WO2018021235A1 - Gasoline composition and production process therefor - Google Patents

Gasoline composition and production process therefor Download PDF

Info

Publication number
WO2018021235A1
WO2018021235A1 PCT/JP2017/026679 JP2017026679W WO2018021235A1 WO 2018021235 A1 WO2018021235 A1 WO 2018021235A1 JP 2017026679 W JP2017026679 W JP 2017026679W WO 2018021235 A1 WO2018021235 A1 WO 2018021235A1
Authority
WO
WIPO (PCT)
Prior art keywords
hexene
pentene
derived
vol
hemicellulose
Prior art date
Application number
PCT/JP2017/026679
Other languages
French (fr)
Japanese (ja)
Inventor
泰世 奥山
章雄 今井
充 小池
佐々木 伸也
Original Assignee
昭和シェル石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和シェル石油株式会社 filed Critical 昭和シェル石油株式会社
Priority to AU2017301310A priority Critical patent/AU2017301310B2/en
Priority to EP17834241.6A priority patent/EP3492561A4/en
Priority to CN201780045708.0A priority patent/CN109563423B/en
Priority to US16/320,190 priority patent/US10968408B2/en
Priority to JP2017559471A priority patent/JP6415755B2/en
Publication of WO2018021235A1 publication Critical patent/WO2018021235A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1608Well defined compounds, e.g. hexane, benzene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a gasoline composition using lignocellulosic biomass and a method for producing the same.
  • Biofuels are carbon neutral and are expected to be used to reduce greenhouse gas emissions.
  • Patent Document 1 proposes a method for producing ethanol from cellulose constituting non-food parts such as stems and leaves that are normally discarded.
  • Non-Patent Document 1 describes a method for producing bioethanol.
  • ethanol is more reactive with metals than petroleum-derived gasoline bases, so if used in large quantities, it may corrode aluminum materials used in automobile fuel supply systems and cause fuel leakage. . Therefore, in Japan, the maximum amount is 3% and cannot be mixed in large quantities.
  • the present invention provides a gasoline composition that uses lignocellulosic biomass, which is a plant-derived resource that does not compete with food production, and that satisfies the properties required for use in a gasoline engine, and a method for producing the same. For the purpose.
  • the present inventors have conducted intensive research, and as a result, have used penten produced from hemicellulose contained in lignocellulosic biomass to determine the properties required for the use of a gasoline engine. I found out that I can meet it. That is, the present invention is a gasoline composition containing 0.3 to 10.0 vol% of hemicellulose-derived pentene. The present invention is also a method for producing a gasoline composition comprising a step of mixing hemicellulose-derived pentene in an amount of 0.3 to 10.0 vol%.
  • a gasoline composition that uses lignocellulosic biomass, which is a plant-derived resource that does not compete with food production, and satisfies the properties required for use in a gasoline engine, and A manufacturing method thereof can be provided.
  • the gasoline composition according to the present invention includes pentene produced from hemicellulose contained in lignocellulosic biomass (hereinafter referred to as hemicellulose-derived pentene).
  • Lignocellulosic biomass is biomass mainly composed of cellulose, hemicellulose, and lignin.
  • Such lignocellulosic biomass includes broad-leaved trees, conifers, rice straw, straw, rice husk, corn stover, bagasse, switchgrass, Elianthus, Napiergrass, and Susuki, as well as their waste and Examples include energy crops, wood chips derived from them, wood chips, pulps, and waste paper.
  • Lignocellulosic biomass is a plant-derived resource that does not compete with food production and does not cause food problems. Moreover, in this invention, not ethanol manufactured from hemicellulose but the pentene manufactured from hemicellulose is mixed with a gasoline base material, and it is set as biofuel. Since hemicellulose-derived pentene is not limited in gasoline content like ethanol, it can be used as a substitute for petroleum fuel.
  • the gasoline composition according to the present invention contains hemicellulose-derived pentene in an amount of 0.3 to 10.0 vol%, preferably 0.5 to 9.0 vol%.
  • hemicellulose-derived pentene in an amount of 0.3 to 10.0 vol%, preferably 0.5 to 9.0 vol%.
  • the hemicellulose-derived pentene preferably contains 1-pentene and 2-pentene.
  • 1-pentene is preferably from 5.0 to 15.0 vol%, more preferably from 7.0 to 13.0 vol%.
  • 2-Pentene is preferably 85.0 to 95.0 vol%, and more preferably 87.0 to 93.0 vol%.
  • the gasoline composition according to the present invention preferably contains hexene produced from cellulose contained in lignocellulosic biomass (hereinafter referred to as cellulose-derived hexene).
  • Lignocellulosic biomass includes cellulose in addition to hemicellulose, and cellulose can be used effectively.
  • the gasoline composition according to the present invention preferably contains 1.0 to 23.0 vol% of hexene derived from cellulose, more preferably 1.5 to 23.0 vol%, still more preferably 2.0 to 22.0 vol%.
  • hexene derived from cellulose
  • the gasoline composition according to the present invention preferably contains 1.0 to 23.0 vol% of hexene derived from cellulose, more preferably 1.5 to 23.0 vol%, still more preferably 2.0 to 22.0 vol%.
  • the cellulose-derived hexene preferably contains at least 1-hexene.
  • 1-hexene is preferably 1.0 to 15.0 vol%, more preferably 3.0 to 9.0 vol%, and 3.0 to 7.0 vol%. Further preferred.
  • the cellulose-derived hexene preferably contains 1-hexene, 2-hexene, and 3-hexene.
  • 1-hexene is preferably 1.0 to 15.0 vol%, more preferably 3.0 to 9.0 vol%, and 3.0 to 7.0 vol%.
  • 2-hexene is preferably 55.0 to 80.0 vol%, more preferably 60.0 to 75.0 vol%, and still more preferably 60.0 to 70.0 vol%.
  • 3-hexene is preferably 10.0 to 40.0 vol%, more preferably 19.0 to 28.0 vol%, and even more preferably 20.0 to 28.0 vol%.
  • the gasoline composition according to the present invention may contain pentene contained in a gasoline base material in addition to hemicellulose-derived pentene, and the pentene contained in the gasoline composition (hereinafter referred to as pentene component) is preferably 1. It may be contained in an amount of 0.0 to 12.0 vol%, more preferably 2.0 to 11.0 vol%.
  • the (2-pentene content) / (1-pentene content) contained in the pentene content is preferably 3.0 to 7.0 vol% / vol%, more preferably 3.3 to 6.5 vol% / vol%. .
  • the hemicellulose-derived pentene is produced as described below, and if the 1-pentene and 2-pentene are not separated by fractional distillation or the like, the ratio of 2-pentene is high. 2-pentene component) / (1-pentene component) tends to increase.
  • the gasoline composition according to the present invention may contain hexene contained in a gasoline base material in addition to cellulose-derived hexene, and hexene contained in the gasoline composition (hereinafter referred to as hexene content) is 1.5. It is preferably ⁇ 27.0 vol%, more preferably 1.5 to 24.0 vol%. If the hexene content is too small, the CO 2 reduction effect is small, and if it is too large, the oxidation stability may deteriorate.
  • the (2-hexene content) / (1-hexene content) contained in the hexene content is preferably 4.5 to 10.0 vol% / vol%, more preferably 5.0 to 9.5 vol% / vol%, Preferably, it is 6.0 to 9.0 vol% / vol%. If cellulose-derived hexene is produced as described below and 1-hexene and 2-hexene are not separated by fractional distillation or the like, the ratio of 2-hexene is high. 2-hexene content / (1-hexene content) tends to increase.
  • the gasoline composition according to the present invention contains an olefin content of 15.0 vol% or more, preferably 17.0 vol% or more, more preferably 18.0 to 40.0 vol%, and even more preferably 19.0 to 36.0 vol%. You may go out. When there is much olefin content, oxidation stability may worsen.
  • the paraffin content may include 25.0 to 60.0 vol%.
  • the naphthene content may be contained in an amount of 3.0 to 10.0 vol%.
  • the aromatic content may be preferably 15.0 vol% or more, more preferably 18.0 to 35.0 vol%. If the aromatic content is low, the octane number may be low, and if it is high, the exhaust gas performance may be deteriorated.
  • the gasoline composition according to the present invention has a density at 15 ° C. of preferably 0.7000 g / cm 3 or more, more preferably 0.7100 to 0.7300 g / cm 3 . If the density is too low, the fuel efficiency may be deteriorated, and if it is too high, the exhaust gas performance may be deteriorated.
  • the vapor pressure is preferably 44.0 to 93.0 kPa, more preferably 44.0 to 88.0 kPa, and further preferably 44.0 to 72.0 kPa. If the vapor pressure is low, the startability of the engine may be deteriorated. If the vapor pressure is high, the evaporated gas emission (evaporation) increases, and the engine may be stopped by vapor lock.
  • the 10% distillation temperature is preferably 70.0 ° C. or less, more preferably 38.0 to 60.0 ° C. If the 10% distillation temperature is low, evaporative gas emission (evaporation) increases, and the engine may be stopped by vapor lock. If it is high, engine startability may be deteriorated.
  • the 50% distillation temperature is preferably 75.0 ° C or higher, more preferably 75.0 to 100.0 ° C, and further preferably 75.0 to 95.0 ° C. If the 50% distillation temperature is low, the fuel consumption may be deteriorated, and if it is high, the acceleration of the engine may be deteriorated.
  • the 90% distillation temperature is preferably 180.0 ° C. or less, more preferably 110.0 to 170.0 ° C. If the 90% distillation temperature is low, the fuel consumption may be deteriorated. If the 90% distillation temperature is high, the oil may be diluted to cause engine failure.
  • the oxidation stability is preferably 240 minutes or more, more preferably 280 minutes or more.
  • the octane number is preferably 90.0 or more.
  • the hemicellulose-derived pentene can be obtained, for example, by producing pentanol from hemicellulose contained in lignocellulosic biomass and dehydrating the produced hemicellulose-derived pentanol. From hemicellulose, pentanol is hydrolyzed, hydrolyzed, and hydrolyzed into hemicellulose in the aqueous phase in the presence of an Ir-Re (iridium-rhenium) catalyst and at a temperature at which hemicellulose is decomposed. By adding and dissolving an oil phase comprising pentanol, it is possible to efficiently obtain pentanol in a single reaction vessel (Japanese Patent Laid-Open No. 2016-33129).
  • the Ir—Re catalyst is not particularly limited on the basis of containing Ir and Re, but Ir—ReOx / SiO 2 can increase the conversion of hemicellulose and the yield of pentanol.
  • x in ReOx represents an oxidation number and is an arbitrary real number.
  • the molar ratio of Re to Ir is 1 or more because pentanol can be obtained in a higher yield.
  • saturated hydrocarbons such as normal paraffin, isoparaffin, cycloparaffin, or aromatic hydrocarbons are preferable.
  • the oil phase does not inhibit the reaction in the hydrolysis step and hydrocracking step described above.
  • ether when used as a solvent, the ether itself is decomposed, so that the function as an oil phase for dissolving alcohol can be impaired.
  • alcohol having an OH group or the like adsorbs to the catalyst and covers the active site, so that the catalytic ability may be impaired.
  • unsaturated hydrocarbons such as olefinic hydrocarbons, themselves are hydrogenated, consuming hydrogen used for hydrogenation of glucose and hydrocracking of sorbitol, reducing the yield of pentanol. .
  • aromatic hydrocarbons can also be hydrogenated, since the reaction rate of such hydrogenation is slow, it can also be used as a solvent.
  • the oil phase needs to be a liquid phase (liquid) at a temperature and pressure as reaction conditions for the Ir-Re catalyst.
  • the reaction conditions of the catalyst are 140 ° C. to 200 ° C. and 1 MPa to 10 MPa
  • the boiling point of the solvent is 140 ° C. or higher at 1 MPa, preferably 200 ° C. or higher at 1 MPa, more preferably 290 ° C. or higher. It is.
  • recover alcohol if it will become a solid phase when taking out an oil phase it is preferable to maintain a liquid phase also at normal temperature normal pressure.
  • n-dodecane or n-decane can be used as such a saturated hydrocarbon.
  • Pentanol can be converted to pentene by a dehydration reaction using a known acid catalyst.
  • the obtained pentene contains 1-pentene and 2-pentene. Further, it may be fractionated into 1-pentene and 2-pentene by precision distillation.
  • Cellulose-derived hexene can be obtained, for example, by producing hexanol from cellulose contained in lignocellulosic biomass and dehydrating the produced cellulose-derived hexanol. Hexanol from cellulose is hydrolyzed and hydrolyzed by hydrolysis and saccharification of cellulose in the aqueous phase in the presence of an Ir-Re (iridium-rhenium) catalyst and at a temperature for decomposing cellulose. By adding and dissolving the oil phase, hexanol can be efficiently obtained in a single reaction vessel (Japanese Patent Laid-Open No. 2016-33129).
  • Hexanol can be converted to hexene by a dehydration reaction using a known acid catalyst.
  • the resulting hexene includes 1-hexene, 2-hexene, and 3-hexene. Further, it may be fractionated into 1-hexene, 2-hexene and 3-hexene by precision distillation.
  • Hemicellulose-derived pentene and cellulose-derived hexene may be produced separately from lignocellulosic biomass in separate reaction vessels, and both hemicellulose-derived pentene and cellulose-derived hexene are obtained from lignocellulosic biomass in the same reaction vessel. It may be manufactured.
  • the gasoline composition according to the present invention can be obtained by mixing the hemicellulose-derived pentene obtained as described above with a base gasoline base (hereinafter referred to as base gasoline).
  • base gasoline a base gasoline base
  • cellulose-derived hexene obtained from lignocellulosic biomass in a reaction vessel different from hemicellulose-derived pentene may be mixed, or lignocellulose in the same reaction vessel as hemicellulose-derived pentene.
  • the cellulose-derived hexene obtained from the biomass may be mixed together.
  • the mixing amount of hemicellulose-derived pentene and the properties of base gasoline may be adjusted.
  • the properties of the base gasoline can be adjusted by a known method.
  • the gasoline composition according to the present invention may be used as it is as a gasoline fuel, or may be used by further adding additives and other base materials.
  • additives include antioxidants such as phenols and amines, detergents such as polyisobutyleneamine compounds, metal deactivators such as amine carbonyl condensation compounds, and surface ignition inhibitors such as organophosphorus compounds, Examples thereof include antistatic agents such as anionic surfactants, cationic surfactants, and amphoteric surfactants, and colorants such as azo dyes.
  • An autoclave having a glass inner tube was used as a reaction vessel.
  • An electric furnace was arranged around the reaction vessel so that the inside of the reaction vessel could be heated.
  • the reaction vessel is placed on top of a magnetic stirrer so that the inside can be stirred, and a magnetic stirrer chip (stirring bar) coated with Teflon (registered trademark) is housed inside the inner tube of the reaction vessel did.
  • a magnetic stirrer chip (stirring bar) coated with Teflon (registered trademark) is housed inside the inner tube of the reaction vessel did.
  • 1.0 part by weight of the Ir—ReOx / SiO 2 catalyst and 63.3 parts by weight of water were placed in a reaction vessel, and hydrogen substitution was repeated three times or more.
  • hydrogen was introduced so that the total pressure was 8 MPa, and the catalyst was reduced by holding at 200 ° C. for 1 hour.
  • Synthesis Example 2 Production of cellulose-derived hexene >> [Preparation of catalyst, etc.] A catalyst or the like was prepared in the same manner as in Synthesis Example 1.
  • cellulose-derived hexanol As described above, 3.3 parts by weight of milled cellulose was added to the reaction vessel in which the catalyst was reduced. In the reaction vessel, 20.0 to 100.0 parts by weight of n-dodecane as an oil phase was added, hydrogen was introduced so as to be 6 MPa at room temperature, and maintained at 190 ° C. for 24 hours to obtain cellulose-derived hexanol.
  • Synthesis Example 3 Simultaneous production of hemicellulose-derived pentene and cellulose-derived hexene >> [Preparation of catalyst, etc.] A catalyst or the like was prepared in the same manner as in Synthesis Example 1.
  • the xylan which is the main component of hemicellulose derived from lignocellulosic biomass, and the cellulose derived from lignocellulosic biomass were previously milled. In this milling process, 100 ZrO 2 spheres together with xylan and cellulose were put into a drum of a ball mill, and the rotation speed was 300 rpm, followed by pulverization for 2 hours. If pulverized for 2 hours or more, the resulting xylan and cellulose are sufficiently pulverized.
  • the hemicellulose-derived pentanol containing at least one of 1-pentanol, 2-pentanol and 3-pentanol and cellulose containing at least one of 1-hexanol, 2-hexanol and 3-hexanol obtained by the above method Introduce 1.0 part by weight of hexanol into another reaction vessel (same type as the above autoclave), add 10.0 parts by weight of tridecane as solvent and 0.2 part by weight of zeolite (HZSM-5) as acid catalyst Then, nitrogen was introduced so as to be 0.6 MPa at room temperature, and the temperature was raised to a predetermined reaction temperature of 180 ° C. in about 20 minutes.
  • HZSM-5 zeolite
  • Examples 1 to 9, Comparative Examples 1 to 3 >> The base materials A to E shown in Table 1 are mixed with the base gasoline (base RG1, base RG2) at the blending ratios shown in Tables 2 to 4, and the gasoline compositions according to Examples 1 to 9 and Comparative Examples 1 to 3 are mixed. I got a thing. Properties and the like of the obtained gasoline composition are shown in Tables 2 to 4. Table 2 also shows the properties of base gasoline. The properties shown in Tables 2 to 4 were measured by the following methods.
  • Density Measured according to JIS K 2249 “Crude oil and petroleum products—Density test method and density / mass / capacity conversion table”.
  • Vapor pressure Measured according to JIS K 2258-1 “Crude oil and petroleum products-Determination of vapor pressure, Part 1: Reed method”.
  • Distillation temperature Measured according to JIS K 2254 "Petroleum products-Distillation test method".
  • Composition Measured according to JIS K 2536-2 “Petroleum products—component test method, Part 2: Determination of all components by gas chromatograph”.
  • Oxidation stability Measured according to JIS K 2287 “Gasoline-oxidation stability test method induction period method”.
  • Octane number The octane number of base gasoline was measured according to JIS K 2280 “Petroleum products-fuel oil-octane number and cetane number test method and cetane number index calculation method”. The octane numbers of Examples and Comparative Examples were calculated by the following formula (1) from the octane number of base gasoline and the octane numbers of hemicellulose-derived pentene and cellulose-derived hexene.
  • Octane number (octane number of base gasoline ⁇ mixing ratio of base gasoline (volume%) ⁇ 100) + (octane number of hemicellulose-derived pentene and / or cellulose-derived hexene ⁇ mixing ratio of hemicellulose-derived pentene and / or hexene derived from cellulose (volume%) ⁇ 100) (1)
  • pentene is obtained with the isomer ratio in the pentene described in Table 5.
  • Substrates F to I were prepared so as to have the compositions described in Table 5.
  • Examples 10 to 13 >> Bases F to I shown in Table 5 were mixed with base gasoline (base RG3) at the blending ratios shown in Table 6 to obtain gasoline compositions according to Examples 10 to 13. Table 6 shows properties and the like of the obtained gasoline composition. Table 6 also shows the properties of the base gasoline. The properties shown in Table 6 were measured in the same manner as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

The purpose of the present invention is to provide: a gasoline composition produced from lignocellulosic biomass, which is a plant-derived resource that does not compete with food production, and satisfying the material properties required for use in gasoline engines; and a process for producing the gasoline composition. The gasoline composition contains 0.3-10.0 vol% hemicellulose-derived pentene.

Description

ガソリン組成物及びその製造方法Gasoline composition and method for producing the same
 本発明は、リグノセルロース系バイオマスを利用したガソリン組成物及びその製造方法に関する。 The present invention relates to a gasoline composition using lignocellulosic biomass and a method for producing the same.
 バイオ燃料はカーボンニュートラルであることから、温室効果ガスの排出を抑えるために、活用が期待されている。 Biofuels are carbon neutral and are expected to be used to reduce greenhouse gas emissions.
 環境破壊の進行が懸念されている近年では、自動車用ガソリンの環境への負荷の低減が社会的要請となっている。そして、そのような社会的要請に応える方法として、自動車用ガソリンの製造に、トウモロコシやサトウキビなどから生成されたバイオエタノールを使用する試みがされている。 In recent years when there is concern about the progress of environmental destruction, reduction of the environmental burden of gasoline for automobiles has become a social demand. As a method for meeting such social demands, attempts have been made to use bioethanol produced from corn, sugar cane and the like in the production of gasoline for automobiles.
 バイオエタノールなどの植物を原料として製造される燃料、いわゆるバイオ燃料は、GHG(温室効果ガス)排出基準を満たすものとなるが、その原料となる植物が限られている。現在では、トウモロコシやサトウキビなどが主な原料とされているが、これらの植物は食用ともされているため、エタノールの製造は食糧生産との競合を引き起こす懸念がある。 Fuels produced from plants such as bioethanol, so-called biofuels, meet GHG (greenhouse gas) emission standards, but the plants that serve as the raw materials are limited. Currently, corn and sugarcane are the main raw materials, but since these plants are also edible, there is a concern that ethanol production may cause competition with food production.
 そこで、食糧生産との競合を起こすことのないバイオ燃料を製造する研究が行われている。例えば、特許文献1には、通常廃棄されている茎や葉などの非食部分を構成しているセルロースからエタノールを製造する手法が提案されている。また、非特許文献1には、バイオエタノールの製造方法が記載されている。 Therefore, research is underway to produce biofuel that does not cause competition with food production. For example, Patent Document 1 proposes a method for producing ethanol from cellulose constituting non-food parts such as stems and leaves that are normally discarded. Non-Patent Document 1 describes a method for producing bioethanol.
特開2008-182925号公報JP 2008-182925 A
 セルロースを用いてバイオ燃料を製造する手法によれば、食糧生産との競合を起こすことなく、GHGである二酸化炭素の排出量を削減することが可能となる。ところが、この手法により製造されたエタノールは高価なものになるという問題がある。 According to the method of producing biofuel using cellulose, it becomes possible to reduce the emission amount of carbon dioxide, which is GHG, without causing competition with food production. However, there is a problem that ethanol produced by this method is expensive.
 また、エタノールは、石油由来のガソリン基材に比べ金属との反応性に富むことから、多量に使用すると自動車の燃料供給系統で使用されているアルミニウム材料を腐食し、燃料漏れを起こす懸念がある。そのため、現状日本では最大3%までの混合となっており、多量に混合することができない。 In addition, ethanol is more reactive with metals than petroleum-derived gasoline bases, so if used in large quantities, it may corrode aluminum materials used in automobile fuel supply systems and cause fuel leakage. . Therefore, in Japan, the maximum amount is 3% and cannot be mixed in large quantities.
 そこで本発明は、食糧生産と競合を起こさない植物由来の資源であるリグノセルロース系バイオマスを利用し、且つガソリンエンジンへの使用に必要とされる性状を満たすガソリン組成物及びその製造方法を提供することを目的とする。 Therefore, the present invention provides a gasoline composition that uses lignocellulosic biomass, which is a plant-derived resource that does not compete with food production, and that satisfies the properties required for use in a gasoline engine, and a method for producing the same. For the purpose.
 以上の目的を達成するために、本発明者らは、鋭意研究を重ねた結果、リグノセルロース系バイオマスに含まれるヘミセルロースから製造されるペンテンを用いて、ガソリンエンジンの使用に必要とされる性状を満たせることを見出した。すなわち、本発明は、ヘミセルロース由来のペンテンを0.3~10.0vol%含むガソリン組成物である。また、本発明は、ヘミセルロース由来のペンテンを0.3~10.0vol%を混合する工程を含むガソリン組成物の製造方法である。 In order to achieve the above object, the present inventors have conducted intensive research, and as a result, have used penten produced from hemicellulose contained in lignocellulosic biomass to determine the properties required for the use of a gasoline engine. I found out that I can meet it. That is, the present invention is a gasoline composition containing 0.3 to 10.0 vol% of hemicellulose-derived pentene. The present invention is also a method for producing a gasoline composition comprising a step of mixing hemicellulose-derived pentene in an amount of 0.3 to 10.0 vol%.
 以上のように、本発明によれば、食糧生産と競合を起こさない植物由来の資源であるリグノセルロース系バイオマスを利用し、且つガソリンエンジンへの使用に必要とされる性状を満たすガソリン組成物及びその製造方法を提供することができる。 As described above, according to the present invention, a gasoline composition that uses lignocellulosic biomass, which is a plant-derived resource that does not compete with food production, and satisfies the properties required for use in a gasoline engine, and A manufacturing method thereof can be provided.
《ガソリン組成物》
 本発明に係るガソリン組成物は、リグノセルロース系バイオマスに含まれるヘミセルロースから製造されるペンテン(以下、ヘミセルロース由来ペンテンという。)を含む。リグノセルロース系バイオマスは、主としてセルロース、ヘミセルロース、及びリグニンから構成されているバイオマスである。このようなリグノセルロース系バイオマスとしては、広葉樹、針葉樹、稲わら、麦わら、もみ殻、コーンストーバー、バガス、スイッチグラス、エリアンサス、ネピアグラス、及びススキのような農林資源、並びにそれらの廃棄物やエネルギー作物、それらに由来する木材チップ、木くず、パルプ類、及び古紙類なども挙げられる。リグノセルロース系バイオマスは、食糧生産と競合を起こさない植物由来の資源であり、食糧問題を生じない。また、本発明においては、ヘミセルロースから製造されるエタノールではなく、ヘミセルロースから製造されるペンテンをガソリン基材に混合してバイオ燃料とする。ヘミセルロース由来ペンテンは、エタノールのようにガソリン中の含有量に制限がないため、石油燃料の代替物として多く利用できる。
《Gasoline composition》
The gasoline composition according to the present invention includes pentene produced from hemicellulose contained in lignocellulosic biomass (hereinafter referred to as hemicellulose-derived pentene). Lignocellulosic biomass is biomass mainly composed of cellulose, hemicellulose, and lignin. Such lignocellulosic biomass includes broad-leaved trees, conifers, rice straw, straw, rice husk, corn stover, bagasse, switchgrass, Elianthus, Napiergrass, and Susuki, as well as their waste and Examples include energy crops, wood chips derived from them, wood chips, pulps, and waste paper. Lignocellulosic biomass is a plant-derived resource that does not compete with food production and does not cause food problems. Moreover, in this invention, not ethanol manufactured from hemicellulose but the pentene manufactured from hemicellulose is mixed with a gasoline base material, and it is set as biofuel. Since hemicellulose-derived pentene is not limited in gasoline content like ethanol, it can be used as a substitute for petroleum fuel.
 本発明に係るガソリン組成物は、ヘミセルロース由来ペンテンを0.3~10.0vol%、好ましくは0.5~9.0vol%含む。ヘミセルロース由来ペンテンが少ないと、二酸化炭素排出量削減の効果が小さく、多いと50%留出温度が低くなり燃費が悪くなることがある。 The gasoline composition according to the present invention contains hemicellulose-derived pentene in an amount of 0.3 to 10.0 vol%, preferably 0.5 to 9.0 vol%. When the amount of hemicellulose-derived pentene is small, the effect of reducing carbon dioxide emissions is small, and when it is large, the 50% distillation temperature is lowered and fuel consumption may be deteriorated.
 ヘミセルロース由来ペンテンは、1-ペンテン、及び2-ペンテンを含むことが好ましい。ヘミセルロース由来ペンテン中、1-ペンテンは5.0~15.0vol%であることが好ましく、7.0~13.0vol%であることがより好ましい。2-ペンテンは85.0~95.0vol%であることが好ましく、87.0~93.0vol%であることがより好ましい。 The hemicellulose-derived pentene preferably contains 1-pentene and 2-pentene. In the hemicellulose-derived pentene, 1-pentene is preferably from 5.0 to 15.0 vol%, more preferably from 7.0 to 13.0 vol%. 2-Pentene is preferably 85.0 to 95.0 vol%, and more preferably 87.0 to 93.0 vol%.
 本発明に係るガソリン組成物は、リグノセルロース系バイオマスに含まれるセルロースから製造されるヘキセン(以下、セルロース由来ヘキセンという。)を含むのが好ましい。リグノセルロース系バイオマスには、ヘミセルロースの他に、セルロースも含まれ、セルロースを有効に利用することができる。 The gasoline composition according to the present invention preferably contains hexene produced from cellulose contained in lignocellulosic biomass (hereinafter referred to as cellulose-derived hexene). Lignocellulosic biomass includes cellulose in addition to hemicellulose, and cellulose can be used effectively.
 本発明に係るガソリン組成物は、セルロース由来ヘキセンを、好ましくは1.0~23.0vol%、より好ましくは1.5~23.0vol%、更に好ましくは2.0~22.0vol%含む。セルロース由来ヘキセンが少ないと、二酸化炭素排出量削減の効果が小さく、多いと酸化安定性が悪くなることがある。 The gasoline composition according to the present invention preferably contains 1.0 to 23.0 vol% of hexene derived from cellulose, more preferably 1.5 to 23.0 vol%, still more preferably 2.0 to 22.0 vol%. When there is little cellulose origin hexene, the effect of carbon dioxide emission reduction is small, and when there are many, oxidation stability may worsen.
 セルロース由来ヘキセンは、1-ヘキセンを少なくとも含むことが好ましい。セルロース由来ヘキセン中、1-ヘキセンは1.0~15.0vol%であることが好ましく、3.0~9.0vol%であることがより好ましく、3.0~7.0vol%であることが更に好ましい。 The cellulose-derived hexene preferably contains at least 1-hexene. In cellulose-derived hexene, 1-hexene is preferably 1.0 to 15.0 vol%, more preferably 3.0 to 9.0 vol%, and 3.0 to 7.0 vol%. Further preferred.
 セルロース由来ヘキセンは、1-ヘキセン、2-ヘキセン、及び3-ヘキセンを含むことが好ましい。セルロース由来ヘキセン中、1-ヘキセンは1.0~15.0vol%であることが好ましく、3.0~9.0vol%であることがより好ましく、3.0~7.0vol%であることが更に好ましい。2-ヘキセンは55.0~80.0vol%であることが好ましく、60.0~75.0vol%であることがより好ましく、60.0~70.0vol%であることが更に好ましい。3-ヘキセンは10.0~40.0vol%であることが好ましく、19.0~28.0vol%であることがより好ましく、20.0~28.0vol%であることが更に好ましい。 The cellulose-derived hexene preferably contains 1-hexene, 2-hexene, and 3-hexene. In cellulose-derived hexene, 1-hexene is preferably 1.0 to 15.0 vol%, more preferably 3.0 to 9.0 vol%, and 3.0 to 7.0 vol%. Further preferred. 2-hexene is preferably 55.0 to 80.0 vol%, more preferably 60.0 to 75.0 vol%, and still more preferably 60.0 to 70.0 vol%. 3-hexene is preferably 10.0 to 40.0 vol%, more preferably 19.0 to 28.0 vol%, and even more preferably 20.0 to 28.0 vol%.
 本発明に係るガソリン組成物は、ヘミセルロース由来ペンテンの他に、ガソリン基材に含まれるペンテンを含んでいてもよく、ガソリン組成物中に含まれるペンテン(以下、ペンテン分という。)を好ましくは1.0~12.0vol%、より好ましくは2.0~11.0vol%含んでいてもよい。ペンテン分に含まれる(2-ペンテン分)/(1-ペンテン分)は、好ましくは3.0~7.0vol%/vol%、より好ましくは3.3~6.5vol%/vol%である。ヘミセルロース由来ペンテンは、後述のように製造した後1-ペンテンと2-ペンテンとを分留等で分離しなければ、2-ペンテンの割合が高いため、ヘミセルロース由来ペンテンの含有量が高まると、(2-ペンテン分)/(1-ペンテン分)は大きくなる傾向がある。 The gasoline composition according to the present invention may contain pentene contained in a gasoline base material in addition to hemicellulose-derived pentene, and the pentene contained in the gasoline composition (hereinafter referred to as pentene component) is preferably 1. It may be contained in an amount of 0.0 to 12.0 vol%, more preferably 2.0 to 11.0 vol%. The (2-pentene content) / (1-pentene content) contained in the pentene content is preferably 3.0 to 7.0 vol% / vol%, more preferably 3.3 to 6.5 vol% / vol%. . The hemicellulose-derived pentene is produced as described below, and if the 1-pentene and 2-pentene are not separated by fractional distillation or the like, the ratio of 2-pentene is high. 2-pentene component) / (1-pentene component) tends to increase.
 本発明に係るガソリン組成物は、セルロース由来ヘキセンの他に、ガソリン基材に含まれるヘキセンを含んでいてもよく、ガソリン組成物中に含まれるヘキセン(以下、ヘキセン分という。)は1.5~27.0vol%であるのが好ましく、1.5~24.0vol%であるのがより好ましい。ヘキセン分が少なすぎるとCO削減効果が小さく、多すぎると酸化安定性が悪くなることがある。ヘキセン分に含まれる(2-ヘキセン分)/(1-ヘキセン分)は、好ましくは4.5~10.0vol%/vol%、より好ましくは5.0~9.5vol%/vol%、更に好ましくは6.0~9.0vol%/vol%である。セルロース由来ヘキセンは、後述のように製造した後1-ヘキセンと2-ヘキセンとを分留等で分離しなければ、2-ヘキセンの割合が高いため、セルロース由来ヘキセンの含有量が高まると、(2-ヘキセン分)/(1-ヘキセン分)は大きくなる傾向がある。 The gasoline composition according to the present invention may contain hexene contained in a gasoline base material in addition to cellulose-derived hexene, and hexene contained in the gasoline composition (hereinafter referred to as hexene content) is 1.5. It is preferably ˜27.0 vol%, more preferably 1.5 to 24.0 vol%. If the hexene content is too small, the CO 2 reduction effect is small, and if it is too large, the oxidation stability may deteriorate. The (2-hexene content) / (1-hexene content) contained in the hexene content is preferably 4.5 to 10.0 vol% / vol%, more preferably 5.0 to 9.5 vol% / vol%, Preferably, it is 6.0 to 9.0 vol% / vol%. If cellulose-derived hexene is produced as described below and 1-hexene and 2-hexene are not separated by fractional distillation or the like, the ratio of 2-hexene is high. 2-hexene content / (1-hexene content) tends to increase.
 本発明に係るガソリン組成物は、オレフィン分を15.0vol%以上、好ましくは17.0vol%以上、より好ましくは18.0~40.0vol%、さらに好ましくは19.0~36.0vol%含んでいてもよい。オレフィン分が多いと酸化安定性が悪くなることがある。パラフィン分は、25.0~60.0vol%含んでいてもよい。ナフテン分は、3.0~10.0vol%含んでいてもよい。芳香族分は、好ましくは15.0vol%以上、より好ましくは18.0~35.0vol%含んでいてもよい。芳香族分が少ないとオクタン価が低くなることがあり、多いと排ガス性能が悪化することがある。 The gasoline composition according to the present invention contains an olefin content of 15.0 vol% or more, preferably 17.0 vol% or more, more preferably 18.0 to 40.0 vol%, and even more preferably 19.0 to 36.0 vol%. You may go out. When there is much olefin content, oxidation stability may worsen. The paraffin content may include 25.0 to 60.0 vol%. The naphthene content may be contained in an amount of 3.0 to 10.0 vol%. The aromatic content may be preferably 15.0 vol% or more, more preferably 18.0 to 35.0 vol%. If the aromatic content is low, the octane number may be low, and if it is high, the exhaust gas performance may be deteriorated.
 本発明に係るガソリン組成物は、15℃における密度が、好ましくは0.7000g/cm以上、より好ましくは0.7100~0.7300g/cmである。密度が低すぎると燃費が悪くなることがあり、高すぎると排ガス性能が悪化することがある。蒸気圧は、好ましくは44.0~93.0kPa、より好ましくは44.0~88.0kPaであり、更に好ましくは44.0~72.0kPaである。蒸気圧が低いと、エンジンの始動性が悪くなることがあり、高いと蒸発ガスエミッション(エバポエミッション)が増加し、また、ベーパーロックによりエンジンを停止させることがある。 The gasoline composition according to the present invention has a density at 15 ° C. of preferably 0.7000 g / cm 3 or more, more preferably 0.7100 to 0.7300 g / cm 3 . If the density is too low, the fuel efficiency may be deteriorated, and if it is too high, the exhaust gas performance may be deteriorated. The vapor pressure is preferably 44.0 to 93.0 kPa, more preferably 44.0 to 88.0 kPa, and further preferably 44.0 to 72.0 kPa. If the vapor pressure is low, the startability of the engine may be deteriorated. If the vapor pressure is high, the evaporated gas emission (evaporation) increases, and the engine may be stopped by vapor lock.
 10%留出温度は、好ましくは70.0℃以下であり、より好ましくは38.0~60.0℃である。10%留出温度が低いと蒸発ガスエミッション(エバポエミッション)が増加し、また、ベーパーロックによりエンジンを停止させることがあり、高いとエンジン始動性が悪くなることがある。50%留出温度は、好ましくは75.0℃以上、より好ましくは75.0~100.0℃、更に好ましくは75.0~95.0℃である。50%留出温度が低いと燃費が悪くなることがあり、高いとエンジンの加速不良となることがある。90%留出温度は、好ましくは180.0℃以下、より好ましくは110.0~170.0℃である。90%留出温度が低いと燃費が悪化することがあり、高いとオイル希釈を起こしエンジン故障の原因となることがある。 The 10% distillation temperature is preferably 70.0 ° C. or less, more preferably 38.0 to 60.0 ° C. If the 10% distillation temperature is low, evaporative gas emission (evaporation) increases, and the engine may be stopped by vapor lock. If it is high, engine startability may be deteriorated. The 50% distillation temperature is preferably 75.0 ° C or higher, more preferably 75.0 to 100.0 ° C, and further preferably 75.0 to 95.0 ° C. If the 50% distillation temperature is low, the fuel consumption may be deteriorated, and if it is high, the acceleration of the engine may be deteriorated. The 90% distillation temperature is preferably 180.0 ° C. or less, more preferably 110.0 to 170.0 ° C. If the 90% distillation temperature is low, the fuel consumption may be deteriorated. If the 90% distillation temperature is high, the oil may be diluted to cause engine failure.
 酸化安定度は、好ましくは240分以上、より好ましくは280分以上である。 The oxidation stability is preferably 240 minutes or more, more preferably 280 minutes or more.
 オクタン価は、好ましくは90.0以上である。 The octane number is preferably 90.0 or more.
《ガソリン組成物の製造方法》
 ヘミセルロース由来ペンテンは、例えば、リグノセルロース系バイオマスに含まれるヘミセルロースからペンタノールを製造し、製造したヘミセルロース由来のペンタノールを脱水することで得ることができる。ヘミセルロースからペンタノールは、Ir-Re(イリジウム-レニウム)系触媒の存在下且つヘミセルロースを分解する温度において、水相中のヘミセルロースを加水分解し糖化させるとともに水素化分解させ、これに液体の炭化水素からなる油相を加え溶解させることで、単一の反応容器内で効率良くペンタノールを得ることができる(特開2016-33129号)。
<< Method for producing gasoline composition >>
The hemicellulose-derived pentene can be obtained, for example, by producing pentanol from hemicellulose contained in lignocellulosic biomass and dehydrating the produced hemicellulose-derived pentanol. From hemicellulose, pentanol is hydrolyzed, hydrolyzed, and hydrolyzed into hemicellulose in the aqueous phase in the presence of an Ir-Re (iridium-rhenium) catalyst and at a temperature at which hemicellulose is decomposed. By adding and dissolving an oil phase comprising pentanol, it is possible to efficiently obtain pentanol in a single reaction vessel (Japanese Patent Laid-Open No. 2016-33129).
 Ir-Re系触媒としては、IrとReを含むことを基本とし特に限定はされないが、Ir-ReOx/SiOであると、ヘミセルロースの転化率及びペンタノールの収率を高め得る。ここで、ReOxにおけるxは酸化数を示し、任意の実数である。特に、Ir-ReOx/SiOである場合に、Irに対するReのモル比を1以上とすることで、ペンタノールをより高い収率で得ることができて好ましい。 The Ir—Re catalyst is not particularly limited on the basis of containing Ir and Re, but Ir—ReOx / SiO 2 can increase the conversion of hemicellulose and the yield of pentanol. Here, x in ReOx represents an oxidation number and is an arbitrary real number. In particular, in the case of Ir—ReOx / SiO 2, it is preferable that the molar ratio of Re to Ir is 1 or more because pentanol can be obtained in a higher yield.
 油相としては、例えば、ノルマルパラフィン、イソパラフィン、シクロパラフィン等の飽和炭化水素、若しくは、芳香族炭化水素が好ましい。 As the oil phase, for example, saturated hydrocarbons such as normal paraffin, isoparaffin, cycloparaffin, or aromatic hydrocarbons are preferable.
 油相は、上記した加水分解工程及び水素化分解工程における反応を阻害しないものである。例えば、エーテルを溶媒として用いると、エーテル自体が分解されるため、アルコールを溶解させる油相としての機能を損ない得る。また、OH基を有するアルコールなどは触媒に吸着して活性点を覆うため触媒能を損なわせ得る。さらに、不飽和炭化水素、例えば、オレフィン系炭化水素は、それ自体が水素化され、グルコースの水素化及びソルビトールの水素化分解に用いられる水素を消費してペンタノールの収率を低下させてしまう。なお、芳香族炭化水素も水素化され得るが、かかる水素化の反応速度は遅いことから、溶媒としても用い得る。 The oil phase does not inhibit the reaction in the hydrolysis step and hydrocracking step described above. For example, when ether is used as a solvent, the ether itself is decomposed, so that the function as an oil phase for dissolving alcohol can be impaired. Further, alcohol having an OH group or the like adsorbs to the catalyst and covers the active site, so that the catalytic ability may be impaired. In addition, unsaturated hydrocarbons, such as olefinic hydrocarbons, themselves are hydrogenated, consuming hydrogen used for hydrogenation of glucose and hydrocracking of sorbitol, reducing the yield of pentanol. . In addition, although aromatic hydrocarbons can also be hydrogenated, since the reaction rate of such hydrogenation is slow, it can also be used as a solvent.
 油相は、Ir-Re系触媒の反応条件としての温度及び圧力において液相(液体)であることが必要である。典型的には、同触媒の反応条件は140℃~200℃、1MPa~10MPaであるから、溶媒の沸点は1MPaにおいて140℃以上、好ましくは1MPaにおいて200℃以上であり、より好ましくは290℃以上である。また、油相を取り出す際に固相となってしまうとアルコールの回収が困難になるため、常温常圧でも液相を維持することが好ましい。このような飽和炭化水素として、例えば、n-ドデカンやn-デカンなどを用い得る。なお、油相は2種以上を混合して用いてもよい。 The oil phase needs to be a liquid phase (liquid) at a temperature and pressure as reaction conditions for the Ir-Re catalyst. Typically, since the reaction conditions of the catalyst are 140 ° C. to 200 ° C. and 1 MPa to 10 MPa, the boiling point of the solvent is 140 ° C. or higher at 1 MPa, preferably 200 ° C. or higher at 1 MPa, more preferably 290 ° C. or higher. It is. Moreover, since it will become difficult to collect | recover alcohol if it will become a solid phase when taking out an oil phase, it is preferable to maintain a liquid phase also at normal temperature normal pressure. For example, n-dodecane or n-decane can be used as such a saturated hydrocarbon. In addition, you may use an oil phase in mixture of 2 or more types.
 その他、ヘミセルロースからペンタノールを製造する方法は、例えば、Sibao Liu et al., Green Chem., 2016, 18, 165-175に記載されている。 Other methods for producing pentanol from hemicellulose are described in, for example, Sibao Liu et al., “Green Chem.”, “2016”, “18”, “165-175”.
 ペンタノールは、公知の酸触媒による脱水反応によってペンテンとすることができる。得られたペンテンは1-ペンテン、2-ペンテンを含む。さらに精密蒸留操作により1-ペンテン、2-ペンテンに分留してもよい。 Pentanol can be converted to pentene by a dehydration reaction using a known acid catalyst. The obtained pentene contains 1-pentene and 2-pentene. Further, it may be fractionated into 1-pentene and 2-pentene by precision distillation.
 セルロース由来ヘキセンは、例えば、リグノセルロース系バイオマスに含まれるセルロースからヘキサノールを製造し、製造したセルロース由来のヘキサノールを脱水することで得ることができる。セルロースからヘキサノールは、Ir-Re(イリジウム-レニウム)系触媒の存在下且つセルロースを分解する温度において、水相中のセルロースを加水分解し糖化させるとともに水素化分解させ、これに液体の炭化水素からなる油相を加え溶解させることで、単一の反応容器内で効率良くヘキサノールを得ることができる(特開2016-33129号)。触媒や油相としては、上述のヘミセルロース由来ペンテンの製造方法で説明したものと同様のものを用いることができる。その他、セルロースからヘキサノールを製造する方法は、例えば、Sibao Liu et al., ChemSusChem, 2015, 8, 628-635に記載されている。ヘキサノールは、公知の酸触媒による脱水反応によってヘキセンとすることができる。得られたヘキセンは、1-ヘキセン、2-ヘキセン、及び3-ヘキセンを含む。さらに精密蒸留操作により1-ヘキセン、2-ヘキセン、3-ヘキセンに分留してもよい。 Cellulose-derived hexene can be obtained, for example, by producing hexanol from cellulose contained in lignocellulosic biomass and dehydrating the produced cellulose-derived hexanol. Hexanol from cellulose is hydrolyzed and hydrolyzed by hydrolysis and saccharification of cellulose in the aqueous phase in the presence of an Ir-Re (iridium-rhenium) catalyst and at a temperature for decomposing cellulose. By adding and dissolving the oil phase, hexanol can be efficiently obtained in a single reaction vessel (Japanese Patent Laid-Open No. 2016-33129). As a catalyst and an oil phase, the thing similar to what was demonstrated by the manufacturing method of the above-mentioned hemicellulose origin pentene can be used. Other methods for producing hexanol from cellulose are described, for example, in Sibao Liu et al., ChemSusChem, 2015, 8 and 628-635. Hexanol can be converted to hexene by a dehydration reaction using a known acid catalyst. The resulting hexene includes 1-hexene, 2-hexene, and 3-hexene. Further, it may be fractionated into 1-hexene, 2-hexene and 3-hexene by precision distillation.
 ヘミセルロース由来ペンテンとセルロース由来ヘキセンは、別々の反応容器内のリグノセルロース系バイオマスからそれぞれ別々に製造してもよく、同一の反応容器内のリグノセルロース系バイオマスからヘミセルロース由来ペンテンとセルロース由来ヘキセンの両方を製造してもよい。 Hemicellulose-derived pentene and cellulose-derived hexene may be produced separately from lignocellulosic biomass in separate reaction vessels, and both hemicellulose-derived pentene and cellulose-derived hexene are obtained from lignocellulosic biomass in the same reaction vessel. It may be manufactured.
 例えば上述のように得られたヘミセルロース由来ペンテンをベースとなるガソリン基材(以下、ベースガソリンという)に混合することにより、本発明に係るガソリン組成物を得ることができる。セルロース由来ヘキセンを混合する場合は、ヘミセルロース由来ペンテンとは別の反応容器内のリグノセルロース系バイオマスから得られたセルロース由来ヘキセンを混合してもよいし、ヘミセルロース由来ペンテンと同じ反応容器内のリグノセルロース系バイオマスから得られたセルロース由来ヘキセンを一緒に混合してもよい。 For example, the gasoline composition according to the present invention can be obtained by mixing the hemicellulose-derived pentene obtained as described above with a base gasoline base (hereinafter referred to as base gasoline). When mixing cellulose-derived hexene, cellulose-derived hexene obtained from lignocellulosic biomass in a reaction vessel different from hemicellulose-derived pentene may be mixed, or lignocellulose in the same reaction vessel as hemicellulose-derived pentene. The cellulose-derived hexene obtained from the biomass may be mixed together.
 上記のような密度などの所定の性状を有するガソリン組成物を得るために、ヘミセルロース由来ペンテンの混合量や、ベースガソリンの性状を調整すればよい。ただし、ヘミセルロース由来ペンテンが多すぎると、上述のように酸化安定性が悪くなったり、50%留出温度が低くなり燃費が悪くとなることがあったりするので、所定量とする必要がある。ベースガソリンは、公知の方法により、その性状を調整できる。 In order to obtain a gasoline composition having predetermined properties such as density as described above, the mixing amount of hemicellulose-derived pentene and the properties of base gasoline may be adjusted. However, if there is too much hemicellulose-derived pentene, the oxidative stability is deteriorated as described above, or the 50% distillation temperature is lowered and the fuel economy is sometimes deteriorated. The properties of the base gasoline can be adjusted by a known method.
 本発明に係るガソリン組成物は、そのままガソリン燃料として用いてもよいし、さらに添加剤や他の基材を加えて用いてもよい。 The gasoline composition according to the present invention may be used as it is as a gasoline fuel, or may be used by further adding additives and other base materials.
 添加剤としては、例えば、フェノール系、アミン系などの酸化防止剤、ポリイソブチレンアミン化合物などの清浄剤、アミンカルボニル縮合化合物などの金属不活性化剤、有機リン系化合物などの表面着火防止剤、アニオン系界面活性剤、カチオン系界面活性剤、及び両性界面活性剤などの帯電防止剤、並びにアゾ染料などの着色剤などが挙げられる。 Examples of additives include antioxidants such as phenols and amines, detergents such as polyisobutyleneamine compounds, metal deactivators such as amine carbonyl condensation compounds, and surface ignition inhibitors such as organophosphorus compounds, Examples thereof include antistatic agents such as anionic surfactants, cationic surfactants, and amphoteric surfactants, and colorants such as azo dyes.
≪合成例1:ヘミセルロース由来ペンテンの製造≫
[触媒等の調製]
 二酸化ケイ素(SiO)(富士シリシア化学株式会社製「CARiACT G-6」)に塩化イリジウム酸(HIrCl)水溶液を滴下して、全体を湿潤させ、90℃程度で乾燥させた。かかる湿潤及び乾燥工程を繰り返して、触媒全体に対してIrが4質量%となるようにした。さらに、110℃で半日程度の乾燥を行った。次に、過レニウム酸アンモニウム(NHReO)水溶液で同様の湿潤及び乾燥工程を繰り返して、ReのIrに対するモル比、すなわち[Re]/[Ir]を0.25~3とするように二酸化ケイ素に担持させた。その後、空気雰囲気下で、500℃、3時間焼成して、Ir-ReOx/SiO触媒を得た。
<< Synthesis Example 1: Production of hemicellulose-derived pentene >>
[Preparation of catalyst, etc.]
An aqueous solution of chloroiridium acid (H 2 IrCl 6 ) was added dropwise to silicon dioxide (SiO 2 ) (“CariACT G-6” manufactured by Fuji Silysia Chemical Ltd.), and the whole was wetted and dried at about 90 ° C. Such moistening and drying steps were repeated so that Ir was 4% by mass with respect to the entire catalyst. Furthermore, drying was performed at 110 ° C. for about half a day. Next, the same wetting and drying steps are repeated with an aqueous solution of ammonium perrhenate (NH 4 ReO 4 ) so that the molar ratio of Re to Ir, that is, [Re] / [Ir] is 0.25 to 3. Supported on silicon dioxide. Thereafter, it was calcined at 500 ° C. for 3 hours in an air atmosphere to obtain an Ir—ReOx / SiO 2 catalyst.
 反応容器として、ガラス製内管を有するオートクレーブを用いた。反応容器の内部を加熱できるよう、その周囲に電気炉を配置した。また、内部を攪拌できるように、反応容器をマグネチックスターラーの上に配置するとともに、テフロン(登録商標)コーティングが施されたマグネチックスターラーチップ(攪拌子)を反応容器の内管の内側に収容した。上記Ir-ReOx/SiO触媒を1.0重量部、水63.3重量部を反応容器に入れ、水素置換を三回以上繰り返した。反応容器内が200℃になった時に、全圧を8MPaとするように水素を導入し、200℃で1時間保持して触媒を還元させた。 An autoclave having a glass inner tube was used as a reaction vessel. An electric furnace was arranged around the reaction vessel so that the inside of the reaction vessel could be heated. In addition, the reaction vessel is placed on top of a magnetic stirrer so that the inside can be stirred, and a magnetic stirrer chip (stirring bar) coated with Teflon (registered trademark) is housed inside the inner tube of the reaction vessel did. 1.0 part by weight of the Ir—ReOx / SiO 2 catalyst and 63.3 parts by weight of water were placed in a reaction vessel, and hydrogen substitution was repeated three times or more. When the inside of the reaction vessel reached 200 ° C., hydrogen was introduced so that the total pressure was 8 MPa, and the catalyst was reduced by holding at 200 ° C. for 1 hour.
[ペンタノールの製造]
 ヘミセルロースの主成分であるキシランには予めミル処理を施しておいた。かかるミル処理では、ボールミルのドラムにキシランとともにZrO球を100個投入し、回転数を300rpmとし、2時間の粉砕を行った。なお、2時間以上粉砕すれば、得られるキシランは十分に粉砕される。
[Production of pentanol]
Xylan, the main component of hemicellulose, was previously milled. In this milling process, 100 ZrO 2 balls together with xylan were put into a drum of a ball mill, and the rotation speed was 300 rpm, and pulverization was performed for 2 hours. If pulverized for 2 hours or more, the resulting xylan is sufficiently pulverized.
 上記したように触媒の還元処理を行った反応容器内に、上記のミル処理を施したキシラン3.3重量部を加えた。反応容器内に油相として20.0~100.0重量部のn-ドデカンを加え、室温で6MPaとなるよう水素を導入し、140℃で144時間保持し、ヘミセルロース由来ペンタノールを得た。 As described above, 3.3 parts by weight of xylan subjected to the mill treatment was added to the reaction vessel in which the catalyst was reduced. In the reaction vessel, 20.0 to 100.0 parts by weight of n-dodecane as an oil phase was added, hydrogen was introduced so as to be 6 MPa at room temperature, and the mixture was kept at 140 ° C. for 144 hours to obtain pentanol derived from hemicellulose.
[ペンテンの製造]
 上記の方法で得た1-ペンタノール、2-ペンタノール、3-ペンタノールの少なくとも一つを含むヘミセルロース由来ペンタノール1.0重量部を、別の反応容器(前述のオートクレーブと同型)に導入し、溶媒としてトリデカンを10.0重量部、酸触媒としてゼオライト(HZSM-5)を0.2重量部添加し、室温で0.6MPaとなるように窒素を導入し、約20分で所定の反応温度180℃に昇温した。反応温度に達した直後の脱水反応生成物を分析した。その結果、1-ペンテン及び2-ペンテンを含むヘミセルロース由来ペンテンが得られた。
[Manufacture of pentene]
1.0 part by weight of hemicellulose-derived pentanol containing at least one of 1-pentanol, 2-pentanol and 3-pentanol obtained by the above method is introduced into another reaction vessel (same type as the above autoclave). Then, 10.0 parts by weight of tridecane as a solvent and 0.2 parts by weight of zeolite (HZSM-5) as an acid catalyst were added, and nitrogen was introduced so that the pressure became 0.6 MPa at room temperature. The reaction temperature was raised to 180 ° C. The dehydration reaction product immediately after reaching the reaction temperature was analyzed. As a result, hemicellulose-derived pentene containing 1-pentene and 2-pentene was obtained.
≪合成例2:セルロース由来ヘキセンの製造≫
[触媒等の調製]
 合成例1と同様にして、触媒等を調製した。
<< Synthesis Example 2: Production of cellulose-derived hexene >>
[Preparation of catalyst, etc.]
A catalyst or the like was prepared in the same manner as in Synthesis Example 1.
[ヘキサノールの製造]
 リグノセルロース系バイオマス由来のセルロースには予めミル処理を施しておいた。かかるミル処理では、ボールミルのドラムにセルロースとともにZrO球を100個投入し、回転数を300rpmとし、2時間の粉砕を行った。なお、2時間以上粉砕すれば、得られるセルロースは十分に粉砕される。
[Manufacture of hexanol]
Cellulose derived from lignocellulosic biomass was previously milled. In this milling process, 100 ZrO 2 spheres and cellulose were introduced into a drum of a ball mill, and the number of rotations was set to 300 rpm, and pulverization was performed for 2 hours. In addition, if it grind | pulverizes for 2 hours or more, the cellulose obtained will be grind | pulverized fully.
 上記したように触媒の還元処理を行った反応容器内に、ミル処理を施したセルロース3.3重量部を加えた。反応容器内に油相として20.0~100.0重量部のn-ドデカンを加え、室温で6MPaとなるよう水素を導入し、190℃で24時間保持し、セルロース由来ヘキサノールを得た。 As described above, 3.3 parts by weight of milled cellulose was added to the reaction vessel in which the catalyst was reduced. In the reaction vessel, 20.0 to 100.0 parts by weight of n-dodecane as an oil phase was added, hydrogen was introduced so as to be 6 MPa at room temperature, and maintained at 190 ° C. for 24 hours to obtain cellulose-derived hexanol.
[ヘキセンの製造]
 上記の方法で得た1-ヘキサノール、2-ヘキサノール、3-ヘキサノールの少なくとも一つを含むセルロース由来ヘキサノール1.0重量部を、別の反応容器(前述のオートクレーブと同型)に導入し、溶媒としてトリデカンを10.0重量部、酸触媒としてゼオライト(HZSM-5)を0.2重量部添加し、室温で0.6MPaとなるように窒素を導入し、約20分で所定の反応温度180℃に昇温した。反応温度に達した直後の脱水反応生成物を分析した。その結果、1-ヘキセン、2-ヘキセン、及び3-ヘキセンを含むセルロース由来ヘキセンが得られた。
[Manufacture of hexene]
1.0 part by weight of cellulose-derived hexanol containing at least one of 1-hexanol, 2-hexanol, and 3-hexanol obtained by the above method is introduced into another reaction vessel (same type as the above autoclave), and used as a solvent. 10.0 parts by weight of tridecane and 0.2 parts by weight of zeolite (HZSM-5) as an acid catalyst were added, nitrogen was introduced so as to be 0.6 MPa at room temperature, and a predetermined reaction temperature of 180 ° C. in about 20 minutes. The temperature was raised to. The dehydration reaction product immediately after reaching the reaction temperature was analyzed. As a result, cellulose-derived hexene containing 1-hexene, 2-hexene, and 3-hexene was obtained.
≪合成例3:ヘミセルロース由来ペンテンとセルロース由来ヘキセンの同時製造≫
[触媒等の調製]
 合成例1と同様にして、触媒等を調製した。
<< Synthesis Example 3: Simultaneous production of hemicellulose-derived pentene and cellulose-derived hexene >>
[Preparation of catalyst, etc.]
A catalyst or the like was prepared in the same manner as in Synthesis Example 1.
[ペンタノール及びヘキサノールの製造]
 リグノセルロース系バイオマス由来のヘミセルロースの主成分であるキシランとリグノセルロース系バイオマス由来のセルロースには予めミル処理を施しておいた。かかるミル処理では、ボールミルのドラムにキシラン及びセルロースとともにZrO球を100個投入し、回転数を300rpmとし、2時間の粉砕を行った。なお、2時間以上粉砕すれば、得られるキシラン及びセルロースは十分に粉砕される。
[Production of pentanol and hexanol]
The xylan, which is the main component of hemicellulose derived from lignocellulosic biomass, and the cellulose derived from lignocellulosic biomass were previously milled. In this milling process, 100 ZrO 2 spheres together with xylan and cellulose were put into a drum of a ball mill, and the rotation speed was 300 rpm, followed by pulverization for 2 hours. If pulverized for 2 hours or more, the resulting xylan and cellulose are sufficiently pulverized.
 上記したように触媒の還元処理を行った反応容器内に、ミル処理を施したキシランとセルロースを合わせて3.3重量部を加えた。反応容器内に油相として20.0~100.0重量部のn-ドデカンを加え、室温で6MPaとなるよう水素を導入し、190℃で24時間保持し、ヘミセルロース由来ペンタノール及びセルロース由来ヘキサノールを得た。 In the reaction vessel in which the reduction treatment of the catalyst was performed as described above, 3.3 parts by weight of the milled xylan and cellulose were added. Add 20.0 to 100.0 parts by weight of n-dodecane as an oil phase in the reaction vessel, introduce hydrogen to 6 MPa at room temperature, hold at 190 ° C. for 24 hours, and hemicellulose-derived pentanol and cellulose-derived hexanol. Got.
[ペンテン及びヘキセンの製造]
 上記の方法で得た、1-ペンタノール、2-ペンタノール、3-ペンタノールの少なくとも一つを含むヘミセルロース由来ペンタノール及び1-ヘキサノール、2-ヘキサノール、3-ヘキサノールの少なくとも一つを含むセルロース由来ヘキサノール1.0重量部を、別の反応容器(前述のオートクレーブと同型)に導入し、溶媒としてトリデカンを10.0重量部、酸触媒としてゼオライト(HZSM-5)を0.2重量部添加し、室温で0.6MPaとなるように窒素を導入し、約20分で所定の反応温度180℃に昇温した。反応温度に達した直後の脱水反応生成物を分析した。その結果、1-ペンテン及び2-ペンテンを含むヘミセルロース由来ペンテン及び1-ヘキセン、2-ヘキセン、及び3-ヘキセンを含むセルロース由来ヘキセンが得られた。
[Manufacture of pentene and hexene]
The hemicellulose-derived pentanol containing at least one of 1-pentanol, 2-pentanol and 3-pentanol and cellulose containing at least one of 1-hexanol, 2-hexanol and 3-hexanol obtained by the above method Introduce 1.0 part by weight of hexanol into another reaction vessel (same type as the above autoclave), add 10.0 parts by weight of tridecane as solvent and 0.2 part by weight of zeolite (HZSM-5) as acid catalyst Then, nitrogen was introduced so as to be 0.6 MPa at room temperature, and the temperature was raised to a predetermined reaction temperature of 180 ° C. in about 20 minutes. The dehydration reaction product immediately after reaching the reaction temperature was analyzed. As a result, hemicellulose-derived pentene containing 1-pentene and 2-pentene and cellulose-derived hexene containing 1-hexene, 2-hexene, and 3-hexene were obtained.
 上記のような合成により、表1に記載のペンテン中の異性体比、ヘキセン中の異性体比でペンテン及びヘキセンがそれぞれ得られる。表1に記載の組成となるように、基材A~Eを調製した。 By the synthesis as described above, pentene and hexene can be obtained with the isomer ratio in pentene and the isomer ratio in hexene shown in Table 1, respectively. Substrates A to E were prepared so as to have the compositions described in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
≪実施例1~9,比較例1~3≫
 表1に示される基材A~Eを、表2~4に記載の配合割合でベースガソリン(ベースRG1、ベースRG2)に混合し、実施例1~9及び比較例1~3に係るガソリン組成物を得た。得られたガソリン組成物の性状等を表2~4に示す。ベースガソリンの性状も併せて表2に示す。表2~4に示された性状等は、以下の方法によって測定した。
<< Examples 1 to 9, Comparative Examples 1 to 3 >>
The base materials A to E shown in Table 1 are mixed with the base gasoline (base RG1, base RG2) at the blending ratios shown in Tables 2 to 4, and the gasoline compositions according to Examples 1 to 9 and Comparative Examples 1 to 3 are mixed. I got a thing. Properties and the like of the obtained gasoline composition are shown in Tables 2 to 4. Table 2 also shows the properties of base gasoline. The properties shown in Tables 2 to 4 were measured by the following methods.
 密度:JIS K 2249「原油及び石油製品-密度試験方法及び密度・質量・容量換算表」に従って測定した。 Density: Measured according to JIS K 2249 “Crude oil and petroleum products—Density test method and density / mass / capacity conversion table”.
 蒸気圧:JIS K 2258-1「原油及び石油製品-蒸気圧の求め方 第1部:リード法」に従って測定した。 Vapor pressure: Measured according to JIS K 2258-1 “Crude oil and petroleum products-Determination of vapor pressure, Part 1: Reed method”.
 留出温度:JIS K 2254「石油製品-蒸留試験方法」に従って測定した。 Distillation temperature: Measured according to JIS K 2254 "Petroleum products-Distillation test method".
 組成:JIS K 2536-2「石油製品-成分試験方法 第2部:ガスクロマトグラフによる全成分の求め方」に従って測定した。 Composition: Measured according to JIS K 2536-2 “Petroleum products—component test method, Part 2: Determination of all components by gas chromatograph”.
 酸化安定度:JIS K 2287「ガソリン-酸化安定度試験方法 誘導期間法」に従って測定した。 Oxidation stability: Measured according to JIS K 2287 “Gasoline-oxidation stability test method induction period method”.
 オクタン価:ベースガソリンのオクタン価はJIS K 2280「石油製品-燃料油―オクタン価及びセタン価試験方法並びにセタン価指数算出方法」に従って測定した。実施例及び比較例のオクタン価は、ベースガソリンのオクタン価とヘミセルロース由来ペンテン及びセルロース由来ヘキセンのオクタン価から次式(1)により算出した。 Octane number: The octane number of base gasoline was measured according to JIS K 2280 “Petroleum products-fuel oil-octane number and cetane number test method and cetane number index calculation method”. The octane numbers of Examples and Comparative Examples were calculated by the following formula (1) from the octane number of base gasoline and the octane numbers of hemicellulose-derived pentene and cellulose-derived hexene.
オクタン価 =(ベースガソリンのオクタン価×ベースガソリンの混合割合(容量%)÷100)+(ヘミセルロース由来ペンテン及び/又はセルロース由来ヘキセンのオクタン価×ヘミセルロース由来ペンテン及び/又はセルロース由来ヘキセンの混合割合(容量%)÷100) ・・・(1) Octane number = (octane number of base gasoline × mixing ratio of base gasoline (volume%) ÷ 100) + (octane number of hemicellulose-derived pentene and / or cellulose-derived hexene × mixing ratio of hemicellulose-derived pentene and / or hexene derived from cellulose (volume%) ÷ 100) (1)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~9より、リグノセルロース系バイオマスからエタノールではなく、ヘキセンやペンテンを製造し、それらをガソリンに含めてもガソリンとしての性状を満たすことが分かる。ただし、比較例1~3に示されるように、多量のヘキセンやペンテンを含むと酸化安定性が悪くなったり、50%留出温度が低くなり燃費が悪くなったりすることが分かる。 From Examples 1 to 9, it can be seen that even if hexene or pentene is produced from lignocellulosic biomass instead of ethanol and these are included in gasoline, the properties as gasoline are satisfied. However, as shown in Comparative Examples 1 to 3, it can be seen that when a large amount of hexene or pentene is contained, the oxidation stability is deteriorated, or the 50% distillation temperature is lowered and the fuel consumption is deteriorated.
 上記のペンテンの製造により、表5に記載のペンテン中の異性体比でペンテンが得られる。表5に記載の組成となるように、基材F~Iを調製した。 By the production of the pentene, pentene is obtained with the isomer ratio in the pentene described in Table 5. Substrates F to I were prepared so as to have the compositions described in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
≪実施例10~13≫
 表5に示される基材F~Iを、表6に記載の配合割合でベースガソリン(ベースRG3)に混合し、実施例10~13に係るガソリン組成物を得た。得られたガソリン組成物の性状等を表6に示す。ベースガソリンの性状も併せて表6に示す。表6に示された性状等は、実施例1と同様に測定した。
<< Examples 10 to 13 >>
Bases F to I shown in Table 5 were mixed with base gasoline (base RG3) at the blending ratios shown in Table 6 to obtain gasoline compositions according to Examples 10 to 13. Table 6 shows properties and the like of the obtained gasoline composition. Table 6 also shows the properties of the base gasoline. The properties shown in Table 6 were measured in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例10~13より、リグノセルロース系バイオマスからエタノールではなく、ペンテンを製造し、それをガソリンに含めてもガソリンとしての性状を満たすことが分かる。
 

 
From Examples 10 to 13, it can be seen that even if pentene is produced from lignocellulosic biomass instead of ethanol and is included in gasoline, the properties as gasoline are satisfied.


Claims (9)

  1.  ヘミセルロース由来のペンテンを0.3~10.0vol%含むことを特徴とするガソリン組成物。 Gasoline composition characterized by containing 0.3 to 10.0 vol% pentene derived from hemicellulose.
  2.  前記ヘミセルロース由来のペンテン中、1-ペンテンが5.0~15.0vol%、及び2-ペンテンが85.0~95.0vol%である請求項1に記載のガソリン組成物。 2. The gasoline composition according to claim 1, wherein, in the hemicellulose-derived pentene, 1-pentene is 5.0 to 15.0 vol%, and 2-pentene is 85.0 to 95.0 vol%.
  3.  更に、セルロース由来のヘキセンを1.0~23.0vol%含む請求項1又は2に記載のガソリン組成物。 The gasoline composition according to claim 1 or 2, further comprising 1.0 to 23.0 vol% of hexene derived from cellulose.
  4.  前記セルロース由来のヘキセン中、1-ヘキセンが1.0~15.0vol%、2-ヘキセンが55.0~80.0vol%、及び3-ヘキセンが10.0~40.0vol%である請求項3に記載のガソリン組成物。 In the cellulose-derived hexene, 1-hexene is 1.0 to 15.0 vol%, 2-hexene is 55.0 to 80.0 vol%, and 3-hexene is 10.0 to 40.0 vol%. 3. The gasoline composition according to 3.
  5.  ペンテン分を1.0~12.0vol%、及びヘキセン分を1.5~27.0vol%含む請求項1乃至4のいずれかに記載のガソリン組成物。 The gasoline composition according to any one of claims 1 to 4, comprising 1.0 to 12.0 vol% of pentene and 1.5 to 27.0 vol% of hexene.
  6.  (2-ペンテン分)/(1-ペンテン分)が3.0~7.0vol%/vol%である請求項1乃至5のいずれかに記載のガソリン組成物。 6. The gasoline composition according to claim 1, wherein (2-pentene content) / (1-pentene content) is 3.0 to 7.0 vol% / vol%.
  7.  (2-ヘキセン分)/(1-ヘキセン分)が4.5~10.0vol%/vol%である請求項1乃至6のいずれかに記載のガソリン組成物。 The gasoline composition according to any one of claims 1 to 6, wherein (2-hexene content) / (1-hexene content) is 4.5 to 10.0 vol% / vol%.
  8.  ヘミセルロース由来のペンテンを0.3~10.0vol%を混合する工程を含むことを特徴とするガソリン組成物の製造方法。 A method for producing a gasoline composition comprising a step of mixing 0.3 to 10.0 vol% of hemicellulose-derived pentene.
  9.  更に、セルロース由来のヘキセンを1.0~23.0vol%を混合する工程を含む請求項8に記載のガソリン組成物の製造方法。 The method for producing a gasoline composition according to claim 8, further comprising a step of mixing 1.0 to 23.0 vol% of hexene derived from cellulose.
PCT/JP2017/026679 2016-07-26 2017-07-24 Gasoline composition and production process therefor WO2018021235A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2017301310A AU2017301310B2 (en) 2016-07-26 2017-07-24 Gasoline composition and production process therefor
EP17834241.6A EP3492561A4 (en) 2016-07-26 2017-07-24 Gasoline composition and production process therefor
CN201780045708.0A CN109563423B (en) 2016-07-26 2017-07-24 Gasoline composition and method for producing the same
US16/320,190 US10968408B2 (en) 2016-07-26 2017-07-24 Gasoline composition and production process therefor
JP2017559471A JP6415755B2 (en) 2016-07-26 2017-07-24 Gasoline composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016146057 2016-07-26
JP2016-146057 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018021235A1 true WO2018021235A1 (en) 2018-02-01

Family

ID=61016620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026679 WO2018021235A1 (en) 2016-07-26 2017-07-24 Gasoline composition and production process therefor

Country Status (6)

Country Link
US (1) US10968408B2 (en)
EP (1) EP3492561A4 (en)
JP (2) JP6415755B2 (en)
CN (1) CN109563423B (en)
AU (1) AU2017301310B2 (en)
WO (1) WO2018021235A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073074A (en) * 1998-08-30 2000-03-07 Nippon Mitsubishi Oil Corp Unleaded gasoline
JP2010535703A (en) * 2007-03-08 2010-11-25 ヴァイレント エナジー システムズ インク. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128570A (en) * 1992-10-14 1994-05-10 Nippon Oil Co Ltd Unleaded high-octane gasoline
US5516960A (en) * 1994-08-02 1996-05-14 Board Of Regents, The University Of Texas System Process for producing hydrocarbon fuels
JPH10121064A (en) 1996-10-22 1998-05-12 Idemitsu Kosan Co Ltd Unleaded gasoline
WO2001023503A1 (en) 1999-09-29 2001-04-05 Nippon Mitsubishi Oil Corporation Fuel oil additive and fuel oil composition
JP2008182925A (en) 2007-01-29 2008-08-14 Toshiba Corp Method and apparatus for producing bioethanol
EP2225351A4 (en) * 2007-12-03 2016-11-09 Gevo Inc Renewable compositions
US8697924B2 (en) * 2008-09-05 2014-04-15 Shell Oil Company Liquid fuel compositions
JP6109475B2 (en) * 2008-11-28 2017-04-05 テラヴィア ホールディングス, インコーポレイテッド Production of oil according to use in heterotrophic microorganisms
CA2835287C (en) * 2011-05-23 2019-04-30 Virent, Inc. Production of chemicals and fuels from biomass
US9382185B2 (en) * 2013-03-15 2016-07-05 Virent, Inc. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels
JP6692024B2 (en) 2014-07-30 2020-05-13 出光興産株式会社 Method for producing pentanol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073074A (en) * 1998-08-30 2000-03-07 Nippon Mitsubishi Oil Corp Unleaded gasoline
JP2010535703A (en) * 2007-03-08 2010-11-25 ヴァイレント エナジー システムズ インク. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3492561A4 *

Also Published As

Publication number Publication date
CN109563423B (en) 2021-07-06
US10968408B2 (en) 2021-04-06
JP6347906B2 (en) 2018-06-27
JP2018090829A (en) 2018-06-14
AU2017301310A1 (en) 2019-01-17
JPWO2018021235A1 (en) 2018-07-26
JP6415755B2 (en) 2018-10-31
CN109563423A (en) 2019-04-02
EP3492561A4 (en) 2020-02-26
EP3492561A1 (en) 2019-06-05
AU2017301310B2 (en) 2021-05-27
US20190225899A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
Bohre et al. Upgrading furfurals to drop-in biofuels: An overview
Baeyens et al. Challenges and opportunities in improving the production of bio-ethanol
Pattnaik et al. Catalytic conversion of lignocellulosic polysaccharides to commodity biochemicals: a review
Jatoi et al. Recent trends and future perspectives of lignocellulose biomass for biofuel production: A comprehensive review
US8802905B2 (en) Integrated biofuel processing system
Abdulkhani et al. Potential of Soya as a raw material for a whole crop biorefinery
Haq et al. Recent progress in bioethanol production from lignocellulosic materials: A review
Guo et al. Two-stage acidic–alkaline hydrothermal pretreatment of lignocellulose for the high recovery of cellulose and hemicellulose sugars
BRPI1101818A2 (en) flexible process of transforming ethanol into middle distillates using a homogeneous catalytic system and a heterogeneous catalytic system
CN105037103B (en) A kind of method of the efficient depolymerization of lignin
US10633605B2 (en) Process for modifying bio-oil
JP7153660B2 (en) Base material for bio-jet fuel, bio-jet fuel containing the same, and method for producing bio-jet fuel
Kammoun et al. The key role of pretreatment for the one-step and multi-step conversions of European lignocellulosic materials into furan compounds
Paulová et al. Production of 2nd generation of liquid biofuels
JP6347906B2 (en) Method for producing gasoline composition
Xie et al. Techno-Economic Analysis of Upgrading Corn Stover-Based Acetone, n-Butanol, and Ethanol to Higher Ketones and Alcohols: Fuels or Fine Chemicals?
Kahr et al. Bioethanol production from steam explosion pretreated straw
US9193926B2 (en) Fuel compositions and methods based on biomass pyrolysis
Zhang et al. Research status and future development of biomass liquid fuels
JP2019135313A (en) Gasoline composition
McKenzie Tracking hemicellulose and lignin deconstruction during hydrothermal pretreatment of biomass
JP2017019950A (en) Gasoline composition
Latine et al. Lignocellulose biorefinery advances the liquid biofuel platform
Cai Co-Solvent Enhanced Production of Platform Fuel Precursors From Lignocellulosic Biomass
Biyyani et al. Saccharification of wood and lignocellulosic biomass: A review

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017559471

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017301310

Country of ref document: AU

Date of ref document: 20170724

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834241

Country of ref document: EP

Effective date: 20190226