils), and wireless power using the separate coils provided. Note that in-band communication with the receiver may also be performed.
  • the wireless power transmitter 400 and the wireless power receiver perform in-band communication by way of example.
  • this is only one embodiment, and is a frequency band used for wireless power signal transmission.
  • Short-range bidirectional communication may be performed through a frequency band different from that of FIG.
  • the short-range bidirectional communication may be any one of low power Bluetooth communication, RFID communication, UWB communication, and Zigbee communication.
  • FIG. 5 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 4.
  • the wireless power receiver 500 includes a receiving coil 510, a rectifier 520, a DC / DC converter 530, a load 540, a sensing unit 550, and a communication unit ( 560, the controller 570 may be configured to be included.
  • the communication unit 560 may include a demodulator 561 and a modulator 562.
  • the wireless power receiver 500 illustrated in the example of FIG. 5 is illustrated as being capable of exchanging information with the wireless power transmitter 500 through in-band communication, this is only one embodiment.
  • the communication unit 560 may provide short-range bidirectional communication through a frequency band different from the frequency band used for wireless power signal transmission.
  • AC power received through the receiving coil 510 may be transferred to the rectifier 520.
  • the rectifier 520 may convert AC power into DC power and transmit the DC power to the DC / DC converter 530.
  • the DC / DC converter 530 may convert the strength of the rectifier output DC power into a specific strength required by the load 540 and then transfer the power to the load 540.
  • the sensing unit 550 may measure the intensity of the rectifier 520 output DC power and provide the same to the controller 570. In addition, the sensing unit 550 may measure the strength of the current applied to the receiving coil 510 according to the wireless power reception, and transmit the measurement result to the control unit 570. In addition, the sensing unit 550 may measure the internal temperature of the wireless power receiver 500 and provide the measured temperature value to the controller 570.
  • the controller 570 may determine whether the overvoltage is generated by comparing the measured intensity of the rectifier output DC power with a predetermined reference value. As a result of the determination, when the overvoltage is generated, a predetermined packet indicating that the overvoltage has occurred may be generated and transmitted to the modulator 562.
  • the signal modulated by the modulator 562 may be transmitted to the wireless power transmitter 400 through the receiving coil 510 or a separate coil (not shown).
  • the control unit 570 may determine that a detection signal is received when the intensity of the rectifier output DC power is greater than or equal to a predetermined reference value. When the detection signal is received, a signal strength indicator corresponding to the detection signal is modulated by the modulator 562.
  • the demodulator 561 may control an AC power signal or a rectifier 520 output DC between the receiving coil 510 and the rectifier 520. After demodulating the power signal to identify whether the detection signal is received, the identification result may be provided to the controller 570. In this case, the controller 570 may control the signal strength indicator corresponding to the detection signal to be transmitted through the modulator 561.
  • the controller 570 may change the charging mode based on at least one of a battery charge rate, an internal temperature, a strength of the rectifier output voltage, a CPU usage rate installed in the electronic device, and a user menu selection. It may be determined whether it is necessary, and as a result of the determination, if it is necessary to change the charging mode, a charging mode packet including the changed charging mode value may be generated and transmitted to the wireless power transmitter.
  • FIG. 6 is a diagram for describing a transmitting coil module according to an exemplary embodiment of the present invention.
  • the transmitting coil module 600 is equipped with a plurality of coils 422 illustrated in FIG. 4, such that the power converter 410, the communication unit 430, the control unit 440, and the sensing unit 450 are installed. It refers to a device that is modularized to be connected to a control circuit board including components for controlling the operation of the wireless power transmitter 400, such as). It is assumed that the plurality of coils mounted on the transmitting coil module 600 is composed of three transmitting coils 111, 112, and 113 shown in FIG. 1.
  • Coils mounted on the transmitting coil module 600 may have various specifications (eg, certified coils according to the WPC standard, certified coils according to the PMA standard), and the shape, size, temperature characteristics, and power transmission of coils having various specifications. Efficiency, connection characteristics, etc. may differ from specification to specification. Therefore, the transmission coil module 600 may be customized to be suitable for the coils that are targeted among coils having various specifications.
  • the transmitting coil module 600 is manufactured so that three coils may be mounted to overlap each other.
  • the scope of the present invention is not limited thereto, and any number (for example, one or two) is described. , Four, etc.) may be disposed at any position.
  • the transmitting coil module 600 includes a first coil 610, a coil frame 620, a second coil 630, a third coil 640, a shield 650, a metal sheet 660, and a connector. 670 may include.
  • the first coil 610 may correspond to any one of the three transmitting coils 111, 112, and 113 (eg, the transmitting coil 112) illustrated in FIG. 1.
  • the first coil 610 may be implemented in the form of a spiral wound wire, the cross section of the wire may include a conductive material (for example, copper (Cu)) and an insulating material surrounding the conductive material.
  • a conductive material for example, copper (Cu)
  • the first coil 610 may be inserted into a space corresponding to the first coil 610 in the coil frame 620.
  • a method by a separate adhesive sheet for example, a double-sided tape
  • a coating method (bonding method) of a synthetic resin having an adhesive force and an insulating property for example, a double-sided tape
  • the scope of the present invention is not limited thereto.
  • the coil frame 620 may provide a frame for mounting the remaining components of the transmitting coil module 600, including the first coil 610, the second coil 630, and the third coil 640.
  • the coil frame 620 may be implemented with reinforced plastics, but the scope of the present invention is not limited thereto. When the coil frame 620 is made of reinforced plastic, the overall weight of the transmitting coil module 600 may be reduced while protecting the coils 610, 630, and 640 from external impact and damage.
  • the coil frame 620 may include receiving parts, a fixing hole 621, a function hole 622, and a lead wire insertion terminal 623.
  • the coil frame 620 may include a first accommodating part into which one transmitting coil 610 may be inserted into an upper part, and a second accommodating part into which two transmitting coils 630 and 640 may be inserted into a lower part and a third accommodating part.
  • a receptacle can be provided. At least a portion of each of the first accommodating portion, the second accommodating portion, and the third accommodating portion may overlap each other.
  • the scope of the present invention is not limited thereto, and may be implemented such that two transmitting coils may be inserted at the top and one transmitting coil may be inserted at the bottom.
  • the first accommodating part may include an area overlapping with each of the second accommodating part and the third accommodating part, and the overlapping area may be implemented to be 50% or more of the entire area of the first accommodating part.
  • the fixing holes 621 are each corner of the coil frame 620 so that the fixing means (for example, bolts or nuts) can be inserted into the other components of the wireless power transmitter (for example, the control circuit board). It is prepared every time. That is, the transmitting coil module 600 may be bound with other components through the fixing hole 621.
  • the fixing means for example, bolts or nuts
  • the coil frame 620 additionally provides an extra space for connecting the lead wires of each coil to the lead wire insertion terminal 623 while the coils 610, 630, and 640 are inserted into the coil frame 620. can do.
  • the function hole 622 may be provided to obtain additional information related to the coils 610, 630, and 640.
  • a thermistor for outputting an electrical signal corresponding to the temperature of each coil 610, 630, and 640 may be included in the lower control circuit board.
  • Each thermistor may be configured through each of the coils through the function hole 622. The temperatures 610, 630, and 640 may be sensed.
  • each thermistor may be implemented in the function hole 622.
  • the lead wire insertion terminal 623 may be provided so that a total of six lead wires of the coils 610, 630, and 640 may be fitted thereto.
  • Lead wires may be formed at the inner end of each of the coils 610, 630, and 640 implemented in a helical shape (which extends from the inner end to a position adjacent to the outer end as shown in FIG. 6) and the outer end, respectively.
  • the lead wires correspond to both ends of the coils 610, 630, and 640, and may be connected to the control circuit board through the connector 670.
  • Each of the second coil 630 and the third coil 640 may correspond to any one of the three transmitting coils 111, 112, and 113 (eg, the transmitting coil 111 or 113) illustrated in FIG. 1. .
  • Each of the second coil 630 and the third coil 640 may be implemented in the form of a spiral wound with wires, and a cross section of the wire may include a conductive material (eg, copper) and an insulating material surrounding the conductive material. It may include.
  • the second coil 630 and the third coil 640 are completely separated from each other so that a dead spot, which is an area where charging is impossible, does not occur. It may be disposed overlapped and spaced apart from each other on the same plane.
  • each of the second coil 630 and the third coil 640 is inserted into the coil frame 620, a method by a separate adhesive sheet (for example, a double-sided tape), a coating method of a synthetic resin having adhesive strength and insulation ( Bonding method) and the like, but the scope of the present invention is not limited thereto.
  • a separate adhesive sheet for example, a double-sided tape
  • Bonding method a coating method of a synthetic resin having adhesive strength and insulation
  • the shielding material 650 may shield the magnetic field generated from the coils 610, 630, and 640 to block the magnetic field from being transmitted to the lower control circuit board.
  • the shielding material 650 may be implemented as a ferrite sheet, but the scope of the present invention is not limited thereto.
  • the shielding material 650 may be attached to a space corresponding to the shielding material 650 of the lower portion of the coil frame 620 in the coil frame 520b in which the second coil 630 and the third coil 640 are mounted.
  • the shield 650 may be embodied in an area and a shape corresponding to an area of a plane where the coils 610, 630, and 640 are disposed.
  • the shield 650 may be embodied in an area that is somewhat larger than the area of the plane in which the coils 610, 630, and 640 are disposed, and has a shape similar to the plane. , 640 to shield the magnetic field radiated from.
  • a method such as a separate adhesive sheet for example, a double-sided tape
  • a separate adhesive sheet for example, a double-sided tape
  • the shielding member 650 may be provided with a function hole having the same function at a position corresponding to the function hole 622.
  • the metal sheet 660 may function as a heat sink to maintain the shape of the transmission coil module 600 and to discharge heat generated from the coil to the outside.
  • the metal sheet 660 may be implemented to include aluminum (Al), but the scope of the present invention is not limited thereto.
  • the metal sheet 660 may be attached to a space corresponding to the metal sheet 660 below the coil frame 620 in the coil frame 620 on which the shielding material 650 is mounted.
  • the metal sheet 660 may be embodied in the same area and shape as that of the planar area of the coil frame 620 except the area to which the fixing hole 621 and the connector 670 are attached.
  • a method such as a separate adhesive sheet for example, a double-sided tape
  • a separate adhesive sheet for example, a double-sided tape
  • the metal sheet 660 may be provided with a function hole having a same function at a position corresponding to the function hole 622.
  • the shield 650 and the metal sheet 660 may be disposed in the coil frame 620. That is, the area of the storage space corresponding to the shield 650 and the metal sheet 660 of the coil frame 620 may be at least larger than the area of each of the shield 650 and the metal sheet 660.
  • the connector 670 allows the coils 610, 630, 640 to be connected to an external control circuit board through the coil frame 620.
  • the connector 670 may be implemented as a printed circuit board (PCB), but the scope of the present invention is not limited thereto.
  • the connector 670 may be attached to a space corresponding to the connector 670 below the coil frame 620 in the coil frame 620 on which the metal sheet 660 is mounted.
  • the planar area of the connector 670 may be equal to the area to which the connector 670 described in the metal sheet 660 will be attached.
  • One side of the coil frame 620 is inserted (or recessed) inward, and the connector 670 may be disposed on the inserted side.
  • the lead wire insertion terminal 623 is also formed on the inserted side surface.
  • Connector 670 may include a substrate and at least one pin (eg, twelve pins) inserted into the substrate. An inner portion of the substrate may be attached to the lower portion of the coil frame 620. At least one pin is inserted into an outer portion of the substrate, and each of the at least one pin includes an upper connection portion (or an upper terminal) connected to a lead wire of the coils 610, 630, and 640, and a control circuit board and a coil 610, 630. , 640 may include a lower connection part (or lower terminal) connected to the control circuit board to be electrically connected.
  • a lower connection part or lower terminal
  • An inner portion of the connector 670 may be attached to overlap with at least a portion of the lead wire insertion terminal 623 of the coil frame 620. For this reason, the lead wires of the coils 610, 630, and 640 inserted into the lead wire insertion terminal 623 may be fixed.
  • the upper terminal of the connector 670 may be connected to the lead wire of each of the coils 610, 630, and 640 mounted on the coil frame 620, and the lower terminal of the connector 670 may be connected to the corresponding terminal of the control circuit board.
  • the upper terminal and the lower terminal of the connector 670 may be implemented with a total of 12 pins corresponding to each other.
  • a total of 6 lead wires of each of the coils 610, 630, and 640 may correspond to one of the 12 pins. It may be connected to two adjacent pins of the position respectively. Accordingly, twelve pins of the lower terminal may be connected to one of the six lead wires adjacent to each other to connect the coils 610, 630, and 640 to the control circuit board.
  • the lead wire and the two pins may be connected by a laser solder method, but the scope of the present invention is not limited thereto.
  • a method such as a separate adhesive sheet for example, a double-sided tape
  • a separate adhesive sheet for example, a double-sided tape
  • the upper portion may mean a side relatively close to the interface surface on which the wireless power receiver can be placed.
  • Beads 615, 635, and 645 may be inserted into each lead of each coil 610, 630, and 640.
  • the beads 615, 635, and 645 remove a high frequency noise flowing into each lead. can do.
  • each lead wire includes a conductive material and an insulating material surrounding the conductive material, thereby beading the insulating material and the conductive material 615, 635, 645.
  • the scope of the present invention is not limited thereto.
  • FIG. 7 illustrates an embodiment of the bead shown in FIG. 6 in more detail.
  • the beads 615, 635, and 645 of FIG. 6 may be inserted in a circuit to remove high frequency noise.
  • the noise since the noise is higher in frequency than the signal (wireless power signal or various control signals), the beads 615, 635, and 645 may be included to effectively remove the noise having a high frequency.
  • Bead 700 may be coupled between coils 610, 630, 640 and connector 670.
  • the bead 700 may include an inductor L and a resistor R connected in parallel.
  • the resistance value of the resistor R has a sufficiently large value (it is difficult for a low frequency signal to pass) and the inductor L has an impedance proportional to the frequency.
  • the signal transmitted between the coils 610, 630, 640 and the connector 670 is a low frequency component, the signal passes through the inductor L having an impedance lower than the resistance R.
  • the signal transmitted between the coils 610, 630, 640 and the connector 670 is a high frequency component
  • the signal passes through the resistor R rather than the inductor L having a high impedance in proportion to the frequency. do.
  • the high frequency signal is absorbed and released as heat through the resistor R having a sufficiently large resistance value.
  • the bead 700 may remove high frequency noise passing through each lead of the coils 610, 630, and 640.
  • FIG. 8 is a view schematically showing a connector according to another embodiment of the present invention.
  • the connector 800 may be implemented as a PCB, and further includes an embedded circuit 820 capable of performing the functions of the beads 615, 635, and 645 in the embodiment of FIG. 6. can do. That is, when the connector 800 is included instead of the connector 670 of FIG. 6, the beads 615, 635, and 645 may be excluded from the transmission coil module 600.
  • the connector 800 is included instead of the connector 670 of FIG. 6, the beads 615, 635, 645 are included in the transmission coil module 600 to perform the removal of high frequency noise with higher efficiency. It may be.
  • Beads 615, 635, 645 or embedded circuit 820 may be defined as noise cancellation circuits.
  • Connector 800 may include pin 810 and embedded circuit 820.
  • the pins 810 may include first pins 1 to 12 pins 12, and each of the first pins 1 to 12 pins 12 may include an upper terminal and a lower terminal described with reference to FIG. 6. Can be. That is, a total of six lead wires of each of the coils 610, 630, and 640 may be connected to two adjacent pins of corresponding positions among the first pins 1 to 12 pins 12, respectively.
  • one of the lead wires of the second coil 630 may be connected to the first pin 1 and the second pin 2, and the other may be connected to the third pin 3 and the fourth pin 4.
  • One of the lead wires of the first coil 610 may be connected to the fifth pin 5 and the sixth pin 6, and the other may be connected to the seventh pin 7 and the eighth pin 8.
  • One of the lead wires of the coil 640 may be connected to the ninth pin 9 and the tenth pin 10, and the other may be connected to the eleventh pin 11 and the twelfth pin 12. This is only an example, and the pins connected to specific leads of a specific coil may be changed.
  • each of the lower terminals of the first pin 1 to the twelfth pin 12 is connected to any one of the six lead wires adjacent to each other so that the coils 610, 630, and 640 are electrically connected to the control circuit board. Can be connected.
  • the pin 810 may include additional pins other than the first pin 1 to the twelfth pin 12, and may electrically connect the thermistor of the transmission coil module 600 to the lower control circuit board.
  • the embedded circuit 820 may include embedded circuits EC1, EC2, and EC3 corresponding to each coil. Like the bead 700 of FIG. 7, the embedded circuit 820 may remove high frequency noise. An operation related thereto will be described later with reference to FIG. 9.
  • the embedded circuit 820 may be disposed on the bottom surface of the connector 800 relatively far from the interface surface on which the wireless power receiver can be placed, but the scope of the present invention is not limited thereto.
  • the first embedded circuit EC1 corresponds to the first coil 610
  • the second embedded circuit EC2 corresponds to the second coil 630
  • the third embedded circuit EC3 corresponds to the third coil ( 640 may correspond.
  • each of the first to third embedded circuits EC1 to EC3 may be connected to both ends of a lead wire of a corresponding coil. To this end, each of the first to third embedded circuits EC1 to EC3 may be electrically connected to a pin corresponding to the lead wire on the connector 800.
  • the first embedded circuit EC1 is connected to the fifth pin 5 and the sixth pin 6 so as to be connected to both ends of the lead wire of the first coil 610, and the seventh pin 7 and the seventh pin. It may be connected to the 8 pin (8).
  • the electrical connection between the embedded circuit 820 itself and the embedded circuit 820 and the pins 810 may be simply implemented on the connector 800 implemented as a PCB substrate.
  • FIG. 9 is a diagram illustrating an embodiment of an embedded circuit illustrated in FIG. 8.
  • each of the first embedded circuit EC1 to the third embedded circuit EC3 may be implemented with one capacitor.
  • the capacitor has an impedance that is inversely proportional to frequency.
  • the first embedded circuit EC1 is connected to the fifth pin 5 and the sixth pin 6, and is connected to the left lead wire of the first coil 610, and the seventh pin 7 and the eighth pin 8. It may be connected to the right lead wire of the first coil 610.
  • the second embedded circuit EC2 is connected to the first pin 1 and the second pin 2, and is connected to the left lead wire of the second coil 630, and the third pin 3 and the fourth pin 4. May be connected to the right lead wire of the second coil 630.
  • the third embedded circuit EC3 is connected to the ninth pin 9 and the tenth pin 10, and is connected to the left lead wire of the third coil 640, and the eleventh pin 11 and the twelfth pin 12. May be connected to the right lead wire of the third coil 640.
  • each of the first embedded circuit EC1 to the third embedded circuit EC3 may be connected and inserted in parallel between both leads of the corresponding coil.
  • the capacitor When the signal transmitted between the coils 610, 630, 640 and the connector 800 is a low frequency component, the capacitor is open and the signal is transmitted and received regardless of the capacitor.
  • the capacitor when the signal transmitted between the coils 610, 630, 640 and the connector 800 is a high frequency component, the capacitor has a low impedance in inverse proportion to the frequency, and the signal flows through the low impedance capacitor. do.
  • the capacitor operates as a resistor having a specific impedance, and the high frequency signal is absorbed by the capacitor and released as heat.
  • the first embedded circuit EC1 to the third embedded circuit EC3 may remove high frequency noise passing through each of the leads of the coils 610, 630, and 640.
  • the high frequency noise can be more effectively removed by implementing a circuit capable of removing the high frequency noise on the transmitting coil side.
  • the wireless power receiver may include a circuit capable of removing high frequency noise at a receiving coil.
  • the receiving coil may also be connected to the control circuit board through the connector, and it is natural that the wireless power receiver may include an embedded circuit included in the bead or connector inserted into the lead wire of the receiving coil.
  • the method according to the embodiment described above may be stored in a computer-readable recording medium that is produced as a program for execution on a computer, and examples of the computer-readable recording medium include ROM, RAM, CD-ROM, magnetic tape , Floppy disks, optical data storage devices, and the like, and also include those implemented in the form of carrier waves (eg, transmission over the Internet).
  • the computer readable recording medium can be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • functional programs, codes, and code segments for implementing the above-described method may be easily inferred by programmers in the art to which the embodiments belong.
  • the present invention relates to a wireless charging technology, and can be applied to a wireless power transmitter for transmitting power wirelessly and a wireless power receiver for receiving power wirelessly.

Abstract

The present invention relates to a wireless power transmission technology and, more specifically, to a method for removing noise of a coil for transmitting and receiving wireless power. A wireless power transmitter according to one embodiment of the present invention comprises: a transmission coil for wirelessly transmitting power; a connector for electrically connecting a circuit board, which controls the transmission coil, with the coil; and a noise removal circuit inserted into a lead line of the transmission coil between the transmission coil and the connector and removing high-frequency noise.

Description

무선 전력 송신기 및 무선 전력 수신기Wireless power transmitter and wireless power receiver
본 발명은 무선 전력 전송 기술에 관한 것으로서, 보다 상세하게는 무선 전력을 송수신하는 코일의 노이즈를 제거하는 방식에 관한 것이다.The present invention relates to a wireless power transmission technology, and more particularly, to a method of removing noise of a coil for transmitting and receiving wireless power.
최근 정보 통신 기술이 급속도로 발전함에 따라, 정보 통신 기술을 기반으로 하는 유비쿼터스 사회가 이루어지고 있다.Recently, with the rapid development of information and communication technology, a ubiquitous society based on information and communication technology is being made.
언제 어디서나 정보통신 기기들이 접속되기 위해서는 사회 모든 시설에 통신 기능을 가진 컴퓨터 칩을 내장시킨 센서들이 설치되어야 한다. 따라서 이들 기기나 센서의 전원 공급 문제는 새로운 과제가 되고 있다. 또한 휴대폰뿐만 아니라 블루투스 핸드셋과 아이팟 같은 뮤직 플레이어 등의 휴대기기 종류가 급격히 늘어나면서 배터리를 충전하는 작업이 사용자에게 시간과 수고를 요구하고 됐다. 이러한 문제를 해결하는 방법으로 무선 전력 전송 기술이 최근 들어 관심을 받고 있다. In order for telecommunications devices to be connected anytime and anywhere, sensors incorporating computer chips with communication functions must be installed in all social facilities. Therefore, the problem of power supply of these devices and sensors is a new problem. In addition, as the number of mobile devices such as Bluetooth handsets and music players such as iPods has increased rapidly, charging a battery has required users time and effort. In recent years, wireless power transmission technology has been attracting attention as a way to solve this problem.
무선 전력 전송 기술(wireless power transmission 또는 wireless energy transfer)은 자기장의 유도 원리를 이용하여 무선으로 송신기에서 수신기로 전기 에너지를 전송하는 기술로서, 이미 1800년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용되기 시작했고, 그 후로는 라디오파나 레이저와 같은 전자파를 방사해서 전기에너지를 전송하는 방법도 시도되었다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 충전된다. Wireless power transmission or wireless energy transfer is a technology that transmits electrical energy wirelessly from a transmitter to a receiver using the principle of induction of magnetic field, which is already used by electric motors or transformers using the electromagnetic induction principle in the 1800s. Since then, there have been attempts to transmit electrical energy by radiating electromagnetic waves such as radio waves and lasers. Electric toothbrushes and some wireless razors that we commonly use are actually charged with the principle of electromagnetic induction.
현재까지 무선을 이용한 에너지 전달 방식은 크게 자기 유도 방식, 자기 공진(Electromagnetic Resonance) 방식 및 단파장 무선 주파수를 이용한 RF 전송 방식 등으로 구분될 수 있다.To date, energy transmission using wireless may be classified into magnetic induction, electromagnetic resonance, and RF transmission using short wavelength radio frequency.
자기 유도 방식은 두 개의 코일을 서로 인접시킨 후 한 개의 코일에 전류를 흘려보내면 이 때 발생한 자속(MagneticFlux)이 다른 코일에 기전력을 일으키는 현상을 사용한 기술로서, 휴대폰과 같은 소형기기를 중심으로 빠르게 상용화가 진행되고 있다. 자기 유도 방식은 최대 수백 키로와트(kW)의 전력을 전송할 수 있고 효율도 높지만 최대 전송 거리가 1센티미터(cm) 이하이므로 일반적으로 충전기나 바닥에 인접시켜야 하는 단점이 있다.The magnetic induction method uses the phenomenon that magnetic flux generated at this time causes electromotive force to other coils when two coils are adjacent to each other and current flows to one coil, and is rapidly commercialized in small devices such as mobile phones. Is going on. Magnetic induction is capable of transmitting power of up to several hundred kilowatts (kW) and has high efficiency, but the maximum transmission distance is less than 1 centimeter (cm).
자기 공진 방식은 전자기파나 전류 등을 활용하는 대신 전기장이나 자기장을 이용하는 특징이 있다. 자기 공진 방식은 전자파 문제의 영향을 거의 받지 않으므로 다른 전자 기기나 인체에 안전하다는 장점이 있다. 반면, 한정된 거리와 공간에서만 활용할 수 있으며 에너지 전달 효율이 다소 낮다는 단점이 있다.The magnetic resonance method is characterized by using an electric or magnetic field instead of using electromagnetic waves or current. Since the magnetic resonance method is hardly affected by the electromagnetic wave problem, it has the advantage of being safe for other electronic devices or the human body. On the other hand, it can be utilized only in limited distances and spaces, and has a disadvantage in that energy transmission efficiency is rather low.
단파장 무선 전력 전송 방식-간단히, RF 전송 방식-은 에너지가 라디오 파(RadioWave)형태로 직접 송수신될 수 있다는 점을 활용한 것이다. 이 기술은 렉테나(rectenna)를 이용하는 RF 방식의 무선 전력 전송 방식으로서, 렉테나는 안테나(antenna)와 정류기(rectifier)의 합성어로서 RF 전력을 직접 직류 전력으로 변환하는 소자를 의미한다. 즉, RF 방식은 AC 라디오파를 DC로 변환하여 사용하는 기술로서, 최근 효율이 향상되면서 상용화에 대한 연구가 활발히 진행되고 있다.The short wavelength wireless power transmission scheme—simply, the RF transmission scheme— takes advantage of the fact that energy can be transmitted and received directly in the form of RadioWave. This technology is a wireless power transmission method of the RF method using a rectenna, a compound word of an antenna and a rectifier (rectifier) refers to a device that converts RF power directly into direct current power. In other words, the RF method is a technology that converts AC radio waves to DC and uses them. Recently, research on commercialization has been actively conducted as efficiency is improved.
무선 전력 전송 기술은 모바일 뿐만 아니라 IT, 철도, 가전 산업 등 산업 전반에 다양하게 활용될 수 있다.Wireless power transfer technology can be used in various industries, such as the mobile, IT, railroad and consumer electronics industries.
최근에는 충전 베드에 놓여진 무선 전력 수신기의 인식률을 높이기 위해 복수의 코일들이 장착된 무선 전력 송신기가 출시되고 있다. 이러한 복수의 코일들 각각은 무선 전력 신호 및 각종 신호를 송신하거나, 무선 전력 수신기로부터 각종 신호를 수신할 수 있다. 이때, 무선 전력 신호 및 각종 제어 신호 뿐 아니라 고주파 노이즈 역시 복수의 코일들로 유입될 수 있는데, 고주파 노이즈는 무선 전력 수신 효율의 저하 및 제어 신호의 인식 오류를 야기할 수 있어 무선 전력 송신기의 성능에 큰 영향을 미칠 수 있다.Recently, a wireless power transmitter equipped with a plurality of coils has been introduced to increase the recognition rate of the wireless power receiver placed in the charging bed. Each of the plurality of coils may transmit a wireless power signal and various signals, or may receive various signals from a wireless power receiver. In this case, high-frequency noise as well as the wireless power signal and various control signals may also be introduced into the plurality of coils. The high-frequency noise may cause a decrease in wireless power reception efficiency and an error in recognition of the control signal. It can have a big impact.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 무선 전력 신호 또는 각종 제어 신호를 송수신하는 코일에 존재하는 고주파 노이즈를 효과적으로 제거할 수 있는 무선 전력 송신기 및 무선 전력 수신기를 제공하는 것이다.The present invention has been devised to solve the above-mentioned problems of the prior art, and an object of the present invention is to effectively remove high-frequency noise present in a coil for transmitting and receiving a wireless power signal or various control signals, and a wireless power transmitter and a wireless power receiver. To provide.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
본 발명의 일 실시예에 따른 무선 전력 송신기는 무선으로 전력을 송신하기 위한 송신 코일; 상기 송신 코일을 제어하는 회로 기판과 상기 송신 코일이 전기적으로 연결되도록 하는 커넥터; 및 상기 송신 코일과 상기 커넥터 사이에서, 상기 송신 코일의 리드선에 삽입되어 고주파 노이즈를 제거하는 노이즈 제거 회로를 포함할 수 있다.Wireless power transmitter according to an embodiment of the present invention includes a transmission coil for transmitting power wirelessly; A connector to electrically connect the circuit board controlling the transmitting coil and the transmitting coil; And a noise removing circuit inserted between a lead coil of the transmitting coil and the high frequency noise between the transmitting coil and the connector.
실시예에 따라, 상기 노이즈 제거 회로는, 상기 송신 코일의 리드선에 직렬로 연결되는 비드(bead)이다.In some embodiments, the noise canceling circuit is a bead connected in series with a lead of the transmitting coil.
실시예에 따라, 상기 비드는, 서로 병렬로 연결된 인덕터 및 저항을 포함하고, 상기 송신 코일에 인가되는 신호가 고주파일 경우, 상기 저항은 상기 신호를 흡수하여 고주파 노이즈를 제거할 수 있다.In some embodiments, the bead includes an inductor and a resistor connected in parallel to each other, and when the signal applied to the transmitting coil is a high frequency, the resistor may absorb the signal to remove high frequency noise.
실시예에 따라, 상기 커넥터는, 기판; 및 상기 기판 상에 삽입되는 적어도 하나의 핀을 포함하며, 상기 적어도 하나의 핀은, 상기 송신 코일의 리드선과 연결되는 상부 연결부; 및 상기 회로 기판과 상기 송신 코일이 전기적으로 연결되도록 상기 회로 기판과 연결되는 하부 연결부를 포함할 수 있다.According to an embodiment, the connector comprises: a substrate; And at least one pin inserted on the substrate, wherein the at least one pin includes: an upper connection part connected to a lead wire of the transmission coil; And a lower connection part connected to the circuit board such that the circuit board and the transmitting coil are electrically connected to each other.
본 발명의 다른 실시예에 따른 무선 전력 송신기는, 무선으로 전력을 송신하기 위한 송신 코일; 및 상기 송신 코일을 제어하는 회로 기판과 상기 송신 코일이 전기적으로 연결되도록 하는 커넥터를 포함하며, 상기 커넥터는, 상기 송신 코일의 제1 리드선이 연결되는 핀과 상기 송신 코일의 제2 리드선이 연결되는 핀 사이에 연결되어 고주파 노이즈를 제거하는 노이즈 제거 회로를 포함할 수 있다.A wireless power transmitter according to another embodiment of the present invention, a transmission coil for transmitting power wirelessly; And a connector for electrically connecting the circuit board controlling the transmitting coil and the transmitting coil, wherein the connector is connected to a pin to which the first lead of the transmitting coil is connected and the second lead of the transmitting coil is connected. It may include a noise cancellation circuit connected between the pins to remove high frequency noise.
본 발명의 일 실시예에 따른 무선 전력 수신기는, 무선으로 전력을 수신하기 위한 수신 코일; 상기 수신 코일을 제어하는 회로 기판과 상기 수신 코일이 전기적으로 연결되도록 하는 커넥터; 및 상기 수신 코일과 상기 커넥터 사이에서, 상기 수신 코일의 리드선에 삽입되어 고주파 노이즈를 제거하는 노이즈 제거 회로를 포함할 수 있다.A wireless power receiver according to an embodiment of the present invention, the receiving coil for receiving power wirelessly; A connector for electrically connecting the circuit board controlling the receiving coil and the receiving coil; And a noise removing circuit inserted between the receiving coil and the connector and inserted into a lead wire of the receiving coil to remove high frequency noise.
본 발명의 다른 실시예에 따른 무선 전력 수신기는, 무선으로 전력을 수신하기 위한 수신 코일; 및 상기 수신 코일을 제어하는 회로 기판과 상기 수신 코일이 전기적으로 연결되도록 하는 커넥터를 포함하며, 상기 커넥터는, 상기 수신 코일의 제1 리드선이 연결되는 핀과 상기 수신 코일의 제2 리드선이 연결되는 핀 사이에 연결되어 고주파 노이즈를 제거하는 노이즈 제거 회로를 포함할 수 있다.In accordance with another aspect of the present invention, a wireless power receiver includes: a receiving coil for wirelessly receiving power; And a connector for electrically connecting the circuit board for controlling the receiving coil and the receiving coil, wherein the connector includes a pin connected to a first lead of the receiving coil and a second lead of the receiving coil. It may include a noise cancellation circuit connected between the pins to remove high frequency noise.
상기 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.The above aspects of the present invention are only some of the preferred embodiments of the present invention, and various embodiments in which the technical features of the present invention are reflected will be described in detail below by those skilled in the art. Can be derived and understood.
본 발명에 따른 장치에 대한 효과에 대해 설명하면 다음과 같다.The effects on the apparatus according to the present invention are described as follows.
본 발명의 일 실시예에 따른 무선 전력 송신기 및 무선 전력 수신기에 의하면 송신 코일 측에 고주파 노이즈를 제거할 수 있는 회로를 구현함으로써 보다 효과적으로 고주파 노이즈를 제거할 수 있다.According to the wireless power transmitter and the wireless power receiver according to an embodiment of the present invention, by implementing a circuit capable of removing high frequency noise on the transmitting coil side, it is possible to more effectively remove the high frequency noise.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are provided to facilitate understanding of the present invention, and provide embodiments of the present invention together with the detailed description. However, the technical features of the present invention are not limited to the specific drawings, and the features disclosed in the drawings may be combined with each other to constitute new embodiments.
도 1은 본 발명의 일 실시예에 따른 무선 전력 송신기에서의 감지 신호 전송 절차를 설명하기 위한 도면이다.1 is a view for explaining a detection signal transmission procedure in a wireless power transmitter according to an embodiment of the present invention.
도 2는 WPC 표준에 정의된 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.2 is a state transition diagram for explaining a wireless power transmission procedure defined in the WPC standard.
도 3은 PMA 표준에 정의된 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.3 is a state transition diagram for explaining a wireless power transmission procedure defined in the PMA standard.
도 4는 본 발명의 일 실시예에 따른 유도 송신기의 구조를 설명하기 위한 블록도이다.4 is a block diagram illustrating a structure of an induction transmitter according to an embodiment of the present invention.
도 5는 상기 도 4에 따른 무선 전력 송신기와 연동되는 무선 전력 수신기의 구조를 설명하기 위한 블록도이다.FIG. 5 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 4.
도 6은 본 발명의 일 실시예에 따른 송신 코일 모듈을 설명하기 위한 도면이다.6 is a diagram for describing a transmitting coil module according to an exemplary embodiment of the present invention.
도 7은 도 6에 도시된 비드의 일 실시예를 보다 상세히 나타낸 도면이다.FIG. 7 illustrates an embodiment of the bead shown in FIG. 6 in more detail.
도 8은 본 발명의 다른 실시예에 따른 커넥터를 간략히 나타낸 도면이다.8 is a view schematically showing a connector according to another embodiment of the present invention.
도 9는 도 8에 도시된 임베디드 회로의 일 실시예를 나타낸 도면이다.FIG. 9 is a diagram illustrating an embodiment of an embedded circuit illustrated in FIG. 8.
본 발명의 제1 실시예에 따른 무선 전력 송신기는 무선으로 전력을 송신하기 위한 송신 코일; 상기 송신 코일을 제어하는 회로 기판과 상기 송신 코일이 전기적으로 연결되도록 하는 커넥터; 및 상기 송신 코일과 상기 커넥터 사이에서, 상기 송신 코일의 리드선에 삽입되어 고주파 노이즈를 제거하는 노이즈 제거 회로를 포함할 수 있다.A wireless power transmitter according to a first embodiment of the present invention includes a transmission coil for transmitting power wirelessly; A connector to electrically connect the circuit board controlling the transmitting coil and the transmitting coil; And a noise removing circuit inserted between a lead coil of the transmitting coil and the high frequency noise between the transmitting coil and the connector.
이하, 본 발명의 실시예들이 적용되는 장치 및 다양한 방법들에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.Hereinafter, an apparatus and various methods to which embodiments of the present invention are applied will be described in more detail with reference to the accompanying drawings. The suffixes "module" and "unit" for components used in the following description are given or used in consideration of ease of specification, and do not have distinct meanings or roles from each other.
실시예의 설명에 있어서, 각 구성 요소의 " 상(위) 또는 하(아래)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)는 두개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다. 또한 “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In the description of the embodiments, where it is described as being formed on the "top" or "bottom" of each component, the top (bottom) or the bottom (bottom) is the two components are in direct contact with each other or One or more other components are all included disposed between the two components. In addition, when expressed as "up (up) or down (down)" may include the meaning of the down direction as well as the up direction based on one component.
실시예의 설명에 있어서, 무선 전력 시스템상에서 무선 전력을 송신하는 장치는 설명의 편의를 위해 무선 파워 송신기, 무선 파워 송신 장치, 무선 전력 송신 장치, 무선 전력 송신기, 송신단, 송신기, 송신 장치, 송신측, 무선 파워 전송 장치, 무선 파워 전송기 등을 혼용하여 사용하기로 한다. 또한, 무선 전력 송신 장치로부터 무선 전력을 수신하는 장치에 대한 표현으로 설명의 편의를 위해 무선 전력 수신 장치, 무선 전력 수신기, 무선 파워 수신 장치, 무선 파워 수신기, 수신 단말기, 수신측, 수신 장치, 수신기 등이 혼용되어 사용될 수 있다.In the description of the embodiment, the apparatus for transmitting wireless power on the wireless power system is a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a transmitter, a transmitter, a transmitter, a transmitter, A wireless power transmitter, a wireless power transmitter, and the like will be used interchangeably. In addition, as a representation of a device for receiving wireless power from a wireless power transmitter, for convenience of description, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver terminal, a receiver, a receiver, a receiver Or the like can be used in combination.
본 발명에 따른 송신기는 패드 형태, 거치대 형태, AP(Access Point) 형태, 소형 기지국 형태, 스텐드 형태, 천장 매립 형태, 벽걸이 형태 등으로 구성될 수 있으며, 하나의 송신기는 복수의 무선 전력 수신 장치에 파워를 전송할 수도 있다. 이를 위해, 송신기는 적어도 하나의 무선 파워 전송 수단을 구비할 수도 있다. 여기서, 무선 파워 전송 수단은 전력 송신단 코일에서 자기장을 발생시켜 그 자기장의 영향으로 수신단 코일에서 전기가 유도되는 전자기유도 원리를 이용하여 충전하는 전자기 유도 방식에 기반한 다양한 무전 전력 전송 표준이 사용될 수 있다. 여기서, 무선파워 전송 수단은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium) 및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.The transmitter according to the present invention may be configured in a pad form, a cradle form, an access point (AP) form, a small base station form, a stand form, a ceiling buried form, a wall hanging form, and the like. You can also transfer power. To this end, the transmitter may comprise at least one wireless power transmission means. Herein, the wireless power transmission means may use various wireless power transmission standards based on an electromagnetic induction method that generates a magnetic field in the power transmitter coil and charges using the electromagnetic induction principle in which electricity is induced in the receiver coil under the influence of the magnetic field. Here, the wireless power transmission means may include a wireless charging technology of the electromagnetic induction method defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA) which is a wireless charging technology standard apparatus.
또한, 본 발명의 일 실시예에 따른 수신기는 적어도 하나의 무선 전력 수신 수단이 구비될 수 있으며, 2개 이상의 송신기로부터 동시에 무선 파워를 수신할 수도 있다. 여기서, 무선 전력 수신 수단은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium) 및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.In addition, the receiver according to an embodiment of the present invention may be provided with at least one wireless power receiving means, and may simultaneously receive wireless power from two or more transmitters. Here, the wireless power receiving means may include an electromagnetic induction wireless charging technology defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA), which are wireless charging technology standard organizations.
본 발명에 따른 수신기는 휴대폰(mobile phone), 스마트폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 네비게이션, MP3 player, 전동 칫솔, 전자 태그, 조명 장치, 리모콘, 낚시찌, 스마트 워치와 같은 웨어러블 디바이스 등의 소형 전자 기기 등에 사용될 수 있으나, 이에 국한되지는 아니하며 본 발명에 따른 무선 전력 수신 수단이 장착되어 배터리 충전이 가능한 기기라면 족하다. The receiver according to the present invention is a mobile phone, smart phone, laptop computer, digital broadcasting terminal, PDA (Personal Digital Assistants), PMP (Portable Multimedia Player), navigation, MP3 player, electric It may be used in a small electronic device such as a toothbrush, an electronic tag, a lighting device, a remote control, a fishing bobber, a wearable device such as a smart watch, but is not limited thereto. If the device is equipped with a wireless power receiver according to the present invention, the battery can be charged. It is enough.
도 1은 본 발명의 일 실시예에 따른 무선 전력 송신기에서의 감지 신호 전송 절차를 설명하기 위한 도면이다. 1 is a view for explaining a detection signal transmission procedure in a wireless power transmitter according to an embodiment of the present invention.
도 1을 참조하면, 무선 전력 송신기는 3개의 송신 코일(111, 112, 113)이 장착될 수 있다. 각각의 송신 코일은 일부 영역이 다른 송신 코일과 서로 중첩될 수 있으며, 무선 전력 송신기는 각각의 송신 코일을 통해 무선 전력 수신기의 존재를 감지하기 위한 소정 감지 신호(117, 127)-예를 들면, 디지털 핑 신호-를 미리 정의된 순서로 순차적으로 송출한다.Referring to FIG. 1, the wireless power transmitter may be equipped with three transmitting coils 111, 112, and 113. Each transmission coil may overlap some other area with another transmission coil, and the wireless power transmitter may detect a predetermined detection signal 117, 127 for detecting the presence of the wireless power receiver through each transmission coil, for example, Digital ping signals are sent sequentially in a predefined order.
상기 도 1에 도시된 바와 같이, 무선 전력 송신기는 도면 번호 110에 도시된 1차 감지 신호 송출 절차를 통해 감지 신호(117)를 순차적으로 송출하고, 무선 전력 수신기(115)로부터 시그널 세기 지시자(Signal Strength Indicator, 116)가 수신된 송신 코일(111, 112)을 식별할 수 있다. 연이어, 무선 전력 송신기는 도면 번호 120에 도시된 2차 감지 신호 송출 절차를 통해 감지 신호(127)를 순차적으로 송출하고, 시그널 세기 지시자(126)가 수신된 송신 코일(111, 112) 중 전력 전송 효율(또는 충전 효율)-즉, 송신 코일과 수신 코일 사이의 정렬 상태-이 좋은 송신 코일을 식별하고, 식별된 송신 코일을 통해 전력이 송출되도록-즉, 무선 충전이 이루어지도록- 제어할 수 있다. As shown in FIG. 1, the wireless power transmitter sequentially transmits a sensing signal 117 through a primary sensing signal transmitting procedure shown in FIG. 110, and receives a signal strength indicator from the wireless power receiver 115. The strength indicator 116 can identify the received transmission coils 111, 112. Subsequently, the wireless power transmitter sequentially transmits the detection signal 127 through the secondary detection signal transmission procedure shown in FIG. 120, and transmits power among the transmission coils 111 and 112 where the signal strength indicator 126 is received. The efficiency (or charging efficiency)-that is, the alignment between the transmitting coil and the receiving coil-can identify a good transmitting coil and control that power can be sent through the identified transmitting coil-i.e. wireless charging is made. .
상기의 도 1에서 보여지는 바와 같이, 무선 전력 송신기가 2회의 감지 신호 송출 절차를 수행하는 이유는 어느 송신 코일에 무선 전력 수신기의 수신 코일이 잘 정렬되어 있는지를 보다 정확하게 식별하기 위함이다.As shown in FIG. 1, the reason why the wireless power transmitter performs two sensing signal transmission procedures is to more accurately identify which transmitting coil is well aligned with the receiving coil of the wireless power receiver.
만약, 상기한 도 1의 도면 번호 110 및 120에 도시된 바와 같이, 제1 송신 코일(111), 제2 송신 코일(112)에 시그널 세기 지시자(116, 126)가 수신된 경우, 무선 전력 송신기는 제1 송신 코일(111)과 제2 송신 코일(112) 각각에 수신된 시그널 세기 지시자(126)에 기반하여 가장 정렬이 잘된 송신 코일을 선택하고, 선택된 송신 코일을 이용하여 무선 충전을 수행한다. If the signal strength indicators 116 and 126 are received in the first transmitting coil 111 and the second transmitting coil 112, as shown in reference numerals 110 and 120 of FIG. 1, the wireless power transmitter. Based on the signal strength indicator 126 received at each of the first transmitting coil 111 and the second transmitting coil 112 selects the best-aligned transmitting coil, and performs wireless charging using the selected transmitting coil. .
도 2는 WPC 표준에 정의된 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.2 is a state transition diagram for explaining a wireless power transmission procedure defined in the WPC standard.
도 2를 참조하면, WPC 표준에 따른 송신기로부터 수신기로의 파워 전송은 크게 선택 단계(Selection Phase, 210), 핑 단계(Ping Phase, 220), 식별 및 구성 단계(Identification and Configuration Phase, 230), 전력 전송 단계(Power Transfer Phase, 240) 단계로 구분될 수 있다.Referring to FIG. 2, power transmission from a transmitter to a receiver according to the WPC standard can be divided into a selection phase 210, a ping phase 220, an identification and configuration phase 230, It may be divided into a power transfer phase 240.
선택 단계(210)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 선택 단계(210)에서 송신기는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다. 만약, 송신기가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(220)로 천이할 수 있다(S201). 선택 단계(210)에서 송신기는 매우 짧은 펄스의 아날로그 핑(Analog Ping) 신호를 전송하며, 송신 코일의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다. The selection step 210 may be a step of transitioning when a specific error or a specific event is detected while starting or maintaining power transmission. Here, specific errors and specific events will be apparent from the following description. In addition, in the selection step 210, the transmitter may monitor whether an object exists on the interface surface. If the transmitter detects that an object is placed on the interface surface, the transmitter may transition to the ping step 220 (S201). In the selection step 210, the transmitter transmits an analog ping signal of a very short pulse, and detects whether an object exists in an active area of the interface surface based on a change in current of a transmitting coil.
핑 단계(220)에서 송신기는 물체가 감지되면, 수신기를 활성화시키고, 수신기가 WPC 표준이 호환되는 수신기인지를 식별하기 위한 디지털 핑(Digital Ping)을 전송한다. 핑 단계(220)에서 송신기는 디지털 핑에 대한 응답 시그널-예를 들면, 신호 세기 지시자-을 수신기로부터 수신하지 못하면, 다시 선택 단계(210)로 천이할 수 있다(S202). 또한, 핑 단계(220)에서 송신기는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 신호-를 수신하면, 선택 단계(210)로 천이할 수도 있다(S203).In ping step 220, when an object is detected, the transmitter activates the receiver and sends a digital ping to identify whether the receiver is a receiver that is compliant with the WPC standard. If the transmitter does not receive a response signal to the digital ping (eg, signal strength indicator) from the receiver in the ping step 220, it may transition back to the selection step 210 (S202). In addition, in the ping step 220, when the transmitter receives a signal indicating that the power transmission is completed, that is, the charging completion signal, the transmitter may transition to the selection step 210 (S203).
핑 단계(220)가 완료되면, 송신기는 수신기 식별 및 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(230)로 천이할 수 있다(S204).When the ping step 220 is completed, the transmitter may transition to the identification and configuration step 230 for collecting receiver identification and receiver configuration and status information (S204).
식별 및 구성 단계(230)에서 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(210)로 천이할 수 있다(S205).In the identification and configuration step 230, the transmitter receives an unexpected packet, a desired packet has not been received for a predefined time, a packet transmission error, or a power transmission contract. If this is not set (no power transfer contract) it may transition to the selection step 210 (S205).
수신기에 대한 식별 및 구성이 완료되면, 송신기는 무선 전력을 전송하는 전력 전송 단계(240)로 천이할 수 있다(S206).When the identification and configuration of the receiver is completed, the transmitter may transition to the power transmission step 240 for transmitting the wireless power (S206).
전력 전송 단계(240)에서, 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(210)로 천이할 수 있다(S207).In the power transmission step 240, the transmitter receives an unexpected packet, an outgoing desired packet for a predefined time, or a violation of a preset power transmission contract. transfer contract violation), if the filling is completed, the transition to the selection step (210) (S207).
또한, 전력 전송 단계(240)에서, 송신기는 송신기 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 식별 및 구성 단계(230)로 천이할 수 있다(S208).In addition, in the power transmission step 240, if it is necessary to reconfigure the power transmission contract in accordance with the change in the transmitter state, the transmitter may transition to the identification and configuration step 230 (S208).
상기한 파워 전송 계약은 송신기와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 송신기 상태 정보는 최대 전송 가능한 파워량에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.The power transmission contract may be set based on state and characteristic information of the transmitter and the receiver. For example, the transmitter state information may include information about the maximum amount of power that can be transmitted, information about the maximum number of receivers that can be accommodated, and the receiver state information may include information about required power.
도 3은 PMA 표준에 정의된 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.3 is a state transition diagram for explaining a wireless power transmission procedure defined in the PMA standard.
도 3을 참조하면, PMA 표준에 따른 송신기로부터 수신기로의 파워 전송은 크게 대기 단계(Standby Phase, 310), 디지털 핑 단계(Digital Ping Phase, 320), 식별 단계(Identification Phase, 330), 전력 전송 단계(Power Transfer Phase, 340) 단계 및 충전 완료 단계(End of Charge Phase, 350)로 구분될 수 있다.Referring to FIG. 3, power transmission from a transmitter to a receiver according to the PMA standard is divided into a standby phase (310), a digital ping phase (320), an identification phase (330), and a power transmission. The operation may be divided into a power transfer phase 340 and an end of charge phase 350.
대기 단계(310)는 파워 전송을 위한 수신기 식별 절차를 수행하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 대기 단계(310)에서 송신기는 충전 표면(Charging Surface)에 물체가 존재하는지를 모니터링할 수 있다. 만약, 송신기가 충전 표면에 물체가 놓여진 것이 감지되거나 RXID 재시도가 진행중인 경우, 디지털 핑 단계(320)로 천이할 수 있다(S301). 여기서, RXID는 PMA 호환 수신기에 할당되는 고유 식별자이다. 대기 단계(310)에서 송신기는 매우 짧은 펄스의 아날로그 핑(Analog Ping)을 전송하며, 송신 코일의 전류 변화에 기반하여 인터페이스 표면-예를 들면, 충전 베드-의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.The waiting step 310 may be a step of transitioning when a specific error or a specific event is detected while performing a receiver identification procedure for power transmission or maintaining power transmission. Here, specific errors and specific events will be apparent from the following description. In addition, in the waiting step 310, the transmitter may monitor whether an object exists on a charging surface. If the transmitter detects that an object is placed on the charging surface or the RXID retry is in progress, the transmitter may transition to the digital ping step 320 (S301). Here, RXID is a unique identifier assigned to a PMA compatible receiver. In the standby phase 310, the transmitter transmits a very short pulse of analog ping, and an object is placed on the active surface of the interface surface-for example, the charging bed-based on the current change of the transmitting coil. You can detect if it exists.
디지털 핑 단계(320)로 천이된 송신기는 감지된 물체가 PMA 호환 수신기인지를 식별하기 위한 디지털 핑 신호를 송출한다. 송신기가 전송한 디지털 핑 신호에 의해 수신단에 충분한 전력이 공급되는 경우, 수신기는 수신된 디지털 핑 신호를 PMA 통신 프로토콜에 따라 변조하여 소정 응답 시그널을 송신기에 전송할 수 있다. 여기서, 응답 시그널은 수신기에 수신된 전력의 세기를 지시하는 신호 세기 지시자가 포함될 수 있다. 디지털 핑 단계(320)에서 수신기는 유효한 응답 시그널이 수신되면, 식별 단계(330)로 천이할 수 있다(S302).The transmitter transitioned to the digital ping step 320 sends a digital ping signal to identify whether the detected object is a PMA compatible receiver. When sufficient power is supplied to the receiving end by the digital ping signal transmitted by the transmitter, the receiver may modulate the received digital ping signal according to the PMA communication protocol to transmit a predetermined response signal to the transmitter. Here, the response signal may include a signal strength indicator indicating the strength of the power received by the receiver. In the digital ping step 320, if a valid response signal is received, the receiver may transition to the identification step 330 (S302).
만약, 디지털 핑 단계(320)에서, 응답 시그널이 수신되지 않거나, PMA 호환 수신기가 아닌 것으로 확인되면-즉, FOD(Foreign Object Detection)인 경우-, 송신기는 대기 단계(310)로 천이할 수 있다(S303). 일 예로, FO(Foreign Object)는 동전, 키 등을 포함하는 금속성 물체일 수 있다.If, at the digital ping step 320, no response signal is received or it is determined that the PMA compatible receiver is not—that is, Foreign Object Detection (FOD) —the transmitter may transition to the standby step 310. (S303). For example, the Foreign Object (FO) may be a metallic object including coins, keys, and the like.
식별 단계(330)에서, 송신기는 수신기 식별 절차가 실패하거나 수신기 식별 절차를 재수행하여야 하는 경우 및 미리 정의된 시간 동안 수신기 식별 절차를 완료하지 못한 경우에 대기 단계(310)로 천이할 수 있다(S304).In the identification step 330, the transmitter may transition to the waiting step 310 if the receiver identification procedure fails or the receiver identification procedure needs to be re-executed and if the receiver identification procedure has not been completed for a predefined time ( S304).
송신기는 수신기 식별에 성공하면, 식별 단계(330)에서 전력 전송 단계(340)로 천이하여 충전을 개시할 수 있다(S305).If the transmitter succeeds in identifying the receiver, the transmitter transitions from the identification step 330 to the power transmission step 340 to start charging (S305).
전력 전송 단계(340)에서, 송신기는 원하는 신호가 미리 정해진 시간 이내에 수신되지 않거나(Time Out), FO가 감지되거나, 송신 코일의 전압이 미리 정의된 기준치를 초과하는 경우, 대기 단계(310)으로 천이할 수 있다(S306).In power transmission step 340, the transmitter goes to standby step 310 if the desired signal is not received within a predetermined time (Time Out), or if the FO is detected or the voltage of the transmitting coil exceeds a predefined reference value. It may transition (S306).
또한, 전력 전송 단계(340)에서, 송신기는 내부 구비된 온도 센서에 의해 감지된 온도가 소정 기준치를 초과하는 경우, 충전 완료 단계(350)로 천이할 수 있다(S307).In addition, in the power transmission step 340, if the temperature sensed by the temperature sensor provided therein exceeds a predetermined reference value, the transmitter may transition to the charging completion step 350 (S307).
충전 완료 단계(350)에서, 송신기는 수신기가 충전 표면에서 제거된 것이 확인되면, 대기 상태(310)으로 천이할 수 있다(S309).In the charging completion step 350, if the transmitter determines that the receiver is removed from the charging surface, the transmitter may transition to the standby state 310 (S309).
또한, 송신기는 Over Temperature 상태에서, 일정 시간 경과 후 측정된 온도가 기준치 이하로 떨어진 경우, 충전 완료 단계(350)에서 디지털 핑 단계(320)로 천이할 수 있다(S310).In addition, when the temperature measured after the lapse of a predetermined time has fallen below the reference value in the over temperature state, the transmitter may transition from the charging completion step 350 to the digital ping step 320 (S310).
디지털 핑 단계(320) 또는 전력 전송 단계(340)에서, 송신기는 수신기로부터 EOC(End Of Charge) 요청이 수신되면, 충전 완료 단계(350)로 천이할 수도 있다(S308 및 S311).In the digital ping step 320 or the power transfer step 340, when the transmitter receives an end of charge (EOC) request from the receiver, the transmitter may transition to the charging completion step 350 (S308 and S311).
도 4는 본 발명의 일 실시예에 따른 유도 송신기의 구조를 설명하기 위한 블록도이다.4 is a block diagram illustrating a structure of an induction transmitter according to an embodiment of the present invention.
도 4를 참조하면, 무선 전력 송신기(400)는 크게, 전력 변환부(410), 전력 전송부(420), 통신부(430), 제어부(440), 센싱부(450)를 포함하여 구성될 수 있다. 상기한 무선 전력 송신기(400)의 구성은 반드시 필수적인 구성은 아니어서, 그보다 많거나 적은 구성 요소를 포함하여 구성될 수도 있음을 주의해야 한다. Referring to FIG. 4, the wireless power transmitter 400 may be largely configured to include a power converter 410, a power transmitter 420, a communicator 430, a controller 440, and a sensor 450. have. It should be noted that the configuration of the wireless power transmitter 400 is not necessarily required, and may include more or fewer components.
도 4에 도시된 바와 같이, 전력 변환부(410)는 전원부(460)로부터 전원이 공급되면, 이를 소정 세기의 전력으로 변환하는 기능을 수행할 수 있다.As shown in FIG. 4, when power is supplied from the power supply unit 460, the power converter 410 may perform a function of converting the power into power of a predetermined intensity.
이를 위해, 전력 변환부(410)는 DC/DC 변환부(411), 증폭기(412)를 포함하여 구성될 수 있다.To this end, the power converter 410 may include a DC / DC converter 411 and an amplifier 412.
DC/DC 변환부(411)는 전원부(450)로부터 공급된 DC 전력을 제어부(440)의 제어 신호에 따라 특정 세기의 DC 전력으로 변환하는 기능을 수행할 수 있다.The DC / DC converter 411 may perform a function of converting DC power supplied from the power supply unit 450 into DC power having a specific intensity according to a control signal of the controller 440.
이때, 센싱부(450)는 DC 변환된 전력의 전압/전류 등을 측정하여 제어부(440)에 제공할 수 있다. 또한, 센싱부(450)는 과열 발생 여부 판단을 위해 무선 전력 송신기(400)의 내부 온도를 측정하고, 측정 결과를 제어부(440)에 제공할 수도 있다. 일 예로, 제어부(440)는 센싱부(450)에 의해 측정된 전압/전류 값에 기반하여 적응적으로 전원부(450)로부터의 전원 공급을 차단하거나, 증폭기(412)에 전력이 공급되는 것을 차단할 수 있다. 이를 위해, 전력 변환부(410)의 일측에는 전원부(450)로부터 공급되는 전원을 차단하거나, 증폭기(412)에 공급되는 전력을 차단하기 위한 소정 전력 차단 회로가 가 더 구비될 수도 있다.In this case, the sensing unit 450 may measure the voltage / current of the DC-converted power and provide the same to the controller 440. In addition, the sensing unit 450 may measure the internal temperature of the wireless power transmitter 400 to determine whether overheating occurs, and provide the measurement result to the controller 440. For example, the controller 440 may adaptively block power supply from the power supply unit 450 or block power from being supplied to the amplifier 412 based on the voltage / current value measured by the sensing unit 450. Can be. To this end, one side of the power converter 410 may be further provided with a predetermined power cut-off circuit for cutting off the power supplied from the power source 450, or cut off the power supplied to the amplifier 412.
증폭기(412)는 DC/DC 변환된 전력의 세기를 제어부(440)의 제어 신호에 따라 조정할 수 있다. 일 예로, 제어부(440)는 통신부(430)를 통해 무선 전력 수신기의 전력 수신 상태 정보 또는(및) 전력 제어 신호를 수신할 수 있으며, 수신된 전력 수신 상태 정보 또는(및) 전력 제어 신호에 기반하여 증폭기(412)의 증폭률을 동적으로 조정할 수 있다. 일 예로, 전력 수신 상태 정보는 정류기 출력 전압의 세기 정보, 수신 코일에 인가되는 전류의 세기 정보 등을 포함할 수 있으나, 이에 한정되지는 않는다. 전력 제어 신호는 전력 증가를 요청하기 위한 신호, 전력 감소를 요청하기 위한 신호 등을 포함할 수 있다. The amplifier 412 may adjust the intensity of the DC / DC converted power according to the control signal of the controller 440. For example, the controller 440 may receive power reception state information and / or power control signal of the wireless power receiver through the communication unit 430, and may be based on the received power reception state information or (and) power control signal. The amplification factor of the amplifier 412 can be dynamically adjusted. For example, the power reception state information may include, but is not limited to, strength information of the rectifier output voltage and strength information of a current applied to the receiving coil. The power control signal may include a signal for requesting power increase, a signal for requesting power reduction, and the like.
전력 전송부(420)는 다중화기(421)(또는 멀티플렉서), 송신 코일(422)을 포함하여 구성될 수 있다. 또한, 전력 전송부(420)는 전력 전송을 위한 특정 동작 주파수를 생성하기 위한 반송파 생성기(미도시)를 더 포함할 수도 있다.The power transmitter 420 may include a multiplexer 421 (or multiplexer) and a transmission coil 422. In addition, the power transmitter 420 may further include a carrier generator (not shown) for generating a specific operating frequency for power transmission.
반송파 생성기는 다중화기(421)를 통해 전달 받은 증폭기(412)의 출력 DC 전력을 특정 주파수를 갖는 AC 전력으로 변환하기 위한 특정 주파수를 생성할 수 있다. 이상의 설명에서는 반송파 생성기에 의해 생성된 교류 신호가 다중화기(421)의 출력단에 믹싱되어 교류 전력이 생성되는 것으로 설명되고 있으나, 이는 하나의 실시예에 불과하며, 다른 일 예는 증폭기(412) 이전단 또는 이후단에 믹싱될 수도 있음을 주의해야 한다. The carrier generator may generate a specific frequency for converting the output DC power of the amplifier 412 received through the multiplexer 421 into AC power having a specific frequency. In the above description, the AC signal generated by the carrier generator is mixed with the output terminal of the multiplexer 421 to generate AC power. However, this is only one embodiment, and the other example is before the amplifier 412. Note that it may be mixed in stages or later.
본 발명의 일 실시예에 따른 각각의 송신 코일에 전달되는 AC 전력의 주파수가 서로 상이할 수도 있음을 주의해야 한다. 본 발명의 다른 일 실시예는 LC 공진 특성을 송신 코일마다 상이하게 조절하는 기능이 구비된 소정 주파수 제어기를 이용하여 각각의 송신 코일 별 공진주파수를 상이하게 설정할 수도 있다.It should be noted that the frequencies of AC power delivered to each transmitting coil in accordance with one embodiment of the present invention may be different from each other. According to another embodiment of the present invention, the resonance frequency of each transmission coil may be set differently by using a predetermined frequency controller having a function of differently adjusting the LC resonance characteristics for each transmission coil.
전력 전송부(420)는 증폭기(412)의 출력 전력이 송신 코일에 전달되는 것을 제어하기 위한 다중화기(421)와 복수의 송신 코일(422)-즉, 제1 내지 제n 송신 코일-을 포함하여 구성될 수 있다.The power transmitter 420 includes a multiplexer 421 and a plurality of transmit coils 422—that is, first to nth transmit coils—for controlling the output power of the amplifier 412 to be transmitted to the transmit coil. Can be configured.
본 발명의 일 실시예에 따른 제어부(440)는 복수의 무선 전력 수신기가 연결된 경우, 송신 코일 별 시분할 다중화를 통해 전력을 전송할 수도 있다. 예를 들어, 무선 전력 송신기(400)에 3개의 무선 전력 수신기-즉, 제1 내지 3 무선 전력 수신기-가 각각 3개의 서로 다른 송신 코일-즉, 제1 내지 3 송신 코일-을 통해 식별된 경우, 제어부(440)는 다중화기(421)를 제어하여, 특정 타임 슬롯에 특정 송신 코일을 통해 전력이 송출될 수 있도록 제어할 수 있다. 이때, 송신 코일 별 할당된 타임 슬롯의 길이에 따라 해당 무선 전력 수신기로 전송되는 전력의 양이 제어될 수 있으나, 이는 하나의 실시예에 불과하며, 다른 일 예는 송신 코일 별 할당된 타임 슬롯 동안의 증폭기(412)의 증폭률을 제어하여 무선 전력 수신기 별 송출 전력을 제어할 수도 있다.When a plurality of wireless power receivers are connected, the controller 440 according to an embodiment of the present invention may transmit power through time division multiplexing for each transmission coil. For example, in the wireless power transmitter 400, three wireless power receivers, i.e., the first to third wireless power receivers, are each identified through three different transmitting coils, i.e., the first to third transmitting coils. The controller 440 may control the multiplexer 421 to control power to be transmitted through a specific transmission coil in a specific time slot. In this case, the amount of power transmitted to the corresponding wireless power receiver may be controlled according to the length of the time slot allocated to each transmitting coil, but this is only one embodiment. By controlling the amplification factor of the amplifier 412 of the wireless power receiver can also control the transmission power.
제어부(440)는 제1차 감지 신호 송출 절차 동안 제1 내지 제n 송신 코일(422)을 통해 감지 신호가 순차적으로 송출될 수 있도록 다중화기(421)를 제어할 수 있다. 이때, 제어부(440)는 감지 신호가 전송될 시점을 타이머(455)를 이용하여 식별할 수 있으며, 감지 신호 전송 시점이 도래하면, 다중화기(421)를 제어하여 해당 송신 코일을 통해 감지 신호가 송출될 수 있도록 제어할 수 있다. 일 예로, 타이머(450)는 핑 전송 단계 동안 소정 주기로 특정 이벤트 신호를 제어부(440)에 송출할 수 있으며, 제어부(440)는 해당 이벤트 신호가 감지되면, 다중화기(421)를 제어하여 해당 송신 코일을 통해 디지털 핑이 송출될 수 있도록 제어할 수 있다.The controller 440 may control the multiplexer 421 to sequentially transmit the sensing signals through the first to nth transmitting coils 422 during the first sensing signal transmission procedure. In this case, the controller 440 may identify a time point at which the detection signal is transmitted by using the timer 455. When the detection signal transmission time arrives, the control unit 440 controls the multiplexer 421 to detect the detection signal through the corresponding transmission coil. Can be controlled to be sent. For example, the timer 450 may transmit a specific event signal to the controller 440 at a predetermined period during the ping transmission step. When the corresponding event signal is detected, the controller 440 controls the multiplexer 421 to transmit the specific event signal. The digital ping can be sent through the coil.
또한, 제어부(440)는 제1차 감지 신호 송출 절차 동안 복조부(432)로부터 어느 송신 코일을 통해 신호 세기 지시자(Signal Strength Indicator)가 수신되었는지를 식별하기 위한 소정 송신 코일 식별자 및 해당 송신 코일을 통해 수신된 신호 세기 지시자를 수신할 수 있다. 연이어, 제2차 감지 신호 송출 절차에서 제어부(440)는 제1차 감지 신호 송출 절차 동안 신호 세기 지시자가 수신된 송신 코일(들)을 통해서만 감지 신호가 송출될 수 있도록 다중화기(421)를 제어할 수도 있다. 다른 일 예로, 제어부(440)는 제1차 감지 신호 송출 절차 동안 신호 세기 지시자가 수신된 송신 코일이 복수개인 경우, 가장 큰 값을 갖는 신호 세기 지시자가 수신된 송신 코일을 제2차 감지 신호 송출 절차에서 감지 신호를 가장 먼저 송출할 송신 코일로 결정하고, 결정 결과에 따라 다중화기(421)를 제어할 수도 있다. In addition, the control unit 440 may identify a predetermined transmission coil identifier and a corresponding transmission coil for identifying which transmission coil has received a signal strength indicator from the demodulator 432 during the first detection signal transmission procedure. Signal strength indicator received through the can be received. Subsequently, in the second detection signal transmission procedure, the control unit 440 controls the multiplexer 421 so that the detection signal is transmitted only through the transmission coil (s) in which the signal strength indicator is received during the first detection signal transmission procedure. You may. As another example, when there are a plurality of transmitting coils receiving the signal strength indicator during the first sensing signal transmitting procedure, the controller 440 sends the second sensing signal to the transmitting coil in which the signal strength indicator having the largest value is received. In the procedure, the detection signal may be determined as the transmission coil to be transmitted first, and the multiplexer 421 may be controlled according to the determination result.
변조부(431)는 제어부(440)에 의해 생성된 제어 신호를 변조하여 다중화기(421)에 전달할 수 있다. 여기서, 제어 신호를 변조하기 위한 변조 방식은 FSK(Frequency Shift Keying) 변조 방식, 맨체스터 코딩(Manchester Coding) 변조 방식, PSK(Phase Shift Keying) 변조 방식, 펄스 폭 변조(Pulse Width Modulation) 방식, 차등 2단계(Differential bi-phase) 변조 방식 등을 포함할 수 있으나, 이에 한정되지는 않는다.The modulator 431 may modulate the control signal generated by the controller 440 and transmit the modulated control signal to the multiplexer 421. Here, the modulation scheme for modulating the control signal is a frequency shift keying (FSK) modulation scheme, a Manchester coding modulation scheme, a PSK (Phase Shift Keying) modulation scheme, a pulse width modulation scheme, a differential 2 Differential bi-phase modulation schemes may be included, but is not limited thereto.
복조부(432)는 송신 코일을 통해 수신되는 신호가 감지되면, 감지된 신호를 복조하여 제어부(440)에 전송할 수 있다. 여기서, 복조된 신호에는 신호 세기 지시자, 무선 전력 전송 중 전력 제어를 위한 오류 정정(EC:Error Correction) 지시자, 충전 완료(EOC: End Of Charge) 지시자, 과전압/과전류/과열 지시자 등이 포함될 수 있으나, 이에 한정되지는 않으며, 무선 전력 수신기의 상태를 식별하기 위한 각종 상태 정보가 포함될 수 있다.When a signal received through the transmitting coil is detected, the demodulator 432 may demodulate the detected signal and transmit the demodulated signal to the controller 440. Here, the demodulated signal may include a signal strength indicator, an error correction (EC) indicator for controlling power during wireless power transmission, an end of charge (EOC) indicator, an overvoltage / overcurrent / overheat indicator, and the like. However, the present invention is not limited thereto, and may include various state information for identifying a state of the wireless power receiver.
또한, 복조부(432)는 복조된 신호가 어느 송신 코일로부터 수신된 신호인지를 식별할 수 있으며, 식별된 송신 코일에 상응하는 소정 송신 코일 식별자를 제어부(440)에 제공할 수도 있다. In addition, the demodulator 432 may identify from which transmission coil the demodulated signal is received, and may provide the control unit 440 with a predetermined transmission coil identifier corresponding to the identified transmission coil.
또한, 복조부(432)는 송신 코일(422)을 통해 수신된 신호를 복조하여 제어부(440)에 전달할 수 있다. 일 예로, 복조된 신호는 신호 세기 지시자를 포함할 수 있으나, 이에 한정되지는 않으며, 복조 신호는 무선 전력 수신기의 각종 상태 정보를 포함할 수 있다.  In addition, the demodulator 432 may demodulate a signal received through the transmission coil 422 and transmit the demodulated signal to the controller 440. For example, the demodulated signal may include a signal strength indicator, but is not limited thereto. The demodulated signal may include various state information of the wireless power receiver.
일 예로, 무선 전력 송신기(400)는 무선 전력 전송에 사용되는 동일한 주파수를 이용하여 무선 전력 수신기와 통신을 수행하는 인밴드(In-Band) 통신을 통해 상기 신호 세기 지시자를 획득할 수 있다.For example, the wireless power transmitter 400 may obtain the signal strength indicator through in-band communication that communicates with the wireless power receiver using the same frequency used for wireless power transmission.
또한, 무선 전력 송신기(400)는 송신 코일(422)을 이용하여 무선 전력을 송출할 수 있을 뿐만 아니라 송신 코일(422)을 통해 무선 전력 수신기와 각종 정보를 교환할 수도 있다. 다른 일 예로, 무선 전력 송신기(400)는 송신 코일(422)-즉, 제1 내지 제n 송신 코일)에 각각 대응되는 별도의 코일을 추가로 구비하고, 구비된 별도의 코일을 이용하여 무선 전력 수신기와 인밴드 통신을 수행할 수도 있음을 주의해야 한다.In addition, the wireless power transmitter 400 may transmit wireless power using the transmission coil 422 and may exchange various information with the wireless power receiver through the transmission coil 422. As another example, the wireless power transmitter 400 further includes a separate coil corresponding to each of the transmission coils 422 (that is, the first to nth transmission coils), and wireless power using the separate coils provided. Note that in-band communication with the receiver may also be performed.
이상이 도 4의 설명에서는 무선 전력 송신기(400)와 무선 전력 수신기가 인밴드 통신을 수행하는 것을 예를 들어 설명하고 있으나, 이는 하나의 실시예에 불과하며, 무선 전력 신호 전송에 사용되는 주파수 대역과 상이한 주파수 대역을 통해 근거리 양방향 통신을 수행할 수 있다. 일 예로, 근거리 양방향 통신은 저전력 블루투스 통신, RFID 통신, UWB 통신, 지그비 통신 중 어느 하나일 수 있다.In the description of FIG. 4, the wireless power transmitter 400 and the wireless power receiver perform in-band communication by way of example. However, this is only one embodiment, and is a frequency band used for wireless power signal transmission. Short-range bidirectional communication may be performed through a frequency band different from that of FIG. For example, the short-range bidirectional communication may be any one of low power Bluetooth communication, RFID communication, UWB communication, and Zigbee communication.
도 5는 상기 도 4에 따른 무선 전력 송신기와 연동되는 무선 전력 수신기의 구조를 설명하기 위한 블록도이다.FIG. 5 is a block diagram illustrating a structure of a wireless power receiver interworking with the wireless power transmitter according to FIG. 4.
도 5를 참조하면, 무선 전력 수신기(500)는 수신 코일(510), 정류기(520), 직류/직류 변환기(DC/DC Converter, 530), 부하(540), 센싱부(550), 통신부(560), 제어부(570)를 포함하여 구성될 수 있다. 여기서, 통신부(560)는 복조부(561) 및 변조부(562)를 포함하여 구성될 수 있다.Referring to FIG. 5, the wireless power receiver 500 includes a receiving coil 510, a rectifier 520, a DC / DC converter 530, a load 540, a sensing unit 550, and a communication unit ( 560, the controller 570 may be configured to be included. Here, the communication unit 560 may include a demodulator 561 and a modulator 562.
상기한 도 5의 예에 도시된 무선 전력 수신기(500)는 인밴드 통신을 통해 무선 전력 송신기(500)와 정보를 교환할 수 있는 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예에 따른 통신부(560)는 무선 전력 신호 전송에 사용되는 주파수 대역과는 상이한 주파수 대역을 통해 근거리 양방향 통신을 제공할 수도 있다. Although the wireless power receiver 500 illustrated in the example of FIG. 5 is illustrated as being capable of exchanging information with the wireless power transmitter 500 through in-band communication, this is only one embodiment. The communication unit 560 according to another embodiment may provide short-range bidirectional communication through a frequency band different from the frequency band used for wireless power signal transmission.
수신 코일(510)을 통해 수신된 AC 전력은 정류부(520)에 전달될 수 있다. 정류기(520)는 AC 전력을 DC 전력으로 변환하여 직류/직류 변환기(530)에 전송할 수 있다. 직류/직류 변환기(530)는 정류기 출력 DC 전력의 세기를 부하(540)에 의해 요구되는 특정 세기로 변환한 후 부하(540)에 전달할 수 있다.AC power received through the receiving coil 510 may be transferred to the rectifier 520. The rectifier 520 may convert AC power into DC power and transmit the DC power to the DC / DC converter 530. The DC / DC converter 530 may convert the strength of the rectifier output DC power into a specific strength required by the load 540 and then transfer the power to the load 540.
센싱부(550)는 정류기(520) 출력 DC 전력의 세기를 측정하고, 이를 제어부(570)에 제공할 수 있다. 또한, 센싱부(550)는 무선 전력 수신에 따라 수신 코일(510)에 인가되는 전류의 세기를 측정하고, 측정 결과를 제어부(570)에 전송할 수도 있다. 또한, 센싱부(550)는 무선 전력 수신기(500)의 내부 온도를 측정하고, 측정된 온도 값을 제어부(570)에 제공할 수도 있다. The sensing unit 550 may measure the intensity of the rectifier 520 output DC power and provide the same to the controller 570. In addition, the sensing unit 550 may measure the strength of the current applied to the receiving coil 510 according to the wireless power reception, and transmit the measurement result to the control unit 570. In addition, the sensing unit 550 may measure the internal temperature of the wireless power receiver 500 and provide the measured temperature value to the controller 570.
일 예로, 제어부(570)는 측정된 정류기 출력 DC 전력의 세기가 소정 기준치와 비교하여 과전압 발생 여부를 판단할 수 있다. 판단 결과, 과전압이 발생된 경우, 과전압이 발생되었음을 알리는 소정 패킷을 생성하여 변조부(562)에 전송할 수 있다. 여기서, 변조부(562)에 의해 변조된 신호는 수신 코일(510) 또는 별도의 코일(미도시)을 통해 무선 전력 송신기(400)에 전송될 수 있다. 또한, 제어부(570)는 정류기 출력 DC 전력의 세기가 소정 기준치 이상인 경우, 감지 신호가 수신된 것으로 판단할 수 있으며, 감지 신호 수신 시, 해당 감지 신호에 대응되는 신호 세기 지시자가 변조부(562)를 통해 무선 전력 송신기(400)에 전송될 수 있도록 제어할 수 있다.다른 일 예로, 복조부(561)는 수신 코일(510)과 정류기(520) 사이의 AC 전력 신호 또는 정류기(520) 출력 DC 전력 신호를 복조하여 감지 신호의 수신 여부를 식별한 후 식별 결과를 제어부(570)에 제공할 수 있다. 이때, 제어부(570)는 감지 신호에 대응되는 신호 세기 지시자가 변조부(561)를 통해 전송될 수 있도록 제어할 수 있다.As an example, the controller 570 may determine whether the overvoltage is generated by comparing the measured intensity of the rectifier output DC power with a predetermined reference value. As a result of the determination, when the overvoltage is generated, a predetermined packet indicating that the overvoltage has occurred may be generated and transmitted to the modulator 562. Here, the signal modulated by the modulator 562 may be transmitted to the wireless power transmitter 400 through the receiving coil 510 or a separate coil (not shown). In addition, the control unit 570 may determine that a detection signal is received when the intensity of the rectifier output DC power is greater than or equal to a predetermined reference value. When the detection signal is received, a signal strength indicator corresponding to the detection signal is modulated by the modulator 562. In another example, the demodulator 561 may control an AC power signal or a rectifier 520 output DC between the receiving coil 510 and the rectifier 520. After demodulating the power signal to identify whether the detection signal is received, the identification result may be provided to the controller 570. In this case, the controller 570 may control the signal strength indicator corresponding to the detection signal to be transmitted through the modulator 561.
본 발명의 또 다른 일 실시예에 따른 제어부(570)는 배터리 충전률, 내부 온도, 정류기 출력 전압의 세기, 전자 기기에 탑재된 CPU 사용율, 사용자 메뉴 선택 중 적어도 하나에 기반하여 충전 모드의 변경이 필요한지 여부를 판단하고, 상기 판단 결과, 상기 충전 모드의 변경이 필요하면, 상기 변경할 충전 모드 값이 포함된 충전 모드 패킷을 생성하여 상기 무선 전력 송신기에 전송할 수도 있다.According to another embodiment of the present invention, the controller 570 may change the charging mode based on at least one of a battery charge rate, an internal temperature, a strength of the rectifier output voltage, a CPU usage rate installed in the electronic device, and a user menu selection. It may be determined whether it is necessary, and as a result of the determination, if it is necessary to change the charging mode, a charging mode packet including the changed charging mode value may be generated and transmitted to the wireless power transmitter.
도 6은 본 발명의 일 실시예에 따른 송신 코일 모듈을 설명하기 위한 도면이다.6 is a diagram for describing a transmitting coil module according to an exemplary embodiment of the present invention.
도 6을 참조하면, 송신 코일 모듈(600)은 도 4에 도시된 복수의 코일들(422)이 장착되어, 전력 변환부(410), 통신부(430), 제어부(440), 센싱부(450) 등의 무선 전력 송신기(400)의 동작을 제어하는 구성들을 포함하는 제어 회로 기판에 연결될 수 있도록 모듈화된 장치를 의미한다. 송신 코일 모듈(600)에 장착되는 복수의 코일은 도 1에 도시된 3개의 송신 코일(111, 112, 113)로 구성된다고 가정한다.Referring to FIG. 6, the transmitting coil module 600 is equipped with a plurality of coils 422 illustrated in FIG. 4, such that the power converter 410, the communication unit 430, the control unit 440, and the sensing unit 450 are installed. It refers to a device that is modularized to be connected to a control circuit board including components for controlling the operation of the wireless power transmitter 400, such as). It is assumed that the plurality of coils mounted on the transmitting coil module 600 is composed of three transmitting coils 111, 112, and 113 shown in FIG. 1.
송신 코일 모듈(600)에 장착되는 코일은 다양한 규격(예컨대, WPC 표준에 따른 인증 코일, PMA 표준에 따른 인증 코일)을 가질 수 있는데, 다양한 규격을 갖는 코일들의 형태, 사이즈, 온도 특성, 전력 전송 효율, 연결 특성 등은 규격마다 상이할 수 있다. 따라서, 송신 코일 모듈(600)은 다양한 규격을 갖는 코일들 중 타겟(target)이 되는 코일들에 적합하도록 맞춤형으로 제작될 수 있다.Coils mounted on the transmitting coil module 600 may have various specifications (eg, certified coils according to the WPC standard, certified coils according to the PMA standard), and the shape, size, temperature characteristics, and power transmission of coils having various specifications. Efficiency, connection characteristics, etc. may differ from specification to specification. Therefore, the transmission coil module 600 may be customized to be suitable for the coils that are targeted among coils having various specifications.
본 명세서에서는, 송신 코일 모듈(600)이 3 개의 코일들이 서로 겹쳐지게 장착될 수 있도록 제작되는 방법에 대해 설명하나, 본 발명의 범위는 이에 한정되지 않고 임의의 개수(예컨대, 1개, 2개, 4개 등)의 코일(들)이 임의의 위치에 배치될 수도 있다.In the present specification, a method in which the transmitting coil module 600 is manufactured so that three coils may be mounted to overlap each other will be described. However, the scope of the present invention is not limited thereto, and any number (for example, one or two) is described. , Four, etc.) may be disposed at any position.
송신 코일 모듈(600)은 제1 코일(610), 코일 프레임(coil frame, 620), 제2 코일(630), 제3 코일(640), 차폐재(650), 금속 시트(660), 및 커넥터(670)를 포함할 수 있다.The transmitting coil module 600 includes a first coil 610, a coil frame 620, a second coil 630, a third coil 640, a shield 650, a metal sheet 660, and a connector. 670 may include.
제1 코일(610)은 도 1에 도시된 3개의 송신 코일(111, 112, 113) 중 어느 하나(예컨대, 송신 코일(112))에 해당할 수 있다. 제1 코일(610)은 전선이 나선형으로 감긴 형태로 구현될 수 있고, 상기 전선의 단면은 도전 물질(예컨대, 구리(Cu))과 상기 도전 물질을 감싸는 절연 물질을 포함할 수 있다. The first coil 610 may correspond to any one of the three transmitting coils 111, 112, and 113 (eg, the transmitting coil 112) illustrated in FIG. 1. The first coil 610 may be implemented in the form of a spiral wound wire, the cross section of the wire may include a conductive material (for example, copper (Cu)) and an insulating material surrounding the conductive material.
제1 코일(610)은 코일 프레임(620)에서 제1 코일(610)에 대응하는 공간에 삽입될 수 있다. 코일 프레임(620)에 제1 코일(610)이 삽입될 때, 별도의 접착시트(예컨대, 양면 테이프)에 의한 방식, 접착력 및 절연성을 갖는 합성 수지의 도포 방식(본딩(bonding) 방식) 등이 이용될 수 있으나, 본 발명의 범위는 이에 한정되지 않는다.The first coil 610 may be inserted into a space corresponding to the first coil 610 in the coil frame 620. When the first coil 610 is inserted into the coil frame 620, a method by a separate adhesive sheet (for example, a double-sided tape), a coating method (bonding method) of a synthetic resin having an adhesive force and an insulating property, and the like Although used, the scope of the present invention is not limited thereto.
코일 프레임(620)은 제1 코일(610), 제2 코일(630) 및 제3 코일(640)을 비롯한 송신 코일 모듈(600)의 나머지 구성들이 장착될 수 있도록 틀을 제공할 수 있다. 코일 프레임(620)은 강화 플라스틱으로 구현될 수 있으나, 본 발명의 범위는 이에 한정되지 않는다. 코일 프레임(620)이 강화 플라스틱으로 구현될 경우, 코일들(610, 630, 640)을 외부의 충격 및 파손으로부터 보호하면서도 송신 코일 모듈(600)의 전체적인 중량을 감소시킬 수 있다.The coil frame 620 may provide a frame for mounting the remaining components of the transmitting coil module 600, including the first coil 610, the second coil 630, and the third coil 640. The coil frame 620 may be implemented with reinforced plastics, but the scope of the present invention is not limited thereto. When the coil frame 620 is made of reinforced plastic, the overall weight of the transmitting coil module 600 may be reduced while protecting the coils 610, 630, and 640 from external impact and damage.
코일 프레임(620)은 수용부들, 고정홀(621), 기능 홀(622) 및 리드선 삽입 단자(623)를 포함할 수 있다.The coil frame 620 may include receiving parts, a fixing hole 621, a function hole 622, and a lead wire insertion terminal 623.
코일 프레임(620)은 상부에 하나의 송신 코일(610)이 삽입될 수 있는 제1 수용부 및 하부에 두 개의 송신 코일들(630, 640)이 각각 삽입될 수 있는 제2 수용부와 제3 수용부를 제공할 수 있다. 상기 제1 수용부와, 상기 제2 수용부 및 상기 제3 수용부 각각은 서로 적어도 일부가 겹쳐질 수 있다. 본 발명의 범위는 여기에 한정되는 것은 아니며, 상부에 두 개의 송신 코일들이 삽입될 수 있고 하부에 하나의 송신 코일이 삽입될 수 있도록 구현될 수도 있다.The coil frame 620 may include a first accommodating part into which one transmitting coil 610 may be inserted into an upper part, and a second accommodating part into which two transmitting coils 630 and 640 may be inserted into a lower part and a third accommodating part. A receptacle can be provided. At least a portion of each of the first accommodating portion, the second accommodating portion, and the third accommodating portion may overlap each other. The scope of the present invention is not limited thereto, and may be implemented such that two transmitting coils may be inserted at the top and one transmitting coil may be inserted at the bottom.
상기 제1 수용부는 상기 제2 수용부 및 상기 제3 수용부 각각과 오버랩되는 영역을 포함하고, 상기 오버랩되는 영역은 상기 제1 수용부의 전체 영역의 50% 이상이 되도록 구현될 수 있다.The first accommodating part may include an area overlapping with each of the second accommodating part and the third accommodating part, and the overlapping area may be implemented to be 50% or more of the entire area of the first accommodating part.
고정홀(621)은 무선 전력 송신기의 다른 구성(예를 들어, 제어 회로 기판)과의 결착을 위한 고정 수단(예를 들어, 볼트 또는 너트)이 삽입될 수 있도록 코일 프레임(620)의 각 모서리마다 마련된다. 즉, 송신 코일 모듈(600)은 고정홀(621)을 통해 다른 구성과 결착될 수 있다.The fixing holes 621 are each corner of the coil frame 620 so that the fixing means (for example, bolts or nuts) can be inserted into the other components of the wireless power transmitter (for example, the control circuit board). It is prepared every time. That is, the transmitting coil module 600 may be bound with other components through the fixing hole 621.
또한, 코일 프레임(620)은 코일들(610, 630, 640)이 코일 프레임(620)이 삽입된 상태에서 각 코일의 리드선들이 리드선 삽입 단자(623)로 연결되기 위한 여분의 공간을 추가로 제공할 수 있다.In addition, the coil frame 620 additionally provides an extra space for connecting the lead wires of each coil to the lead wire insertion terminal 623 while the coils 610, 630, and 640 are inserted into the coil frame 620. can do.
기능 홀(622)은 코일들(610, 630, 640)에 관련된 추가적인 정보를 획득하기 위해 마련될 수 있다. 예를 들어, 각 코일(610, 630, 640)의 온도에 대응하는 전기 신호를 출력하는 써미스터(thermistor)가 하부의 제어 회로 기판에 포함될 수 있는데, 각 써미스터가 기능 홀(622)을 통해 각 코일(610, 630, 640)의 온도를 감지할 수 있다.The function hole 622 may be provided to obtain additional information related to the coils 610, 630, and 640. For example, a thermistor for outputting an electrical signal corresponding to the temperature of each coil 610, 630, and 640 may be included in the lower control circuit board. Each thermistor may be configured through each of the coils through the function hole 622. The temperatures 610, 630, and 640 may be sensed.
다른 실시예에 따라, 기능 홀(622)에 각 써미스터가 구현될 수 있다.According to another embodiment, each thermistor may be implemented in the function hole 622.
리드선 삽입 단자(623)는 코일들(610, 630, 640)의 총 6개의 리드선이 끼워질 수 있도록 마련될 수 있다. 나선형으로 구현되는 코일들(610, 630, 640) 각각의 내측 말단(도 6에서와 같이 내측 말단으로부터 외측 말단에 인접한 위치로 연장됨)과 외측 말단에는 각각 리드선이 형성될 수 있다. 이러한 리드선은 각 코일(610, 630, 640)의 양단에 해당하는 것으로 커넥터(670)를 통해 제어 회로 기판에 연결될 수 있다.The lead wire insertion terminal 623 may be provided so that a total of six lead wires of the coils 610, 630, and 640 may be fitted thereto. Lead wires may be formed at the inner end of each of the coils 610, 630, and 640 implemented in a helical shape (which extends from the inner end to a position adjacent to the outer end as shown in FIG. 6) and the outer end, respectively. The lead wires correspond to both ends of the coils 610, 630, and 640, and may be connected to the control circuit board through the connector 670.
제2 코일(630) 및 제3 코일(640) 각각은 도 1에 도시된 3개의 송신 코일(111, 112, 113) 중 어느 하나(예컨대, 송신 코일(111 또는 113))에 해당할 수 있다. 제2 코일(630) 및 제3 코일(640) 각각은 전선이 나선형으로 감긴 형태로 구현될 수 있고, 상기 전선의 단면은 도전 물질(예컨대, 구리(Cu))과 상기 도전 물질을 감싸는 절연 물질을 포함할 수 있다.Each of the second coil 630 and the third coil 640 may correspond to any one of the three transmitting coils 111, 112, and 113 (eg, the transmitting coil 111 or 113) illustrated in FIG. 1. . Each of the second coil 630 and the third coil 640 may be implemented in the form of a spiral wound with wires, and a cross section of the wire may include a conductive material (eg, copper) and an insulating material surrounding the conductive material. It may include.
제2 코일(630) 및 제3 코일(640)은 제1 코일(610)과의 관계에서, 무선 충전이 가능한 영역이 완전히 분리되어 충전이 불가능한 영역인 데드 스팟(dead spot)이 발생하지 않도록 서로 겹쳐지게(overlapped) 배치될 수 있으며, 동일 평면 상에 상호 이격되어 배치될 수 있다.In the relationship with the first coil 610, the second coil 630 and the third coil 640 are completely separated from each other so that a dead spot, which is an area where charging is impossible, does not occur. It may be disposed overlapped and spaced apart from each other on the same plane.
코일 프레임(620)에 제2 코일(630) 및 제3 코일(640) 각각이 삽입될 때, 별도의 접착시트(예컨대, 양면 테이프)에 의한 방식, 접착력 및 절연성을 갖는 합성 수지의 도포 방식(본딩(bonding) 방식) 등이 이용될 수 있으나, 본 발명의 범위는 이에 한정되지 않는다.When each of the second coil 630 and the third coil 640 is inserted into the coil frame 620, a method by a separate adhesive sheet (for example, a double-sided tape), a coating method of a synthetic resin having adhesive strength and insulation ( Bonding method) and the like, but the scope of the present invention is not limited thereto.
차폐재(650)는 코일들(610, 630, 640)에서 발생된 자기장을 차폐하여, 상기 자기장이 하부의 제어 회로 기판으로 전달되는 것을 차단할 수 있다. 차폐재(650)는 페라이트 시트(ferrite sheet)로 구현될 수 있으나, 본 발명의 범위는 이에 한정되지 않는다.The shielding material 650 may shield the magnetic field generated from the coils 610, 630, and 640 to block the magnetic field from being transmitted to the lower control circuit board. The shielding material 650 may be implemented as a ferrite sheet, but the scope of the present invention is not limited thereto.
차폐재(650)가 제2 코일(630) 및 제3 코일(640)이 장착된 코일 프레임(520b)에서 코일 프레임(620)의 하부의 차폐재(650)에 대응하는 공간에 부착될 수 있다. 차폐재(650)는 코일들(610, 630, 640)이 배치된 평면의 면적에 대응하는 면적과 모양으로 구현될 수 있다. 예컨대, 차폐재(650)는 코일들(610, 630, 640)이 배치된 평면의 면적보다 다소 큰 면적과 상기 평면과 유사한 모양으로 구현될 수 있는데, 이는 차폐재(650)가 코일들(610, 630, 640)로부터 방사되는 자기장을 차폐하는 기능을 수행하기 때문이다.The shielding material 650 may be attached to a space corresponding to the shielding material 650 of the lower portion of the coil frame 620 in the coil frame 520b in which the second coil 630 and the third coil 640 are mounted. The shield 650 may be embodied in an area and a shape corresponding to an area of a plane where the coils 610, 630, and 640 are disposed. For example, the shield 650 may be embodied in an area that is somewhat larger than the area of the plane in which the coils 610, 630, and 640 are disposed, and has a shape similar to the plane. , 640 to shield the magnetic field radiated from.
코일 프레임(620)에 차폐재(650)가 부착될 때, 별도의 접착시트(예컨대, 양면 테이프)에 의한 방식 등이 이용될 수 있으나, 본 발명의 범위는 이에 한정되지 않는다.When the shielding material 650 is attached to the coil frame 620, a method such as a separate adhesive sheet (for example, a double-sided tape) may be used, but the scope of the present invention is not limited thereto.
또한, 차폐재(650)에도 기능홀(622)에 대응되는 위치에 동일한 기능을 하는 기능홀이 마련될 수 있다.In addition, the shielding member 650 may be provided with a function hole having the same function at a position corresponding to the function hole 622.
금속 시트(660)는 송신 코일 모듈(600)의 형상을 유지시켜주고 코일에서 발생된 열을 외부로 방출될 수 있도록 하는 방열판의 기능을 수행할 수 있다. 금속 시트(660)는 알루미늄(Al)을 포함하도록 구현될 수 있으나, 본 발명의 범위는 이에 한정되지 않는다.The metal sheet 660 may function as a heat sink to maintain the shape of the transmission coil module 600 and to discharge heat generated from the coil to the outside. The metal sheet 660 may be implemented to include aluminum (Al), but the scope of the present invention is not limited thereto.
금속 시트(660)는 차폐재(650)가 장착된 코일 프레임(620)에서 코일 프레임(620)의 하부의 금속 시트(660)에 대응하는 공간에 부착될 수 있다. 금속 시트(660)는 코일 프레임(620)의 평면 면적 중 고정홀(621)과 커넥터(670)가 부착될 면적을 제외한 면적과 동일한 면적과 형태로 구현될 수 있다. The metal sheet 660 may be attached to a space corresponding to the metal sheet 660 below the coil frame 620 in the coil frame 620 on which the shielding material 650 is mounted. The metal sheet 660 may be embodied in the same area and shape as that of the planar area of the coil frame 620 except the area to which the fixing hole 621 and the connector 670 are attached.
코일 프레임(620)에 금속 시트(660)가 부착될 때, 별도의 접착시트(예컨대, 양면 테이프)에 의한 방식 등이 이용될 수 있으나, 본 발명의 범위는 이에 한정되지 않는다.When the metal sheet 660 is attached to the coil frame 620, a method such as a separate adhesive sheet (for example, a double-sided tape) may be used, but the scope of the present invention is not limited thereto.
또한, 금속 시트(660)에도 기능홀(622)에 대응되는 위치에 동일한 기능을 하는 기능홀이 마련될 수 있다.In addition, the metal sheet 660 may be provided with a function hole having a same function at a position corresponding to the function hole 622.
차폐재(650)와 금속 시트(660)는 코일 프레임(620)의 내부에 배치될 수 있다. 즉, 코일 프레임(620)의 차폐재(650)와 금속 시트(660)에 대응하는 수납 공간의 면적은 적어도 차폐재(650)와 금속 시트(660) 각각의 면적보다 넓을 수 있다.The shield 650 and the metal sheet 660 may be disposed in the coil frame 620. That is, the area of the storage space corresponding to the shield 650 and the metal sheet 660 of the coil frame 620 may be at least larger than the area of each of the shield 650 and the metal sheet 660.
커넥터(670)는 코일들(610, 630, 640)이 코일 프레임(620)을 통해 외부의 제어 회로 기판에 연결될 수 있도록 한다. 커넥터(670)는 일종의 PCB(Printed Circuit Board)로 구현될 수 있으나, 본 발명의 범위는 이에 한정되지 않는다.The connector 670 allows the coils 610, 630, 640 to be connected to an external control circuit board through the coil frame 620. The connector 670 may be implemented as a printed circuit board (PCB), but the scope of the present invention is not limited thereto.
커넥터(670)는 금속 시트(660)가 장착된 코일 프레임(620)에서 코일 프레임(620)의 하부의 커넥터(670)에 대응하는 공간에 부착될 수 있다. 커넥터(670)의 평면 면적은 금속 시트(660)에서 설명된 커넥터(670)가 부착될 면적과 동일할 수 있다.The connector 670 may be attached to a space corresponding to the connector 670 below the coil frame 620 in the coil frame 620 on which the metal sheet 660 is mounted. The planar area of the connector 670 may be equal to the area to which the connector 670 described in the metal sheet 660 will be attached.
코일 프레임(620)의 일측면은 내측으로 삽입(또는 함몰)되어 있으며, 커넥터(670)는 상기 삽입된 측면에 배치될 수 있다. 또한, 리드선 삽입 단자(623)도 상기 삽입된 측면에 형성된다.One side of the coil frame 620 is inserted (or recessed) inward, and the connector 670 may be disposed on the inserted side. The lead wire insertion terminal 623 is also formed on the inserted side surface.
커넥터(670)는 기판 및 상기 기판 상에 삽입되는 적어도 하나의 핀(예컨대, 12개의 핀)을 포함할 수 있다. 상기 기판의 내측 부분은 코일 프레임(620)의 하부에 부착될 수 있다. 상기 기판의 외측 부분에는 적어도 하나의 핀이 삽입되며, 적어도 하나의 핀 각각은 코일(610, 630, 640)의 리드선과 연결되는 상부 연결부(또는 상부 단자) 및 제어 회로 기판과 코일(610, 630, 640)이 전기적으로 연결되도록 제어 회로 기판과 연결되는 하부 연결부(또는 하부 단자)를 포함할 수 있다. Connector 670 may include a substrate and at least one pin (eg, twelve pins) inserted into the substrate. An inner portion of the substrate may be attached to the lower portion of the coil frame 620. At least one pin is inserted into an outer portion of the substrate, and each of the at least one pin includes an upper connection portion (or an upper terminal) connected to a lead wire of the coils 610, 630, and 640, and a control circuit board and a coil 610, 630. , 640 may include a lower connection part (or lower terminal) connected to the control circuit board to be electrically connected.
커넥터(670)의 내측 부분은 코일 프레임(620)의 리드선 삽입 단자(623)의 적어도 일부와 겹쳐지도록(overlapped) 부착될 수 있다. 이로 인해, 리드선 삽입 단자(623)에 끼워진 코일들(610, 630, 640)의 리드선들이 고정될 수 있다.An inner portion of the connector 670 may be attached to overlap with at least a portion of the lead wire insertion terminal 623 of the coil frame 620. For this reason, the lead wires of the coils 610, 630, and 640 inserted into the lead wire insertion terminal 623 may be fixed.
커넥터(670)의 상부 단자는 코일 프레임(620)에 장착된 코일들(610, 630, 640) 각각의 리드선에 연결되고, 커넥터(670)의 하부 단자는 상기 제어 회로 기판의 해당 단자에 연결될 수 있다. 구체적으로 커넥터(670)의 상부 단자와 하부 단자는 대응되는 쌍끼리 총 12개의 핀으로 구현될 수 있는데, 코일들(610, 630, 640) 각각의 총 6개의 리드선은 상기 12개의 핀 중 대응되는 위치의 인접하는 2개의 핀에 각각 연결될 수 있다. 따라서, 하부 단자의 12개의 핀은 인접하는 핀끼리 상기 6개의 리드선 중 어느 하나에 연결되어 코일들(610, 630, 640)을 상기 제어 회로 기판에 연결할 수 있다.The upper terminal of the connector 670 may be connected to the lead wire of each of the coils 610, 630, and 640 mounted on the coil frame 620, and the lower terminal of the connector 670 may be connected to the corresponding terminal of the control circuit board. have. In detail, the upper terminal and the lower terminal of the connector 670 may be implemented with a total of 12 pins corresponding to each other. A total of 6 lead wires of each of the coils 610, 630, and 640 may correspond to one of the 12 pins. It may be connected to two adjacent pins of the position respectively. Accordingly, twelve pins of the lower terminal may be connected to one of the six lead wires adjacent to each other to connect the coils 610, 630, and 640 to the control circuit board.
이때, 상기 리드선과 상기 2개의 핀의 연결은 레이저 납땜(laser solder) 방식이 이용될 수 있으나, 본 발명의 범위는 이에 한정되지 않는다.In this case, the lead wire and the two pins may be connected by a laser solder method, but the scope of the present invention is not limited thereto.
또한, 코일 프레임(620)에 커넥터(670)가 부착될 때, 별도의 접착시트(예컨대, 양면 테이프)에 의한 방식 등이 이용될 수 있으나, 본 발명의 범위는 이에 한정되지 않는다.In addition, when the connector 670 is attached to the coil frame 620, a method such as a separate adhesive sheet (for example, a double-sided tape) may be used, but the scope of the present invention is not limited thereto.
본 명세서에서 상부는 무선 전력 수신기가 놓일 수 있는 인터페이스 표면에 상대적으로 가까운 쪽을 의미할 수 있다.In the present specification, the upper portion may mean a side relatively close to the interface surface on which the wireless power receiver can be placed.
각 코일(610, 630, 640)의 각 리드선에는 비드(bead, 615, 635, 645)가 삽입될 수 있는데, 비드(615, 635, 645)는 각 리드선에 유입되는 고주파 노이즈를 제거하는 기능을 할 수 있다. Beads 615, 635, and 645 may be inserted into each lead of each coil 610, 630, and 640. The beads 615, 635, and 645 remove a high frequency noise flowing into each lead. can do.
비드(615, 635, 645)가 각 리드선에 삽입되는 방식은, 각 리드선의 단면은 도전 물질과 상기 도전 물질을 감싸는 절연 물질로 구성되므로 상기 절연 물질과 상기 도전 물질을 비드(615, 635, 645)에 대응하는 면적만큼 제거하고 제거된 면적에 비드(615, 635, 645)가 삽입되어 연결되는 방식일 수 있으나, 본 발명의 범위는 이에 한정되지 않는다.Since the beads 615, 635, and 645 are inserted into the respective lead wires, the cross section of each lead wire includes a conductive material and an insulating material surrounding the conductive material, thereby beading the insulating material and the conductive material 615, 635, 645. ), But may be a method in which beads 615, 635, and 645 are inserted and connected to the removed area, but the scope of the present invention is not limited thereto.
도 7은 도 6에 도시된 비드의 일 실시예를 보다 상세히 나타낸 도면이다.FIG. 7 illustrates an embodiment of the bead shown in FIG. 6 in more detail.
도 7을 참조하면, 도 6의 비드(615, 635, 645)는 회로에 직렬로 삽입되어 고주파 노이즈를 제거할 수 있다. 일반적으로 노이즈는 신호(무선 전력 신호 또는 각종 제어 신호)보다 주파수가 높기 때문에 높은 주파수를 가진 노이즈를 효과적으로 제거하기 위해 비드(615, 635, 645)가 포함될 수 있다.Referring to FIG. 7, the beads 615, 635, and 645 of FIG. 6 may be inserted in a circuit to remove high frequency noise. In general, since the noise is higher in frequency than the signal (wireless power signal or various control signals), the beads 615, 635, and 645 may be included to effectively remove the noise having a high frequency.
도 7에는 비드(615, 635, 645) 중 어느 하나를 단순화한 비드(700)가 나타나 있다. 비드(700)는 코일(610, 630, 640)과 커넥터(670) 사이에 연결될 수 있다.7 shows a bead 700 that simplifies any of the beads 615, 635, 645. Bead 700 may be coupled between coils 610, 630, 640 and connector 670.
비드(700)는 병렬로 연결된 인덕터(L)와 저항(R)으로 구성될 수 있다. 여기서, 저항(R)의 저항값은 충분히 큰(낮은 주파수의 신호가 통과하기 어려운) 값을 가지며, 인덕터(L)는 주파수에 비례하는 임피던스를 가진다.The bead 700 may include an inductor L and a resistor R connected in parallel. Here, the resistance value of the resistor R has a sufficiently large value (it is difficult for a low frequency signal to pass) and the inductor L has an impedance proportional to the frequency.
따라서, 코일(610, 630, 640)과 커넥터(670) 사이에 전송되는 신호가 저주파 성분일 경우, 상기 신호는 저항(R)보다 낮은 임피던스를 갖는 인덕터(L)를 통과하게 된다.Therefore, when the signal transmitted between the coils 610, 630, 640 and the connector 670 is a low frequency component, the signal passes through the inductor L having an impedance lower than the resistance R.
반대로, 코일(610, 630, 640)과 커넥터(670) 사이에 전송되는 신호가 고주파 성분일 경우, 상기 신호는 주파수에 비례하여 높은 임피던스를 갖는 인덕터(L)보다 저항(R)쪽을 통과하게 된다. 그러나, 충분히 큰 저항값을 가지는 저항(R)을 통해 고주파의 신호는 흡수되어 열로 방출되게 된다.On the contrary, when the signal transmitted between the coils 610, 630, 640 and the connector 670 is a high frequency component, the signal passes through the resistor R rather than the inductor L having a high impedance in proportion to the frequency. do. However, the high frequency signal is absorbed and released as heat through the resistor R having a sufficiently large resistance value.
결론적으로, 비드(700)는 코일(610, 630, 640)의 각 리드선을 통과하는 고주파 노이즈를 제거할 수 있다.In conclusion, the bead 700 may remove high frequency noise passing through each lead of the coils 610, 630, and 640.
도 8은 본 발명의 다른 실시예에 따른 커넥터를 간략히 나타낸 도면이다.8 is a view schematically showing a connector according to another embodiment of the present invention.
도 8을 참조하면, 커넥터(800)는 PCB로 구현될 수 있으며, 도 6의 실시예에서 비드(615, 635, 645)의 기능을 수행할 수 있는 임베디드 회로(embedded circuit, 820)를 더 포함할 수 있다. 즉, 커넥터(800)가 도 6의 커넥터(670) 대신 포함될 경우, 비드(615, 635, 645)는 송신 코일 모듈(600)에서 제외될 수 있다. Referring to FIG. 8, the connector 800 may be implemented as a PCB, and further includes an embedded circuit 820 capable of performing the functions of the beads 615, 635, and 645 in the embodiment of FIG. 6. can do. That is, when the connector 800 is included instead of the connector 670 of FIG. 6, the beads 615, 635, and 645 may be excluded from the transmission coil module 600.
실시예에 따라, 커넥터(800)가 도 6의 커넥터(670) 대신 포함되더라도, 비드(615, 635, 645)는 송신 코일 모듈(600)에 포함되어 보다 높은 효율로 고주파 노이즈의 제거를 수행할 수도 있다.According to an embodiment, although the connector 800 is included instead of the connector 670 of FIG. 6, the beads 615, 635, 645 are included in the transmission coil module 600 to perform the removal of high frequency noise with higher efficiency. It may be.
비드(615, 635, 645) 또는 임베디드 회로(820)는 노이즈 제거 회로로 정의될 수 있다. Beads 615, 635, 645 or embedded circuit 820 may be defined as noise cancellation circuits.
커넥터(800)는 핀(810)과 임베디드 회로(820)를 포함할 수 있다. Connector 800 may include pin 810 and embedded circuit 820.
핀(810)은 제1핀(1) 내지 제12핀(12)을 포함하며, 각 제1핀(1) 내지 제12핀(12)은 도 6에서 설명된 상부 단자와 하부 단자를 포함할 수 있다. 즉, 코일들(610, 630, 640) 각각의 총 6개의 리드선은 제1핀(1) 내지 제12핀(12) 중 대응되는 위치의 인접하는 2개의 핀에 각각 연결될 수 있다. The pins 810 may include first pins 1 to 12 pins 12, and each of the first pins 1 to 12 pins 12 may include an upper terminal and a lower terminal described with reference to FIG. 6. Can be. That is, a total of six lead wires of each of the coils 610, 630, and 640 may be connected to two adjacent pins of corresponding positions among the first pins 1 to 12 pins 12, respectively.
예컨대, 제2 코일(630)의 리드선 중 어느 하나는 제1핀(1)과 제2핀(2)에, 다른 하나는 제3핀(3)과 제4핀(4)에 연결될 수 있고, 제1 코일(610)의 리드선 중 어느 하나는 제5핀(5)과 제6핀(6)에, 다른 하나는 제7핀(7)과 제8핀(8)에 연결될 수 있고, 제3 코일(640)의 리드선 중 어느 하나는 제9핀(9)과 제10핀(10)에, 다른 하나는 제11핀(11)과 제12핀(12)에 연결될 수 있다. 이는 일 실시예에 불과하며, 특정 코일의 특정 리드선에 연결되는 핀은 얼마든지 변경될 수 있다.For example, one of the lead wires of the second coil 630 may be connected to the first pin 1 and the second pin 2, and the other may be connected to the third pin 3 and the fourth pin 4. One of the lead wires of the first coil 610 may be connected to the fifth pin 5 and the sixth pin 6, and the other may be connected to the seventh pin 7 and the eighth pin 8. One of the lead wires of the coil 640 may be connected to the ninth pin 9 and the tenth pin 10, and the other may be connected to the eleventh pin 11 and the twelfth pin 12. This is only an example, and the pins connected to specific leads of a specific coil may be changed.
따라서, 제1핀(1) 내지 제12핀(12)의 각 하부 단자는 인접하는 핀끼리 상기 6개의 리드선 중 어느 하나에 연결되어 코일들(610, 630, 640)을 상기 제어 회로 기판에 전기적으로 연결할 수 있다.Accordingly, each of the lower terminals of the first pin 1 to the twelfth pin 12 is connected to any one of the six lead wires adjacent to each other so that the coils 610, 630, and 640 are electrically connected to the control circuit board. Can be connected.
또한, 핀(810)은 제1핀(1) 내지 제12핀(12) 외의 추가적인 핀을 구비할 수 있으며, 송신 코일 모듈(600)의 써미스터와 하부의 제어 회로 기판을 전기적으로 연결할 수 있다.In addition, the pin 810 may include additional pins other than the first pin 1 to the twelfth pin 12, and may electrically connect the thermistor of the transmission coil module 600 to the lower control circuit board.
임베디드 회로(820)는 각 코일에 대응하는 임베디드 회로들(EC1, EC2, EC3)을 포함할 수 있다. 임베디드 회로(820)는 도 7의 비드(700)와 마찬가지로 고주파 노이즈를 제거할 수 있는데, 이와 관련된 동작은 도 9를 참조하여 후술하기로 한다.The embedded circuit 820 may include embedded circuits EC1, EC2, and EC3 corresponding to each coil. Like the bead 700 of FIG. 7, the embedded circuit 820 may remove high frequency noise. An operation related thereto will be described later with reference to FIG. 9.
임베디드 회로(820)는 무선 전력 수신기가 놓일 수 있는 인터페이스 표면에 상대적으로 먼 커넥터(800)의 하부면에 배치될 수 있으나, 본 발명의 범위는 이에 한정되지 않는다.The embedded circuit 820 may be disposed on the bottom surface of the connector 800 relatively far from the interface surface on which the wireless power receiver can be placed, but the scope of the present invention is not limited thereto.
예컨대, 제1 임베디드 회로(EC1)는 제1 코일(610)에 대응되고, 제2 임베디드 회로(EC2)는 제2 코일(630)에 대응되고, 제3 임베디드 회로(EC3)는 제3 코일(640)에 대응될 수 있다.For example, the first embedded circuit EC1 corresponds to the first coil 610, the second embedded circuit EC2 corresponds to the second coil 630, and the third embedded circuit EC3 corresponds to the third coil ( 640 may correspond.
또한, 제1 내지 제3 임베디드 회로(EC1~EC3) 각각은 대응되는 코일의 리드선의 양단에 연결될 수 있다. 이를 위해 제1 내지 제3 임베디드 회로(EC1~EC3) 각각은 커넥터(800) 상에서 리드선에 대응하는 핀에 전기적으로 연결될 수 있다.In addition, each of the first to third embedded circuits EC1 to EC3 may be connected to both ends of a lead wire of a corresponding coil. To this end, each of the first to third embedded circuits EC1 to EC3 may be electrically connected to a pin corresponding to the lead wire on the connector 800.
예컨대, 제1 임베디드 회로(EC1)는 제1 코일(610)의 리드선의 양단에 연결되기 위해, 제5핀(5) 및 제6핀(6)에 연결되고, 제7핀(7) 및 제8핀(8)과 연결될 수 있다.For example, the first embedded circuit EC1 is connected to the fifth pin 5 and the sixth pin 6 so as to be connected to both ends of the lead wire of the first coil 610, and the seventh pin 7 and the seventh pin. It may be connected to the 8 pin (8).
임베디드 회로(820) 자체와 임베디드 회로(820) 및 핀(810) 간의 전기적인 연결은 PCB 기판으로 구현되는 커넥터(800) 상에서 간단히 구현될 수 있다.The electrical connection between the embedded circuit 820 itself and the embedded circuit 820 and the pins 810 may be simply implemented on the connector 800 implemented as a PCB substrate.
도 9는 도 8에 도시된 임베디드 회로의 일 실시예를 나타낸 도면이다.FIG. 9 is a diagram illustrating an embodiment of an embedded circuit illustrated in FIG. 8.
도 9를 참조하면, 제1 임베디드 회로(EC1) 내지 제3 임베디드 회로(EC3) 각각은 하나의 커패시터로 구현될 수 있다. 커패시터는 주파수에 반비례하는 임피던스를 가진다.Referring to FIG. 9, each of the first embedded circuit EC1 to the third embedded circuit EC3 may be implemented with one capacitor. The capacitor has an impedance that is inversely proportional to frequency.
제1 임베디드 회로(EC1)는 제5핀(5) 및 제6핀(6)에 연결되어 제1 코일(610)의 좌측 리드선에 연결되며, 제7핀(7) 및 제8핀(8)에 연결되어 제1 코일(610)의 우측 리드선에 연결될 수 있다.The first embedded circuit EC1 is connected to the fifth pin 5 and the sixth pin 6, and is connected to the left lead wire of the first coil 610, and the seventh pin 7 and the eighth pin 8. It may be connected to the right lead wire of the first coil 610.
제2 임베디드 회로(EC2)는 제1핀(1) 및 제2핀(2)에 연결되어 제2 코일(630)의 좌측 리드선에 연결되며, 제3핀(3) 및 제4핀(4)에 연결되어 제2 코일(630)의 우측 리드선에 연결될 수 있다.The second embedded circuit EC2 is connected to the first pin 1 and the second pin 2, and is connected to the left lead wire of the second coil 630, and the third pin 3 and the fourth pin 4. May be connected to the right lead wire of the second coil 630.
제3 임베디드 회로(EC3)는 제9핀(9) 및 제10핀(10)에 연결되어 제3 코일(640)의 좌측 리드선에 연결되며, 제11핀(11) 및 제12핀(12)에 연결되어 제3 코일(640)의 우측 리드선에 연결될 수 있다.The third embedded circuit EC3 is connected to the ninth pin 9 and the tenth pin 10, and is connected to the left lead wire of the third coil 640, and the eleventh pin 11 and the twelfth pin 12. May be connected to the right lead wire of the third coil 640.
즉, 제1 임베디드 회로(EC1) 내지 제3 임베디드 회로(EC3) 각각은 대응되는 코일의 양 리드선 사이에 병렬로 연결되어 삽입될 수 있다.That is, each of the first embedded circuit EC1 to the third embedded circuit EC3 may be connected and inserted in parallel between both leads of the corresponding coil.
이하, 커패시터로 구현되는 제1 임베디드 회로(EC1) 내지 제3 임베디드 회로(EC3) 각각의 동작을 설명하기로 한다.Hereinafter, an operation of each of the first embedded circuit EC1 to the third embedded circuit EC3 implemented as a capacitor will be described.
코일(610, 630, 640)과 커넥터(800) 사이에 전송되는 신호가 저주파 성분일 경우, 커패시터는 오픈(open)되어 상기 신호는 커패시터와는 무관하게 송수신된다.When the signal transmitted between the coils 610, 630, 640 and the connector 800 is a low frequency component, the capacitor is open and the signal is transmitted and received regardless of the capacitor.
반대로, 코일(610, 630, 640)과 커넥터(800) 사이에 전송되는 신호가 고주파 성분일 경우, 커패시터는 주파수에 반비례하여 낮은 임피던스를 갖게 되며, 상기 신호는 낮은 임피던스를 갖는 커패시터를 통과하여 흐르게 된다. 그리고, 커패시터는 특정 임피던스를 갖는 저항과 같이 동작하며, 고주파의 신호는 커패시터에 흡수되어 열로 방출되게 된다.In contrast, when the signal transmitted between the coils 610, 630, 640 and the connector 800 is a high frequency component, the capacitor has a low impedance in inverse proportion to the frequency, and the signal flows through the low impedance capacitor. do. The capacitor operates as a resistor having a specific impedance, and the high frequency signal is absorbed by the capacitor and released as heat.
결론적으로, 제1 임베디드 회로(EC1) 내지 제3 임베디드 회로(EC3)는 코일(610, 630, 640)의 각 리드선을 통과하는 고주파 노이즈를 제거할 수 있다.As a result, the first embedded circuit EC1 to the third embedded circuit EC3 may remove high frequency noise passing through each of the leads of the coils 610, 630, and 640.
본 발명의 일 실시예에 따른 무선 전력 송신기에 의하면, 송신 코일 측에 고주파 노이즈를 제거할 수 있는 회로를 구현함으로써 보다 효과적으로 고주파 노이즈를 제거할 수 있다.According to the wireless power transmitter according to the exemplary embodiment of the present invention, the high frequency noise can be more effectively removed by implementing a circuit capable of removing the high frequency noise on the transmitting coil side.
이는 제어 회로 기판이 아닌 송신 코일 측에 직접 노이즈 제거 회로를 구비함으로써, 송신 코일로부터 제어 회로 기판으로 전달되는 신호에 대해 미리 노이즈를 제거하여 제어 회로 기판의 오작동을 방지할 수 있고, 제어 회로 기판으로부터 송신 코일로 신호가 전달되는 과정에서 유입되는 노이즈를 효과적으로 제거할 수 있기 때문이다. By providing a noise removing circuit directly on the transmitting coil side rather than the control circuit board, it is possible to remove noise in advance with respect to the signal transmitted from the transmitting coil to the control circuit board, thereby preventing malfunction of the control circuit board, and from the control circuit board. This is because the noise introduced during the transmission of the signal to the transmitting coil can be effectively removed.
본 명세서에서는 무선 전력 송신기를 중심으로 설명하였으나, 본 발명의 범위는 이에 한정되지 않고, 고주파 노이즈를 제거할 수 있는 회로를 수신 코일 측에 구비하는 무선 전력 수신기로 구현될 수도 있다. 이 경우, 수신 코일 역시 커넥터를 통해 제어 회로 기판에 연결될 수 있고, 수신 코일의 리드선에 삽입되는 비드 또는 커넥터에 포함되는 임베디드 회로가 무선 전력 수신기에 포함될 수 있음은 당연하다.In the present specification, the wireless power transmitter has been described, but the scope of the present invention is not limited thereto. The wireless power receiver may include a circuit capable of removing high frequency noise at a receiving coil. In this case, the receiving coil may also be connected to the control circuit board through the connector, and it is natural that the wireless power receiver may include an embedded circuit included in the bead or connector inserted into the lead wire of the receiving coil.
상술한 실시예에 따른 방법은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.The method according to the embodiment described above may be stored in a computer-readable recording medium that is produced as a program for execution on a computer, and examples of the computer-readable recording medium include ROM, RAM, CD-ROM, magnetic tape , Floppy disks, optical data storage devices, and the like, and also include those implemented in the form of carrier waves (eg, transmission over the Internet).
컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상술한 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 실시예가 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.The computer readable recording medium can be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion. In addition, functional programs, codes, and code segments for implementing the above-described method may be easily inferred by programmers in the art to which the embodiments belong.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. It is apparent to those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit and essential features of the present invention.
따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.
본 발명은 무선 충전 기술에 관한 것으로서, 무선으로 전력을 전송하는 무선 전력 송신 장치 및 무선으로 전력을 수신하는 무선 전력 수신 장치에 적용될 수 있다.The present invention relates to a wireless charging technology, and can be applied to a wireless power transmitter for transmitting power wirelessly and a wireless power receiver for receiving power wirelessly.

Claims (15)

  1. 무선으로 전력을 송신하기 위한 송신 코일;A transmission coil for wirelessly transmitting power;
    상기 송신 코일을 제어하는 회로 기판과 상기 송신 코일이 전기적으로 연결되도록 하는 커넥터; 및A connector to electrically connect the circuit board controlling the transmitting coil and the transmitting coil; And
    상기 송신 코일과 상기 커넥터 사이에서, 상기 송신 코일의 리드선에 삽입되어 고주파 노이즈를 제거하는 노이즈 제거 회로를 포함하는 무선 전력 송신기.And a noise removing circuit inserted between a lead coil of the transmitting coil and the high frequency noise between the transmitting coil and the connector.
  2. 제1항에 있어서,The method of claim 1,
    상기 노이즈 제거 회로는,The noise removal circuit is,
    상기 송신 코일의 리드선에 직렬로 연결되는 비드(bead)인 무선 전력 송신기.And a bead connected in series with a lead of the transmitting coil.
  3. 제2항에 있어서,The method of claim 2,
    상기 비드는, 서로 병렬로 연결된 인덕터 및 저항을 포함하고,The bead includes an inductor and a resistor connected in parallel with each other,
    상기 송신 코일에 인가되는 신호가 고주파일 경우, 상기 저항은 상기 신호를 흡수하여 고주파 노이즈를 제거하는 무선 전력 송신기.When the signal applied to the transmitting coil is a high frequency, the resistor absorbs the signal to remove the high frequency noise.
  4. 제1항에 있어서,The method of claim 1,
    상기 커넥터는,The connector,
    기판; 및 상기 기판 상에 삽입되는 적어도 하나의 핀을 포함하며,Board; And at least one pin inserted on the substrate,
    상기 적어도 하나의 핀은, 상기 송신 코일의 리드선과 연결되는 상부 연결부; 및 상기 회로 기판과 상기 송신 코일이 전기적으로 연결되도록 상기 회로 기판과 연결되는 하부 연결부를 포함하는 무선 전력 송신기.The at least one pin may include an upper connection part connected to a lead wire of the transmission coil; And a lower connection part connected to the circuit board such that the circuit board and the transmitting coil are electrically connected to each other.
  5. 제1항에 있어서,The method of claim 1,
    상기 송신 코일이 삽입되는 수용부와 상기 리드선이 끼워지는 리드선 삽입 단자를 포함하는 코일 프레임;A coil frame including an accommodating portion into which the transmitting coil is inserted and a lead wire insertion terminal into which the lead wire is inserted;
    상기 송신 코일로부터 발생되는 자기장을 차폐시키는 차폐재; 및A shielding material for shielding a magnetic field generated from the transmitting coil; And
    상기 송신 코일에서 발생된 열을 외부로 방출하는 금속 시트를 더 포함하는 무선 전력 송신기.The wireless power transmitter further comprises a metal sheet for dissipating heat generated by the transmitting coil to the outside.
  6. 무선으로 전력을 송신하기 위한 송신 코일; 및A transmission coil for wirelessly transmitting power; And
    상기 송신 코일을 제어하는 회로 기판과 상기 송신 코일이 전기적으로 연결되도록 하는 커넥터를 포함하며,A circuit board for controlling the transmitting coil and a connector for electrically connecting the transmitting coil,
    상기 커넥터는, 상기 송신 코일의 제1 리드선이 연결되는 핀과 상기 송신 코일의 제2 리드선이 연결되는 핀 사이에 연결되어 고주파 노이즈를 제거하는 노이즈 제거 회로를 포함하는 무선 전력 송신기.The connector includes a noise removing circuit connected between a pin to which the first lead of the transmitting coil is connected and a pin to which the second lead of the transmitting coil is connected to remove high frequency noise.
  7. 제6항에 있어서,The method of claim 6,
    상기 노이즈 제거 회로는, 커패시터이고,The noise canceling circuit is a capacitor,
    상기 송신 코일에 인가되는 신호가 고주파일 경우, 상기 커패시터는 상기 신호를 흡수하여 고주파 노이즈를 제거하는 무선 전력 송신기.And the capacitor absorbs the signal to remove the high frequency noise when the signal applied to the transmitting coil is a high frequency.
  8. 제6항에 있어서,The method of claim 6,
    상기 노이즈 제거 회로는, PCB(Printed Circuit Board)로 구현되는 상기 커넥터에 실장되는 임베디드 회로(embedded circuit)이고,The noise canceling circuit is an embedded circuit mounted on the connector implemented as a printed circuit board (PCB),
    무선 전력 수신기가 놓일 수 있는 인터페이스 표면에 상대적으로 먼 상기 커넥터의 하부면에 배치되는 무선 전력 송신기.And a wireless power transmitter disposed on a bottom surface of the connector relatively far from an interface surface on which a wireless power receiver can be placed.
  9. 제6항에 있어서,The method of claim 6,
    상기 커넥터는,The connector,
    기판; 및 상기 기판 상에 삽입되는 적어도 하나의 핀을 포함하며,Board; And at least one pin inserted on the substrate,
    상기 적어도 하나의 핀은, 상기 송신 코일의 리드선과 연결되는 상부 연결부; 및 상기 회로 기판과 상기 송신 코일이 전기적으로 연결되도록 상기 회로 기판과 연결되는 하부 연결부를 포함하는 무선 전력 송신기.The at least one pin may include an upper connection part connected to a lead wire of the transmission coil; And a lower connection part connected to the circuit board such that the circuit board and the transmitting coil are electrically connected to each other.
  10. 제6항에 있어서,The method of claim 6,
    상기 송신 코일이 삽입되는 수용부와 상기 리드선이 끼워지는 리드선 삽입 단자를 포함하는 코일 프레임;A coil frame including an accommodating portion into which the transmitting coil is inserted and a lead wire insertion terminal into which the lead wire is inserted;
    상기 송신 코일로부터 발생되는 자기장을 차폐시키는 차폐재; 및A shielding material for shielding a magnetic field generated from the transmitting coil; And
    상기 송신 코일에서 발생된 열을 외부로 방출하는 금속 시트를 더 포함하는 무선 전력 송신기.The wireless power transmitter further comprises a metal sheet for dissipating heat generated by the transmitting coil to the outside.
  11. 무선으로 전력을 수신하기 위한 수신 코일;A receiving coil for wirelessly receiving power;
    상기 수신 코일을 제어하는 회로 기판과 상기 수신 코일이 전기적으로 연결되도록 하는 커넥터; 및A connector for electrically connecting the circuit board controlling the receiving coil and the receiving coil; And
    상기 수신 코일과 상기 커넥터 사이에서, 상기 수신 코일의 리드선에 삽입되어 고주파 노이즈를 제거하는 노이즈 제거 회로를 포함하는 무선 전력 수신기.And a noise removal circuit inserted between a lead coil of the receiver coil and the high frequency noise between the receiver coil and the connector.
  12. 제11항에 있어서,The method of claim 11,
    상기 노이즈 제거 회로는, 상기 리드선에 직렬로 연결되고, 서로 병렬로 연결된 인덕터 및 저항을 포함하고,The noise canceling circuit includes an inductor and a resistor connected in series with the lead wire and connected in parallel with each other,
    상기 수신 코일에 인가되는 신호가 고주파일 경우, 상기 저항은 상기 신호를 흡수하여 고주파 노이즈를 제거하는 무선 전력 수신기.When the signal applied to the receiving coil is a high frequency, the resistor absorbs the signal to remove the high frequency noise.
  13. 제11항에 있어서,The method of claim 11,
    상기 커넥터는, 기판; 및 상기 기판 상에 삽입되는 적어도 하나의 핀을 포함하며, 상기 적어도 하나의 핀은, 상기 수신 코일의 리드선과 연결되는 상부 연결부; 및 상기 회로 기판과 상기 수신 코일이 전기적으로 연결되도록 상기 회로 기판과 연결되는 하부 연결부를 포함하고,The connector, the substrate; And at least one pin inserted on the substrate, wherein the at least one pin includes: an upper connection part connected to a lead wire of the receiving coil; And a lower connection part connected to the circuit board such that the circuit board and the receiving coil are electrically connected to each other.
    상기 무선 전력 수신기는, 상기 수신 코일이 삽입되는 수용부와 상기 리드선이 끼워지는 리드선 삽입 단자를 포함하는 코일 프레임; The wireless power receiver may include a coil frame including a receiving part into which the receiving coil is inserted and a lead wire insertion terminal into which the lead wire is inserted;
    상기 수신 코일로부터 발생되는 자기장을 차폐시키는 차폐재; 및A shielding material for shielding a magnetic field generated from the receiving coil; And
    상기 수신 코일에서 발생된 열을 외부로 방출하는 금속 시트를 더 포함하는 무선 전력 수신기.The wireless power receiver further comprises a metal sheet for dissipating heat generated by the receiving coil to the outside.
  14. 무선으로 전력을 수신하기 위한 수신 코일; 및A receiving coil for wirelessly receiving power; And
    상기 수신 코일을 제어하는 회로 기판과 상기 수신 코일이 전기적으로 연결되도록 하는 커넥터를 포함하며,A connector for electrically connecting the circuit board controlling the receiving coil and the receiving coil,
    상기 커넥터는, 상기 수신 코일의 제1 리드선이 연결되는 핀과 상기 수신 코일의 제2 리드선이 연결되는 핀 사이에 연결되어 고주파 노이즈를 제거하는 노이즈 제거 회로를 포함하는 무선 전력 수신기.The connector includes a noise removing circuit connected between a pin to which the first lead of the receiving coil is connected and a pin to which the second lead of the receiving coil is connected to remove high frequency noise.
  15. 제14항에 있어서,The method of claim 14,
    상기 노이즈 제거 회로는, 커패시터이고,The noise canceling circuit is a capacitor,
    상기 수신 코일에 인가되는 신호가 고주파일 경우, 상기 커패시터는 상기 신호를 흡수하여 고주파 노이즈를 제거하고,When the signal applied to the receiving coil is a high frequency, the capacitor absorbs the signal to remove the high frequency noise,
    상기 커넥터는, 기판; 및 상기 기판 상에 삽입되는 적어도 하나의 핀을 포함하며, 상기 적어도 하나의 핀은, 상기 수신 코일의 리드선과 연결되는 상부 연결부; 및 상기 회로 기판과 상기 수신 코일이 전기적으로 연결되도록 상기 회로 기판과 연결되는 하부 연결부를 포함하고,The connector, the substrate; And at least one pin inserted on the substrate, wherein the at least one pin includes: an upper connection part connected to a lead wire of the receiving coil; And a lower connection part connected to the circuit board such that the circuit board and the receiving coil are electrically connected to each other.
    상기 무선 전력 수신기는, 상기 수신 코일이 삽입되는 수용부와 상기 리드선이 끼워지는 리드선 삽입 단자를 포함하는 코일 프레임; The wireless power receiver may include a coil frame including a receiving part into which the receiving coil is inserted and a lead wire insertion terminal into which the lead wire is inserted;
    상기 수신 코일로부터 발생되는 자기장을 차폐시키는 차폐재; 및A shielding material for shielding a magnetic field generated from the receiving coil; And
    상기 수신 코일에서 발생된 열을 외부로 방출하는 금속 시트를 더 포함하는 무선 전력 수신기.The wireless power receiver further comprises a metal sheet for dissipating heat generated by the receiving coil to the outside.
PCT/KR2017/006347 2016-07-28 2017-06-16 Wireless power transmitter and wireless power receiver WO2018021687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0096238 2016-07-28
KR1020160096238A KR20180013088A (en) 2016-07-28 2016-07-28 Wireless Power Transmitter and Wireless Power Receiver

Publications (1)

Publication Number Publication Date
WO2018021687A1 true WO2018021687A1 (en) 2018-02-01

Family

ID=61016334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006347 WO2018021687A1 (en) 2016-07-28 2017-06-16 Wireless power transmitter and wireless power receiver

Country Status (2)

Country Link
KR (1) KR20180013088A (en)
WO (1) WO2018021687A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220151462A (en) * 2021-05-06 2022-11-15 삼성전자주식회사 Method for processing wireless charging noise and electronic device supporting the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304365A (en) * 2003-03-28 2004-10-28 Tdk Corp Power line terminating circuit, method thereof, and power line repeating device
KR20150065428A (en) * 2013-12-05 2015-06-15 엘지이노텍 주식회사 Apparatus for transmitting wireless power
KR20150100472A (en) * 2014-02-24 2015-09-02 삼성전자주식회사 Hardware Shield device and Electronic devices comprising the Same
KR20150115586A (en) * 2014-04-04 2015-10-14 삼성전자주식회사 Antenna module and Electronic Devices comprising the Same
KR20160050445A (en) * 2014-10-29 2016-05-11 주식회사 서연전자 Wireless power charging apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304365A (en) * 2003-03-28 2004-10-28 Tdk Corp Power line terminating circuit, method thereof, and power line repeating device
KR20150065428A (en) * 2013-12-05 2015-06-15 엘지이노텍 주식회사 Apparatus for transmitting wireless power
KR20150100472A (en) * 2014-02-24 2015-09-02 삼성전자주식회사 Hardware Shield device and Electronic devices comprising the Same
KR20150115586A (en) * 2014-04-04 2015-10-14 삼성전자주식회사 Antenna module and Electronic Devices comprising the Same
KR20160050445A (en) * 2014-10-29 2016-05-11 주식회사 서연전자 Wireless power charging apparatus

Also Published As

Publication number Publication date
KR20180013088A (en) 2018-02-07

Similar Documents

Publication Publication Date Title
WO2017065413A1 (en) Multi-coil wireless charging method and device and system therefor
WO2017061716A1 (en) Wireless charging device alignment guiding method and device and system for same
WO2017094997A1 (en) Wireless charging device, wireless power transmission method therefor, and recording medium for same
WO2017078256A1 (en) Multi-coil wireless charging method and device and system therefor
WO2017043841A1 (en) Wireless power transmitter and method for controlling same
WO2017078285A1 (en) Wireless power transmitter
WO2016133322A1 (en) Wireless power transmission device and wireless power transmission method
WO2019022438A1 (en) Coil device and wireless charging device comprising same
WO2019004753A1 (en) Multi-coil based wireless power transmission device and method
WO2019203420A1 (en) Apparatus and method for performing detection of foreign object in wireless power transmission system
WO2018194337A1 (en) Wireless power transmission apparatus for wireless charging
WO2018190510A1 (en) Wireless power module
WO2017138713A1 (en) Wireless power device having plurality of transmission coils and driving method therefor
WO2017142234A1 (en) Wireless charging method and apparatus and system therefor
WO2019045350A2 (en) Method and device for wireless power transmission
WO2017188628A1 (en) Multi-mode antenna integrated with circuit board, and device using same
WO2016163697A1 (en) Wireless power transmission method and device therefor
WO2018074803A1 (en) Wireless power transmission device
WO2017138712A1 (en) Wireless charging method, and device and system therefor
WO2018101677A1 (en) Wireless power receiving device
WO2018151441A1 (en) Wireless power transmitter having electromagnetic shielding structure
WO2018131944A1 (en) Coil device and wireless power transmission/reception device comprising same
WO2018021687A1 (en) Wireless power transmitter and wireless power receiver
WO2019013480A1 (en) Wireless charging device having wireless communication coil
WO2019135612A1 (en) Wireless charger and wireless charging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834631

Country of ref document: EP

Kind code of ref document: A1