WO2018021281A1 - Automatic microorganism inspection device - Google Patents
Automatic microorganism inspection device Download PDFInfo
- Publication number
- WO2018021281A1 WO2018021281A1 PCT/JP2017/026816 JP2017026816W WO2018021281A1 WO 2018021281 A1 WO2018021281 A1 WO 2018021281A1 JP 2017026816 W JP2017026816 W JP 2017026816W WO 2018021281 A1 WO2018021281 A1 WO 2018021281A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- culture
- plate
- unit
- dispensing
- storing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/34—Measuring or testing with condition measuring or sensing means, e.g. colony counters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
Definitions
- the present invention relates to an automatic microbiological test apparatus used for bacterial identification test and drug sensitivity test.
- the system is capable of 18-hour sensitivity test in addition to the rapid identification test and rapid sensitivity test. ).
- the present invention relates to providing an automatic microbiological test apparatus equipped with a mechanism capable of early detection of bacterial growth failure in a drug sensitivity test.
- the present invention is an apparatus for testing microorganism identification and drug sensitivity, a sample container storage unit for storing a sample container, a plate storage unit for storing a culture plate, a chip storage unit for storing dispensing tips, From the chip disposal unit that stores used chips, the plate recovery unit that stores used culture plates, the culture unit that cultures specimens, the optical detection system that performs optical analysis, the plate transport system, the dispensing unit, and the specimen dilution
- a storage device storing a program for automatically performing a series of steps from sample dispensing, culture, optical analysis and determination, and plate collection, and a computing device for executing the program, and a drug sensitivity test
- the present invention relates to an automatic microbiological test apparatus having a mechanism for performing optical analysis for real-time and displaying the analysis result in a graph.
- the present invention also includes a diluting step for diluting the bacterial solution, a dispensing step for dispensing the sample, a culturing step for culturing the sample, and an analysis / determination step for performing a drug sensitivity test and an identification test.
- the present invention relates to a microorganism identification and drug sensitivity test method, which includes a step of performing optical analysis for a drug sensitivity test in real time and displaying the analysis result in a graph.
- the automatic microbe inspection apparatus of the present invention it is possible to test microbe identification and drug sensitivity with high accuracy and in a short time.
- a drug susceptibility test by looking at a growth curve graph that is detected and displayed in real time, a strain that cannot grow in the control well can be recognized before final determination, and a change or optimization of the drug sensitivity test method can be started in advance. Thereby, an accurate sensitivity result can be derived quickly.
- the growth curve data of the control well and the drug-added well it can be recognized from the growth curve graph that there is a possibility of resistant bacteria before the reference time when the computer starts the analysis process. This makes it possible to estimate whether the strain is resistant before the rapid susceptibility test results are obtained, and to perform optimal treatment such as changing the antibiotic species used for treatment earlier.
- Schematic diagram of the front of the device of the present invention Schematic view of the back of the device of the present invention Schematic view around the dispensing unit of the device of the present invention Schematic diagram of sample storage and chip storage
- Schematic diagram of plate storage / culture unit Flow from preparation of bacterial solution to identification of microorganisms and determination of drug sensitivity Growth curve of MRSA clinical isolates (0-1080 min) Growth curve of MRSA clinical isolates (0-420 min) Growth curve of MSSA clinical isolates (0-1080 min) Growth curve of MSSA clinical isolates (0-420 min)
- FIG. 5 shows a flow from preparation of the bacterial solution to identification of the microorganism and determination of drug sensitivity.
- the dedicated reagent includes a culture plate on which an identification substrate and an antibacterial agent for drug sensitivity test are dried and fixed, sterilized water for preparing a bacterial solution, bouillon (diluent) used for dilution in a drug sensitivity test, drug Pipette tips for dispensing special supplements (growth-supporting substances) and samples to culture plates that are required when testing strains with strict growth requirements in susceptibility tests, etc. Is mentioned.
- Sample information includes sample number, sample type (eg, sputum, blood, etc.), bacteria number, and the like.
- the plate information includes the plate name, drug type, drug concentration, measurement mode, and the like.
- test bacteria to be used as specimens are cultured in a non-selective medium with test materials and purely cultured. A small amount of such pure cultures are suspended in sterilized water to prepare a bacterial solution (primary sample). Is done. The prepared bacterial solution is affixed with a label in which the above-described information is registered, and is set in the specimen storage unit.
- FIG. 1 to 3 show an outline of the automatic microorganism identification susceptibility measuring apparatus of the present invention (FIG. 1: front, FIG. 2: back, FIG. 3: around the dispensing unit).
- 1 is a sample storage unit for storing a container containing a bacterial solution or a diluent
- 2 is a plate storage unit for setting a culture plate
- 3 is a chip storage unit for storing a chip
- 4 is injecting a sample into the culture plate Dispensing area for storing
- 5 is a chip discarding unit for storing used chips
- 6 is a plate collecting unit for storing used plates
- 7 is a culture unit for culturing specimens (identification test / drug sensitivity test)
- 8 Is a plate transport system for transporting the plate
- 9 is a dispensing unit for sucking and discharging the sample and dispensing it into the container
- 10 is an optical detection system.
- the specimen storage unit 1 is a structure for storing a container in which a bacterial solution (primary specimen) is stored and a container in which a diluent (bouillon) is stored (FIG. 4).
- the structure of the specimen storage unit is not particularly limited as long as it is possible to set a plurality of specimen storage containers (for example, for 10 specimens) and a diluent storage container corresponding thereto, and may be cylindrical or the like.
- the culture plate has a plurality of (for example, 96 wells) independent reaction wells, and the identification substrate and the antimicrobial agent for drug sensitivity test are dried and fixed.
- the identification substrate is dried and fixed in 32 wells in 1 to 4 rows of the microplate, and the antimicrobial drug for drug sensitivity test is dry fixed in 64 wells in 5 to 12 rows.
- a combination plate is used.
- an MIC plate in which antimicrobial agents for drug sensitivity test are dried and fixed in all wells is also used.
- Each plate is affixed with a label in which information such as drug type, concentration, and arrangement is registered.
- a plurality of (for example, 10) plates are set according to the number of samples.
- the plate storage portion can be set by stacking the plates. When the hook-shaped member is operated, it can be sequentially taken out from the lowermost plate.
- the chip storage part 3 has a hole so as to support the taper part of the chip, and stores a necessary number of chips.
- the dispensing unit 9 has a mechanism for attaching and detaching the chip to and from the chip nozzle and a mechanism for sucking and injecting the sample, and includes a dispensing arm unit that can move freely in the XZ axis direction.
- the bacterial solution is diluted by moving the dispensing unit to the chip stored in the chip storage unit 3 and mounting the chip, then moving the dispensing unit onto the bacterial solution and sucking the bacterial solution, and then diluting. It is performed by moving onto the liquid and discharging the bacterial liquid into the diluent.
- the plate transport system 8 has a hand for holding the culture plate and an elevating unit for storing it in the culture tank. To the plate storage unit, dispensing area, culture unit, optical detection system, and plate recovery unit The culture plate is moved and the upper lid is placed on the culture plate. The lid is put on the plate in advance, and when dispensing, the lid is lifted by a suction cup.
- the culture section is provided with a temperature adjustment mechanism 11 capable of adjusting the temperature to 34 to 36 ° C. (FIG. 5).
- An optical detection system 10 includes a fluorescence detector and an absorption detector.
- the fluorescence detector any substance capable of detecting a fluorescent substance such as 4-methylumbelliferone can be used.
- a halogen lamp can be used. However, in terms of the light source life and energy saving, an LED lamp is used. It is preferable to use it.
- a suitable LED lamp for example, a new model NCSU275 (U365) (maximum 150 mW) manufactured by Nichia Corporation may be mentioned.
- the light absorption detector is not limited as long as it can detect light-absorbing substances such as metanil yellow, but an LED lamp is preferably used as the light source. Suitable LED lamps include, for example, LXML-PR01-0500 manufactured by Philips Lumileds.
- the automatic microbiological test apparatus of the present invention has at least the above-described configuration, and dilution of the sample (dilution step), sample dispensing (dispensing step), culture, optical analysis and determination (analysis / determination step),
- a storage device storing a program for automatically performing a series of steps up to plate collection and an arithmetic device for executing the program are provided.
- This step is a step of preparing a cultivatable sample (secondary sample) from a bacterial solution (primary sample) for a drug sensitivity test. Specifically, after the dispensing unit 9 is operated and the tip is mounted on the tip nozzle, it moves onto the bacterial solution in the sample storage unit 1 to aspirate the bacterial solution, and then moves onto the diluted solution, By discharging the liquid, a cultivatable secondary specimen is prepared.
- Dispensing step In this step, the primary sample and the secondary sample are automatically dispensed into each reaction well of the culture plate.
- the plate transport system 8 In the dispensing operation, the plate transport system 8 is driven, the culture plate is moved to the dispensing area 4, the dispensing unit 9 is operated, and the primary sample solution and the secondary sample solution are respectively aspirated. , Injected into each well in the plate.
- the culture plate into which the specimen has been dispensed is transported to the culture unit 7 by the plate transport system 8, and culture for a drug sensitivity test and an identification test is performed.
- the culture is performed until the culture time set for each specimen.
- the culture plate in order to grasp the growth state of the bacteria in real time, the culture plate is transported from the culture unit to the optical detection system 10 at a preset interval (for example, every 15 minutes), and optical measurement is performed.
- This step is a step of measuring and analyzing the growth state of the bacteria independently and individually by optical changes occurring in a plurality of reaction wells by at least two different assays.
- One of the assays is an absorbance assay for drug sensitivity testing and another assay is a fluorescence assay for identification testing.
- the absorbance assay is performed with an absorbance detector and the fluorescence assay is performed with a fluorescence detector.
- the biochemical test items used in the identification test are composed of a total of 32 items: an item using a fluorescent substrate and an item using a fluorescent substance as an indicator.
- the amount of fluorescence of a fluorescent substance for example, 4-methylumbelliferone, 7-amino-4-methylcoumarin
- the change in pH of the medium with the metabolism of the bacteria is measured by increasing or decreasing the amount of fluorescence. For example, when bacteria decompose sugar and produce acid, the pH decreases, and the amount of fluorescence that decreases with the pH is measured.
- the amount of fluorescence is measured with an excitation wavelength of 360 nm ⁇ 25 nm (half-value width) and a fluorescence wavelength of 450 nm ⁇ 32.5 nm (half-value width), and is quantified as relative fluorescence intensity.
- the identification test measurement is started 3 hours after culturing, and when it is determined that the accuracy of the identification result obtained by the computer analysis process is high and reliable, the identification is completed. If it is determined that the identification accuracy of the obtained results is low, extended culture (4 hours, 5 hours, 6 hours, 8 hours, 12 hours, maximum 18 hours) is appropriately performed.
- the measurement time can be arbitrarily set at a maximum of 8 measurement points per hour.
- the antimicrobial drug for drug sensitivity test dried and fixed on the plate includes a drug and a redox indicator that have been serially diluted, and the redox indicator includes 2- (4-indophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium, monosodium salt (water soluble tetrazolium, hereinafter referred to as WST-1) has been used.
- WST-1 is reduced in the process of growth and growth of the fungus to form water-soluble yellow formazan, which is colored in the well and causes a highly sensitive change in absorbance (410 to 455 nm). By measuring the absorbance at 10 ⁇ 2 nm (half width), a MIC (Minimum Inhibitory Concentration) value is calculated.
- the absorbance of the control well (no drug added) is compared with the absorbance of the drug added well from the change in the absorbance value obtained, and the bacterial name information determined by the identification test of i) above, the antibacterial spectrum and the drug efficacy are considered in advance.
- a MIC (Minimum Inhibitory Concentration) value is calculated by computer analysis processing (calculation conditions) consisting of the created bacterial species / drug combination.
- the preset condition cannot be cleared, the culture is extended. For example, if the absorbance (growth index) of the control well is not reached, it is assumed that the growth of the strain is insufficient and the culture is extended.
- the drug sensitivity test in the apparatus of the present invention can be carried out by a rapid method and a method based on CLSI (equivalent to 10 5 cfu / mL).
- the rapid method is a method of inoculating 10 times the amount of bacteria (corresponding to 10 6 cfu / mL) with respect to the CLSI method.
- the absorbance at 410 to 455 nm is measured at a predetermined interval (for example, at an interval of 15 minutes) until the determination is completed in the rapid method, and in the culture period of 18 to 24 hours (or 48 hours) in the CLSI standard method.
- the said measurement result is sequentially displayed by a graph as a growth curve.
- a strain that cannot grow in the control well can be recognized before final determination by looking at the growth curve graph, and the sensitivity test method can be changed and optimized in advance.
- an accurate sensitivity result can be quickly derived, which is highly clinically significant.
- the growth curve indicates that there is a possibility of resistant bacteria before the reference time when the computer starts the analysis process. It can be recognized from the graph. By this, it can be estimated whether it is a resistant bacterium before a quick drug susceptibility test result is obtained, and optimal treatment such as change of antibiotic species used for treatment can be performed earlier (Example 1).
- the dispensing unit 9 moves to the identification test area (32 wells) of the culture plate set in 6) and discharges a predetermined amount into each well. 8) The dispensing unit 9 moves onto the bacterial solution and discharges the remaining bacterial solution from the chip. 9) After the dispensing unit 9 moves onto the diluted solution and is aspirated / discharged and agitated, a sufficient amount of the bacterial solution that can be continuously dispensed into 32 wells is aspirated. 10) The dispensing unit 9 moves to the sensitivity test area (64 wells) of the culture plate set in 6), and discharges and injects a predetermined amount into each well of the 32 well area.
- Example 1 When Staphylococcus aureus is isolated from clinical specimens at the clinical laboratory site, methicillin-resistant Staphylococcus aureus (MRSA) or not greatly affects the selection of antibacterial agents for treatment.
- MRSA and a clinical isolate of methicillin-sensitive Staphylococcus aureus (MSSA) were used, and a drug sensitivity test for cefoxitin (CFX) effective for differentiating MRSA was measured by the rapid method of the instrument. Differentiation of MRSA requires that the MIC of CFX be ⁇ 8 ⁇ g / mL. Therefore, if growth is observed in a well of CFX 4 ⁇ g / mL, it is determined as MRSA.
- FIG. 7 is a growth curve of MRSA clinical isolates cultured for up to 1080 minutes (18 hours). When this growth curve is monitored in real time on the monitor of the apparatus, attention can be paid to the growth of 4 ⁇ g / mL wells as shown in FIG.
- FIG. 9 is a growth curve of MSSA clinical isolates cultured for 1080 minutes (18 hours). When the growth curve is monitored on the monitor as in FIG. 8, paying attention to the growth of the 4 ⁇ g / mL well as shown in FIG. 10, it is confirmed that there is no change in the curve at an early stage (195 minutes in culture). The possibility of MSSA can be predicted before the CFX MIC is determined by this apparatus.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Provided is an automatic microorganism inspection device equipped with a mechanism which can rapidly discover developmental defects in bacteria in drug susceptibility tests. The device identifies microorganisms and tests drug susceptibility, and comprises: a specimen container storage unit for storing a specimen container; a plate storage unit for storing a culture plate; a tip storage unit for storing a dispensing tip; a tip disposal unit for storing a used tip; a plate recovery unit for storing used culture plates; a culture unit for culturing a specimen; an optical detection system for performing optical analysis; a plate transfer system; a dispensing unit; a storage device on which is stored a program for automatically performing the series of steps from the dilution of the specimen to the dispensing, culture, optical analysis and determination of the specimen, and plate recovery; and an arithmetic unit for executing this program. The device is also provided with a mechanism for performing real time optical analysis for drug susceptibility, and displaying the analysis results in a graph.
Description
本発明は、細菌の同定検査および薬剤感受性の検査に用いる自動微生物検査装置に関する。
The present invention relates to an automatic microbiological test apparatus used for bacterial identification test and drug sensitivity test.
細菌検査において、検査材料より分離された細菌の同定や薬剤感受性の判定は重要なことである。これまでの臨床検査の流れでは、検体からの分離培養に1日を要し、その分離培地上の新鮮コロニーから、あるいは増菌培養を介して細菌の同定・感受性試験を行うものであった。このため、通常の検査でも同定あるいは感受性試験結果が得られるまで3日ないし4日を要していた。
∙ Identification of bacteria separated from test materials and determination of drug sensitivity are important in bacterial testing. In the flow of clinical examinations so far, one day was required for separation culture from a specimen, and bacterial identification / susceptibility tests were performed from fresh colonies on the separation medium or through enrichment culture. For this reason, it takes 3 to 4 days until an identification or sensitivity test result is obtained even in a normal test.
したがって、同定・感受性試験の作業を軽減し、迅速に結果を報告することが可能な自動迅速同定・感受性測定装置の開発が求められ、本発明者らは、菌懸濁液を調製するだけで、それ以降の希釈、分注、培養、判定を全自動で行う細菌検査装置で、迅速同定試験、迅速感受性試験に加え、18時間感受性試験も可能なシステムを提供している(非特許文献1)。
Therefore, development of an automatic rapid identification / sensitivity measuring device capable of reducing the work of identification / susceptibility testing and reporting the results quickly is required, and the present inventors only need to prepare a bacterial suspension. In addition to the rapid identification test and rapid susceptibility test, the system is capable of 18-hour sensitivity test in addition to the rapid identification test and rapid sensitivity test. ).
しかしながら、従来のシステムでは、薬剤感受性試験において、仮に菌が発育すべき対照ウェルにおいて発育不良が生じた場合には感受性結果が得られないが、この情報は培養終了後、コンピューター分析処理により「発育不良」として判定されるまで把握することができず、耐性菌の判定が大幅に遅れるという課題があった。
However, in the conventional system, in the drug susceptibility test, if a growth failure occurs in the control well where the bacteria should grow, a susceptibility result cannot be obtained. Until it was determined as “bad”, it could not be grasped, and there was a problem that the determination of resistant bacteria was greatly delayed.
本発明は、薬剤感受性試験において、菌の発育不良を早期に発見し得る機構を備えた、自動微生物検査装置を提供することに関する。
The present invention relates to providing an automatic microbiological test apparatus equipped with a mechanism capable of early detection of bacterial growth failure in a drug sensitivity test.
本発明は、微生物の同定及び薬剤感受性を検査する装置であって、検体容器を格納するための検体容器格納部、培養プレートを格納するプレート格納部、分注用チップを格納するチップ格納部、使用済みチップを収納するチップ廃棄部、使用済み培養プレートを収納するプレート回収部、検体を培養する培養部、光学的分析を行う光学検出系、プレート搬送系、分注ユニット、並びに検体の希釈から、検体の分注、培養、光学分析及び判定、及びプレートの回収までの一連の工程を自動で行うプログラムが記憶された記憶装置と、このプログラムを実行する演算装置を備え、且つ、薬剤感受性試験のための光学分析をリアルタイムで行い、分析結果をグラフ表示させる機構を備えてなる自動微生物検査装置、に係るものである。
また、本発明は、菌液を希釈する希釈工程、検体を分注する分注工程、検体を培養する培養工程、並びに薬剤感受性試験及び同定試験を行う分析・判定工程を含み、これらを自動で行う微生物の同定及び薬剤感受性の検査方法であって、薬剤感受性試験のための光学分析をリアルタイムで行い、分析結果をグラフ表示させる工程を含む、方法に係るものである。 The present invention is an apparatus for testing microorganism identification and drug sensitivity, a sample container storage unit for storing a sample container, a plate storage unit for storing a culture plate, a chip storage unit for storing dispensing tips, From the chip disposal unit that stores used chips, the plate recovery unit that stores used culture plates, the culture unit that cultures specimens, the optical detection system that performs optical analysis, the plate transport system, the dispensing unit, and the specimen dilution A storage device storing a program for automatically performing a series of steps from sample dispensing, culture, optical analysis and determination, and plate collection, and a computing device for executing the program, and a drug sensitivity test The present invention relates to an automatic microbiological test apparatus having a mechanism for performing optical analysis for real-time and displaying the analysis result in a graph.
The present invention also includes a diluting step for diluting the bacterial solution, a dispensing step for dispensing the sample, a culturing step for culturing the sample, and an analysis / determination step for performing a drug sensitivity test and an identification test. The present invention relates to a microorganism identification and drug sensitivity test method, which includes a step of performing optical analysis for a drug sensitivity test in real time and displaying the analysis result in a graph.
また、本発明は、菌液を希釈する希釈工程、検体を分注する分注工程、検体を培養する培養工程、並びに薬剤感受性試験及び同定試験を行う分析・判定工程を含み、これらを自動で行う微生物の同定及び薬剤感受性の検査方法であって、薬剤感受性試験のための光学分析をリアルタイムで行い、分析結果をグラフ表示させる工程を含む、方法に係るものである。 The present invention is an apparatus for testing microorganism identification and drug sensitivity, a sample container storage unit for storing a sample container, a plate storage unit for storing a culture plate, a chip storage unit for storing dispensing tips, From the chip disposal unit that stores used chips, the plate recovery unit that stores used culture plates, the culture unit that cultures specimens, the optical detection system that performs optical analysis, the plate transport system, the dispensing unit, and the specimen dilution A storage device storing a program for automatically performing a series of steps from sample dispensing, culture, optical analysis and determination, and plate collection, and a computing device for executing the program, and a drug sensitivity test The present invention relates to an automatic microbiological test apparatus having a mechanism for performing optical analysis for real-time and displaying the analysis result in a graph.
The present invention also includes a diluting step for diluting the bacterial solution, a dispensing step for dispensing the sample, a culturing step for culturing the sample, and an analysis / determination step for performing a drug sensitivity test and an identification test. The present invention relates to a microorganism identification and drug sensitivity test method, which includes a step of performing optical analysis for a drug sensitivity test in real time and displaying the analysis result in a graph.
本発明の自動微生物検査装置によれば、高い正確度でかつ短い時間で微生物の同定と、薬剤感受性を検査できる。特に薬剤感受性試験において、リアルタイム検出表示される発育曲線グラフをみることで、対照ウェルにおいて発育できない菌株を最終判定前に認識でき、薬剤感受性試験方法の変更・最適化を前もって着手できる。これにより、正確な感受性結果を早く導くことができる。また、対照ウェルと薬剤添加ウェルの発育曲線データを確認することで、コンピューターが分析処理を開始する基準時前に耐性菌の可能性があることを発育曲線グラフから認識できる。このことにより、迅速感受性試験結果が得られる前に耐性菌であるかを推定でき、治療に用いる抗生物質種の変更といった最適治療をより早く実施できる。
According to the automatic microbe inspection apparatus of the present invention, it is possible to test microbe identification and drug sensitivity with high accuracy and in a short time. In particular, in a drug susceptibility test, by looking at a growth curve graph that is detected and displayed in real time, a strain that cannot grow in the control well can be recognized before final determination, and a change or optimization of the drug sensitivity test method can be started in advance. Thereby, an accurate sensitivity result can be derived quickly. Further, by confirming the growth curve data of the control well and the drug-added well, it can be recognized from the growth curve graph that there is a possibility of resistant bacteria before the reference time when the computer starts the analysis process. This makes it possible to estimate whether the strain is resistant before the rapid susceptibility test results are obtained, and to perform optimal treatment such as changing the antibiotic species used for treatment earlier.
本発明の自動微生検査装置では、菌液(一次検体)の調製、検体情報及びプレート情報の入力、及び専用試薬のセットを測定者が行うだけで、それ以降の希釈、分注、培養、試験結果の算出・報告、及びプレート回収までが全自動で行われる。図5に菌液調製から微生物の同定及び薬剤感受性判定までのフローを示す。
In the automatic microbiological examination apparatus of the present invention, the preparation of the bacterial solution (primary sample), the input of the sample information and the plate information, and the set of the dedicated reagent are performed only by the measurer, and subsequent dilution, dispensing, culture, Calculation and reporting of test results and plate collection are fully automated. FIG. 5 shows a flow from preparation of the bacterial solution to identification of the microorganism and determination of drug sensitivity.
ここで、専用試薬としては、同定用基質及び薬剤感受性試験用抗菌薬を乾燥固定した培養プレート、菌液を調製するための滅菌水、薬剤感受性試験で希釈に使用するブイヨン(希釈液)、薬剤感受性試験において発育要求性の厳しい菌種を供試する場合に必要となる専用のサプリメント(発育支持物質)及び試料を培養プレートに分注するための分注用ピペットチップ(「チップ」という)等が挙げられる。
Here, the dedicated reagent includes a culture plate on which an identification substrate and an antibacterial agent for drug sensitivity test are dried and fixed, sterilized water for preparing a bacterial solution, bouillon (diluent) used for dilution in a drug sensitivity test, drug Pipette tips for dispensing special supplements (growth-supporting substances) and samples to culture plates that are required when testing strains with strict growth requirements in susceptibility tests, etc. Is mentioned.
検体情報としては、検体番号、検体種(喀痰、血液など)、菌番号などが挙げられる。プレート情報としては、プレート名、薬剤種、薬剤濃度、測定モードなどが挙げられる。これらの情報は装置内の記憶手段に入力され、バーコード、QRコード(登録商標)等の形で出力される。
Sample information includes sample number, sample type (eg, sputum, blood, etc.), bacteria number, and the like. The plate information includes the plate name, drug type, drug concentration, measurement mode, and the like. These pieces of information are input to storage means in the apparatus, and output in the form of a barcode, QR code (registered trademark), or the like.
検体となる被検菌は、検査材料を非選択培地で培養し、純培養されたものが使用され、斯かる純培養菌を少量とって滅菌水に懸濁し、菌液(一次検体)が調製される。調製された菌液は、上述した情報が登録されたラベルが貼付され、検体格納部にセットされる。
The test bacteria to be used as specimens are cultured in a non-selective medium with test materials and purely cultured. A small amount of such pure cultures are suspended in sterilized water to prepare a bacterial solution (primary sample). Is done. The prepared bacterial solution is affixed with a label in which the above-described information is registered, and is set in the specimen storage unit.
図1~3に、本発明の自動微生物同定感受性測定装置の概略を示す(図1:前面、図2:背面、図3:分注ユニット周辺)。
1は菌液や希釈液を収納した容器を格納するための検体格納部、2は培養プレートをセットするプレート格納部、3はチップを格納するチップ格納部、4は培養プレートに試料を注入するための分注エリア、5は使用済みチップを収納するチップ廃棄部、6は使用済みプレートを収納するためのプレート回収部、7は検体を培養(同定試験/薬剤感受性試験)する培養部、8はプレートを搬送するためのプレート搬送系、9は試料を吸引・吐出させて容器に分注するための分注ユニット、10は光学検出系である。 1 to 3 show an outline of the automatic microorganism identification susceptibility measuring apparatus of the present invention (FIG. 1: front, FIG. 2: back, FIG. 3: around the dispensing unit).
1 is a sample storage unit for storing a container containing a bacterial solution or a diluent, 2 is a plate storage unit for setting a culture plate, 3 is a chip storage unit for storing a chip, and 4 is injecting a sample into the culture plate Dispensing area for storing 5 is a chip discarding unit for storing used chips, 6 is a plate collecting unit for storing used plates, 7 is a culture unit for culturing specimens (identification test / drug sensitivity test), 8 Is a plate transport system for transporting the plate, 9 is a dispensing unit for sucking and discharging the sample and dispensing it into the container, and 10 is an optical detection system.
1は菌液や希釈液を収納した容器を格納するための検体格納部、2は培養プレートをセットするプレート格納部、3はチップを格納するチップ格納部、4は培養プレートに試料を注入するための分注エリア、5は使用済みチップを収納するチップ廃棄部、6は使用済みプレートを収納するためのプレート回収部、7は検体を培養(同定試験/薬剤感受性試験)する培養部、8はプレートを搬送するためのプレート搬送系、9は試料を吸引・吐出させて容器に分注するための分注ユニット、10は光学検出系である。 1 to 3 show an outline of the automatic microorganism identification susceptibility measuring apparatus of the present invention (FIG. 1: front, FIG. 2: back, FIG. 3: around the dispensing unit).
1 is a sample storage unit for storing a container containing a bacterial solution or a diluent, 2 is a plate storage unit for setting a culture plate, 3 is a chip storage unit for storing a chip, and 4 is injecting a sample into the culture plate Dispensing area for storing 5 is a chip discarding unit for storing used chips, 6 is a plate collecting unit for storing used plates, 7 is a culture unit for culturing specimens (identification test / drug sensitivity test), 8 Is a plate transport system for transporting the plate, 9 is a dispensing unit for sucking and discharging the sample and dispensing it into the container, and 10 is an optical detection system.
検体格納部1は、菌液(一次検体)が格納された容器と、希釈液(ブイヨン)が格納された容器を格納するための構造体である(図4)。検体格納部の構造は、複数の検体格納容器(例えば、10検体分)とそれに対する希釈液格納容器をセットすることが可能であれば特に限定されず、円筒形等であってもよい。
The specimen storage unit 1 is a structure for storing a container in which a bacterial solution (primary specimen) is stored and a container in which a diluent (bouillon) is stored (FIG. 4). The structure of the specimen storage unit is not particularly limited as long as it is possible to set a plurality of specimen storage containers (for example, for 10 specimens) and a diluent storage container corresponding thereto, and may be cylindrical or the like.
培養プレートは、複数(例えば、96ウェル)の独立した反応ウェルを有し、同定用基質及び薬剤感受性試験用抗菌薬が乾燥固定されている。迅速同定・感受性試験を行う場合には、マイクロプレートの1~4列の32ウェルに同定用基質が乾燥固定され、且つ5~12列の64ウェルに薬剤感受性試験用抗菌薬が乾燥固定されたコンビプレートが使用される。また、CLSI準拠の18時間法感受性測定を行う場合には、全ウェルに薬剤感受性試験用抗菌薬が乾燥固定されたMICプレートも用いられる。各プレートには、薬剤種や濃度、配置等の情報が登録されたラベルが貼付される。
The culture plate has a plurality of (for example, 96 wells) independent reaction wells, and the identification substrate and the antimicrobial agent for drug sensitivity test are dried and fixed. When rapid identification / sensitivity test is performed, the identification substrate is dried and fixed in 32 wells in 1 to 4 rows of the microplate, and the antimicrobial drug for drug sensitivity test is dry fixed in 64 wells in 5 to 12 rows. A combination plate is used. When performing CLSI-compliant 18 hour method sensitivity measurement, an MIC plate in which antimicrobial agents for drug sensitivity test are dried and fixed in all wells is also used. Each plate is affixed with a label in which information such as drug type, concentration, and arrangement is registered.
プレート格納部2は、検体数に合わせて複数枚(例えば10枚)のプレートがセットされる。プレート格納部は、プレートを重ねてセットできるようになっており、フック状の部材が稼動することにより、最下段のプレートから順番に取り出すことが可能となっている。
In the plate storage unit 2, a plurality of (for example, 10) plates are set according to the number of samples. The plate storage portion can be set by stacking the plates. When the hook-shaped member is operated, it can be sequentially taken out from the lowermost plate. *
チップ格納部3は、チップのテーパ部を支えるよう穴が空けてあり、必要な数のチップが格納される。
The chip storage part 3 has a hole so as to support the taper part of the chip, and stores a necessary number of chips.
分注ユニット9は、チップをチップノズルに装着・脱着させる機構と、試料を吸引・注入する機構とを有し、X-Z軸方向へ自在に移動可能な分注アームユニットを備える。
例えば、菌液の希釈は、チップ格納部3に格納されたチップに分注ユニットが移動してチップが装着され、次いで分注ユニットが菌液上に移動して菌液を吸引し、次いで希釈液上に移動して菌液を希釈液に吐出することにより行われる。 The dispensingunit 9 has a mechanism for attaching and detaching the chip to and from the chip nozzle and a mechanism for sucking and injecting the sample, and includes a dispensing arm unit that can move freely in the XZ axis direction.
For example, the bacterial solution is diluted by moving the dispensing unit to the chip stored in thechip storage unit 3 and mounting the chip, then moving the dispensing unit onto the bacterial solution and sucking the bacterial solution, and then diluting. It is performed by moving onto the liquid and discharging the bacterial liquid into the diluent.
例えば、菌液の希釈は、チップ格納部3に格納されたチップに分注ユニットが移動してチップが装着され、次いで分注ユニットが菌液上に移動して菌液を吸引し、次いで希釈液上に移動して菌液を希釈液に吐出することにより行われる。 The dispensing
For example, the bacterial solution is diluted by moving the dispensing unit to the chip stored in the
プレート搬送系8は、培養プレートをつかむためのハンドと、培養槽に収納するための昇降ユニットを有し、プレート格納部、分注エリア、培養部、光学検出系、プレート回収部の各部位への培養プレートの移動、及び培養プレートへの上蓋の載置を行う。蓋はあらかじめプレートに被せてあり、分注時は吸盤により蓋を持ち上げる機構となっている。
The plate transport system 8 has a hand for holding the culture plate and an elevating unit for storing it in the culture tank. To the plate storage unit, dispensing area, culture unit, optical detection system, and plate recovery unit The culture plate is moved and the upper lid is placed on the culture plate. The lid is put on the plate in advance, and when dispensing, the lid is lifted by a suction cup.
培養部7では、同定試験及び薬剤感受性試験のための培養が行われる。したがって、培養部には、温度を34~36℃に調節可能な温度調節機構11が備えられている(図5)。
In the culture unit 7, culture for identification test and drug sensitivity test is performed. Therefore, the culture section is provided with a temperature adjustment mechanism 11 capable of adjusting the temperature to 34 to 36 ° C. (FIG. 5).
10は光学検出系であり、蛍光検出器と吸光検出器からなる。
蛍光検出器としては、4-methylumbelliferoneなどの蛍光物質が検出可能なものであればよく、光源としては、ハロゲンランプを使用することも可能であるが、光源寿命や省エネルギーの点で、LEDランプを用いるのが好ましい。好適なLEDランプとしては、例えば、日亜化学(株)製の新型NCSU275(U365)(最大150mW)が挙げられる。
また、吸光検出器としては、メタニルイエローなどの吸光物質が検出可能なものであればよいが、光源としてLEDランプを用いるのが好ましい。好適なLEDランプとしては、例えば、Philips Lumileds社製のLXML-PR01-0500が挙げられる。 Anoptical detection system 10 includes a fluorescence detector and an absorption detector.
As the fluorescence detector, any substance capable of detecting a fluorescent substance such as 4-methylumbelliferone can be used. As the light source, a halogen lamp can be used. However, in terms of the light source life and energy saving, an LED lamp is used. It is preferable to use it. As a suitable LED lamp, for example, a new model NCSU275 (U365) (maximum 150 mW) manufactured by Nichia Corporation may be mentioned.
The light absorption detector is not limited as long as it can detect light-absorbing substances such as metanil yellow, but an LED lamp is preferably used as the light source. Suitable LED lamps include, for example, LXML-PR01-0500 manufactured by Philips Lumileds.
蛍光検出器としては、4-methylumbelliferoneなどの蛍光物質が検出可能なものであればよく、光源としては、ハロゲンランプを使用することも可能であるが、光源寿命や省エネルギーの点で、LEDランプを用いるのが好ましい。好適なLEDランプとしては、例えば、日亜化学(株)製の新型NCSU275(U365)(最大150mW)が挙げられる。
また、吸光検出器としては、メタニルイエローなどの吸光物質が検出可能なものであればよいが、光源としてLEDランプを用いるのが好ましい。好適なLEDランプとしては、例えば、Philips Lumileds社製のLXML-PR01-0500が挙げられる。 An
As the fluorescence detector, any substance capable of detecting a fluorescent substance such as 4-methylumbelliferone can be used. As the light source, a halogen lamp can be used. However, in terms of the light source life and energy saving, an LED lamp is used. It is preferable to use it. As a suitable LED lamp, for example, a new model NCSU275 (U365) (maximum 150 mW) manufactured by Nichia Corporation may be mentioned.
The light absorption detector is not limited as long as it can detect light-absorbing substances such as metanil yellow, but an LED lamp is preferably used as the light source. Suitable LED lamps include, for example, LXML-PR01-0500 manufactured by Philips Lumileds.
本発明の自動微生物検査装置は、少なくとも上記の構成を有し、且つ、検体の希釈(希釈工程)、検体の分注(分注工程)、培養、光学分析及び判定(分析・判定工程)、並びにプレートの回収までの一連の工程を自動で行うプログラムが記憶された記憶装置と、このプログラムを実行する演算装置を備える。
The automatic microbiological test apparatus of the present invention has at least the above-described configuration, and dilution of the sample (dilution step), sample dispensing (dispensing step), culture, optical analysis and determination (analysis / determination step), In addition, a storage device storing a program for automatically performing a series of steps up to plate collection and an arithmetic device for executing the program are provided.
以下に、本発明の自動微生物検査装置において、自動で行われる主要工程について説明する。
1)希釈工程
本工程は、薬剤感受性試験のために、菌液(一次検体)から培養可能な検体(二次検体)を調製する工程である。具体的には、分注ユニット9が稼働してチップノズルにチップを装着した後、検体格納部1の菌液上に移動して菌液を吸引し、次いで希釈液上に移動して、菌液を吐出することにより、培養可能な二次検体が調製される。 Below, the main process performed automatically in the automatic microbiological test | inspection apparatus of this invention is demonstrated.
1) Dilution step This step is a step of preparing a cultivatable sample (secondary sample) from a bacterial solution (primary sample) for a drug sensitivity test. Specifically, after thedispensing unit 9 is operated and the tip is mounted on the tip nozzle, it moves onto the bacterial solution in the sample storage unit 1 to aspirate the bacterial solution, and then moves onto the diluted solution, By discharging the liquid, a cultivatable secondary specimen is prepared.
1)希釈工程
本工程は、薬剤感受性試験のために、菌液(一次検体)から培養可能な検体(二次検体)を調製する工程である。具体的には、分注ユニット9が稼働してチップノズルにチップを装着した後、検体格納部1の菌液上に移動して菌液を吸引し、次いで希釈液上に移動して、菌液を吐出することにより、培養可能な二次検体が調製される。 Below, the main process performed automatically in the automatic microbiological test | inspection apparatus of this invention is demonstrated.
1) Dilution step This step is a step of preparing a cultivatable sample (secondary sample) from a bacterial solution (primary sample) for a drug sensitivity test. Specifically, after the
2)分注工程
培養プレートの各反応ウェルに、一次検体及び二次検体をそれぞれ自動分注するステップである。分注操作は、プレート搬送系8を駆動して、培養プレートを分注エリア4に移動させ、分注ユニット9を稼働して、検体格納部1の一次検体及び二次検体液がそれぞれ吸引され、プレート内の各ウェル中に吐出注入される。 2) Dispensing step In this step, the primary sample and the secondary sample are automatically dispensed into each reaction well of the culture plate. In the dispensing operation, theplate transport system 8 is driven, the culture plate is moved to the dispensing area 4, the dispensing unit 9 is operated, and the primary sample solution and the secondary sample solution are respectively aspirated. , Injected into each well in the plate.
培養プレートの各反応ウェルに、一次検体及び二次検体をそれぞれ自動分注するステップである。分注操作は、プレート搬送系8を駆動して、培養プレートを分注エリア4に移動させ、分注ユニット9を稼働して、検体格納部1の一次検体及び二次検体液がそれぞれ吸引され、プレート内の各ウェル中に吐出注入される。 2) Dispensing step In this step, the primary sample and the secondary sample are automatically dispensed into each reaction well of the culture plate. In the dispensing operation, the
3)培養工程
検体が分注された培養プレートは、プレート搬送系8により培養部7に搬送され、薬剤感受性試験及び同定試験のための培養が行われる。
培養は、検体ごとに設定された培養時間まで培養が行われる。
本発明においては、リアルタイムで菌の発育状態を把握するために、あらかじめ設定する間隔(例えば15分間隔)で、培養プレートを培養部から光学検出系10に搬送し、光学測定が行われる。 3) Culture process The culture plate into which the specimen has been dispensed is transported to theculture unit 7 by the plate transport system 8, and culture for a drug sensitivity test and an identification test is performed.
The culture is performed until the culture time set for each specimen.
In the present invention, in order to grasp the growth state of the bacteria in real time, the culture plate is transported from the culture unit to theoptical detection system 10 at a preset interval (for example, every 15 minutes), and optical measurement is performed.
検体が分注された培養プレートは、プレート搬送系8により培養部7に搬送され、薬剤感受性試験及び同定試験のための培養が行われる。
培養は、検体ごとに設定された培養時間まで培養が行われる。
本発明においては、リアルタイムで菌の発育状態を把握するために、あらかじめ設定する間隔(例えば15分間隔)で、培養プレートを培養部から光学検出系10に搬送し、光学測定が行われる。 3) Culture process The culture plate into which the specimen has been dispensed is transported to the
The culture is performed until the culture time set for each specimen.
In the present invention, in order to grasp the growth state of the bacteria in real time, the culture plate is transported from the culture unit to the
4)分析・判定工程
本工程は、菌の発育状態を、少なくとも2種の異なるアッセイによって、複数の反応ウェル中で生じる光学的変化により、独立にかつ個々に測定し分析する工程である。
前記アッセイの1つが薬剤感受性試験用の吸光度アッセイであり、別のアッセイが同定試験用の蛍光アッセイである。吸光度アッセイは吸光検出器によって行われ、蛍光アッセイは蛍光検出器によって行われる。 4) Analysis / determination step This step is a step of measuring and analyzing the growth state of the bacteria independently and individually by optical changes occurring in a plurality of reaction wells by at least two different assays.
One of the assays is an absorbance assay for drug sensitivity testing and another assay is a fluorescence assay for identification testing. The absorbance assay is performed with an absorbance detector and the fluorescence assay is performed with a fluorescence detector.
本工程は、菌の発育状態を、少なくとも2種の異なるアッセイによって、複数の反応ウェル中で生じる光学的変化により、独立にかつ個々に測定し分析する工程である。
前記アッセイの1つが薬剤感受性試験用の吸光度アッセイであり、別のアッセイが同定試験用の蛍光アッセイである。吸光度アッセイは吸光検出器によって行われ、蛍光アッセイは蛍光検出器によって行われる。 4) Analysis / determination step This step is a step of measuring and analyzing the growth state of the bacteria independently and individually by optical changes occurring in a plurality of reaction wells by at least two different assays.
One of the assays is an absorbance assay for drug sensitivity testing and another assay is a fluorescence assay for identification testing. The absorbance assay is performed with an absorbance detector and the fluorescence assay is performed with a fluorescence detector.
i)同定試験
同定試験に使用される生化学試験項目は、蛍光基質を用いる項目と、蛍光物質を指示薬とする項目の合計32項目からなる。
蛍光基質を用いる項目では、菌がもつ菌体酵素が基質を分解することにより遊離する蛍光物質(例えば、4-methylumbelliferone、7-amino-4-methylcoumarin)の蛍光量が測定される。
蛍光物質を指示薬とする項目では、菌の代謝に伴い、培地がpH変化することを、蛍光量の増減により測定される。例えば菌が糖を分解し酸を産生するとpHが低下し、それに伴って減少する蛍光量が測定される。蛍光量は、励起波長360nm±25nm(半値幅)、蛍光波長450nm±32.5nm(半値幅)で蛍光測定され、相対蛍光強度として数値化される。 i) Identification test The biochemical test items used in the identification test are composed of a total of 32 items: an item using a fluorescent substrate and an item using a fluorescent substance as an indicator.
In the item using a fluorescent substrate, the amount of fluorescence of a fluorescent substance (for example, 4-methylumbelliferone, 7-amino-4-methylcoumarin) that is released when the bacterial cell enzyme of the bacterium decomposes the substrate is measured.
In the item using a fluorescent substance as an indicator, the change in pH of the medium with the metabolism of the bacteria is measured by increasing or decreasing the amount of fluorescence. For example, when bacteria decompose sugar and produce acid, the pH decreases, and the amount of fluorescence that decreases with the pH is measured. The amount of fluorescence is measured with an excitation wavelength of 360 nm ± 25 nm (half-value width) and a fluorescence wavelength of 450 nm ± 32.5 nm (half-value width), and is quantified as relative fluorescence intensity.
同定試験に使用される生化学試験項目は、蛍光基質を用いる項目と、蛍光物質を指示薬とする項目の合計32項目からなる。
蛍光基質を用いる項目では、菌がもつ菌体酵素が基質を分解することにより遊離する蛍光物質(例えば、4-methylumbelliferone、7-amino-4-methylcoumarin)の蛍光量が測定される。
蛍光物質を指示薬とする項目では、菌の代謝に伴い、培地がpH変化することを、蛍光量の増減により測定される。例えば菌が糖を分解し酸を産生するとpHが低下し、それに伴って減少する蛍光量が測定される。蛍光量は、励起波長360nm±25nm(半値幅)、蛍光波長450nm±32.5nm(半値幅)で蛍光測定され、相対蛍光強度として数値化される。 i) Identification test The biochemical test items used in the identification test are composed of a total of 32 items: an item using a fluorescent substrate and an item using a fluorescent substance as an indicator.
In the item using a fluorescent substrate, the amount of fluorescence of a fluorescent substance (for example, 4-methylumbelliferone, 7-amino-4-methylcoumarin) that is released when the bacterial cell enzyme of the bacterium decomposes the substrate is measured.
In the item using a fluorescent substance as an indicator, the change in pH of the medium with the metabolism of the bacteria is measured by increasing or decreasing the amount of fluorescence. For example, when bacteria decompose sugar and produce acid, the pH decreases, and the amount of fluorescence that decreases with the pH is measured. The amount of fluorescence is measured with an excitation wavelength of 360 nm ± 25 nm (half-value width) and a fluorescence wavelength of 450 nm ± 32.5 nm (half-value width), and is quantified as relative fluorescence intensity.
これらの蛍光強度に対して、各生化学試験項目毎に一定のカットオフ値を設定しておき、陽性反応(+)・陰性反応(-)を判定し、これらの判定結果を基に予め同定システムが保持するデータベースをもとに、コンピューター分析処理(確率的同定法)により未知菌株の菌名が求められる。
For these fluorescence intensities, a fixed cutoff value is set for each biochemical test item, positive reaction (+) and negative reaction (-) are judged, and identification is made in advance based on these judgment results Based on the database held by the system, the bacterial name of the unknown strain is obtained by computer analysis processing (probabilistic identification method).
同定試験では、培養後3時間から測定を開始し、コンピューター分析処理により得られた同定結果の精度が高く、信頼できると判定された場合、同定が終了する。得られた結果の同定精度が低いと判断された場合には、適宜延長培養(4時間,5時間,6時間,8時間,12時間,最長18時間)が実施される。尚、測定時間は、1時間毎最大8測定点で任意に設定することができる。
In the identification test, measurement is started 3 hours after culturing, and when it is determined that the accuracy of the identification result obtained by the computer analysis process is high and reliable, the identification is completed. If it is determined that the identification accuracy of the obtained results is low, extended culture (4 hours, 5 hours, 6 hours, 8 hours, 12 hours, maximum 18 hours) is appropriately performed. The measurement time can be arbitrarily set at a maximum of 8 measurement points per hour.
ii)薬剤感受性試験
プレートに乾燥固定された薬剤感受性試験用抗菌薬には、あらかじめ段階希釈された薬剤と酸化還元指示薬が含まれ、酸化還元指示薬には、2-(4-indophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium,monosodiumsalt(water soluble tetrazolium、以下、WST-1)が用いられている。WST-1は菌の発育増殖の過程で還元され水溶性黄色のホルマザンとなりウェル内で呈色し、高感度な吸光度変化(410~455nm)をもたらすことから、測定波長440nm±2nm(中心波長)10±2nm(半値幅)相当で当該吸光度を測定することにより、MIC(Minimum Inhibitory Concentration;最小発育阻止濃度)値が算出される。 ii) Drug sensitivity test The antimicrobial drug for drug sensitivity test dried and fixed on the plate includes a drug and a redox indicator that have been serially diluted, and the redox indicator includes 2- (4-indophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium, monosodium salt (water soluble tetrazolium, hereinafter referred to as WST-1) has been used. WST-1 is reduced in the process of growth and growth of the fungus to form water-soluble yellow formazan, which is colored in the well and causes a highly sensitive change in absorbance (410 to 455 nm). By measuring the absorbance at 10 ± 2 nm (half width), a MIC (Minimum Inhibitory Concentration) value is calculated.
プレートに乾燥固定された薬剤感受性試験用抗菌薬には、あらかじめ段階希釈された薬剤と酸化還元指示薬が含まれ、酸化還元指示薬には、2-(4-indophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium,monosodiumsalt(water soluble tetrazolium、以下、WST-1)が用いられている。WST-1は菌の発育増殖の過程で還元され水溶性黄色のホルマザンとなりウェル内で呈色し、高感度な吸光度変化(410~455nm)をもたらすことから、測定波長440nm±2nm(中心波長)10±2nm(半値幅)相当で当該吸光度を測定することにより、MIC(Minimum Inhibitory Concentration;最小発育阻止濃度)値が算出される。 ii) Drug sensitivity test The antimicrobial drug for drug sensitivity test dried and fixed on the plate includes a drug and a redox indicator that have been serially diluted, and the redox indicator includes 2- (4-indophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium, monosodium salt (water soluble tetrazolium, hereinafter referred to as WST-1) has been used. WST-1 is reduced in the process of growth and growth of the fungus to form water-soluble yellow formazan, which is colored in the well and causes a highly sensitive change in absorbance (410 to 455 nm). By measuring the absorbance at 10 ± 2 nm (half width), a MIC (Minimum Inhibitory Concentration) value is calculated.
得られた吸光値変化から対照ウェル(薬剤無添加)の吸光度と薬剤添加ウェルの吸光度を比較し、上記i)の同定試験により決定された菌名情報と、抗菌スペクトルおよび薬効を考慮してあらかじめ作成された菌種/薬剤の組み合わせからなるコンピューター分析処理(演算条件)によりMIC(Minimum Inhibitory Concentration;最小発育阻止濃度)値が算出される。
ここで、予め設定する条件をクリアできない場合延長培養される。例えば、対照ウェルの到達吸光度(発育指標)に達しなければ、当該菌株の発育が不十分であるとし、延長培養される。 The absorbance of the control well (no drug added) is compared with the absorbance of the drug added well from the change in the absorbance value obtained, and the bacterial name information determined by the identification test of i) above, the antibacterial spectrum and the drug efficacy are considered in advance. A MIC (Minimum Inhibitory Concentration) value is calculated by computer analysis processing (calculation conditions) consisting of the created bacterial species / drug combination.
Here, if the preset condition cannot be cleared, the culture is extended. For example, if the absorbance (growth index) of the control well is not reached, it is assumed that the growth of the strain is insufficient and the culture is extended.
ここで、予め設定する条件をクリアできない場合延長培養される。例えば、対照ウェルの到達吸光度(発育指標)に達しなければ、当該菌株の発育が不十分であるとし、延長培養される。 The absorbance of the control well (no drug added) is compared with the absorbance of the drug added well from the change in the absorbance value obtained, and the bacterial name information determined by the identification test of i) above, the antibacterial spectrum and the drug efficacy are considered in advance. A MIC (Minimum Inhibitory Concentration) value is calculated by computer analysis processing (calculation conditions) consisting of the created bacterial species / drug combination.
Here, if the preset condition cannot be cleared, the culture is extended. For example, if the absorbance (growth index) of the control well is not reached, it is assumed that the growth of the strain is insufficient and the culture is extended.
本発明の装置における薬剤感受性試験は、迅速法とCLSIに準拠した方法(105cfu/mL相当)を行うことができる。迅速法はCLSI法に対して10倍量の菌(106cfu/mL相当)を接種する方法である。
本発明においては、迅速法では判定終了まで、CLSI準拠法では18~24時間(又は48時間)の培養期間、所定の間隔(例えば、15分間隔)で410~455nmの吸光度が測定される。そして、当該測定結果が、発育曲線として逐次グラフ表示される。これにより、対照ウェルおよび薬剤添加ウェルにおける発育状況をリアルタイムで把握でき、曲線データから当該装置で結果が出る前に、結果を予想できる。 The drug sensitivity test in the apparatus of the present invention can be carried out by a rapid method and a method based on CLSI (equivalent to 10 5 cfu / mL). The rapid method is a method of inoculating 10 times the amount of bacteria (corresponding to 10 6 cfu / mL) with respect to the CLSI method.
In the present invention, the absorbance at 410 to 455 nm is measured at a predetermined interval (for example, at an interval of 15 minutes) until the determination is completed in the rapid method, and in the culture period of 18 to 24 hours (or 48 hours) in the CLSI standard method. And the said measurement result is sequentially displayed by a graph as a growth curve. Thereby, the growth situation in the control well and the drug-added well can be grasped in real time, and the result can be predicted before the result is obtained by the apparatus from the curve data.
本発明においては、迅速法では判定終了まで、CLSI準拠法では18~24時間(又は48時間)の培養期間、所定の間隔(例えば、15分間隔)で410~455nmの吸光度が測定される。そして、当該測定結果が、発育曲線として逐次グラフ表示される。これにより、対照ウェルおよび薬剤添加ウェルにおける発育状況をリアルタイムで把握でき、曲線データから当該装置で結果が出る前に、結果を予想できる。 The drug sensitivity test in the apparatus of the present invention can be carried out by a rapid method and a method based on CLSI (equivalent to 10 5 cfu / mL). The rapid method is a method of inoculating 10 times the amount of bacteria (corresponding to 10 6 cfu / mL) with respect to the CLSI method.
In the present invention, the absorbance at 410 to 455 nm is measured at a predetermined interval (for example, at an interval of 15 minutes) until the determination is completed in the rapid method, and in the culture period of 18 to 24 hours (or 48 hours) in the CLSI standard method. And the said measurement result is sequentially displayed by a graph as a growth curve. Thereby, the growth situation in the control well and the drug-added well can be grasped in real time, and the result can be predicted before the result is obtained by the apparatus from the curve data.
従来法では、例えば、薬剤が固定されていない、本来発育すべき対照ウェルにおいても発育不良が生じた場合、感受性結果が得られない。この発育不良は、これまで例えば18~48時間培養した後、コンピューター分析処理により「発育不良」として判定されていた。迅速感受性試験においても、一定の培養時間や対照ウェルが一定の発育(吸光度)を示さないとコンピューター分析処理によりMICを計算せず、結果的に顧客が期待する耐性菌の判定が遅れる場合がある。
In the conventional method, for example, when a poor growth occurs even in a control well that should not grow, the drug is not fixed, a sensitivity result cannot be obtained. This growth failure has been determined as “poor growth” by computer analysis after culturing for 18 to 48 hours, for example. Even in the rapid susceptibility test, if the culture time and the control well do not show a certain growth (absorbance), the MIC is not calculated by the computer analysis process, and as a result, the determination of the resistant bacteria expected by the customer may be delayed. .
本発明の装置によれば、対照ウェルにおいて発育できない菌株を、発育曲線グラフをみることで最終判定前に認識でき、感受性試験方法の変更・最適化を前もって着手できる。これにより、正確な感受性結果を早く導くことができ、臨床的に高い意義がある。
また、対照ウェルと薬剤添加ウェル(特に耐性菌を判定する濃度域)の発育曲線データを確認することで、コンピューターが分析処理を開始する基準時前に耐性菌の可能性があることを発育曲線グラフから認識できる。このことにより、迅速薬剤感受性試験結果が得られる前に耐性菌であるかを推定でき、治療に用いる抗生物質種の変更といった最適治療をより早く実施できる(実施例1)。 According to the apparatus of the present invention, a strain that cannot grow in the control well can be recognized before final determination by looking at the growth curve graph, and the sensitivity test method can be changed and optimized in advance. As a result, an accurate sensitivity result can be quickly derived, which is highly clinically significant.
In addition, by confirming the growth curve data of the control well and drug-added wells (especially the concentration range for determining resistant bacteria), the growth curve indicates that there is a possibility of resistant bacteria before the reference time when the computer starts the analysis process. It can be recognized from the graph. By this, it can be estimated whether it is a resistant bacterium before a quick drug susceptibility test result is obtained, and optimal treatment such as change of antibiotic species used for treatment can be performed earlier (Example 1).
また、対照ウェルと薬剤添加ウェル(特に耐性菌を判定する濃度域)の発育曲線データを確認することで、コンピューターが分析処理を開始する基準時前に耐性菌の可能性があることを発育曲線グラフから認識できる。このことにより、迅速薬剤感受性試験結果が得られる前に耐性菌であるかを推定でき、治療に用いる抗生物質種の変更といった最適治療をより早く実施できる(実施例1)。 According to the apparatus of the present invention, a strain that cannot grow in the control well can be recognized before final determination by looking at the growth curve graph, and the sensitivity test method can be changed and optimized in advance. As a result, an accurate sensitivity result can be quickly derived, which is highly clinically significant.
In addition, by confirming the growth curve data of the control well and drug-added wells (especially the concentration range for determining resistant bacteria), the growth curve indicates that there is a possibility of resistant bacteria before the reference time when the computer starts the analysis process. It can be recognized from the graph. By this, it can be estimated whether it is a resistant bacterium before a quick drug susceptibility test result is obtained, and optimal treatment such as change of antibiotic species used for treatment can be performed earlier (Example 1).
本発明の装置を用いて一つの検体について、菌の同定及び薬剤感受性を検査する場合の動作の一態様を以下に示す。
1)スタート。
2)菌液バーコード読取、培養プレートバーコード読取(最下段プレート)。
3)2)で選択された培養プレートに該当する菌液上に分注ユニット9が移動し、菌液を吸引。
4)分注ユニット9が希釈液上に移動し、菌液を希釈液に吐出。
5)分注ユニット9が菌液上に再度移動し、32ウェルに所定量連続分注できる容量の菌液を吸引。
6)プレート搬送系8が稼働し、2)で選択された培養プレートを分注エリア4に移動。
7)分注ユニット9が6)でセットされた培養プレートの同定試験用エリア(32ウェル)に移動し、各ウェルに所定量を吐出注入。
8)分注ユニット9が菌液上に移動し、チップの残菌液を吐出。
9)分注ユニット9が希釈液上に移動し、吸引・吐出撹拌した後、32ウェルに所定量連続分注できる容量の菌液を吸引。
10)分注ユニット9が6)でセットされた培養プレートの感受性試験エリア(64ウェル)に移動し、32ウェルエリア分の各ウェルに所定量を吐出注入。
11)9)-10)を繰り返し、残りの32ウェルに所定量を吐出注入。
12)分注ユニットがチップ廃棄部5に移動し、チップを廃棄。
13)プレート搬送系8が稼働し、培養プレートに蓋を載置し、培養部7に搬送。
14)培養開始。培養終了時まで、所定の間隔で培養プレートを光学検出系10に搬送し、光学分析して発育曲線をグラフ表示。
15)培養終了後、判定結果の出力。
16)プレート搬送系8が稼働し、使用済みの培養プレートをプレート回収部6に移動。 One mode of the operation in the case of examining bacteria identification and drug sensitivity for one specimen using the apparatus of the present invention will be described below.
1) Start.
2) Bacteria solution barcode reading, culture plate barcode reading (lowermost plate).
3) Thedispensing unit 9 moves onto the bacterial solution corresponding to the culture plate selected in 2) and aspirates the bacterial solution.
4) Thedispensing unit 9 moves onto the diluent and discharges the bacterial solution into the diluent.
5) Thedispensing unit 9 moves again onto the bacterial solution, and sucks the bacterial solution in a volume that allows a predetermined amount to be dispensed continuously into 32 wells.
6) Theplate transport system 8 is operated, and the culture plate selected in 2) is moved to the dispensing area 4.
7) Thedispensing unit 9 moves to the identification test area (32 wells) of the culture plate set in 6) and discharges a predetermined amount into each well.
8) Thedispensing unit 9 moves onto the bacterial solution and discharges the remaining bacterial solution from the chip.
9) After thedispensing unit 9 moves onto the diluted solution and is aspirated / discharged and agitated, a sufficient amount of the bacterial solution that can be continuously dispensed into 32 wells is aspirated.
10) Thedispensing unit 9 moves to the sensitivity test area (64 wells) of the culture plate set in 6), and discharges and injects a predetermined amount into each well of the 32 well area.
11) Repeat steps 9) to 10) to discharge and inject a predetermined amount into the remaining 32 wells.
12) The dispensing unit moves to thetip disposal section 5 and discards the tip.
13) Theplate transport system 8 is operated, a lid is placed on the culture plate, and transported to the culture unit 7.
14) Start culture. Until the end of the culture, the culture plate is transported to theoptical detection system 10 at predetermined intervals and optically analyzed to display a growth curve in a graph.
15) Output of determination results after culturing.
16) Theplate transport system 8 is operated, and the used culture plate is moved to the plate collection unit 6.
1)スタート。
2)菌液バーコード読取、培養プレートバーコード読取(最下段プレート)。
3)2)で選択された培養プレートに該当する菌液上に分注ユニット9が移動し、菌液を吸引。
4)分注ユニット9が希釈液上に移動し、菌液を希釈液に吐出。
5)分注ユニット9が菌液上に再度移動し、32ウェルに所定量連続分注できる容量の菌液を吸引。
6)プレート搬送系8が稼働し、2)で選択された培養プレートを分注エリア4に移動。
7)分注ユニット9が6)でセットされた培養プレートの同定試験用エリア(32ウェル)に移動し、各ウェルに所定量を吐出注入。
8)分注ユニット9が菌液上に移動し、チップの残菌液を吐出。
9)分注ユニット9が希釈液上に移動し、吸引・吐出撹拌した後、32ウェルに所定量連続分注できる容量の菌液を吸引。
10)分注ユニット9が6)でセットされた培養プレートの感受性試験エリア(64ウェル)に移動し、32ウェルエリア分の各ウェルに所定量を吐出注入。
11)9)-10)を繰り返し、残りの32ウェルに所定量を吐出注入。
12)分注ユニットがチップ廃棄部5に移動し、チップを廃棄。
13)プレート搬送系8が稼働し、培養プレートに蓋を載置し、培養部7に搬送。
14)培養開始。培養終了時まで、所定の間隔で培養プレートを光学検出系10に搬送し、光学分析して発育曲線をグラフ表示。
15)培養終了後、判定結果の出力。
16)プレート搬送系8が稼働し、使用済みの培養プレートをプレート回収部6に移動。 One mode of the operation in the case of examining bacteria identification and drug sensitivity for one specimen using the apparatus of the present invention will be described below.
1) Start.
2) Bacteria solution barcode reading, culture plate barcode reading (lowermost plate).
3) The
4) The
5) The
6) The
7) The
8) The
9) After the
10) The
11) Repeat steps 9) to 10) to discharge and inject a predetermined amount into the remaining 32 wells.
12) The dispensing unit moves to the
13) The
14) Start culture. Until the end of the culture, the culture plate is transported to the
15) Output of determination results after culturing.
16) The
実施例1
臨床検査の現場において黄色ブドウ球菌が臨床検体から分離された場合、メチシリン耐性黄色ブドウ球菌(MRSA)か否かが治療のための抗菌薬選択に大きく影響する。本実施例では、MRSAとメチシリン感受性黄色ブドウ球菌(MSSA)の臨床分離株を用い、MRSAを鑑別するのに有効なセフォキシチン(CFX)の薬剤感受性試験を当該機器の迅速法により測定した。
MRSAの鑑別はCFXのMICが≧8μg/mLを示すことが必要であり、故にCFX 4μg/mLのウェルで発育を認めた場合は、MRSAと判定される。MRSA臨床分離株を当該装置の迅速法で試験させたとき、対照ウェルの吸光度が予め設定する値(例えば1.5)を越えた時間は培養後300分であった。このときCFXの各薬剤濃度ウェルの吸光度と予め設定された一定の閾値とを比較し、その閾値以上の場合に"発育"とする。今回、4μg/mL以下のウェルは"発育"となり、MRSAと判定された。
図7はMRSA臨床分離株の1080分(18時間)まで培養させた発育曲線である。この発育曲線をリアルタイムに当該装置のモニタ上で監視した場合、図8のように4μg/mLのウェルの発育を注目することで、早期(培養後195分)に当該曲線の上昇を視認でき、MRSAの可能性を予想することができ、早期の治療に役立つものと考えられる。
一方、MSSA臨床分離株を当該装置の迅速法で試験させたとき、対照ウェル吸光度が上述と同様に例えば1.5を越えた時間は培養後285分であった。その閾値未満のウェルを"非発育"とする。今回、4μg/ml以上のウェルは"非発育"となり、MSSAと判定された。
図9はMSSA臨床分離株の1080分(18時間)培養させた発育曲線である。図8と同様に発育曲線をモニタ上で監視した場合、図10のように4μg/mLのウェルの発育を注目することで、早期(培養195分)に当該曲線に変化の見られないことを視認でき、本装置でCFXのMICが確定する前にMSSAの可能性を予想することができる。 Example 1
When Staphylococcus aureus is isolated from clinical specimens at the clinical laboratory site, methicillin-resistant Staphylococcus aureus (MRSA) or not greatly affects the selection of antibacterial agents for treatment. In this example, MRSA and a clinical isolate of methicillin-sensitive Staphylococcus aureus (MSSA) were used, and a drug sensitivity test for cefoxitin (CFX) effective for differentiating MRSA was measured by the rapid method of the instrument.
Differentiation of MRSA requires that the MIC of CFX be ≧ 8 μg / mL. Therefore, if growth is observed in a well ofCFX 4 μg / mL, it is determined as MRSA. When MRSA clinical isolates were tested with the rapid method of the device, the time for the absorbance of the control wells to exceed a preset value (eg 1.5) was 300 minutes after incubation. At this time, the absorbance of each drug concentration well of CFX is compared with a predetermined threshold value, and if it is equal to or higher than the threshold value, it is regarded as “growth”. This time, wells of 4 μg / mL or less became “growth” and were determined to be MRSA.
FIG. 7 is a growth curve of MRSA clinical isolates cultured for up to 1080 minutes (18 hours). When this growth curve is monitored in real time on the monitor of the apparatus, attention can be paid to the growth of 4 μg / mL wells as shown in FIG. The possibility of MRSA can be predicted and will be useful for early treatment.
On the other hand, when the MSSA clinical isolate was tested by the rapid method of the apparatus, the time when the control well absorbance exceeded, for example, 1.5 was 285 minutes after culturing, as described above. Wells that are less than the threshold are considered “non-developed”. This time, wells of 4 μg / ml or more became “non-developed” and were determined to be MSSA.
FIG. 9 is a growth curve of MSSA clinical isolates cultured for 1080 minutes (18 hours). When the growth curve is monitored on the monitor as in FIG. 8, paying attention to the growth of the 4 μg / mL well as shown in FIG. 10, it is confirmed that there is no change in the curve at an early stage (195 minutes in culture). The possibility of MSSA can be predicted before the CFX MIC is determined by this apparatus.
臨床検査の現場において黄色ブドウ球菌が臨床検体から分離された場合、メチシリン耐性黄色ブドウ球菌(MRSA)か否かが治療のための抗菌薬選択に大きく影響する。本実施例では、MRSAとメチシリン感受性黄色ブドウ球菌(MSSA)の臨床分離株を用い、MRSAを鑑別するのに有効なセフォキシチン(CFX)の薬剤感受性試験を当該機器の迅速法により測定した。
MRSAの鑑別はCFXのMICが≧8μg/mLを示すことが必要であり、故にCFX 4μg/mLのウェルで発育を認めた場合は、MRSAと判定される。MRSA臨床分離株を当該装置の迅速法で試験させたとき、対照ウェルの吸光度が予め設定する値(例えば1.5)を越えた時間は培養後300分であった。このときCFXの各薬剤濃度ウェルの吸光度と予め設定された一定の閾値とを比較し、その閾値以上の場合に"発育"とする。今回、4μg/mL以下のウェルは"発育"となり、MRSAと判定された。
図7はMRSA臨床分離株の1080分(18時間)まで培養させた発育曲線である。この発育曲線をリアルタイムに当該装置のモニタ上で監視した場合、図8のように4μg/mLのウェルの発育を注目することで、早期(培養後195分)に当該曲線の上昇を視認でき、MRSAの可能性を予想することができ、早期の治療に役立つものと考えられる。
一方、MSSA臨床分離株を当該装置の迅速法で試験させたとき、対照ウェル吸光度が上述と同様に例えば1.5を越えた時間は培養後285分であった。その閾値未満のウェルを"非発育"とする。今回、4μg/ml以上のウェルは"非発育"となり、MSSAと判定された。
図9はMSSA臨床分離株の1080分(18時間)培養させた発育曲線である。図8と同様に発育曲線をモニタ上で監視した場合、図10のように4μg/mLのウェルの発育を注目することで、早期(培養195分)に当該曲線に変化の見られないことを視認でき、本装置でCFXのMICが確定する前にMSSAの可能性を予想することができる。 Example 1
When Staphylococcus aureus is isolated from clinical specimens at the clinical laboratory site, methicillin-resistant Staphylococcus aureus (MRSA) or not greatly affects the selection of antibacterial agents for treatment. In this example, MRSA and a clinical isolate of methicillin-sensitive Staphylococcus aureus (MSSA) were used, and a drug sensitivity test for cefoxitin (CFX) effective for differentiating MRSA was measured by the rapid method of the instrument.
Differentiation of MRSA requires that the MIC of CFX be ≧ 8 μg / mL. Therefore, if growth is observed in a well of
FIG. 7 is a growth curve of MRSA clinical isolates cultured for up to 1080 minutes (18 hours). When this growth curve is monitored in real time on the monitor of the apparatus, attention can be paid to the growth of 4 μg / mL wells as shown in FIG. The possibility of MRSA can be predicted and will be useful for early treatment.
On the other hand, when the MSSA clinical isolate was tested by the rapid method of the apparatus, the time when the control well absorbance exceeded, for example, 1.5 was 285 minutes after culturing, as described above. Wells that are less than the threshold are considered “non-developed”. This time, wells of 4 μg / ml or more became “non-developed” and were determined to be MSSA.
FIG. 9 is a growth curve of MSSA clinical isolates cultured for 1080 minutes (18 hours). When the growth curve is monitored on the monitor as in FIG. 8, paying attention to the growth of the 4 μg / mL well as shown in FIG. 10, it is confirmed that there is no change in the curve at an early stage (195 minutes in culture). The possibility of MSSA can be predicted before the CFX MIC is determined by this apparatus.
1 検体格納部
2 プレート格納部
3 チップ格納部
4 分注エリア
5 チップ廃棄部
6 プレート回収部
7 培養部
8 プレート搬送系
9 分注ユニット
10 光学検出系
11 温度調節機構 DESCRIPTION OFSYMBOLS 1 Sample storage part 2 Plate storage part 3 Chip storage part 4 Dispensing area 5 Chip discard part 6 Plate collection | recovery part 7 Incubation part 8 Plate conveyance system 9 Dispensing unit 10 Optical detection system 11 Temperature control mechanism
2 プレート格納部
3 チップ格納部
4 分注エリア
5 チップ廃棄部
6 プレート回収部
7 培養部
8 プレート搬送系
9 分注ユニット
10 光学検出系
11 温度調節機構 DESCRIPTION OF
Claims (3)
- 微生物の同定及び薬剤感受性を検査する装置であって、検体容器を格納するための検体容器格納部、培養プレートを格納するプレート格納部、分注用チップを格納するチップ格納部、使用済みチップを収納するチップ廃棄部、使用済み培養プレートを収納するプレート回収部、検体を培養する培養部、光学的分析を行う光学検出系、プレート搬送系、分注ユニット、並びに検体の希釈から、検体の分注、培養、光学分析及び判定、及びプレートの回収までの一連の工程を自動で行うプログラムが記憶された記憶装置と、このプログラムを実行する演算装置を備え、且つ
薬剤感受性試験のための光学分析をリアルタイムで行い、分析結果をグラフ表示させる機構を備えてなる自動微生物検査装置。 A device for inspecting microorganism identification and drug sensitivity, including a sample container storage unit for storing a sample container, a plate storage unit for storing a culture plate, a chip storage unit for storing dispensing tips, and a used chip Dispose of the sample from the chip disposal unit to be stored, the plate recovery unit to store the used culture plate, the culture unit to culture the sample, the optical detection system for optical analysis, the plate transport system, the dispensing unit, and the sample dilution. Optical analysis for drug susceptibility testing, including a storage device that stores a program that automatically performs a series of steps from injection, culture, optical analysis and determination, and plate collection, and a computing device that executes this program An automatic microbiological testing device equipped with a mechanism for performing analysis in real time and displaying the analysis results in a graph. - リアルタイムで行われる光学分析が、培養開始後15分毎に行われる、請求項1記載の自動微生物検査装置。 The automatic microbiological test apparatus according to claim 1, wherein optical analysis performed in real time is performed every 15 minutes after the start of culture.
- 菌液を希釈する希釈工程、検体を分注する分注工程、検体を培養する培養工程、並びに薬剤感受性試験及び同定試験を行う分析・判定工程を含み、これらを自動で行う微生物の同定及び薬剤感受性の検査方法であって、薬剤感受性試験のための光学分析をリアルタイムで行い、分析結果をグラフ表示させる工程を含む、方法。 It includes a dilution process for diluting a bacterial solution, a dispensing process for dispensing a specimen, a culturing process for culturing a specimen, and an analysis / judgment process for performing a drug sensitivity test and an identification test. A method for testing sensitivity comprising the steps of performing optical analysis for drug sensitivity testing in real time and displaying the analysis results in a graph.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016145403A JP2019162034A (en) | 2016-07-25 | 2016-07-25 | Automatic microbe inspection device |
JP2016-145403 | 2016-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018021281A1 true WO2018021281A1 (en) | 2018-02-01 |
Family
ID=61016125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/026816 WO2018021281A1 (en) | 2016-07-25 | 2017-07-25 | Automatic microorganism inspection device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019162034A (en) |
WO (1) | WO2018021281A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109554294A (en) * | 2018-12-27 | 2019-04-02 | 佛山科学技术学院 | A kind of continuous record growth curve of bacteria device |
US11590502B2 (en) | 2019-07-01 | 2023-02-28 | General Electric Company | Assessment of micro-organism presence |
US11597960B2 (en) | 2019-07-01 | 2023-03-07 | General Electric Company | Assessment of micro-organism presence |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012526559A (en) * | 2009-05-15 | 2012-11-01 | ビオメリュー・インコーポレイテッド | Microorganism automatic detection device |
JP2015130864A (en) * | 2009-05-15 | 2015-07-23 | ビオメリュー・インコーポレイテッド | System and methods for rapid identification and/or characterization of microbial agent in sample |
-
2016
- 2016-07-25 JP JP2016145403A patent/JP2019162034A/en active Pending
-
2017
- 2017-07-25 WO PCT/JP2017/026816 patent/WO2018021281A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012526559A (en) * | 2009-05-15 | 2012-11-01 | ビオメリュー・インコーポレイテッド | Microorganism automatic detection device |
JP2015130864A (en) * | 2009-05-15 | 2015-07-23 | ビオメリュー・インコーポレイテッド | System and methods for rapid identification and/or characterization of microbial agent in sample |
Non-Patent Citations (4)
Title |
---|
BOBENCHIK A. M. ET AL.: "Performance of Vitek 2 for antimicrobial susceptibility testing of Staphylococcus spp. and Enterococcus spp", J. CLIN. MICROBIOL., vol. 52, no. 2, 2014, pages 392 - 397, XP055605031, ISSN: 0095-1137 * |
HIROFUMI SAGARA ET AL.: "Zenjido Jinsoku Dotei Kanjusei Sokutei Sochi 'RAISUS' System", CLINICAL MICROBIOLOGY, vol. 33, no. 1, 27 - 31, ISSN: 0910-7029 * |
KANEMITSU K. ET AL.: "Evaluation of a fully automated system (RAISUS) for rapid identification and antimicrobial susceptibility testing of Staphylococci", J. CLIN. MICROBIOL., vol. 43, no. 11, 2005, pages 5808 - 5810, XP055605004, ISSN: 0095-1137 * |
YOKO MATSUKAWA ET AL.: "Multcenter-Evaluation of Optimal Cell Density to Determine Antimicrobial Susceptibility for Haemophilus influenzae by the Automated RAISUS System: when the Early-Harvested Bacterial Cells were Used", THE JAPANESE JOURNAL OF CLINICAL PATHOLOGY, vol. 55, no. 7, 2007, pages 611 - 618, ISSN: 0047-1860 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109554294A (en) * | 2018-12-27 | 2019-04-02 | 佛山科学技术学院 | A kind of continuous record growth curve of bacteria device |
US11590502B2 (en) | 2019-07-01 | 2023-02-28 | General Electric Company | Assessment of micro-organism presence |
US11597960B2 (en) | 2019-07-01 | 2023-03-07 | General Electric Company | Assessment of micro-organism presence |
Also Published As
Publication number | Publication date |
---|---|
JP2019162034A (en) | 2019-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6186414B2 (en) | Method for characterizing microorganisms on solid or semi-solid media | |
US8828680B2 (en) | Combined rapid susceptibility assay and microorganism identification system | |
JP5591747B2 (en) | Luminescence measuring device and microorganism counting device | |
US9927418B2 (en) | Device and method for the determination and monitoring of water toxicity | |
KR101753764B1 (en) | Device and method for diagnostic analyses | |
JP2012526996A (en) | System and method for rapid identification and / or characterization of microbial agents in a sample | |
WO2018021281A1 (en) | Automatic microorganism inspection device | |
JP2019521682A (en) | Integrated device for performing diagnostic analysis | |
US20220111378A1 (en) | Methods and systems for determining target sensitivity to a therapeutic formula | |
US10053721B2 (en) | Antimicrobial resistance status determination device and method | |
US20190218591A1 (en) | Systems and methods for scheduling and sequencing automated testing procedures | |
JP4004740B2 (en) | Microorganism detection kit and microorganism measuring device | |
US20090142796A1 (en) | Detection of Inducible Resistance to Macrolide-Lincosamide-Streptogramin b | |
RU93990U1 (en) | DEVICE FOR MULTISUBSTRATE FLUORESCENT IDENTIFICATION OF BIOLOGICAL MICRO-OBJECTS AND THEIR BIOLOGICAL PROPERTIES | |
JP3995888B2 (en) | Microbial weighing method and microorganism weighing device | |
KR102576448B1 (en) | Automatic inspection system | |
US20170314057A1 (en) | Method, device and system for testing drug sensitivity | |
JP5385638B2 (en) | Bioclean room cleanliness management method and bio clean room | |
JPH01128781A (en) | Measurement of viable cell number and identification of strain and measurement and identification system therefor | |
JPH06181743A (en) | Apparatus for determining number of live microbial cells | |
EP4423233A1 (en) | An automated system for microbial testing | |
JPH04293497A (en) | Method and system for measuring number of live bacteria and identifying kind of bacterium | |
CN114763580A (en) | Nucleic acid analysis method and nucleic acid analysis device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17834287 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17834287 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |