WO2018021589A1 - Method for producing secondary battery - Google Patents

Method for producing secondary battery Download PDF

Info

Publication number
WO2018021589A1
WO2018021589A1 PCT/KR2016/008165 KR2016008165W WO2018021589A1 WO 2018021589 A1 WO2018021589 A1 WO 2018021589A1 KR 2016008165 W KR2016008165 W KR 2016008165W WO 2018021589 A1 WO2018021589 A1 WO 2018021589A1
Authority
WO
WIPO (PCT)
Prior art keywords
monocell
secondary battery
separator
cutting
unit
Prior art date
Application number
PCT/KR2016/008165
Other languages
French (fr)
Korean (ko)
Inventor
김용성
조현배
김성철
정한권
임완섭
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2016/008165 priority Critical patent/WO2018021589A1/en
Priority to KR1020197003022A priority patent/KR102191183B1/en
Publication of WO2018021589A1 publication Critical patent/WO2018021589A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery manufacturing method.
  • secondary batteries capable of charging and discharging are being actively researched due to the development of high-tech fields such as digital cameras, mobile phones, and hybrid cars.
  • secondary batteries include nickel-cadmium batteries, nickel-hydrogen batteries, and lithium secondary batteries.
  • Secondary batteries may be classified into a stack type structure, a winding type (jelly roll type) structure, and a folding type structure.
  • FIG. 1 is a view illustrating a manufacturing process of a conventional folding type secondary battery.
  • bi-cells 3 and 4 having the same electrode formed on both surfaces thereof are arranged in the separator 2, and the separator ( Roll 2) to allow the plurality of bicells to be stacked.
  • the bicell includes a first type cell 3 stacked as an anode-membrane-cathode-membrane-anode and a second type cell 4 stacked with a cathode-separator-anode-separator-cathode.
  • the first type cell 3 and the second type cell 4 are alternately disposed on the separator 2, and then the separator 2 is rolled up to form a first secondary cell 1.
  • the type cell 3 and the second type cell 4 are alternately stacked.
  • Such a folding type secondary battery has the following problems.
  • a cell having a rounded shape (round shape, an elliptical shape, etc.) or a stepped shape shape (such as a staircase shape or an L shape) has a disadvantage in that it cannot be implemented by a folding method.
  • the battery in the case of the folding type secondary battery, the battery may be pushed to the side as the stack height increases. That is, in order to make a large capacity secondary battery, the stacking thickness must be thick and the longitudinal section must be rectangular or square. However, in the folding process, as the bi-cells are pushed to the side, a phenomenon may occur in the shape of a parallelogram longitudinal cross section.
  • the present invention has been proposed to improve the above problems.
  • a secondary battery manufacturing method for achieving the above object, the electrode portion notching step of cutting the edge of the electrode portion in the designed shape;
  • An electrode lamination step comprising; A separator cutting step of cutting a portion of the separator of the monocell matrix along an edge of the electrode part to form a monocell corresponding to the designed electrode part;
  • the separator cutting step may include an alignment step of aligning the monocell matrix with a reference line in order to cut the separator accurately along a cutting line.
  • the cutting line of the separator cut in the separator cutting step may include a curved or bent straight line.
  • the monocell stacking step is characterized in that the monocells of different sizes or shapes are stacked.
  • the present invention is characterized in that the monocells of different sizes or shapes are stacked to form a stepped top surface.
  • the thermocompression step may include a prepress step of compressing the monocell stack at low heat and pressure, a main press step of compressing at high heat and pressure after the prepress step, and a portion of which the press is not applied after the main press step. Finally, it may include a final press step for pressing.
  • the present invention may further include a tab welding step of welding the tab of the battery cell after the thermocompression bonding into a single body.
  • the secondary battery manufacturing method of the stacking method there is an advantage that the production of a battery cell that forms a variety of geometric shapes other than the rectangular parallelepiped. Therefore, since it can be designed in an appropriate shape to fit the design of the electrical product on which the secondary battery is mounted, there is an advantage that the design freedom of the battery cell is improved.
  • FIG. 1 is a view showing a manufacturing process of a conventional folding type secondary battery.
  • FIG. 2 is a perspective view of a secondary battery cell according to an embodiment of the present invention.
  • 3 is a plan view of monocells constituting the secondary battery cell.
  • Figure 4 is a flow chart illustrating the entire stacked secondary battery manufacturing process according to an embodiment of the present invention.
  • FIG. 5 is a view showing the electrode notching process included in the secondary battery manufacturing method according to an embodiment of the present invention.
  • FIG. 6 is a view showing an electrode lamination process included in a secondary battery manufacturing method according to an embodiment of the present invention.
  • FIG. 7 is a plan view of a monocell passed through a membrane cutting process.
  • FIG. 8 is a flowchart showing a membrane cutting process performed in the membrane cutting apparatus according to an embodiment of the present invention.
  • Figure 9 is an external perspective view of the separator cutting device according to an embodiment of the present invention.
  • Figure 10 is an enlarged perspective view of the pickup portion constituting the separator cutting device according to an embodiment of the present invention.
  • FIG. 11 is an enlarged perspective view of an alignment part and a separator cutting part constituting a separator cutting device according to an exemplary embodiment of the present invention.
  • FIG. 12 is an enlarged perspective view of a failure inspection unit constituting a separator cutting device according to an embodiment of the present invention.
  • Figure 13 is an enlarged perspective view of the mounting portion constituting the separator cutting device according to an embodiment of the present invention.
  • FIG. 14 is a perspective view of a cell stacking and thermocompression apparatus according to an embodiment of the present invention.
  • 15 is a flowchart showing a lamination process in a cell lamination and a thermocompression unit in order according to an embodiment of the present invention.
  • 16 to 18 is a view showing the configuration of the cell stacking and thermocompression apparatus is carried out monolithic stacking process according to an embodiment of the present invention.
  • thermocompression process performed in the cell stacking and thermocompression apparatus according to an embodiment of the present invention.
  • 20 is an enlarged perspective view showing a prepress part and a main press part constituting the cell laminating apparatus and the thermocompression bonding apparatus according to the embodiment of the present invention
  • Fig. 21 is an enlarged perspective view showing a device for introducing a monocell stack into a press device.
  • FIG. 22 is a perspective view of a press apparatus according to an embodiment of the present invention.
  • FIG. 24 is an enlarged perspective view showing the final press area of the cell lamination and thermocompression bonding apparatus according to the embodiment of the present invention.
  • 25 is a view illustrating an inspection process of a secondary battery cell that has passed through a thermocompression bonding process.
  • Figure 26 is an enlarged perspective view of the mounting portion constituting the cell stacking and thermocompression unit according to an embodiment of the present invention.
  • the adsorption unit and the adsorption plate may be used in combination, but it is found that the same in terms of configuration and function.
  • FIG. 2 is a perspective view of a secondary battery cell according to an embodiment of the present invention
  • Figure 3 is a plan view of the monocells constituting the secondary battery cell.
  • the secondary battery cell 10 manufactured by the secondary battery manufacturing method according to the embodiment of the present invention as shown, monocells 11, which are not the same in size and shape, 12, 13) are laminated.
  • the secondary battery cell 10 shown in FIG. 2 is in a state before being wrapped by a pouch.
  • the secondary battery cell 10 is made of a unique shape deviating from the conventional typical rectangular parallelepiped shape, which is formed by stacking a plurality of monocells 11, 12, 13 having a specific shape and then thermally compressing the same. Can be implemented.
  • FIG. 4 is a flowchart illustrating an entire manufacturing process of a stacked secondary battery according to an exemplary embodiment of the present invention.
  • the secondary battery manufacturing method according to an embodiment of the present invention, the electrode notching step (S10), the electrode lamination step (S20), the membrane cutting step (S30) step, the monocell stacking step (S40), the battery cell
  • the thermocompression step S50, the package step S60, and the degas step S70 may be included.
  • the battery cell of the thermal compression process is finished to go to the packaging step (S60).
  • a tab welding step of welding a plurality of electrode tabs stacked in a vertical direction as a single body, a forming step of forming a pouch in the form of a battery cell, and putting the battery cell inside the formed pouch and covering A cell assembly step of sealing the three edges, and the electrolyte injection step of injecting the electrolyte solution through the unopened portion is sealed.
  • the packaging step is substantially the same as a conventional folding type secondary battery manufacturing method, a detailed description thereof will be omitted.
  • the packaging step there is only a difference in what type of battery cell enters the formed accommodating part after the pouch forming, and other manufacturing processes are applied to the packaging step applied to the folding type manufacturing method and the manufacturing method according to the embodiment of the present invention.
  • the packaging steps applied are the same.
  • degas step (S70) charging and discharging the secondary battery product in which the pouch sealing is completed, activating the battery, and degassing and desealing the final gas after discharging the gas generated in the battery activation step. Step is performed.
  • the degas step is also the same as the degas step applied to the folding type secondary battery manufacturing method similarly to the packaging step, a detailed description thereof will be omitted.
  • FIG. 5 is a view showing an electrode notching process included in a secondary battery manufacturing method according to an embodiment of the present invention.
  • the secondary battery manufacturing method includes an electrode notching step S10.
  • the tab material and the rounded portion of the corner of the electrode are formed while the electrode material S, which is provided with a predetermined width and wound in a roll form, is supplied to the notching device.
  • the electrode notching step is performed before the electrode part cutting step of separating the individual electrode parts 100 when the electrode parts are designed in a shape other than a rectangular shape.
  • the electrode part includes a positive electrode part and a negative electrode part.
  • the electrode portion is shaped into a shape corresponding to the final shape of the secondary battery cell, that is, the plan view shape of the secondary battery cell.
  • the electrode part is required to have an electrode shape in which one corner is rounded.
  • the corners of the electrode part are cut roundly, and at the same time, the tab is formed at one edge.
  • the electrode material S supplied in the form of a roll is continuously supplied into the notching apparatus, and the center portion B of the electrode material supplied in the form of a rectangular sheet is cut into a predetermined width in the notching apparatus. Notching work is carried out leaving only the tab of the electrode part. At the same time, a notching operation is performed to cut both side ends B along the design shape of the electrode portion as shown. Through this notching operation, one sheet of electrode material S may be divided into two rows of electrode portions. In the electrode lamination step, which will be described later, a portion indicated by a dotted line is cut by a cutter and divided into individual electrode portions. The two rows of electrode portions become the first and second electrode materials to be described below.
  • FIG. 6 is a view showing an electrode lamination process included in the secondary battery manufacturing method according to an embodiment of the present invention.
  • the first electrode material 101, the first separator material 102, the second electrode material 103, and the second separator material 104 supplied in a roll form are sequentially stacked. It is supplied to laminators l1 and l2.
  • the first electrode material 101 and the second electrode material 103 function as anodes and cathodes or cathodes and anodes, respectively, after cell manufacture.
  • first and second electrode materials 101 and 103 supplied in the form of a roll are in a state in which the individual electrode portions 100 are connected as one body without being separated through the notching step described in FIG. 5. In this state, before the first and second electrode materials 101 and 103 are drawn into the laminators L1 and L2, the dotted lines shown in FIG. 5 are cut by the cutter C1.
  • the electrode parts and the separators are thermocompressed as a single body while passing through the laminators L1 and L2.
  • the combination of the electrode part and the separator is cut by the cutter C3.
  • the cutter C3 is for cutting the first separator 102 and the second separator 104, and a plurality of monocell matrix 105 is completed through the cutting process.
  • the monocell matrix 105 may be defined as a cell unit that is in a state before the separator is cut along the shape of the electrode unit. After the separator is cut, it may be defined as a monocell.
  • the electrode lamination process is the same as that disclosed in FIG. 6 of the prior art KR2015-0025420A, except that the shape of the electrode material undergoing the notching step is different.
  • FIG. 7 is a plan view of a monocell that passed through a membrane cutting process.
  • the monocell matrix 105 passes through a membrane coating process according to an embodiment of the present invention, an unnecessary separator portion h7 is cut off to form one complete mono-cell 1112. , 13).
  • the monocell 11 may be divided into a first monocell 11, a second monocell 12, and a third monocell 13. .
  • monocells of various shapes and sizes may be formed according to the design form of the secondary battery cell.
  • FIG. 8 is a flowchart showing a membrane cutting process performed in the membrane cutting apparatus according to an embodiment of the present invention.
  • a plurality of monocell matrixes 105 manufactured by the laminator described in FIG. 6 are loaded on a stacking box defined as a cassette.
  • the monocell matrix 105 is loaded independently in a separate cassette for each shape and size. Therefore, the number of cassettes transferred to the separator cutting device may be plural.
  • the monocell matrix loaded in the cassette transferred to the separator cutting device is picked up (S31).
  • Step is taken by the vision camera while being transferred (S32)
  • the monocell matrix is aligned to the reference line for the separator cutting using the photographed image information (S33), unnecessary separator portion of the aligned monocell matrix
  • the cutting step (S34) the step of being photographed by the vision camera while transporting the monocell cut the unnecessary separator portion by the cutting (S35), good or bad goods are classified based on the photographed monocell image information, defective Step S36, in which the monocell is discarded, and step S37, in which the monocell determined to be good is loaded into the cassette.
  • the cassette in which the good monocell is loaded is transferred to a cell stacking and thermocompression apparatus for manufacturing a secondary battery cell.
  • FIG. 9 is an external perspective view of a separator cutting device according to an embodiment of the present invention.
  • the separator cutting device 30 according to an embodiment of the present invention, the pick-up unit (C) for picking up and transporting the monocell matrix formed during the lamination step, and is transferred from the pick-up unit (C)
  • the alignment unit (D) for photographing the on-cell monolith and aligning the cutting position, the separator cutting unit (E) for cutting the separator portion of the monocell matrix transferred from the alignment unit (D), and the mono-cut membrane It can be largely divided into a failure inspection unit (F) for checking whether the cell is defective, and a loading unit (G) for loading the monocell determined as good quality.
  • FIG. 10 is an enlarged perspective view of a pickup unit constituting a separator cutting device according to an exemplary embodiment of the present invention.
  • the pickup part C of the separator cutting device 30 may include a plurality of cassettes 301 loaded with monocell matrixes subjected to lamination, and the cassette 30.
  • the cassette 301 may be determined according to the number of types of monocells to be manufactured. That is, as shown in FIG. 3, three cassettes 301 may be prepared if three sizes of monocells are needed to make one secondary battery cell. Therefore, the number of cassettes 301 may be determined according to the number of types of monocells having different shapes and sizes.
  • the number of cassettes for loading the same kind of monocells is increased.
  • Plural can be prepared. It is apparent that the stack height is relatively higher than that of monocells having different shapes or sizes, so that a relatively large number of monocells are used when manufacturing one battery cell. In this case, therefore, it is advantageous that a large number of cassettes carrying the same type of monocell are prepared.
  • the pickup unit 31 may include a pickup body 311 for adsorbing a single monocell matrix loaded on the cassette 301 and one provided on the upper and lower surfaces of the pickup body 311, respectively.
  • a plurality of adsorption parts 312, the drive motor 314 for rotating the pickup body 311 180 degrees in the forward and reverse directions, and the axis of rotation of the drive motor 314 and the side center of the pickup body 311 It may include a rotating shaft 313 to connect.
  • the pickup body 311 and the suction unit 312 may be defined as a pickup module.
  • the pickup module is provided in a number corresponding to the number of the cassettes 301 and is located directly above each of the cassettes 301.
  • the driving motor 314 may be mounted to the lifting unit 302 which is slidably mounted to the guide pillar 303 that is erected vertically. In addition, the driving motor 314 moves along the guide pillar 303 along the lifting and lowering portion 302 in the up and down direction in the pickup process.
  • the plurality of pickup modules rotate in one body by the rotation shaft (313). That is, the rotation shaft 313 passes through the plurality of pickup modules, specifically, the plurality of pickup bodies 311, so that the plurality of pickup modules rotate in one body.
  • one or more adsorption units 312 are formed on the upper and lower surfaces of the pickup body 311 to adsorb the monocell matrix loaded on the cassette 301 one by one.
  • the suction unit 312 may be disposed at the center of the upper and lower surfaces of the pickup body 311.
  • the adsorption part 312 may be arranged in a left-right direction or a front-rear direction in the center of the upper and lower surfaces of the pickup body 311.
  • the upper and lower surfaces of the pickup body 311 may be arranged in a polygonal shape corresponding to the number of adsorption parts provided, such as a triangle and a rectangle. .
  • vibration means for vibrating the suction part 312 in the vertical direction may be provided in the suction part 312 or in the pickup body 311.
  • the suction unit 312 may be a cylindrical bellows in which a spring is wound in a spiral form, and vibration means for extending and contracting the spring at high speed may be provided in the pickup body 311. Can be.
  • the transfer unit 32 may include a transfer body 321 and a suction plate 322 provided on the transfer body 321.
  • the transfer body 321 may be moved horizontally and vertically by guide rails or guide pillars.
  • the lifting unit 302 on which the driving motor 314 is mounted is lowered so that the adsorption unit 312 positioned on the bottom surface of the pickup body 311 is loaded on the cassette 301.
  • the vibrating means operates for a short time in the state in which the adsorption unit 312 adsorbs the monocell matrix, so that the monocell matrix is shaken at high speed. Then, the two or more monocell matrixes that stuck to each other while being loaded can be separated, thereby preventing the adsorption and transport of several sheets of monocell matrix at once.
  • the driving motor 314 is operated in a state in which two or more monocell matrixes are separated by the operation of the vibration means and only one monocell matrix is adsorbed to the adsorption unit 312, so that the pickup body 311 is operated. Rotates 180 degrees in either the clockwise or counterclockwise direction. Then, the adsorbed monocell matrix is located on the upper surface of the pickup body 311, and the adsorption unit 312 positioned on the upper surface faces the cassette 301.
  • the transfer unit 32 descends toward the monocell matrix, so that the adsorption plate 322 adsorbs the monocell matrix placed on the upper surface of the pickup body 311. Then, after the adsorption plate 322 adsorbs the monocell matrix, the transfer unit 32 is raised to its original position. In addition, the transfer unit 32 moves in the horizontal direction in the state of adsorbing the monocell matrix and moves to the alignment unit D.
  • the lifting unit 302 is lowered toward the cassette 301 while the transfer unit 32 is raised to its original position and then moved to the alignment unit D.
  • the adsorption part 312 which rotated to the lower surface in the upper surface adsorb
  • the vibration process is carried out after the adsorption.
  • the driving motor 314 may rotate 180 degrees in a direction opposite to the direction rotated in the previous monocell matrix adsorption process, such that the adsorbed monocell matrix is positioned on the upper surface of the pickup body 311. .
  • the driving motor 314 rotates in only one direction, the lead wire extending along the inside of the rotation shaft 313 may be twisted and broken.
  • FIG. 11 is an enlarged perspective view of an alignment part and a separator cutting part constituting a separator cutting device according to an exemplary embodiment of the present invention.
  • the transfer unit 32 which adsorbs the monocell matrix is transferred to the alignment unit D, and in order to accurately cut the separation membrane of the monocell matrix, the monocell matrix is aligned precisely at the cutting position. An alignment process is performed to make it possible.
  • a straight edge of the monocell matrix or a tab edge of the monocell matrix may be accurately positioned at a reference line.
  • the alignment unit D may include a vision camera 33 and an alignment stand 34.
  • the separator cutting unit E receives a cutting device 37, a supply unit 38 for adsorbing a monocell matrix for cutting into the cutting device 37, and a monocell in which the separator is cut. It may include a transfer stand 35 for transferring to the failure inspection unit (F).
  • the alignment stand 34 and the transfer stand 35 may be mounted on a transfer means such as the stand mover 36 to move in one body.
  • the alignment stand 34 and the transfer stand 35 may move independently of each other but move in the same direction at the same time, thereby producing the same effect as moving in one body.
  • the vision camera 33 constituting the alignment unit D is disposed between the pickup unit C and the alignment stand 34, and is transferred from the pickup unit C. Take a picture of the cell.
  • the controller extracts alignment information of the monocell based on the captured image information.
  • the position of the monocell matrix adsorbed to the transfer body 321 in the pickup portion (C) is how far from the cutting position set in the cutting portion (E) Can be determined.
  • the edge of the monocell or the edge of the tab must be exactly aligned with the reference line so that the separator can be cut along the designed cutting line. If the monocell matrix is introduced into the cutting device in a state in which it is not aligned in the cutting position, the monocell matrix may be cut not only to the separator portion to be cut but also to the electrode portion. This can be cut.
  • the vision camera 33 captures an image of the monocell matrix adsorbed on the bottom surface of the transfer body 321 of the transfer unit 32, and transmits the captured image to the controller.
  • the alignment information is transferred to the alignment stand 34, the alignment stand 34 is moved.
  • the transfer body 321 of the transfer unit 32 may receive the alignment information to align the monocell matrix, and then place the monocell on the alignment stand 34.
  • the alignment stand 34 includes an alignment table 341 on which a monocell matrix transferred from the transfer unit 32 is seated, and the alignment table 341 for aligning the monocell matrix with a reference line. It may include an alignment driver 342 for driving.
  • the alignment table 341 is, as shown in the x-axis direction (the same direction as the movement direction of the alignment stand 34) and the x-axis direction on a horizontal plane It can be moved horizontally in the orthogonal y-axis direction and can be rotated by a predetermined angle ( ⁇ ) about a vertical axis orthogonal to the horizontal plane (which can be defined as a z-axis). That is, according to the alignment value calculated based on the image photographed by the vision camera 33, the alignment table 341 may rotate the horizontal linear movement on the x-axis and the y-axis by a set angle around the vertical axis. have.
  • the alignment table 341 is operated by the alignment driver 342.
  • the transfer unit 32 lowers the monocell parent on the alignment table 341 and returns to the pickup unit C.
  • the alignment table 341 returns to the state before the alignment operation. Then, the monocell matrix is aligned to the correct cutting position, and in this state, the monocell matrix is transferred to the separator cutting unit (E).
  • a monocell having completed cutting is placed on the transfer stand 35 located on the side of the alignment stand 34.
  • the stand mover 36 is transferred in the x-axis direction, so that the alignment stand 34 is transferred to the separator cutting unit E, and the transfer stand 35 is the defect inspection unit F. Is transferred to.
  • the monocell is aligned precisely at the position for cutting.
  • the transfer stand 35 may be provided in the same number as the alignment stand 34.
  • the supply unit 38 constituting the separator cut part E includes a suction plate 382 and a transfer body 381 for moving the suction plate 382 in the horizontal and vertical directions.
  • the cutting device 37 may include a fixing part 371 and a cutting part 372, the cutting part 372 is lowered in contact with the fixing part 371, the cutting knife of the monocell It may include a punching machine for cutting the unnecessary separator, but is not limited thereto.
  • a plurality of monocell mothers may be introduced into the cutting device 37 at a time, so that a plurality of monocell mothers may be supplied to the cutting device 37 at a time.
  • the supply unit 38 moves directly above the alignment stand 34.
  • the adsorption plate 382 descends to adsorb the monocell matrix placed on the alignment table 341.
  • the supply unit is horizontally moved toward the cutting device 37 after the supply unit is lifted in the state where the monocell matrix is adsorbed.
  • the stand mover 36 moves horizontally and returns to its original position while the monocell matrix is adsorbed by the suction plate 382 and the supply unit 38 moves up and horizontally.
  • the alignment stand 34 returns to the alignment unit D, and the transfer stand 35 returns to the separator cutting unit E.
  • the supply unit 38 supplies the monocell matrix to the cutting device 37, and moves horizontally and vertically again after cutting.
  • the cutting process is a state in which the monocell is adsorbed to the adsorption plate 382 of the supply unit 38.
  • the present invention is not limited thereto, and when the monocell matrix is supplied to the cutting device 37, the monocell matrix may be separated from the adsorption plate 382 of the supply unit 38. Then, the supply unit 38 is slightly out of the back, and when the cutting process is completed, the supply unit 38 may be advanced, and again to suck the monocell is completed to move toward the transfer stand 35. .
  • the separator portion cut by the cutting device may be a curved line or a curved line rather than a straight line.
  • the monocell is transferred to the upper side of the transfer stand 35 by the supply unit 38 and then seated on the transfer stand 35. In this state, the stand mover 36 moves again to send the finished monocells to the defective inspection unit F.
  • FIG. 12 is an enlarged perspective view of a failure inspection unit constituting a separator cutting device according to an embodiment of the present invention.
  • the failure inspection unit F may include a vision camera 39 and a disposal box 41.
  • the monocell transferred to the defective inspection unit F in the state of being placed on the transfer stand 35 is photographed by the vision camera 39 to determine whether the defect is defective.
  • the vision camera 39 is located at a height spaced a predetermined distance from the upper surface of the transfer stand 35 in order to take a picture of the monocell placed on the transfer stand 35.
  • the separator of the monocell is accurately cut as designed based on the image information photographed by the vision camera 39. Therefore, the monocells subjected to the separation membrane cutting process are classified into good and bad parts while passing through the photographing area by the vision camera 39.
  • the stacking transfer part 40 may be defined as a component of the stacking part G.
  • the stack transfer unit 40 transfers the monocells in which the defect inspection is completed while reciprocating between the defect inspection unit F and the loading unit G.
  • the stack transfer part 40 may include a transfer body 401 and an adsorption part 402, like other transfer units.
  • the loading transfer unit 40 is transferred to the upper side of the transfer stand 35. Then, the transfer body 401 is lowered, and the adsorption unit 402 adsorbs the monocell placed on the transfer stand 35.
  • the transfer body 401 When the monocell is adsorbed by the adsorption part 402, the transfer body 401 is moved up to the loading part G. In the process of transferring the stacking transfer unit 40 to the stacking unit G, it passes through the upper space of the waste bin 41.
  • the adsorption part 402 which adsorbs the monocell determined as defective among the plurality of adsorption parts 40 constituting the loading transfer part 40 has an instantaneous adsorption force when it passes directly above the waste bin 41. Release it. Then, the defective monocell falls into the waste bin 41, and only the monocells determined as good quality are transferred to the stacking unit G.
  • FIG. 13 is an enlarged perspective view of a loading part constituting a separator cutting device according to an embodiment of the present invention.
  • the stacking unit G constituting the separator cutting device includes one or more cassettes 42 on which mono cells of good quality are stacked, and the stacking transfer unit 40. And, it may include a loading unit 43 for receiving the good quality monocell transferred by the stacking transfer unit 40 to load in the cassette 42.
  • the loading unit 43 includes a drive motor 431 capable of reverse rotation, a rotating plate 432 rotated by the driving motor 431, and an adsorption part 433 provided on both surfaces of the rotating plate 432. ) May be included.
  • a plurality of loading units 43 are provided with driving motors to drive independently of each other, but the present invention is not limited thereto, and the loading unit 43 is a pickup unit of the pick-up unit C.
  • the same configuration as in (31) may be achieved.
  • the loading unit 43 may operate in the same manner as the pickup unit 31.
  • the loading transfer part 40 is lowered so that the bottom surface of the monocell adsorbed by the adsorption part 402 contacts the adsorption part 433 formed on the upper surface of the rotating plate 432 of the loading unit 43. do.
  • the adsorption force of the adsorption part 402 is released and the adsorption force acts on the adsorption part 433 of the loading unit 43.
  • the loading transfer portion 40 is raised and horizontally moved back to the failure inspection unit (F).
  • the drive motor 431 is driven to rotate the rotating plate 432 180 degrees, the monocell is directed toward the cassette 42 Do it. Then, the loading unit 43 is lowered, so that the adsorption force of the adsorption portion 433 is released, so that the monocell is loaded into the cassette 42.
  • the monocells loaded in the cassette 42 that is, the monocells of the good product in which the separator is cut, are transferred to an apparatus for cell stacking and thermocompression processes.
  • FIG. 14 is a perspective view of a cell lamination and thermocompression bonding apparatus according to an embodiment of the present invention.
  • the monocells in which the separator part of the edge of the electrode part is cut in the separator cutting device 30 are laminated while passing through a plurality of working parts provided in the cell stacking and thermocompression bonding apparatus 50, and after lamination. Thermo-compression is completed as a secondary battery cell product.
  • the cell lamination and thermocompression bonding apparatus 50 includes lamination portions H1 to H4, a thermocompression bonding portion J, an inspection portion K, and a loading portion L.
  • One or more laminates may be installed depending on the shape or size of the monocells to be stacked.
  • the lamination part is shown as consisting of the first to fourth lamination parts H1 to H4.
  • thermocompression unit (J) the thermocompression unit
  • each stacking portion a plurality of cassettes loaded with the same type of monocell may be disposed in each stacking portion, but is not necessarily limited thereto.
  • the configuration of each laminate is the same regardless of the type of the laminate and the working process is the same, only one of the plurality of laminates will be described as an example.
  • FIG. 15 is a flowchart sequentially illustrating a lamination process performed in a cell stack and a thermocompression unit according to an exemplary embodiment of the present invention.
  • a lamination process (or process) performed in a cell stack and a thermocompression unit may include a monocell loaded in a plurality of cassettes moved by the separator cutting device 30.
  • the stacked monocells may be stacked (S44) and the stacked monocell assemblies may be transferred to a thermocompression bonding region (S45).
  • 16 to 18 are views illustrating the configuration of a cell stacking and thermocompression apparatus in which a monocell stacking process is performed according to an embodiment of the present invention.
  • the cassettes 501 loaded with the monocells in which the separators are cut are picked up one by one by the pickup unit 51, and the picked monocells are absorbed by the transfer unit 52 and then aligned. Is transferred to.
  • the pickup unit 51 includes a pickup body 511, a rotation shaft 513, a drive motor 514 connected to the rotation shaft, and a plurality of suctions provided on upper and lower surfaces of the pickup body 511, respectively. It may include a part 512.
  • the pickup unit 51 has the same configuration and function as the pickup unit 31 provided in the pickup unit C of the separator cutting device 30. That is, the pickup body 511 is rotated 180 degrees in the forward and reverse directions about the rotation shaft 513 by the drive motor 514, and the monocell loaded in the cassette 501 is transferred to the transfer unit 52.
  • the giving operation can be said to be the same as the function of the pickup unit 31 and the transfer unit 32 provided in the pickup portion (C).
  • the pick-up unit 51 also vibrates in the state in which the monocell is adsorbed to prevent the pick-up of several sheets together.
  • the transfer unit 52 may include a transfer body 522 and a suction plate 521.
  • the transfer unit 52 which has received the monocell from the pickup unit 51, moves to the next area for lamination, and passes through the photographing area of the vision camera 53 in the moving process.
  • the monocell absorbed by the transfer unit 52 is photographed while passing through the vision camera 53, and the alignment information (or alignment coordinates) of the monocell is calculated based on the image information of the photographed monocell. Then, the transfer unit 52 is transferred to the upper region of the alignment stand 54 after passing through the vision camera 53.
  • the alignment stand 54 may include an alignment table 541 and an alignment driver 542 for driving the alignment table 541.
  • the configuration stand and the function of the alignment stand 54 are identical to those of the alignment stand 34 constituting the separator cutting device 30, redundant description thereof will be omitted.
  • the transfer unit 52 is the alignment table 541 Place the monocell on the top.
  • the alignment table 541 returns to the state before the alignment operation. Then, the transfer unit 52 returns to the original position where the pickup unit 51 is located, and then another transfer unit 55 is transferred toward the alignment table 541.
  • the alignment process performed here is performed not for the purpose of precisely cutting the separator of the monocell, but for the purpose of stacking the plurality of monocells in the correct position.
  • the monocell 11 placed on the alignment table 541 is transferred to the cell jig 58 by another transfer unit 55.
  • the transfer unit 55 may be composed of a transfer body 552 and an adsorption plate 551 (or an adsorption unit) similarly to the transfer units introduced previously.
  • the monocells aligned in the alignment position are absorbed by the transfer unit 55 and transferred to the cell jig 58 having a flat top surface shown in FIG. 18.
  • a lower arm receiving groove 581 is formed on the upper surface of the cell jig 58 to accommodate the lower arm 601.
  • a plurality of monocells are stacked on the cell jig 58, and new monocells transferred by the transfer unit 55 are stacked on the stacked monocell combinations.
  • the top surface of the monocells is pushed by the gripper 56 to prevent the monocells from shaking or shifting. Then, while the gripper 56 presses the top surface of the monocell stack, the transfer unit 55 releases the suction force and then returns to the alignment stand 541.
  • the gripper 56 is pressed against the upper surface of the monocell stack laminated on the cell jig 58 until the monocell is transferred to the cell jig 58 by the transfer unit 55. Stays in place. Then, when the transfer unit 55 is lowered and the monocell is placed on the uppermost surface of the monocell stack, the gripper 56 moves horizontally outward of the monocell stack, and the monocell stack is removed from the monocell stack. Escape Then, ascending and moving upwards, the horizontal direction is again moved toward the monocell stack, and the upper surface of the newly stacked monocell is pressed. After that, the suction force of the transfer unit 55 is released and at the same time the transfer unit 55 rises.
  • the gripper 56 may be formed in the form of a pair of robotic arms, and the horizontal gripper 56 may move horizontally in a direction away from each other, and then move horizontally in a direction closer to each other after ascending by the height of one monocell. Then, the gripper 56 is lowered to press the upper surface of the monocell stack. The lifting and lowering movement of the gripper 56 is repeatedly performed whenever a single monocell is transferred.
  • the monocell stack is transferred to the stacking unit of the next step or the thermocompression unit.
  • a member such as a clamp 57 is conveyed while pressing the monocell stack.
  • the clamp 57 is provided at the edge of the cell jig 58.
  • the clamp 57 is mounted to be movable in the vertical direction from the upper surface of the cell jig 58, or is rotatably mounted.
  • the clamp 57 is operated to press the upper surface of the monocell stack.
  • the gripper 56 ascends from the upper surface of the monocell stack and then moves horizontally outward of the monocell stack. Then, the cell jig 58 and the clamp 57 move in one body while the clap 57 is pushing the monocell stack.
  • thermocompression unit for thermocompression bonding the monocell laminate having been laminated
  • thermocompression process performed in the cell stacking and thermocompression apparatus according to the embodiment of the present invention.
  • the thermocompression process for manufacturing a secondary battery includes a prepress step (S51) and a prepress step of a monocell laminate transferred from a stacking unit.
  • a prepress step (S51) and a prepress step of a monocell laminate transferred from a stacking unit.
  • the main press step (S52) of the monocell stack After completing the main press step (S52) of the monocell stack, the final press step (S53) of the monocell stack through the main press step, and the pressing step, Shooting with a vision camera (S54), the thickness measurement step (S55) of the secondary battery cell has been subjected to the vision camera shooting step, the short measurement step (S56), and the short measurement step of the secondary battery cell has been subjected to the thickness measurement step
  • the defective part of the rough secondary battery cell may include the step (S57) of discarding only the good product.
  • 20 is an enlarged perspective view illustrating a prepress unit and a main press unit constituting the cell stacking apparatus and the thermocompression bonding apparatus according to the embodiment of the present invention.
  • the monocell stacks having passed through the stacking step are transferred to the prepress unit J1 while being placed on the cell jig 58.
  • the press apparatus 59 which comprises the said prepress part J1 and the main press part J2 is the same, and only the magnitude
  • the monocell stack is pressed against the monocell stack with weak air and pneumatic pressure, and in the main press section J2, the weakly pressed monocell stack is pressurized again with heat and high hydraulic pressure.
  • 21 is an enlarged perspective view showing a device for introducing a monocell stack into a press device.
  • a holding clamp 60 is disposed on the opposite side of the press device 59 to lift the monocell stack 10a and guide the inside of the press device 59.
  • the monocell laminate is gripped by the holding clamp 60 when it is transferred to the press area where the press device is located while being pressed by the clamp 57 on the cell jig 58.
  • the holding clamp 60 may be formed of a robot arm structure capable of vertical movement and forward and rearward movement.
  • the holding clamp 60 includes a transfer body 603, a pair of arm rails 604 extending upward and downward from the front left and right sides of the transfer body 603, and A pair of upper arms 602 respectively provided on the pair of arm rails 604, and a pair of lower arms mounted to the pair of arm rails 604 below the pair of upper arms 602. 601 may be included.
  • the lower arm 60 may be fixed to the arm rail 604, and the upper arm 602 may be disposed to be slidably movable in a vertical direction while being connected to the arm rail 602.
  • the cell jig 58 stops when the clamp 57 is located in a space corresponding to the upper arm 602 and the lower arm 601 of the pair. Therefore, even if the holding clamp 60 is advanced toward the press device 59, the clamp 57 does not interfere with the holding clamp 60.
  • the lower arm 601 and the upper arm 602 are spaced apart at intervals greater than the stack thickness of the monocell stack. Move to jig 58.
  • the holding clamp 60 may move forward until the front end portion of the lower arm 601 touches the end of the lower arm receiving groove 581.
  • the holding clap 60 can stably hold the monocell stack. It can be inserted only to the depth that is.
  • the upper arm 602 descends to press the monocell stack. Then, the holding clamp 60 is in a state capable of picking up the monocell stack. In this state, the clamp 57 is lifted up and separated from the upper surface of the monocell stack. The holding clamp 60 also rises until the lower arm 601 leaves the lower arm receiving groove 581 of the cell jig 58.
  • the holding clamp 60 is advanced until the rear end of the monocell stack is out of the front end of the clamp 57. In this state, the front surface of the transfer body 603 constituting the holding clamp 60 is kept spaced apart from the clamp 57.
  • the clamp 57 is lowered to return to the original position. Then, the upper surface of the clamp 57 is spaced apart from the bottom of the transfer body 603. In this state, the holding clamp 60 is further advanced so that the monocell stack is advanced to the crimp position formed in the press device 59.
  • the press device 59 is disposed at a point higher than the upper surface of the cell jig 58, the clamp 57 is returned to its original position, and then the holding clamp 60 of the press device 59 It may be designed to rise further to the inlet height and then to advance.
  • FIG. 22 is a perspective view of a press apparatus according to an embodiment of the present invention
  • FIG. 23 is a bottom perspective view of a press upper constituting the press apparatus.
  • the press apparatus 59 includes a press lower 591 in which a monolithic laminate is mounted, and a press lower 591 of the press lower 591. It may include a press upper (592) provided to be able to be elevated from the upper side. Of course, although not shown, pneumatic or hydraulic pressure acts on the press upper 592 to strongly compress the press lower 591.
  • a heat wire is built in the bottom surface of the press upper 592 and the top surface of the press lower 591 to heat the monocell laminate.
  • a lower arm receiving groove 591a is formed on an upper surface of the press lower 591, and the lower arm receiving groove 591a has the same shape and function as the lower arm receiving groove 581 formed in the cell jig 58. Do. That is, it is a groove for accommodating the lower arm 601 of the holding clamp 60.
  • a pattern (or frame) 592a corresponding to the shape of the secondary battery cell after the pressing process is completed is formed on the bottom surface of the press upper 592. Therefore, the secondary battery cell will be made in a shape corresponding to the frame shape formed on the bottom of the press upper 592.
  • a lower arm avoiding portion 592a having the same shape as the lower arm receiving groove 591a is recessed in the bottom of the press upper 592 at a position corresponding to the lower arm receiving groove 591a.
  • the lower arm receiving groove 591a of the press lower 591 is spaced apart from the bottom of the monocell stack, heating and pressing are not performed. In this state, if the lower arm avoiding portion 592b is not present in the press upper 592, after the pressing process is completed, the bottom surface of the secondary battery cell corresponding to the lower arm receiving groove 591a protrudes downward. Will be.
  • thermocompression acts only on the upper surface of the monocell stack, and thermocompression acts on both sides of the monocell stack. .
  • the lower upper groove 592b having the same shape is recessed in the press upper 592 at the bottom thereof.
  • the holding clamp 60 is advanced while the monocell stack is held, and the monocell stack is placed on the upper surface of the press lower 591. Then, after the upper arm 602 of the holding clamp 60 is raised, the holding clamp 60 is retracted, and the press upper 592 is lowered to press the monocell stack together with heat to a predetermined pressure. Then, the stacked plurality of monocells are compressed to form a single secondary battery cell.
  • the monocell laminate is made in the form of one secondary battery cell.
  • an upper surface of the secondary battery cell corresponding to the lower arm accommodating groove 591a protrudes in the size and shape of the lower arm accommodating groove 591a.
  • the secondary battery cell is transferred to the final press area for thermocompression bonding the protrusion corresponding to the shape of the lower arm accommodating groove 591a.
  • the monocell stack or secondary battery cell is moved from the press device 59 to the cell jig 59 and the cell jig 59 moves to the next step. .
  • the monocell stack or the secondary battery cell in the press device 59 is gripped again by the holding clamp and moved to the upper surface of the cell jig 58.
  • FIG. 24 is an enlarged perspective view showing a final press area of the lamination and thermocompression bonding apparatus according to an embodiment of the present invention.
  • the secondary battery cell manufactured while passing through the prepress and the main press is moved in the direction of the arrow in a state of being seated on the cell jig 58 and transferred to the final press part J3.
  • the final press part J3 may be located on the side of the main press part J2 to allow the cell jig 58 to move linearly, as shown in the drawing. You can also make the travel path turn 90 degrees after passing.
  • the holding clamp may hold the monocell stack and transfer the same into the press apparatus.
  • a separate transfer unit 62 may be used.
  • the mono-cell stack (or secondary battery cell) may be transferred to the final press device.
  • a description will be given by taking an example in which the monocell stack is supplied into the final press device 60 by a separate transfer unit.
  • the secondary battery cell 10a that has passed through the main press process and is placed on the cell jig 58 and transferred to the inlet of the final press device 61 is sucked by the transfer unit 62. Before that, the clamp 57, which has been pressed on the secondary battery cell 10a, is raised to be spaced apart from the upper surface of the secondary battery cell 10a.
  • the transfer unit 62 adsorbs the secondary battery cell 10a to guide the inside of the final press device 61.
  • the transfer unit 62 may be an adsorptive transfer member provided with the adsorption unit (or adsorption plate) described above.
  • the final press device 61 may include a press lower 611 and a press upper 612, the press upper 612 is provided to be lowered.
  • the press apparatus 59 provided in the said prepress part J1 or the main press part J2.
  • the bottom surface of the press upper 612 and the top surface of the press lower 611 are different from each other to form a smooth plane without depressions.
  • the transfer unit 62 transfers the secondary battery cell 10a placed on the cell jig 58 to press the press. It is seated in the lower 611. Then, the baby feed unit 62 returns to its original position.
  • the press upper 612 is lowered to press the upper surface of the secondary battery cell with heat and pressure. Then, the portion protruding in the shape of a lower arm receiving groove is pressed on the upper surface of the secondary battery cell. The protruding portion is pressed to maintain the same height as the upper surface of the secondary battery cell.
  • the upper surface portion of the secondary battery cell means the upper surface of the monocell stacked portion of the uppermost side. That is, when passing through the final press process, the upper surface of the protruding portion forms the same plane as the upper surface of the portions pressed from the main press portion, and one complete secondary battery cell is formed.
  • FIG. 25 is a view illustrating an inspection process of a secondary battery cell that has passed through a thermocompression bonding process.
  • the transfer unit 63 may be a transfer unit of the same type as the transfer unit 62 provided in the final press unit.
  • the secondary battery cell 10 When the secondary battery cell is transferred to the transfer belt 64 by the transfer unit 63, the secondary battery cell 10 undergoes an inspection process while moving to the inspection unit K along the transfer belt 64. . That is, shape inspection by a vision camera, thickness inspection, and short inspection are performed in sequence.
  • the photographing image may determine whether the monocells are pushed to the side in the lamination process and the side of the cell does not form a vertical plane and is not inclined at an angle, or whether the monocell stack is pushed to the side in the thermocompression process. Can be.
  • the secondary battery cell passing through the vision camera 65 is transferred to the thickness measuring unit 66, it is determined whether the compression is made well to the designed thickness.
  • the secondary battery cell passing through the thickness measuring unit 66 is transferred to the short inspection unit 67, and it is determined whether the short-circuited phenomenon does not occur due to sticking of the electrode parts in the thermocompression bonding process.
  • FIG. 26 is an enlarged perspective view of a stacker constituting a cell stack and a thermocompression unit according to an exemplary embodiment of the present invention.
  • whether each of the secondary battery cells is defective may be determined while passing through the short inspection unit 67.
  • the secondary battery cells determined to be defective are collected along with the disposal belt (not shown) by continuously moving along the transfer belt 64.
  • the secondary battery cell judged as good quality is picked up by the pickup unit 68, and loaded in a separate cassette.
  • the secondary battery cell which is determined to be a good product through such a series of processes, is packaged by a pouch and moved to a packaging process in which electrolyte is injected. Since the process after the package process is the same as that applied to the conventional secondary battery cell manufacturing process, a detailed description thereof will be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

A method for producing a secondary battery according to an embodiment of the present invention may comprise: an electrode part notching step for cutting the edges of an electrode part into a set shape; an electrode lamination step comprising a process in which a plurality of electrode parts and separation membranes are introduced into a laminator in a sequentially stacked state and are compressed into a single body, and a process in which the compressed body outputted from the laminator, comprising the electrode parts and separation membranes, is cut into a plurality of monocell base units; a separation membrane cutting step in which a part of the separation membrane of the monocell base unit is cut along the edges of the electrode part in order to shape the monocell to match the shape of the set electrode part; a monocell lamination step for laminating the plurality of monocells having separation membranes which have been cut; a thermocompression step for compressing a monocell laminate, formed by laminating the plurality of monocells, by means of heat and pressure; and a packaging step for packaging the battery, finished by thermocompression, by encasing same in a pouch.

Description

2차 전지 제조 방법Secondary Battery Manufacturing Method
본 발명은 2차 전지 제조 방법에 관한 것이다. The present invention relates to a secondary battery manufacturing method.
통상적으로 충전이 불가능한 일차 전지와 달리, 충전 및 방전이 가능한 이차전지는 디지털 카메라, 모바일폰, 하이브리드 자동차 등 첨단 분야의 개발로 활발한 연구가 진행중이다. 이차전지로는 니켈-카드뮴 전지, 니켈-수소 전지, 리튬 이차 전지 등을 들 수 있다. Unlike primary batteries which are not normally charged, secondary batteries capable of charging and discharging are being actively researched due to the development of high-tech fields such as digital cameras, mobile phones, and hybrid cars. Examples of secondary batteries include nickel-cadmium batteries, nickel-hydrogen batteries, and lithium secondary batteries.
이차전지는 스택형 구조, 권취형(젤리 롤형) 구조 및 폴딩형 구조로 분류될 수 있다. Secondary batteries may be classified into a stack type structure, a winding type (jelly roll type) structure, and a folding type structure.
도 1은 종래의 폴딩형 이차전지의 제조 과정을 보여주는 도면이다.1 is a view illustrating a manufacturing process of a conventional folding type secondary battery.
도 1을 참조하면, 폴딩형 이차전지(1)를 제조하기 위해서, 양 면에 동일 전극이 형성되는 바이셀(bi-cell)(3,4)을 분리막(2)에 배열시키고, 상기 분리막(2)을 말아서 상기 다수의 바이셀들이 적층되도록 한다. 상기 바이셀은, 양극-분리막-음극-분리막-양극으로 적층되는 제 1 타입 셀(3)과, 음극-분리막-양극-분리막-음극으로 적층되는 제 2 타입 셀(4)을 포함한다. 그리고 폴딩형 이차전지(1)를 제조하기 위해서는 상기 분리막(2) 위에 상기 제 1 타입 셀(3)과 제 2 타입 셀(4)을 교번하여 배치한 다음, 상기 분리막(2)을 말아서 제 1 타입 셀(3)과 제 2타입 셀(4)이 교번하여 적층되도록 한다. Referring to FIG. 1, in order to manufacture the folding type secondary battery 1, bi-cells 3 and 4 having the same electrode formed on both surfaces thereof are arranged in the separator 2, and the separator ( Roll 2) to allow the plurality of bicells to be stacked. The bicell includes a first type cell 3 stacked as an anode-membrane-cathode-membrane-anode and a second type cell 4 stacked with a cathode-separator-anode-separator-cathode. In order to manufacture the folding type secondary battery 1, the first type cell 3 and the second type cell 4 are alternately disposed on the separator 2, and then the separator 2 is rolled up to form a first secondary cell 1. The type cell 3 and the second type cell 4 are alternately stacked.
이와 같은 폴딩 타입 이차전지의 경우 다음과 같은 문제점이 있다. Such a folding type secondary battery has the following problems.
첫째, 분리막을 말아서 적층하여야 하므로, 직육면체 형상의 이차전지 형상밖에 구현할 수 없는 문제점이 있다. 최근에는 다양한 형태의 전자 기기가 출시되고 있고, 그에 따라서 배터리도 다양한 기하학적 형상이 요구되고 있다. 예컨대, 라운드진 형상(원형, 타원형 등) 또는 단차진 형상(계단 형상 또는 L 형상 등)의 셀은 폴딩 방식의 제조 방법으로는 구현이 불가능한 단점이 있다. First, since the separator must be rolled up and stacked, there is a problem that only a rectangular parallelepiped secondary battery shape can be implemented. Recently, various types of electronic devices have been released, and accordingly, various geometrical shapes of batteries are required. For example, a cell having a rounded shape (round shape, an elliptical shape, etc.) or a stepped shape shape (such as a staircase shape or an L shape) has a disadvantage in that it cannot be implemented by a folding method.
둘째, 폴딩 방식 이차전지의 경우, 적층 높이가 높아짐에 따라 전지가 옆으로 밀리는 현상이 발생할 수 있다. 즉, 대용량 이차전지를 만들기 위하여 적층 두께가 두꺼워져야 하며, 종단면이 직사각형 또는 정사각형을 유지하여야 한다. 그러나, 폴딩 과정에서 바이셀들이 옆으로 밀리면서 평행 사변형의 종단면 형태로 변형되는 현상이 발생할 수 있다. Second, in the case of the folding type secondary battery, the battery may be pushed to the side as the stack height increases. That is, in order to make a large capacity secondary battery, the stacking thickness must be thick and the longitudinal section must be rectangular or square. However, in the folding process, as the bi-cells are pushed to the side, a phenomenon may occur in the shape of a parallelogram longitudinal cross section.
셋째, 폴딩 방식 이차전지 제조 방법에 의하면, 상하로 배치되는 전극 탭들이 정확하게 정렬되지 못하고 좌우 방향으로 어긋나는 정도가 커지는 단점이 있다. Third, according to the folding type secondary battery manufacturing method, there is a disadvantage in that the electrode tabs arranged up and down are not aligned correctly and are shifted in the left and right directions.
<선행기술>Advanced Technology
KR2015-0025420A(2015년3월10일)KR2015-0025420A (March 10, 2015)
본 발명은 상기와 같은 문제점을 개선하기 위하여 제안되었다. The present invention has been proposed to improve the above problems.
상기와 같은 목적을 달성하기 위한 본 발명의 실시예에 따른 이차전지 제조 방법은, 전극부의 가장자리를 설계된 형상으로 절단하는 전극부 노칭 단계; 다수의 전극부와 분리막이 순차적으로 적층된 상태로 라미네이너로 인입되어 단일체로 압착되도록 하는 과정과, 상기 라미네이터로부터 인출되는 전극부와 분리막의 압착체를 다수의 모노셀 모체로 절단하는 과정을 포함하는 전극 라미네이션 단계; 상기 설계된 전극부의 형상에 대응하는 모노셀을 형성하기 위하여, 상기 전극부의 가장자리를 따라 상기 모노셀 모체의 분리막 일부분을 절단하는 분리막 커팅 단계; 분리막이 커팅된 다수의 모노셀을 적층하는 모노셀 적층 단계; 다수의 모노셀이 적층되어 이루어지는 모노셀 적층체를 열과 압력으로 압착하는 열압착 단계; 열압착에 의하여 완성된 전지셀을 파우치로 감싸서 포장하는 패키지 단계를 포함할 수 있다. A secondary battery manufacturing method according to an embodiment of the present invention for achieving the above object, the electrode portion notching step of cutting the edge of the electrode portion in the designed shape; A process in which a plurality of electrode parts and separators are sequentially stacked and pressed into a laminator to be compressed into a single body, and a process of cutting the compressed parts of the electrode parts and separators drawn from the laminator into a plurality of monocell matrixes An electrode lamination step comprising; A separator cutting step of cutting a portion of the separator of the monocell matrix along an edge of the electrode part to form a monocell corresponding to the designed electrode part; A monocell stacking step of stacking a plurality of monocells in which the separator is cut; A thermocompression bonding step of compressing the monocell stack formed by stacking a plurality of monocells with heat and pressure; It may include a package step of wrapping the battery cell completed by thermocompression wrapping with a pouch.
상기 분리막 커팅 단계는, 절단선을 따라 정확하게 상기 분리막을 절단하기 위하여, 상기 모노셀 모체를 기준선에 정렬하는 얼라인 단계를 포함할 수 있다. The separator cutting step may include an alignment step of aligning the monocell matrix with a reference line in order to cut the separator accurately along a cutting line.
상기 분리막 커팅 단계에서 커팅되는 분리막의 커팅 선은 곡선 또는 절곡된 직선을 포함할 수 있다. The cutting line of the separator cut in the separator cutting step may include a curved or bent straight line.
상기 모노셀 적층 단계는, 크기 또는 형상이 다른 모노셀들이 적층되는 것을 특징으로 한다.The monocell stacking step is characterized in that the monocells of different sizes or shapes are stacked.
본 발명은, 크기 또는 형상이 다른 상기 모노셀들이 적층되어, 상면이 단차지는 형태를 이루는 것을 특징으로 한다. The present invention is characterized in that the monocells of different sizes or shapes are stacked to form a stepped top surface.
상기 열압착 단계는, 상기 모노셀 적층체를 낮은 열과 압력으로 압착하는 프리 프레스 단계와, 상기 프리 프레스 단계 이후에 높은 열과 압력으로 압착하는 메인 프레스 단계, 및 메인 프레스 단계 이후 압착이 가해지지 않은 부분을 마지막으로 가압하는 파이널 프레스 단계를 포함할 수 있다. The thermocompression step may include a prepress step of compressing the monocell stack at low heat and pressure, a main press step of compressing at high heat and pressure after the prepress step, and a portion of which the press is not applied after the main press step. Finally, it may include a final press step for pressing.
본 발명은 열압착이 끝난 전지셀의 탭을 단일체로 용접하는 탭 용접 단계를 더 포함할 수 있다. The present invention may further include a tab welding step of welding the tab of the battery cell after the thermocompression bonding into a single body.
본 발명의 실시예에 따른 이차전지 제조 방법에 의하면 다음과 같은 효과가 있다. According to the secondary battery manufacturing method according to an embodiment of the present invention has the following effects.
첫째, 적층 방식의 이차전지 제조 방법은, 직육면체 이외의 다양한 기하학적 형상을 이루는 전지셀의 제조가 가능한 장점이 있다. 따라서, 이차전지가 장착되는 전기 제품의 디자인에 맞게 적절한 형상으로 설계 가능하므로, 전지 셀의 설계 자유도가 좋아지는 장점이 있다. First, the secondary battery manufacturing method of the stacking method, there is an advantage that the production of a battery cell that forms a variety of geometric shapes other than the rectangular parallelepiped. Therefore, since it can be designed in an appropriate shape to fit the design of the electrical product on which the secondary battery is mounted, there is an advantage that the design freedom of the battery cell is improved.
둘째, 대용량 전지 생산을 위하여, 셀의 적층 높이(또는 두께)가 증가하더라도 옆으로 밀리는 현상이 발생하지 않는 장점이 있다. Second, to produce a large capacity battery, even if the stack height (or thickness) of the cell increases, there is an advantage that does not occur sideways.
셋째, 상하로 인접하는 전극탭들이 좌우 방향으로 어긋나는 정도가 현저히 감소하는 장점이 있다. Third, the degree that the vertically adjacent electrode tabs are shifted in the left and right directions is significantly reduced.
도 1은 종래의 폴딩형 이차전지의 제조 과정을 보여주는 도면.1 is a view showing a manufacturing process of a conventional folding type secondary battery.
도 2는 본 발명의 실시예에 따른 이차전지 셀의 사시도. 2 is a perspective view of a secondary battery cell according to an embodiment of the present invention.
도 3은 상기 이차전지 셀을 구성하는 모노셀들의 평면도.3 is a plan view of monocells constituting the secondary battery cell.
도 4는 본 발명의 실시예에 따른 적층형 이차전지 제조 공정 전체를 설명하는 플로차트.Figure 4 is a flow chart illustrating the entire stacked secondary battery manufacturing process according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 이차전지 제조방법에 포함되는 전극 노칭 과정을 보여주는 도면.5 is a view showing the electrode notching process included in the secondary battery manufacturing method according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 이차전지 제조 방법에 포함되는 전극 라미네이션 과정을 보여주는 도면.6 is a view showing an electrode lamination process included in a secondary battery manufacturing method according to an embodiment of the present invention.
도 7은 분리막 커팅 공정을 통과한 모노셀의 평면도.7 is a plan view of a monocell passed through a membrane cutting process.
도 8은 본 발명의 실시예에 따른 분리막 커팅 장치에서 이루어지는 분리막 커팅 공정을 보여주는 플로차트.8 is a flowchart showing a membrane cutting process performed in the membrane cutting apparatus according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 분리막 커팅 장치의 외관 사시도.Figure 9 is an external perspective view of the separator cutting device according to an embodiment of the present invention.
도 10은 본 발명의 실시예에 따른 분리막 커팅 장치를 구성하는 픽업부의 확대 사시도.Figure 10 is an enlarged perspective view of the pickup portion constituting the separator cutting device according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따른 분리막 커팅 장치를 구성하는 얼라인부와 분리막 커팅부의 확대 사시도.11 is an enlarged perspective view of an alignment part and a separator cutting part constituting a separator cutting device according to an exemplary embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 분리막 커팅 장치를 구성하는 불량 검사부의 확대 사시도.12 is an enlarged perspective view of a failure inspection unit constituting a separator cutting device according to an embodiment of the present invention.
도 13은 본 발명의 실시예에 따른 분리막 커팅 장치를 구성하는 적재부의 확대 사시도.Figure 13 is an enlarged perspective view of the mounting portion constituting the separator cutting device according to an embodiment of the present invention.
도 14는 본 발명의 실시예에 따른 셀적층 및 열압착 장치의 사시도.14 is a perspective view of a cell stacking and thermocompression apparatus according to an embodiment of the present invention.
도 15는 본 발명의 실시예에 따른 셀적층 및 열압착부에서 이루어지는 적층 공정을 순서대로 보여주는 플로차트.15 is a flowchart showing a lamination process in a cell lamination and a thermocompression unit in order according to an embodiment of the present invention.
도 16 내지 도 18은 본 발명의 실시예에 따른 모노셀 적층 과정이 수행되는 셀적층 및 열압착 장치의 구성을 보여주는 도면.16 to 18 is a view showing the configuration of the cell stacking and thermocompression apparatus is carried out monolithic stacking process according to an embodiment of the present invention.
도 19는 본 발명의 실시예에 따른 셀적층 및 열압착 장치에서 수행되는 열압착 공정을 순서대로 보여주는 플로차트.19 is a flowchart showing in sequence the thermocompression process performed in the cell stacking and thermocompression apparatus according to an embodiment of the present invention.
도 20은 본 발명의 실시예에 따른 셀적층 장치 및 열압착 장치를 구성하는 프리 프레스부와 메인 프레스부를 보여주는 확대 사시도.20 is an enlarged perspective view showing a prepress part and a main press part constituting the cell laminating apparatus and the thermocompression bonding apparatus according to the embodiment of the present invention;
도 21은 프레스 장치 내부로 모노셀 적층체를 투입하는 장치를 보여주는 확대 사시도.Fig. 21 is an enlarged perspective view showing a device for introducing a monocell stack into a press device.
도 22는 본 발명의 실시예에 따른 프레스 장치의 사시도.22 is a perspective view of a press apparatus according to an embodiment of the present invention.
도 23은 상기 프레스 장치를 구성하는 프레스 어퍼의 저면 사시도.The bottom perspective view of the press upper which comprises the said press apparatus.
도 24는 본 발명의 실시예에 따른 셀적층 및 열압착 장치의 파이널 프레스 영역을 보여주는 확대 사시도.24 is an enlarged perspective view showing the final press area of the cell lamination and thermocompression bonding apparatus according to the embodiment of the present invention.
도 25는 열압착 과정을 통과한 이차전지셀의 검사 과정을 보여주는 도면.25 is a view illustrating an inspection process of a secondary battery cell that has passed through a thermocompression bonding process.
도 26은 본 발명의 실시예에 따른 셀적층 및 열압착부를 구성하는 적재부의 확대 사시도.Figure 26 is an enlarged perspective view of the mounting portion constituting the cell stacking and thermocompression unit according to an embodiment of the present invention.
이하에서는 본 발명의 실시예에 따른 이차전지 제조 방법, 특히 적층형(stacked type) 이차전지 제조 방법과, 본 발명의 실시예에 따른 제조 방법에 사용되는 장치에 대하여 도면을 참조하여 상세히 설명한다. Hereinafter, a method for manufacturing a secondary battery according to an embodiment of the present invention, in particular, a method for manufacturing a stacked type secondary battery and an apparatus used in the manufacturing method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
이하에서는 흡착부와 흡착판이 혼용되어 사용될 수 있으나, 구성 및 기능에 있어서는 동일함을 밝혀둔다. Hereinafter, the adsorption unit and the adsorption plate may be used in combination, but it is found that the same in terms of configuration and function.
도 2는 본 발명의 실시예에 따른 이차전지 셀의 사시도이고, 도 3은 상기 이차전지 셀을 구성하는 모노셀들의 평면도이다. 2 is a perspective view of a secondary battery cell according to an embodiment of the present invention, Figure 3 is a plan view of the monocells constituting the secondary battery cell.
도 2 및 도 3을 참조하면, 본 발명의 실시예에 따른 이차전지 제조 방법에 의하여 제조되는 이차전지 셀(10)은, 도시된 바와 같이, 크기와 형태가 동일하지 않은 모노셀들(11,12,13)이 적층되어 이루어진다. 도 2에 도시된 이차전지 셀(10)은 파우치에 의하여 감싸지기 전 상태의 모습이다. 2 and 3, the secondary battery cell 10 manufactured by the secondary battery manufacturing method according to the embodiment of the present invention, as shown, monocells 11, which are not the same in size and shape, 12, 13) are laminated. The secondary battery cell 10 shown in FIG. 2 is in a state before being wrapped by a pouch.
상세히, 상기 이차전지셀(10)은 종래의 전형적인 직육면체 형상에서 벗어난 특이한 형상으로 이루어지며, 이러한 형상은, 특정 형상을 가지는 다수의 모노셀들(11,12,13)을 적층시킨 후 열압착함으로써 구현될 수 있다. In detail, the secondary battery cell 10 is made of a unique shape deviating from the conventional typical rectangular parallelepiped shape, which is formed by stacking a plurality of monocells 11, 12, 13 having a specific shape and then thermally compressing the same. Can be implemented.
도 4는 본 발명의 실시예에 따른 적층형 이차전지 제조 공정 전체를 설명하는 플로차트이다. 4 is a flowchart illustrating an entire manufacturing process of a stacked secondary battery according to an exemplary embodiment of the present invention.
도 4를 참조하면, 본 발명의 실시예에 따른 이차전지 제조 방법은, 전극 노칭(S10) 단계, 전극 라미네이션 단계(S20), 분리막 커팅(S30)단계, 모노셀 적층단계(S40), 전지셀 열압착 단계(S50), 포장(package) 단계(S60), 및 디가스(degas) 단계(S70)를 포함할 수 있다. Referring to Figure 4, the secondary battery manufacturing method according to an embodiment of the present invention, the electrode notching step (S10), the electrode lamination step (S20), the membrane cutting step (S30) step, the monocell stacking step (S40), the battery cell The thermocompression step S50, the package step S60, and the degas step S70 may be included.
상기 전극 노칭 단계(S10)부터 전지셀 열압착 단계(S50)에 대해서는 아래에서 도면을 참조하여 상세히 설명하도록 한다. The electrode notching step (S10) to the battery cell thermocompression step (S50) will be described in detail with reference to the drawings below.
한편, 상기 열압착 과정이 끝난 상태의 전지셀은 포장 단계(S60)로 넘어간다. 상기 포장 단계에서는 상하 방향으로 적층된 다수의 전극 탭을 단일체로 용접하는 탭 용접(tab welding) 단계와, 파우치를 전지셀 형태로 포밍하는 포밍 단계와, 포밍된 파우치 내부에 전지셀을 넣고 덮은 뒤 세 가장자리를 실링하는 셀 조립 단계와, 실링되지 않고 개구된 부분을 통하여 전해액을 주입하는 전해액 주입 단계를 포함할 수 있다. On the other hand, the battery cell of the thermal compression process is finished to go to the packaging step (S60). In the packaging step, a tab welding step of welding a plurality of electrode tabs stacked in a vertical direction as a single body, a forming step of forming a pouch in the form of a battery cell, and putting the battery cell inside the formed pouch and covering A cell assembly step of sealing the three edges, and the electrolyte injection step of injecting the electrolyte solution through the unopened portion is sealed.
상기 포장 단계는 종래의 폴딩 타입 이차전지 제조 방법과 실질적으로 동일하므로, 더 구체적인 내용에 대한 설명은 생략한다. 포장 단계에서는, 파우치 포밍 후 포밍된 수용부에 어떤 형태의 전지셀이 들어가느냐에 차이가 있을 뿐, 그 외 제조 공정은 폴딩 타입 제조 방법에 적용되는 포장 단계와 본 발명의 실시예에 따른 제조 방법에 적용되는 포장 단계는 동일하다고 할 수 있다. Since the packaging step is substantially the same as a conventional folding type secondary battery manufacturing method, a detailed description thereof will be omitted. In the packaging step, there is only a difference in what type of battery cell enters the formed accommodating part after the pouch forming, and other manufacturing processes are applied to the packaging step applied to the folding type manufacturing method and the manufacturing method according to the embodiment of the present invention. The packaging steps applied are the same.
또한, 상기 디가스 단계(S70)에서는, 파우치 실링이 완료된 이차전지 제품을 충방전 시켜 전지 활성화하는 단계와, 전지 활성화 단계에서 발생한 가스를 배출하는 디가스 단계 및 재실링(resealing) 후 파이널 압착하는 단계가 수행된다. 상기 디가스 단계도, 상기 포장 단계와 마찬가지로, 폴딩 타입 이차전지 제조 방법에 적용되는 디가스 단계와 동일하므로, 이에 대한 자세한 설명은 생략한다. In addition, in the degas step (S70), charging and discharging the secondary battery product in which the pouch sealing is completed, activating the battery, and degassing and desealing the final gas after discharging the gas generated in the battery activation step. Step is performed. The degas step is also the same as the degas step applied to the folding type secondary battery manufacturing method similarly to the packaging step, a detailed description thereof will be omitted.
이하에서는, 본 발명의 실시예에 따른 이차전지 제조 방법의 주된 특징부라 할 수 있는, 분리막 커팅 공정 및 분리막 커팅 공정에 사용되는 장비와, 셀적층 및 열압착 공정 및 이에 사용되는 장비에 대한 내용을 중심으로 설명하도록 한다. Hereinafter, the main features of the secondary battery manufacturing method according to an embodiment of the present invention, the equipment used in the membrane cutting process and the membrane cutting process, the cell lamination and thermocompression process and the equipment used therein The explanation is centered.
도 5는 본 발명의 실시예에 따른 이차전지 제조방법에 포함되는 전극 노칭 과정을 보여주는 도면이다.5 is a view showing an electrode notching process included in a secondary battery manufacturing method according to an embodiment of the present invention.
도 5를 참조하면, 본 발명의 실시예에 따른 이차전지 제조 방법은 전극 노칭(S10) 단계를 포함한다.Referring to FIG. 5, the secondary battery manufacturing method according to the exemplary embodiment of the present invention includes an electrode notching step S10.
상세히, 전극 노칭 단계에서는, 소정의 폭을 가지고 롤 형태로 감겨서 제공되는 전극 재료(S)가 노칭 장치로 공급되면서, 전극의 탭(tab) 부분과 모서리의 라운드진 부분이 형성된다. 전극 노칭 단계는, 전극부가 직사각형 형상이 아닌 다른 형상으로 설계된 경우, 개별 전극부(100) 별로 분리하는 전극부 절단 단계 이전에 수행된다. 상기 전극부는 양극 전극부와 음극 전극부를 포함한다. In detail, in the electrode notching step, the tab material and the rounded portion of the corner of the electrode are formed while the electrode material S, which is provided with a predetermined width and wound in a roll form, is supplied to the notching device. The electrode notching step is performed before the electrode part cutting step of separating the individual electrode parts 100 when the electrode parts are designed in a shape other than a rectangular shape. The electrode part includes a positive electrode part and a negative electrode part.
그리고, 상기 전극부는 이차전지 셀의 최종 형상, 즉 이차전지 셀의 평면도 형상에 대응하는 형상으로 성형된다. 도 2에 제시된 이차전지 셀의 경우, 전극부는 한 쪽 모서리가 라운드지는 전극부 형상이 요구된다. The electrode portion is shaped into a shape corresponding to the final shape of the secondary battery cell, that is, the plan view shape of the secondary battery cell. In the case of the secondary battery cell illustrated in FIG. 2, the electrode part is required to have an electrode shape in which one corner is rounded.
따라서, 상기 노칭 단계에서는 상기 전극부의 모서리가 라운드지게 절단되도록 하고, 동시에 일측 가장자리에 탭이 형성되도록 한다. Therefore, in the notching step, the corners of the electrode part are cut roundly, and at the same time, the tab is formed at one edge.
노칭 단계에서는 상기 롤 형태로 공급되는 전극 재료(S)가 노칭 장치 내부로 연속적으로 공급되고, 노칭 장치 내부에서는 직사각형 시트(sheet) 형태로 공급되는 전극 재료의 가운데 부분(B)을 소정 폭으로 잘라내면서 전극부의 탭만 남겨 두는 노칭 작업이 이루어진다. 동시에, 양 측단부(B)를 도시된 바와 같이 전극부의 설계 형상을 따라 잘라내는 노칭 작업이 이루어진다. 이러한 노칭 작업을 통하여 하나의 전극 재료(S) 시트가 두 줄의 전극부로 나뉘어질 수 있다. 그리고, 후술할 전극 라미네이션 단계에서 점선으로 표시된 부분이 커터에 의하여 절단되어, 낱개의 전극부로 분할된다. 상기 두 줄의 전극부는 아래에서 설명할 제 1 및 제 2 전극 재료가 된다. In the notching step, the electrode material S supplied in the form of a roll is continuously supplied into the notching apparatus, and the center portion B of the electrode material supplied in the form of a rectangular sheet is cut into a predetermined width in the notching apparatus. Notching work is carried out leaving only the tab of the electrode part. At the same time, a notching operation is performed to cut both side ends B along the design shape of the electrode portion as shown. Through this notching operation, one sheet of electrode material S may be divided into two rows of electrode portions. In the electrode lamination step, which will be described later, a portion indicated by a dotted line is cut by a cutter and divided into individual electrode portions. The two rows of electrode portions become the first and second electrode materials to be described below.
도 6은 본 발명의 실시예에 따른 이차전지 제조 방법에 포함되는 전극 라미네이션 과정을 보여주는 도면이다. 6 is a view showing an electrode lamination process included in the secondary battery manufacturing method according to an embodiment of the present invention.
도 6을 참조하면, 롤 형태로 공급되는 제 1 전극 재료(101), 제 1 분리막 재료(102), 제 2 전극 재료(103), 및 제 2 분리막 재료(104)가 순차적으로 적층되는 형태로 라미네이터(l1,l2)로 공급된다. 상기 제 1 전극 재료(101)와 제 2 전극 재료(103)는, 셀 제조 후 각각 양극과 음극 또는 음극과 양극으로 기능한다.Referring to FIG. 6, the first electrode material 101, the first separator material 102, the second electrode material 103, and the second separator material 104 supplied in a roll form are sequentially stacked. It is supplied to laminators l1 and l2. The first electrode material 101 and the second electrode material 103 function as anodes and cathodes or cathodes and anodes, respectively, after cell manufacture.
또한, 롤 형태로 공급되는 상기 제 1 및 제 2 전극 재료(101,103)는, 도 5에서 설명된 노칭 단계를 거치면서 개별 전극부(100)가 분리되지 않고 한 몸으로 연결된 상태이다. 이 상태에서 상기 제 1 및 제 2 전극 재료(101,103)는 상기 라미네이터(L1,L2)로 인입되기 전에 커터(C1)에 의하여 도 5에 표시된 점선 부분이 절단된다. In addition, the first and second electrode materials 101 and 103 supplied in the form of a roll are in a state in which the individual electrode portions 100 are connected as one body without being separated through the notching step described in FIG. 5. In this state, before the first and second electrode materials 101 and 103 are drawn into the laminators L1 and L2, the dotted lines shown in FIG. 5 are cut by the cutter C1.
그리고, 상기 라미네이터(L1,L2)를 통과하면서 상기 전극부들과 분리막들은 단일체로 열압착된다. 그리고, 상기 라미네이터(L1,L2)의 출구단에서 커터(C3)에 의하여 상기 전극부와 분리막의 결합체가 절단된다. 상기 커터(C3)는 상기 제 1 분리막(102)과 제 2 분리막(104)을 절단하기 위한 것으로서, 이러한 절단 과정을 통하여 다수의 모노셀 모체(105)가 완성된다. 여기서, 모노셀 모체(105)는 분리막이 전극부의 형상을 따라 절단되기 전의 상태에 있는 셀 단위체를 의미하는 것으로 정의될 수 있다.그리고, 분리막이 절단된 이후에는 모노셀로 정의될 수 있다. The electrode parts and the separators are thermocompressed as a single body while passing through the laminators L1 and L2. In addition, at the exit ends of the laminators L1 and L2, the combination of the electrode part and the separator is cut by the cutter C3. The cutter C3 is for cutting the first separator 102 and the second separator 104, and a plurality of monocell matrix 105 is completed through the cutting process. Here, the monocell matrix 105 may be defined as a cell unit that is in a state before the separator is cut along the shape of the electrode unit. After the separator is cut, it may be defined as a monocell.
상기 전극 라미네이션 과정은 상기의 선행기술(KR2015-0025420A)의 도 6에 개시되어 있는 바와 동일하되, 다만 노칭 단계를 거친 전극 재료의 형상이 다를 뿐이다. The electrode lamination process is the same as that disclosed in FIG. 6 of the prior art KR2015-0025420A, except that the shape of the electrode material undergoing the notching step is different.
도 7은 분리막 커팅 공정을 통과한 모노셀의 평면도이다.7 is a plan view of a monocell that passed through a membrane cutting process.
도 7을 참조하면, 상기 모노셀 모체(105)가 본 발명의 실시예에 따른 분리막 코팅 공정을 통과하면, 불필요한 분리막 부분(h7)이 절단되어, 하나의 완전한 모노셀(mono-cell)(1112,13)을 형성한다. 그리고, 상기 모노셀(11)은 크기에 따라, 도 3에 도시된 바와 같이, 제 1 모노셀(11), 제 2 모노셀(12), 및 제 3 모노셀(13)로 구분될 수 있다. 다시 말하면, 이차전지 셀의 설계 형태에 따라 다양한 형태와 다양한 크기의 모노셀들이 형성될 수 있다. Referring to FIG. 7, when the monocell matrix 105 passes through a membrane coating process according to an embodiment of the present invention, an unnecessary separator portion h7 is cut off to form one complete mono-cell 1112. , 13). As shown in FIG. 3, the monocell 11 may be divided into a first monocell 11, a second monocell 12, and a third monocell 13. . In other words, monocells of various shapes and sizes may be formed according to the design form of the secondary battery cell.
이하에서는 불필요한 분리막 부분을 제거하는 분리막 커팅 장치(separator cutting apparatus) 및 커팅 공정에 대하여 도면을 참조하여 설명한다. Hereinafter, a separator cutting apparatus and a cutting process for removing an unnecessary separator portion will be described with reference to the accompanying drawings.
도 8은 본 발명의 실시예에 따른 분리막 커팅 장치에서 이루어지는 분리막 커팅 공정을 보여주는 플로차트이다. 8 is a flowchart showing a membrane cutting process performed in the membrane cutting apparatus according to an embodiment of the present invention.
도 8을 참조하면, 상기 도 6에서 설명된 라미네이터에 의하여 제조되는 다수의 모노셀 모체(105)들은 카세트라고 정의되는 적재함에 차곡차곡 적재된다. 상기 모노셀 모체(105)들의 형상과 크기 별로 별도의 카세트에 독립적으로 적재된다. 따라서, 상기 분리막 커팅 장치로 이송되는 카세트의 개수는 복수 개일 수 있다. Referring to FIG. 8, a plurality of monocell matrixes 105 manufactured by the laminator described in FIG. 6 are loaded on a stacking box defined as a cassette. The monocell matrix 105 is loaded independently in a separate cassette for each shape and size. Therefore, the number of cassettes transferred to the separator cutting device may be plural.
상세히, 상기 모노셀 모체(105) 각각에 형성된 불필요한 분리막 부분(h7)을 제거하기 위해서는, 상기 분리막 커팅 장치로 이송된 카세트에 적재된 모노셀 모체가 픽업되는 단계(S31), 픽업된 모노셀 모체가 이송되면서 비전 카메라에 의하여 쵤영되는 단계(S32), 촬영된 이미지 정보를 이용하여 상기 모노셀 모체가 분리막 커팅을 위한 기준선에 얼라인되는 단계(S33), 얼라인 된 모노셀 모체의 불필요한 분리막 부분이 커팅되는 단계(S34), 커팅에 의하여 불필요한 분리막 부분이 커팅된 모노셀이 이송되면서 비전 카메라에 의하여 촬영되는 단계(S35), 촬영된 모노셀 이미지 정보를 기반으로 양품 또는 불량품이 구분되고, 불량 모노셀이 폐기되는 단계(S36), 및 양품으로 판정된 모노셀이 카세트에 적재되는 단계(S37)를 포함한다. 그리고, 양품의 모노셀이 적재된 카세트는 이차전지 셀 제조를 위한 셀적층 및 열압착 장치로 이송된다.In detail, in order to remove the unnecessary separator portion h7 formed in each of the monocell matrix 105, the monocell matrix loaded in the cassette transferred to the separator cutting device is picked up (S31). Step is taken by the vision camera while being transferred (S32), the monocell matrix is aligned to the reference line for the separator cutting using the photographed image information (S33), unnecessary separator portion of the aligned monocell matrix The cutting step (S34), the step of being photographed by the vision camera while transporting the monocell cut the unnecessary separator portion by the cutting (S35), good or bad goods are classified based on the photographed monocell image information, defective Step S36, in which the monocell is discarded, and step S37, in which the monocell determined to be good is loaded into the cassette. Then, the cassette in which the good monocell is loaded is transferred to a cell stacking and thermocompression apparatus for manufacturing a secondary battery cell.
이하에서는, 상기의 과정들이 수행되는 분리막 커팅 장치의 구성 및 동작에 대하여 도면을 참조하여 상세히 설명하도록 한다. Hereinafter, the configuration and operation of the separator cutting device in which the above processes are performed will be described in detail with reference to the accompanying drawings.
도 9는 본 발명의 실시예에 따른 분리막 커팅 장치의 외관 사시도이다. 9 is an external perspective view of a separator cutting device according to an embodiment of the present invention.
도 9를 참조하면, 본 발명의 실시예에 따른 분리막 커팅 장치(30)는, 라미네이션 단계를 거치면서 형성된 모노셀 모체을 픽업하여 이송하는 픽업부(C)와, 상기 픽업부(C)에서 이송되어 온 모노셀 모체를 촬영하여 커팅 위치에 정렬시키는 얼라인부(D)와, 상기 얼라인부(D)로부터 이송된 모노셀 모체의 분리막 부분을 절단하는 분리막 커팅부(E)와, 분리막이 커팅된 모노셀의 불량 여부를 검사하는 불량 검사부(F), 및 양품으로 판정된 모노셀을 적재하는 적재부(G)로 크게 구분될 수 있다. 9, the separator cutting device 30 according to an embodiment of the present invention, the pick-up unit (C) for picking up and transporting the monocell matrix formed during the lamination step, and is transferred from the pick-up unit (C) The alignment unit (D) for photographing the on-cell monolith and aligning the cutting position, the separator cutting unit (E) for cutting the separator portion of the monocell matrix transferred from the alignment unit (D), and the mono-cut membrane It can be largely divided into a failure inspection unit (F) for checking whether the cell is defective, and a loading unit (G) for loading the monocell determined as good quality.
이하에서는 상기에서 설명된 각 부에 대하여 도면을 참조하여 상세히 설명한다.Hereinafter, each part described above will be described in detail with reference to the accompanying drawings.
도 10은 본 발명의 실시예에 따른 분리막 커팅 장치를 구성하는 픽업부의 확대 사시도이다. 10 is an enlarged perspective view of a pickup unit constituting a separator cutting device according to an exemplary embodiment of the present invention.
도 10을 참조하면, 본 발명의 실시예에 따른 분리막 커팅 장치(30)의 픽업부(C)는, 라미네이션 단계를 거친 모노셀 모체들이 적재되어 있는 다수의 카세트(301)와, 상기 카세트(30)에 적재된 모노셀 모체를 낱장 단위로 픽업하는 픽업 유닛(31)과, 상기 픽업 유닛(31)에 의하여 픽업된 모노셀 모체를 흡착하여 얼라인부(D)로 이송시키는 이송 유닛(32)을 포함할 수 있다. Referring to FIG. 10, the pickup part C of the separator cutting device 30 according to an exemplary embodiment of the present invention may include a plurality of cassettes 301 loaded with monocell matrixes subjected to lamination, and the cassette 30. A pickup unit 31 for picking up the monocell matrix loaded in the sheet by sheet, and a transfer unit 32 for absorbing the monocell matrix picked up by the pickup unit 31 and transporting the monocell matrix to the alignment unit D. It may include.
상세히, 상기 카세트(301)는 제조되어야 할 모노셀의 종류의 개수에 따라 결정될 수 있다. 즉, 도 3에서 보이는 바와 같이, 하나의 이차전지 셀을 만들기 위하여 세가지 크기의 모노셀이 필요하다면 상기 카세트(301)는 세개가 준비될 수 있다. 따라서, 형태와 크기가 다른 모노셀의 종류가 몇 종류인지에 따라서 상기 카세트(301)의 개수가 정해질 수 있다. In detail, the cassette 301 may be determined according to the number of types of monocells to be manufactured. That is, as shown in FIG. 3, three cassettes 301 may be prepared if three sizes of monocells are needed to make one secondary battery cell. Therefore, the number of cassettes 301 may be determined according to the number of types of monocells having different shapes and sizes.
다른 방법으로, 여러 종류의 모노셀들 중 어느 하나의 모노셀이 다른 종류의 모노셀들보다 이차전지 제조 과정에서 상대적으로 더 높이 적층될 경우에는, 동일 종류의 모노셀을 적재하는 카세트의 개수가 복수 개가 준비될 수 있다. 이는, 적층 높이가 다른 형태 또는 크기를 가지는 모노셀들보다 상대적으로 높다는 것은, 하나의 전지셀을 제조할 때 상대적으로 많은 수의 모노셀이 사용될 것이 자명하다. 따라서 이러한 경우는, 동일한 종류의 모노셀을 적재하는 카세트의 수가 다수 개 준비되는 것이 유리하다. Alternatively, when one monocell of several kinds of monocells is stacked relatively higher in the secondary battery manufacturing process than the other kinds of monocells, the number of cassettes for loading the same kind of monocells is increased. Plural can be prepared. It is apparent that the stack height is relatively higher than that of monocells having different shapes or sizes, so that a relatively large number of monocells are used when manufacturing one battery cell. In this case, therefore, it is advantageous that a large number of cassettes carrying the same type of monocell are prepared.
또한, 상기 픽업 유닛(31)은, 상기 카세트(301)에 적재된 낱장의 모노셀 모체를 흡착하기 위한 픽업 바디(311)와, 상기 픽업 바디(311)의 상면과 하면에 각각 구비되는 하나 또는 다수의 흡착부(312)와, 상기 픽업 바디(311)를 정방향 및 역방향으로 180도 회전시키는 구동 모터(314), 및 상기 구동 모터(314)의 회전축과 상기 픽업 바디(311)의 측면 중심을 연결하는 회전축(313)을 포함할 수 있다. In addition, the pickup unit 31 may include a pickup body 311 for adsorbing a single monocell matrix loaded on the cassette 301 and one provided on the upper and lower surfaces of the pickup body 311, respectively. A plurality of adsorption parts 312, the drive motor 314 for rotating the pickup body 311 180 degrees in the forward and reverse directions, and the axis of rotation of the drive motor 314 and the side center of the pickup body 311 It may include a rotating shaft 313 to connect.
상세히, 상기 픽업 바디(311)와 상기 흡착부(312)를 픽업 모듈로 정의될 수 있다. 그리고, 상기 픽업 모듈은 상기 다수의 카세트(301)의 개수에 대응하는 개수로 제공되고, 상기 다수의 카세트(301) 각각의 직상방에 위치한다. In detail, the pickup body 311 and the suction unit 312 may be defined as a pickup module. The pickup module is provided in a number corresponding to the number of the cassettes 301 and is located directly above each of the cassettes 301.
또한, 상기 구동 모터(314)는 수직하게 세워진 안내 기둥(303)에 슬라이딩 이동 가능하게 장착되는 승강부(302)에 장착될 수 있다. 그리고, 상기 구동 모터(314)는 픽업 과정에서 상기 승강부(302)와 함께 상기 안내 기둥(303)을 따라 상하 방향으로 이동하게 된다. In addition, the driving motor 314 may be mounted to the lifting unit 302 which is slidably mounted to the guide pillar 303 that is erected vertically. In addition, the driving motor 314 moves along the guide pillar 303 along the lifting and lowering portion 302 in the up and down direction in the pickup process.
또한, 상기 다수의 픽업 모듈은 상기 회전축(313)에 의하여 한 몸으로 회전한다. 즉, 상기 회전축(313)이 상기 다수의 픽업 모듈, 구체적으로는 상기 다수의 픽업 바디(311)를 관통하여, 상기 다수의 픽업 모듈들이 한 몸으로 회전하도록 한다. In addition, the plurality of pickup modules rotate in one body by the rotation shaft (313). That is, the rotation shaft 313 passes through the plurality of pickup modules, specifically, the plurality of pickup bodies 311, so that the plurality of pickup modules rotate in one body.
또한, 상기 흡착부(312)는 상기 픽업 바디(311)의 상면과 하면에 한 개 또는 다수 개가 형성되어, 상기 카세트(301)에 적재된 모노셀 모체를 한 장씩 흡착한다. 상기 흡착부(312)가 한 개가 제공될 경우는, 상기 흡착부(312)는 상기 픽업 바디(311)의 상면과 하면 중앙에 배치될 수 있다. 그리고, 상기 흡착부(312)가 두 개가 제공될 경우는, 상기 픽업 바디(311)의 상면과 하면 중앙에서 좌우 방향 또는 전후 방향으로 일렬 배치될 수 있다. 그리고, 상기 흡착부(312)가 3개 이상 제공될 경우는, 상기 픽업 바디(311)의 상면과 하면에 삼각형, 사각형과 같이, 제공되는 흡착부의 개수에 대응하는 다각형 형태로 배치될 수 있을 것이다.In addition, one or more adsorption units 312 are formed on the upper and lower surfaces of the pickup body 311 to adsorb the monocell matrix loaded on the cassette 301 one by one. When one suction unit 312 is provided, the suction unit 312 may be disposed at the center of the upper and lower surfaces of the pickup body 311. In addition, when two adsorption parts 312 are provided, the adsorption part 312 may be arranged in a left-right direction or a front-rear direction in the center of the upper and lower surfaces of the pickup body 311. In addition, when three or more adsorption parts 312 are provided, the upper and lower surfaces of the pickup body 311 may be arranged in a polygonal shape corresponding to the number of adsorption parts provided, such as a triangle and a rectangle. .
또한, 상기 흡착부(312) 내부 또는 상기 픽업 바디(311)의 내부에는 상기 흡착부(312)를 상하 방향으로 진동시키는 진동 수단이 구비될 수 있다. 일례로서, 상기 흡착부(312)는, 내부에 스프링이 스파이럴 형태로 감기는 원통 형상의 벨로우즈일 수 있고, 상기 스프링을 고속으로 신장 및 수축시키는 진동 수단이 상기 픽업 바디(311) 내부에 구비될 수 있다. In addition, vibration means for vibrating the suction part 312 in the vertical direction may be provided in the suction part 312 or in the pickup body 311. As an example, the suction unit 312 may be a cylindrical bellows in which a spring is wound in a spiral form, and vibration means for extending and contracting the spring at high speed may be provided in the pickup body 311. Can be.
한편, 상기 이송 유닛(32)은, 이송 바디(321)와 상기 이송 바디(321)에 구비되는 흡착판(322)을 포함할 수 있다. 상기 이송 바디(321)는 안내 레일 또는 안내 기둥에 의하여 수평 방향 이동과 수직 방향 승강이 가능하다. Meanwhile, the transfer unit 32 may include a transfer body 321 and a suction plate 322 provided on the transfer body 321. The transfer body 321 may be moved horizontally and vertically by guide rails or guide pillars.
이러한 구조에 의하면, 먼저 상기 구동 모터(314)가 장착된 상기 승강부(302)가 하강하여 상기 픽업 바디(311)의 저면에 위치하는 상기 흡착부(312)가 상기 카세트(301)에 적재된 모노셀 모체들 중 맨 위의 모노셀 모체를 흡착하도록 한다. 그리고, 상기 흡착부(312)가 상기 모노셀 모체를 흡착한 상태에서 상기 진동 수단이 짧은 시간 동안 작동하여, 상기 모노셀 모체를 고속으로 털어주도록 한다. 그러면, 적재되어 있는 동안 서로 달라붙어 있던 두 장 이상의 모노셀 모체들이 분리되어, 한 번에 여러 장의 모노셀 모체가 흡착 및 이송되는 것을 방지할 수 있다. According to this structure, first, the lifting unit 302 on which the driving motor 314 is mounted is lowered so that the adsorption unit 312 positioned on the bottom surface of the pickup body 311 is loaded on the cassette 301. Adsorb the top monocell matrix among the monocell parents. In addition, the vibrating means operates for a short time in the state in which the adsorption unit 312 adsorbs the monocell matrix, so that the monocell matrix is shaken at high speed. Then, the two or more monocell matrixes that stuck to each other while being loaded can be separated, thereby preventing the adsorption and transport of several sheets of monocell matrix at once.
상기 진동 수단의 작동에 의하여 두 장 이상의 모노셀 모체들이 분리되고 한 장의 모노셀 모체만 상기 흡착부(312)에 흡착된 상태에서, 상기 구동 모터(314)가 동작하여, 상기 픽업 바디(311)가 시계 방향과 반시계 방향 중 어느 한 방향으로 180도 회전한다. 그러면, 상기 흡착된 모노셀 모체는 상기 픽업 바디(311)의 상면에 위치하고, 상면에 위치해 있던 흡착부(312)가 상기 카세트(301)를 향하게 된다. The driving motor 314 is operated in a state in which two or more monocell matrixes are separated by the operation of the vibration means and only one monocell matrix is adsorbed to the adsorption unit 312, so that the pickup body 311 is operated. Rotates 180 degrees in either the clockwise or counterclockwise direction. Then, the adsorbed monocell matrix is located on the upper surface of the pickup body 311, and the adsorption unit 312 positioned on the upper surface faces the cassette 301.
이 상태에서, 상기 이송 유닛(32)이 상기 모노셀 모체 쪽으로 하강하여, 상기 흡착판(322)이 상기 픽업 바디(311)의 상면에 놓인 모노셀 모체를 흡착하도록 한다. 그리고, 상기 흡착판(322)이 상기 모노셀 모체를 흡착한 뒤, 상기 이송 유닛(32)은 원위치로 상승한다. 그리고, 상기 이송 유닛(32)은 상기 모노셀 모체를 흡착한 상태에서 수평 방향으로 이동하여 상기 얼라인부(D)로 이동한다. In this state, the transfer unit 32 descends toward the monocell matrix, so that the adsorption plate 322 adsorbs the monocell matrix placed on the upper surface of the pickup body 311. Then, after the adsorption plate 322 adsorbs the monocell matrix, the transfer unit 32 is raised to its original position. In addition, the transfer unit 32 moves in the horizontal direction in the state of adsorbing the monocell matrix and moves to the alignment unit D. FIG.
한편, 상기 이송 유닛(32)이 원위치로 상승한 뒤 상기 얼라인부(D)로 이동하는 동안, 상기 승강부(302)는 상기 카세트(301) 쪽으로 하강한다. 그리고, 상면에 있다가 하면으로 회전한 상기 흡착부(312)가 모노셀 모체 한장을 흡착한다. 물론 흡착 후 진동 과정이 수행된다. 그리고, 상기 구동 모터(314)는, 직전의 모노셀 모체 흡착 과정에서 회전한 방향과 반대 방향으로 180도 회전하여, 흡착된 모노셀 모체가 상기 픽업 바디(311)의 상면에 위치하도록 할 수 있다. 이는, 상기 구동 모터(314)가 한 방향으로만 회전할 경우, 상기 회전축(313) 내부를 따라 연장되는 리드 와이어가 꼬이면서 파손될 수 있기 때문이다. 물론, 상기 리드 와이어의 꼬임 문제가 발생하지 않으면 상기 구동 모터(314)가 일방향으로만 회전하도록 하는 것도 가능하며, 구동 모터(314)가 일방향으로 180도씩 회전하는 것도 본 발명의 범위에 포함됨을 밝혀 둔다.On the other hand, the lifting unit 302 is lowered toward the cassette 301 while the transfer unit 32 is raised to its original position and then moved to the alignment unit D. And the adsorption part 312 which rotated to the lower surface in the upper surface adsorb | sucks a single monocell matrix. Of course, the vibration process is carried out after the adsorption. In addition, the driving motor 314 may rotate 180 degrees in a direction opposite to the direction rotated in the previous monocell matrix adsorption process, such that the adsorbed monocell matrix is positioned on the upper surface of the pickup body 311. . This is because, when the driving motor 314 rotates in only one direction, the lead wire extending along the inside of the rotation shaft 313 may be twisted and broken. Of course, it is also possible to cause the drive motor 314 to rotate in only one direction if the twisting problem of the lead wire does not occur, and it is found that the drive motor 314 rotates by 180 degrees in one direction within the scope of the present invention. Put it.
참고로, 이하에서 설명되는 이송 유닛들의 수평 방향 및 수직 방향 이동을 가능하게 하는 구동 수단이나 가이드 레일, 및 안내 기둥 구조에 대해서는 별도로 설명하지 않더라도, 상기 분리막 커팅 장치에 상기 이송 유닛들의 이송을 안내하는 수단이 구비되는 것을 전제로 하여 설명한다. For reference, the drive means or guide rails and the guide pillar structure for enabling horizontal and vertical movement of the transfer units described below, although not separately described, guide the transfer of the transfer units to the separator cutting device. It demonstrates on the assumption that a means is provided.
도 11은 본 발명의 실시예에 따른 분리막 커팅 장치를 구성하는 얼라인부와 분리막 커팅부의 확대 사시도이다. 11 is an enlarged perspective view of an alignment part and a separator cutting part constituting a separator cutting device according to an exemplary embodiment of the present invention.
도 11을 참조하면, 상기 모노셀 모체를 흡착한 상기 이송 유닛(32)은 상기 얼라인부(D)로 이송되고, 모노셀 모체의 분리막을 정확하게 잘라내기 위하여, 모노셀 모체를 커팅 위치에 정확하게 정렬되도록 하는 얼라인 과정이 수행된다.Referring to FIG. 11, the transfer unit 32 which adsorbs the monocell matrix is transferred to the alignment unit D, and in order to accurately cut the separation membrane of the monocell matrix, the monocell matrix is aligned precisely at the cutting position. An alignment process is performed to make it possible.
상기 모노셀 모체를 얼라인하기 위한 일례로, 상기 모노셀 모체의 직선부 가장자리 또는 상기 모노셀 모체의 탭(tab) 가장자리가 기준선에 정확하게 위치하도록 하는 방법을 들 수 있다. As an example for aligning the monocell matrix, a straight edge of the monocell matrix or a tab edge of the monocell matrix may be accurately positioned at a reference line.
상세히, 상기 얼라인부(D)는, 비전 카메라(33)와, 얼라인 스탠드(34)를 포함할 수 있다. In detail, the alignment unit D may include a vision camera 33 and an alignment stand 34.
또한, 상기 분리막 커팅부(E)는 커팅 장치(37)와, 커팅이 필요한 모노셀 모체를 흡착하여 상기 커팅 장치(37)로 인입시키는 공급 유닛(38)과, 분리막이 커팅된 모노셀을 받아서 상기 불량 검사부(F)로 이송시키는 이송 스탠드(35)를 포함할 수 있다. In addition, the separator cutting unit E receives a cutting device 37, a supply unit 38 for adsorbing a monocell matrix for cutting into the cutting device 37, and a monocell in which the separator is cut. It may include a transfer stand 35 for transferring to the failure inspection unit (F).
여기서, 상기 얼라인 스탠드(34)와 상기 이송 스탠드(35)는, 스탠드 무버(36)와 같은 이송 수단 위에 안착되어 한 몸으로 움직이는 구조가 가능하다. 다른 방법으로, 상기 얼라인 스탠드(34)와 상기 이송 스탠드(35)는 서로 독립적으로 움직이되 동시에 동일한 방향으로 이동하여, 한 몸으로 이동하는 것과 동일한 효과를 내도록 할 수도 있다. Here, the alignment stand 34 and the transfer stand 35 may be mounted on a transfer means such as the stand mover 36 to move in one body. Alternatively, the alignment stand 34 and the transfer stand 35 may move independently of each other but move in the same direction at the same time, thereby producing the same effect as moving in one body.
더욱 상세히, 상기 얼라인부(D)를 구성하는 상기 비전 카메라(33)는, 상기 픽업부(C)와 상기 얼라인 스탠드(34) 사이에 배치되어, 상기 픽업부(C)에서 이송되어 오는 모노셀의 이미지를 촬영한다. 그리고, 촬영된 이미지 정보를 기반으로 제어부(미도시)에서는 모노셀의 얼라인 정보를 추출한다. In more detail, the vision camera 33 constituting the alignment unit D is disposed between the pickup unit C and the alignment stand 34, and is transferred from the pickup unit C. Take a picture of the cell. The controller extracts alignment information of the monocell based on the captured image information.
다시 말하면, 촬영된 이미지 정보를 분석하여, 상기 픽업부(C)에서 상기 이송 바디(321)에 흡착된 모노셀 모체의 위치가 상기 커팅부(E)에 설정되어 있는 커팅 위치로부터 어느 정도 벗어나 있는지를 판단할 수 있다. In other words, by analyzing the captured image information, the position of the monocell matrix adsorbed to the transfer body 321 in the pickup portion (C) is how far from the cutting position set in the cutting portion (E) Can be determined.
상기 모노셀의 가장자리 또는 탭의 가장자리가 기준선에 정확하게 정렬되어야, 설계된 커팅 라인을 따라 분리막이 절단될 수 있다. 만일, 상기 모노셀 모체가 커팅을 위한 정위치에 정렬되지 못한 상태에서 커팅 장치로 인입될 경우, 커팅되어야 할 분리막 부분만 커팅되는 것이 아니라 전극부까지 커팅될 수도 있고, 설계된 형태와 다른 형태로 분리막이 커팅될 수 있다. The edge of the monocell or the edge of the tab must be exactly aligned with the reference line so that the separator can be cut along the designed cutting line. If the monocell matrix is introduced into the cutting device in a state in which it is not aligned in the cutting position, the monocell matrix may be cut not only to the separator portion to be cut but also to the electrode portion. This can be cut.
이러한 현상을 방지하기 위하여, 상기 비전 카메라(33)에서는 상기 이송 유닛(32)의 이송 바디(321) 저면에 흡착된 모노셀 모체의 이미지를 촬영하고, 촬영 이미지를 제어부로 전송한다. In order to prevent such a phenomenon, the vision camera 33 captures an image of the monocell matrix adsorbed on the bottom surface of the transfer body 321 of the transfer unit 32, and transmits the captured image to the controller.
한편, 상기 모노셀 모체의 촬영 이미지를 기반으로 제어부에서 정렬값이 산출되면, 상기 정렬 정보는 상기 얼라인 스탠드(34)로 이송되어, 상기 얼라인 스탠드(34)가 움직인다. 물론, 상기 이송 유닛(32)의 이송 바디(321)가 정렬 정보를 받아서 모노셀 모체를 정렬시킨 후 상기 얼라인 스탠드(34)에 모노셀을 내려놓도록 하는 것도 가능할 것이다. On the other hand, when the alignment value is calculated by the control unit based on the captured image of the monocell parent, the alignment information is transferred to the alignment stand 34, the alignment stand 34 is moved. Of course, the transfer body 321 of the transfer unit 32 may receive the alignment information to align the monocell matrix, and then place the monocell on the alignment stand 34.
상기 얼라인 스탠드(34)는, 상기 이송 유닛(32)에서 이송되어 온 모노셀 모체가 안착되는 얼라인 테이블(341)과, 상기 모노셀 모체를 기준선에 정렬하기 위하여 상기 얼라인 테이블(341)을 구동하는 얼라인 구동부(342)를 포함할 수 있다. 상기 얼라인 구동부(342)에 의하여, 상기 얼라인 테이블(341)은, 도시된 바와 같이, 수평면 상에서 x축 방향(상기 얼라인 스탠드(34)의 이동 방향과 동일한 방향) 및 상기 x축 방향과 직교하는 y축 방향으로 수평 이동 가능하며, 상기 수평면과 직교하는 수직축(z축으로 정의될 수 있음)을 중심으로 소정 각도(θ) 만큼 회전 가능하다. 즉, 상기 비전 카메라(33)에 의하여 촬영된 이미지를 기반으로 산출된 정렬값에 따라 상기 얼라인 테이블(341)은 x축,y축으로 수평 직선 이동 및 수직축을 중심으로 설정 각도만큼 회전할 수 있다. The alignment stand 34 includes an alignment table 341 on which a monocell matrix transferred from the transfer unit 32 is seated, and the alignment table 341 for aligning the monocell matrix with a reference line. It may include an alignment driver 342 for driving. By the alignment driver 342, the alignment table 341 is, as shown in the x-axis direction (the same direction as the movement direction of the alignment stand 34) and the x-axis direction on a horizontal plane It can be moved horizontally in the orthogonal y-axis direction and can be rotated by a predetermined angle (θ) about a vertical axis orthogonal to the horizontal plane (which can be defined as a z-axis). That is, according to the alignment value calculated based on the image photographed by the vision camera 33, the alignment table 341 may rotate the horizontal linear movement on the x-axis and the y-axis by a set angle around the vertical axis. have.
이와 같은 구성에 의하면, 상기 이송 유닛(32)이 상기 얼라인 스탠드(34)의 상측으로 이동하여 오면, 상기 얼라인 테이블(341)은 상기 얼라인 구동부(342) 작동에 의하여 조작된다. 그리고, 상기 얼라인 테이블(341)의 위치 정렬이 완료되면, 상기 이송 유닛(32)이 상기 모노셀 모체를 상기 얼라인 테이블(341) 위에 내려 놓은 후 상기 픽업부(C)로 복귀한다. 그리고, 상기 모노셀 모체가 상기 얼라인 테이블(341)에 놓이면, 상기 얼라인 테이블(341)은 정렬 동작 전의 상태로 복귀한다. 그러면, 상기 모노셀 모체가 정확한 커팅 위치에 정렬된 상태가 되고, 이 상태로 상기 모노셀 모체는 상기 분리막 커팅부(E)로 이송된다. According to this configuration, when the transfer unit 32 moves upward of the alignment stand 34, the alignment table 341 is operated by the alignment driver 342. When the alignment of the alignment table 341 is completed, the transfer unit 32 lowers the monocell parent on the alignment table 341 and returns to the pickup unit C. FIG. When the monocell parent is placed on the alignment table 341, the alignment table 341 returns to the state before the alignment operation. Then, the monocell matrix is aligned to the correct cutting position, and in this state, the monocell matrix is transferred to the separator cutting unit (E).
그리고, 상기 얼라인 스탠드(34)의 측방에 위치한 상기 이송 스탠드(35)에는 커팅이 완료된 모노셀이 놓여 있다. 이 상태에서, 상기 스탠드 무버(36)는 x축 방향으로 이송하여, 상기 얼라인 스탠드(34)가 상기 분리막 커팅부(E)로 이송되고, 상기 이송 스탠드(35)는 상기 불량 검사부(F)로 이송된다. In addition, a monocell having completed cutting is placed on the transfer stand 35 located on the side of the alignment stand 34. In this state, the stand mover 36 is transferred in the x-axis direction, so that the alignment stand 34 is transferred to the separator cutting unit E, and the transfer stand 35 is the defect inspection unit F. Is transferred to.
한편, 상기 분리막 커팅부(E)로 이송되어 온 얼라인 스탠드(34) 상에는 커팅을 위한 위치에 정확하게 정렬된 상기 모노셀이 놓여 있다. 상기 이송 스탠드(35)는 상기 얼라인 스탠드(34)와 동일한 개수로 제공될 수 있다. On the other hand, on the alignment stand 34 that has been transferred to the separator cutting unit E, the monocell is aligned precisely at the position for cutting. The transfer stand 35 may be provided in the same number as the alignment stand 34.
상기 분리막 커팅부(E)를 구성하는 상기 공급 유닛(38)은, 흡착판(382)과, 상기 흡착판(382)을 수평 및 수직 방향으로 이동시키는 이송 바디(381)를 포함한다. The supply unit 38 constituting the separator cut part E includes a suction plate 382 and a transfer body 381 for moving the suction plate 382 in the horizontal and vertical directions.
또한, 상기 커팅 장치(37)는 고정부(371)와 커팅부(372)를 포함할 수 있고, 상기 커팅부(372)가 하강하여 상기 고정부(371)와 접촉하면서 커팅 나이프가 모노셀의 불필요한 분리막을 절단하는 펀칭 머신을 포함할 수 있으나, 이에 제한되는 것은 아니다. 그리고, 상기 커팅 장치(37)에는 한 번에 다수의 모노셀 모체가 인입될 수 있어, 한 번에 여러 장의 모노셀 모체가 상기 커팅 장치(37)로 공급될 수 있다. In addition, the cutting device 37 may include a fixing part 371 and a cutting part 372, the cutting part 372 is lowered in contact with the fixing part 371, the cutting knife of the monocell It may include a punching machine for cutting the unnecessary separator, but is not limited thereto. In addition, a plurality of monocell mothers may be introduced into the cutting device 37 at a time, so that a plurality of monocell mothers may be supplied to the cutting device 37 at a time.
상세히, 상기 얼라인 스탠드(34)가 이송되어 온 상태에서, 공급 유닛(38)이 상기 얼라인 스탠드(34) 직상방으로 이동한다. 그리고, 상기 흡착판(382)이 하강하여 상기 얼라인 테이블(341)에 놓인 모노셀 모체를 흡착한다. 그리고, 상기 모노셀 모체를 흡착한 상태로 상기 공급 유닛이 상승 후 상기 커팅 장치(37) 쪽으로 수평 이동한다. 여기서, 상기 모노셀 모체가 상기 흡착판(382)에 의하여 흡착되고 상기 공급 유닛(38)이 상승 및 수평 이동하는 동안 상기 스탠드 무버(36)는 수평 이동하여 원위치로 복귀한다. 그러면, 상기 얼라인 스탠드(34)는 상기 얼라인부(D)로 복귀하고, 상기 이송 스탠드(35)가 상기 분리막 커팅부(E)로 복귀한다. In detail, in the state where the alignment stand 34 has been transferred, the supply unit 38 moves directly above the alignment stand 34. The adsorption plate 382 descends to adsorb the monocell matrix placed on the alignment table 341. In addition, the supply unit is horizontally moved toward the cutting device 37 after the supply unit is lifted in the state where the monocell matrix is adsorbed. Here, the stand mover 36 moves horizontally and returns to its original position while the monocell matrix is adsorbed by the suction plate 382 and the supply unit 38 moves up and horizontally. Then, the alignment stand 34 returns to the alignment unit D, and the transfer stand 35 returns to the separator cutting unit E. FIG.
한편, 상기 스탠드 무버(36)가 이동하는 동안, 상기 공급 유닛(38)은 상기 모노셀 모체를 상기 커팅 장치(37)로 공급되고, 커팅이 끝나면 다시 수평 및 수직 이동한다. 여기서, 상기 커팅 공정은 상기 모노셀이 상기 공급 유닛(38)의 흡착판(382)에 흡착된 상태로 이루어진다. On the other hand, while the stand mover 36 moves, the supply unit 38 supplies the monocell matrix to the cutting device 37, and moves horizontally and vertically again after cutting. Here, the cutting process is a state in which the monocell is adsorbed to the adsorption plate 382 of the supply unit 38.
그러나, 반드시 이에 제한되는 것은 아니며, 상기 커팅 장치(37)로 모노셀 모체가 공급되면 상기 공급 유닛(38)의 흡착판(382)으로부터 상기 모노셀 모체가 분리되도록 할 수도 있을 것이다. 그리고, 상기 공급 유닛(38)은 뒤로 약간 빠져 있다가, 커팅 공정이 완료되면 상기 공급 유닛(38)이 전진하여, 상기 커팅이 완료된 모노셀을 다시 흡착하여 상기 이송 스탠드(35) 쪽으로 이동할 수 있다. However, the present invention is not limited thereto, and when the monocell matrix is supplied to the cutting device 37, the monocell matrix may be separated from the adsorption plate 382 of the supply unit 38. Then, the supply unit 38 is slightly out of the back, and when the cutting process is completed, the supply unit 38 may be advanced, and again to suck the monocell is completed to move toward the transfer stand 35. .
상기 커팅 장치에 의하여 커팅되는 상기 분리막 부분은 직선이 아닌 곡선 또는 절곡된 선일 수 있다. The separator portion cut by the cutting device may be a curved line or a curved line rather than a straight line.
커팅 공정이 완료된 상기 모노셀은 상기 공급 유닛(38)에 의하여 상기 이송 스탠드(35) 상측으로 이송된 후 상기 이송 스탠드(35)에 안착된다. 이 상태에서, 상기 스탠드 무버(36)가 다시 이동하여, 커팅이 완료된 모노셀들을 상기 불량 검사부(F)로 보낸다.After the cutting process is completed, the monocell is transferred to the upper side of the transfer stand 35 by the supply unit 38 and then seated on the transfer stand 35. In this state, the stand mover 36 moves again to send the finished monocells to the defective inspection unit F.
도 12는 본 발명의 실시예에 따른 분리막 커팅 장치를 구성하는 불량 검사부의 확대 사시도이다.12 is an enlarged perspective view of a failure inspection unit constituting a separator cutting device according to an embodiment of the present invention.
도 12를 참조하면, 상기 불량 검사부(F)는 비전 카메라(39)와, 폐기함(41)을 포함할 수 있다. Referring to FIG. 12, the failure inspection unit F may include a vision camera 39 and a disposal box 41.
상세히, 상기 이송 스탠드(35)에 놓인 상태에서 불량 검사부(F)로 이송되는 모노셀은 상기 비전 카메라(39)에 의하여 촬영되어 불량 여부가 판단된다. 상기 비전 카메라(39)는, 상기 이송 스탠드(35)에 놓인 모노셀을 촬영하기 위하여, 상기 이송 스탠드(35)의 상면으로부터 상측으로 소정 거리 이격된 높이에 위치한다. In detail, the monocell transferred to the defective inspection unit F in the state of being placed on the transfer stand 35 is photographed by the vision camera 39 to determine whether the defect is defective. The vision camera 39 is located at a height spaced a predetermined distance from the upper surface of the transfer stand 35 in order to take a picture of the monocell placed on the transfer stand 35.
그리고, 상기 비전 카메라(39)에 의하여 촬영된 이미지 정보를 기초로 상기 모노셀의 분리막이 설계대로 정확하게 절단도었는지 여부가 판단된다. 따라서, 분리막 커팅 공정이 수행된 상기 모노셀들은 상기 비전 카메라(39)에 의하여 촬영 영역을 통과하면서 양품과 불량품으로 구분된다. In addition, it is determined whether the separator of the monocell is accurately cut as designed based on the image information photographed by the vision camera 39. Therefore, the monocells subjected to the separation membrane cutting process are classified into good and bad parts while passing through the photographing area by the vision camera 39.
한편, 상기 불량 검사부(F)와 상기 적재부(G) 사이에는 적재용 이송부(40)가 배치된다. 상기 적재용 이송부(40)는 상기 적재부(G)의 구성 요소로 정의될 수 있다. 상기 적재용 이송부(40)는 상기 불량 검사부(F)와 상기 적재부(G) 사이를 왕복 이동하면서 상기 불량 검사가 완료된 모노셀들을 이송시킨다. 그리고, 상기 적재용 이송부(40)는, 다른 이송 유닛과 마찬가지로, 이송 바디(401)와 흡착부(402)를 포함할 수 있다. On the other hand, between the defect inspection unit (F) and the stacking portion (G) is a stacking transfer portion 40 is disposed. The stacking transfer part 40 may be defined as a component of the stacking part G. The stack transfer unit 40 transfers the monocells in which the defect inspection is completed while reciprocating between the defect inspection unit F and the loading unit G. In addition, the stack transfer part 40 may include a transfer body 401 and an adsorption part 402, like other transfer units.
상세히, 상기 이송 스탠드(35)가 상기 불량 검사부(F)로 이동한 상태에서, 상기 적재용 이송부(40)가 상기 이송 스탠드(35)의 상측으로 이송되어 온다. 그리고, 상기 이송 바디(401)가 하강하여, 상기 흡착부(402)가 상기 이송 스탠드(35)에 놓인 모노셀을 흡착한다. In detail, in the state where the transfer stand 35 is moved to the failure inspection unit F, the loading transfer unit 40 is transferred to the upper side of the transfer stand 35. Then, the transfer body 401 is lowered, and the adsorption unit 402 adsorbs the monocell placed on the transfer stand 35.
상기 모노셀이 상기 흡착부(402)에 흡착되면, 상기 이송 바디(401)가 상승한 후 상기 적재부(G)로 이동한다. 상기 적재용 이송부(40)가 상기 적재부(G)로 이송되는 과정에서, 상기 폐기함(41)의 상부 공간을 지나간다. 그리고, 상기 적재용 이송부(40)를 구성하는 다수의 흡착부(40)들 중 불량으로 판정된 모노셀을 흡착한 흡착부(402)는, 상기 폐기함(41)의 직상방을 지나는 순간 흡착력을 해제한다. 그러면, 불량 모노셀은 상기 폐기함(41)으로 낙하하고, 양품으로 판정된 모노셀들만 상기 적재부(G)로 이송된다. When the monocell is adsorbed by the adsorption part 402, the transfer body 401 is moved up to the loading part G. In the process of transferring the stacking transfer unit 40 to the stacking unit G, it passes through the upper space of the waste bin 41. In addition, the adsorption part 402 which adsorbs the monocell determined as defective among the plurality of adsorption parts 40 constituting the loading transfer part 40 has an instantaneous adsorption force when it passes directly above the waste bin 41. Release it. Then, the defective monocell falls into the waste bin 41, and only the monocells determined as good quality are transferred to the stacking unit G.
도 13은 본 발명의 실시예에 따른 분리막 커팅 장치를 구성하는 적재부의 확대 사시도이다. 13 is an enlarged perspective view of a loading part constituting a separator cutting device according to an embodiment of the present invention.
도 13을 참조하면, 본 발명의 실시예에 따른 분리막 커팅 장치를 구성하는 적재부(G)는, 양품의 모노셀들이 적재되는 하나 또는 다수의 카세트(42)와, 상기 적재용 이송부(40)와, 상기 적재용 이송부(40)에 의하여 이송되어 온 양품 모노셀을 넘겨 받아 상기 카세트(42)에 적재하는 적재 유닛(43)을 포함할 수 있다. Referring to FIG. 13, the stacking unit G constituting the separator cutting device according to an embodiment of the present invention includes one or more cassettes 42 on which mono cells of good quality are stacked, and the stacking transfer unit 40. And, it may include a loading unit 43 for receiving the good quality monocell transferred by the stacking transfer unit 40 to load in the cassette 42.
상세히, 상기 적재 유닛(43)은, 정역회전 가능한 구동 모터(431)와, 상기 구동 모터(431)에 의하여 회전하는 회전판(432)과, 상기 회전판(432)의 양면에 구비되는 흡착부(433)를 포함할 수 있다. In detail, the loading unit 43 includes a drive motor 431 capable of reverse rotation, a rotating plate 432 rotated by the driving motor 431, and an adsorption part 433 provided on both surfaces of the rotating plate 432. ) May be included.
본 실시예에서는, 다수의 적재 유닛(43)이 구동 모터를 각각 구비하여 서로 독립적으로 구동하는 것으로 제시되어 있으나, 이에 제한되지 않고, 상기 적재 유닛(43)은 상기 픽업부(C)의 픽업 유닛(31)과 동일한 구성을 이룰 수도 있을 것이다. 그리고, 상기 적재 유닛(43)은 상기 픽업 유닛(31)과 동일한 방식으로 동작할 수 있다. In the present embodiment, a plurality of loading units 43 are provided with driving motors to drive independently of each other, but the present invention is not limited thereto, and the loading unit 43 is a pickup unit of the pick-up unit C. The same configuration as in (31) may be achieved. In addition, the loading unit 43 may operate in the same manner as the pickup unit 31.
다시 말하면, 상기 적재용 이송부(40)가 하강하여 상기 흡착부(402)에 흡착된 모노셀의 저면이 상기 적재 유닛(43)의 회전판(432) 상면에 형성된 상기 흡착부(433)에 접촉하도록 한다. 이 상태에서 상기 흡착부(402)의 흡착력이 해제됨과 동시에 상기 적재 유닛(43)의 흡착부(433)에 흡착력이 작용하도록 한다. 그리고, 상기 적재용 이송부(40)는 상승 및 수평 이동하여 상기 불량 검사부(F)로 되돌아간다. In other words, the loading transfer part 40 is lowered so that the bottom surface of the monocell adsorbed by the adsorption part 402 contacts the adsorption part 433 formed on the upper surface of the rotating plate 432 of the loading unit 43. do. In this state, the adsorption force of the adsorption part 402 is released and the adsorption force acts on the adsorption part 433 of the loading unit 43. Then, the loading transfer portion 40 is raised and horizontally moved back to the failure inspection unit (F).
한편, 상기 모노셀이 상기 흡착부(433)에 흡착된 상태에서, 상기 구동 모터(431)가 구동하여 상기 회전판(432)이 180도 회전하도록 하여, 상기 모노셀이 상기 카세트(42)를 향하도록 한다. 그리고, 상기 적재 유닛(43)이 하강하고, 상기 흡착부(433)의 흡착력이 해제되도록 하여, 상기 모노셀이 상기 카세트(42)에 적재되도록 한다. On the other hand, in the state where the monocell is adsorbed to the adsorption unit 433, the drive motor 431 is driven to rotate the rotating plate 432 180 degrees, the monocell is directed toward the cassette 42 Do it. Then, the loading unit 43 is lowered, so that the adsorption force of the adsorption portion 433 is released, so that the monocell is loaded into the cassette 42.
그리고, 상기 카세트(42)에 적재된 모노셀들, 즉 분리막이 커팅된 양품의 모노셀들은 셀적층 및 열압착 공정을 위한 장치로 옮겨진다. Then, the monocells loaded in the cassette 42, that is, the monocells of the good product in which the separator is cut, are transferred to an apparatus for cell stacking and thermocompression processes.
도 14는 본 발명의 실시예에 따른 셀적층 및 열압착 장치의 사시도이다.14 is a perspective view of a cell lamination and thermocompression bonding apparatus according to an embodiment of the present invention.
도 14를 참조하면, 상기 분리막 커팅 장치(30)에서 전극부 가장자리의 분리막 부분이 커팅된 모노셀들은 상기 셀적층 및 열압착 장치(50)에 구비되는 다수의 작업부를 통과하면서 적층되고, 적층 후 열압착되어 이차전지 셀 제품으로 완성된다. Referring to FIG. 14, the monocells in which the separator part of the edge of the electrode part is cut in the separator cutting device 30 are laminated while passing through a plurality of working parts provided in the cell stacking and thermocompression bonding apparatus 50, and after lamination. Thermo-compression is completed as a secondary battery cell product.
상세히, 상기 셀적층 및 열압착 장치(50)는, 적층부(H1 ~ H4)와, 열압착부(J)와, 검사부(K), 및 적재부(L)로 이루어진다. 상기 적층부는 적층되는 모노셀의 형상이나 크기에 따라 하나 또는 다수 개가 설치될 수 있다. 본 실시예에서는, 상기 적층부가 제 1 내지 제 4 적층부(H1~H4)로 이루어지는 것으로 도시된다. In detail, the cell lamination and thermocompression bonding apparatus 50 includes lamination portions H1 to H4, a thermocompression bonding portion J, an inspection portion K, and a loading portion L. One or more laminates may be installed depending on the shape or size of the monocells to be stacked. In this embodiment, the lamination part is shown as consisting of the first to fourth lamination parts H1 to H4.
만일, 도 2에 도시된 형태의 이차전지셀을 제조하기 위해서는, 3 종류의 모노셀이 순차적으로 적층되어야 하므로, 3 개의 적층부가 연속 배치될 수 있다. 다시 말하면, 크기가 가장 크고 적층 높이가 가장 높은 상기 제 3 모노셀(13)은 상기 제 1 적층부(H1)에서 적층되고, 중간 크기의 제 2 모노셀(12)은 상기 제 2 적층부(H2)에서 적층되며, 최상측의 상기 제 1 모노셀(11)은 상기 제 2 적층부(H3)에서 적층될 수 있다. 그리고, 적층이 완료된 모노셀은 열압착부(J)로 이송된다. If, in order to manufacture a secondary battery cell of the type shown in Figure 2, since three kinds of monocells should be stacked in sequence, three stacking parts may be continuously arranged. In other words, the third monocell 13 having the largest size and the highest stacking height is stacked in the first stacking portion H1, and the second monocell 12 having a medium size is stacked in the second stacking portion ( The first monocell 11 stacked on the uppermost side may be stacked on the second stacked portion H3. And, the monocell is completed is transferred to the thermocompression unit (J).
그리고, 각각의 적층부에는 동일한 종류의 모노셀이 적재된 다수의 카세트가 배치될 수 있으나, 반드시 이에 제한되는 것은 아니다. 그리고, 각 적층부의 구성은 적층부의 종류에 관계없이 동일하고, 작업 공정도 동일하므로, 상기 다수의 적층부들 중 하나만 예로 들어 설명하도록 한다. In addition, a plurality of cassettes loaded with the same type of monocell may be disposed in each stacking portion, but is not necessarily limited thereto. In addition, since the configuration of each laminate is the same regardless of the type of the laminate and the working process is the same, only one of the plurality of laminates will be described as an example.
도 15는 본 발명의 실시예에 따른 셀적층 및 열압착부에서 이루어지는 적층 공정을 순서대로 보여주는 플로차트이다.FIG. 15 is a flowchart sequentially illustrating a lamination process performed in a cell stack and a thermocompression unit according to an exemplary embodiment of the present invention. FIG.
도 15를 참조하면, 본 발명의 실시예에 따른 셀적층 및 열압착부에서 이루어지는 적층 공정(또는 과정)은, 상기 분리막 커팅 장치(30)에서 이동되어 온 다수의 카세트에 적재된 모노셀이 한 장씩 픽업되는 단계(S41)와, 픽업된 모노셀의 이미지가 비전 카메라에 의하여 쵤영되는 단계(S42)와, 촬영된 모노셀의 이미지 정보를 기반으로 모노셀이 얼라인되는 단계(S43), 얼라인 된 모노셀이 적층되는 단계(S44) 및 적층된 모노셀 결합체가 열압착 영역으로 이송되는 단계(S45)를 포함할 수 있다. Referring to FIG. 15, a lamination process (or process) performed in a cell stack and a thermocompression unit according to an exemplary embodiment of the present invention may include a monocell loaded in a plurality of cassettes moved by the separator cutting device 30. The step S41 of picking up the pictures, the step S42 of taking images of the picked up monocells by the vision camera, and the step of aligning the monocells based on the image information of the photographed monocells (S43) The stacked monocells may be stacked (S44) and the stacked monocell assemblies may be transferred to a thermocompression bonding region (S45).
이하에서는, 상기 단계들(S41 ~ S45)의 수행 과정에 대하여 도면을 참조하여 상세히 설명한다. Hereinafter, a process of performing the steps S41 to S45 will be described in detail with reference to the accompanying drawings.
도 16 내지 도 18은 본 발명의 실시예에 따른 모노셀 적층 과정이 수행되는 셀적층 및 열압착 장치의 구성을 보여주는 도면이다. 16 to 18 are views illustrating the configuration of a cell stacking and thermocompression apparatus in which a monocell stacking process is performed according to an embodiment of the present invention.
도 16을 참조하면, 분리막이 커팅된 모노셀들이 적재된 카세트(501)는, 픽업 유닛(51)에 의하여 한 장씩 픽업되고, 픽업된 모노셀은 이송 유닛(52)에 흡착된 후 얼라인 스탠드로 이송된다.Referring to FIG. 16, the cassettes 501 loaded with the monocells in which the separators are cut are picked up one by one by the pickup unit 51, and the picked monocells are absorbed by the transfer unit 52 and then aligned. Is transferred to.
상세히, 상기 픽업 유닛(51)은, 픽업 바디(511)와, 회전축(513)과, 회전축에 연결되는 구동 모터(514)와, 상기 픽업 바디(511)의 상하면에 각각 구비된느 다수의 흡착부(512)를 포함할 수 있다. 그리고, 상기 픽업 유닛(51)은 상기 분리막 커팅 장치(30)의 픽업부(C)에 구비되는 픽업 유닛(31)과 그 구성 및 기능이 동일하다. 즉, 픽업 바디(511)가 구동모터(514)에 의하여 회전축(513)을 중심으로 정방향 및 역방향으로 180도 회전하여, 상기 카세트(501)에 적재된 모노셀을 상기 이송 유닛(52)으로 넘겨주는 동작이, 상기 픽업부(C)에 구비된 픽업 유닛(31)과 이송 유닛(32)의 기능과 동일하다고 할 수 있다. In detail, the pickup unit 51 includes a pickup body 511, a rotation shaft 513, a drive motor 514 connected to the rotation shaft, and a plurality of suctions provided on upper and lower surfaces of the pickup body 511, respectively. It may include a part 512. The pickup unit 51 has the same configuration and function as the pickup unit 31 provided in the pickup unit C of the separator cutting device 30. That is, the pickup body 511 is rotated 180 degrees in the forward and reverse directions about the rotation shaft 513 by the drive motor 514, and the monocell loaded in the cassette 501 is transferred to the transfer unit 52. The giving operation can be said to be the same as the function of the pickup unit 31 and the transfer unit 32 provided in the pickup portion (C).
비록, 구체적인 형상과 크기는 다를 수 있으나 작동 메카니즘과 기능에 있어서는 서로 동일하다고 할 수 있다. 물론, 상기 픽업 유닛(51)이 모노셀을 흡착한 상태에서 진동하여 여러장이 함께 픽업되는 것을 방지하는 동작도 수행한다.Although specific shapes and sizes may be different, they may be said to be the same in terms of operating mechanisms and functions. Of course, the pick-up unit 51 also vibrates in the state in which the monocell is adsorbed to prevent the pick-up of several sheets together.
한편, 상기 이송 유닛(52)은, 이송 바디(522)와 흡착판(521)을 포함할 수 있다. 상기 픽업 유닛(51)으로부터 모노셀을 넘겨받은 상기 이송 유닛(52)은 적층을 위한 다음 영역으로 이동하며, 이동 과정에서 비전 카메라(53)의 촬영 영역을 통과한다. Meanwhile, the transfer unit 52 may include a transfer body 522 and a suction plate 521. The transfer unit 52, which has received the monocell from the pickup unit 51, moves to the next area for lamination, and passes through the photographing area of the vision camera 53 in the moving process.
상기 이송 유닛(52)에 흡착된 모노셀은 상기 비전 카메라(53)를 통과하면서 촬영되고, 촬영된 모노셀의 이미지 정보에 근거하여 모노셀의 얼라인 정보(또는 얼라인 좌표)가 산출된다. 그리고, 상기 이송 유닛(52)은 비전 카메라(53)를 통과한 후 얼라인 스탠드(54)의 상측 영역까지 이송된다. The monocell absorbed by the transfer unit 52 is photographed while passing through the vision camera 53, and the alignment information (or alignment coordinates) of the monocell is calculated based on the image information of the photographed monocell. Then, the transfer unit 52 is transferred to the upper region of the alignment stand 54 after passing through the vision camera 53.
상세히, 상기 얼라인 스탠드(54)는, 얼라인 테이블(541)과 상기 얼라인 테이블(541)을 구동하는 얼라인 구동부(542)를 포함할 수 있다. 그리고, 상기 얼라인 스탠드(54)는 상기 분리막 커팅 장치(30)를 구성하는 상기 얼라인 스탠드(34)와 그 구성 및 기능이 동일하므로, 이에 대한 중복 설명은 생략한다. In detail, the alignment stand 54 may include an alignment table 541 and an alignment driver 542 for driving the alignment table 541. In addition, since the configuration stand and the function of the alignment stand 54 are identical to those of the alignment stand 34 constituting the separator cutting device 30, redundant description thereof will be omitted.
한편, 상기 얼라인 정보에 기초하여 상기 얼라인 테이블(541)이 x,y축으로 이동하거나 수직축(z축)을 중심으로 회전한 뒤, 상기 이송 유닛(52)은 상기 얼라인 테이블(541) 상에 모노셀을 내려 놓는다. 그리고, 상기 모노셀이 상기 얼라인 테이블(541)에 안착되면 상기 상기 얼라인 테이블(541)은 얼라인 동작 이전의 상태로 복귀한다. 그리고, 상기 이송 유닛(52)은 상기 픽업 유닛(51)이 있는 원래 위치로 되돌아가고, 이후 또다른 이송 유닛(55)이 상기 얼라인 테이블(541) 쪽으로 이송되어 온다. On the other hand, after the alignment table 541 moves on the x, y axis or rotates about the vertical axis (z axis) based on the alignment information, the transfer unit 52 is the alignment table 541 Place the monocell on the top. When the monocell is seated on the alignment table 541, the alignment table 541 returns to the state before the alignment operation. Then, the transfer unit 52 returns to the original position where the pickup unit 51 is located, and then another transfer unit 55 is transferred toward the alignment table 541.
여기서 이루어지는 얼라인 과정은, 모노셀의 분리막을 정확하게 커팅하기 위한 목적이 아니라, 다수의 모노셀을 정확한 위치에 적층하기 위한 목적으로 수행되는 것임을 밝혀둔다. It is noted that the alignment process performed here is performed not for the purpose of precisely cutting the separator of the monocell, but for the purpose of stacking the plurality of monocells in the correct position.
도 17 및 도 18을 참조하면, 상기 얼라인 테이블(541)에 놓인 모노셀(11)은 또다른 이송 유닛(55)에 의하여 셀지그(cell jig)(58)로 이송된다.17 and 18, the monocell 11 placed on the alignment table 541 is transferred to the cell jig 58 by another transfer unit 55.
상세히, 상기 이송 유닛(55)은, 이전에 소개된 이송 유닛들과 마찬가지로 이송 바디(552)와 흡착판(551)(또는 흡착부)으로 이루어질 수 있다. 그리고, 상기 얼라인 위치로 정렬된 상기 모노셀은 상기 이송 유닛(55)에 흡착되어 도 18에 도시되는 상면이 평평한 상기 셀지그(58)로 이송된다. 그리고, 상기 셀지그(58)의 상면에는 상기 로어 암(601)을 수용하기 위한 로어암 수용홈(581)이 형성된다. In detail, the transfer unit 55 may be composed of a transfer body 552 and an adsorption plate 551 (or an adsorption unit) similarly to the transfer units introduced previously. The monocells aligned in the alignment position are absorbed by the transfer unit 55 and transferred to the cell jig 58 having a flat top surface shown in FIG. 18. A lower arm receiving groove 581 is formed on the upper surface of the cell jig 58 to accommodate the lower arm 601.
그리고, 상기 셀지그(58)에는 다수의 모노셀들이 적층되어 있고, 적층된 모노셀 결합체들의 상면에 상기 이송 유닛(55)에 의하여 이송되어 온 새로운 모노셀이 적층된다. In addition, a plurality of monocells are stacked on the cell jig 58, and new monocells transferred by the transfer unit 55 are stacked on the stacked monocell combinations.
그리고, 상기 새로운 모노셀이 적층되면, 그리퍼(56)라고 하는 구조에 의하여 상기 모노셀의 최상면이 눌러져서, 모노셀의 흔들림이나 어긋남이 방지된다. 그리고, 상기 그리퍼(56)가 상기 모노셀 적층체의 최상면을 누른 상태에서 상기 이송 유닛(55)은 흡착력을 해제한 뒤 상기 얼라인 스탠드(541) 쪽으로 되돌아간다. When the new monocells are stacked, the top surface of the monocells is pushed by the gripper 56 to prevent the monocells from shaking or shifting. Then, while the gripper 56 presses the top surface of the monocell stack, the transfer unit 55 releases the suction force and then returns to the alignment stand 541.
더욱 상세히, 모노셀이 상기 이송 유닛(55)에 의하여 상기 셀지그(58) 쪽으로 이송되어 올 때까지, 상기 그리퍼(56)가 상기 셀지그(58)에 적층된 모노셀 적층체의 상면을 누르고 있는 상태를 유지한다. 그리고, 상기 이송 유닛(55)이 하강하여 상기 모노셀을 상기 모노셀 적층체의 최상면에 내려놓으면, 상기 그리퍼(56)는 상기 모노셀 적층체의 외측으로 수평 이동하여, 상기 모노셀 적층체로부터 벗어난다. 그리고, 상측으로 승강한 후 다시 상기 모노셀 적층체 쪽으로 수평 이동하여, 새로이 적층된 모노셀의 상면을 누른다. 그 이후에 상기 이송 유닛(55)의 흡착력이 해제됨과 동시에 상기 이송 유닛(55)이 상승한다. In more detail, the gripper 56 is pressed against the upper surface of the monocell stack laminated on the cell jig 58 until the monocell is transferred to the cell jig 58 by the transfer unit 55. Stays in place. Then, when the transfer unit 55 is lowered and the monocell is placed on the uppermost surface of the monocell stack, the gripper 56 moves horizontally outward of the monocell stack, and the monocell stack is removed from the monocell stack. Escape Then, ascending and moving upwards, the horizontal direction is again moved toward the monocell stack, and the upper surface of the newly stacked monocell is pressed. After that, the suction force of the transfer unit 55 is released and at the same time the transfer unit 55 rises.
그리고, 상기 그리퍼(56)는, 한 쌍의 로봇 팔 형태로 이루어질 수 있고, 서로 멀어지는 방향으로 수평이동하여 벌어졌다가, 모노셀 한장의 높이만큼 상승한 후 서로 가까워지는 방향으로 수평 이동한다. 그리고, 그리퍼(56)는 하강하여 상기 모노셀 적층체의 상면을 누른다. 이와 같은 상기 그리퍼(56)의 승하강 및 수평 이동 동작은 한 장의 모노셀이 이송되어 올 때마다 반복적으로 수행된다. The gripper 56 may be formed in the form of a pair of robotic arms, and the horizontal gripper 56 may move horizontally in a direction away from each other, and then move horizontally in a direction closer to each other after ascending by the height of one monocell. Then, the gripper 56 is lowered to press the upper surface of the monocell stack. The lifting and lowering movement of the gripper 56 is repeatedly performed whenever a single monocell is transferred.
그리고, 해당 적층부에서 설정 개수의 모노셀이 적층되어, 설정 높이만큼 모노셀이 적층되면, 상기 모노셀 적층체는 다음 단계의 적층부로 이송되거나 열압착부로 이송된다. In addition, when a predetermined number of monocells are stacked in the stacking unit and the monocells are stacked by a set height, the monocell stack is transferred to the stacking unit of the next step or the thermocompression unit.
모노셀 적층체의 이동시 적층된 모노셀들이 무너지는 것을 방지하기 위하여 클램프(57)와 같은 부재가 상기 모노셀 적층체를 가압한 상태로 이송된다. 다시 말하면, 상기 셀지그(58)의 가장자리에는 클램프(57)가 구비된다. 상기 클램프(57)는 상기 셀지그(58)의 상면으로부터 상하 방향으로 이동 가능하게 장착되거나, 회전 가능하게 장착된다. In order to prevent the stacked monocells from collapsing during the movement of the monocell stack, a member such as a clamp 57 is conveyed while pressing the monocell stack. In other words, the clamp 57 is provided at the edge of the cell jig 58. The clamp 57 is mounted to be movable in the vertical direction from the upper surface of the cell jig 58, or is rotatably mounted.
해당 적층부에서 모노셀의 적층이 완료되면, 상기 클램프(57)가 동작하여 상기 모노셀 적층체의 상면을 가압한다. 이 상태에서 상기 그리퍼(56)는 상기 모노셀 적층체의 상면으로부터 상승 한 뒤 모노셀 적층체의 외측으로 수평 이동한다. 그리고, 상기 클래프(57)가 모노셀 적층체를 누르고 있는 상태에서 셀지그(58)와 클램프(57)가 한 몸으로 이동한다. When the stacking of the monocell is completed in the stacking portion, the clamp 57 is operated to press the upper surface of the monocell stack. In this state, the gripper 56 ascends from the upper surface of the monocell stack and then moves horizontally outward of the monocell stack. Then, the cell jig 58 and the clamp 57 move in one body while the clap 57 is pushing the monocell stack.
이하에서는 적층이 완료된 모노셀 적층체를 열압착하는 열압착부에 대하여 도면을 참조하여 상세히 설명한다. Hereinafter, the thermocompression unit for thermocompression bonding the monocell laminate having been laminated will be described in detail with reference to the accompanying drawings.
도 19는 본 발명의 실시예에 따른 셀적층 및 열압착 장치에서 수행되는 열압착 공정을 순서대로 보여주는 플로차트이다. 19 is a flowchart showing in sequence the thermocompression process performed in the cell stacking and thermocompression apparatus according to the embodiment of the present invention.
도 19를 참조하면, 본 발명의 실시예에 따른 이차전지 제조를 위한 열압착 공정은, 적층부에서 이송되어 온 모노셀 적층체의 프리프레스(prepress) 단계(S51)와, 프리프레스 단계를 거친 모노셀 적층체의 메인 프레스(main press) 단계(S52)와, 메인 프레스 단계를 거친 모노셀 적층체의 파이널 프레스(final press) 단계(S53)와, 압착 단계를 거치면서 완성된 이차전지 셀을 비전 카메라로 촬영하는 단계(S54)와, 비전카메라 촬영 단계를 거친 이차전지 셀의 두께 측정 단계(S55)와, 두께 측정 단계를 거친 이차전지 셀의 쇼트 측정 단계(S56), 및 쇼트 측정 단계를 거친 이차전지 셀 중 불량품은 폐기하고 양품만 적재하는 단계(S57)를 포함할 수 있다. Referring to FIG. 19, the thermocompression process for manufacturing a secondary battery according to an embodiment of the present invention includes a prepress step (S51) and a prepress step of a monocell laminate transferred from a stacking unit. After completing the main press step (S52) of the monocell stack, the final press step (S53) of the monocell stack through the main press step, and the pressing step, Shooting with a vision camera (S54), the thickness measurement step (S55) of the secondary battery cell has been subjected to the vision camera shooting step, the short measurement step (S56), and the short measurement step of the secondary battery cell has been subjected to the thickness measurement step The defective part of the rough secondary battery cell may include the step (S57) of discarding only the good product.
이하에서는 상기 단계들(S51 ~ S57)에 대해서 도면을 참조하여 상세히 설명한다.Hereinafter, the steps S51 to S57 will be described in detail with reference to the accompanying drawings.
도 20은 본 발명의 실시예에 따른 셀적층 장치 및 열압착 장치를 구성하는 프리 프레스부와 메인 프레스부를 보여주는 확대 사시도이다.20 is an enlarged perspective view illustrating a prepress unit and a main press unit constituting the cell stacking apparatus and the thermocompression bonding apparatus according to the embodiment of the present invention.
도 20을 참조하면, 상기 적층 단계를 통과한 모노셀 적층체들은 상기 셀지그(58)에 놓인 상태로 상기 프리 프레스부(J1)로 이송된다. Referring to FIG. 20, the monocell stacks having passed through the stacking step are transferred to the prepress unit J1 while being placed on the cell jig 58.
상세히, 상기 프리 프레스부(J1)와 메인 프레스부(J2)를 구성하는 프레스 장치(59)는 동일하고, 압착 공정에서 가해지는 열의 온도와 압력의 크기만 다를 뿐이다. 따라서, 상기 프리 프레스부(J1)를 구성하는 프레스 장치(59)에 대해서만 대표로 설명하도록 한다. In detail, the press apparatus 59 which comprises the said prepress part J1 and the main press part J2 is the same, and only the magnitude | size of the heat temperature and pressure applied in a crimping process differ. Therefore, only the press apparatus 59 which comprises the said prepress part J1 is demonstrated as a representative.
상기 프리 프레스부(J1)에서는 상기 모노셀 적층체에 열과 약한 공압으로 모노셀 적층체를 압착하고, 상기 메인 프레스부(J2)에서는 약하게 압착된 모노셀 적층체를 열과 높은 유압으로 재차 가압한다. In the prepress section J1, the monocell stack is pressed against the monocell stack with weak air and pneumatic pressure, and in the main press section J2, the weakly pressed monocell stack is pressurized again with heat and high hydraulic pressure.
도 21은 프레스 장치 내부로 모노셀 적층체를 투입하는 장치를 보여주는 확대 사시도이다.21 is an enlarged perspective view showing a device for introducing a monocell stack into a press device.
도 21을 참조하면, 상기 프레스 장치(59)의 맞은 편에는 모노셀 적층체(10a)를 집어 올려서 상기 프레스 장치(59) 내부로 안내하는 홀딩 클램프(60)가 배치된다. Referring to FIG. 21, a holding clamp 60 is disposed on the opposite side of the press device 59 to lift the monocell stack 10a and guide the inside of the press device 59.
상세히, 상기 모노셀 적층체는, 상기 셀지그(58) 상에서 상기 클램프(57)에 의하여 눌러진 상태로 상기 프레스 장치가 있는 프레스 영역으로 이송되어 오면, 홀딩 클램프(60)에 의하여 파지된다. In detail, the monocell laminate is gripped by the holding clamp 60 when it is transferred to the press area where the press device is located while being pressed by the clamp 57 on the cell jig 58.
상기 홀딩 클램프(60)는 상하 방향 이동 및 전후 방향 이동이 가능한 로봇 암 구조로 이루어질 수 있다. 상세히, 상기 홀딩 클램프(60)는, 이송 바디(603)와, 상기 이송 바디(603)의 전면 좌측과 우측에서 상하 방향으로 연장되는 한 쌍의 암 레일(arm rail)(604)과, 상기 한 쌍의 암 레일(604)에 각각 제공되는 한 쌍의 어퍼 암(602)과, 상기 한 쌍의 어퍼 암(602)의 하측에서 상기 한 쌍의 암 레일(604)에 장착되는 한 쌍의 로어 암(601)을 포함할 수 있다. The holding clamp 60 may be formed of a robot arm structure capable of vertical movement and forward and rearward movement. In detail, the holding clamp 60 includes a transfer body 603, a pair of arm rails 604 extending upward and downward from the front left and right sides of the transfer body 603, and A pair of upper arms 602 respectively provided on the pair of arm rails 604, and a pair of lower arms mounted to the pair of arm rails 604 below the pair of upper arms 602. 601 may be included.
또한, 상기 로어 암(60)은 상기 암 레일(604)에 고정되고, 상기 어퍼암(602) 은 상기 암 레일(602)에 연결된 상태에서 상하 방향으로 슬라이딩 이동 가능하게 배치될 수 있다. In addition, the lower arm 60 may be fixed to the arm rail 604, and the upper arm 602 may be disposed to be slidably movable in a vertical direction while being connected to the arm rail 602.
여기서, 상기 셀지그(58)는, 상기 클램프(57)가 상기 한 쌍의 어퍼 암(602) 및 로어 암(601)의 사이에 해당하는 공간에 위치하면 정지한다. 따라서, 상기 홀딩 클램프(60)가 상기 프레스 장치(59) 쪽으로 전진하더라도 상기 클램프(57)가 상기 홀딩 클램프(60)와 간섭되는 일은 발생하지 않는다. Here, the cell jig 58 stops when the clamp 57 is located in a space corresponding to the upper arm 602 and the lower arm 601 of the pair. Therefore, even if the holding clamp 60 is advanced toward the press device 59, the clamp 57 does not interfere with the holding clamp 60.
한편, 상기 홀딩 클램프(60)가 상기 모노셀 적층체를 파지하기 위해서는, 상기 로어 암(601)과 어퍼 암(602)이 상기 모노셀 적층체의 적층 두께보다 큰 간격으로 이격된 상태에서 상기 셀지그(58)로 이동한다. On the other hand, in order for the holding clamp 60 to hold the monocell stack, the lower arm 601 and the upper arm 602 are spaced apart at intervals greater than the stack thickness of the monocell stack. Move to jig 58.
따라서, 상기 홀딩 클램프(60)는, 상기 로어 암(601)의 전단부가 상기 로어암 수용홈(581)의 단부에 닿을 때까지 전진할 수 있다. 여기서, 상기 로어 암(601)의 단부가 상기 로어암 수용홈(581)의 단부에 닿을 때까지 전진할 필요는 없고, 상기 홀딩 클래프(60)가 상기 모노셀 적층체를 안정적으로 파지할 수 있는 정도의 깊이까지만 삽입되어도 무방하다.Therefore, the holding clamp 60 may move forward until the front end portion of the lower arm 601 touches the end of the lower arm receiving groove 581. Here, it is not necessary to move forward until the end of the lower arm 601 touches the end of the lower arm receiving groove 581, and the holding clap 60 can stably hold the monocell stack. It can be inserted only to the depth that is.
상세히, 상기 로어 암(601)이 상기 로어암 수용홈(581)에 충분히 삽입된 상태에서, 상기 어퍼 암(602)이 하강하여 상기 모노셀 적층체를 가압한다. 그러면, 상기 홀딩 클램프(60)가 상기 모노셀 적층체를 집어 올릴 수 있는 상태가 된다. 이 상태에서, 상기 클램프(57)는 상승하여 상기 모노셀 적층체의 상면으로부터 분리된다. 그리고, 상기 홀딩 클램프(60)도, 상기 로어 암(601)이 상기 셀지그(58)의 로어암 수용홈(581)을 벗어날 때까지 상승한다. In detail, with the lower arm 601 fully inserted into the lower arm receiving groove 581, the upper arm 602 descends to press the monocell stack. Then, the holding clamp 60 is in a state capable of picking up the monocell stack. In this state, the clamp 57 is lifted up and separated from the upper surface of the monocell stack. The holding clamp 60 also rises until the lower arm 601 leaves the lower arm receiving groove 581 of the cell jig 58.
그리고, 상기 홀딩 클램프(60)는, 상기 모노셀 적층체의 후단이 상기 클램프(57)의 전단부를 벗어날 때까지 전진한다. 이 상태에서, 상기 홀딩 클램프(60)를 구성하는 상기 이송 바디(603)의 전면은 상기 클램프(57)와 이격된 상태로 유지된다. The holding clamp 60 is advanced until the rear end of the monocell stack is out of the front end of the clamp 57. In this state, the front surface of the transfer body 603 constituting the holding clamp 60 is kept spaced apart from the clamp 57.
그리고, 상기 모노셀 적층체가 상기 클램프(57)의 승하강 영역을 벗어나면, 상기 클램프(57)가 하강하여 원위치로 복귀한다. 그러면, 상기 클램프(57)이 상면은 상기 이송 바디(603)의 저면과 이격된 상태가 된다. 이 상태에서, 상기 홀딩 클램프(60)가 더 전진하여, 상기 모노셀 적층체가 상기 프레스 장치(59) 내부에 형성된 압착 위치까지 전진하도록 한다. Then, when the monocell stack is out of the lifting area of the clamp 57, the clamp 57 is lowered to return to the original position. Then, the upper surface of the clamp 57 is spaced apart from the bottom of the transfer body 603. In this state, the holding clamp 60 is further advanced so that the monocell stack is advanced to the crimp position formed in the press device 59.
여기서, 상기 프레스 장치(59)가 상기 셀지그(58)의 상면보다 높은 지점에 배치되어, 상기 클램프(57)가 원위치로 복귀한 다음, 상기 홀딩 클램프(60)가 상기 프레스 장치(59)의 입구 높이까지 더 상승한 다음 전진하도록 설계될 수도 있다. Here, the press device 59 is disposed at a point higher than the upper surface of the cell jig 58, the clamp 57 is returned to its original position, and then the holding clamp 60 of the press device 59 It may be designed to rise further to the inlet height and then to advance.
도 22는 본 발명의 실시예에 따른 프레스 장치의 사시도이고, 도 23은 상기 프레스 장치를 구성하는 프레스 어퍼의 저면 사시도이다. FIG. 22 is a perspective view of a press apparatus according to an embodiment of the present invention, and FIG. 23 is a bottom perspective view of a press upper constituting the press apparatus.
도 22 및 도 23을 참조하면, 본 발명의 실시예에 따른 프레스 장치(59)는, 압착 대상물이 모노셀 적층체가 안착되는 프레스 로어(press lower)(591)와, 상기 프레스 로어(591)의 상측에서 승강 가능하게 제공되는 프레스 어퍼(press upper)(592)를 포함할 수 있다. 물론, 도시되지는 않았으나, 상기 프레스 어퍼(592)에는 공압 또는 유압이 작용하여 상기 프레스 로어(591)를 강하게 압착하도록 한다. 22 and 23, the press apparatus 59 according to the embodiment of the present invention includes a press lower 591 in which a monolithic laminate is mounted, and a press lower 591 of the press lower 591. It may include a press upper (592) provided to be able to be elevated from the upper side. Of course, although not shown, pneumatic or hydraulic pressure acts on the press upper 592 to strongly compress the press lower 591.
또한, 상기 프레스 어퍼(592)의 저면과 상기 프레스 로어(591)의 상면에는 열선이 내장되어 있어, 상기 모노셀 적층체를 가열하도록 한다. In addition, a heat wire is built in the bottom surface of the press upper 592 and the top surface of the press lower 591 to heat the monocell laminate.
상기 프레스 로어(591)의 상면에는 로어암 수용홈(591a)이 형성되고, 상기 로어암 수용홈(591a)은 상기 셀 지그(58)에 형성된 로어암 수용홈(581)과 형상 및 기능이 동일하다. 즉, 상기 홀딩 클램프(60)의 로어암(601)을 수용하기 위한 홈이다. A lower arm receiving groove 591a is formed on an upper surface of the press lower 591, and the lower arm receiving groove 591a has the same shape and function as the lower arm receiving groove 581 formed in the cell jig 58. Do. That is, it is a groove for accommodating the lower arm 601 of the holding clamp 60.
또한, 상기 프레스 어퍼(592)의 저면에는 프레스 공정이 완료된 후의 이차전지 셀 형상에 대응하는 패턴(또는 틀)(592a)이 형성된다. 따라서, 상기 프레스 어퍼(592)의 저면에 형성된 틀 형상에 대응하는 형상으로 이차전지 셀이 만들어질 것이다. In addition, a pattern (or frame) 592a corresponding to the shape of the secondary battery cell after the pressing process is completed is formed on the bottom surface of the press upper 592. Therefore, the secondary battery cell will be made in a shape corresponding to the frame shape formed on the bottom of the press upper 592.
또한, 상기 로어암 수용홈(591a)에 대응하는 위치의 상기 프레스 어퍼(592)의 저면에는 상기 로어암 수용홈(591a)과 동일한 형상의 로어암 회피부(592a)가 함몰 형성된다. Further, a lower arm avoiding portion 592a having the same shape as the lower arm receiving groove 591a is recessed in the bottom of the press upper 592 at a position corresponding to the lower arm receiving groove 591a.
상세히, 상기 프레스 로어(591)의 로어암 수용홈(591a)은 상기 모노셀 적층체의 저면으로부터 이격되기 때문에 가열 및 압착이 되지 않는다. 이 상태에서, 만일 상기 프레스 어퍼(592)에 상기 로어암 회피부(592b)가 없다면, 압착 공정이 끝나면, 상기 로어암 수용홈(591a)에 해당하는 이차전지 셀의 저면은 부분이 하측으로 돌출될 것이다. In detail, since the lower arm receiving groove 591a of the press lower 591 is spaced apart from the bottom of the monocell stack, heating and pressing are not performed. In this state, if the lower arm avoiding portion 592b is not present in the press upper 592, after the pressing process is completed, the bottom surface of the secondary battery cell corresponding to the lower arm receiving groove 591a protrudes downward. Will be.
그리고, 상기 로어암 수용홈(591a)의 위치에 해당하는 부분에서는, 상기 모노셀 적층체의 상면에만 열압착이 작용하게 되고, 그 외의 부분에서는 모노셀 적층체의 양면에서 열압착이 작용하게 된다. 그 결과, 불량 전지셀이 생산될 가능성이 높다. 따라서, 이러한 문제가 발생하지 않도록 하기 위하여, 상기 프레스 어퍼(592)이 저면에도 동일한 형상의 로어암 수용홈(592b)이 함몰 형성되도록 한다. In the portion corresponding to the position of the lower arm accommodating groove 591a, thermocompression acts only on the upper surface of the monocell stack, and thermocompression acts on both sides of the monocell stack. . As a result, there is a high possibility of producing a defective battery cell. Therefore, in order to prevent such a problem from occurring, the lower upper groove 592b having the same shape is recessed in the press upper 592 at the bottom thereof.
한편, 상기 모노셀 적층체를 파지한 상태로 상기 홀딩 클램프(60)가 전진하여 상기 프레스 로어(591)의 상면에 상기 모노셀 적층체를 내려 놓는다. 그리고, 상기 홀딩 클램프(60)의 어퍼 암(602)이 상승한 뒤 상기 홀딩 클램프(60)가 후퇴하고, 상기 프레스 어퍼(592)가 하강하여 상기 모노셀 적층체를 열과 함께 소정 압력으로 가압한다. 그러면, 적층된 다수의 모노셀들은 서로 압착되어 단일의 이차전지 셀을 형성하게 된다. Meanwhile, the holding clamp 60 is advanced while the monocell stack is held, and the monocell stack is placed on the upper surface of the press lower 591. Then, after the upper arm 602 of the holding clamp 60 is raised, the holding clamp 60 is retracted, and the press upper 592 is lowered to press the monocell stack together with heat to a predetermined pressure. Then, the stacked plurality of monocells are compressed to form a single secondary battery cell.
한편, 프리 프레스 공정과 메인 프레스 공정이 끝나면, 상기 모노셀 적층체는 하나의 이차전지 셀 형태로 만들어진다. 다만, 상기 로어암 수용홈(591a)에 대응하는 상기 이차전지 셀의 상면은, 상기 로어암 수용홈(591a)의 크기와 형상으로 돌출된다. On the other hand, after the prepress process and the main press process, the monocell laminate is made in the form of one secondary battery cell. However, an upper surface of the secondary battery cell corresponding to the lower arm accommodating groove 591a protrudes in the size and shape of the lower arm accommodating groove 591a.
따라서, 상기 프리 프레스 공정과 메인 프레스 공정이 끝나면, 이차전지 셀은 상기 로어암 수용홈(591a)의 형상에 대응하는 돌출부를 열압착하기 위한 파이널 프레스 영역으로 이송된다. Therefore, after the prepress process and the main press process, the secondary battery cell is transferred to the final press area for thermocompression bonding the protrusion corresponding to the shape of the lower arm accommodating groove 591a.
한편, 프리 프레스 또는 메인 프레스 공정이 끝나면, 상기 모노셀 적층체 또는 이차전지 셀이 상기 프레스 장치(59)로부터 상기 셀지그(59)로 옮겨진 후 상기 셀지그(59)가 다음 단계로 이동하게 된다. On the other hand, after the pre-press or the main press process, the monocell stack or secondary battery cell is moved from the press device 59 to the cell jig 59 and the cell jig 59 moves to the next step. .
이때, 상기 프레스 장치(59) 내부에 있는 모노셀 적층체 또는 이차전지 셀은 상기 홀딩 클램프에 의하여 다시 파지되어 상기 셀지그(58)의 상면으로 옮겨진다. At this time, the monocell stack or the secondary battery cell in the press device 59 is gripped again by the holding clamp and moved to the upper surface of the cell jig 58.
도 24는 본 발명의 실시예에 따른 적층 및 열압착 장치의 파이널 프레스 영역을 보여주는 확대 사시도이다.24 is an enlarged perspective view showing a final press area of the lamination and thermocompression bonding apparatus according to an embodiment of the present invention.
도 24를 참조하면, 프리 프레스와 메인 프레스를 통과하면서 제조된 이차전지 셀은 상기 셀 지그(58)에 안착된 상태에서 화살표 방향으로 이동하여 상기 파이널 프레스부(J3)로 이송된다.Referring to FIG. 24, the secondary battery cell manufactured while passing through the prepress and the main press is moved in the direction of the arrow in a state of being seated on the cell jig 58 and transferred to the final press part J3.
상세히, 상기 파이널 프레스부(J3)는, 상기 메인 프레스부(J2) 측방에 위치하여, 상기 셀지그(58)가 직선 이동하도록 할 수도 있고, 도시된 바와 같이, 상기 메인 프레스부(J2)를 통과한 다음 이동 경로가 90도 전환되도록 할 수도 있다. In detail, the final press part J3 may be located on the side of the main press part J2 to allow the cell jig 58 to move linearly, as shown in the drawing. You can also make the travel path turn 90 degrees after passing.
또한, 프리 프레스 공정과 메인 프레스 공정 및 상기 파이널 프레스 공정 모두에서 상기 홀딩 클램프가 상기 모노셀 적층체를 파지하여 상기 프레스 장치 내부로 이송시키는 것도 가능하고, 파이널 프레스 공정에서는 별도의 이송 유닛(62)에 의하여 상기 파이널 프레스 장치 내부로 모노셀 적층체(또는 이차전지 셀)가 이송되도록 할 수도 있다. 이하에서는 별도의 이송 유닛에 의하여 상기 모노셀 적층체가 상기 파이널 프레스 장치(60) 내부로 공급되는 것을 예로 들어 설명한다. In addition, in both the prepress process, the main press process, and the final press process, the holding clamp may hold the monocell stack and transfer the same into the press apparatus. In the final press process, a separate transfer unit 62 may be used. The mono-cell stack (or secondary battery cell) may be transferred to the final press device. Hereinafter, a description will be given by taking an example in which the monocell stack is supplied into the final press device 60 by a separate transfer unit.
상기 메인 프레스 공정을 통과하고 셀지그(58) 상에 놓여서 상기 파이널 프레스 장치(61)의 입구까지 이송되어 온 상기 이차전지 셀(10a)은 이송 유닛(62)에 의하여 흡착된다. 그 전에, 상기 이차전지 셀(10a)을 누르고 있던 상기 클램프(57)는 상승하여 상기 이차전지 셀(10a)의 상면으로부터 이격되도록 한다. The secondary battery cell 10a that has passed through the main press process and is placed on the cell jig 58 and transferred to the inlet of the final press device 61 is sucked by the transfer unit 62. Before that, the clamp 57, which has been pressed on the secondary battery cell 10a, is raised to be spaced apart from the upper surface of the secondary battery cell 10a.
이 상태에서, 상기 이송 유닛(62)이 상기 이차 전지셀(10a)을 흡착하여 상기 파이널 프레스 장치(61) 내부로 안내한다. 여기서, 상기 이송 유닛(62)은 이전에 설명한 흡착부(또는 흡착판)가 구비된 흡착식 이송 부재일 수 있다. In this state, the transfer unit 62 adsorbs the secondary battery cell 10a to guide the inside of the final press device 61. Here, the transfer unit 62 may be an adsorptive transfer member provided with the adsorption unit (or adsorption plate) described above.
또한, 상기 파이널 프레스 장치(61)는, 프레스 로어(611)와 프레스 어퍼(612)를 포함할 수 있고, 상기 프레스 어퍼(612)는 승하강 가능하게 제공된다. 이는 상기 프리 프레스부(J1) 또는 메인 프레스부(J2)에 구비되는 프레스 장치(59)의 구성과 동일하다. 다만, 상기 프레스 어퍼(612)의 저면과 상기 프레스 로어(611)의 상면은 함몰부가 없는 매끈한 평면을 이루는 것에 차이가 있다. In addition, the final press device 61 may include a press lower 611 and a press upper 612, the press upper 612 is provided to be lowered. This is the same as the structure of the press apparatus 59 provided in the said prepress part J1 or the main press part J2. However, the bottom surface of the press upper 612 and the top surface of the press lower 611 are different from each other to form a smooth plane without depressions.
상세히, 상기 프레스 어퍼(612)가 상승하여 상기 프레스 로어(611)로부터 이격된 상태에서, 상기 이송 유닛(62)은 상기 셀지그(58) 상에 놓인 이차전지 셀(10a)을 이송하여 상기 프레스 로어(611)에 안착시킨다. 그리고, ㅅ아기 이송 유닛(62)은 원위치로 복귀한다. In detail, while the press upper 612 is raised and spaced apart from the press lower 611, the transfer unit 62 transfers the secondary battery cell 10a placed on the cell jig 58 to press the press. It is seated in the lower 611. Then, the baby feed unit 62 returns to its original position.
이 상태에서, 상기 프레스 어퍼(612)가 하강하여 상기 이차전지 셀의 상면을 열과 압력으로 가압하도록 한다. 그러면, 상기 이차전지 셀의 상면에 로어암 수용홈 형상으로 돌출된 부분이 가압된다. 그리고, 상기 돌출된 부분은 눌러져서 상기 이차전지 셀의 상면부 높이와 동일하게 유지된다. 여기서, 상기 이차전지 셀의 상면부라 함은, 최상측의 모노셀 적층부의 상면을 의미한다. 즉, 파이널 프레스 과정을 통과하면, 상기 돌출된 부분의 상면이 상기 메인 프레스부에서 가압된 부분들의 상면과 동일한 평면을 이루게 되고, 하나의 완전한 이차전지 셀이 형성된다. In this state, the press upper 612 is lowered to press the upper surface of the secondary battery cell with heat and pressure. Then, the portion protruding in the shape of a lower arm receiving groove is pressed on the upper surface of the secondary battery cell. The protruding portion is pressed to maintain the same height as the upper surface of the secondary battery cell. Here, the upper surface portion of the secondary battery cell means the upper surface of the monocell stacked portion of the uppermost side. That is, when passing through the final press process, the upper surface of the protruding portion forms the same plane as the upper surface of the portions pressed from the main press portion, and one complete secondary battery cell is formed.
도 25는 열압착 과정을 통과한 이차전지셀의 검사 과정을 보여주는 도면이다. FIG. 25 is a view illustrating an inspection process of a secondary battery cell that has passed through a thermocompression bonding process.
도 25를 참조하면, 상기 파이널 프레스부(J3)를 통과하면, 도 2에 도시된 바와 같은 하나의 완전한 이차전지셀이 완성되고, 상기 이차전지셀(10)은 또다른 이송 유닛(63)에 의하여 검사를 위한 이송 벨트(64)로 안내된다. 상기 또다른 이송 유닛(63)은, 상기 파이널 프레스부에 제공되는 상기 이송 유닛(62)과 동일한 형태의 이송 유닛일 수 있다. Referring to FIG. 25, when passing through the final press unit J3, one complete secondary battery cell as shown in FIG. 2 is completed, and the secondary battery cell 10 is connected to another transfer unit 63. Guides to the conveyance belt 64 for inspection. The transfer unit 63 may be a transfer unit of the same type as the transfer unit 62 provided in the final press unit.
상기 이송 유닛(63)에 의하여 상기 이차전지셀이 상기 이송 벨트(64)로 이송되면, 상기 이차전지 셀(10)은 상기 이송 벨트(64)를 따라 검사부(K)로 이동하면서 검사 과정을 거친다. 즉, 비전 카메라에 의한 형상 검사와, 두께 검사 및 쇼트 검사가 순차적으로 이루어진다.When the secondary battery cell is transferred to the transfer belt 64 by the transfer unit 63, the secondary battery cell 10 undergoes an inspection process while moving to the inspection unit K along the transfer belt 64. . That is, shape inspection by a vision camera, thickness inspection, and short inspection are performed in sequence.
즉, 비전 카메라(65)를 통과하면서 촬영되어, 상기 이차전지 셀의 적층 및 열압착이 제대로 이루어졌는지 여부가 판단된다. 예를 들어, 적층 과정에서 모노셀들이 옆으로 밀리면서 셀의 측면이 수직면을 이루지 못하고 비스듬히 경사지지는 않았는지, 또는 열압착 과정에서 모노셀 적층체가 옆으로 밀리지는 않았는지를 촬영 이미지를 이용하여 판정할 수 있다. That is, it is photographed while passing through the vision camera 65, and it is determined whether the stacking and thermocompression of the secondary battery cells are performed properly. For example, the photographing image may determine whether the monocells are pushed to the side in the lamination process and the side of the cell does not form a vertical plane and is not inclined at an angle, or whether the monocell stack is pushed to the side in the thermocompression process. Can be.
그리고, 상기 비전 카메라(65)를 통과한 이차전지 셀은 두께 측정부(66)로 이송되어, 설계된 두께로 압착이 잘 이루어졌는지 여부가 판단된다. 그리고, 상기 두께 측정부(66)를 통과한 이차전지 셀은 쇼트 검사부(67)로 이송되어, 열압착 과정에서 전극부들끼지 붙어서 쇼트 현상을 일으키지는 않는지 여부가 판단된다. Then, the secondary battery cell passing through the vision camera 65 is transferred to the thickness measuring unit 66, it is determined whether the compression is made well to the designed thickness. In addition, the secondary battery cell passing through the thickness measuring unit 66 is transferred to the short inspection unit 67, and it is determined whether the short-circuited phenomenon does not occur due to sticking of the electrode parts in the thermocompression bonding process.
도 26은 본 발명의 실시예에 따른 셀적층 및 열압착부를 구성하는 적재부의 확대 사시도이다. FIG. 26 is an enlarged perspective view of a stacker constituting a cell stack and a thermocompression unit according to an exemplary embodiment of the present invention. FIG.
도 26을 참조하면, 상기 쇼트 검사부(67)를 통과하면서 상기 이차전지셀 각각에 대해서 불량 여부가 결정된다. 그리고, 불량이라고 판단된 이차전지셀은 상기 이송 벨트(64)를 따라 계속 이동하여 폐기함(미도시)에 모이게 된다. 반대로, 양품으로 판단된 이차전지 셀은 픽업 유닛(68)에 의하여 픽업되어 별도의 카세트에 적재된다. Referring to FIG. 26, whether each of the secondary battery cells is defective may be determined while passing through the short inspection unit 67. In addition, the secondary battery cells determined to be defective are collected along with the disposal belt (not shown) by continuously moving along the transfer belt 64. On the contrary, the secondary battery cell judged as good quality is picked up by the pickup unit 68, and loaded in a separate cassette.
이러한 일련의 과정을 거치면서 양품으로 판정된 이차전지 셀은, 파우치에 의하여 포장되고 전해액이 주입되는 패키지 공정으로 이동된다. 상기 패키지 공정 이후의 공정은 종래의 이차전지 셀 제조 공정에 적용되는 것과 동일하므로, 상세한 설명은 생략한다. The secondary battery cell, which is determined to be a good product through such a series of processes, is packaged by a pouch and moved to a packaging process in which electrolyte is injected. Since the process after the package process is the same as that applied to the conventional secondary battery cell manufacturing process, a detailed description thereof will be omitted.

Claims (7)

  1. 전극부의 가장자리를 설계된 형상으로 절단하는 전극부 노칭 단계;An electrode part notching step of cutting an edge of the electrode part into a designed shape;
    다수의 전극부와 분리막이 순차적으로 적층된 상태로 라미네이너로 인입되어 단일체로 압착되도록 하는 과정과, 상기 라미네이터로부터 인출되는 전극부와 분리막의 압착체를 다수의 모노셀 모체로 절단하는 과정을 포함하는 전극 라미네이션 단계;A process in which a plurality of electrode parts and separators are sequentially stacked and pressed into a laminator to be compressed into a single body, and a process of cutting the compressed parts of the electrode parts and separators drawn from the laminator into a plurality of monocell matrixes An electrode lamination step comprising;
    상기 설계된 전극부의 형상에 대응하는 모노셀을 형성하기 위하여, 상기 전극부의 가장자리를 따라 상기 모노셀 모체의 분리막 일부분을 절단하는 분리막 커팅 단계;A separator cutting step of cutting a portion of the separator of the monocell matrix along an edge of the electrode part to form a monocell corresponding to the designed electrode part;
    분리막이 커팅된 다수의 모노셀을 적층하는 모노셀 적층 단계;A monocell stacking step of stacking a plurality of monocells in which the separator is cut;
    다수의 모노셀이 적층되어 이루어지는 모노셀 적층체를 열과 압력으로 압착하는 열압착 단계;A thermocompression bonding step of compressing the monocell stack formed by stacking a plurality of monocells with heat and pressure;
    열압착에 의하여 완성된 전지셀을 파우치로 감싸서 포장하는 패키지 단계를 포함하는 이차전지 셀의 제조 방법.A method of manufacturing a secondary battery cell comprising a package step of wrapping the battery cell completed by thermocompression bonding with a pouch.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 분리막 커팅 단계는, 절단선을 따라 정확하게 상기 분리막을 절단하기 위하여, 상기 모노셀 모체를 기준선에 정렬하는 얼라인 단계를 포함하는 이차전지 셀의 제조 방법.The separator cutting step may include an alignment step of aligning the monocell matrix with a reference line in order to accurately cut the separator along a cutting line.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 분리막 커팅 단계에서 커팅되는 분리막의 커팅 선은 곡선 또는 절곡된 직선을 포함하는 이차전지 셀의 제조 방법.Cutting line of the separator cut in the separator cutting step is a method of manufacturing a secondary battery cell including a curved or bent straight line.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 모노셀 적층 단계는, 크기 또는 형상이 다른 모노셀들이 적층되는 것을 특징으로 하는 이차전지 셀의 제조 방법.The monocell stacking step, the method of manufacturing a secondary battery cell, characterized in that the monocells having different sizes or shapes are stacked.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    크기 또는 형상이 다른 상기 모노셀들이 적층되어, 상면이 단차지는 형태를 이루는 것을 특징으로 하는 이차전지 셀의 제조 방법.The method of manufacturing a secondary battery cell, wherein the monocells having different sizes or shapes are stacked to form a stepped top surface.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 열압착 단계는,The thermocompression step,
    상기 모노셀 적층체를 낮은 열과 압력으로 압착하는 프리 프레스 단계와,Prepress pressing the monocell laminate with low heat and pressure;
    상기 프리 프레스 단계 이후에 높은 열과 압력으로 압착하는 메인 프레스 단계, 및A main press step of pressing with high heat and pressure after the prepress step, and
    메인 프레스 단계 이후 압착이 가해지지 않은 부분을 마지막으로 가압하는 파이널 프레스 단계를 포함하는 이차전지 셀의 제조 방법.A method of manufacturing a secondary battery cell comprising a final press step of finally pressing the portion that is not pressed after the main press step.
  7. 제 1 항에 있어서,The method of claim 1,
    열압착이 끝난 전지셀의 탭을 단일체로 용접하는 탭 용접 단계를 더 포함하는 이차전지 셀의 제조 방법. A method of manufacturing a secondary battery cell further comprising a tab welding step of welding the tabs of the thermocompression-bonded battery cells into a single body.
PCT/KR2016/008165 2016-07-26 2016-07-26 Method for producing secondary battery WO2018021589A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2016/008165 WO2018021589A1 (en) 2016-07-26 2016-07-26 Method for producing secondary battery
KR1020197003022A KR102191183B1 (en) 2016-07-26 2016-07-26 Secondary battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/008165 WO2018021589A1 (en) 2016-07-26 2016-07-26 Method for producing secondary battery

Publications (1)

Publication Number Publication Date
WO2018021589A1 true WO2018021589A1 (en) 2018-02-01

Family

ID=61017005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008165 WO2018021589A1 (en) 2016-07-26 2016-07-26 Method for producing secondary battery

Country Status (2)

Country Link
KR (1) KR102191183B1 (en)
WO (1) WO2018021589A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110663133A (en) * 2018-02-20 2020-01-07 株式会社Lg化学 Apparatus and method for manufacturing electrode assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540652A (en) * 2020-03-30 2021-10-22 北京小米移动软件有限公司 Battery and terminal equipment
KR20230075697A (en) * 2021-11-23 2023-05-31 주식회사 엘지에너지솔루션 Manufacturing Method of Curved Secondary Battery
WO2024117823A1 (en) * 2022-12-02 2024-06-06 주식회사 엘지에너지솔루션 Electrode assembly joining device, electrode assembly manufacturing device comprising same, electrode assembly joining method, and electrode assembly manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130124341A (en) * 2010-12-03 2013-11-13 리-텍 배터리 게엠베하 Method and system for cutting sheet-like or plate-like objects
KR101405012B1 (en) * 2012-05-29 2014-07-01 주식회사 엘지화학 A Stepwise Electrode Assembly Having Corner of Various Shape and a Battery Cell, Battery Pack and Device Comprising the Same
KR101414092B1 (en) * 2013-02-08 2014-07-04 주식회사 엘지화학 Stepwise Electrode Assembly, Secondary Battery, Battery Pack and Devide comprising the Stepwise Electrode Assembly, and Method for preparing the Stepwise Electrode Assembly
KR20140110162A (en) * 2013-03-04 2014-09-17 주식회사 엘지화학 Method for Preparing a Jelly-Roll Type Electrode Assembly and a Secondary Battery
KR20150002523A (en) * 2013-06-28 2015-01-07 주식회사 엘지화학 Method of manufacturing electrode assembly including process of cutting separator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2378595B1 (en) * 2008-12-19 2015-03-25 LG Chem, Ltd. High-power lithium secondary battery
JP6175934B2 (en) * 2013-06-25 2017-08-09 トヨタ自動車株式会社 Manufacturing method of all solid state battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130124341A (en) * 2010-12-03 2013-11-13 리-텍 배터리 게엠베하 Method and system for cutting sheet-like or plate-like objects
KR101405012B1 (en) * 2012-05-29 2014-07-01 주식회사 엘지화학 A Stepwise Electrode Assembly Having Corner of Various Shape and a Battery Cell, Battery Pack and Device Comprising the Same
KR101414092B1 (en) * 2013-02-08 2014-07-04 주식회사 엘지화학 Stepwise Electrode Assembly, Secondary Battery, Battery Pack and Devide comprising the Stepwise Electrode Assembly, and Method for preparing the Stepwise Electrode Assembly
KR20140110162A (en) * 2013-03-04 2014-09-17 주식회사 엘지화학 Method for Preparing a Jelly-Roll Type Electrode Assembly and a Secondary Battery
KR20150002523A (en) * 2013-06-28 2015-01-07 주식회사 엘지화학 Method of manufacturing electrode assembly including process of cutting separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110663133A (en) * 2018-02-20 2020-01-07 株式会社Lg化学 Apparatus and method for manufacturing electrode assembly
US11342591B2 (en) 2018-02-20 2022-05-24 Lg Energy Solution, Ltd. Apparatus and method for manufacturing electrode assembly
CN110663133B (en) * 2018-02-20 2022-12-23 株式会社Lg新能源 Apparatus and method for manufacturing electrode assembly

Also Published As

Publication number Publication date
KR102191183B1 (en) 2020-12-15
KR20190020146A (en) 2019-02-27

Similar Documents

Publication Publication Date Title
WO2018021590A1 (en) Cell lamination and thermocompression apparatus, and cell lamination and thermocompression method
WO2018021589A1 (en) Method for producing secondary battery
WO2019051990A1 (en) Automatic assembly device for battery and assembly method therefor
KR101280069B1 (en) System for Stacking Electrodes
WO2014209054A1 (en) Method for manufacturing electrode assembly including separator cutting process
WO2018182129A1 (en) Electrode stacking method and electrode stacking apparatus for performing same
WO2019172567A1 (en) Unit cell alignment device and electrode assembly manufacturing method using same
KR101833470B1 (en) Separator cutting apparatus and separator cutting method
WO2021118160A1 (en) Method for manufacturing secondary battery and pre-degassing apparatus for manufacturing secondary battery
WO2020159295A1 (en) Electrode stacking apparatus and electrode stacking system comprising same
WO2021118105A1 (en) Unit cell, and method and apparatus for manufacturing same
WO2022108080A1 (en) Secondary battery and manufacturing method for same
WO2022019599A1 (en) Unit cell manufacturing device and method
KR102482925B1 (en) Cell stack manufacturing device for secondary batteries
CN111969169A (en) Automatic battery cell processing equipment
KR101280068B1 (en) System for Stacking Electrodes
JP5189758B2 (en) Bipolar battery manufacturing apparatus and manufacturing method
WO2023101279A1 (en) Zigzag stacking device
WO2018084452A1 (en) Apparatus for manufacturing various cap assemblies
WO2021182656A1 (en) Apparatus and method for manufacturing electrode plate of secondary battery
WO2021141311A1 (en) Apparatus for manufacturing secondary battery and method for manufacturing secondary battery
WO2024147596A1 (en) Electrode supply device, electrode assembly manufacturing device using same, electrode supply method, and electrode assembly manufacturing method using same
KR101480099B1 (en) a temporarily join adapter unit the protection film for flexible printed circuit board
WO2023075328A1 (en) Electrode assembly folding device and folding method using same
WO2023121297A1 (en) Electrode assembly and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197003022

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910612

Country of ref document: EP

Kind code of ref document: A1