WO2018021230A1 - Mesh and concrete peeling preventing material - Google Patents

Mesh and concrete peeling preventing material Download PDF

Info

Publication number
WO2018021230A1
WO2018021230A1 PCT/JP2017/026656 JP2017026656W WO2018021230A1 WO 2018021230 A1 WO2018021230 A1 WO 2018021230A1 JP 2017026656 W JP2017026656 W JP 2017026656W WO 2018021230 A1 WO2018021230 A1 WO 2018021230A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber bundle
mesh
glass fiber
synthetic fiber
mass
Prior art date
Application number
PCT/JP2017/026656
Other languages
French (fr)
Japanese (ja)
Inventor
真治 西堀
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2018529872A priority Critical patent/JP7010222B2/en
Publication of WO2018021230A1 publication Critical patent/WO2018021230A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D19/00Gauze or leno-woven fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D9/00Open-work fabrics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal

Definitions

  • the present invention relates to a mesh and a concrete exfoliation preventing material provided with the mesh.
  • a method of sticking a reinforcing material to the surface of a concrete structure is known as a measure for preventing peeling in a concrete structure such as a building or a tunnel.
  • a steel plate, fiber reinforced plastic, or a structure in which a mesh fabric is embedded in cement mortar or resin is used as the reinforcing material.
  • Patent Document 1 discloses a reinforcing fabric used for repairing or reinforcing a concrete surface.
  • the reinforcing fabric is a mesh fabric in which warp yarns and weft yarns made of reinforcing fiber yarns such as carbon fibers are arranged in a mesh shape. Between the reinforcing fiber yarns, 1 to 3 warp auxiliary yarns and weft auxiliary yarns made of glass yarn are arranged.
  • the reinforcing fiber yarn and the auxiliary yarn as described above are integrated in a plain weave structure.
  • Patent Document 2 discloses a mesh fabric having a main fiber bundle composed of a plurality of strands and an auxiliary fiber bundle entangled with the main fiber bundle.
  • a glass fiber bundle is used as the main fiber bundle.
  • cotton yarn is used as the auxiliary fiber bundle.
  • An object of the present invention is to provide a mesh having excellent punching characteristics that is an index of concrete peeling prevention characteristics, and a concrete peeling prevention material using the mesh.
  • the mesh according to the present invention is a mesh composed of a plurality of warps and a plurality of wefts, and has a glass composition of ZrO 2 of 12% by mass or more, and R 2 O (R is Li, Na and K).
  • a glass fiber bundle containing at least one kind selected from JIS R3420 (2013), and the elongation at break measured according to JIS R3420 (2013) is 4% or more and 35% or less. And a fiber bundle.
  • the synthetic fiber bundle is preferably a vinylon fiber bundle.
  • the mesh according to the present invention preferably has a basis weight of 100 g / m 2 or more and 450 g / m 2 or less.
  • the basis weight of the glass fiber bundle is 50 g / m 2 or more and 250 g / m 2 or less, and the basis weight of the synthetic fiber bundle is 30 g / m 2 or more and 200 g / m 2 or less. It is preferable.
  • the mass ratio of the synthetic fiber bundle in the mesh is preferably 10% by mass or more and 70% by mass or less.
  • the volume ratio of the synthetic fiber bundle in the mesh is preferably 20% or more and 80% or less.
  • the mass ratio of the glass fiber bundle in the mesh is preferably 30% by mass or more and 90% by mass or less.
  • the volume ratio of the glass fiber bundle in the mesh is preferably 20% or more and 80% or less.
  • the mesh according to the present invention preferably has a tensile strength of 200 N / 25 mm or more in the direction along the warp and the direction along the weft.
  • the mesh according to the present invention is preferably made of a woven fabric having an entangled weave.
  • At least one of the warp and the weft is composed of both the glass fiber bundle and the synthetic fiber bundle.
  • the mesh according to the present invention is preferably used as a concrete exfoliation preventing material.
  • the concrete exfoliation preventing material according to the present invention includes a matrix and a mesh configured according to the present invention.
  • FIG. 1 is a schematic plan view showing a mesh fabric according to the first embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing a mesh fabric according to the second embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a concrete exfoliation preventing material according to an embodiment of the present invention.
  • FIG. 4 is a schematic plan view showing mesh fabrics obtained in Examples 1 to 12 and Comparative Example 1.
  • FIG. 5 is a schematic plan view showing the mesh fabric obtained in Examples 13-17.
  • FIG. 6 is a schematic plan view showing the mesh fabric obtained in Examples 18 and 19.
  • FIG. 7 is a schematic plan view showing the mesh fabric obtained in Example 20.
  • FIG. 8 is a schematic plan view showing the mesh fabric obtained in Examples 21 and 22.
  • FIG. FIG. 9 is a schematic plan view showing the mesh fabric obtained in Examples 23 and 24.
  • FIG. 1 is a schematic plan view of a mesh according to the first embodiment of the present invention.
  • the mesh according to the first embodiment is a so-called mesh fabric 1 in which a plurality of warps and a plurality of wefts are woven.
  • the mesh fabric 1 is composed of a plurality of warps 2 and a plurality of wefts 3.
  • Each warp 2 has a first strand 2a and a second strand 2b.
  • the first strand 2a and the second strand 2b are entangled with each other so as to be twisted, and a plurality of wefts 3 are woven between them. That is, the mesh fabric 1 is a fabric in which the first strand 2a and the second strand 2b constituting the warp yarn 2 and the weft yarn 3 are woven together.
  • the first strand 2a in the warp yarn 2 is a glass fiber bundle.
  • the one glass fiber bundle includes a coating and a plurality of glass fiber monofilaments.
  • the surface of the glass fiber monofilament is covered with a coating.
  • the coating is also present between the glass fiber monofilaments and on the surface of the glass fiber bundle, and also plays a role of bundling a plurality of glass fiber monofilaments.
  • the second strand 2b in the warp yarn 2 is composed of one or a plurality of synthetic fiber bundles.
  • the single synthetic fiber bundle is composed of a plurality of synthetic fiber monofilaments.
  • each weft yarn 3 is preferably made of a twisted yarn obtained by twisting a glass fiber bundle and a synthetic fiber bundle.
  • the weft yarn 3 does not have to be a twisted yarn, and may be a non-twisted yarn in which a glass fiber bundle and a synthetic fiber bundle are bundled without being twisted. It may be a woven fabric prepared by preparing two types of glass fiber bundles and synthetic fiber bundles, and each fiber bundle is woven alone.
  • glass fiber bundles and synthetic fiber bundles are alternately arranged as a plurality of weft threads 3 in the direction in which the warp yarn 2 extends, the arrangement distribution of the glass fiber bundles and the synthetic fiber bundles in the mesh fabric 1 becomes uniform. Therefore, it is preferable.
  • all the multiple wefts 3 may be comprised only by the glass fiber bundle or the synthetic fiber bundle.
  • the glass fiber bundle described above contains, as a glass composition, 12% by mass or more of ZrO 2 and 10% by mass or more of R 2 O (R is at least one selected from Li, Na and K). Therefore, the mesh fabric 1 is excellent in alkali resistance and flame retardancy.
  • the above-mentioned synthetic fiber bundle has a breaking elongation measured according to JIS R3420 (2013) of 4% or more and 35% or less. If the breaking elongation of the synthetic fiber bundle is too small, the synthetic fiber bundle breaks with the same amount of displacement as that of the glass fiber bundle in the punching test, which is an index of the concrete peeling prevention characteristic. I can't. As a result, the destroyed concrete pieces fall off immediately. On the other hand, if the breaking elongation of the synthetic fiber bundle is too large, the tensile strength of the synthetic fiber bundle becomes small, so that a sufficient load cannot be obtained in the punching test. Therefore, a crack will occur with a small load.
  • the mesh fabric 1 of the present embodiment includes the glass fiber bundle having the above specific composition and the synthetic fiber bundle having the above specific elongation at break, a punching test that serves as an index of the concrete flaking prevention property Thus, both high load and high displacement can be obtained. This is because, in the punching test, the load can be maintained without breaking the synthetic fiber bundle even after the glass fiber bundle having a small breaking elongation is broken. Further, when the synthetic fiber bundle is stretched, it has an effect of peeling the glass fiber bundle from the matrix, and even a glass fiber bundle having a small tensile elongation can take charge without further cutting. In this case, if any of the plurality of warp yarns 2 or the plurality of weft yarns 3 is composed of a glass fiber bundle and a synthetic fiber bundle, this effect is more noticeable.
  • the mesh fabric 1 is excellent in the punching performance (characteristic) that is an index of the concrete peeling prevention characteristic, the reinforcing effect of the concrete structure can be enhanced, and is suitable for the concrete peeling prevention use. Can be used.
  • the basis weight of the mesh fabric 1 is not particularly limited, but is preferably 100 g / m 2 or more and 450 g / m 2 or less.
  • the basis weight of the mesh fabric 1 is not less than the above lower limit, the load and displacement in the punching test can be further increased, and the reinforcing effect on the concrete structure can be further enhanced.
  • the basis weight of the mesh fabric 1 is not more than the above upper limit, the mesh fabric 1 can be more easily integrated with a resin matrix that constitutes a concrete exfoliation preventing material described later, and the reinforcing effect on the concrete structure can be further enhanced.
  • the basis weight of the mesh fabric 1 is more preferably 150 g / m 2 or more, and more preferably 350 g / m 2 or less.
  • the basis weight of the glass fiber bundle constituting the mesh fabric 1 is not particularly limited, but is preferably 50 g / m 2 or more and 250 g / m 2 or less.
  • the basis weight of the glass fiber bundle is equal to or higher than the above lower limit, the load in the punching test can be further increased, and the reinforcing effect on the concrete structure can be further enhanced.
  • the basis weight of the glass fiber bundle is not more than the above upper limit, it is difficult to damage the synthetic fiber bundle due to the breakage of the glass fiber bundle, and the displacement in the push-out test can be further increased.
  • the basis weight of the glass fiber bundle is preferably 80 g / m 2 or more, and preferably 200 g / m 2 or less.
  • the fabric weight of the synthetic fiber bundle which comprises the mesh fabric 1 is although it does not specifically limit, It is preferable that they are 30 g / m ⁇ 2 > or more and 200 g / m ⁇ 2 > or less.
  • the basis weight of the synthetic fiber bundle is not less than the above lower limit, the displacement in the punching test can be further increased.
  • the amount is not more than the above upper limit, the load in the punching test can be further increased.
  • the basis weight of the synthetic fiber bundle is preferably 50 g / m 2 or more, and preferably 180 g / m 2 or less.
  • the basis weight of the glass fiber bundle is a value obtained by subtracting the mass of components other than the glass fiber bundle constituting the mesh fabric 1, such as a synthetic fiber bundle and a coating resin described later.
  • the basis weight of the synthetic fiber bundle is a value obtained by subtracting the mass of components other than the synthetic fiber bundle constituting the mesh fabric 1, such as a glass fiber bundle and a coating resin described later.
  • the basis weight of the mesh fabric 1 is the sum of the basis weight of the glass fiber bundle, the basis weight of the synthetic fiber bundle, and the coating resin.
  • the mass ratio of the synthetic fiber bundle in the mesh fabric 1 is preferably 10% by mass or more and 70% by mass or less. Moreover, it is preferable that the volume ratio of the synthetic fiber bundle in the mesh fabric 1 is 20 volume% or more and 80 volume% or less. In addition, the mass ratio and volume ratio of a synthetic fiber bundle mean the ratio when the mesh fabric 1 whole is 100 mass% or 100 volume%, respectively.
  • the mass ratio of the glass fiber bundle in the mesh fabric 1 is preferably 30% by mass or more and 90% by mass or less. Moreover, it is preferable that the volume ratio of the glass fiber bundle in the mesh fabric 1 is 20% or more and 80% or less. In addition, the mass ratio and volume ratio of a glass fiber bundle say the ratio when the mesh fabric 1 whole is 100 mass% or 100%, respectively.
  • the distance between the adjacent warp threads 2 and the distance between the adjacent weft threads 3 are 2 to 10 mm. It is preferable.
  • the tensile strength in the direction along the warp yarn 2 and the direction along the weft yarn 3 is 200 N / 25 mm or more, respectively. Preferably there is.
  • the tensile strength can be measured according to JIS L1096 (2010).
  • the plurality of warp yarns 2 and the plurality of weft yarns 3 are constituted by a glass fiber bundle and a synthetic fiber bundle, respectively.
  • the present invention it is only necessary that at least one of the plurality of warps 2 and the plurality of wefts 3 includes a glass fiber bundle.
  • at least one of the warp yarn 2 and the weft yarn 3 includes a synthetic fiber bundle.
  • at least one of the plurality of warps 2 and the plurality of wefts 3 includes a glass fiber bundle.
  • at least one of the plurality of warps 2 and the plurality of wefts 3 includes a synthetic fiber bundle. That is, the mesh fabric 1 should just be provided with the synthetic fiber bundle and the glass fiber bundle.
  • both the first strand 2a and the second strand 2b may be glass fiber bundles. In that case, the weft 3 should just contain the synthetic fiber bundle at least.
  • both the first strand 2a and the second strand 2b may be a synthetic fiber bundle. In that case, the weft 3 should just contain the glass fiber bundle at least.
  • the mesh fabric 1 may be further covered with a coating resin.
  • a coating resin for example, an acrylic resin, a vinyl acetate resin, an unsaturated polyester resin, a vinyl ester resin, or the like can be used.
  • the raw material resin can be emulsified and the emulsified resin can be applied to the mesh fabric 1.
  • the glass fiber bundle contains 12% by mass or more of ZrO 2 and 10% by mass or more of R 2 O (R is at least one selected from Li, Na and K) as a glass composition.
  • a glass fiber bundle for example, as a glass composition, SiO 2 54 to 65%, ZrO 2 12 to 25%, Li 2 O 0 to 5%, Na 2 O 10 to 17%, K in mass%. 2 O 0-8%, R′O (where R ′ represents Mg, Ca, Sr, Ba, Zn) 0-10%, TiO 2 0-7%, Al 2 O 3 0-2% Including, preferably by mass%, SiO 2 57-64%, ZrO 2 14-24%, Li 2 O 0.5-3%, Na 2 O 11-15%, K 2 O 1-5%, R 'O (where R' represents Mg, Ca, Sr, Ba, Zn) 0.2 to 8%, TiO 2 0.5 to 5%, Al 2 O 3 0 to 1% is used. be able to.
  • the present invention has a glass composition, because it contains a glass fiber bundle containing a ZrO 2 or 12 wt%, is excellent in alkali resistance. Therefore, it is difficult for the mesh to be eroded by alkali components present in cement or the like. Accordingly, it is possible to prevent the mesh from being deteriorated.
  • glass containing 12% by mass or more of ZrO 2 is difficult to melt, but in the present invention, it further contains 10% by mass or more of R 2 O, and thus contains 12% by mass or more of ZrO 2. Is also excellent in meltability.
  • the R 2 O is 10 wt% or more, Li 2 O in the glass fiber bundles in, the total content of Na 2 O and K 2 O, refers to at least 10 mass%.
  • the glass fiber bundle can be bundled, for example, from several tens to several hundreds.
  • the glass fiber bundle is obtained by applying a sizing agent to the surface of the glass fiber, converging it, and drying the sizing agent.
  • the dried sizing agent becomes a film covering the surface of the glass fiber.
  • polyester resin examples include polyester resin.
  • the polyester resin may be a saturated polyester resin or an unsaturated polyester resin. Further, vinyl acetate resin and urethane resin may be used.
  • the count of the glass fiber bundle is not particularly limited, but is preferably 100 to 3000 tex.
  • the punching property of the mesh fabric can be further enhanced, and the reinforcing effect on the concrete structure can be further enhanced.
  • the synthetic fiber bundle has a breaking elongation measured according to JIS R3420 (2013) of 4% or more and 35% or less.
  • Examples of such a synthetic fiber bundle include a vinylon fiber bundle, a polyester fiber bundle, a polypropylene fiber bundle, and a nylon fiber bundle.
  • a vinylon fiber bundle is preferable from the viewpoint of further increasing the load in the punching test and further improving the punching characteristics.
  • the synthetic fiber bundle may be a bundle of a plurality of synthetic fiber monofilaments or a single synthetic fiber.
  • the count of the synthetic fiber bundle is not particularly limited, but is preferably 100 to 3000 tex.
  • the punching characteristics of the mesh fabric can be further enhanced, and the reinforcing effect on the concrete structure can be further enhanced.
  • the glass raw material put in the glass melting furnace is melted to form molten glass, and after the molten glass is made into a homogeneous state, the molten glass is drawn out from a heat-resistant nozzle attached to the bushing. Thereafter, the drawn molten glass is cooled to form a glass fiber monofilament (glass fiber).
  • a sizing agent for forming a film is applied to the surface of the glass fiber.
  • the sizing agent is evenly applied, several hundred to several thousand glass fibers are drawn and bundled, and dried to obtain a glass fiber bundle.
  • the sizing agent preferably contains a solvent such as water, a polyester resin such as a saturated polyester resin or an unsaturated polyester resin, or a vinyl acetate resin or a urethane resin. These resins are preferably in an emulsion state.
  • the sizing agent may contain, for example, a silane coupling agent.
  • a silane coupling agent include amino silane, epoxy silane, vinyl silane, acrylic silane, chloro silane, mercapto silane, and ureido silane.
  • the effect which protects the surface of a glass fiber bundle arises by adding a silane coupling agent, and mechanical strength, such as tensile strength, can be improved further.
  • vinyl silane or aminosilane is preferred because it is necessary to impregnate with unsaturated polyester resin that is cured by radical polymerization, vinyl ester resin, or impregnation with various resins.
  • the sizing agent can contain components such as a lubricant, a nonionic surfactant or an antistatic agent in addition to the silane coupling agent described above.
  • the obtained glass fiber bundle is used as the first strand 2a, and the warp yarn 2 is formed by entanglement with the synthetic fiber bundle as the second strand 2b prepared in advance. Further, the weft yarn 3 is formed by twisting a separately prepared glass fiber bundle and a separately prepared synthetic fiber bundle by the above method. By weaving the weft yarn 3 into the warp yarn 2, a mesh fabric 1 woven by entanglement weaving can be obtained.
  • the mesh fabric 1 may be further covered with a coating resin.
  • a coating resin raw material such as an acrylic resin, an unsaturated polyester resin, or a vinyl ester resin is applied to the mesh fabric 1 by a dipping method or a spray method, and a crossing portion of the warp yarn 2 and the weft yarn 3 is processed.
  • the form of the resin raw material may be either a resin emulsion or a solvent-based resin.
  • the resin applied to the mesh fabric 1 is dried.
  • a mesh may be pressed with a pair of squeeze roller, for example, and resin applied excessively may be squeezed out.
  • the main purpose is to dry the contained solvent, so that excessive curing is not promoted. It is preferable to dry at a temperature of 40 to 80 ° C.
  • the warp thread 2 or the weft thread 3 may be mixed with a heat-fusible thread and hot-pressed for sealing.
  • the heat-fusible yarn it is preferable to use a yarn having a glass transition temperature of 150 ° C. or lower because it can be sealed by hot pressing at a low temperature.
  • FIG. 2 is a schematic plan view showing a mesh according to the second embodiment of the present invention.
  • the mesh fabric 21 is configured by plain weaving of the warp yarn 4 and the weft yarn 5.
  • the warp yarn 4 is composed of a glass fiber bundle 4a and a synthetic fiber bundle 4b.
  • the glass fiber bundle 4a and the synthetic fiber bundle 4b are alternately arranged in the direction in which the weft 5 extends.
  • the weft 5 is comprised by the glass fiber bundle 5a and the synthetic fiber bundle 5b.
  • the glass fiber bundles 5a and the synthetic fiber bundles 5b are alternately arranged in the direction in which the warp yarn 4 extends. Other points are the same as in the first embodiment.
  • the mesh fabric 21 of the second embodiment also includes the glass fiber having the specific composition and the synthetic fiber bundle having the specific breaking elongation, the mesh fabric 21 is a punch that serves as an index of the concrete flaking prevention property. In the test, both high loads and high displacements can be obtained. Thus, since the mesh fabric 21 is excellent in the punching characteristics that serve as an index of the concrete peeling prevention characteristic, the reinforcing effect of the concrete structure can be enhanced and can be suitably used for concrete peeling prevention. .
  • the mesh of the present invention not only the entangled weave and the plain weave as in the first and second embodiments, but also a weave woven fabric can be used.
  • the mesh of the present invention may be a braided fabric, and the method for creating the mesh is not particularly limited. Among these, imitation weaving is preferable. In the pattern weaving, since one warp or one weft is composed of three strands, the area of the contact point between the warp and the weft is increased, and it is easy to check. Thereby, it becomes difficult to unravel the mesh.
  • the warp yarn and the weft yarn are both composed of both glass fiber bundles and synthetic fiber bundles.
  • all warp yarns are only glass fiber bundles or synthetic fibers. It is comprised only by the bundle, and all the wefts may be comprised only by the fiber bundle different from the warp.
  • loads are applied from the direction perpendicular to the mesh surface direction (vertical direction). From the viewpoint of dispersing the load from the vertical direction, all warp yarns and all weft yarns are all glass fibers. It is preferable to be constituted by both a bundle and a synthetic fiber bundle.
  • FIG. 3 is a schematic cross-sectional view showing a concrete exfoliation preventing material according to an embodiment of the present invention.
  • the concrete exfoliation preventing material 10 includes a mesh fabric 1 and a matrix 12.
  • the mesh fabric 1 is the mesh fabric of the first embodiment described above.
  • the mesh fabric 1 is embedded in the matrix 12.
  • the concrete peeling prevention material 10 can be affixed and used for the concrete frame 13, for example.
  • the mesh fabric 1 excellent in the punching property is embedded in the matrix 12, the reinforcing effect of the concrete can be enhanced and the concrete peeling is effectively prevented. be able to.
  • the material of the matrix 12 is not particularly limited, and for example, a resin matrix made of epoxy resin, acrylic resin, urethane resin, or the like can be used. These may be used alone or in combination.
  • the matrix may not be a resin, and may be a cement, for example. In any case, since the mesh fabric 1 is excellent in the punching property, the reinforcing effect of the concrete can be enhanced, and the peeling of the concrete can be effectively prevented.
  • a sizing agent in which vinyl silane, saturated polyester resin, and a lubricant are dispersed in water is prepared and applied to the surface of the obtained glass fiber by an applicator so that the loss on ignition is 0.8% by mass. And after bundling glass fiber, the glass fiber bundle was manufactured by drying a sizing agent.
  • a mesh fabric 31 shown in FIG. 4 was produced. Specifically, the warp yarn 32 was produced by intertwining the glass fiber bundle 32a obtained as described above and the synthetic fiber bundle 32b prepared in advance. Next, the weft yarn 33 was produced by twisting the glass fiber bundle 33a separately prepared as described above and the synthetic fiber bundle 33b. By weaving the weft thread 33 into the warp thread 32, a mesh fabric 31 woven by entanglement weaving was obtained. Details of materials constituting the mesh fabric 31 obtained in Examples 1 to 12 are shown in Tables 1 and 2 below. In Examples 1 to 7 and Examples 9 to 12, vinylon fiber (breaking elongation: 9.5%) was used as the synthetic fiber bundle. In Examples 4 and 12, a synthetic fiber bundle obtained by twisting two vinylon fiber bundles was used. In Example 8, a polypropylene fiber (PP, elongation at break: 30%) was used as a synthetic fiber bundle.
  • PP polypropylene fiber
  • Example 13 to 17 a mesh fabric 41 shown in FIG. 5 was produced. Specifically, a warp yarn 42 was produced by intertwining a glass fiber bundle 42a obtained in the same manner as in Example 1 and a synthetic fiber bundle 42b prepared in advance. Separately, a glass fiber bundle 43 a prepared in the same manner as in Example 1 and a synthetic fiber bundle 43 b separately prepared were used as the weft yarn 43. By weaving the weft thread 43 into the warp thread 42, a mesh fabric 41 woven by entanglement weaving was obtained. In the mesh fabric 41, the glass fiber bundles 43a and the synthetic fiber bundles 43b as the weft threads 43 are alternately arranged in the direction in which the warp threads 42 extend.
  • Example 18 and 19 In Examples 18 and 19, a mesh fabric 51 shown in FIG. 6 was produced. Specifically, two fiberglass bundles obtained in the same manner as in Example 1 were entangled to produce a warp yarn 52. A separately prepared synthetic fiber bundle was used as the weft yarn 53. By weaving the weft yarn 53 into the warp yarn 52, a mesh fabric 51 woven by entanglement weaving was obtained. Details of materials constituting the mesh fabric 51 obtained in Examples 18 and 19 are shown in Tables 1 and 2 below. In Example 18, vinylon fiber (breaking elongation: 9.5%) was used as the synthetic fiber bundle, and in Example 19, polypropylene fiber (PP, breaking elongation: 30%) was used as the synthetic fiber bundle.
  • PP breaking elongation: 30%
  • Example 20 In Example 20, the mesh fabric 61 shown in FIG. 7 was produced. Specifically, two pre-prepared vinylon fiber bundles (breaking elongation: 9.5%) were entangled to produce warp yarn 62. Further, a glass fiber bundle obtained in the same manner as in Example 1 was used as the weft thread 63. By weaving the weft thread 63 into the warp thread 62, a mesh fabric 61 woven by entanglement weaving was obtained. Details of materials constituting the mesh fabric 61 obtained in Example 20 are shown in Tables 1 and 2 below.
  • Example 21 a mesh fabric 71 shown in FIG. 8 was produced. Specifically, a glass fiber bundle 72a obtained in the same manner as in Example 1 and a vinylon fiber bundle (breaking elongation: 9.5%) as a synthetic fiber bundle 72b prepared in advance were used as the warp yarn 72. . Separately, a glass fiber bundle 73a obtained in the same manner as in Example 1 and a vinylon fiber bundle (breaking elongation: 9.5%) as a synthetic fiber bundle 73b prepared in advance were used as the weft yarn 73. The mesh fabric 71 was obtained by plain weaving the warp yarn 72 and the weft yarn 73.
  • the glass fiber bundle 72a and the synthetic fiber bundle 72b were alternately arranged in the direction along the weft 73. Further, the glass fiber bundle 73 a and the synthetic fiber bundle 73 b were alternately arranged in the direction along the warp yarn 72. Details of materials constituting the mesh fabric 71 obtained in Example 21 are shown in Tables 1 and 2 below.
  • Example 22 In Example 22, as the synthetic fiber bundle 72b constituting the warp yarn 72, a polypropylene fiber bundle (PP, breaking elongation: 30%) prepared in advance instead of the vinylon fiber bundle was used. Thus, a mesh fabric 71 was produced. Details of materials constituting the mesh fabric 71 obtained in Example 22 are shown in Tables 1 and 2 below.
  • Example 23 and 24 In Examples 23 and 24, a mesh fabric 81 shown in FIG. 9 was produced. Specifically, glass fiber bundles 82a1 and 82a3 obtained in the same manner as in Example 1 and synthetic fiber bundle 82a2 were used as warp yarns 82a. The glass fiber bundle 82b2 obtained in the same manner as in Example 1 and the synthetic fiber bundles 82b1 and 82b3 were used as the warp yarn 82b.
  • glass fiber bundles 83a1 and 83a3 obtained in the same manner as in Example 1 and synthetic fiber bundle 83a2 were used as weft yarn 83a.
  • the glass fiber bundle 83b2 obtained in the same manner as in Example 1 and the synthetic fiber bundles 83b1 and 83b3 were used as the weft yarn 83b.
  • the mesh fabric 81 was obtained by weaving the warp yarn 82a, the warp yarn 82b, the weft yarn 83a, and the weft yarn 83b.
  • the warp yarn 82a and the warp yarn 82b were alternately arranged in the direction along the weft yarn 83a.
  • the glass fiber bundle 82a1, the synthetic fiber bundle 82a2, and the glass fiber bundle 82a3 are arranged in this order in the direction along the weft yarn 83a.
  • the synthetic fiber bundle 82b1, the glass fiber bundle 82b2, and the synthetic fiber bundle 82b3 are arranged in this order in the direction along the weft yarn 83a.
  • weft yarns 83a and the weft yarns 83b were alternately arranged in the direction along the warp yarn 82a.
  • the glass fiber bundle 83a1, the synthetic fiber bundle 83a2, and the glass fiber bundle 83a3 are arranged in this order in the direction along the warp yarn 82a.
  • the synthetic fiber bundle 83b1, the glass fiber bundle 83b2, and the synthetic fiber bundle 83b3 are arranged in this order in the direction along the warp yarn 82a. Details of materials constituting the mesh fabric 81 obtained in Examples 23 and 24 are shown in Tables 1 and 2 below. In Examples 23 and 24, polypropylene fibers (PP, elongation at break: 30%) were used as the synthetic fiber bundle.
  • Comparative Example 1 a mesh fabric 31 was obtained in the same manner as in Example 1 except that polypropylene fibers (PP, breaking elongation: 40%) were used as the synthetic fiber bundle.
  • PP polypropylene fibers
  • Comparative Example 2 In Comparative Example 2, a warp yarn was produced by intertwining two glass fiber bundles obtained in the same manner as in Example 1. Next, in the same manner as in Example 1, two separately prepared glass fiber bundles were twisted to produce weft yarns. By weaving the weft yarn into the warp yarn, a mesh fabric consisting only of glass fiber bundles woven by entanglement weave was obtained. Details of materials constituting the mesh fabric obtained in Comparative Example 2 are shown in Tables 1 and 2 below.
  • Comparative Example 3 In Comparative Example 3, a warp yarn was produced by intertwining two synthetic fiber bundles prepared in advance. Next, two synthetic fiber bundles prepared separately were twisted to produce weft yarns. By weaving the weft yarn into the warp yarn, a mesh fabric consisting only of a synthetic fiber bundle woven by entanglement weave was obtained. Details of materials constituting the mesh fabric obtained in Comparative Example 3 are shown in Tables 1 and 2 below. In Comparative Example 3, polypropylene fibers (PP, elongation at break: 30%) were used as the synthetic fiber bundle.
  • PP polypropylene fibers
  • Example characteristic evaluation Tensile strength; The tensile strength of warp and weft in the mesh fabrics obtained in Examples 1 to 24 and Comparative Examples 1 to 3 was measured according to JIS L1096 (2010). Specifically, five test pieces each having a width of 25 mm and a length of 200 mm were collected from the mesh fabric in each of the vertical direction and the horizontal direction. The test was performed using an autograph (manufactured by Shimadzu Corporation) under measurement conditions of a span (grip interval) of 100 mm and a tensile speed of 50 mm / min. The results are shown in Table 2 below.
  • Punching test (punching performance); The push-out test of the mesh fabric obtained in Examples 1 to 24 and Comparative Examples 1 to 3 was issued in July 2015 by East Japan Expressway Co., Ltd., Central Japan Expressway Co., Ltd., and West Japan Expressway Co., Ltd. NEXCO Test Method Vol. 7 Tunnel-Related Test Method Test method 734 was performed. The punching load when the core breaks (core breaking load) and the punching load when displaced by 5 mm, 10 mm, and 20 mm are shown in Table 2 below.
  • At least one of the warp and the weft is configured, and as a glass composition, ZrO 2 is 12% by mass or more, and R 2 O (R is at least 1 selected from Li, Na and K) Comprising at least one of a glass fiber bundle, warp and weft containing 10% by mass or more of a seed), and the elongation at break measured according to JIS R3420 (2013) is 4% or more,
  • the mesh fabric provided with a synthetic fiber bundle that is 35% or less had high tensile strength and good punch test results.
  • any one of the results of the core breaking load, the displacement of 5 mm, the displacement of 10 mm, and the displacement of 20 mm was not sufficient in the punching test.

Abstract

Provided is a mesh with superior push out characteristics, which are an indicator of peeling preventing characteristics for concrete. A woven mesh fabric 1, which is constituted of warp yarn 2 and weft yarn 3, is provided with: a glass fiber bundle having 12% by mass or greater ZrO2 and 10% by mass or greater R2O (R is at least one selected from Li, Na, and K) for a glass composition; and a composite fiber bundle with a fracture elongation of 4 - 35% as measured on the basis of JIS R3420 (2013).

Description

メッシュ及びコンクリート剥落防止材Mesh and concrete peeling prevention material
 本発明は、メッシュ及び該メッシュを備えるコンクリート剥落防止材に関する。 The present invention relates to a mesh and a concrete exfoliation preventing material provided with the mesh.
 従来、建築物やトンネルなどのコンクリート構造物における剥落防止対策として、コンクリート構造物の表面に補強材を貼り付ける方法が知られている。上記補強材としては、鋼板、繊維強化プラスチック、又はセメントモルタル若しくは樹脂等にメッシュ織物が埋め込まれてなる構造体が用いられている。 Conventionally, a method of sticking a reinforcing material to the surface of a concrete structure is known as a measure for preventing peeling in a concrete structure such as a building or a tunnel. As the reinforcing material, a steel plate, fiber reinforced plastic, or a structure in which a mesh fabric is embedded in cement mortar or resin is used.
 例えば、下記の特許文献1には、コンクリート表面の補修や補強に用いられる補強用織物が開示されている。上記補強用織物は、炭素繊維などの補強繊維糸からなるたて糸及びよこ糸がメッシュ状に配列されたメッシュ織物である。また、上記補強繊維糸間には、ガラスヤーンからなるたて糸補助糸及びよこ糸補助糸が1~3本配列されている。特許文献1では、上記のような補強繊維糸及び補助糸が、平織組織で一体化されて構成されている。 For example, the following Patent Document 1 discloses a reinforcing fabric used for repairing or reinforcing a concrete surface. The reinforcing fabric is a mesh fabric in which warp yarns and weft yarns made of reinforcing fiber yarns such as carbon fibers are arranged in a mesh shape. Between the reinforcing fiber yarns, 1 to 3 warp auxiliary yarns and weft auxiliary yarns made of glass yarn are arranged. In Patent Document 1, the reinforcing fiber yarn and the auxiliary yarn as described above are integrated in a plain weave structure.
 また、下記の特許文献2には、複数のストランドからなる主繊維束と、主繊維束に絡ませた補助繊維束とを有するメッシュ織物が開示されている。特許文献2では、主繊維束として、ガラス繊維束が用いられている。また、補助繊維束として、綿糸が用いられている。 Further, Patent Document 2 below discloses a mesh fabric having a main fiber bundle composed of a plurality of strands and an auxiliary fiber bundle entangled with the main fiber bundle. In Patent Document 2, a glass fiber bundle is used as the main fiber bundle. Further, cotton yarn is used as the auxiliary fiber bundle.
特許第4228497号公報Japanese Patent No. 4228497 特開2007-291590号公報JP 2007-291590 A
 しかしながら、特許文献1や特許文献2のメッシュ織物では、コンクリートの剥落防止特性の指標となる押し抜き試験における荷重(コア破断荷重)及び変位(変位後の押し抜き荷重)の双方を十分に高められないことがあった。押し抜き試験における荷重及び変位の双方が高くないと、小さな荷重で亀裂が発生したり、亀裂が発生したコンクリート片がすぐに落下してしまう。そのため、コンクリートの剥落防止材として用いられたときに、コンクリートの剥落を十分に防止できないことがあった。 However, in the mesh fabrics of Patent Document 1 and Patent Document 2, both the load (core breaking load) and displacement (punch load after displacement) in the punching test, which are indexes of the concrete peeling prevention characteristics, can be sufficiently increased. There was nothing. If both the load and displacement in the push-out test are not high, cracks will occur with a small load, or the cracked concrete piece will fall off immediately. Therefore, when used as a concrete exfoliation preventive material, the exfoliation of concrete may not be sufficiently prevented.
 本発明の目的は、コンクリートの剥落防止特性の指標となる押し抜き特性に優れる、メッシュ及び該メッシュを用いたコンクリート剥落防止材を提供することにある。 An object of the present invention is to provide a mesh having excellent punching characteristics that is an index of concrete peeling prevention characteristics, and a concrete peeling prevention material using the mesh.
 本発明に係るメッシュは、複数本のたて糸及び複数本のよこ糸により構成されているメッシュであって、ガラス組成として、ZrOを12質量%以上、及びRO(RはLi、Na及びKから選択される少なくとも1種)を10質量%以上含有する、ガラス繊維束と、JIS R3420(2013年)に準拠して測定された破断伸度が、4%以上、35%以下である、合成繊維束と、を備えることを特徴としている。 The mesh according to the present invention is a mesh composed of a plurality of warps and a plurality of wefts, and has a glass composition of ZrO 2 of 12% by mass or more, and R 2 O (R is Li, Na and K). A glass fiber bundle containing at least one kind selected from JIS R3420 (2013), and the elongation at break measured according to JIS R3420 (2013) is 4% or more and 35% or less. And a fiber bundle.
 本発明に係るメッシュは、前記合成繊維束が、ビニロン繊維束であることが好ましい。 In the mesh according to the present invention, the synthetic fiber bundle is preferably a vinylon fiber bundle.
 本発明に係るメッシュは、目付が、100g/m以上、450g/m以下であることが好ましい。 The mesh according to the present invention preferably has a basis weight of 100 g / m 2 or more and 450 g / m 2 or less.
 本発明に係るメッシュは、前記ガラス繊維束の目付が、50g/m以上、250g/m以下であり、前記合成繊維束の目付が、30g/m以上、200g/m以下であることが好ましい。 In the mesh according to the present invention, the basis weight of the glass fiber bundle is 50 g / m 2 or more and 250 g / m 2 or less, and the basis weight of the synthetic fiber bundle is 30 g / m 2 or more and 200 g / m 2 or less. It is preferable.
 本発明に係るメッシュは、前記メッシュにおける前記合成繊維束の質量割合が、10質量%以上、70質量%以下であることが好ましい。 In the mesh according to the present invention, the mass ratio of the synthetic fiber bundle in the mesh is preferably 10% by mass or more and 70% by mass or less.
 本発明に係るメッシュは、前記メッシュにおける前記合成繊維束の体積割合が、20%以上、80%以下であることが好ましい。 In the mesh according to the present invention, the volume ratio of the synthetic fiber bundle in the mesh is preferably 20% or more and 80% or less.
 本発明に係るメッシュは、前記メッシュにおける前記ガラス繊維束の質量割合が、30質量%以上、90質量%以下であることが好ましい。 In the mesh according to the present invention, the mass ratio of the glass fiber bundle in the mesh is preferably 30% by mass or more and 90% by mass or less.
 本発明に係るメッシュは、前記メッシュにおける前記ガラス繊維束の体積割合が、20%以上、80%以下であることが好ましい。 In the mesh according to the present invention, the volume ratio of the glass fiber bundle in the mesh is preferably 20% or more and 80% or less.
 本発明に係るメッシュは、前記たて糸に沿う方向及び前記よこ糸に沿う方向の引張強度が、それぞれ、200N/25mm以上であることが好ましい。 The mesh according to the present invention preferably has a tensile strength of 200 N / 25 mm or more in the direction along the warp and the direction along the weft.
 本発明に係るメッシュは、絡み織りの織物からなることが好ましい。 The mesh according to the present invention is preferably made of a woven fabric having an entangled weave.
 本発明に係るメッシュは、前記たて糸及び前記よこ糸のうち少なくとも一方が、前記ガラス繊維束及び前記合成繊維束の双方により構成されていることが好ましい。 In the mesh according to the present invention, it is preferable that at least one of the warp and the weft is composed of both the glass fiber bundle and the synthetic fiber bundle.
 本発明に係るメッシュは、コンクリート剥落防止材に用いられることが好ましい。 The mesh according to the present invention is preferably used as a concrete exfoliation preventing material.
 本発明に係るコンクリート剥落防止材は、マトリックスと、本発明に従って構成されるメッシュと、を備える。 The concrete exfoliation preventing material according to the present invention includes a matrix and a mesh configured according to the present invention.
 本発明によれば、コンクリートの剥落防止特性の指標となる押し抜き特性に優れる、メッシュを提供することができる。 According to the present invention, it is possible to provide a mesh that is excellent in the punching characteristics that serve as an index of the concrete peeling prevention characteristics.
図1は、本発明の第1の実施形態に係るメッシュ織物を示す模式的平面図である。FIG. 1 is a schematic plan view showing a mesh fabric according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係るメッシュ織物を示す模式的平面図である。FIG. 2 is a schematic plan view showing a mesh fabric according to the second embodiment of the present invention. 図3は、本発明の一実施形態に係るコンクリート剥落防止材を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing a concrete exfoliation preventing material according to an embodiment of the present invention. 図4は、実施例1~12及び比較例1で得られたメッシュ織物を示す模式的平面図である。FIG. 4 is a schematic plan view showing mesh fabrics obtained in Examples 1 to 12 and Comparative Example 1. 図5は、実施例13~17で得られたメッシュ織物を示す模式的平面図である。FIG. 5 is a schematic plan view showing the mesh fabric obtained in Examples 13-17. 図6は、実施例18,19で得られたメッシュ織物を示す模式的平面図である。FIG. 6 is a schematic plan view showing the mesh fabric obtained in Examples 18 and 19. 図7は、実施例20で得られたメッシュ織物を示す模式的平面図である。FIG. 7 is a schematic plan view showing the mesh fabric obtained in Example 20. 図8は、実施例21,22で得られたメッシュ織物を示す模式的平面図である。FIG. 8 is a schematic plan view showing the mesh fabric obtained in Examples 21 and 22. FIG. 図9は、実施例23,24で得られたメッシュ織物を示す模式的平面図である。FIG. 9 is a schematic plan view showing the mesh fabric obtained in Examples 23 and 24. FIG.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Moreover, in each drawing, the member which has the substantially the same function may be referred with the same code | symbol.
 [メッシュ]
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係るメッシュの模式的平面図である。
[mesh]
(First embodiment)
FIG. 1 is a schematic plan view of a mesh according to the first embodiment of the present invention.
 図1に示すように、第1の実施形態に係るメッシュは、複数本のたて糸と複数本のよこ糸が織られたメッシュ、いわゆるメッシュ織物1である。メッシュ織物1は、複数本のたて糸2及び複数本のよこ糸3により構成されている。それぞれのたて糸2は、第1のストランド2a及び第2のストランド2bを有する。メッシュ織物1では、第1のストランド2a及び第2のストランド2bを捩じるように互いに絡ませ、それらの間に複数本のよこ糸3が織り込まれている。すなわち、メッシュ織物1は、たて糸2を構成する第1のストランド2a及び第2のストランド2bと、よこ糸3とが絡み織りされた織物である。 As shown in FIG. 1, the mesh according to the first embodiment is a so-called mesh fabric 1 in which a plurality of warps and a plurality of wefts are woven. The mesh fabric 1 is composed of a plurality of warps 2 and a plurality of wefts 3. Each warp 2 has a first strand 2a and a second strand 2b. In the mesh fabric 1, the first strand 2a and the second strand 2b are entangled with each other so as to be twisted, and a plurality of wefts 3 are woven between them. That is, the mesh fabric 1 is a fabric in which the first strand 2a and the second strand 2b constituting the warp yarn 2 and the weft yarn 3 are woven together.
 本実施形態では、たて糸2における第1のストランド2aが、ガラス繊維束である。上記1本のガラス繊維束は、被膜と複数本のガラス繊維モノフィラメントとからなる。上記ガラス繊維モノフィラメントの表面は、被膜により覆われている。上記被膜は、ガラス繊維モノフィラメント間やガラス繊維束の表面にも存在し、複数本のガラス繊維モノフィラメントを束ねる役割も果たしている。一方、たて糸2における第2のストランド2bは、1本または複数本の合成繊維束からなる。上記1本の合成繊維束は、複数本の合成繊維モノフィラメントにより構成されている。 In the present embodiment, the first strand 2a in the warp yarn 2 is a glass fiber bundle. The one glass fiber bundle includes a coating and a plurality of glass fiber monofilaments. The surface of the glass fiber monofilament is covered with a coating. The coating is also present between the glass fiber monofilaments and on the surface of the glass fiber bundle, and also plays a role of bundling a plurality of glass fiber monofilaments. On the other hand, the second strand 2b in the warp yarn 2 is composed of one or a plurality of synthetic fiber bundles. The single synthetic fiber bundle is composed of a plurality of synthetic fiber monofilaments.
 本実施形態では、それぞれのよこ糸3は、ガラス繊維束及び合成繊維束が撚り合わされた合撚糸からなることが好ましい。また、よこ糸3は、合撚糸でなくともよく、ガラス繊維束と合成繊維束を撚らずに束ねた無撚糸であってもよい。ガラス繊維束及び合成繊維束の2種類を準備し、それぞれの繊維束が単独で織り込まれた織物であってもよい。例えば、たて糸2の延びる方向において、複数本のよこ糸3としてガラス繊維束及び合成繊維束が交互に配置されていると、メッシュ織物1中におけるガラス繊維束と合成繊維束の配置分布が均等になるため好ましい。なお、複数本のよこ糸3の全てが、ガラス繊維束のみ、または合成繊維束のみにより構成されていてもよい。 In this embodiment, each weft yarn 3 is preferably made of a twisted yarn obtained by twisting a glass fiber bundle and a synthetic fiber bundle. Further, the weft yarn 3 does not have to be a twisted yarn, and may be a non-twisted yarn in which a glass fiber bundle and a synthetic fiber bundle are bundled without being twisted. It may be a woven fabric prepared by preparing two types of glass fiber bundles and synthetic fiber bundles, and each fiber bundle is woven alone. For example, when glass fiber bundles and synthetic fiber bundles are alternately arranged as a plurality of weft threads 3 in the direction in which the warp yarn 2 extends, the arrangement distribution of the glass fiber bundles and the synthetic fiber bundles in the mesh fabric 1 becomes uniform. Therefore, it is preferable. In addition, all the multiple wefts 3 may be comprised only by the glass fiber bundle or the synthetic fiber bundle.
 上述のガラス繊維束は、ガラス組成として、ZrOを12質量%以上、及びRO(RはLi、Na及びKから選択される少なくとも1種)を10質量%以上含有する。そのため、メッシュ織物1は、耐アルカリ性や難燃性に優れている。 The glass fiber bundle described above contains, as a glass composition, 12% by mass or more of ZrO 2 and 10% by mass or more of R 2 O (R is at least one selected from Li, Na and K). Therefore, the mesh fabric 1 is excellent in alkali resistance and flame retardancy.
 また、上述の合成繊維束は、JIS R3420(2013年)に準拠して測定された破断伸度が、4%以上、35%以下である。合成繊維束の破断伸度が小さすぎると、コンクリートの剥落防止特性の指標となる押し抜き試験において、ガラス繊維束と同程度の変位量で合成繊維束が破断することから、十分な変位を得ることができない。そのため、破壊されたコンクリート片がすぐに落下してしまう。一方、合成繊維束の破断伸度が大きすぎると、合成繊維束の引張強度が小さくなることから、押し抜き試験において十分な荷重を得ることができない。そのため、亀裂が小さな荷重で発生してしまう。 Moreover, the above-mentioned synthetic fiber bundle has a breaking elongation measured according to JIS R3420 (2013) of 4% or more and 35% or less. If the breaking elongation of the synthetic fiber bundle is too small, the synthetic fiber bundle breaks with the same amount of displacement as that of the glass fiber bundle in the punching test, which is an index of the concrete peeling prevention characteristic. I can't. As a result, the destroyed concrete pieces fall off immediately. On the other hand, if the breaking elongation of the synthetic fiber bundle is too large, the tensile strength of the synthetic fiber bundle becomes small, so that a sufficient load cannot be obtained in the punching test. Therefore, a crack will occur with a small load.
 本実施形態のメッシュ織物1は、上記特定の組成を有するガラス繊維束と、上記特定の破断伸度を有する合成繊維束とを備えているので、コンクリートの剥落防止特性の指標となる押し抜き試験において、高い荷重と高い変位の双方を得ることができる。これは、押し抜き試験において、破断伸度が小さいガラス繊維束が破断した後も、合成繊維束が破断せずに荷重を維持することができるためである。また、合成繊維束が伸びる際に、ガラス繊維束をマトリックスから引き剥がす効果があり、引張伸度が小さいガラス繊維束においてもこれ以上切断することなく、荷重を受け持つことができる。この場合、複数本のたて糸2または複数本のよこ糸3のいずれかがガラス繊維束と合成繊維束により構成されていると、より顕著にこの効果が見られる。 Since the mesh fabric 1 of the present embodiment includes the glass fiber bundle having the above specific composition and the synthetic fiber bundle having the above specific elongation at break, a punching test that serves as an index of the concrete flaking prevention property Thus, both high load and high displacement can be obtained. This is because, in the punching test, the load can be maintained without breaking the synthetic fiber bundle even after the glass fiber bundle having a small breaking elongation is broken. Further, when the synthetic fiber bundle is stretched, it has an effect of peeling the glass fiber bundle from the matrix, and even a glass fiber bundle having a small tensile elongation can take charge without further cutting. In this case, if any of the plurality of warp yarns 2 or the plurality of weft yarns 3 is composed of a glass fiber bundle and a synthetic fiber bundle, this effect is more noticeable.
 このように、メッシュ織物1は、コンクリートの剥落防止特性の指標となる押し抜き性能(特性)に優れているので、コンクリート構造物の補強効果を高めることができ、コンクリートの剥落防止用途に好適に用いることができる。 Thus, since the mesh fabric 1 is excellent in the punching performance (characteristic) that is an index of the concrete peeling prevention characteristic, the reinforcing effect of the concrete structure can be enhanced, and is suitable for the concrete peeling prevention use. Can be used.
 本発明において、メッシュ織物1の目付は、特に限定されないが、100g/m以上、450g/m以下であることが好ましい。メッシュ織物1の目付が上記の下限以上であると、押し抜き試験における荷重及び変位をより一層大きくすることができ、コンクリート構造物への補強効果をより一層高めることができる。他方、メッシュ織物1の目付が上記の上限以下である場合、後述するコンクリート剥落防止材を構成する樹脂マトリックスと、より一体化しやすくなり、コンクリート構造物への補強効果をより一層高めることができる。 In the present invention, the basis weight of the mesh fabric 1 is not particularly limited, but is preferably 100 g / m 2 or more and 450 g / m 2 or less. When the basis weight of the mesh fabric 1 is not less than the above lower limit, the load and displacement in the punching test can be further increased, and the reinforcing effect on the concrete structure can be further enhanced. On the other hand, when the basis weight of the mesh fabric 1 is not more than the above upper limit, the mesh fabric 1 can be more easily integrated with a resin matrix that constitutes a concrete exfoliation preventing material described later, and the reinforcing effect on the concrete structure can be further enhanced.
 コスト面を考慮しかつコンクリート構造物への補強効果をより一層高める観点から、メッシュ織物1の目付は、より好ましくは150g/m以上、より好ましくは350g/m以下である。 From the viewpoint of considering the cost and further enhancing the reinforcing effect on the concrete structure, the basis weight of the mesh fabric 1 is more preferably 150 g / m 2 or more, and more preferably 350 g / m 2 or less.
 メッシュ織物1を構成するガラス繊維束の目付は、特に限定されないが、50g/m以上、250g/m以下であることが好ましい。ガラス繊維束の目付が、上記の下限以上である場合、押し抜き試験における荷重をより一層大きくすることができ、コンクリート構造物への補強効果をより一層高めることができる。他方、ガラス繊維束の目付が上記の上限以下である場合、ガラス繊維束の破断により、合成繊維束に損傷を与え難く、押し抜き試験における変位をより一層高めることができる。押し抜き特性をより一層高める観点から、ガラス繊維束の目付は、好ましくは80g/m以上、好ましくは200g/m以下である。 The basis weight of the glass fiber bundle constituting the mesh fabric 1 is not particularly limited, but is preferably 50 g / m 2 or more and 250 g / m 2 or less. When the basis weight of the glass fiber bundle is equal to or higher than the above lower limit, the load in the punching test can be further increased, and the reinforcing effect on the concrete structure can be further enhanced. On the other hand, when the basis weight of the glass fiber bundle is not more than the above upper limit, it is difficult to damage the synthetic fiber bundle due to the breakage of the glass fiber bundle, and the displacement in the push-out test can be further increased. From the viewpoint of further enhancing the punching characteristics, the basis weight of the glass fiber bundle is preferably 80 g / m 2 or more, and preferably 200 g / m 2 or less.
 また、メッシュ織物1を構成する合成繊維束の目付は、特に限定されないが、30g/m以上、200g/m以下であることが好ましい。合成繊維束の目付が上記の下限以上の場合、押し抜き試験における変位をより一層大きくすることができる。他方、上記の上限以下の場合、押し抜き試験における荷重をより一層大きくすることができる。押し抜き特性をより一層向上させる観点から、合成繊維束の目付は、好ましくは50g/m以上、好ましくは180g/m以下である。 Moreover, the fabric weight of the synthetic fiber bundle which comprises the mesh fabric 1 is although it does not specifically limit, It is preferable that they are 30 g / m < 2 > or more and 200 g / m < 2 > or less. When the basis weight of the synthetic fiber bundle is not less than the above lower limit, the displacement in the punching test can be further increased. On the other hand, when the amount is not more than the above upper limit, the load in the punching test can be further increased. From the viewpoint of further improving the punching characteristics, the basis weight of the synthetic fiber bundle is preferably 50 g / m 2 or more, and preferably 180 g / m 2 or less.
 なお、ガラス繊維束の目付とは、メッシュ織物1を構成するガラス繊維束以外の成分、例えば、合成繊維束、後述する被覆樹脂などの質量を差し引いて求めた値である。合成繊維束の目付とは、メッシュ織物1を構成する合成繊維束以外の成分、例えば、ガラス繊維束、後述する被覆樹脂などの質量を差し引いて求めた値である。メッシュ織物1が、ガラス繊維束と合成繊維束のみから構成されている場合、メッシュ織物1の目付は、ガラス繊維束の目付と合成繊維束の目付と被覆樹脂との和となる。 The basis weight of the glass fiber bundle is a value obtained by subtracting the mass of components other than the glass fiber bundle constituting the mesh fabric 1, such as a synthetic fiber bundle and a coating resin described later. The basis weight of the synthetic fiber bundle is a value obtained by subtracting the mass of components other than the synthetic fiber bundle constituting the mesh fabric 1, such as a glass fiber bundle and a coating resin described later. When the mesh fabric 1 is composed of only a glass fiber bundle and a synthetic fiber bundle, the basis weight of the mesh fabric 1 is the sum of the basis weight of the glass fiber bundle, the basis weight of the synthetic fiber bundle, and the coating resin.
 押し抜き特性をさらに一層向上させる観点から、メッシュ織物1における合成繊維束の質量割合が、10質量%以上、70質量%以下であることが好ましい。また、メッシュ織物1における合成繊維束の体積割合が、20体積%以上、80体積%以下であることが好ましい。なお、合成繊維束の質量割合及び体積割合は、メッシュ織物1全体をそれぞれ100質量%または100体積%としたときの割合のことをいう。 From the viewpoint of further improving the punching characteristics, the mass ratio of the synthetic fiber bundle in the mesh fabric 1 is preferably 10% by mass or more and 70% by mass or less. Moreover, it is preferable that the volume ratio of the synthetic fiber bundle in the mesh fabric 1 is 20 volume% or more and 80 volume% or less. In addition, the mass ratio and volume ratio of a synthetic fiber bundle mean the ratio when the mesh fabric 1 whole is 100 mass% or 100 volume%, respectively.
 押し抜き特性をさらに一層向上させる観点から、メッシュ織物1におけるガラス繊維束の質量割合が、30質量%以上、90質量%以下であることが好ましい。また、メッシュ織物1におけるガラス繊維束の体積割合が、20%以上、80%以下であることが好ましい。なお、ガラス繊維束の質量割合及び体積割合は、メッシュ織物1全体をそれぞれ100質量%または100%としたときの割合のことをいう。 From the viewpoint of further improving the punching characteristics, the mass ratio of the glass fiber bundle in the mesh fabric 1 is preferably 30% by mass or more and 90% by mass or less. Moreover, it is preferable that the volume ratio of the glass fiber bundle in the mesh fabric 1 is 20% or more and 80% or less. In addition, the mass ratio and volume ratio of a glass fiber bundle say the ratio when the mesh fabric 1 whole is 100 mass% or 100%, respectively.
 また、補強後でも、コンクリート構造物を確認する観点や、後述するマトリックス樹脂を満遍なく含浸させる観点から、隣接するたて糸2間の間隔、および、隣接するよこ糸3間の間隔は、2~10mmであることが好ましい。 Further, even after reinforcement, from the viewpoint of confirming the concrete structure and from the viewpoint of evenly impregnating the matrix resin described later, the distance between the adjacent warp threads 2 and the distance between the adjacent weft threads 3 are 2 to 10 mm. It is preferable.
 また、押し抜き試験における荷重をより一層大きくし、メッシュ織物1の押し抜き特性をより一層高める観点から、たて糸2に沿う方向及びよこ糸3に沿う方向の引張強度が、それぞれ、200N/25mm以上であることが好ましい。引張強度は、JIS L1096(2010年)に準拠して測定することができる。 Further, from the viewpoint of further increasing the load in the punching test and further improving the punching characteristics of the mesh fabric 1, the tensile strength in the direction along the warp yarn 2 and the direction along the weft yarn 3 is 200 N / 25 mm or more, respectively. Preferably there is. The tensile strength can be measured according to JIS L1096 (2010).
 なお、第1の実施形態のメッシュ織物1においては、複数本のたて糸2及び複数本のよこ糸3が、それぞれ、ガラス繊維束及び合成繊維束により構成されていた。もっとも、本発明においては、複数本のたて糸2及び複数本のよこ糸3のうち少なくとも一方が、ガラス繊維束を含んでいればよい。また、たて糸2及びよこ糸3のうち少なくとも一方が、合成繊維束を含んでいればよい。また、複数本のたて糸2及び複数本のよこ糸3のうち少なくとも1本がガラス繊維束を含んでいればよい。また、複数本のたて糸2及び複数本のよこ糸3のうち少なくとも1本が合成繊維束を含んでいればよい。すなわち、メッシュ織物1が、合成繊維束及びガラス繊維束を備えていればよい。 In the mesh fabric 1 of the first embodiment, the plurality of warp yarns 2 and the plurality of weft yarns 3 are constituted by a glass fiber bundle and a synthetic fiber bundle, respectively. However, in the present invention, it is only necessary that at least one of the plurality of warps 2 and the plurality of wefts 3 includes a glass fiber bundle. Moreover, it is sufficient that at least one of the warp yarn 2 and the weft yarn 3 includes a synthetic fiber bundle. Further, it is only necessary that at least one of the plurality of warps 2 and the plurality of wefts 3 includes a glass fiber bundle. Further, it is only necessary that at least one of the plurality of warps 2 and the plurality of wefts 3 includes a synthetic fiber bundle. That is, the mesh fabric 1 should just be provided with the synthetic fiber bundle and the glass fiber bundle.
 例えば、第1のストランド2a及び第2のストランド2bの双方が、ガラス繊維束であってもよい。その場合、よこ糸3が、少なくとも合成繊維束を含んでいればよい。あるいは、第1のストランド2a及び第2のストランド2bの双方が、合成繊維束であってもよい。その場合、よこ糸3が少なくともガラス繊維束を含んでいればよい。 For example, both the first strand 2a and the second strand 2b may be glass fiber bundles. In that case, the weft 3 should just contain the synthetic fiber bundle at least. Alternatively, both the first strand 2a and the second strand 2b may be a synthetic fiber bundle. In that case, the weft 3 should just contain the glass fiber bundle at least.
 また、本発明においては、メッシュ織物1が、さらに被覆樹脂により覆われていてもよい。メッシュ織物1が被覆樹脂により覆われている場合、施工性をより一層高めることができる。なお、このような被覆樹脂としては、例えば、アクリル樹脂、酢酸ビニル系樹脂、不飽和ポリエステル樹脂や、ビニルエステル樹脂などを用いることができる。なお、メッシュ織物1を被覆樹脂で覆う際、原料となる樹脂をエマルジョン化し、当該エマルジョン化された樹脂をメッシュ織物1に塗布することができる。 In the present invention, the mesh fabric 1 may be further covered with a coating resin. When the mesh fabric 1 is covered with the coating resin, the workability can be further improved. As such a coating resin, for example, an acrylic resin, a vinyl acetate resin, an unsaturated polyester resin, a vinyl ester resin, or the like can be used. When the mesh fabric 1 is covered with the coating resin, the raw material resin can be emulsified and the emulsified resin can be applied to the mesh fabric 1.
 (ガラス繊維束)
 ガラス繊維束は、ガラス組成として、ZrOを12質量%以上、及びRO(RはLi、Na及びKから選択される少なくとも1種)を10質量%以上含有する。
(Glass fiber bundle)
The glass fiber bundle contains 12% by mass or more of ZrO 2 and 10% by mass or more of R 2 O (R is at least one selected from Li, Na and K) as a glass composition.
 このようなガラス繊維束としては、例えば、ガラス組成として、質量%で、SiO 54~65%、ZrO 12~25%、LiO 0~5%、NaO 10~17%、KO 0~8%、R’O(ただし、R’は、Mg、Ca、Sr、Ba、Znを表す)0~10%、TiO 0~7%、Al 0~2%を含み、好ましくは、質量%で、SiO 57~64%、ZrO 14~24%、LiO 0.5~3%、NaO 11~15%、KO 1~5%、R’O(ただし、R’は、Mg、Ca、Sr、Ba、Znを表す)0.2~8%、TiO 0.5~5%、Al 0~1%を含むものを用いることができる。 As such a glass fiber bundle, for example, as a glass composition, SiO 2 54 to 65%, ZrO 2 12 to 25%, Li 2 O 0 to 5%, Na 2 O 10 to 17%, K in mass%. 2 O 0-8%, R′O (where R ′ represents Mg, Ca, Sr, Ba, Zn) 0-10%, TiO 2 0-7%, Al 2 O 3 0-2% Including, preferably by mass%, SiO 2 57-64%, ZrO 2 14-24%, Li 2 O 0.5-3%, Na 2 O 11-15%, K 2 O 1-5%, R 'O (where R' represents Mg, Ca, Sr, Ba, Zn) 0.2 to 8%, TiO 2 0.5 to 5%, Al 2 O 3 0 to 1% is used. be able to.
 このように、本発明のメッシュは、ガラス組成として、ZrOを12質量%以上含有しているガラス繊維束を含むので、耐アルカリ性に優れている。そのため、セメント中などに存在するアルカリ成分によりメッシュが浸食され難い。従って、メッシュが劣化することを防止することができる。 Mesh Thus, the present invention has a glass composition, because it contains a glass fiber bundle containing a ZrO 2 or 12 wt%, is excellent in alkali resistance. Therefore, it is difficult for the mesh to be eroded by alkali components present in cement or the like. Accordingly, it is possible to prevent the mesh from being deteriorated.
 もっとも、ZrOを12質量%以上含有しているガラスは、溶融し難いが、本発明においては、さらにROを10質量%以上含有するので、ZrOを12質量%以上含有していても溶融性に優れている。なお、ROが10質量%以上とは、ガラス繊維束中におけるLiO、NaO及びKOの含有量の総和が、10質量%以上であることをいう。 However, glass containing 12% by mass or more of ZrO 2 is difficult to melt, but in the present invention, it further contains 10% by mass or more of R 2 O, and thus contains 12% by mass or more of ZrO 2. Is also excellent in meltability. Note that the R 2 O is 10 wt% or more, Li 2 O in the glass fiber bundles in, the total content of Na 2 O and K 2 O, refers to at least 10 mass%.
 第1の実施形態では、ガラス繊維束は、例えば、数十本から数百本程度を束ねたものとすることができる。ガラス繊維束は、上記ガラス繊維の表面にサイジング剤を塗布し、集束させ、サイジング剤を乾燥させることにより得られる。乾燥したサイジング剤が、ガラス繊維の表面を覆っている被膜となる。 In the first embodiment, the glass fiber bundle can be bundled, for example, from several tens to several hundreds. The glass fiber bundle is obtained by applying a sizing agent to the surface of the glass fiber, converging it, and drying the sizing agent. The dried sizing agent becomes a film covering the surface of the glass fiber.
 このような被膜を構成する樹脂としては、例えば、ポリエステル樹脂が挙げられる。ポリエステル樹脂は、飽和ポリエステル樹脂であってもよく、不飽和ポリエステル樹脂であってもよい。また、酢酸ビニル系樹脂、ウレタン系樹脂であってもよい。 Examples of the resin constituting such a coating include polyester resin. The polyester resin may be a saturated polyester resin or an unsaturated polyester resin. Further, vinyl acetate resin and urethane resin may be used.
 また、ガラス繊維束の番手は、特に限定されないが、100~3000texであることが好ましい。ガラス繊維束の番手が上記の範囲内にある場合、メッシュ織物の押し抜き特性をより一層高めることができ、コンクリート構造物への補強効果をより一層高めることができる。 The count of the glass fiber bundle is not particularly limited, but is preferably 100 to 3000 tex. When the count of the glass fiber bundle is within the above range, the punching property of the mesh fabric can be further enhanced, and the reinforcing effect on the concrete structure can be further enhanced.
 (合成繊維束)
 合成繊維束は、JIS R3420(2013年)に準拠して測定された破断伸度が、4%以上、35%以下である。このような合成繊維束としては、例えば、ビニロン繊維束、ポリエステル繊維束、ポリプロピレン繊維束、又はナイロン繊維束などが挙げられる。なかでも、押し抜き試験における荷重をより一層高め、押し抜き特性をより一層向上させる観点から、ビニロン繊維束であることが好ましい。
(Synthetic fiber bundle)
The synthetic fiber bundle has a breaking elongation measured according to JIS R3420 (2013) of 4% or more and 35% or less. Examples of such a synthetic fiber bundle include a vinylon fiber bundle, a polyester fiber bundle, a polypropylene fiber bundle, and a nylon fiber bundle. Among these, a vinylon fiber bundle is preferable from the viewpoint of further increasing the load in the punching test and further improving the punching characteristics.
 なお、第1の実施形態では、合成繊維束は、複数本の合成繊維モノフィラメントを束ねたものであっても1本の合成繊維であってもよい。 In the first embodiment, the synthetic fiber bundle may be a bundle of a plurality of synthetic fiber monofilaments or a single synthetic fiber.
 また、合成繊維束の番手は、特に限定されないが、100~3000texであることが好ましい。合成繊維束の番手が上記範囲内にある場合、メッシュ織物の押し抜き特性をより一層高めることができ、コンクリート構造物への補強効果をより一層高めることができる。 The count of the synthetic fiber bundle is not particularly limited, but is preferably 100 to 3000 tex. When the count of the synthetic fiber bundle is within the above range, the punching characteristics of the mesh fabric can be further enhanced, and the reinforcing effect on the concrete structure can be further enhanced.
 以下、メッシュ織物1の製造方法の一例について、説明する。 Hereinafter, an example of a method for manufacturing the mesh fabric 1 will be described.
 (製造方法)
 メッシュ織物1の製造方法としては、特に限定されず、一例として以下の方法により製造することができる。
(Production method)
It does not specifically limit as a manufacturing method of the mesh fabric 1, It can manufacture with the following method as an example.
 まず、ガラス溶融炉内に投入されたガラス原料を溶融して溶融ガラスとし、溶融ガラスを均質な状態とした後に、ブッシングに付設された耐熱性を有するノズルから溶融ガラスを引き出す。その後、引き出された溶融ガラスを冷却してガラス繊維モノフィラメント(ガラス繊維)とする。 First, the glass raw material put in the glass melting furnace is melted to form molten glass, and after the molten glass is made into a homogeneous state, the molten glass is drawn out from a heat-resistant nozzle attached to the bushing. Thereafter, the drawn molten glass is cooled to form a glass fiber monofilament (glass fiber).
 次に、このガラス繊維の表面に、被膜を形成するためのサイジング剤を塗布する。サイジング剤が均等に塗布された状態で、そのガラス繊維を数百から数千本引き揃えて集束し、乾燥させてガラス繊維束とする。 Next, a sizing agent for forming a film is applied to the surface of the glass fiber. In a state where the sizing agent is evenly applied, several hundred to several thousand glass fibers are drawn and bundled, and dried to obtain a glass fiber bundle.
 なお、上記サイジング剤は、水等の溶媒、飽和ポリエステル樹脂、不飽和ポリエステル樹脂等のポリエステル樹脂、又は酢酸ビニル系樹脂、ウレタン系樹脂を含むことが好ましい。これら樹脂はエマルジョン状態であることが望ましい。 The sizing agent preferably contains a solvent such as water, a polyester resin such as a saturated polyester resin or an unsaturated polyester resin, or a vinyl acetate resin or a urethane resin. These resins are preferably in an emulsion state.
 また、サイジング剤は、それ以外に、例えばシランカップリング剤を含んでいてもよい。上記シランカップリング剤としては、具体的には、アミノシラン、エポキシシラン、ビニルシラン、アクリルシラン、クロルシラン、メルカプトシラン又はウレイドシランなどが使用できる。なお、シランカップリング剤を添加することで、ガラス繊維束の表面を保護する効果が生まれ、引張強度等の機械的強度をさらに一層向上させることができる。本発明では、ラジカル重合により硬化する不飽和ポリエステル樹脂や、ビニルエステル樹脂を含浸させたり、多様な樹脂と含浸させる必要があるため、ビニルシランあるいはアミノシランが好ましい。 In addition, the sizing agent may contain, for example, a silane coupling agent. Specific examples of the silane coupling agent include amino silane, epoxy silane, vinyl silane, acrylic silane, chloro silane, mercapto silane, and ureido silane. In addition, the effect which protects the surface of a glass fiber bundle arises by adding a silane coupling agent, and mechanical strength, such as tensile strength, can be improved further. In the present invention, vinyl silane or aminosilane is preferred because it is necessary to impregnate with unsaturated polyester resin that is cured by radical polymerization, vinyl ester resin, or impregnation with various resins.
 また、上記サイジング剤は、上述のシランカップリング剤以外に、潤滑剤、ノニオン系の界面活性剤又は帯電防止剤等の各成分を含むことができる。 Further, the sizing agent can contain components such as a lubricant, a nonionic surfactant or an antistatic agent in addition to the silane coupling agent described above.
 得られたガラス繊維束を、第1のストランド2aとし、予め用意した第2のストランド2bとしての合成繊維束と絡み合わせることによりたて糸2を形成する。また、上記の方法で、別途作製したガラス繊維束と、別途用意した合成繊維束とを撚り合わせてよこ糸3を形成する。よこ糸3をたて糸2に織り込むことによって、絡み織りにより製織されたメッシュ織物1を得ることができる。 The obtained glass fiber bundle is used as the first strand 2a, and the warp yarn 2 is formed by entanglement with the synthetic fiber bundle as the second strand 2b prepared in advance. Further, the weft yarn 3 is formed by twisting a separately prepared glass fiber bundle and a separately prepared synthetic fiber bundle by the above method. By weaving the weft yarn 3 into the warp yarn 2, a mesh fabric 1 woven by entanglement weaving can be obtained.
 なお、上述したようにメッシュ織物1は、さらに被覆樹脂によって覆われていてもよい。その場合は、アクリル樹脂、不飽和ポリエステル樹脂やビニルエステル樹脂などの被覆樹脂原料を、浸漬法又はスプレー法によりメッシュ織物1に塗布し、たて糸2及びよこ糸3の交差部を目止め加工する。この場合、樹脂原料の形態としては樹脂エマルジョン或いは溶剤系樹脂のどちらの状態でも良い。 Note that, as described above, the mesh fabric 1 may be further covered with a coating resin. In that case, a coating resin raw material such as an acrylic resin, an unsaturated polyester resin, or a vinyl ester resin is applied to the mesh fabric 1 by a dipping method or a spray method, and a crossing portion of the warp yarn 2 and the weft yarn 3 is processed. In this case, the form of the resin raw material may be either a resin emulsion or a solvent-based resin.
 そして、メッシュ織物1に塗布された樹脂を乾燥させる。なお、乾燥させる前に、例えば一対のスクイーズローラーによりメッシュを押圧し、過度に塗布された樹脂を搾り取ってもよい。なお、乾燥は、樹脂エマルジョンを使用した場合は100~120℃の温度で水分を蒸発させ、溶剤系樹脂の場合は含まれる溶剤の乾燥が主目的であるため、過度に硬化を促進させないように、40~80℃の温度で乾燥させることが好ましい。 Then, the resin applied to the mesh fabric 1 is dried. In addition, before making it dry, a mesh may be pressed with a pair of squeeze roller, for example, and resin applied excessively may be squeezed out. In the case of drying, when the resin emulsion is used, water is evaporated at a temperature of 100 to 120 ° C., and in the case of a solvent-based resin, the main purpose is to dry the contained solvent, so that excessive curing is not promoted. It is preferable to dry at a temperature of 40 to 80 ° C.
 また、被覆樹脂で覆って目止め加工する方法以外にも、たて糸2またはよこ糸3に、熱融着性の糸を混入させ、ホットプレスすることにより目止めしてもよい。熱融着性の糸としては、ガラス転移温度が150℃以下の糸を用いることにより、低温でホットプレスすることで目止めできるため好ましい。 Further, in addition to the method of covering with a coating resin and sealing, the warp thread 2 or the weft thread 3 may be mixed with a heat-fusible thread and hot-pressed for sealing. As the heat-fusible yarn, it is preferable to use a yarn having a glass transition temperature of 150 ° C. or lower because it can be sealed by hot pressing at a low temperature.
 (第2の実施形態)
 図2は、本発明の第2の実施形態に係るメッシュを示す模式的平面図である。
(Second Embodiment)
FIG. 2 is a schematic plan view showing a mesh according to the second embodiment of the present invention.
 図2に示すように、メッシュ織物21は、たて糸4及びよこ糸5が平織りされることにより構成されている。たて糸4は、ガラス繊維束4a及び合成繊維束4bにより構成されている。ガラス繊維束4a及び合成繊維束4bは、よこ糸5の延びる方向において、交互に配置されている。また、よこ糸5は、ガラス繊維束5a及び合成繊維束5bにより構成されている。ガラス繊維束5a及び合成繊維束5bは、たて糸4の延びる方向において、交互に配置されている。その他の点は、第1の実施形態と同様である。 As shown in FIG. 2, the mesh fabric 21 is configured by plain weaving of the warp yarn 4 and the weft yarn 5. The warp yarn 4 is composed of a glass fiber bundle 4a and a synthetic fiber bundle 4b. The glass fiber bundle 4a and the synthetic fiber bundle 4b are alternately arranged in the direction in which the weft 5 extends. Moreover, the weft 5 is comprised by the glass fiber bundle 5a and the synthetic fiber bundle 5b. The glass fiber bundles 5a and the synthetic fiber bundles 5b are alternately arranged in the direction in which the warp yarn 4 extends. Other points are the same as in the first embodiment.
 第2の実施形態のメッシュ織物21も、上記特定の組成を有するガラス繊維と、上記特定の破断伸度を有する合成繊維束とを備えているので、コンクリートの剥落防止特性の指標となる押し抜き試験において、高い荷重と高い変位の双方を得ることができる。このようにメッシュ織物21は、コンクリートの剥落防止特性の指標となる押し抜き特性に優れているので、コンクリート構造物の補強効果を高めることができ、コンクリートの剥落防止用途に好適に用いることができる。 Since the mesh fabric 21 of the second embodiment also includes the glass fiber having the specific composition and the synthetic fiber bundle having the specific breaking elongation, the mesh fabric 21 is a punch that serves as an index of the concrete flaking prevention property. In the test, both high loads and high displacements can be obtained. Thus, since the mesh fabric 21 is excellent in the punching characteristics that serve as an index of the concrete peeling prevention characteristic, the reinforcing effect of the concrete structure can be enhanced and can be suitably used for concrete peeling prevention. .
 本発明のメッシュは、第1及び第2の実施形態のような絡み織り、平織りだけでなく、模紗織りされた織物を用いることもできる。もっとも、本発明のメッシュは組布であってもよく、メッシュの作成方法は特に限定されない。これらの中でも、模紗織りであることが好ましい。模紗織りは、1本のたて糸または1本のよこ糸が、3本のストランドにより構成されているので、たて糸及びよこ糸の交差部の接点の面積が大きくなり、目止めしやすくなる。これにより、メッシュが解けにくくなる。 As the mesh of the present invention, not only the entangled weave and the plain weave as in the first and second embodiments, but also a weave woven fabric can be used. However, the mesh of the present invention may be a braided fabric, and the method for creating the mesh is not particularly limited. Among these, imitation weaving is preferable. In the pattern weaving, since one warp or one weft is composed of three strands, the area of the contact point between the warp and the weft is increased, and it is easy to check. Thereby, it becomes difficult to unravel the mesh.
 また、第1及び2の実施形態では、たて糸及びよこ糸がいずれもガラス繊維束及び合成繊維束の双方により構成されていたが、本発明においては、全てのたて糸がガラス繊維束のみ、または合成繊維束のみにより構成され、全てのよこ糸がたて糸とは異なる繊維束のみにより構成されていてもよい。もっとも、コンクリート剥落防止用途においては、メッシュの面方向に垂直な方向(垂直方向)から荷重がかかるので、垂直方向からの荷重を分散させる観点から、全てのたて糸及び全てのよこ糸がいずれもガラス繊維束及び合成繊維束の双方により構成されていることが好ましい。 In the first and second embodiments, the warp yarn and the weft yarn are both composed of both glass fiber bundles and synthetic fiber bundles. However, in the present invention, all warp yarns are only glass fiber bundles or synthetic fibers. It is comprised only by the bundle, and all the wefts may be comprised only by the fiber bundle different from the warp. However, in concrete peeling prevention applications, loads are applied from the direction perpendicular to the mesh surface direction (vertical direction). From the viewpoint of dispersing the load from the vertical direction, all warp yarns and all weft yarns are all glass fibers. It is preferable to be constituted by both a bundle and a synthetic fiber bundle.
 [コンクリート剥落防止材]
 図3は、本発明の一実施形態に係るコンクリート剥落防止材を示す模式的断面図である。図3に示すように、コンクリート剥落防止材10は、メッシュ織物1と、マトリックス12とを備える。メッシュ織物1は、上述した第1の実施形態のメッシュ織物である。メッシュ織物1は、マトリックス12の内部に埋め込まれている。なお、図3に示すように、コンクリート剥落防止材10は、例えば、コンクリート躯体13に貼り付けて用いることができる。
[Concrete peeling prevention material]
FIG. 3 is a schematic cross-sectional view showing a concrete exfoliation preventing material according to an embodiment of the present invention. As shown in FIG. 3, the concrete exfoliation preventing material 10 includes a mesh fabric 1 and a matrix 12. The mesh fabric 1 is the mesh fabric of the first embodiment described above. The mesh fabric 1 is embedded in the matrix 12. In addition, as shown in FIG. 3, the concrete peeling prevention material 10 can be affixed and used for the concrete frame 13, for example.
 このように、コンクリート剥落防止材10では、押し抜き特性に優れるメッシュ織物1がマトリックス12の内部に埋め込まれているので、コンクリートの補強効果を高めることができ、コンクリートの剥落を効果的に防止することができる。 Thus, in the concrete peeling prevention material 10, since the mesh fabric 1 excellent in the punching property is embedded in the matrix 12, the reinforcing effect of the concrete can be enhanced and the concrete peeling is effectively prevented. be able to.
 マトリックス12の材料は、特に限定されず、例えば、エポキシ樹脂、アクリル樹脂又はウレタン樹脂等からなる樹脂マトリックスが使用できる。これらは単独で用いてもよく、これらを混合して併用してもよい。また、本発明において、マトリックスは、樹脂でなくてもよく、例えばセメントであってもよい。いずれの場合においても、メッシュ織物1が、押し抜き特性に優れるため、コンクリートの補強効果を高めることができ、コンクリートの剥落を効果的に防止することができる。 The material of the matrix 12 is not particularly limited, and for example, a resin matrix made of epoxy resin, acrylic resin, urethane resin, or the like can be used. These may be used alone or in combination. In the present invention, the matrix may not be a resin, and may be a cement, for example. In any case, since the mesh fabric 1 is excellent in the punching property, the reinforcing effect of the concrete can be enhanced, and the peeling of the concrete can be effectively prevented.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in more detail based on specific examples. The present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the invention.
 (実施例1~12)
 まず、SiO 57.9質量%、ZrO 17.2質量%、LiO 0.5質量%、NaO 14.8質量%、KO 1.3質量%、CaO 0.9質量%、TiO 7.4質量%の組成を有するガラスとなるように原料を調製し、溶融した溶融ガラスを、数百~数千のノズルを有するブッシングからガラス繊維を引き出した。
(Examples 1 to 12)
First, SiO 2 57.9 mass%, ZrO 2 17.2 mass%, Li 2 O 0.5 mass%, Na 2 O 14.8 mass%, K 2 O 1.3 mass%, CaO 0.9 mass. %, And a raw material was prepared so as to have a glass composition of 7.4% by mass of TiO 2 , and glass fibers were drawn from the molten molten glass from a bushing having several hundred to several thousand nozzles.
 次に、得られたガラス繊維の表面に、ビニルシラン、飽和ポリエステル樹脂、及び潤滑剤を水に分散させたサイジング剤を、強熱減量が0.8質量%となるようにアプリケーターにより調製して塗布し、ガラス繊維を束ねた後、サイジング剤を乾燥させることでガラス繊維束を製造した。 Next, a sizing agent in which vinyl silane, saturated polyester resin, and a lubricant are dispersed in water is prepared and applied to the surface of the obtained glass fiber by an applicator so that the loss on ignition is 0.8% by mass. And after bundling glass fiber, the glass fiber bundle was manufactured by drying a sizing agent.
 次に、図4に示すメッシュ織物31を作製した。具体的には、上記のようにして得られたガラス繊維束32aと、予め用意した合成繊維束32bとを絡み合わせてたて糸32を作製した。次に、上記のようにして別途用意したガラス繊維束33aと、合成繊維束33bとを撚り合わせてよこ糸33を作製した。よこ糸33をたて糸32に織り込むことによって、絡み織りにより製織されたメッシュ織物31を得た。実施例1~12で得られたメッシュ織物31を構成する材料の詳細を下記の表1及び表2に示す。なお、実施例1~7及び実施例9~12では、合成繊維束としてビニロン繊維(破断伸度:9.5%)を使用した。なお、実施例4、12では、合成繊維束として2本の上記ビニロン繊維束を合撚したものを用いた。実施例8では、合成繊維束としてポリプロピレン繊維(PP、破断伸度:30%)を使用した。 Next, a mesh fabric 31 shown in FIG. 4 was produced. Specifically, the warp yarn 32 was produced by intertwining the glass fiber bundle 32a obtained as described above and the synthetic fiber bundle 32b prepared in advance. Next, the weft yarn 33 was produced by twisting the glass fiber bundle 33a separately prepared as described above and the synthetic fiber bundle 33b. By weaving the weft thread 33 into the warp thread 32, a mesh fabric 31 woven by entanglement weaving was obtained. Details of materials constituting the mesh fabric 31 obtained in Examples 1 to 12 are shown in Tables 1 and 2 below. In Examples 1 to 7 and Examples 9 to 12, vinylon fiber (breaking elongation: 9.5%) was used as the synthetic fiber bundle. In Examples 4 and 12, a synthetic fiber bundle obtained by twisting two vinylon fiber bundles was used. In Example 8, a polypropylene fiber (PP, elongation at break: 30%) was used as a synthetic fiber bundle.
 (実施例13~17)
 実施例13~17では、図5に示すメッシュ織物41を作製した。具体的には、実施例1と同様にして得られたガラス繊維束42aと、予め用意した合成繊維束42bとを絡み合わせてたて糸42を作製した。また、別途、実施例1と同様にして用意したガラス繊維束43aと、別途用意した合成繊維束43bとを、よこ糸43として用いた。よこ糸43をたて糸42に織り込むことによって、絡み織りにより製織されたメッシュ織物41を得た。なお、メッシュ織物41においては、よこ糸43としてのガラス繊維束43a及び合成繊維束43bを、たて糸42の伸びる方向において交互に配置した。実施例13~17で得られたメッシュ織物41を構成する材料の詳細を下記の表1及び表2に示す。なお、実施例13~15と、実施例16,17のたて糸では、合成繊維束としてビニロン繊維(破断伸度:9.5%)を使用した。また、実施例16,17のよこ糸では、合成繊維束としてポリプロピレン繊維(PP、破断伸度:30%)を使用した。
(Examples 13 to 17)
In Examples 13 to 17, a mesh fabric 41 shown in FIG. 5 was produced. Specifically, a warp yarn 42 was produced by intertwining a glass fiber bundle 42a obtained in the same manner as in Example 1 and a synthetic fiber bundle 42b prepared in advance. Separately, a glass fiber bundle 43 a prepared in the same manner as in Example 1 and a synthetic fiber bundle 43 b separately prepared were used as the weft yarn 43. By weaving the weft thread 43 into the warp thread 42, a mesh fabric 41 woven by entanglement weaving was obtained. In the mesh fabric 41, the glass fiber bundles 43a and the synthetic fiber bundles 43b as the weft threads 43 are alternately arranged in the direction in which the warp threads 42 extend. Details of materials constituting the mesh fabric 41 obtained in Examples 13 to 17 are shown in Tables 1 and 2 below. In the warps of Examples 13 to 15 and Examples 16 and 17, vinylon fiber (breaking elongation: 9.5%) was used as a synthetic fiber bundle. In the weft yarns of Examples 16 and 17, polypropylene fibers (PP, breaking elongation: 30%) were used as the synthetic fiber bundle.
 (実施例18,19)
 実施例18,19では、図6に示すメッシュ織物51を作製した。具体的には、実施例1と同様にして得られた2本のガラス繊維束を絡み合わせて、たて糸52を作製した。また、別途用意した合成繊維束を、よこ糸53として用いた。よこ糸53をたて糸52に織り込むことによって、絡み織りにより製織されたメッシュ織物51を得た。実施例18,19で得られたメッシュ織物51を構成する材料の詳細を下記の表1及び表2に示す。なお、実施例18では、合成繊維束としてビニロン繊維(破断伸度:9.5%)を、実施例19では、合成繊維束としてポリプロピレン繊維(PP、破断伸度:30%)を使用した。
(Examples 18 and 19)
In Examples 18 and 19, a mesh fabric 51 shown in FIG. 6 was produced. Specifically, two fiberglass bundles obtained in the same manner as in Example 1 were entangled to produce a warp yarn 52. A separately prepared synthetic fiber bundle was used as the weft yarn 53. By weaving the weft yarn 53 into the warp yarn 52, a mesh fabric 51 woven by entanglement weaving was obtained. Details of materials constituting the mesh fabric 51 obtained in Examples 18 and 19 are shown in Tables 1 and 2 below. In Example 18, vinylon fiber (breaking elongation: 9.5%) was used as the synthetic fiber bundle, and in Example 19, polypropylene fiber (PP, breaking elongation: 30%) was used as the synthetic fiber bundle.
 (実施例20)
 実施例20では、図7に示すメッシュ織物61を作製した。具体的には、予め用意した2本のビニロン繊維束(破断伸度:9.5%)を絡み合わせて、たて糸62を作製した。また、実施例1と同様にして得られたガラス繊維束を、よこ糸63として用いた。よこ糸63をたて糸62に織り込むことによって、絡み織りにより製織されたメッシュ織物61を得た。実施例20で得られたメッシュ織物61を構成する材料の詳細を下記の表1及び表2に示す。
(Example 20)
In Example 20, the mesh fabric 61 shown in FIG. 7 was produced. Specifically, two pre-prepared vinylon fiber bundles (breaking elongation: 9.5%) were entangled to produce warp yarn 62. Further, a glass fiber bundle obtained in the same manner as in Example 1 was used as the weft thread 63. By weaving the weft thread 63 into the warp thread 62, a mesh fabric 61 woven by entanglement weaving was obtained. Details of materials constituting the mesh fabric 61 obtained in Example 20 are shown in Tables 1 and 2 below.
 (実施例21)
 実施例21では、図8に示すメッシュ織物71を作製した。具体的には、実施例1と同様にして得られたガラス繊維束72aと、予め用意した合成繊維束72bとしてのビニロン繊維束(破断伸度:9.5%)とをたて糸72として用いた。また、別途実施例1と同様にして得られたガラス繊維束73aと、予め用意した合成繊維束73bとしてのビニロン繊維束(破断伸度:9.5%)とをよこ糸73として用いた。たて糸72及びよこ糸73を平織りすることにより、メッシュ織物71を得た。なお、ガラス繊維束72a及び合成繊維束72bは、よこ糸73に沿う方向において交互に配置した。また、ガラス繊維束73a及び合成繊維束73bは、たて糸72に沿う方向において交互に配置した。実施例21で得られたメッシュ織物71を構成する材料の詳細を下記の表1及び表2に示す。
(Example 21)
In Example 21, a mesh fabric 71 shown in FIG. 8 was produced. Specifically, a glass fiber bundle 72a obtained in the same manner as in Example 1 and a vinylon fiber bundle (breaking elongation: 9.5%) as a synthetic fiber bundle 72b prepared in advance were used as the warp yarn 72. . Separately, a glass fiber bundle 73a obtained in the same manner as in Example 1 and a vinylon fiber bundle (breaking elongation: 9.5%) as a synthetic fiber bundle 73b prepared in advance were used as the weft yarn 73. The mesh fabric 71 was obtained by plain weaving the warp yarn 72 and the weft yarn 73. In addition, the glass fiber bundle 72a and the synthetic fiber bundle 72b were alternately arranged in the direction along the weft 73. Further, the glass fiber bundle 73 a and the synthetic fiber bundle 73 b were alternately arranged in the direction along the warp yarn 72. Details of materials constituting the mesh fabric 71 obtained in Example 21 are shown in Tables 1 and 2 below.
 (実施例22)
 実施例22では、たて糸72を構成する合成繊維束72bとして、ビニロン繊維束の代わりに予め用意したポリプロピレン繊維束(PP、破断伸度:30%)を用いたこと以外は、実施例21と同様にしてメッシュ織物71を作製した。実施例22で得られたメッシュ織物71を構成する材料の詳細を下記の表1及び表2に示す。
(Example 22)
In Example 22, as the synthetic fiber bundle 72b constituting the warp yarn 72, a polypropylene fiber bundle (PP, breaking elongation: 30%) prepared in advance instead of the vinylon fiber bundle was used. Thus, a mesh fabric 71 was produced. Details of materials constituting the mesh fabric 71 obtained in Example 22 are shown in Tables 1 and 2 below.
 (実施例23,24)
 実施例23,24では、図9に示すメッシュ織物81を作製した。具体的には、実施例1と同様にして得られたガラス繊維束82a1,82a3と、合成繊維束82a2とをたて糸82aとして用いた。実施例1と同様にして得られたガラス繊維束82b2と、合成繊維束82b1,82b3とをたて糸82bとして用いた。
(Examples 23 and 24)
In Examples 23 and 24, a mesh fabric 81 shown in FIG. 9 was produced. Specifically, glass fiber bundles 82a1 and 82a3 obtained in the same manner as in Example 1 and synthetic fiber bundle 82a2 were used as warp yarns 82a. The glass fiber bundle 82b2 obtained in the same manner as in Example 1 and the synthetic fiber bundles 82b1 and 82b3 were used as the warp yarn 82b.
 また、実施例1と同様にして得られたガラス繊維束83a1,83a3と、合成繊維束83a2とをよこ糸83aとして用いた。実施例1と同様にして得られたガラス繊維束83b2と、合成繊維束83b1,83b3とをよこ糸83bとして用いた。たて糸82a,たて糸82b、よこ糸83a、及びよこ糸83bを模紗織りすることにより、メッシュ織物81を得た。 Further, glass fiber bundles 83a1 and 83a3 obtained in the same manner as in Example 1 and synthetic fiber bundle 83a2 were used as weft yarn 83a. The glass fiber bundle 83b2 obtained in the same manner as in Example 1 and the synthetic fiber bundles 83b1 and 83b3 were used as the weft yarn 83b. The mesh fabric 81 was obtained by weaving the warp yarn 82a, the warp yarn 82b, the weft yarn 83a, and the weft yarn 83b.
 なお、たて糸82a及びたて糸82bは、よこ糸83aに沿う方向において交互に配置した。たて糸82aにおいて、ガラス繊維束82a1,合成繊維束82a2、及びガラス繊維束82a3は、よこ糸83aに沿う方向においてこの順に配置した。一方、たて糸82bにおいて、合成繊維束82b1、ガラス繊維束82b2、及び合成繊維束82b3は、よこ糸83aに沿う方向においてこの順に配置した。 In addition, the warp yarn 82a and the warp yarn 82b were alternately arranged in the direction along the weft yarn 83a. In the warp yarn 82a, the glass fiber bundle 82a1, the synthetic fiber bundle 82a2, and the glass fiber bundle 82a3 are arranged in this order in the direction along the weft yarn 83a. On the other hand, in the warp yarn 82b, the synthetic fiber bundle 82b1, the glass fiber bundle 82b2, and the synthetic fiber bundle 82b3 are arranged in this order in the direction along the weft yarn 83a.
 また、よこ糸83a及びよこ糸83bは、たて糸82aに沿う方向において交互に配置した。よこ糸83aにおいて、ガラス繊維束83a1、合成繊維束83a2、及びガラス繊維束83a3は、たて糸82aに沿う方向においてこの順に配置した。よこ糸83bにおいて、合成繊維束83b1、ガラス繊維束83b2、及び合成繊維束83b3は、たて糸82aに沿う方向においてこの順に配置した。実施例23,24で得られたメッシュ織物81を構成する材料の詳細を下記の表1及び表2に示す。なお、実施例23,24では、合成繊維束としてポリプロピレン繊維(PP、破断伸度:30%)を使用した。 Further, the weft yarns 83a and the weft yarns 83b were alternately arranged in the direction along the warp yarn 82a. In the weft yarn 83a, the glass fiber bundle 83a1, the synthetic fiber bundle 83a2, and the glass fiber bundle 83a3 are arranged in this order in the direction along the warp yarn 82a. In the weft yarn 83b, the synthetic fiber bundle 83b1, the glass fiber bundle 83b2, and the synthetic fiber bundle 83b3 are arranged in this order in the direction along the warp yarn 82a. Details of materials constituting the mesh fabric 81 obtained in Examples 23 and 24 are shown in Tables 1 and 2 below. In Examples 23 and 24, polypropylene fibers (PP, elongation at break: 30%) were used as the synthetic fiber bundle.
 (比較例1)
 比較例1では、合成繊維束としてポリプロピレン繊維(PP、破断伸度:40%)を使用したこと以外は、実施例1と同様の方法でメッシュ織物31を得た。
(Comparative Example 1)
In Comparative Example 1, a mesh fabric 31 was obtained in the same manner as in Example 1 except that polypropylene fibers (PP, breaking elongation: 40%) were used as the synthetic fiber bundle.
 (比較例2)
 比較例2では、実施例1と同様にして得られた2本のガラス繊維束を絡み合わせてたて糸を作製した。次に、実施例1と同様にして別途用意した2本のガラス繊維束を撚り合わせてよこ糸を作製した。よこ糸をたて糸に織り込むことによって、絡み織りにより製織されたガラス繊維束のみからなるメッシュ織物を得た。比較例2で得られたメッシュ織物を構成する材料の詳細を下記の表1及び表2に示す。
(Comparative Example 2)
In Comparative Example 2, a warp yarn was produced by intertwining two glass fiber bundles obtained in the same manner as in Example 1. Next, in the same manner as in Example 1, two separately prepared glass fiber bundles were twisted to produce weft yarns. By weaving the weft yarn into the warp yarn, a mesh fabric consisting only of glass fiber bundles woven by entanglement weave was obtained. Details of materials constituting the mesh fabric obtained in Comparative Example 2 are shown in Tables 1 and 2 below.
 (比較例3)
 比較例3では、予め用意した2本の合成繊維束を絡み合わせてたて糸を作製した。次に、別途用意した2本の合成繊維束を撚り合わせてよこ糸を作製した。よこ糸をたて糸に織り込むことによって、絡み織りにより製織された合成繊維束のみからなるメッシュ織物を得た。比較例3で得られたメッシュ織物を構成する材料の詳細を下記の表1及び表2に示す。なお、比較例3では、合成繊維束としてポリプロピレン繊維(PP、破断伸度:30%)を使用した。
(Comparative Example 3)
In Comparative Example 3, a warp yarn was produced by intertwining two synthetic fiber bundles prepared in advance. Next, two synthetic fiber bundles prepared separately were twisted to produce weft yarns. By weaving the weft yarn into the warp yarn, a mesh fabric consisting only of a synthetic fiber bundle woven by entanglement weave was obtained. Details of materials constituting the mesh fabric obtained in Comparative Example 3 are shown in Tables 1 and 2 below. In Comparative Example 3, polypropylene fibers (PP, elongation at break: 30%) were used as the synthetic fiber bundle.
 (試料の特性評価)
 引張強度;
 実施例1~24及び比較例1~3で得られたメッシュ織物におけるたて糸及びよこ糸の引張強度は、JIS L1096(2010年)に準拠して測定した。具体的には、メッシュ織物から幅25mm及び長さ200mmの試験片を、たて方向及びよこ方向それぞれから5枚ずつ採取した。試験は、オートグラフ(島津製作所社製)を用いて、スパン(つかみ間隔)100mm及び引張速度50mm/分の測定条件で行った。結果を、下記の表2に示す。
(Sample characteristic evaluation)
Tensile strength;
The tensile strength of warp and weft in the mesh fabrics obtained in Examples 1 to 24 and Comparative Examples 1 to 3 was measured according to JIS L1096 (2010). Specifically, five test pieces each having a width of 25 mm and a length of 200 mm were collected from the mesh fabric in each of the vertical direction and the horizontal direction. The test was performed using an autograph (manufactured by Shimadzu Corporation) under measurement conditions of a span (grip interval) of 100 mm and a tensile speed of 50 mm / min. The results are shown in Table 2 below.
 押し抜き試験(押し抜き性能);
 実施例1~24及び比較例1~3で得られたメッシュ織物の押し抜き試験を、平成27年7月に、東日本高速道路株式会社、中日本高速道路株式会社及び西日本高速道路株式会社によって発行されたNEXCO試験方法 第7編 トンネル関係試験方法 試験法734に従い行った。コア破断時の押し抜き荷重(コア破断荷重)、並びに5mm、10mm及び20mm変位した時の押し抜き荷重を下記の表2に示す。
Punching test (punching performance);
The push-out test of the mesh fabric obtained in Examples 1 to 24 and Comparative Examples 1 to 3 was issued in July 2015 by East Japan Expressway Co., Ltd., Central Japan Expressway Co., Ltd., and West Japan Expressway Co., Ltd. NEXCO Test Method Vol. 7 Tunnel-Related Test Method Test method 734 was performed. The punching load when the core breaks (core breaking load) and the punching load when displaced by 5 mm, 10 mm, and 20 mm are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2より、たて糸及びよこ糸のうち少なくとも一方を構成しており、ガラス組成として、ZrOを12質量%以上、及びRO(RはLi、Na及びKから選択される少なくとも1種)を10質量%以上含有する、ガラス繊維束と、たて糸及びよこ糸のうち少なくとも一方を構成しており、JIS R3420(2013年)に準拠して測定された破断伸度が、4%以上、35%以下である、合成繊維束と、を備える、メッシュ織物は、引張強度が高く、かつ、押し抜き試験結果も良好であった。一方、比較例1~3のメッシュ織物は、押し抜き試験において、コア破断荷重、変位5mm、変位10mm、変位20mmの結果のうち、いずれかが十分でなかった。 From Tables 1 and 2, at least one of the warp and the weft is configured, and as a glass composition, ZrO 2 is 12% by mass or more, and R 2 O (R is at least 1 selected from Li, Na and K) Comprising at least one of a glass fiber bundle, warp and weft containing 10% by mass or more of a seed), and the elongation at break measured according to JIS R3420 (2013) is 4% or more, The mesh fabric provided with a synthetic fiber bundle that is 35% or less had high tensile strength and good punch test results. On the other hand, in the mesh fabrics of Comparative Examples 1 to 3, any one of the results of the core breaking load, the displacement of 5 mm, the displacement of 10 mm, and the displacement of 20 mm was not sufficient in the punching test.
1,21,31,41,51,61,71,81…メッシュ織物
2,4,32,42,52,62,72,82a,82b…たて糸
2a,2b…第1,第2のストランド
4a,5a,32a,33a,42a,43a,72a,73a,82a1,82a3,82b2,83a1,83a3,83b2…ガラス繊維束
4b,5b,32b,33b,42b,43b,72b,73b,82a2,82b1,82b3,83a2,83b1,83b3…合成繊維束
3,5,33,43,53,63,73,83a,83b…よこ糸
10…コンクリート剥落防止材
12…マトリックス
13…コンクリート躯体
1, 21, 31, 41, 51, 61, 71, 81 ... mesh fabric 2, 4, 32, 42, 52, 62, 72, 82a, 82b ... warp yarns 2a, 2b ... first and second strands 4a, 5a, 32a, 33a, 42a, 43a, 72a, 73a, 82a1, 82a3, 82b2, 83a1, 83a3, 83b2 ... Glass fiber bundles 4b, 5b, 32b, 33b, 42b, 43b, 72b, 73b, 82a2, 82b1, 82b3 , 83a2, 83b1, 83b3 ... synthetic fiber bundles 3, 5, 33, 43, 53, 63, 73, 83a, 83b ... weft thread 10 ... concrete peeling prevention material 12 ... matrix 13 ... concrete frame

Claims (13)

  1.  複数本のたて糸及び複数本のよこ糸により構成されているメッシュであって、
     ガラス組成として、ZrOを12質量%以上、及びRO(RはLi、Na及びKから選択される少なくとも1種)を10質量%以上含有する、ガラス繊維束と、
     JIS R3420(2013年)に準拠して測定された破断伸度が、4%以上、35%以下である、合成繊維束と、
    を備える、メッシュ。
    A mesh composed of a plurality of warps and a plurality of wefts,
    A glass fiber bundle containing 12% by mass or more of ZrO 2 and 10% by mass or more of R 2 O (R is at least one selected from Li, Na and K) as a glass composition;
    A synthetic fiber bundle having a breaking elongation measured according to JIS R3420 (2013) of 4% or more and 35% or less;
    With a mesh.
  2.  前記合成繊維束が、ビニロン繊維束である、請求項1に記載のメッシュ。 The mesh according to claim 1, wherein the synthetic fiber bundle is a vinylon fiber bundle.
  3.  目付が、100g/m以上、450g/m以下である、請求項1又は2に記載のメッシュ。 The mesh according to claim 1 or 2, wherein the basis weight is 100 g / m 2 or more and 450 g / m 2 or less.
  4.  前記ガラス繊維束の目付が、50g/m以上、250g/m以下であり、
     前記合成繊維束の目付が、30g/m以上、200g/m以下である、請求項1~3のいずれか1項に記載のメッシュ。
    The basis weight of the glass fiber bundle is 50 g / m 2 or more and 250 g / m 2 or less,
    The mesh according to any one of claims 1 to 3, wherein the weight of the synthetic fiber bundle is 30 g / m 2 or more and 200 g / m 2 or less.
  5.  前記メッシュにおける前記合成繊維束の質量割合が、10質量%以上、70質量%以下である、請求項1~4のいずれか1項に記載のメッシュ。 The mesh according to any one of claims 1 to 4, wherein a mass ratio of the synthetic fiber bundle in the mesh is 10% by mass or more and 70% by mass or less.
  6.  前記メッシュにおける前記合成繊維束の体積割合が、20%以上、80%以下である、請求項1~5のいずれか1項に記載のメッシュ。 The mesh according to any one of claims 1 to 5, wherein a volume ratio of the synthetic fiber bundle in the mesh is 20% or more and 80% or less.
  7.  前記メッシュにおける前記ガラス繊維束の質量割合が、30質量%以上、90質量%以下である、請求項1~6のいずれか1項に記載のメッシュ。 The mesh according to any one of claims 1 to 6, wherein a mass ratio of the glass fiber bundle in the mesh is 30% by mass or more and 90% by mass or less.
  8.  前記メッシュにおける前記ガラス繊維束の体積割合が、20%以上、80%以下である、請求項1~7のいずれか1項に記載のメッシュ。 The mesh according to any one of claims 1 to 7, wherein a volume ratio of the glass fiber bundle in the mesh is 20% or more and 80% or less.
  9.  前記たて糸に沿う方向及び前記よこ糸に沿う方向の引張強度が、それぞれ、200N/25mm以上である、請求項1~8のいずれか1項に記載のメッシュ。 The mesh according to any one of claims 1 to 8, wherein the tensile strength in the direction along the warp and the direction along the weft is 200 N / 25 mm or more, respectively.
  10.  絡み織りの織物からなる、請求項1~9のいずれか1項に記載のメッシュ。 The mesh according to any one of claims 1 to 9, wherein the mesh is made of a woven fabric with an entangled weave.
  11.  前記たて糸及び前記よこ糸のうち少なくとも一方が、前記ガラス繊維束及び前記合成繊維束の双方により構成されている、請求項1~10のいずれか1項に記載のメッシュ。 The mesh according to any one of claims 1 to 10, wherein at least one of the warp and the weft is composed of both the glass fiber bundle and the synthetic fiber bundle.
  12.  コクリート剥落防止材に用いられる、請求項1~11のいずれか1項に記載のメッシュ。 The mesh according to any one of claims 1 to 11, which is used as a cocrete exfoliation preventing material.
  13.  マトリックスと、
     請求項1~12のいずれか1項に記載のメッシュと、
    を備える、コンクリート剥落防止材。
    Matrix,
    A mesh according to any one of claims 1 to 12,
    A concrete peeling prevention material.
PCT/JP2017/026656 2016-07-26 2017-07-24 Mesh and concrete peeling preventing material WO2018021230A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018529872A JP7010222B2 (en) 2016-07-26 2017-07-24 Mesh and concrete exfoliation prevention material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016146330 2016-07-26
JP2016-146330 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018021230A1 true WO2018021230A1 (en) 2018-02-01

Family

ID=61016178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026656 WO2018021230A1 (en) 2016-07-26 2017-07-24 Mesh and concrete peeling preventing material

Country Status (2)

Country Link
JP (1) JP7010222B2 (en)
WO (1) WO2018021230A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150894A1 (en) * 2018-02-05 2019-08-08 日本電気硝子株式会社 Mesh and material for preventing peeling-off of concrete
WO2022015157A1 (en) * 2020-07-17 2022-01-20 Crt Manufacturing Sdn. Bhd. Reinforcement mesh and method for producing thereof
CN114920522A (en) * 2022-06-09 2022-08-19 商丘师范学院 Flat fiber fabric reinforced cement-based composite material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069785A (en) * 2000-09-05 2002-03-08 Unitika Glass Fiber Co Ltd Twisted yarn material
JP2003013352A (en) * 2001-06-26 2003-01-15 Nippon Electric Glass Co Ltd Mesh-like woven fabric and method for producing the same
JP2004149929A (en) * 2001-10-03 2004-05-27 Kurabo Ind Ltd Nonwoven base fabric for reinforcing and method for reinforcing
JP2006029059A (en) * 2003-10-31 2006-02-02 Nippon Electric Glass Co Ltd Exfoliation preventive method of cement-based structure and cement-based structure
JP2007270510A (en) * 2006-03-31 2007-10-18 Sumitomo Osaka Cement Co Ltd Fall preventing method of exfoliated piece of structure
JP2009228160A (en) * 2008-03-24 2009-10-08 Toray Ind Inc Leno cloth for patching and reinforcing, and composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069785A (en) * 2000-09-05 2002-03-08 Unitika Glass Fiber Co Ltd Twisted yarn material
JP2003013352A (en) * 2001-06-26 2003-01-15 Nippon Electric Glass Co Ltd Mesh-like woven fabric and method for producing the same
JP2004149929A (en) * 2001-10-03 2004-05-27 Kurabo Ind Ltd Nonwoven base fabric for reinforcing and method for reinforcing
JP2006029059A (en) * 2003-10-31 2006-02-02 Nippon Electric Glass Co Ltd Exfoliation preventive method of cement-based structure and cement-based structure
JP2007270510A (en) * 2006-03-31 2007-10-18 Sumitomo Osaka Cement Co Ltd Fall preventing method of exfoliated piece of structure
JP2009228160A (en) * 2008-03-24 2009-10-08 Toray Ind Inc Leno cloth for patching and reinforcing, and composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150894A1 (en) * 2018-02-05 2019-08-08 日本電気硝子株式会社 Mesh and material for preventing peeling-off of concrete
JP2019135338A (en) * 2018-02-05 2019-08-15 日本電気硝子株式会社 Mesh and concrete exfoliation preventing material
JP7047426B2 (en) 2018-02-05 2022-04-05 日本電気硝子株式会社 Mesh and concrete exfoliation prevention material
WO2022015157A1 (en) * 2020-07-17 2022-01-20 Crt Manufacturing Sdn. Bhd. Reinforcement mesh and method for producing thereof
CN114920522A (en) * 2022-06-09 2022-08-19 商丘师范学院 Flat fiber fabric reinforced cement-based composite material and preparation method thereof

Also Published As

Publication number Publication date
JPWO2018021230A1 (en) 2019-05-09
JP7010222B2 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
US8187401B2 (en) Enhanced thickness fabric and method of making same
US7354876B2 (en) Fabric reinforcement and cementitious boards faced with same
WO2018021230A1 (en) Mesh and concrete peeling preventing material
KR20010023769A (en) New and useful improvements in fiber-reinforced composite materials structures and methods of making same
DE112018003602B4 (en) Friction lining with a hybrid yarn, method for producing a friction lining and clutch disc or clutch plate with such a friction lining
JP7106918B2 (en) Unidirectional reinforcing fiber sheets and braids
CA2574144C (en) Improved enhanced thickness fabric and method of making same
JP7047426B2 (en) Mesh and concrete exfoliation prevention material
JP6011303B2 (en) Pavement reinforcement sheet
JP2023019668A (en) Method for manufacturing reinforcement mesh, and reinforcement mesh wound body
JP2003119641A (en) Woven fabric for reinforcement
JP6897705B2 (en) Reinforcing fiber woven fabric and its manufacturing method
JP6686718B2 (en) Glass mesh and concrete exfoliation prevention material
CN103806166A (en) Warp and weft forwards and backwards entwisted white body obliquely-interwoven impregnated fabric
JP7334821B2 (en) Method for manufacturing fiber sheet
JP7238391B2 (en) Manufacturing method of fiber sheet laminate, fiber sheet laminate, and concrete spalling prevention material
CN217630954U (en) Anti-crack net and wall comprising same
JP6364798B2 (en) Reinforcing fiber fabric and method for producing the same
JP3340540B2 (en) Reinforcement core material and fiber resin composite sheet
JP7159684B2 (en) fiber sheet and concrete structure
JP6855768B2 (en) Mesh laminate and concrete exfoliation prevention material
KR20240045128A (en) Recyclable fabric for advertisement, Concrete reinforcement material including the same and Fiber-reinforcement concrete including the same
JPH01229838A (en) Reinforced base material for composite material
TWM316894U (en) Composite material woven fabric

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529872

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834236

Country of ref document: EP

Kind code of ref document: A1