WO2018021547A1 - Vehicular circuit unit - Google Patents

Vehicular circuit unit Download PDF

Info

Publication number
WO2018021547A1
WO2018021547A1 PCT/JP2017/027497 JP2017027497W WO2018021547A1 WO 2018021547 A1 WO2018021547 A1 WO 2018021547A1 JP 2017027497 W JP2017027497 W JP 2017027497W WO 2018021547 A1 WO2018021547 A1 WO 2018021547A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
ground line
drive system
power supply
vehicle
Prior art date
Application number
PCT/JP2017/027497
Other languages
French (fr)
Japanese (ja)
Inventor
大亮 八木
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017144887A external-priority patent/JP7010617B2/en
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to DE112017003806.5T priority Critical patent/DE112017003806T5/en
Priority to CN201780047267.8A priority patent/CN109661329B/en
Publication of WO2018021547A1 publication Critical patent/WO2018021547A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements

Definitions

  • the present invention has been made in view of the above-described circumstances, and the purpose of the present invention is to prevent the malfunction of an auxiliary machine and the auxiliary machine even when a large current flows from a power source on the vehicle to various auxiliary machines.
  • An object of the present invention is to provide a vehicular circuit body capable of suppressing the performance degradation.
  • the second ground line is disposed at an outer position where the distance from the surface on the vehicle body of the vehicle is farther than the power line and the first ground line.
  • the first ground line is formed in a tubular shape, The vehicle circuit body according to (1) or (2), wherein the power supply line and the second earth line are arranged in a pipe of the first earth line.
  • the first ground line and the second ground line are connected to the negative side (ground side) of the power source, so that they can be used as electromagnetic shields. That is, the electromagnetic noise radiated from the power supply line due to the current can be shielded from being radiated outside the first ground line and outside the second ground line. The adverse effects of noise on the machine can be avoided.
  • the voltage drop generated in the first ground line is suppressed while suppressing the enlargement of the main line by making the first ground line through which a large current flows into a tubular shape. it can. Furthermore, since the first ground line can be used as an electromagnetic shield, electromagnetic noise radiated by the current from the power supply line can be shielded from being radiated outside the first ground line. The adverse effect of noise on the installed auxiliary equipment can be avoided.
  • FIG. 1 is a perspective view illustrating a configuration example of a main part of an in-vehicle device including a vehicle circuit body according to the first embodiment of the present invention.
  • FIG. 2 is a connection diagram illustrating a configuration example of an in-vehicle device including the vehicle circuit body according to the first embodiment of the present invention.
  • FIG. 3A and FIG. 3B are longitudinal sectional views showing a sectional structure of the backbone trunk portion 61 having two power supply lines.
  • 4 (a) and 4 (b) are longitudinal sectional views showing the cross-sectional structure of the trunk line in which the positional relationship of each component is different from that in FIGS. 3 (a) and 3 (b).
  • FIG. 1 is a perspective view illustrating a configuration example of a main part of an in-vehicle device including a vehicle circuit body according to the first embodiment of the present invention.
  • FIG. 2 is a connection diagram illustrating a configuration example of an in-vehicle device including the vehicle circuit body according to the first embodiment
  • FIGS. 10B are longitudinal sectional views showing a sectional structure of a backbone trunk portion 61B having one power supply line.
  • 11 (a) and 11 (b) are longitudinal sectional views showing the cross-sectional structure of the trunk line in which the positional relationship of each component is different from that in FIGS. 10 (a) and 10 (b).
  • FIG. 12 is a longitudinal cross-sectional view illustrating a cross-sectional structure of a trunk line according to Modification 1 of the second embodiment.
  • FIG. 13 is a connection diagram illustrating a configuration example of a general vehicle-mounted device.
  • the backbone control box 32 is disposed at the substantially central portion in the left-right direction of the vehicle body, the backbone control box 31 is disposed near the left end in the left-right direction, and the backbone control box 33 is disposed near the right end in the left-right direction.
  • the left end of the backbone main line 21 is connected to the right end of the backbone control box 31, and the right end of the backbone main line 21 is connected to the left end of the backbone control box 32. Further, the left end of the backbone trunk portion 22 is connected to the right end of the backbone control box 32, and the right end of the backbone trunk portion 22 is connected to the left end of the backbone control box 33.
  • the front end of the backbone trunk portion 23 is connected to the lower end of the backbone control box 32.
  • the power supply system, the ground system, and the communication system of each circuit are mutually connected and the power is distributed among the main power cable 41, the backbone trunk section 21, and the branch line subharness 42.
  • a circuit board is included.
  • an auxiliary machine such as an electronic control unit (ECU) 51 provided in the vehicle via a branch line sub-harness 42 is connected to a backbone control box 31 or other electrical equipment. Can be connected to the product. Further, the electronic control units 51, 52, 53 and other electrical components can be connected to the backbone control box 32 via the branch line sub-harness 43. Furthermore, various electrical components can be connected to the backbone control box 33 via the branch line sub-harness 44. Each electronic control unit 51, 52, 53 can control various electrical components on the vehicle via the communication lines of the branch sub-harnesses 42, 43, 44, the backbone control boxes 31 to 33, and the like. it can.
  • ECU electronicees
  • each of backbone backbone portions 61, 62, and 63 includes four independent lines of signal system power supply line 71, signal system ground line 72, drive system power supply line 73, and drive system ground line 74. It has.
  • each of the drive system power line 73 and the drive system ground line 74 consumes a very large power supply current.
  • an auxiliary machine whose rated current exceeds 10 [A] (in this embodiment, “drive system auxiliary machine”).
  • electric motors, various heaters, headlights, and the like for generating driving forces of various actuators on the vehicle correspond to “driving system auxiliary machines”.
  • the signal system power supply line 71 and the drive system power supply line 73 included in the backbone trunk 61 have one end connected to the positive terminal 10 a of the power supply 10 and the other end.
  • the side is connected to the backbone control box 64.
  • the power source 10 corresponds to a main battery or an alternator mounted on the vehicle.
  • the signal system ground line 72 and the drive system ground line 74 included in the backbone trunk 61 are connected to the negative terminal 10b of the power source 10 at one end and the backbone control box 64 at the other end. It is connected.
  • Each of the signal system power line 71, the signal system ground line 72, the drive system power line 73, and the drive system ground line 74 included in the backbone trunk section 61 corresponds to that included in the backbone trunk section 62. Connected to the line.
  • Each of the signal system power line 71, the signal system ground line 72, the drive system power line 73, and the drive system ground line 74 included in the backbone trunk 61 is routed through an internal circuit of the backbone control box 64. Are connected to corresponding lines included in the backbone trunk part 63.
  • a signal power distribution unit Inside each of the backbone control boxes 64, 65, and 66, as shown in FIG. 2, a signal power distribution unit, a signal GND (ground or ground) distribution unit, a drive power distribution unit, and A drive system GND distributor is provided.
  • the signal system power distribution unit is connected to the signal system power line 71
  • the signal system GND distribution unit is connected to the signal system ground line 72
  • the drive system power distribution unit is connected to the drive system power line 73
  • the drive system GND distributor is connected to the drive system ground line 74.
  • a plurality of drive system auxiliary machines 83 (1) to 83 (N) and a plurality of signal system auxiliary machines 84 (1) to 84 (N) are connected under the backbone control box 65. Also, under the backbone control box 66, a plurality of drive system auxiliary machines 85 (1) to 85 (N) and a plurality of signal system auxiliary machines 86 (1) to 86 (N) are connected.
  • the power distribution unit of the drive system distributes the power of the drive system power line 73 to each of a plurality of paths. Then, each power distributed by the power distribution unit of the drive system is supplied to each power terminal of the drive system auxiliary machines 81 (1) to 81 (N) via the branch line subharness. Also on the ground side, the drive system ground line 74 is branched into a plurality of current paths by the GND distribution unit of the drive system. Each of the plurality of branched current paths is connected to the ground terminal of each of drive system auxiliary machines 81 (1) to 81 (N) via a branch line subharness.
  • the signal power distribution unit distributes the power of the signal power line 71 to each of a plurality of paths. Then, each power distributed by the signal power distribution unit is supplied to each power terminal of each of the signal auxiliary machines 82 (1) to 82 (N) via the branch sub-harness. Also on the ground side, the signal system GND distribution unit branches the signal system ground line 72 into a plurality of current paths. Each of the branched current paths is connected to each ground terminal of signal system auxiliary machines 82 (1) to 82 (N) via a branch line subharness.
  • the power distribution unit of the drive system distributes the power of the drive system power line 73 to each of the plurality of paths.
  • Each power distributed by the power distribution unit of the drive system is supplied to each power terminal of the drive system auxiliary machines 83 (1) to 83 (N) via the branch sub-harness.
  • the drive system ground line 74 is branched into a plurality of current paths by the GND distribution unit of the drive system. Each of the branched current paths is connected to the ground terminal of each of drive system auxiliary machines 83 (1) to 83 (N) via a branch line subharness.
  • the signal power distribution unit distributes the power of the signal power line 71 to each of the plurality of paths. Then, each power distributed by the power distribution unit of the signal system is supplied to each power terminal of the signal system auxiliary machines 84 (1) to 84 (N) via the branch line subharness. Also on the ground side, the signal system GND distribution unit branches the signal system ground line 72 into a plurality of current paths. Each of the plurality of branched current paths is connected to the ground terminal of each of signal system auxiliary machines 84 (1) to 84 (N) via the branch line subharness.
  • the power distribution unit of the drive system distributes the power of the drive system power line 73 to each of a plurality of paths.
  • Each power distributed by the power distribution unit of the drive system is supplied to each power terminal of the drive system auxiliary machines 85 (1) to 85 (N) via the branch line subharness.
  • the drive system ground line 74 is branched into a plurality of current paths by the GND distribution unit of the drive system. Each of the plurality of branched current paths is connected to the ground terminal of each of drive system auxiliary machines 85 (1) to 85 (N) via the branch line subharness.
  • any of the auxiliary machines 81 (1) to 81 (N), 83 (1) to 83 (N), and 85 (1) to 85 (N) is driven.
  • the power supply current is supplied through the drive system power supply line 73, and the ground-side current flows through the drive system ground line 74.
  • the power supply current is the signal power supply line. 71, the ground-side current flows through the signal system ground line 72.
  • the signal system and the drive system are completely independent of both the supply current supply path for each auxiliary machine and the path through which the ground current flows. Therefore, in any current path on the backbone trunk lines 61, 62, 63, the drive system auxiliary devices 81 (1) to 81 (N), 83 (1) to 83 (N), 85 (1) to 85 (The voltage drop caused by the power supply current and the ground current flowing through N) is the current of the signal system auxiliary equipment 82 (1) to 82 (N), 84 (1) to 84 (N), 86 (1) to 86 (N). Does not affect the voltage of the path.
  • the magnitude of the current flowing through the signal system auxiliary machines 82 (1) to 82 (N), 84 (1) to 84 (N), 86 (1) to 86 (N) is determined by the drive system auxiliary machine 81 (1 ) To 81 (N), 83 (1) to 83 (N), and 85 (1) to 85 (N).
  • each of the voltage drop in the signal system power line 71 and the voltage drop in the signal system ground line 72 is reduced to an acceptable level even when the cross-sectional area of the conductor of each line is relatively small. Therefore, the ground potential of each of the signal system auxiliary machines 82 (1) to 82 (N), 84 (1) to 84 (N), 86 (1) to 86 (N) is the ground reference potential, that is, the power source 10 It can be prevented that the potential of the negative terminal 10b increases or fluctuates. Thereby, it is possible to prevent the malfunction of each signal auxiliary machine 82.
  • each signal system auxiliary device 82 has a predetermined performance corresponding to the rating. It can be demonstrated. For example, as one of the signal system auxiliary machines 82, when a lamp such as a stop lamp or tail lamp of a vehicle is connected, it is possible to prevent the light quantity of the stop lamp or tail lamp from decreasing.
  • a communication line can be included in the backbone trunk lines 61 to 63. Thereby, it becomes possible to communicate between a plurality of auxiliary machines using a trunk line.
  • FIG. 3A and FIG. 3B are diagrams showing a cross-sectional structure of the backbone trunk portion 61 having two power supply lines. Note that FIG. 3A and FIG. 3B are different in the cross-sectional shapes of the power supply line and the communication line that constitute the backbone trunk part 61.
  • the signal system power line 71, the signal system ground line 72, the drive system power line 73, and the drive system ground line 74 are arranged in a row and arranged in parallel to each other.
  • a drive system power supply line 73 is disposed between the signal system ground line 72 and the drive system ground line 74.
  • This arrangement can suppress electromagnetic noise from being radiated to the outside. That is, since a large current flows through the drive system power supply line 73, a large electromagnetic noise is radiated from the drive system power supply line 73 along with the switching of the current. However, since the potential of the signal system ground line 72 and the potential of the drive system ground line 74 are substantially the same as the ground reference potential, electromagnetic shielding can be performed. The signal system ground line 72 and the drive system ground line 74 can be shielded. The radiation of electromagnetic noise to the outside can be reduced.
  • the signal system power supply line 71, the signal system ground line 72, the drive system power supply line 73, and the drive system ground line 74 in the positional relationship shown in FIG. It is integrated by covering the outside with an exterior material (not shown). Further, since the current flowing through the signal system power line 71 and the signal system ground line 72 is relatively small, the cross-sectional area of the internal conductor 75 in the signal system power line 71 and the signal system ground line 72 is determined as the drive system power line 73 and the drive system. The cross sectional area of the earth line 74 may be smaller.
  • each of the signal system power supply line 71B, the signal system ground line 72B, the drive system power supply line 73B, and the drive system ground line 74B constituting the backbone trunk portion 61 has a flat cross section. It is comprised by the plate-shaped covered electric wire (bus bar) which has a shape. Each covered electric wire includes a plate-like inner conductor 77 having a flat cross-sectional shape and an insulating coating 78 covering the entire periphery thereof. The insulating coating 78 is made of resin or the like. Therefore, the signal system power line 71B, the signal system ground line 72B, the drive system power line 73B, and the drive system ground line 74B are electrically isolated from each other.
  • the signal system power supply line 71B, the signal system ground line 72B, the drive system power supply line 73B, and the drive system ground line 74B are arranged in a row in parallel with each other in a stacked state in the thickness direction thereof.
  • the drive system power line 73B is arranged in a state of being sandwiched between the signal system ground line 72B and the drive system ground line 74B.
  • This arrangement can suppress electromagnetic noise from being radiated to the outside. That is, since a large current flows through the drive system power supply line 73B, a large electromagnetic noise is radiated from the drive system power supply line 73B when the current is switched. However, since the potential of the signal system ground line 72B and the potential of the drive system ground line 74B are substantially the same as the ground reference potential, electromagnetic shielding can be performed. The signal system ground line 72B and the drive system ground line 74B The radiation of electromagnetic noise to the outside can be reduced.
  • the signal system power supply line 71B, the signal system ground line 72B, the drive system power supply line 73B, and the drive system ground line 74B in the positional relationship shown in FIG. It is integrated by covering the outside with an exterior material (not shown). Further, since the current flowing through the signal system power line 71B and the signal system ground line 72B is relatively small, the cross-sectional area of the internal conductor 75 in the signal system power line 71B and the signal system ground line 72B is set to the drive system power line 73B and the drive system. You may make it smaller than the cross-sectional area of the earth line 74B.
  • 4 (a) and 4 (b) are cross-sectional views of the backbone trunk portion 61 in which the positional relationship of each component is different from the backbone trunk portion shown in FIGS. 3 (a) and 3 (b).
  • FIG. The backbone trunk lines 62 and 63 have the same configuration as that of the backbone trunk line 61.
  • 4A has the same signal system power supply line 71, signal system ground line 72, drive system power supply line 73, and drive system ground line 74 as the configuration shown in FIG. 3A. However, these layouts are different from the configuration shown in FIG.
  • the signal system power supply line 71, the signal system ground line 72, the drive system power supply line 73, and the drive system ground line 74 are arranged in a line in parallel with each other. Then, the signal system ground line 72 and the drive system ground line 74 are arranged outside, and the signal system power line 71 and the drive system power line 73 are arranged between them.
  • This arrangement can suppress electromagnetic noise from being radiated to the outside. That is, since a large current flows through the drive system power supply line 73, a large electromagnetic noise is radiated from the drive system power supply line 73 along with the switching of the current. Although relatively small, electromagnetic noise is also radiated from the signal power line 71. However, since the potential of the signal system ground line 72 and the potential of the drive system ground line 74 are substantially the same as the ground reference potential, electromagnetic shielding can be performed. The signal system ground line 72 and the drive system ground line 74 can be shielded. The radiation of electromagnetic noise to the outside can be reduced.
  • the signal system power line 71 In order to fix the signal system power line 71, the signal system ground line 72, the drive system power line 73, and the drive system ground line 74 in the positional relationship shown in FIG. It is integrated by covering the outside with an exterior material (not shown).
  • the signal system power line 71B, the signal system ground line 72B, the drive system power line 73B, and the drive system ground line 74B are stacked in the thickness direction and arranged in a row and arranged in parallel to each other. Yes.
  • the signal system power line 71B and the drive system power line 73B are arranged in a state sandwiched between the signal system ground line 72B and the drive system ground line 74B.
  • This arrangement can suppress electromagnetic noise from being radiated to the outside. That is, since a large current flows through the drive system power supply line 73B, a large electromagnetic noise is radiated from the drive system power supply line 73B when the current is switched. Although relatively small, electromagnetic noise is also radiated from the signal power line 71B. However, since the potential of the signal system ground line 72B and the potential of the drive system ground line 74B are substantially the same as the ground reference potential, electromagnetic shielding can be performed. The signal system ground line 72B and the drive system ground line 74B The radiation of electromagnetic noise to the outside can be reduced.
  • FIG. 5 A cross-sectional structure of the backbone trunk line 61C is shown in FIG.
  • the backbone trunk portion 61C shown in FIG. 5 can perform the same function as the backbone trunk portion 61 having the configuration shown in FIG.
  • the signal system power line 71B, the signal system ground line 72B, and the drive system power line 73B which are formed in a plate shape, are stacked, and the outside is covered with an exterior material (housing) Is covered with a drive system ground line 74C.
  • the exterior material is made of a conductive metal such as aluminum, it can be used as a grounding conductor. Moreover, since this exterior material can ensure a sufficiently large cross-sectional area easily, it is suitable as a grounding conductor that allows a large current to flow.
  • the function of an electromagnetic shield can be effectively achieved. That is, since the potential of the drive system ground line 74C is substantially the same as the ground reference potential, electromagnetic noise generated by the current flowing through the drive system power supply line 73 and the like is not radiated to the outside of the backbone trunk section 61C.
  • the backbone trunk part 61D is similar to the backbone trunk part 61C in that it has a tubular drive system ground line 74C, but the entire outer periphery of the drive system ground line 74C is the exterior. It differs in that it is covered with a material (housing) 70.
  • the exterior material 70 is made of an insulating material such as resin, and is formed in a tubular shape so as to cover the ground line 74C. Thereby, not only can the same function as the backbone trunk part 61C be achieved, but also the outer peripheral exterior material 70 functions as a cover, so that the durability of the backbone trunk part 61D can be improved.
  • the backbone trunk part 61E shown in FIG. 6B has an exterior material 70 similar to that of the backbone trunk part 61D, and only the cross-sectional shapes of the drive system power line, the signal system power line, and the signal system ground line are included. Is different. Accordingly, the durability of the backbone trunk part 61E can be improved similarly to the backbone trunk part 61D.
  • FIG. 7 A cross-sectional structure of the backbone trunk line 61F is shown in FIG.
  • the backbone trunk portion 61F shown in FIG. 7 can also perform the same function as the backbone trunk portion 61 having the configuration shown in FIG.
  • the signal system power line 71B, the drive system power line 73B, and the drive system ground line 74B formed in a plate shape are stacked, and the outside is covered with the exterior material 70.
  • the exterior material 70 can be made of, for example, a resin as in the second modification, but may be a conductor.
  • the outer periphery of the exterior material 70 is covered with a thin conductor (metal such as aluminum) that constitutes the signal system ground line 72C.
  • the signal ground line 72 may be disposed along the inner wall of the exterior material 70. Since a large current does not flow through the signal system ground line 72C, it is not necessary to increase the cross-sectional area of this conductor.
  • the signal system ground line 72C is disposed around the exterior material 70 and covers the outside of the signal system power supply line 71B and the drive system power supply line 73, thereby effectively serving as an electromagnetic shield. Can do. That is, since the potential of the signal system ground line 72C is substantially the same as the ground reference potential, electromagnetic noise generated by the current flowing through the drive system power supply line 73 and the like is not radiated to the outside of the backbone trunk section 61F.
  • the backbone trunk 61G has a tubular drive system ground line 74C, and the entire outer periphery of the drive system ground line 74C is covered with an exterior material (housing) 70. Similar to the backbone trunk portion 61D shown in the modified example 2, but inside the tubular drive system ground line 74C, the signal system power line 71, the signal system ground line 72, the drive system power line 73, and the drive system ground It differs from the backbone trunk 61D in that it has four lines 74.
  • the backbone trunk 61G has two drive system ground lines, ie, a drive system ground line 74 having a circular cross section and a tubular drive system ground line 74C as drive system ground lines.
  • a drive system ground line 74 having a circular cross section
  • a tubular drive system ground line 74C as drive system ground lines.
  • the total cross-sectional area of the ground line can be secured more widely, so that it is not only suitable as a grounding conductor for passing a large current, but the drive system ground line 74C is connected to the signal system power line 71 and the drive system power line.
  • the function of an electromagnetic shield can be effectively achieved.
  • the backbone trunk part 61H shown in FIG. 8B is similar to the backbone trunk part 61G in that it has a tubular drive system ground line 74C, and a drive system power line, signal system power line, and signal system ground line surrounded by this. And a drive system ground line, and only the cross-sectional shapes thereof are different. Therefore, also in the backbone trunk portion 61H, the drive system ground line 74C is not only suitable as a grounding conductor for passing a large current, but also covers the outside of the signal system power line 71 and the drive system power line 73. It can also effectively serve as an electromagnetic shield.
  • FIG. 9 is a connection diagram illustrating an in-vehicle device including a vehicle circuit body according to the second embodiment of the present invention.
  • symbol is attached
  • the power supply lines 79 of the backbone trunk lines 61B, 62B, and 63B are commonly used by the drive system auxiliary machines 81, 83, and 85 and the signal system auxiliary machines 82, 84, and 86. It is constituted as follows. That is, the signal power supply line 71 and the drive power supply line 73 shown in FIG. Further, the power distribution unit in the backbone control boxes 64B, 65B, 66B also has a common signal system and drive system.
  • the power supply line 79 is commonly used by the signal system and the drive system, the signal system is caused by a voltage drop due to the large current flowing in the drive system auxiliary machines 81, 83, and 85. There is a possibility that the power supply voltage applied to the auxiliary machines 82, 84, 86 is lowered.
  • the ground-side line is independent for the signal system and the drive system as in the configuration shown in FIG. 2, the ground potential of the signal system auxiliary devices 82, 84, 86 is not affected by a large current. Therefore, it is possible to prevent the malfunction of the signal auxiliary machine.
  • Each of the backbone trunk lines 61B, 62B, and 63B shown in FIG. 9 includes three lines, that is, a power supply line 79, a signal system ground line 72, and a drive system ground line 74.
  • a power supply line 79 for example, a power supply line 79, a signal system ground line 72, and a drive system ground line 74.
  • FIG. 10 (b), FIG. 11 (a), and FIG. 11 (b) can be employed.
  • each of the power supply line 79, the signal system ground line 72, and the drive system ground line 74 constituting the backbone trunk portion 61B is configured by a covered electric wire having a circular cross-sectional shape. Yes.
  • Each covered electric wire is configured by an inner conductor 75 having a circular cross-sectional shape and an insulating coating 76 covering the entire periphery thereof.
  • the insulating coating 76 is made of resin or the like. Therefore, the power supply line 79, the signal system ground line 72, and the drive system ground line 74 are electrically separated from each other.
  • the power supply line 79, the signal system ground line 72, and the drive system ground line 74 are arranged in parallel in a row.
  • a power supply line 79 is arranged in a state sandwiched between the signal system ground line 72 and the drive system ground line 74.
  • This arrangement can suppress electromagnetic noise from being radiated to the outside. That is, since a large current flows through the power supply line 79, a large electromagnetic noise is radiated from the power supply line 79 along with the switching of the current. However, since the potential of the signal system ground line 72 and the potential of the drive system ground line 74 are substantially the same as the ground reference potential, electromagnetic shielding can be performed. The signal system ground line 72 and the drive system ground line 74 can be shielded. The radiation of electromagnetic noise to the outside can be reduced.
  • the signal system ground line 72, and the drive system ground line 74 are integrated by bonding, for example, or an exterior (not shown) It is integrated by covering the outside with a material. Further, since the current flowing through the signal system ground line 72 is relatively small, the cross-sectional area of the internal conductor 75 in the signal system ground line 72 can actually be made smaller than that of the drive system ground line 74.
  • each of the power supply line 79B, the signal system ground line 72B, and the drive system ground line 74B constituting the backbone trunk portion 61B is a plate-shaped covered electric wire having a flat cross-sectional shape. It is configured. Each covered electric wire includes a plate-like inner conductor 77 having a flat cross-sectional shape and an insulating coating 78 covering the entire periphery thereof. The insulating coating 78 is made of resin or the like. Therefore, the power supply line 79B, the signal system ground line 72B, and the drive system ground line 74B are electrically separated from each other.
  • the power supply line 79B, the signal system ground line 72B, and the drive system ground line 74B are arranged in parallel in a row in a state where they are stacked in the thickness direction thereof.
  • a power supply line 79B is arranged in a state sandwiched between the signal system ground line 72B and the drive system ground line 74B.
  • This arrangement can suppress electromagnetic noise from being radiated to the outside. That is, since a large current flows through the power supply line 79B, a large electromagnetic noise is radiated from the power supply line 79B when the current is switched. However, since the potential of the signal system ground line 72B and the potential of the drive system ground line 74B are substantially the same as the ground reference potential, electromagnetic shielding can be performed. The signal system ground line 72B and the drive system ground line 74B The radiation of electromagnetic noise to the outside can be reduced.
  • the signal system ground line 72B, and the drive system ground line 74B are integrated by bonding, for example, or an exterior (not shown) It is integrated by covering the outside with a material. Further, since the current flowing through the signal system ground line 72B is relatively small, in practice, the cross-sectional area of the internal conductor 75 in the signal system ground line 72B can be made smaller than that of the drive system ground line 74B.
  • the signal system ground line 72, the drive system ground line 74, and the power supply line 79 are arranged in a line. Further, a signal system ground line 72 is disposed at the left end of this column, a drive system ground line 74 is disposed at the center, and a power supply line 79 is disposed at the right end.
  • the power line 79 is disposed at a position close to the surface of the vehicle body or the surface of the auxiliary machine, for example. Therefore, the signal system ground line 72 and the drive system ground line 74 are arranged at positions outside the surface of the vehicle body or the like. For this reason, the electromagnetic shield function of the signal system ground line 72 and the drive system ground line 74 can reduce the electromagnetic noise radiated from the power supply line 79 from being radiated to the outside.
  • the signal system ground line 72B, the drive system ground line 74B, and the power supply line 79B are arranged in a line in the thickness direction and stacked.
  • a signal system ground line 72B is disposed at the top of this column
  • a drive system ground line 74B is disposed at the center
  • a power supply line 79B is disposed at the bottom.
  • the lowermost power line 79B is disposed at a position close to the surface of the vehicle body or the surface of the auxiliary machine, for example. Therefore, the signal system ground line 72B and the drive system ground line 74B are arranged at positions outside the surface of the vehicle body or the like. Therefore, the electromagnetic shield function of the signal system ground line 72B and the drive system ground line 74B can reduce the electromagnetic noise radiated from the power supply line 79B from being radiated to the outside.
  • FIGS. 12 (a) and 12 (b) The cross-sectional structures of the backbone trunk lines 61J and 61K are shown in FIGS. 12 (a) and 12 (b), respectively.
  • the backbone trunk 61J is shown in FIG. 10 in that the signal power supply line 71 and the drive power supply line 73 shown in FIG.
  • it is similar to the structure of the backbone trunk part 61B, it differs from the backbone trunk part 61B in that it has a drive system ground line 74C that is not circular in cross section but tubular.
  • the entire outer periphery of the drive system ground line 74 ⁇ / b> C is also different from the backbone trunk part 61 ⁇ / b> B in that it is covered with an exterior material (housing) 70.
  • the exterior material 70 is made of an insulating material such as resin, and is formed in a tubular shape so as to cover the ground line 74C.
  • the outer peripheral exterior material 70 functions as a cover, so that the durability of the backbone trunk portion 61J can be improved. Further, since only two of the signal system ground line 72 and the power supply line 79 are accommodated in the pipe formed by the ground line 74C, the cross-sectional area of the backbone trunk line portion 61J can be further reduced.
  • the backbone trunk portion 61K shown in FIG. 12B has the same exterior material 70 as the backbone trunk portion 61J, and only the cross-sectional shapes of the power supply line and the signal system ground line are different. Therefore, the same effect as the backbone trunk line 61J can be obtained also in the backbone trunk line 61K.
  • both the signal system ground line 72 and the drive system ground line 74 are included in the backbone trunk lines 61 to 63.
  • body earth in the case of an in-vehicle device mounted on a vehicle whose body is made of metal, it is also possible to use body earth.
  • any one of the signal system ground line 72 and the drive system ground line 74 in the backbone trunk lines 61 to 63 can be replaced with the body ground.
  • the signal system ground line 72 and the drive system ground line 74 that are independent from each other are provided, and the grounds of the drive system auxiliary machine 81 and the signal system auxiliary machine 82 are separated from each other. It is possible to prevent the ground potential of the machine 82 from floating or fluctuating from the reference potential, and to prevent malfunction of the signal system auxiliary machine 82. Moreover, since the fall of the power supply voltage applied to the signal system auxiliary machine 82 can be suppressed, it can avoid that the performance of the signal system auxiliary machine 82 falls compared with a rating. In addition, as shown in FIG. 2, also for the power supply line, the drive system auxiliary machine 81 and the signal system auxiliary machine 82 are separated from each other, so that the power supply voltage applied to the signal system auxiliary machine 82 can be further suppressed.
  • a vehicle circuit body installed in a vehicle A trunk line (backbone trunk line portions 61 to 63) connectable to a plurality of auxiliary machines mounted on the vehicle via branch lines or branch circuits;
  • the trunk line is A power line (signal system power line 71, drive system power line 73, power line 79) capable of distributing power from a power source mounted on the vehicle and supplying the power to each of the auxiliary machines;
  • An earth line capable of being electrically connected between the ground terminal of the power source and the plurality of auxiliary machines;
  • the ground line includes a first ground line (drive system ground line 74) connected to an auxiliary machine (drive system auxiliary machines 81, 83, 85) through which a large current flows among the plurality of auxiliary machines, and the large current.
  • the power supply line includes a first power supply line (drive system power supply line 73) that supplies power to the auxiliary machine (drive system auxiliary machines 81, 83, and 85) through which the large current flows, and the large current.
  • the first ground line and the second ground line are electrically insulated from each other and arranged side by side in a substantially parallel state on the same wiring path (see FIG. 3).
  • the vehicle circuit body according to the above [1] or [2].
  • the power supply line is arranged in a space between the first ground line and the second ground line (see FIG. 3).
  • the vehicle circuit body according to the above [3].
  • the second ground line is disposed outside the power line and the first ground line at a position farther away from the surface of the vehicle body of the vehicle (see FIG. 4).
  • the vehicle circuit body according to the above [3].
  • the first ground line is formed in a tubular shape, The vehicle circuit body according to [1] or [2], wherein the power supply line and the second ground line are arranged in a pipe of the first ground line.
  • the circuit body for vehicles which can suppress the malfunction of an auxiliary machine and the performance fall of an auxiliary machine
  • the present invention having this effect is useful for a wire harness mounted on a vehicle or a vehicle circuit body having a function equivalent to the wire harness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Insulated Conductors (AREA)
  • Connection Or Junction Boxes (AREA)

Abstract

In the present invention, a driving system earth line (74) for grounding driving system accessories (81, 83, 85) in which large currents flow, and a signal system earth line (72) for grounding signal system accessories (82, 84, 86) in which small currents flow, are provided independent of each other, on backbone main lines (61-63). It is possible to prevent excitation of earth potentials of the signal system accessories (82, 84, 86) from a reference potential or voltage fluctuation-induced malfunction, which are caused by a voltage drop in the earth path due to the influence of a large current. Further, a signal system power line (71) and a driving system power line (73) which are independent of each other are provided to suppress a decrease in a power supply voltage. In addition, the influence of electromagnetic noise caused by a large current is reduced.

Description

車両用回路体Circuit body for vehicle
 本発明は、車両に搭載されるワイヤハーネスまたはそれと同等の機能を有する車両用回路体に関し、特にアース接続のための技術に関する。 The present invention relates to a wire harness mounted on a vehicle or a vehicle circuit body having a function equivalent to the wire harness, and more particularly to a technique for ground connection.
 従来より、車両においては補機と呼ばれる様々な種類の電装品が車体の様々な箇所に搭載されている。このような補機のほとんどは電源電力の供給を必要とする。また、複数の補機の間で通信を行ったり、スイッチ、センサ等の信号を伝送する場合もある。 Conventionally, various types of electrical equipment called auxiliary machines are mounted on various parts of the vehicle body. Most of such auxiliary machines require supply of power. In some cases, communication is performed between a plurality of auxiliary machines, and signals from switches, sensors, and the like are transmitted.
 したがって、一般的な車両においては、多数の電線等の集合体であるワイヤハーネスが車体上で様々な箇所に配索されている。そして、このワイヤハーネスを利用して、車両上の電源(バッテリーやオルタネータ)と各補機との間を接続したり、補機同士の間を接続している。 Therefore, in a general vehicle, wire harnesses, which are aggregates of a large number of electric wires, are routed at various locations on the vehicle body. And using this wire harness, the power supply (battery and alternator) on a vehicle and each auxiliary machine are connected, or between auxiliary machines is connected.
 アース接続に関しては、一般的な車両であれば車体が導電性の金属で構成されているので、車体をボディアースとして利用することが可能であり、ワイヤハーネスには必ずしもアースラインを組み込む必要はない。一方、車体の大部分が樹脂で構成されている車両の場合には、ボディアースが利用できないので、アース接続用の部材を用意する必要がある。 Regarding the ground connection, since the vehicle body is made of a conductive metal in a general vehicle, the vehicle body can be used as a body ground, and it is not always necessary to incorporate a ground line in the wire harness. . On the other hand, in the case of a vehicle in which most of the vehicle body is made of resin, body grounding cannot be used, and thus a member for ground connection needs to be prepared.
 特許文献1に示されているワイヤハーネスは、幹線に、電源ライン、通信ライン、およびアースラインを備えている。したがって、ボディアースを利用しなくても、幹線上のアースラインを利用して各補機を車両側のアースと接続することができる。 The wire harness disclosed in Patent Document 1 includes a power line, a communication line, and an earth line on the main line. Therefore, each auxiliary machine can be connected to the vehicle-side ground using the ground line on the trunk line without using the body ground.
 また、特許文献2には、断面形状がL字状の長尺のアース部材を設け、このアース部材と隣接する位置にワイヤハーネスを配置するワイヤハーネスの配索構造が開示されている。したがって、ワイヤハーネスにアースラインを組み込まなくても、各補機は、ワイヤハーネスの近傍にあるアース部材を利用してアース接続することができる。 Further, Patent Document 2 discloses a wiring structure of a wire harness in which a long grounding member having an L-shaped cross section is provided and the wire harness is disposed at a position adjacent to the grounding member. Therefore, each auxiliary machine can be connected to the ground using the ground member in the vicinity of the wire harness without incorporating the ground line into the wire harness.
日本国特開2015-227089号公報Japanese Unexamined Patent Publication No. 2015-227089 日本国特開2016-111826号公報Japanese Unexamined Patent Publication No. 2016-111826
 ところで、アースラインにも電気抵抗が存在するので、特に大きな電源電流がアースに流れた場合には、比較的大きな電圧降下が発生する。また、電流が集中するような箇所でも大きな電圧降下が発生する。したがって、各補機とアースラインとの接続点における電位が、補機ごとに変動する。 By the way, since the electrical resistance also exists in the ground line, a relatively large voltage drop occurs particularly when a large power supply current flows to the ground. Also, a large voltage drop occurs at a location where current is concentrated. Therefore, the potential at the connection point between each auxiliary machine and the earth line varies for each auxiliary machine.
 例えば、車両のボディアースを利用する場合には、アース電流が通過する経路の断面積が十分に大きいので、各補機が、発生する電圧降下によって悪影響を受けることは抑制できる。しかし、ワイヤハーネスに組み込んだアースラインや特別なアース部材を利用する場合には、アース電流が通過する経路の断面積を十分に確保できない場合があるので、アースにおける電圧降下が生じる可能性が高くなる。 For example, when the vehicle body ground is used, the cross-sectional area of the path through which the ground current passes is sufficiently large, so that each auxiliary machine can be prevented from being adversely affected by the generated voltage drop. However, when using an earth line or a special earth member incorporated in the wire harness, there is a possibility that a voltage drop at the earth will occur because there may be a case where a sufficient cross-sectional area of the path through which the earth current passes may not be secured. Become.
 図13に示した構成例においては、バッテリー101の正極側端子と接続される電源ラインに信号系負荷102と、駆動系負荷103とが接続してある。また、信号系負荷102のアース端子、および駆動系負荷103のアース端子は、それぞれ共通のアース構造体104の異なる箇所に接続してあり、このアース構造体104がバッテリー101の負極側端子と接続されている。ここで、アース構造体104上の信号系負荷接地点の電位変化(アース(GND)の基準電位に対する浮き)V11および駆動系負荷接地点の電位変化V12は次式で表される。 In the configuration example shown in FIG. 13, a signal system load 102 and a drive system load 103 are connected to a power supply line connected to the positive terminal of the battery 101. In addition, the ground terminal of the signal system load 102 and the ground terminal of the drive system load 103 are connected to different parts of the common ground structure 104, respectively, and this ground structure 104 is connected to the negative terminal of the battery 101. Has been. Here, the potential change (floating relative to the reference potential of ground (GND)) V11 and the potential change V12 of the drive system load ground point on the ground structure 104 are expressed by the following equations.
V11=(I1p+I1s)×Z11
V12=V11+11p×Z12
但し、
 I1s:信号系負荷の電源電流
 I1p:駆動系負荷の電源電流
 Z11:アース構造体上の信号系負荷接地点からバッテリーまでの経路の電気抵抗
 Z12:アース構造体上の駆動系負荷接地点から信号系負荷接地点までの電気抵抗
V11 = (I1p + I1s) × Z11
V12 = V11 + 11p × Z12
However,
I1s: Power supply current of the signal system load I1p: Power supply current of the drive system load Z11: Electric resistance of the path from the signal system load ground point on the ground structure to the battery Z12: Signal from the drive system load ground point on the ground structure Electrical resistance to system load ground point
 つまり、信号系負荷102のアース経路には、電流I1s、I1pの両方が共通に通過するので、電流I1sが小さい場合であっても、電流I1pが大きいと大きな電位変化V11が発生する。実際には、車両における信号系負荷の電流I1sは例えば1[A]以下程度と非常に小さい場合が多いが、駆動系負荷の合計の電流I1pは200[A]以上になることも多いので大きな電位変化V11が発生する。 That is, since both the currents I1s and I1p pass through the ground path of the signal system load 102 in common, even if the current I1s is small, a large potential change V11 occurs when the current I1p is large. Actually, the current I1s of the signal system load in the vehicle is often very small, for example, about 1 [A] or less, but the total current I1p of the drive system load is often 200 [A] or more, which is large. A potential change V11 occurs.
 そして、信号系負荷のアース電位が大きく変動すると、信号系負荷において例えば入力信号や制御信号の電位の高/低を識別する場合の閾値が変動することになり、誤動作の大きな要因になる。例えば、駆動系負荷103が作動する際に、同時に信号系負荷102に誤動作が発生する可能性が高くなる。 When the ground potential of the signal system load fluctuates greatly, for example, the threshold value for identifying the high / low of the potential of the input signal or the control signal in the signal system load fluctuates, which is a major cause of malfunction. For example, when the drive system load 103 operates, there is a high possibility that a malfunction occurs in the signal system load 102 at the same time.
 また、アースの電気抵抗Z11、Z12が大きいと、電圧降下(V11+V12)の分だけ、駆動系負荷103の端子間に加わる電源電圧が低下するので、駆動系負荷103の出力が低下し、本来の性能が得られなくなる。また、アースだけでなく電源ライン側についても、同様に電流に応じて電圧降下が発生するので、その影響も生じる。 Further, if the ground electrical resistances Z11 and Z12 are large, the power supply voltage applied between the terminals of the drive system load 103 is reduced by the voltage drop (V11 + V12), so that the output of the drive system load 103 is reduced, Performance cannot be obtained. Further, not only the ground but also the power supply line side similarly causes a voltage drop according to the current.
 一方、駆動系負荷103を高速でスイッチングするような場合には、スイッチングする電流が大きいので、大きな電磁ノイズが線路からその周囲に輻射することになる。そして、輻射した電磁ノイズが周囲の線路を経由して、あるいは直接、信号系負荷102内の制御回路に侵入し、補機の誤動作の原因になる。 On the other hand, when the drive system load 103 is switched at a high speed, since the current to be switched is large, a large electromagnetic noise is radiated from the line to the surroundings. Then, the radiated electromagnetic noise enters the control circuit in the signal system load 102 via the surrounding lines or directly, causing malfunction of the auxiliary machine.
 本発明は、上述した事情に鑑みてなされたものであり、その目的は、車両上の電源から様々な補機に対して大電流が流れた場合であっても、補機の誤動作や補機の性能低下を抑制することが可能な車両用回路体を提供することにある。 The present invention has been made in view of the above-described circumstances, and the purpose of the present invention is to prevent the malfunction of an auxiliary machine and the auxiliary machine even when a large current flows from a power source on the vehicle to various auxiliary machines. An object of the present invention is to provide a vehicular circuit body capable of suppressing the performance degradation.
 前述した目的を達成するために、本発明に係る車両用回路体は、下記(1)~(6)を特徴としている。
(1) 車両に設置される車両用回路体であって、
 前記車両に搭載されている複数の補機と枝線又は分岐回路を介して接続可能な幹線を備え、
 前記幹線は、
 前記車両に搭載されている電源からの電力を分配して複数の前記補機にそれぞれ供給可能な電源ラインと、
 前記電源のアース端子と、複数の前記補機との間を電気的に接続可能なアースラインと、
 通信機能を有する複数の前記補機が信号用伝送路として共用する通信ラインと、を備え、
 前記アースラインは、複数の前記補機のうち大電流が流れる補機と接続される第1のアースラインと、前記大電流よりも小さい電流が流れる補機と接続される第2のアースラインとを含む
 車両用回路体。
In order to achieve the above-described object, a vehicle circuit body according to the present invention is characterized by the following (1) to (6).
(1) A vehicle circuit body installed in a vehicle,
A trunk line that can be connected to a plurality of auxiliary machines mounted on the vehicle via branch lines or branch circuits,
The trunk line is
A power line capable of distributing power from a power source mounted on the vehicle and supplying each of the plurality of auxiliary machines;
An earth line capable of being electrically connected between the ground terminal of the power source and the plurality of auxiliary machines;
A plurality of auxiliary devices having a communication function, and a communication line shared as a signal transmission path,
The ground line includes a first ground line connected to an auxiliary machine through which a large current flows among the plurality of auxiliary machines, and a second ground line connected to an auxiliary machine through which a current smaller than the large current flows. Including a vehicle circuit body.
(2) 前記電源ラインは、前記大電流が流れる補機に電力を供給する第1の電源ラインと、前記大電流よりも小さい電流が流れる補機に電力を供給する第2の電源ラインとを含む
 上記(1)に記載の車両用回路体。
(2) The power supply line includes: a first power supply line that supplies power to the auxiliary machine through which the large current flows; and a second power supply line that supplies power to the auxiliary machine through which a current smaller than the large current flows. The vehicle circuit body according to (1).
(3) 前記第1のアースラインと前記第2のアースラインとが、同一の配索経路上に互いにほぼ平行な状態で、互いに電気的に絶縁し、並べて配置してある
 上記(1)又は(2)に記載の車両用回路体。
(3) The first ground line and the second ground line are electrically insulated from each other and arranged side by side in a substantially parallel state on the same wiring path. The vehicle circuit body according to (2).
(4) 前記第1のアースラインと前記第2のアースラインとで挟まれた空間に、前記電源ラインが配置してある
 上記(3)に記載の車両用回路体。
(4) The vehicle circuit body according to (3), wherein the power supply line is arranged in a space sandwiched between the first ground line and the second ground line.
(5) 前記第2のアースラインが、前記電源ラインおよび前記第1のアースラインよりも、前記車両の車体上の面からの距離が遠くなる外側の位置に配置してある
 上記(3)に記載の車両用回路体。
(5) In the above (3), the second ground line is disposed at an outer position where the distance from the surface on the vehicle body of the vehicle is farther than the power line and the first ground line. The circuit body for vehicles as described.
(6) 前記第1のアースラインが、管状に形成され、
 前記電源ラインおよび前記第2のアースラインが、前記第1のアースラインの管内に配置されている
 上記(1)又は(2)に記載の車両用回路体。
(6) The first ground line is formed in a tubular shape,
The vehicle circuit body according to (1) or (2), wherein the power supply line and the second earth line are arranged in a pipe of the first earth line.
 上記(1)の構成の車両用回路体によれば、接続される補機に供給される電流の大小に応じて選択的に利用される第1のアースラインと、第2のアースラインとが独立した状態で備わっているので、補機の誤動作を抑制することができる。すなわち、大電流は第1のアースラインのみに流れ、第2のアースラインに流れる電流は小さいので、第2のアースラインに発生する電圧降下は小さくなり、電流の小さい補機のアース電位はほとんど変化せず、誤動作の原因にはならない。また、第2のアースラインに流れる電流は小さく、この経路の導電体は断面積を大きくする必要がないので、第1のアースラインと、第2のアースラインとの両方を備える場合でも、幹線の肥大化を防止できる。 According to the vehicle circuit body having the configuration of (1) above, the first ground line and the second ground line that are selectively used according to the magnitude of the current supplied to the connected auxiliary machine are Since it is provided in an independent state, it is possible to suppress malfunction of the auxiliary machine. That is, since a large current flows only in the first ground line and a small current flows in the second ground line, the voltage drop generated in the second ground line is small, and the ground potential of the auxiliary machine having a small current is almost the same. It does not change and does not cause malfunction. Further, since the current flowing through the second earth line is small and the conductor of this path does not need to have a large cross-sectional area, the trunk line can be provided even when both the first earth line and the second earth line are provided. Can be prevented.
 上記(2)の構成の車両用回路体によれば、接続される補機に供給される電流の大小に応じて選択的に利用される第1の電源ラインと第2の電源ラインとが独立した状態で備わっているので、電流の小さい補機の端子間に印加される電源電圧の低下を防止できる。また、第2の電源ラインに流れる電流は小さく、この経路の導電体は断面積を大きくする必要がないので、第1の電源ラインと、第2の電源ラインとの両方を備える場合でも、幹線の肥大化を防止できる。 According to the vehicle circuit body having the configuration (2), the first power supply line and the second power supply line that are selectively used according to the magnitude of the current supplied to the connected auxiliary machine are independent. Therefore, it is possible to prevent a decrease in the power supply voltage applied between the terminals of the auxiliary machine having a small current. Further, since the current flowing through the second power supply line is small and the conductor of this path does not need to have a large cross-sectional area, the trunk line can be provided even when both the first power supply line and the second power supply line are provided. Can be prevented.
 上記(3)の構成の車両用回路体によれば、幹線上に第1のアースラインと第2のアースラインとが並べて配置してあるので、車両のボディアースや特別なアース部材が利用できない環境であっても、幹線を利用して様々な種類の補機をアース接続することができる。 According to the vehicle circuit body having the configuration of (3) above, the first ground line and the second ground line are arranged side by side on the main line, so that the vehicle body ground or a special ground member cannot be used. Even in the environment, various types of auxiliary machines can be connected to the ground using the trunk line.
 上記(4)の構成の車両用回路体によれば、第1のアースラインおよび第2のアースラインは電源の-側(グラウンド側)に接続されているので、これらを電磁シールドとして利用できる。すなわち、電源ラインからその電流により輻射される電磁ノイズが、第1のアースラインの外側、および第2のアースラインの外側に輻射されないようにシールドすることができ、これらの外側に設置された補機に対するノイズの悪影響を避けることができる。 According to the vehicle circuit body configured as described in (4) above, the first ground line and the second ground line are connected to the negative side (ground side) of the power source, so that they can be used as electromagnetic shields. That is, the electromagnetic noise radiated from the power supply line due to the current can be shielded from being radiated outside the first ground line and outside the second ground line. The adverse effects of noise on the machine can be avoided.
 上記(5)の構成の車両用回路体によれば、電位がほとんど変化しない第2のアースラインを最も外側の位置に配置してあるので、第2のアースラインを電磁シールドとして利用できる。すなわち、電源ラインまたは第1のアースラインからその電流により輻射される電磁ノイズは、第2のアースラインの外側への輻射は低減するので、外側の補機に対するノイズの悪影響を避けることができる。 According to the vehicle circuit body configured as described in (5) above, the second ground line that is hardly changed in potential is arranged at the outermost position, so that the second ground line can be used as an electromagnetic shield. That is, the electromagnetic noise radiated by the current from the power supply line or the first ground line reduces the radiation to the outside of the second ground line, so that it is possible to avoid the adverse effect of the noise on the external auxiliary equipment.
 上記(6)の構成の車両用回路体によれば、大電流が流れる第1のアースラインを管状にすることにより、幹線の肥大化を抑制しながら第1のアースラインに生じる電圧降下を抑制できる。更に、第1のアースラインを電磁シールドとして利用できるので、電源ラインからその電流により輻射される電磁ノイズが、第1のアースラインの外側に輻射されないようにシールドすることができ、これらの外側に設置された補機に対するノイズの悪影響を避けることができる。 According to the vehicle circuit body having the configuration (6), the voltage drop generated in the first ground line is suppressed while suppressing the enlargement of the main line by making the first ground line through which a large current flows into a tubular shape. it can. Furthermore, since the first ground line can be used as an electromagnetic shield, electromagnetic noise radiated by the current from the power supply line can be shielded from being radiated outside the first ground line. The adverse effect of noise on the installed auxiliary equipment can be avoided.
 本発明の車両用回路体によれば、車両上の電源から様々な補機に対して大電流が流れた場合であっても、電流の小さい補機に誤動作が生じたり、印加する電源電圧の低下により補機の性能が低下するのを抑制することが可能である。 According to the vehicle circuit body of the present invention, even when a large current flows from the power source on the vehicle to various auxiliary machines, malfunctions may occur in the auxiliary machine with a small current, or the power supply voltage to be applied It is possible to suppress the deterioration of the performance of the auxiliary machine due to the decrease.
 以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための形態(以下、「実施形態」という。)を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。 The present invention has been briefly described above. Further, the details of the present invention will be further clarified by reading through a mode for carrying out the invention described below (hereinafter referred to as “embodiment”) with reference to the accompanying drawings. .
図1は、本発明の第1実施形態における車両用回路体を含む車載装置の主要部位の構成例を示す斜視図である。FIG. 1 is a perspective view illustrating a configuration example of a main part of an in-vehicle device including a vehicle circuit body according to the first embodiment of the present invention. 図2は、本発明の第1実施形態における車両用回路体を含む車載装置の構成例を示す結線図である。FIG. 2 is a connection diagram illustrating a configuration example of an in-vehicle device including the vehicle circuit body according to the first embodiment of the present invention. 図3(a)および図3(b)は、それぞれ2本の電源ラインを有するバックボーン幹線部61の断面構造を示す縦断面図である。FIG. 3A and FIG. 3B are longitudinal sectional views showing a sectional structure of the backbone trunk portion 61 having two power supply lines. 図4(a)および図4(b)は、図3(a)および図3(b)に対し、各構成要素の位置関係を異ならせた幹線の断面構造を表す縦断面図である。4 (a) and 4 (b) are longitudinal sectional views showing the cross-sectional structure of the trunk line in which the positional relationship of each component is different from that in FIGS. 3 (a) and 3 (b). 図5は、第1実施形態の変形例1に係る幹線の断面構造を表す縦断面図である。FIG. 5 is a longitudinal cross-sectional view illustrating a cross-sectional structure of a main line according to Modification 1 of the first embodiment. 図6は、第1実施形態の変形例2に係る幹線の断面構造を表す縦断面図である。FIG. 6 is a longitudinal cross-sectional view illustrating a cross-sectional structure of a main line according to Modification 2 of the first embodiment. 図7は、第1実施形態の変形例3に係る幹線の断面構造を表す縦断面図である。FIG. 7 is a longitudinal cross-sectional view illustrating a cross-sectional structure of a trunk line according to Modification 3 of the first embodiment. 図8は、第1実施形態の変形例4に係る幹線の断面構造を表す縦断面図である。FIG. 8 is a longitudinal cross-sectional view illustrating a cross-sectional structure of a trunk line according to Modification 4 of the first embodiment. 図9は、本発明の第2実施形態における車両用回路体を含む車載装置の構成例を示す結線図である。FIG. 9 is a connection diagram illustrating a configuration example of the in-vehicle device including the vehicle circuit body according to the second embodiment of the present invention. 図10(a)および図10(b)は、それぞれ1本の電源ラインを有するバックボーン幹線部61Bの断面構造を示す縦断面図である。FIG. 10A and FIG. 10B are longitudinal sectional views showing a sectional structure of a backbone trunk portion 61B having one power supply line. 図11(a)および図11(b)は、図10(a)および図10(b)に対し、各構成要素の位置関係を異ならせた幹線の断面構造を表す縦断面図である。11 (a) and 11 (b) are longitudinal sectional views showing the cross-sectional structure of the trunk line in which the positional relationship of each component is different from that in FIGS. 10 (a) and 10 (b). 図12は、第2実施形態の変形例1に係る幹線の断面構造を表す縦断面図である。FIG. 12 is a longitudinal cross-sectional view illustrating a cross-sectional structure of a trunk line according to Modification 1 of the second embodiment. 図13は、一般的な車載装置の構成例を表す結線図である。FIG. 13 is a connection diagram illustrating a configuration example of a general vehicle-mounted device.
 本発明に関する具体的な実施形態について、各図を参照しながら以下に説明する。 Specific embodiments relating to the present invention will be described below with reference to the drawings.
(第1実施形態)
 本発明の第1実施形態における車両用回路体を含む車載装置の主要部位の構成例を図1に示す。
(First embodiment)
FIG. 1 shows a configuration example of main parts of an in-vehicle device including a vehicle circuit body in the first embodiment of the present invention.
 図1に示した車両用回路体は、車載バッテリーなどの主電源の電力を車体各部の補機、すなわち様々な電装品に対してそれぞれ供給したり、電装品同士の間で信号のやり取りを行うために必要な伝送線路として利用されるものである。つまり、機能的には一般的なワイヤハーネスと同様であるが、構造が一般的なワイヤハーネスとは大きく異なる。 The vehicle circuit body shown in FIG. 1 supplies power from a main power source such as an in-vehicle battery to auxiliary devices in various parts of the vehicle body, that is, various electrical components, and exchanges signals between electrical components. Therefore, it is used as a necessary transmission line. That is, it is functionally the same as a general wire harness, but the structure is significantly different from a general wire harness.
 図1に示した車載装置は、車体のエンジンルーム11と車室(乗員室)13とを区画するダッシュパネル16の近傍における車室内側の構成を表している。ダッシュパネル16の少し後方にあるインパネ部(インストルメントパネルの部位)には、補強材であるリーンホース(不図示)が車体の左右方向に向かって延びるように設置されている。そして、車両用回路体の構成要素の一部は、このリーンホースあるいはダッシュパネル16の近傍に配置されている。 The on-vehicle apparatus shown in FIG. 1 represents the configuration on the vehicle interior side in the vicinity of the dash panel 16 that partitions the engine room 11 and the vehicle compartment (passenger compartment) 13 of the vehicle body. A lean hose (not shown), which is a reinforcing material, is installed in an instrument panel portion (instrument panel portion) slightly behind the dash panel 16 so as to extend in the left-right direction of the vehicle body. A part of the components of the vehicle circuit body is disposed in the vicinity of the lean hose or the dash panel 16.
 図1に示した車両用回路体には、複数のバックボーン幹線部21、22、23と、複数のバックボーン制御ボックス31、32、33とが含まれている。バックボーン幹線部21、22、23の各々は、電源ライン、アースライン、通信ライン等の線路を含んでいる。また、各バックボーン幹線部内の電源ラインおよびアースラインについては、例えば断面形状が扁平な帯状の金属材料(例えば銅やアルミニウム)を採用し、これらの金属材料を互いに電気的に絶縁した状態で厚み方向に積層して構成してある。これにより、大電流の通過を許容可能になり、且つ厚み方向に対する曲げ加工が比較的容易になる。 The vehicle circuit body shown in FIG. 1 includes a plurality of backbone trunk portions 21, 22, and 23 and a plurality of backbone control boxes 31, 32, and 33. Each of the backbone trunk lines 21, 22, and 23 includes lines such as a power supply line, an earth line, and a communication line. For the power supply line and the earth line in each backbone trunk part, for example, a strip-shaped metal material (for example, copper or aluminum) having a flat cross-sectional shape is employed, and these metal materials are electrically insulated from each other in the thickness direction. It is configured to be laminated. Thereby, passage of a large current can be permitted, and bending in the thickness direction is relatively easy.
 バックボーン幹線部21および22は、ダッシュパネル16の面に沿った箇所で、リーンホースの上方の位置にリーンホースとほぼ平行になるように左右方向に向かって直線的に配置されている。また、バックボーン幹線部23は、車体の左右方向のほぼ中央部に配置されており、ダッシュパネル16の面に沿った箇所では上下方向に直線的に延びている。また、バックボーン幹線部23はダッシュパネル16と車室内フロアとの境界近傍でほぼ90度厚み方向に曲げられて、車室内フロアに沿って車体の前後方向に延びるように配置されている。なお、バックボーン幹線部21および22は、リーンホースに固定されてもよく、バックボーン幹線部21、22が固定される専用の部材を配置してもよい。 The backbone trunk portions 21 and 22 are linearly arranged in the left-right direction at positions along the surface of the dash panel 16 so as to be substantially parallel to the lean hose at a position above the lean hose. Further, the backbone trunk portion 23 is disposed at a substantially central portion in the left-right direction of the vehicle body, and linearly extends in the vertical direction at a location along the surface of the dash panel 16. Further, the backbone trunk portion 23 is bent in the thickness direction by approximately 90 degrees in the vicinity of the boundary between the dash panel 16 and the vehicle interior floor, and is disposed so as to extend in the front-rear direction of the vehicle body along the vehicle interior floor. In addition, the backbone trunk lines 21 and 22 may be fixed to the lean hose, or a dedicated member to which the backbone trunk lines 21 and 22 are fixed may be arranged.
 バックボーン制御ボックス32は車体の左右方向のほぼ中央部に配置され、バックボーン制御ボックス31は左右方向の左端近傍に配置され、バックボーン制御ボックス33は左右方向の右端近傍に配置されている。 The backbone control box 32 is disposed at the substantially central portion in the left-right direction of the vehicle body, the backbone control box 31 is disposed near the left end in the left-right direction, and the backbone control box 33 is disposed near the right end in the left-right direction.
 そして、バックボーン幹線部21の左端はバックボーン制御ボックス31の右端と連結され、バックボーン幹線部21の右端はバックボーン制御ボックス32の左端と連結されている。また、バックボーン幹線部22の左端はバックボーン制御ボックス32の右端と連結され、バックボーン幹線部22の右端はバックボーン制御ボックス33の左端と連結されている。また、バックボーン幹線部23の前方の先端はバックボーン制御ボックス32の下端と連結されている。 The left end of the backbone main line 21 is connected to the right end of the backbone control box 31, and the right end of the backbone main line 21 is connected to the left end of the backbone control box 32. Further, the left end of the backbone trunk portion 22 is connected to the right end of the backbone control box 32, and the right end of the backbone trunk portion 22 is connected to the left end of the backbone control box 33. The front end of the backbone trunk portion 23 is connected to the lower end of the backbone control box 32.
 つまり、バックボーン幹線部21~23と、バックボーン制御ボックス31~33とで図1に示すようにT字に似た形状に構成されている。また、バックボーン幹線部21~23の内部回路は、バックボーン制御ボックス32を経由して互いに電気的に接続可能な状態になっている。 That is, the backbone trunk lines 21 to 23 and the backbone control boxes 31 to 33 are formed in a shape similar to a T-shape as shown in FIG. Further, the internal circuits of the backbone trunk lines 21 to 23 are in a state where they can be electrically connected to each other via the backbone control box 32.
 車体の左側に配置されているバックボーン制御ボックス31は、主電源接続部31a、幹線接続部31b、および枝線接続部31cを備えている。図1に示すように、バックボーン制御ボックス31の主電源接続部31aには主電源ケーブル41が接続され、幹線接続部31bにはバックボーン幹線部21の左端が接続され、枝線接続部31cには複数の枝線サブハーネス42がそれぞれ接続される。なお、図1においては、枝線サブハーネス42がバックボーン制御ボックス31に対し着脱可能であることを表すため、枝線サブハーネス42が、バックボーン制御ボックス31から離脱している状態を示している。 The backbone control box 31 disposed on the left side of the vehicle body includes a main power supply connection part 31a, a main line connection part 31b, and a branch line connection part 31c. As shown in FIG. 1, the main power cable 41 is connected to the main power connection part 31a of the backbone control box 31, the left end of the backbone main line part 21 is connected to the main line connection part 31b, and the branch line connection part 31c is connected to the branch line connection part 31c. A plurality of branch line sub-harnesses 42 are connected to each other. In FIG. 1, the branch line sub-harness 42 is shown detached from the backbone control box 31 in order to represent that the branch line sub-harness 42 can be attached to and detached from the backbone control box 31.
 また、図1には示されていないが、バックボーン幹線部21の内部には2系統の電源ライン、2系統のアースライン、および通信ラインが含まれている。また、主電源ケーブル41の電源ラインおよびアースラインと接続するために、主電源接続部31aには複数の接続端子が設けてある。 Further, although not shown in FIG. 1, the backbone trunk line 21 includes two power supply lines, two ground lines, and a communication line. In addition, in order to connect to the power line and the earth line of the main power cable 41, the main power connection part 31a is provided with a plurality of connection terminals.
 また、バックボーン制御ボックス31の内部には、主電源ケーブル41、バックボーン幹線部21、枝線サブハーネス42の間で各回路の電源系統、アース系統、通信系統を相互に接続したり電力を分配するための回路基板が含まれている。 In the backbone control box 31, the power supply system, the ground system, and the communication system of each circuit are mutually connected and the power is distributed among the main power cable 41, the backbone trunk section 21, and the branch line subharness 42. A circuit board is included.
 主電源ケーブル41については、電源ラインおよびアースラインの各々の先端に接続した端子を主電源接続部31aの端子と接続し、ボルトとナットを用いて固定することにより、これらの回路を接続することができる。 For the main power cable 41, the terminals connected to the respective ends of the power line and the earth line are connected to the terminals of the main power connection part 31a, and these circuits are connected by fixing them with bolts and nuts. Can do.
 枝線サブハーネス42は、枝線接続部31cに対して着脱自在であるコネクタが各々の先端に設けられており、必要に応じて枝線サブハーネス42の回路を接続することができる。枝線サブハーネス42の各々は、電源ライン、アースライン、通信ラインの全て、またはそれらの一部分を含むように構成される。なお、図1に示したバックボーン制御ボックス31においては、枝線接続部31cに6個のコネクタが備わっており、最大で6個の枝線サブハーネス42を接続可能である。 The branch line sub-harness 42 is provided with a connector that can be attached to and detached from the branch line connection portion 31c at each end, and the circuit of the branch line sub-harness 42 can be connected as necessary. Each of the branch line sub-harnesses 42 is configured to include all or a part of the power supply line, the earth line, and the communication line. In the backbone control box 31 shown in FIG. 1, the branch line connecting portion 31c is provided with six connectors, and up to six branch line sub-harnesses 42 can be connected.
 図1に示すように、バックボーン幹線部21~23とバックボーン制御ボックス31~33とを組み合わせ、更にバックボーン制御ボックス31~33に様々な枝線サブハーネス42~44を接続することにより、背骨(バックボーン)と似た単純な構造で、様々な伝送線路の配索を行うことが可能になる。即ち、本発明の実施形態に係る車両用回路体は、バックボーン幹線部21~23およびバックボーン制御ボックス31~33が電源の分配や通信の伝送に関する基幹部分としての機能を有するバックボーンとして構成されており、このバックボーンに適宜枝線サブハーネスが接続されるようになっている。 As shown in FIG. 1, the backbone trunk portions 21 to 23 and the backbone control boxes 31 to 33 are combined, and various branch line sub-harnesses 42 to 44 are connected to the backbone control boxes 31 to 33, whereby the backbone (backbone) is obtained. With a simple structure similar to), various transmission lines can be routed. In other words, the vehicle circuit body according to the embodiment of the present invention is configured as a backbone in which the backbone trunk lines 21 to 23 and the backbone control boxes 31 to 33 function as a backbone part related to power distribution and communication transmission. The branch sub-harness is appropriately connected to the backbone.
 例えば、オプションや追加で車両に搭載される様々な電装品に対しても、バックボーン制御ボックス31~33のいずれかに接続する枝線サブハーネス42~44の追加や変更だけで対応できるので、車両用回路体の幹線の構造に変更を加える必要がない。なお、本実施形態では枝線サブハーネス42~44をバックボーン制御ボックス31~33に接続する場合を想定しているが、例えばバックボーン幹線部21~23上の適当な中継点の箇所に別の枝線枝線サブハーネス(図示せず)を接続してもよい。 For example, various electrical components mounted on the vehicle as an option or addition can be handled by adding or changing the branch sub-harnesses 42 to 44 connected to any of the backbone control boxes 31 to 33. There is no need to change the structure of the main circuit body. In the present embodiment, it is assumed that the branch line sub-harnesses 42 to 44 are connected to the backbone control boxes 31 to 33. For example, another branch point is provided at an appropriate relay point on the backbone trunks 21 to 23. A line branch line sub-harness (not shown) may be connected.
 実際の車載装置においては、例えば図1に示すように、枝線サブハーネス42を経由して車両に備わった電子制御ユニット(ECU)51のような補機を、バックボーン制御ボックス31やその他の電装品に接続することができる。また、枝線サブハーネス43を経由して、バックボーン制御ボックス32に電子制御ユニット51、52、53やその他の電装品を接続することができる。更に、枝線サブハーネス44を経由してバックボーン制御ボックス33に様々な電装品を接続することができる。そして、各電子制御ユニット51、52、53は、枝線サブハーネス42、43、44の通信ライン、およびバックボーン制御ボックス31~33等を経由して車両上の様々な電装品を制御することができる。 In an actual in-vehicle device, for example, as shown in FIG. 1, an auxiliary machine such as an electronic control unit (ECU) 51 provided in the vehicle via a branch line sub-harness 42 is connected to a backbone control box 31 or other electrical equipment. Can be connected to the product. Further, the electronic control units 51, 52, 53 and other electrical components can be connected to the backbone control box 32 via the branch line sub-harness 43. Furthermore, various electrical components can be connected to the backbone control box 33 via the branch line sub-harness 44. Each electronic control unit 51, 52, 53 can control various electrical components on the vehicle via the communication lines of the branch sub-harnesses 42, 43, 44, the backbone control boxes 31 to 33, and the like. it can.
 次に、回路構成の具体例について説明する。
 本発明の第1実施形態における車両用回路体を含む車載装置の構成例を図2に示す。図2に示した車載装置は、バックボーン幹線部61、62、63、バックボーン制御ボックス64、65、66、複数の駆動系補機81(1)~81(N)、83(1)~83(N)、85(1)~85(N)、複数の信号系補機82(1)~82(N)、84(1)~84(N)、および86(1)~86(N)を備えている。
Next, a specific example of the circuit configuration will be described.
FIG. 2 shows a configuration example of an in-vehicle device including the vehicle circuit body in the first embodiment of the present invention. The in-vehicle device shown in FIG. 2 includes backbone trunks 61, 62, 63, backbone control boxes 64, 65, 66, and a plurality of drive system auxiliary machines 81 (1) to 81 (N), 83 (1) to 83 ( N), 85 (1) to 85 (N), a plurality of signal system auxiliary devices 82 (1) to 82 (N), 84 (1) to 84 (N), and 86 (1) to 86 (N) I have.
 図2に示すように、バックボーン幹線部61、62、および63の各々は、信号系電源ライン71、信号系アースライン72、駆動系電源ライン73、および駆動系アースライン74の4つの独立した線路を備えている。 As shown in FIG. 2, each of backbone backbone portions 61, 62, and 63 includes four independent lines of signal system power supply line 71, signal system ground line 72, drive system power supply line 73, and drive system ground line 74. It has.
 信号系電源ライン71および信号系アースライン72は、それぞれ消費する電源電流が比較的小さく、例えば定格電流が10[A]以下のような補機(本実施形態では「信号系補機」と称する)に電源電力を供給するために用意された電源ラインおよびアースラインである。例えば、車両上に搭載されているメータユニット、オーディオ装置、各種電子制御ユニット(ECU)、小型の照明装置などが「信号系補機」に相当する。 Each of the signal power line 71 and the signal ground line 72 consumes a relatively small power supply current. For example, an auxiliary machine having a rated current of 10 [A] or less (referred to as “signal auxiliary machine” in this embodiment). A power line and a ground line prepared for supplying power to the power source. For example, a meter unit, an audio device, various electronic control units (ECUs), a small lighting device, and the like mounted on the vehicle correspond to the “signal auxiliary device”.
 一方、駆動系電源ライン73および駆動系アースライン74は、それぞれ消費する電源電流が非常に大きく、例えば定格電流が10[A]を超えるような補機(本実施形態では「駆動系補機」と称する)に電源電力を供給するために用意された電源ラインおよびアースラインである。例えば、車両上の各種アクチュエータの駆動力を発生するための電気モータ、各種ヒータ、ヘッドライトなどが「駆動系補機」に相当する。 On the other hand, each of the drive system power line 73 and the drive system ground line 74 consumes a very large power supply current. For example, an auxiliary machine whose rated current exceeds 10 [A] (in this embodiment, “drive system auxiliary machine”). A power line and an earth line prepared for supplying power to the power source. For example, electric motors, various heaters, headlights, and the like for generating driving forces of various actuators on the vehicle correspond to “driving system auxiliary machines”.
 駆動系電源ライン73および駆動系アースライン74には「駆動系補機」に区分される様々な補機が接続されるので、駆動系の車両全体の電流はピーク時に200~300[A]程度の大電流になる。一方、信号系電源ライン71および信号系アースライン72には駆動系よりも消費電流が小さい「信号系補機」に区分される補機のみを接続するので、信号系電源ライン71および信号系アースライン72に流れる電流のピーク値は、駆動系電源ライン73および駆動系アースライン74と比べて非常に小さくなる。 Since the drive system power line 73 and the drive system ground line 74 are connected to various accessories classified as “drive system auxiliary machines”, the current of the entire drive system vehicle is about 200 to 300 [A] at the peak time. The large current becomes. On the other hand, the signal system power line 71 and the signal system ground line 72 are connected only to auxiliary devices classified as “signal system auxiliary machines” that consume less current than the drive system. The peak value of the current flowing through the line 72 is much smaller than that of the drive system power line 73 and the drive system ground line 74.
 図2に示した構成においては、バックボーン幹線部61に含まれている信号系電源ライン71、および駆動系電源ライン73は、一端側が電源10の正極側端子10aとそれぞれ接続されており、他端側はバックボーン制御ボックス64と接続されている。電源10は、車両に搭載されているメインバッテリーやオルタネータに相当する。また、バックボーン幹線部61に含まれている信号系アースライン72、および駆動系アースライン74は、一端側が電源10の負極側端子10bとそれぞれ接続されており、他端側はバックボーン制御ボックス64と接続されている。 In the configuration shown in FIG. 2, the signal system power supply line 71 and the drive system power supply line 73 included in the backbone trunk 61 have one end connected to the positive terminal 10 a of the power supply 10 and the other end. The side is connected to the backbone control box 64. The power source 10 corresponds to a main battery or an alternator mounted on the vehicle. The signal system ground line 72 and the drive system ground line 74 included in the backbone trunk 61 are connected to the negative terminal 10b of the power source 10 at one end and the backbone control box 64 at the other end. It is connected.
 また、バックボーン幹線部61に含まれている信号系電源ライン71、信号系アースライン72、駆動系電源ライン73、および駆動系アースライン74のそれぞれは、バックボーン幹線部62に含まれている対応するラインと接続されている。また、バックボーン幹線部61に含まれている信号系電源ライン71、信号系アースライン72、駆動系電源ライン73、および駆動系アースライン74のそれぞれは、バックボーン制御ボックス64の内部回路を経由して、バックボーン幹線部63に含まれている対応するラインと接続されている。 Each of the signal system power line 71, the signal system ground line 72, the drive system power line 73, and the drive system ground line 74 included in the backbone trunk section 61 corresponds to that included in the backbone trunk section 62. Connected to the line. Each of the signal system power line 71, the signal system ground line 72, the drive system power line 73, and the drive system ground line 74 included in the backbone trunk 61 is routed through an internal circuit of the backbone control box 64. Are connected to corresponding lines included in the backbone trunk part 63.
 バックボーン制御ボックス64、65、および66の各々の内部には、図2に示すように信号系の電源分配部、信号系のGND(グランド、すなわちアース)分配部、駆動系の電源分配部、および駆動系のGND分配部が備わっている。そして、信号系の電源分配部は信号系電源ライン71に接続され、信号系のGND分配部は信号系アースライン72に接続され、駆動系の電源分配部は駆動系電源ライン73に接続され、駆動系のGND分配部は駆動系アースライン74と接続されている。 Inside each of the backbone control boxes 64, 65, and 66, as shown in FIG. 2, a signal power distribution unit, a signal GND (ground or ground) distribution unit, a drive power distribution unit, and A drive system GND distributor is provided. The signal system power distribution unit is connected to the signal system power line 71, the signal system GND distribution unit is connected to the signal system ground line 72, the drive system power distribution unit is connected to the drive system power line 73, The drive system GND distributor is connected to the drive system ground line 74.
 図2に示すように、バックボーン制御ボックス64の配下には、複数の駆動系補機81(1)~81(N)、および複数の信号系補機82(1)~82(N)が接続されている。これらの補機の各々は、枝線サブハーネスを経由してそれぞれバックボーン制御ボックス64と接続されている。 As shown in FIG. 2, a plurality of drive system auxiliary machines 81 (1) to 81 (N) and a plurality of signal system auxiliary machines 82 (1) to 82 (N) are connected under the backbone control box 64. Has been. Each of these auxiliary machines is connected to the backbone control box 64 via a branch line subharness.
 同様に、バックボーン制御ボックス65の配下には、複数の駆動系補機83(1)~83(N)、および複数の信号系補機84(1)~84(N)が接続されている。また、バックボーン制御ボックス66の配下には、複数の駆動系補機85(1)~85(N)、および複数の信号系補機86(1)~86(N)が接続されている。 Similarly, a plurality of drive system auxiliary machines 83 (1) to 83 (N) and a plurality of signal system auxiliary machines 84 (1) to 84 (N) are connected under the backbone control box 65. Also, under the backbone control box 66, a plurality of drive system auxiliary machines 85 (1) to 85 (N) and a plurality of signal system auxiliary machines 86 (1) to 86 (N) are connected.
 例えば、バックボーン制御ボックス64内においては、駆動系の電源分配部が駆動系電源ライン73の電源電力を、複数の経路のそれぞれに分配する。そして、駆動系の電源分配部により分配された各々の電力が枝線サブハーネスを経由して、駆動系補機81(1)~81(N)の各々の電源端子に供給される。アース側についても、駆動系アースライン74を駆動系のGND分配部が複数の電流経路に分岐する。そして、分岐された複数の電流経路の各々が、枝線サブハーネスを経由して、駆動系補機81(1)~81(N)の各々のアース端子と接続される。 For example, in the backbone control box 64, the power distribution unit of the drive system distributes the power of the drive system power line 73 to each of a plurality of paths. Then, each power distributed by the power distribution unit of the drive system is supplied to each power terminal of the drive system auxiliary machines 81 (1) to 81 (N) via the branch line subharness. Also on the ground side, the drive system ground line 74 is branched into a plurality of current paths by the GND distribution unit of the drive system. Each of the plurality of branched current paths is connected to the ground terminal of each of drive system auxiliary machines 81 (1) to 81 (N) via a branch line subharness.
 また、バックボーン制御ボックス64内においては、信号系の電源分配部が信号系電源ライン71の電源電力を、複数の経路のそれぞれに分配する。そして、信号系の電源分配部により分配された各々の電力が枝線サブハーネスを経由して、信号系補機82(1)~82(N)の各々の電源端子に供給される。アース側についても、信号系アースライン72を信号系のGND分配部が複数の電流経路に分岐する。そして、分岐された複数の電流経路の各々が、枝線サブハーネスを経由して、信号系補機82(1)~82(N)の各々のアース端子と接続される。 Also, in the backbone control box 64, the signal power distribution unit distributes the power of the signal power line 71 to each of a plurality of paths. Then, each power distributed by the signal power distribution unit is supplied to each power terminal of each of the signal auxiliary machines 82 (1) to 82 (N) via the branch sub-harness. Also on the ground side, the signal system GND distribution unit branches the signal system ground line 72 into a plurality of current paths. Each of the branched current paths is connected to each ground terminal of signal system auxiliary machines 82 (1) to 82 (N) via a branch line subharness.
 バックボーン制御ボックス65内においても、駆動系の電源分配部が駆動系電源ライン73の電源電力を、複数の経路のそれぞれに分配する。そして、駆動系の電源分配部により分配された各々の電力が枝線サブハーネスを経由して、駆動系補機83(1)~83(N)の各々の電源端子に供給される。また、駆動系アースライン74を駆動系のGND分配部が複数の電流経路に分岐する。そして、分岐された複数の電流経路の各々が、枝線サブハーネスを経由して、駆動系補機83(1)~83(N)の各々のアース端子と接続される。 Also in the backbone control box 65, the power distribution unit of the drive system distributes the power of the drive system power line 73 to each of the plurality of paths. Each power distributed by the power distribution unit of the drive system is supplied to each power terminal of the drive system auxiliary machines 83 (1) to 83 (N) via the branch sub-harness. Further, the drive system ground line 74 is branched into a plurality of current paths by the GND distribution unit of the drive system. Each of the branched current paths is connected to the ground terminal of each of drive system auxiliary machines 83 (1) to 83 (N) via a branch line subharness.
 また、バックボーン制御ボックス65内においては、信号系の電源分配部が信号系電源ライン71の電源電力を、複数の経路のそれぞれに分配する。そして、信号系の電源分配部により分配された各々の電力が前記枝線サブハーネスを経由して、信号系補機84(1)~84(N)の各々の電源端子に供給される。アース側についても、信号系アースライン72を信号系のGND分配部が複数の電流経路に分岐する。そして、分岐された複数の電流経路の各々が、枝線サブハーネスを経由して、信号系補機84(1)~84(N)の各々のアース端子と接続される。 In the backbone control box 65, the signal power distribution unit distributes the power of the signal power line 71 to each of the plurality of paths. Then, each power distributed by the power distribution unit of the signal system is supplied to each power terminal of the signal system auxiliary machines 84 (1) to 84 (N) via the branch line subharness. Also on the ground side, the signal system GND distribution unit branches the signal system ground line 72 into a plurality of current paths. Each of the plurality of branched current paths is connected to the ground terminal of each of signal system auxiliary machines 84 (1) to 84 (N) via the branch line subharness.
 バックボーン制御ボックス66内においても、駆動系の電源分配部が駆動系電源ライン73の電源電力を、複数の経路のそれぞれに分配する。そして、駆動系の電源分配部により分配された各々の電力が枝線サブハーネスを経由して、駆動系補機85(1)~85(N)の各々の電源端子に供給される。また、駆動系アースライン74を駆動系のGND分配部が複数の電流経路に分岐する。そして、分岐された複数の電流経路の各々が、枝線サブハーネスを経由して、駆動系補機85(1)~85(N)の各々のアース端子と接続される。 Also in the backbone control box 66, the power distribution unit of the drive system distributes the power of the drive system power line 73 to each of a plurality of paths. Each power distributed by the power distribution unit of the drive system is supplied to each power terminal of the drive system auxiliary machines 85 (1) to 85 (N) via the branch line subharness. Further, the drive system ground line 74 is branched into a plurality of current paths by the GND distribution unit of the drive system. Each of the plurality of branched current paths is connected to the ground terminal of each of drive system auxiliary machines 85 (1) to 85 (N) via the branch line subharness.
 また、バックボーン制御ボックス66内においては、信号系の電源分配部が信号系電源ライン71の電源電力を、複数の経路のそれぞれに分配する。そして、信号系の電源分配部により分配された各々の電力が前記枝線サブハーネスを経由して、信号系補機86(1)~86(N)の各々の電源端子に供給される。アース側についても、信号系アースライン72を信号系のGND分配部が複数の電流経路に分岐する。そして、分岐された複数の電流経路の各々が、枝線サブハーネスを経由して、信号系補機86(1)~86(N)の各々のアース端子と接続される。 Also, in the backbone control box 66, the signal power distribution unit distributes the power of the signal power line 71 to each of a plurality of paths. Then, each power distributed by the signal power distribution unit is supplied to each power terminal of each of the signal auxiliary machines 86 (1) to 86 (N) via the branch sub-harness. Also on the ground side, the signal system GND distribution unit branches the signal system ground line 72 into a plurality of current paths. Each of the plurality of branched current paths is connected to the respective ground terminals of the signal system auxiliary machines 86 (1) to 86 (N) via the branch line subharness.
 したがって、図2に示した構成においては、駆動系補機81(1)~81(N)、83(1)~83(N)、85(1)~85(N)のいずれの補機についても、電源電流は駆動系電源ライン73を通って供給され、アース側の電流は駆動系アースライン74に流れる。一方、信号系補機82(1)~82(N)、84(1)~84(N)、86(1)~86(N)のいずれの補機についても、電源電流は信号系電源ライン71を通って供給され、アース側の電流は信号系アースライン72に流れる。 Therefore, in the configuration shown in FIG. 2, any of the auxiliary machines 81 (1) to 81 (N), 83 (1) to 83 (N), and 85 (1) to 85 (N) is driven. However, the power supply current is supplied through the drive system power supply line 73, and the ground-side current flows through the drive system ground line 74. On the other hand, for any of the auxiliary accessories 82 (1) to 82 (N), 84 (1) to 84 (N), 86 (1) to 86 (N), the power supply current is the signal power supply line. 71, the ground-side current flows through the signal system ground line 72.
 つまり、各補機に対する電源電流の供給経路と、アース電流が流れる経路とのいずれについても、信号系と駆動系とが完全に独立している。そのため、バックボーン幹線部61、62、63上のいずれの電流経路においても、駆動系補機81(1)~81(N)、83(1)~83(N)、85(1)~85(N)に流れる電源電流およびアース電流によって生じる電圧降下は、信号系補機82(1)~82(N)、84(1)~84(N)、86(1)~86(N)の電流経路の電圧に影響を及ぼすことがない。しかも、信号系補機82(1)~82(N)、84(1)~84(N)、86(1)~86(N)に流れる電流の大きさは、駆動系補機81(1)~81(N)、83(1)~83(N)、85(1)~85(N)に流れる電流に比べて小さい。 That is, the signal system and the drive system are completely independent of both the supply current supply path for each auxiliary machine and the path through which the ground current flows. Therefore, in any current path on the backbone trunk lines 61, 62, 63, the drive system auxiliary devices 81 (1) to 81 (N), 83 (1) to 83 (N), 85 (1) to 85 ( The voltage drop caused by the power supply current and the ground current flowing through N) is the current of the signal system auxiliary equipment 82 (1) to 82 (N), 84 (1) to 84 (N), 86 (1) to 86 (N). Does not affect the voltage of the path. Moreover, the magnitude of the current flowing through the signal system auxiliary machines 82 (1) to 82 (N), 84 (1) to 84 (N), 86 (1) to 86 (N) is determined by the drive system auxiliary machine 81 (1 ) To 81 (N), 83 (1) to 83 (N), and 85 (1) to 85 (N).
 したがって、信号系電源ライン71における電圧降下、および信号系アースライン72における電圧降下の各々は、各ラインの導体の断面積が比較的小さい場合であっても許容できる程度に小さくなる。そのため、信号系補機82(1)~82(N)、84(1)~84(N)、86(1)~86(N)の各々のアース電位が、アースの基準電位、すなわち電源10の負極側端子10bの電位に対して高くなったり変動するのを防止することができる。これにより、各信号系補機82における誤動作の発生を防止できる。 Therefore, each of the voltage drop in the signal system power line 71 and the voltage drop in the signal system ground line 72 is reduced to an acceptable level even when the cross-sectional area of the conductor of each line is relatively small. Therefore, the ground potential of each of the signal system auxiliary machines 82 (1) to 82 (N), 84 (1) to 84 (N), 86 (1) to 86 (N) is the ground reference potential, that is, the power source 10 It can be prevented that the potential of the negative terminal 10b increases or fluctuates. Thereby, it is possible to prevent the malfunction of each signal auxiliary machine 82.
 また、電源ラインおよびアースラインにおける電圧降下が小さく、各信号系補機82の端子間に印加される電源電圧の低下を防止できるので、各信号系補機82は定格に応じた所定の性能を発揮することができる。例えば、信号系補機82の1つとして、車両のストップランプやテールランプのような灯具を接続する場合に、ストップランプやテールランプの光量が低下するのを防止できる。 Further, since the voltage drop in the power supply line and the earth line is small and the power supply voltage applied between the terminals of each signal system auxiliary device 82 can be prevented from decreasing, each signal system auxiliary device 82 has a predetermined performance corresponding to the rating. It can be demonstrated. For example, as one of the signal system auxiliary machines 82, when a lamp such as a stop lamp or tail lamp of a vehicle is connected, it is possible to prevent the light quantity of the stop lamp or tail lamp from decreasing.
 なお、図2には示されていないが、バックボーン幹線部61~63の内部に、通信ラインを含めることもできる。これにより、幹線を利用して複数の補機の間で通信を行うことが可能になる。 Although not shown in FIG. 2, a communication line can be included in the backbone trunk lines 61 to 63. Thereby, it becomes possible to communicate between a plurality of auxiliary machines using a trunk line.
 次に、バックボーン幹線部の具体的な構成例について説明する。
 図3(a)および図3(b)は、それぞれ2本の電源ラインを有するバックボーン幹線部61の断面構造を示す図である。なお、図3(a)と図3(b)とでは、バックボーン幹線部61を構成する電源ライン及び通信ラインの断面形状が異なっている。
Next, a specific configuration example of the backbone trunk part will be described.
FIG. 3A and FIG. 3B are diagrams showing a cross-sectional structure of the backbone trunk portion 61 having two power supply lines. Note that FIG. 3A and FIG. 3B are different in the cross-sectional shapes of the power supply line and the communication line that constitute the backbone trunk part 61.
 <構成例1>
 図3(a)に示した構成においては、バックボーン幹線部61を構成する信号系電源ライン71、信号系アースライン72、駆動系電源ライン73、および駆動系アースライン74の各々は、断面形状が円形の被覆電線により構成されている。各被覆電線は、断面形状が円形の内部導体75と、その周囲全体を覆う絶縁被覆76とで構成されている。絶縁被覆76は、樹脂などで構成されている。したがって、信号系電源ライン71、信号系アースライン72、駆動系電源ライン73、および駆動系アースライン74は互いに電気的に分離されている。
<Configuration example 1>
In the configuration shown in FIG. 3A, each of the signal system power line 71, the signal system ground line 72, the drive system power line 73, and the drive system ground line 74 constituting the backbone trunk 61 has a cross-sectional shape. It is composed of a circular covered electric wire. Each covered electric wire is configured by an inner conductor 75 having a circular cross-sectional shape and an insulating coating 76 covering the entire periphery thereof. The insulating coating 76 is made of resin or the like. Therefore, the signal system power line 71, the signal system ground line 72, the drive system power line 73, and the drive system ground line 74 are electrically separated from each other.
 また、信号系電源ライン71、信号系アースライン72、駆動系電源ライン73、および駆動系アースライン74は1列に並べて互いに平行に配置されている。そして、信号系アースライン72と駆動系アースライン74との間に挟んだ状態で駆動系電源ライン73が配置されている。 Further, the signal system power line 71, the signal system ground line 72, the drive system power line 73, and the drive system ground line 74 are arranged in a row and arranged in parallel to each other. A drive system power supply line 73 is disposed between the signal system ground line 72 and the drive system ground line 74.
 このように配置することで、電磁ノイズが外部に輻射されるのを抑制できる。すなわち、駆動系電源ライン73には大電流が流れるため、電流のスイッチングなどに伴って大きな電磁ノイズが駆動系電源ライン73から輻射することになる。しかし、信号系アースライン72の電位および駆動系アースライン74の電位は、それぞれアースの基準電位とほぼ同じであるため、電磁シールドを行うことができ、信号系アースライン72および駆動系アースライン74の外側への電磁ノイズの輻射を低減することができる。 This arrangement can suppress electromagnetic noise from being radiated to the outside. That is, since a large current flows through the drive system power supply line 73, a large electromagnetic noise is radiated from the drive system power supply line 73 along with the switching of the current. However, since the potential of the signal system ground line 72 and the potential of the drive system ground line 74 are substantially the same as the ground reference potential, electromagnetic shielding can be performed. The signal system ground line 72 and the drive system ground line 74 can be shielded. The radiation of electromagnetic noise to the outside can be reduced.
 なお、信号系電源ライン71、信号系アースライン72、駆動系電源ライン73、および駆動系アースライン74を図3(a)に示した状態の位置関係で固定するために、これらは例えば接着により一体化され、あるいは図示しない外装材で外側を覆うことにより一体化される。また、信号系電源ライン71および信号系アースライン72を流れる電流は比較的小さいので、信号系電源ライン71および信号系アースライン72における内部導体75の断面積を、駆動系電源ライン73および駆動系アースライン74の断面積より小さくしてもよい。 In order to fix the signal system power supply line 71, the signal system ground line 72, the drive system power supply line 73, and the drive system ground line 74 in the positional relationship shown in FIG. It is integrated by covering the outside with an exterior material (not shown). Further, since the current flowing through the signal system power line 71 and the signal system ground line 72 is relatively small, the cross-sectional area of the internal conductor 75 in the signal system power line 71 and the signal system ground line 72 is determined as the drive system power line 73 and the drive system. The cross sectional area of the earth line 74 may be smaller.
 <構成例2>
 図3(b)に示した構成においては、バックボーン幹線部61を構成する信号系電源ライン71B、信号系アースライン72B、駆動系電源ライン73B、および駆動系アースライン74Bの各々は、扁平な断面形状を有する板状の被覆電線(バスバー)により構成されている。各被覆電線は、断面形状が扁平な板状の内部導体77と、その周囲全体を覆う絶縁被覆78とで構成されている。絶縁被覆78は、樹脂などで構成されている。したがって、信号系電源ライン71B、信号系アースライン72B、駆動系電源ライン73B、および駆動系アースライン74Bは互いに電気的に分離されている。
<Configuration example 2>
In the configuration shown in FIG. 3B, each of the signal system power supply line 71B, the signal system ground line 72B, the drive system power supply line 73B, and the drive system ground line 74B constituting the backbone trunk portion 61 has a flat cross section. It is comprised by the plate-shaped covered electric wire (bus bar) which has a shape. Each covered electric wire includes a plate-like inner conductor 77 having a flat cross-sectional shape and an insulating coating 78 covering the entire periphery thereof. The insulating coating 78 is made of resin or the like. Therefore, the signal system power line 71B, the signal system ground line 72B, the drive system power line 73B, and the drive system ground line 74B are electrically isolated from each other.
 また、信号系電源ライン71B、信号系アースライン72B、駆動系電源ライン73B、および駆動系アースライン74Bはそれらの厚み方向に積層した状態で、1列に並べて互いに平行に配置されている。そして、駆動系電源ライン73Bが、信号系アースライン72Bと駆動系アースライン74Bとの間に挟んだ状態で配置されている。 Further, the signal system power supply line 71B, the signal system ground line 72B, the drive system power supply line 73B, and the drive system ground line 74B are arranged in a row in parallel with each other in a stacked state in the thickness direction thereof. The drive system power line 73B is arranged in a state of being sandwiched between the signal system ground line 72B and the drive system ground line 74B.
 このように配置することで、電磁ノイズが外部に輻射されるのを抑制できる。すなわち、駆動系電源ライン73Bには大電流が流れるため、電流のスイッチングなどに伴って大きな電磁ノイズが駆動系電源ライン73Bから輻射することになる。しかし、信号系アースライン72Bの電位および駆動系アースライン74Bの電位は、それぞれアースの基準電位とほぼ同じであるため、電磁シールドを行うことができ、信号系アースライン72Bおよび駆動系アースライン74Bの外側への電磁ノイズの輻射を低減することができる。 This arrangement can suppress electromagnetic noise from being radiated to the outside. That is, since a large current flows through the drive system power supply line 73B, a large electromagnetic noise is radiated from the drive system power supply line 73B when the current is switched. However, since the potential of the signal system ground line 72B and the potential of the drive system ground line 74B are substantially the same as the ground reference potential, electromagnetic shielding can be performed. The signal system ground line 72B and the drive system ground line 74B The radiation of electromagnetic noise to the outside can be reduced.
 なお、信号系電源ライン71B、信号系アースライン72B、駆動系電源ライン73B、および駆動系アースライン74Bを図3(b)に示した状態の位置関係で固定するために、これらは例えば接着により一体化され、あるいは図示しない外装材で外側を覆うことにより一体化される。また、信号系電源ライン71Bおよび信号系アースライン72Bを流れる電流は比較的小さいので、信号系電源ライン71Bおよび信号系アースライン72Bにおける内部導体75の断面積を、駆動系電源ライン73Bおよび駆動系アースライン74Bの断面積より小さくしてもよい。 In order to fix the signal system power supply line 71B, the signal system ground line 72B, the drive system power supply line 73B, and the drive system ground line 74B in the positional relationship shown in FIG. It is integrated by covering the outside with an exterior material (not shown). Further, since the current flowing through the signal system power line 71B and the signal system ground line 72B is relatively small, the cross-sectional area of the internal conductor 75 in the signal system power line 71B and the signal system ground line 72B is set to the drive system power line 73B and the drive system. You may make it smaller than the cross-sectional area of the earth line 74B.
 <構成例3>
 図4(a)および図4(b)は、図3(a)および図3(b)に示したバックボーン幹線部に対し、各構成要素の位置関係を異ならせたバックボーン幹線部61の断面構造を示す図である。なお、バックボーン幹線部62および63についてもバックボーン幹線部61と同一の構成を採用する。
<Configuration example 3>
4 (a) and 4 (b) are cross-sectional views of the backbone trunk portion 61 in which the positional relationship of each component is different from the backbone trunk portion shown in FIGS. 3 (a) and 3 (b). FIG. The backbone trunk lines 62 and 63 have the same configuration as that of the backbone trunk line 61.
 図4(a)に示した構成においても、図3(a)に示した構成と同一の信号系電源ライン71、信号系アースライン72、駆動系電源ライン73、および駆動系アースライン74を有するが、図3(a)に示した構成とはこれらのレイアウトが異なっている。 4A has the same signal system power supply line 71, signal system ground line 72, drive system power supply line 73, and drive system ground line 74 as the configuration shown in FIG. 3A. However, these layouts are different from the configuration shown in FIG.
 具体的には、信号系電源ライン71、信号系アースライン72、駆動系電源ライン73、および駆動系アースライン74は1列に並べて互いに平行に配置されている。そして、信号系アースライン72および駆動系アースライン74を外側に配置し、これらの間に信号系電源ライン71および駆動系電源ライン73が挟まれるように配置されている。 Specifically, the signal system power supply line 71, the signal system ground line 72, the drive system power supply line 73, and the drive system ground line 74 are arranged in a line in parallel with each other. Then, the signal system ground line 72 and the drive system ground line 74 are arranged outside, and the signal system power line 71 and the drive system power line 73 are arranged between them.
 このように配置することで、電磁ノイズが外部に輻射されるのを抑制できる。すなわち、駆動系電源ライン73には大電流が流れるため、電流のスイッチングなどに伴って大きな電磁ノイズが駆動系電源ライン73から輻射することになる。また、比較的小さいが、信号系電源ライン71からも電磁ノイズが輻射される。しかし、信号系アースライン72の電位および駆動系アースライン74の電位は、それぞれアースの基準電位とほぼ同じであるため、電磁シールドを行うことができ、信号系アースライン72および駆動系アースライン74の外側への電磁ノイズの輻射を低減することができる。 This arrangement can suppress electromagnetic noise from being radiated to the outside. That is, since a large current flows through the drive system power supply line 73, a large electromagnetic noise is radiated from the drive system power supply line 73 along with the switching of the current. Although relatively small, electromagnetic noise is also radiated from the signal power line 71. However, since the potential of the signal system ground line 72 and the potential of the drive system ground line 74 are substantially the same as the ground reference potential, electromagnetic shielding can be performed. The signal system ground line 72 and the drive system ground line 74 can be shielded. The radiation of electromagnetic noise to the outside can be reduced.
 なお、信号系電源ライン71、信号系アースライン72、駆動系電源ライン73、および駆動系アースライン74を図4(a)に示した状態の位置関係で固定するために、これらは例えば接着により一体化され、あるいは図示しない外装材で外側を覆うことにより一体化される。 In order to fix the signal system power line 71, the signal system ground line 72, the drive system power line 73, and the drive system ground line 74 in the positional relationship shown in FIG. It is integrated by covering the outside with an exterior material (not shown).
 <構成例4>
 図4(b)に示した構成においても、図3(b)に示した構成と同一の信号系電源ライン71B、信号系アースライン72B、駆動系電源ライン73B、および駆動系アースライン74Bを用いているが、図3(b)に示した構成とはこれらのレイアウトが異なっている。
<Configuration example 4>
Also in the configuration shown in FIG. 4B, the same signal system power supply line 71B, signal system ground line 72B, drive system power supply line 73B, and drive system ground line 74B as the configuration shown in FIG. 3B are used. However, these layouts are different from the configuration shown in FIG.
 具体的には、信号系電源ライン71B、信号系アースライン72B、駆動系電源ライン73B、および駆動系アースライン74Bはそれらの厚み方向に積層した状態で、1列に並べて互いに平行に配置されている。そして、信号系アースライン72Bと駆動系アースライン74Bとの間に挟んだ状態で、信号系電源ライン71Bおよび駆動系電源ライン73Bが配置されている。 Specifically, the signal system power line 71B, the signal system ground line 72B, the drive system power line 73B, and the drive system ground line 74B are stacked in the thickness direction and arranged in a row and arranged in parallel to each other. Yes. The signal system power line 71B and the drive system power line 73B are arranged in a state sandwiched between the signal system ground line 72B and the drive system ground line 74B.
 このように配置することで、電磁ノイズが外部に輻射されるのを抑制できる。すなわち、駆動系電源ライン73Bには大電流が流れるため、電流のスイッチングなどに伴って大きな電磁ノイズが駆動系電源ライン73Bから輻射することになる。また、比較的小さいが、信号系電源ライン71Bからも電磁ノイズが輻射される。しかし、信号系アースライン72Bの電位および駆動系アースライン74Bの電位は、それぞれアースの基準電位とほぼ同じであるため、電磁シールドを行うことができ、信号系アースライン72Bおよび駆動系アースライン74Bの外側への電磁ノイズの輻射を低減することができる。 This arrangement can suppress electromagnetic noise from being radiated to the outside. That is, since a large current flows through the drive system power supply line 73B, a large electromagnetic noise is radiated from the drive system power supply line 73B when the current is switched. Although relatively small, electromagnetic noise is also radiated from the signal power line 71B. However, since the potential of the signal system ground line 72B and the potential of the drive system ground line 74B are substantially the same as the ground reference potential, electromagnetic shielding can be performed. The signal system ground line 72B and the drive system ground line 74B The radiation of electromagnetic noise to the outside can be reduced.
 なお、信号系電源ライン71B、信号系アースライン72B、駆動系電源ライン73B、および駆動系アースライン74Bを図4(b)に示した状態の位置関係で固定するために、これらは例えば接着により一体化され、あるいは図示しない外装材で外側を覆うことにより一体化される。 In order to fix the signal system power line 71B, the signal system ground line 72B, the drive system power line 73B, and the drive system ground line 74B in the positional relationship shown in FIG. It is integrated by covering the outside with an exterior material (not shown).
<幹線の断面構造の変形例>
 <変形例1>
 バックボーン幹線部61Cの断面構造を図5に示す。図5に示したバックボーン幹線部61Cは、図3(b)に示した構成のバックボーン幹線部61と同等の機能を果たすことができる。
<Modified example of cross-sectional structure of main line>
<Modification 1>
A cross-sectional structure of the backbone trunk line 61C is shown in FIG. The backbone trunk portion 61C shown in FIG. 5 can perform the same function as the backbone trunk portion 61 having the configuration shown in FIG.
 図5に示したバックボーン幹線部61Cにおいては、板状に形成された前述の信号系電源ライン71B、信号系アースライン72B、および駆動系電源ライン73Bを積層し、その外側を外装材(筐体)を構成する駆動系アースライン74Cで覆ってある。この外装材は、例えばアルミニウムなどの導電性の金属により構成されているので、アース用の導電体として利用できる。また、この外装材は十分に大きな断面積を容易に確保できるので、大電流を流すアース用の導電体として適している。 In the backbone trunk part 61C shown in FIG. 5, the signal system power line 71B, the signal system ground line 72B, and the drive system power line 73B, which are formed in a plate shape, are stacked, and the outside is covered with an exterior material (housing) Is covered with a drive system ground line 74C. Since the exterior material is made of a conductive metal such as aluminum, it can be used as a grounding conductor. Moreover, since this exterior material can ensure a sufficiently large cross-sectional area easily, it is suitable as a grounding conductor that allows a large current to flow.
 図5に示すように、駆動系アースライン74Cとして構成した外装材によって、信号系電源ライン71Bおよび駆動系電源ライン73の外側を覆うことにより、効果的に電磁シールドの機能を果たすことができる。すなわち、駆動系アースライン74Cの電位がアースの基準電位とほぼ同じであるため、駆動系電源ライン73等を流れる電流によって発生する電磁ノイズは、バックボーン幹線部61Cの外側には輻射されない。 As shown in FIG. 5, by covering the outside of the signal system power line 71B and the drive system power line 73 with the exterior material configured as the drive system ground line 74C, the function of an electromagnetic shield can be effectively achieved. That is, since the potential of the drive system ground line 74C is substantially the same as the ground reference potential, electromagnetic noise generated by the current flowing through the drive system power supply line 73 and the like is not radiated to the outside of the backbone trunk section 61C.
 <変形例2>
 バックボーン幹線部61D、61Eの断面構造を図6(a)および図6(b)にそれぞれ示す。
<Modification 2>
The cross-sectional structures of the backbone trunk portions 61D and 61E are shown in FIGS. 6 (a) and 6 (b), respectively.
 図6(a)に示すように、バックボーン幹線部61Dは、管状の駆動系アースライン74Cを有する点で、バックボーン幹線部61Cと類似しているが、駆動系アースライン74Cの外周全体が、外装材(筐体)70により覆われている点で異なっている。外装材70は、樹脂などの絶縁体で構成されており、アースライン74Cを覆うよう管状に形成されている。これにより、バックボーン幹線部61Cと同様の機能を果たすことができるのみならず、外周の外装材70がカバーとして機能するので、バックボーン幹線部61Dの耐久性を向上できる。 As shown in FIG. 6 (a), the backbone trunk part 61D is similar to the backbone trunk part 61C in that it has a tubular drive system ground line 74C, but the entire outer periphery of the drive system ground line 74C is the exterior. It differs in that it is covered with a material (housing) 70. The exterior material 70 is made of an insulating material such as resin, and is formed in a tubular shape so as to cover the ground line 74C. Thereby, not only can the same function as the backbone trunk part 61C be achieved, but also the outer peripheral exterior material 70 functions as a cover, so that the durability of the backbone trunk part 61D can be improved.
 また、図6(b)に示すバックボーン幹線部61Eは、バックボーン幹線部61Dと同様の外装材70を有しており、駆動系電源ライン、信号系電源ライン、信号系アースラインの断面形状のみが異なっている。したがって、バックボーン幹線部61Eにおいても、バックボーン幹線部61Dと同様に耐久性を向上できる。 Further, the backbone trunk part 61E shown in FIG. 6B has an exterior material 70 similar to that of the backbone trunk part 61D, and only the cross-sectional shapes of the drive system power line, the signal system power line, and the signal system ground line are included. Is different. Accordingly, the durability of the backbone trunk part 61E can be improved similarly to the backbone trunk part 61D.
 <変形例3>
 バックボーン幹線部61Fの断面構造を図7に示す。図7に示したバックボーン幹線部61Fにおいても、図3(b)に示した構成のバックボーン幹線部61と同等の機能を果たすことができる。
<Modification 3>
A cross-sectional structure of the backbone trunk line 61F is shown in FIG. The backbone trunk portion 61F shown in FIG. 7 can also perform the same function as the backbone trunk portion 61 having the configuration shown in FIG.
 図7に示したバックボーン幹線部61Fにおいては、板状に形成された前述の信号系電源ライン71B、駆動系電源ライン73B、および駆動系アースライン74Bを積層し、その外側を外装材70で覆ってある。この外装材70は、変形例2と同様、例えば樹脂などで構成することができるが、導電体であってもよい。
 また、外装材70の外周は、信号系アースライン72Cを構成する薄い導電体(アルミニウムなどの金属)で覆われている。なお、信号系アースライン72を外装材70の内壁に沿って配置してもよい。信号系アースライン72Cには大きな電流は流れないので、この導体の断面積を大きくする必要はない。
In the backbone trunk portion 61F shown in FIG. 7, the signal system power line 71B, the drive system power line 73B, and the drive system ground line 74B formed in a plate shape are stacked, and the outside is covered with the exterior material 70. It is. The exterior material 70 can be made of, for example, a resin as in the second modification, but may be a conductor.
Further, the outer periphery of the exterior material 70 is covered with a thin conductor (metal such as aluminum) that constitutes the signal system ground line 72C. The signal ground line 72 may be disposed along the inner wall of the exterior material 70. Since a large current does not flow through the signal system ground line 72C, it is not necessary to increase the cross-sectional area of this conductor.
 図7に示すように、信号系アースライン72Cを外装材70の周囲に配置し、信号系電源ライン71Bおよび駆動系電源ライン73の外側を覆うことにより、効果的に電磁シールドの機能を果たすことができる。すなわち、信号系アースライン72Cの電位がアースの基準電位とほぼ同じであるため、駆動系電源ライン73等を流れる電流によって発生する電磁ノイズは、バックボーン幹線部61Fの外側には輻射されない。 As shown in FIG. 7, the signal system ground line 72C is disposed around the exterior material 70 and covers the outside of the signal system power supply line 71B and the drive system power supply line 73, thereby effectively serving as an electromagnetic shield. Can do. That is, since the potential of the signal system ground line 72C is substantially the same as the ground reference potential, electromagnetic noise generated by the current flowing through the drive system power supply line 73 and the like is not radiated to the outside of the backbone trunk section 61F.
 <変形例4>
 バックボーン幹線部61G、61Hの断面構造を図8(a)および図8(b)にそれぞれ示す。
<Modification 4>
The cross-sectional structures of the backbone trunk lines 61G and 61H are shown in FIGS. 8 (a) and 8 (b), respectively.
 図8(a)に示すように、バックボーン幹線部61Gは、管状の駆動系アースライン74Cを有する点、および駆動系アースライン74Cの外周全体が外装材(筐体)70により覆われているで、変形例2に示したバックボーン幹線部61Dと類似しているが、管状の駆動系アースライン74Cの内側に信号系電源ライン71、信号系アースライン72、駆動系電源ライン73、および駆動系アースライン74の4本のラインを有する点でバックボーン幹線部61Dと異なっている。 As shown in FIG. 8A, the backbone trunk 61G has a tubular drive system ground line 74C, and the entire outer periphery of the drive system ground line 74C is covered with an exterior material (housing) 70. Similar to the backbone trunk portion 61D shown in the modified example 2, but inside the tubular drive system ground line 74C, the signal system power line 71, the signal system ground line 72, the drive system power line 73, and the drive system ground It differs from the backbone trunk 61D in that it has four lines 74.
 つまり、バックボーン幹線部61Gは、駆動系のアースラインとして断面形状が円形の駆動系アースライン74および管状の駆動系アースライン74Cの2本を有している。これにより、アースラインの合計の断面積をより広く確保できるので、大電流を流すアース用の導電体として適しているのみならず、駆動系アースライン74Cが信号系電源ライン71および駆動系電源ライン73の外側を覆うことにより、効果的に電磁シールドの機能を果たすこともできる。 That is, the backbone trunk 61G has two drive system ground lines, ie, a drive system ground line 74 having a circular cross section and a tubular drive system ground line 74C as drive system ground lines. As a result, the total cross-sectional area of the ground line can be secured more widely, so that it is not only suitable as a grounding conductor for passing a large current, but the drive system ground line 74C is connected to the signal system power line 71 and the drive system power line. By covering the outside of 73, the function of an electromagnetic shield can be effectively achieved.
 また、図8(b)に示すバックボーン幹線部61Hは、バックボーン幹線部61Gと同様、管状の駆動系アースライン74Cと、これに囲まれた駆動系電源ライン、信号系電源ライン、信号系アースラインおよび駆動系アースラインを有し、これらの断面形状のみが異なっている。したがって、バックボーン幹線部61Hにおいても、駆動系アースライン74Cが、大電流を流すアース用の導電体として適しているのみならず、信号系電源ライン71および駆動系電源ライン73の外側を覆うことにより、効果的に電磁シールドの機能を果たすこともできる。 Further, the backbone trunk part 61H shown in FIG. 8B is similar to the backbone trunk part 61G in that it has a tubular drive system ground line 74C, and a drive system power line, signal system power line, and signal system ground line surrounded by this. And a drive system ground line, and only the cross-sectional shapes thereof are different. Therefore, also in the backbone trunk portion 61H, the drive system ground line 74C is not only suitable as a grounding conductor for passing a large current, but also covers the outside of the signal system power line 71 and the drive system power line 73. It can also effectively serve as an electromagnetic shield.
(第2実施形態)
 図9は、本発明の第2実施形態における車両用回路体を含む車載装置を示す結線図である。なお、第1実施形態と同一の構成要素には同一符号を付して説明を省略する。
(Second Embodiment)
FIG. 9 is a connection diagram illustrating an in-vehicle device including a vehicle circuit body according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the component same as 1st Embodiment, and description is abbreviate | omitted.
 図9に示した車載装置においては、バックボーン幹線部61B、62B、63Bの電源ライン79を、駆動系補機81、83、85と、信号系補機82、84、86とで共通に利用するように構成してある。つまり、図2に示した信号系電源ライン71および駆動系電源ライン73を、共通の電源ライン79で置き換えてある。また、バックボーン制御ボックス64B、65B、66B内の電源分配部も、信号系と駆動系とが共通になっている。 In the in-vehicle apparatus shown in FIG. 9, the power supply lines 79 of the backbone trunk lines 61B, 62B, and 63B are commonly used by the drive system auxiliary machines 81, 83, and 85 and the signal system auxiliary machines 82, 84, and 86. It is constituted as follows. That is, the signal power supply line 71 and the drive power supply line 73 shown in FIG. Further, the power distribution unit in the backbone control boxes 64B, 65B, 66B also has a common signal system and drive system.
 図9に示した構成においては、電源ライン79を信号系と駆動系とで共通に使用しているので、駆動系補機81、83、85に流れる大電流の影響による電圧降下によって、信号系補機82、84、86に印加される電源電圧が低下する可能性がある。しかし、アース側の線路は図2に示した構成と同様に信号系と駆動系とで独立しているので、信号系補機82、84、86のアース電位が大電流の影響を受けることはなく、信号系補機における誤動作の発生を防止できる。 In the configuration shown in FIG. 9, since the power supply line 79 is commonly used by the signal system and the drive system, the signal system is caused by a voltage drop due to the large current flowing in the drive system auxiliary machines 81, 83, and 85. There is a possibility that the power supply voltage applied to the auxiliary machines 82, 84, 86 is lowered. However, since the ground-side line is independent for the signal system and the drive system as in the configuration shown in FIG. 2, the ground potential of the signal system auxiliary devices 82, 84, 86 is not affected by a large current. Therefore, it is possible to prevent the malfunction of the signal auxiliary machine.
 図9に示したバックボーン幹線部61B、62B、63Bの各々については、電源ライン79、信号系アースライン72、および駆動系アースライン74の3つのラインにより構成されるので、例えば図10(a)、図10(b)、図11(a)、および図11(b)のいずれかに示した構成を採用することができる。 Each of the backbone trunk lines 61B, 62B, and 63B shown in FIG. 9 includes three lines, that is, a power supply line 79, a signal system ground line 72, and a drive system ground line 74. For example, FIG. 10 (b), FIG. 11 (a), and FIG. 11 (b) can be employed.
 図10(a)に示した構成においては、バックボーン幹線部61Bを構成する電源ライン79、信号系アースライン72、および駆動系アースライン74の各々は、断面形状が円形の被覆電線により構成されている。各被覆電線は、断面形状が円形の内部導体75と、その周囲全体を覆う絶縁被覆76とで構成されている。絶縁被覆76は、樹脂などで構成されている。したがって、電源ライン79、信号系アースライン72、および駆動系アースライン74は互いに電気的に分離されている。 In the configuration shown in FIG. 10A, each of the power supply line 79, the signal system ground line 72, and the drive system ground line 74 constituting the backbone trunk portion 61B is configured by a covered electric wire having a circular cross-sectional shape. Yes. Each covered electric wire is configured by an inner conductor 75 having a circular cross-sectional shape and an insulating coating 76 covering the entire periphery thereof. The insulating coating 76 is made of resin or the like. Therefore, the power supply line 79, the signal system ground line 72, and the drive system ground line 74 are electrically separated from each other.
 また、電源ライン79、信号系アースライン72、および駆動系アースライン74は1列に並べて互いに平行に配置されている。そして、信号系アースライン72と駆動系アースライン74との間に挟んだ状態で電源ライン79が配置されている。 Further, the power supply line 79, the signal system ground line 72, and the drive system ground line 74 are arranged in parallel in a row. A power supply line 79 is arranged in a state sandwiched between the signal system ground line 72 and the drive system ground line 74.
 このように配置することで、電磁ノイズが外部に輻射されるのを抑制できる。すなわち、電源ライン79には大電流が流れるため、電流のスイッチングなどに伴って大きな電磁ノイズが電源ライン79から輻射することになる。しかし、信号系アースライン72の電位および駆動系アースライン74の電位は、それぞれアースの基準電位とほぼ同じであるため、電磁シールドを行うことができ、信号系アースライン72および駆動系アースライン74の外側への電磁ノイズの輻射を低減することができる。 This arrangement can suppress electromagnetic noise from being radiated to the outside. That is, since a large current flows through the power supply line 79, a large electromagnetic noise is radiated from the power supply line 79 along with the switching of the current. However, since the potential of the signal system ground line 72 and the potential of the drive system ground line 74 are substantially the same as the ground reference potential, electromagnetic shielding can be performed. The signal system ground line 72 and the drive system ground line 74 can be shielded. The radiation of electromagnetic noise to the outside can be reduced.
 なお、電源ライン79、信号系アースライン72、および駆動系アースライン74を図10(a)に示した状態の位置関係で固定するために、これらは例えば接着により一体化され、あるいは図示しない外装材で外側を覆うことにより一体化される。また、信号系アースライン72を流れる電流は比較的小さいので、実際には、信号系アースライン72における内部導体75の断面積は、駆動系アースライン74に比べて小さくすることができる。 In order to fix the power supply line 79, the signal system ground line 72, and the drive system ground line 74 in the positional relationship shown in FIG. 10A, these are integrated by bonding, for example, or an exterior (not shown) It is integrated by covering the outside with a material. Further, since the current flowing through the signal system ground line 72 is relatively small, the cross-sectional area of the internal conductor 75 in the signal system ground line 72 can actually be made smaller than that of the drive system ground line 74.
 図10(b)に示した構成においては、バックボーン幹線部61Bを構成する電源ライン79B、信号系アースライン72B、および駆動系アースライン74Bの各々は、断面形状が扁平な板状の被覆電線により構成されている。各被覆電線は、断面形状が扁平な板状の内部導体77と、その周囲全体を覆う絶縁被覆78とで構成されている。絶縁被覆78は、樹脂などで構成されている。したがって、電源ライン79B、信号系アースライン72B、および駆動系アースライン74Bは互いに電気的に分離されている。 In the configuration shown in FIG. 10B, each of the power supply line 79B, the signal system ground line 72B, and the drive system ground line 74B constituting the backbone trunk portion 61B is a plate-shaped covered electric wire having a flat cross-sectional shape. It is configured. Each covered electric wire includes a plate-like inner conductor 77 having a flat cross-sectional shape and an insulating coating 78 covering the entire periphery thereof. The insulating coating 78 is made of resin or the like. Therefore, the power supply line 79B, the signal system ground line 72B, and the drive system ground line 74B are electrically separated from each other.
 また、電源ライン79B、信号系アースライン72B、および駆動系アースライン74Bはそれらの厚み方向に積層した状態で、1列に並べて互いに平行に配置されている。そして、信号系アースライン72Bと駆動系アースライン74Bとの間に挟んだ状態で電源ライン79Bが配置されている。 Further, the power supply line 79B, the signal system ground line 72B, and the drive system ground line 74B are arranged in parallel in a row in a state where they are stacked in the thickness direction thereof. A power supply line 79B is arranged in a state sandwiched between the signal system ground line 72B and the drive system ground line 74B.
 このように配置することで、電磁ノイズが外部に輻射されるのを抑制できる。すなわち、電源ライン79Bには大電流が流れるため、電流のスイッチングなどに伴って大きな電磁ノイズが電源ライン79Bから輻射することになる。しかし、信号系アースライン72Bの電位および駆動系アースライン74Bの電位は、それぞれアースの基準電位とほぼ同じであるため、電磁シールドを行うことができ、信号系アースライン72Bおよび駆動系アースライン74Bの外側への電磁ノイズの輻射を低減することができる。 This arrangement can suppress electromagnetic noise from being radiated to the outside. That is, since a large current flows through the power supply line 79B, a large electromagnetic noise is radiated from the power supply line 79B when the current is switched. However, since the potential of the signal system ground line 72B and the potential of the drive system ground line 74B are substantially the same as the ground reference potential, electromagnetic shielding can be performed. The signal system ground line 72B and the drive system ground line 74B The radiation of electromagnetic noise to the outside can be reduced.
 なお、電源ライン79B、信号系アースライン72B、および駆動系アースライン74Bを図10(b)に示した状態の位置関係で固定するために、これらは例えば接着により一体化され、あるいは図示しない外装材で外側を覆うことにより一体化される。また、信号系アースライン72Bを流れる電流は比較的小さいので、実際には、信号系アースライン72Bにおける内部導体75の断面積は、駆動系アースライン74Bに比べて小さくすることができる。 In order to fix the power supply line 79B, the signal system ground line 72B, and the drive system ground line 74B in the positional relationship shown in FIG. 10B, these are integrated by bonding, for example, or an exterior (not shown) It is integrated by covering the outside with a material. Further, since the current flowing through the signal system ground line 72B is relatively small, in practice, the cross-sectional area of the internal conductor 75 in the signal system ground line 72B can be made smaller than that of the drive system ground line 74B.
 図11(a)に示した構成においては、信号系アースライン72、駆動系アースライン74、および電源ライン79を1列に並べて配置してある。また、この列の左端に信号系アースライン72を配置し、中央に駆動系アースライン74を配置し、右端に電源ライン79を配置してある。 In the configuration shown in FIG. 11A, the signal system ground line 72, the drive system ground line 74, and the power supply line 79 are arranged in a line. Further, a signal system ground line 72 is disposed at the left end of this column, a drive system ground line 74 is disposed at the center, and a power supply line 79 is disposed at the right end.
 図11(a)の構成において、電源ライン79は、例えば車体の面あるいは補機の面に近い位置に配置することを想定している。したがって、車体等の面に対して遠い外側の位置に信号系アースライン72および駆動系アースライン74が配置される。そのため、信号系アースライン72および駆動系アースライン74の電磁シールド機能により、電源ライン79から輻射した電磁ノイズが外側に放射されるのを低減できる。 In the configuration shown in FIG. 11A, it is assumed that the power line 79 is disposed at a position close to the surface of the vehicle body or the surface of the auxiliary machine, for example. Therefore, the signal system ground line 72 and the drive system ground line 74 are arranged at positions outside the surface of the vehicle body or the like. For this reason, the electromagnetic shield function of the signal system ground line 72 and the drive system ground line 74 can reduce the electromagnetic noise radiated from the power supply line 79 from being radiated to the outside.
 図11(b)に示した構成においては、信号系アースライン72B、駆動系アースライン74B、および電源ライン79Bを厚み方向に1列に並べて積層した状態で配置してある。また、この列の最上部に信号系アースライン72Bを配置し、中央に駆動系アースライン74Bを配置し、最下部に電源ライン79Bを配置してある。 In the configuration shown in FIG. 11B, the signal system ground line 72B, the drive system ground line 74B, and the power supply line 79B are arranged in a line in the thickness direction and stacked. In addition, a signal system ground line 72B is disposed at the top of this column, a drive system ground line 74B is disposed at the center, and a power supply line 79B is disposed at the bottom.
 図11(b)の構成において、最下部の電源ライン79Bは、例えば車体の面あるいは補機の面に近い位置に配置することを想定している。したがって、車体等の面に対して遠い外側の位置に信号系アースライン72Bおよび駆動系アースライン74Bが配置される。そのため、信号系アースライン72Bおよび駆動系アースライン74Bの電磁シールド機能により、電源ライン79Bから輻射した電磁ノイズが外側に放射されるのを低減できる。 In the configuration shown in FIG. 11B, it is assumed that the lowermost power line 79B is disposed at a position close to the surface of the vehicle body or the surface of the auxiliary machine, for example. Therefore, the signal system ground line 72B and the drive system ground line 74B are arranged at positions outside the surface of the vehicle body or the like. Therefore, the electromagnetic shield function of the signal system ground line 72B and the drive system ground line 74B can reduce the electromagnetic noise radiated from the power supply line 79B from being radiated to the outside.
 <第2実施形態の変形例1>
 バックボーン幹線部61J、61Kの断面構造を図12(a)および図12(b)にそれぞれ示す。
 図12(a)に示すように、バックボーン幹線部61Jは、図2に示した信号系電源ライン71および駆動系電源ライン73を、共通の電源ライン79で置き換えてある点において、図10に示すバックボーン幹線部61Bの構成と類似しているが、断面円形状ではなく管状の駆動系アースライン74Cを有する点で、バックボーン幹線部61Bと異なっている。また、駆動系アースライン74Cの外周全体が、外装材(筐体)70により覆われている点においてもバックボーン幹線部61Bと異なっている。外装材70は、樹脂などの絶縁体で構成されており、アースライン74Cを覆うよう管状に形成されている。
<Modification Example 1 of Second Embodiment>
The cross-sectional structures of the backbone trunk lines 61J and 61K are shown in FIGS. 12 (a) and 12 (b), respectively.
As shown in FIG. 12A, the backbone trunk 61J is shown in FIG. 10 in that the signal power supply line 71 and the drive power supply line 73 shown in FIG. Although it is similar to the structure of the backbone trunk part 61B, it differs from the backbone trunk part 61B in that it has a drive system ground line 74C that is not circular in cross section but tubular. The entire outer periphery of the drive system ground line 74 </ b> C is also different from the backbone trunk part 61 </ b> B in that it is covered with an exterior material (housing) 70. The exterior material 70 is made of an insulating material such as resin, and is formed in a tubular shape so as to cover the ground line 74C.
 これにより、バックボーン幹線部61Cと同様の機能を果たすことができるのみならず、外周の外装材70がカバーとして機能するので、バックボーン幹線部61Jの耐久性を向上できる。また、アースライン74Cにより形成される管内に収容されるのは、信号系アースライン72および電源ライン79の2本のみであるので、バックボーン幹線部61Jの断面積をより一層小さくすることができる。 Thereby, not only can the same function as the backbone trunk portion 61C be achieved, but also the outer peripheral exterior material 70 functions as a cover, so that the durability of the backbone trunk portion 61J can be improved. Further, since only two of the signal system ground line 72 and the power supply line 79 are accommodated in the pipe formed by the ground line 74C, the cross-sectional area of the backbone trunk line portion 61J can be further reduced.
 また、図12(b)に示すバックボーン幹線部61Kは、バックボーン幹線部61Jと同様の外装材70を有しており、電源ラインおよび信号系アースラインの断面形状のみが異なっている。したがって、バックボーン幹線部61Kにおいても、バックボーン幹線部61Jと同様の効果を得ることができる。 Also, the backbone trunk portion 61K shown in FIG. 12B has the same exterior material 70 as the backbone trunk portion 61J, and only the cross-sectional shapes of the power supply line and the signal system ground line are different. Therefore, the same effect as the backbone trunk line 61J can be obtained also in the backbone trunk line 61K.
<その他の変形例>
 図2に示した車載装置においては、バックボーン幹線部61~63の内部に、信号系アースライン72、および駆動系アースライン74の両方が含まれている。しかし、車体が金属で構成されている車両に搭載する車載装置の場合には、ボディアースを利用することも可能である。そして、ボディアースを利用できる場合には、バックボーン幹線部61~63内の信号系アースライン72、および駆動系アースライン74のいずれか一方をボディアースに置き換えることができる。
<Other variations>
In the in-vehicle apparatus shown in FIG. 2, both the signal system ground line 72 and the drive system ground line 74 are included in the backbone trunk lines 61 to 63. However, in the case of an in-vehicle device mounted on a vehicle whose body is made of metal, it is also possible to use body earth. When the body ground can be used, any one of the signal system ground line 72 and the drive system ground line 74 in the backbone trunk lines 61 to 63 can be replaced with the body ground.
<車両用回路体の利点>
 上述したいずれの構成にしても、互いに独立した信号系アースライン72、および駆動系アースライン74を備え、駆動系補機81と信号系補機82のアースを互いに分離することにより、信号系補機82のアース電位が基準電位から浮いたり変動するのを避けることができ、信号系補機82の誤動作を防止できる。また、信号系補機82に印加する電源電圧の低下を抑制できるので、信号系補機82の性能が定格に比べて低下するのを避けることができる。また、図2に示すように、電源ラインについても駆動系補機81と信号系補機82とを分離することにより、信号系補機82に印加する電源電圧の低下を更に抑制できる。
<Advantages of circuit bodies for vehicles>
In any of the above-described configurations, the signal system ground line 72 and the drive system ground line 74 that are independent from each other are provided, and the grounds of the drive system auxiliary machine 81 and the signal system auxiliary machine 82 are separated from each other. It is possible to prevent the ground potential of the machine 82 from floating or fluctuating from the reference potential, and to prevent malfunction of the signal system auxiliary machine 82. Moreover, since the fall of the power supply voltage applied to the signal system auxiliary machine 82 can be suppressed, it can avoid that the performance of the signal system auxiliary machine 82 falls compared with a rating. In addition, as shown in FIG. 2, also for the power supply line, the drive system auxiliary machine 81 and the signal system auxiliary machine 82 are separated from each other, so that the power supply voltage applied to the signal system auxiliary machine 82 can be further suppressed.
 ここで、上述した本発明に係る車両用回路体の実施形態の特徴をそれぞれ以下[1]~[6]に簡潔に纏めて列記する。
[1] 車両に設置される車両用回路体であって、
 前記車両に搭載されている複数の補機と枝線又は分岐回路を介して接続可能な幹線(バックボーン幹線部61~63)を備え、
 前記幹線は、
 前記車両に搭載されている電源からの電力を分配して複数の前記補機にそれぞれ供給可能な電源ライン(信号系電源ライン71、駆動系電源ライン73、電源ライン79)と、
 前記電源のアース端子と、複数の前記補機との間を電気的に接続可能なアースラインと、
 通信機能を有する複数の前記補機が信号用伝送路として共用する通信ラインと、を備え、
 前記アースラインは、複数の前記補機のうち大電流が流れる補機(駆動系補機81、83、85)と接続される第1のアースライン(駆動系アースライン74)と、前記大電流よりも小さい電流が流れる補機と接続される第2のアースライン(信号系アースライン72)とを含む
 車両用回路体。
Here, the features of the above-described embodiment of the vehicle circuit body according to the present invention will be summarized and listed in the following [1] to [6], respectively.
[1] A vehicle circuit body installed in a vehicle,
A trunk line (backbone trunk line portions 61 to 63) connectable to a plurality of auxiliary machines mounted on the vehicle via branch lines or branch circuits;
The trunk line is
A power line (signal system power line 71, drive system power line 73, power line 79) capable of distributing power from a power source mounted on the vehicle and supplying the power to each of the auxiliary machines;
An earth line capable of being electrically connected between the ground terminal of the power source and the plurality of auxiliary machines;
A plurality of auxiliary devices having a communication function, and a communication line shared as a signal transmission path,
The ground line includes a first ground line (drive system ground line 74) connected to an auxiliary machine (drive system auxiliary machines 81, 83, 85) through which a large current flows among the plurality of auxiliary machines, and the large current. A vehicle circuit body including a second earth line (signal system earth line 72) connected to an auxiliary machine through which a smaller current flows.
[2] 前記電源ラインは、前記大電流が流れる補機(駆動系補機81、83、85)に電力を供給する第1の電源ライン(駆動系電源ライン73)と、前記大電流よりも小さい電流が流れる補機(信号系補機82、84、86)に電力を供給する第2の電源ライン(信号系電源ライン71)とを含む
 上記[1]に記載の車両用回路体。
[2] The power supply line includes a first power supply line (drive system power supply line 73) that supplies power to the auxiliary machine (drive system auxiliary machines 81, 83, and 85) through which the large current flows, and the large current. The vehicle circuit body according to [1], further including a second power supply line (signal power supply line 71) for supplying power to an auxiliary device (signal auxiliary devices 82, 84, 86) through which a small current flows.
[3] 前記第1のアースラインと前記第2のアースラインとが、同一の配索経路上に互いにほぼ平行な状態で、互いに電気的に絶縁し、並べて配置してある(図3参照)
 上記[1]又は[2]に記載の車両用回路体。
[3] The first ground line and the second ground line are electrically insulated from each other and arranged side by side in a substantially parallel state on the same wiring path (see FIG. 3).
The vehicle circuit body according to the above [1] or [2].
[4] 前記第1のアースラインと前記第2のアースラインとで挟まれた空間に、前記電源ラインが配置してある(図3参照)
 上記[3]に記載の車両用回路体。
[4] The power supply line is arranged in a space between the first ground line and the second ground line (see FIG. 3).
The vehicle circuit body according to the above [3].
[5] 前記第2のアースラインが、前記電源ラインおよび前記第1のアースラインよりも、前記車両の車体上の面からの距離が遠くなる外側の位置に配置してある(図4参照)
 上記[3]に記載の車両用回路体。
[5] The second ground line is disposed outside the power line and the first ground line at a position farther away from the surface of the vehicle body of the vehicle (see FIG. 4).
The vehicle circuit body according to the above [3].
[6] 前記第1のアースラインが、管状に形成され、
 前記電源ラインおよび前記第2のアースラインが、前記第1のアースラインの管内に配置されている
 上記[1]又は[2]に記載の車両用回路体。
[6] The first ground line is formed in a tubular shape,
The vehicle circuit body according to [1] or [2], wherein the power supply line and the second ground line are arranged in a pipe of the first ground line.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2016年7月29日出願の日本特許出願(特願2016-150735)及び2017年7月26日出願の日本特許出願(特願2017-144887)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on the Japanese patent application filed on July 29, 2016 (Japanese Patent Application No. 2016-150735) and the Japanese patent application filed on July 26, 2017 (Japanese Patent Application No. 2017-144887). Incorporated herein by reference.
 本発明によれば、車両上の電源から様々な補機に対して大電流が流れた場合であっても、補機の誤動作や補機の性能低下を抑制することが可能な車両用回路体を提供できるという効果を奏する。この効果を奏する本発明は、車両に搭載されるワイヤハーネスまたはそれと同等の機能を有する車両用回路体に関して有用である。 ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where a heavy current flows with respect to various auxiliary machines from the power supply on a vehicle, the circuit body for vehicles which can suppress the malfunction of an auxiliary machine and the performance fall of an auxiliary machine The effect that can be provided. The present invention having this effect is useful for a wire harness mounted on a vehicle or a vehicle circuit body having a function equivalent to the wire harness.
 10 電源
 10a 正極側端子
 10b 負極側端子
 11 エンジンルーム
 13 車室
 16 ダッシュパネル
 16a 貫通孔
 21,22,23 バックボーン幹線部
 31,32,33 バックボーン制御ボックス
 31a 主電源接続部
 31b 幹線接続部
 31c 枝線接続部
 41 主電源ケーブル
 42,43,44 枝線サブハーネス
 51,52,53 電子制御ユニット
 61,61B,61C,61D,61E,61F,61G,61H,61J,61K,62,62B,63,63B バックボーン幹線部
 64,64B,65,65B,66,66B バックボーン制御ボックス
 70 外装材
 71,71B 信号系電源ライン
 72,72B 信号系アースライン
 73,73B 駆動系電源ライン
 74,74B,74C 駆動系アースライン
 75,77 内部導体
 76,78 絶縁被覆
 79 電源ライン
 81,83,85 駆動系補機
 82,84,86 信号系補機
DESCRIPTION OF SYMBOLS 10 Power supply 10a Positive side terminal 10b Negative side terminal 11 Engine room 13 Car compartment 16 Dash panel 16a Through- hole 21, 22, 23 Backbone main line part 31, 32, 33 Backbone control box 31a Main power supply connection part 31b Main line connection part 31c Branch line Connection part 41 Main power cable 42, 43, 44 Branch sub-harness 51, 52, 53 Electronic control unit 61, 61B, 61C, 61D, 61E, 61F, 61G, 61H, 61J, 61K, 62, 62B, 63B, 63B Backbone trunk section 64, 64B, 65, 65B, 66, 66B Backbone control box 70 Exterior material 71, 71B Signal system power line 72, 72B Signal system ground line 73, 73B Drive system power line 74, 74B, 74C Drive system ground line 75,77 inside Body 76, 78 insulating coating 79 power lines 81, 83, 85 drive system auxiliary 82, 84, 86 signal system accessory

Claims (6)

  1.  車両に設置される車両用回路体であって、
     前記車両に搭載されている複数の補機と枝線又は分岐回路を介して接続可能な幹線を備え、
     前記幹線は、
     前記車両に搭載されている電源からの電力を分配して複数の前記補機にそれぞれ供給可能な電源ラインと、
     前記電源のアース端子と、複数の前記補機との間を電気的に接続可能なアースラインと、
     通信機能を有する複数の前記補機が信号用伝送路として共用する通信ラインと、を備え、
     前記アースラインは、複数の前記補機のうち大電流が流れる補機と接続される第1のアースラインと、前記大電流よりも小さい電流が流れる補機と接続される第2のアースラインとを含む
     車両用回路体。
    A circuit body for a vehicle installed in a vehicle,
    A trunk line that can be connected to a plurality of auxiliary machines mounted on the vehicle via branch lines or branch circuits,
    The trunk line is
    A power line capable of distributing power from a power source mounted on the vehicle and supplying each of the plurality of auxiliary machines;
    An earth line capable of being electrically connected between the ground terminal of the power source and the plurality of auxiliary machines;
    A plurality of auxiliary devices having a communication function, and a communication line shared as a signal transmission path,
    The ground line includes a first ground line connected to an auxiliary machine through which a large current flows among the plurality of auxiliary machines, and a second ground line connected to an auxiliary machine through which a current smaller than the large current flows. Including a vehicle circuit body.
  2.  前記電源ラインは、前記大電流が流れる補機に電力を供給する第1の電源ラインと、前記大電流よりも小さい電流が流れる補機に電力を供給する第2の電源ラインとを含む
     請求項1に記載の車両用回路体。
    The power supply line includes a first power supply line that supplies electric power to an auxiliary machine through which the large current flows, and a second power supply line that supplies electric power to an auxiliary machine through which a current smaller than the large current flows. The vehicle circuit body according to 1.
  3.  前記第1のアースラインと前記第2のアースラインとが、同一の配索経路上に互いにほぼ平行な状態で、互いに電気的に絶縁し、並べて配置してある
     請求項1又は2に記載の車両用回路体。
    The first ground line and the second ground line are electrically insulated from each other and arranged side by side in a substantially parallel state on the same routing path. Circuit body for vehicles.
  4.  前記第1のアースラインと前記第2のアースラインとで挟まれた空間に、前記電源ラインが配置してある
     請求項3に記載の車両用回路体。
    The vehicle circuit body according to claim 3, wherein the power supply line is disposed in a space sandwiched between the first ground line and the second ground line.
  5.  前記第2のアースラインが、前記電源ラインおよび前記第1のアースラインよりも、前記車両の車体上の面からの距離が遠くなる外側の位置に配置してある
     請求項3に記載の車両用回路体。
    4. The vehicle according to claim 3, wherein the second ground line is disposed at an outer position that is farther from the surface of the vehicle on the vehicle body than the power supply line and the first ground line. Circuit body.
  6.  前記第1のアースラインが、管状に形成され、
     前記電源ラインおよび前記第2のアースラインが、前記第1のアースラインの管内に配置されている
     請求項1又は2に記載の車両用回路体。
    The first ground line is formed in a tubular shape;
    The circuit body for vehicles according to claim 1 or 2 with which said power supply line and said 2nd earth line are arranged in a pipe of said 1st earth line.
PCT/JP2017/027497 2016-07-29 2017-07-28 Vehicular circuit unit WO2018021547A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017003806.5T DE112017003806T5 (en) 2016-07-29 2017-07-28 VEHICLE BODY CIRCUIT
CN201780047267.8A CN109661329B (en) 2016-07-29 2017-07-28 Vehicle circuit body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-150735 2016-07-29
JP2016150735 2016-07-29
JP2017-144887 2017-07-26
JP2017144887A JP7010617B2 (en) 2016-07-29 2017-07-26 Vehicle circuit

Publications (1)

Publication Number Publication Date
WO2018021547A1 true WO2018021547A1 (en) 2018-02-01

Family

ID=61016293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027497 WO2018021547A1 (en) 2016-07-29 2017-07-28 Vehicular circuit unit

Country Status (2)

Country Link
CN (1) CN109661329B (en)
WO (1) WO2018021547A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11275731A (en) * 1998-03-20 1999-10-08 Mitsubishi Shindoh Co Ltd Electromagnetic wave shield
JP2013030722A (en) * 2011-06-22 2013-02-07 Seiko Epson Corp Connection structure and connection method
JP2015171304A (en) * 2014-03-11 2015-09-28 株式会社オートネットワーク技術研究所 Wiring harness
JP2015227089A (en) * 2014-05-30 2015-12-17 矢崎総業株式会社 Vehicular harness structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5210492B2 (en) * 2006-02-10 2013-06-12 矢崎総業株式会社 Noise removal wire harness
JP2009269579A (en) * 2008-05-12 2009-11-19 Toyota Industries Corp Noise reduction structure in electric wire
JP5491224B2 (en) * 2010-02-05 2014-05-14 矢崎総業株式会社 Wire harness
JP5459041B2 (en) * 2010-04-20 2014-04-02 日立金属株式会社 Conductive path for vehicles
CN201965955U (en) * 2011-03-29 2011-09-07 广东南洋电缆集团股份有限公司 Alternating-current charging cable for electric automobile
JP5536737B2 (en) * 2011-10-26 2014-07-02 本田技研工業株式会社 Control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11275731A (en) * 1998-03-20 1999-10-08 Mitsubishi Shindoh Co Ltd Electromagnetic wave shield
JP2013030722A (en) * 2011-06-22 2013-02-07 Seiko Epson Corp Connection structure and connection method
JP2015171304A (en) * 2014-03-11 2015-09-28 株式会社オートネットワーク技術研究所 Wiring harness
JP2015227089A (en) * 2014-05-30 2015-12-17 矢崎総業株式会社 Vehicular harness structure

Also Published As

Publication number Publication date
CN109661329A (en) 2019-04-19
CN109661329B (en) 2022-05-31

Similar Documents

Publication Publication Date Title
CN109415027B (en) Vehicle circuit body
US10661729B2 (en) Circuit body for vehicle
JP6490624B2 (en) Wire harness
US10807546B2 (en) Vehicular circuit body
US10800361B2 (en) Circuit body for vehicle
JP7010617B2 (en) Vehicle circuit
JP6427144B2 (en) Wire harness
US10464504B2 (en) Circuit body for vehicle
WO2017135266A1 (en) Circuit for vehicle
CN109415026B (en) Vehicle circuit body
JP2009006773A (en) Wiring structure of wire harness for vehicle
US10919462B2 (en) Circuit body for vehicle and manufacturing method of circuit body for vehicle
US10232809B1 (en) Vehicle circuit body
KR102249088B1 (en) Power supply trunk line routing structure for vehicle and vehicle
JP6423389B2 (en) Wire harness
US10654429B2 (en) Circuit body for vehicle
US20190329723A1 (en) Wire harness
WO2018021547A1 (en) Vehicular circuit unit
WO2016111170A1 (en) Ground wiring structure for vehicle
JP2016107830A (en) Earth member for vehicle and arrangement structure of earth member for vehicle
JP6007093B2 (en) Electrical junction box wiring structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834549

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17834549

Country of ref document: EP

Kind code of ref document: A1