WO2018021052A1 - Ice dispenser - Google Patents

Ice dispenser Download PDF

Info

Publication number
WO2018021052A1
WO2018021052A1 PCT/JP2017/025635 JP2017025635W WO2018021052A1 WO 2018021052 A1 WO2018021052 A1 WO 2018021052A1 JP 2017025635 W JP2017025635 W JP 2017025635W WO 2018021052 A1 WO2018021052 A1 WO 2018021052A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
discharge
amount
sensor
chute
Prior art date
Application number
PCT/JP2017/025635
Other languages
French (fr)
Japanese (ja)
Inventor
由次 海老原
孝洋 鳥海
浅見 徹
Original Assignee
サンデン・リテールシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・リテールシステム株式会社 filed Critical サンデン・リテールシステム株式会社
Publication of WO2018021052A1 publication Critical patent/WO2018021052A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice

Definitions

  • the present invention relates to an ice dispenser that stores and provides a predetermined amount of block ice.
  • an ice dispenser (ice supply device) described in Patent Document 1 includes an ice making mechanism that produces lump ice and an ice storage (ice storage part) that stores ice produced by the ice making mechanism.
  • the ice stored in the warehouse is discharged from an opening (discharge port) provided in the lower side of the ice storage, guided by a chute (shooter), and provided to the cup.
  • an ice amount detection sensor (light sensor) is attached to a portion through which the ice discharged from the opening passes, so that the amount of ice provided to the cup can be detected.
  • a discharge cover is attached so as to cover a discharge port (opening) provided at the lower side of the ice storage part (ice storage), and ice discharged from the discharge cover is provided below the cover.
  • a shooter (chute) is installed.
  • the shooter is equipped with an optical sensor (ice amount detection sensor) for detecting the amount of ice passing through the shooter.
  • the inner surface of the shooter is a portion that easily gets dirty because pieces of passing ice, powdered ice, frost, and the like adhere and melt and become wet. Therefore, the shooter needs to be periodically removed and cleaned.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide an ice dispenser in which a shooter can be easily removed for cleaning.
  • an ice dispenser of the present invention passes through an ice storage unit for storing ice, an ice induction unit for guiding ice discharged from a carry-out port of the ice storage unit, and the ice induction unit.
  • An ice sensor for detecting the amount of ice wherein the ice guiding unit includes at least a slope for guiding the ice discharged from the carry-out port obliquely downward, and is fixed to the housing of the ice storage or the ice dispenser.
  • the fixed ice guiding unit and a chute disposed downstream of the slope to guide the ice downward, the ice sensor being attached to the fixed ice guiding unit, and the chute being fixed ice guiding It is detachable from the unit.
  • the chute is detachable in the front-rear direction with respect to the fixed ice guiding unit.
  • the ice sensor is attached to the slope.
  • the fixed ice guiding unit further includes a bracket for supporting the ice sensor, and the ice sensor is attached to the bracket.
  • the chute is detachably attached to the slope.
  • the chute is detachably attached to the bracket.
  • the chute includes a guide on an outer periphery, and the guide is engaged with the bracket.
  • the ice sensor for detecting the amount of ice passing through the ice guiding unit is attached to the fixed ice guiding unit fixed to the ice storage or the housing of the ice dispenser. That is, an ice sensor is not attached to a chute that is arranged downstream of the slope that constitutes the fixed ice guiding unit and guides ice downward.
  • the chute is detachably supported with respect to the fixed ice guiding unit. Therefore, when removing the chute for cleaning, it is not necessary to remove the mounted parts from the chute in advance, and an excellent effect that the chute can be easily detached is obtained.
  • FIG. 1 is an external view of an ice dispenser according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the internal structure of the ice dispenser of this embodiment.
  • the ice dispenser 1 according to an embodiment of the present invention is installed on a counter near a cash register of a convenience store, for example, and is used by an employee or the like to put ice in a cup when serving a cooled beverage.
  • the ice dispenser 1 of the present embodiment is an apparatus that provides only ice without an ice maker, and is made at a lower temperature than the ice made by an ice dispenser with an ice maker purchased from an ice maker and put into a beverage.
  • the ice dispenser 1 has a substantially rectangular housing 2. On the upper surface of the housing 2, there is provided a lid portion 3 that covers an ice slot into which massive ice is poured.
  • a front door 4 is provided on the front surface of the housing 2 to cover the upper and middle portions of the front surface.
  • a discharge port 5 is provided on the front surface of the housing 2 to discharge massive ice from the lower end of the front door 4 downward.
  • An ice discharge lever 6 discharge operation means
  • the ice discharge lever 6 is arranged so that when the user holds the mouth of the cup below the discharge port 5, the ice can be pushed backward by the back of the hand or the finger holding the cup.
  • the ice discharge lever 6 may be provided with push-type operation means instead.
  • On the surface of the front door 4 of the housing 2, four button switches for instructing the discharge of ice are arranged in the vertical direction.
  • the upper three are ice fixed amount discharge buttons 7 (discharge operation means, notification means) for discharging a fixed amount (first predetermined amount).
  • the fixed amount discharge button 7a can be set to a large discharge amount
  • the constant amount of ice discharge button 7b can be set
  • the fixed amount discharge button 7c can be set to a small discharge amount.
  • the button switch arranged at the bottom of the four button switches is an ice trace discharge button 8 (discharge operation means) for discharging a trace amount (for example, several: a second predetermined amount) of ice.
  • the ice fixed amount discharge buttons 7a, 7b, and 7c and the ice small amount discharge button 8 are button switches with built-in LEDs.
  • a tray portion 9 is provided below the discharge port 5, for receiving and storing spilled ice or the like.
  • an ice storage 20 for storing massive ice is provided inside the ice dispenser 1.
  • the ice storage 20 is a substantially cylindrical tank arranged so that its axis extends in the vertical direction, and is formed of a highly heat-conductive material such as aluminum or stainless steel, and is configured to cover its periphery with a heat insulating material. ing.
  • the ice storage 20 is open at the top, is provided with an ice inlet 21, and is closed at the bottom.
  • an opening 22 (a carry-out port) for discharging the ice in the ice storage 20 is provided in the lower part of the front side surface of the ice storage 20, an opening 22 (a carry-out port) for discharging the ice in the ice storage 20 is provided.
  • an ice guiding unit 23 that guides ice from the opening 22 of the ice storage 20 to the front lower side is provided.
  • the ice guiding unit 23 is fixed to the side surface of the ice storage 20 and has a slope 24 (fixed ice guiding unit) for guiding ice obliquely downward from the opening 22 and a chute 25 (discharge) for guiding ice downward from the tip of the slope 24. Road) and a bracket 26 (fixed ice guiding unit) that is fixed to the housing of the ice dispenser 1 and supports the chute 25.
  • the lower end of the chute 25 is opened downward in front of the ice discharge lever 6, and this opening serves as a discharge port 5 for discharging ice.
  • the ice guiding unit 23 is provided with an ice sensor for detecting the amount of ice passing therethrough.
  • some conventional ice dispensers have a sensor mounted on a chute.
  • the inner surface of the chute adheres to pieces of ice that pass through and melts and gets wet, so it is a site that tends to get dirty and needs to be periodically removed and cleaned.
  • the sensor is removed from the chute (or the wiring connected to the sensor is removed from the wiring connected to the control unit in the connector). ) It is necessary and workability is not good.
  • the ice guiding unit 23 of the present embodiment is configured so that the chute 25 for cleaning can be easily removed.
  • FIG. 3A is a perspective view showing the structure of the ice guiding unit 23
  • FIG. 3B is a perspective view of the chute
  • FIG. 3C is a perspective view showing a state in which the chute 25 is removed from FIG. 3A
  • FIG. It is a perspective view which shows the state which removed the housing 26b.
  • the slope 24 includes a flange portion 24a and a ramp portion 24b.
  • the flange portion 24 a is provided at the upper end portion of the slope 24 and has a function of fixing the slope 24 to the lower portion of the front side surface of the ice storage 20.
  • the flange 24 a is provided with an opening 24 c having substantially the same shape as the opening 22 of the ice storage 20.
  • the sloping portion 24b extends obliquely upward from the lower wall 24d extending along a plane extending obliquely downward from a position spaced apart from the lower edge of the opening 24c in the flange portion 24a, and the upper edge of the opening 24c.
  • the upper wall 24e is formed shorter than the lower wall 24d.
  • the ramp portion 24b includes a side wall (side wall) 24f that extends forward from the left and right edges of the opening 24c.
  • the side wall 24f is formed by integrating a lower part extending obliquely downward with substantially the same height as the left and right edges of the opening 24c, and a triangular upper part connecting the lower part and the upper wall 24e. It has the shape made into. Thereby, the part near the opening part 24c of the ramp part 24b is formed in a pyramid shape composed of the upper wall 24e, the side wall 24f (upper part and lower part) and the lower wall 24d, and the part far from the opening part 24c is The side wall 24f (lower part) and the lower wall 24d are formed in a substantially U-shape. In the embodiment shown in FIGS.
  • the ramp portion 24b is formed in a bowl shape as described above, but the whole may be formed in a cylindrical shape.
  • Bosses 24g are formed on the outer side surfaces of both side walls 24f near the lower end of the ramp portion 24b, and a pair of ice sensor housings 24h are mounted on the bosses 24g. Note that a gap is formed between the outer side surface of both side walls 24f and the inner side surface of the pair of ice sensor housings 24h that can accommodate both left and right edges of the peripheral wall of the chute 25 described later.
  • ice sensor housing 24h for example, light emitting elements and light receiving elements are arranged in the vertical direction in this order, and in the other ice sensor housing 24h, light receiving elements and light emitting elements are arranged in the vertical direction.
  • the light emitting element and the light receiving element which are arranged opposite to each other across the ice passage between the side walls 24f, constitute a pair of ice sensors 33a and 33b (detection means), respectively.
  • the emitted light is received by the light receiving element (hereinafter, the ice sensors 33a and 33b are collectively referred to as the ice sensor 33).
  • the chute 25 includes a scoop portion 25a and a cylindrical portion 25b connected to the lower portion thereof.
  • the scoop part 25a includes a peripheral wall having a substantially U-shaped cross section in plan view with the rear side (side facing the ramp part 24b of the slope 24) and the upper part open, and both the left and right sides of the peripheral wall in the vicinity of the open end part on the rear side.
  • It comprises a bottom wall connecting the edges at the lower part, and has a function of receiving ice discharged from the ramp portion 24b of the slope 24 and guiding it to the cylinder portion 25b.
  • a pair of slits 25c extending in the vertical direction is formed in the lower part near the open ends of the left and right edges of the peripheral wall of the scoop part 25a.
  • the cylindrical portion 25b is formed in a substantially cylindrical shape, guides the ice that has reached through the ramp portion 24b and the scoop portion 25a of the slope 24, and carries it out into a cup (not shown) set below the chute 25. It has a function.
  • a pair of upper guides 25d and lower guides 25e that protrude from the same height position are formed on the left and right sides of the outer surface of the cylindrical portion 25b.
  • Each of the upper guide 25d and the lower guide 25e is formed as a plate-like member that extends substantially in a horizontal plane.
  • a bracket 26 that supports the chute 25 is fixed to the housing of the ice dispenser 1 below the lower end of the ramp portion 24 b of the slope 24.
  • the bracket 26 includes a support body 26a and a housing 26b that accommodates the support body 26a.
  • the support 26a includes a substantially U-shaped support spring 26c whose front side is opened in plan view, and an insertion guide 26d attached to each of the open ends of the support spring 26c.
  • the support spring 26c is made of an elastic material, and includes a base portion 26e and a pair of arm portions 26f that protrude forward from each end of the base portion 26e at an acute angle.
  • An insertion guide 26d having a mountain shape with the top facing inward in plan view is attached to the tip of each arm 26f.
  • the distance between both arm portions 26f of the support spring 26c is substantially the same as the width in the left-right direction of the cylindrical portion 25b of the chute 25, and the interval between the top portions of both insertion guides 26d is the distance between the cylindrical portion 25b of the chute 25.
  • the housing 26b includes a base portion 26g and a pair of arm portions 26h projecting forward at right angles from both ends of the base portion 26g.
  • the housing 26b is formed in a U-shape with the front side open in plan view. ing.
  • the base part 26g and the arm part 26h have a substantially U-shaped cross-section with the lower part opened, and the base part 26e and the arm part 26f of the support spring 26c are accommodated in spaces formed therein, respectively. .
  • the front end portion of the arm portion 26h of the housing 26b is opened, and an insertion guide 26d attached to the arm portion 26f of the support spring 26c protrudes therefrom.
  • the chute 25h is sandwiched between the upper guide 25d and the lower guide 25e formed on the left and right sides of the outer surface of the cylindrical portion 25b of the chute 25.
  • the chute 25 may be pushed backward.
  • the cylindrical portion 25b of the chute 25 is guided by the insertion guide 26d of the support body 26a, and passes between the insertion guides 26d while spreading the arm portion 26f of the support spring 26c outward, so that the housing 26b of the bracket 26 is provided. Is housed in a space surrounded by the base portion 26g and the arm portion 26h.
  • the arm portion 26f of the support spring 26c is in the original state, that is, the distance between the top portions of the both insertion guides 26d is narrower than the width in the left-right direction of the tube portion 25b of the chute 25.
  • the portion 25b is prevented from falling forward.
  • the part on the open end side of the left and right edges of the peripheral wall of the scoop part 25a is the outer surface of the side wall 24f of the slope 24 and the ice sensor. It is accommodated in a gap formed between the inner surface of the housing 24h.
  • the ice sensor 33 (light emitting element and light receiving element), which is an optical sensor housed in the ice sensor housing 24h, faces the slit 25c, and the light emitted from the light emitting element passes through the slit 25c and is received. Head to the element.
  • the ice sensor 33 for detecting the amount of ice passing through is accommodated in the ice sensor housing 24h attached to the side wall 24f of the slope 24. That is, the ice sensor 33 and its related parts are not mounted on the chute 25. Therefore, when removing the chute 25 for cleaning, it is not necessary to remove the mounted parts in advance.
  • the chute 25 can be easily attached to and detached from the bracket 26 by simply pushing the chute 25 backward or pulling it forward without using a fastening member.
  • the ice guiding unit 23 of the present embodiment has an excellent effect that the chute 25 for cleaning can be easily attached and detached.
  • the ice sensor 33 is disposed in the vicinity of the lower end of the ramp portion 24b of the slope 24.
  • the ice sensor 33 may be disposed in the middle of the ramp portion 24b. You may arrange
  • the ice dispenser 1 of the present embodiment is configured such that the shutter 27 is closed when it is estimated that the amount of ice detected by the ice sensor 33 reaches a predetermined amount.
  • the ice on the upstream side of the ice sensor 33 is discharged although it is not actually detected by the ice sensor 33, but the actual discharge amount has a larger error than the predetermined amount.
  • the ice sensor 33 is preferably arranged as close as possible to the shutter 27, that is, in the vicinity of the opening 24c of the flange portion 24a.
  • the ice sensor housing 24h may be attached to any part of the slope 24, the ice storage 20, the casing 2 or the like.
  • the ice sensor 33 may be disposed in the middle of the chute 25, for example, the cylinder portion 25b.
  • the ice sensor housing 24h is preferably attached to the arm portion 26h of the housing 26b of the bracket 26, but may be attached to a dedicated bracket attached to the ice storage 20, the housing 2, or the like.
  • the chute 25 is detachably attached to the bracket 26 in the front-rear direction.
  • the bracket 24 is not provided, and an attachment / detachment mechanism is provided on the slope 24 to connect the chute 25 to the slope.
  • a shutter 27 that covers the opening 22 is provided at the front of the ice storage 20.
  • the shutter 27 is urged by a spring 28 in a direction to close the opening 22.
  • the shutter 27 is swung in the opening direction against the biasing force of the spring 28 by the operation of the opening / closing motor 29 (discharge means).
  • the output shaft of the opening / closing motor 29 is connected to a cam (not shown) via a gear reduction mechanism. Therefore, when the output shaft of the opening / closing motor 29 rotates, the rotational motion is transmitted to the cam via the gear reduction mechanism, and the cam rotates.
  • a bar (not shown) attached to the shutter 27 is in contact with the side surface of the cam.
  • the shutter 27 is biased in a direction to close the opening 22 by a spring 28.
  • the bar attached to the shutter 27 moves along the side surface of the cam by the rotation of the cam, the shutter 27 is positioned above the opening 22.
  • the rotating shaft 27a is rotated in the opening direction.
  • the cam rotates by a predetermined angle the pressing of the bar in the opening direction of the shutter 27 by the side surface of the cam is released, and the shutter 27 is closed at once by the action of the spring 28.
  • the opening / closing driving method of the shutter 27 by the opening / closing motor 29 is not limited to the above. If a motor capable of normal rotation / reverse rotation is used as the opening / closing motor 29, the shutter 27 can be opened by normal rotation of the motor, and the shutter 27 can be closed by reverse rotation of the motor. At this time, by increasing / decreasing the maximum opening degree of the shutter 27 with the rotation speed of the motor normal rotation / reverse rotation being constant, or increasing / decreasing the rotation speed of the motor forward / reverse rotation with the maximum opening degree of the shutter 27 being constant. By doing so, the amount of ice discharged can be adjusted.
  • the required space can be reduced, the starting power can be reduced, and a large operating torque can be obtained. Excellent effects such as improvement in silence can be obtained.
  • the lower wall 24d of the ramp portion 24b of the slope 24 is configured to extend along a plane extending obliquely downward from a position spaced downward from the lower edge of the opening 24c in the flange portion 24a. Has been.
  • the plane in which the lower wall 24d extends is at a position separated from the lower edge of the opening portion 24c in the flange portion 24a, that is, the lower end portion of the shutter 27 in the vicinity of the closed position.
  • the corners formed in the are provided with an ice accumulation preventing part.
  • FIGS. 4 (A) to (F) an embodiment of the ice accumulation preventing unit will be described with reference to FIGS. 4 (A) to (F). In one embodiment, as shown in FIG.
  • the lower wall 24d and the flange portion 24a are configured to intersect at a position spaced downward from the lower edge of the opening 24c.
  • a protrusion 24m (filling member) is provided at a corner formed by the above-mentioned, that is, a corner formed between a portion of the flange portion 24a below the lower edge of the opening 24c and the lower wall 24d.
  • the protrusion 24m is provided over the entire width of the lower wall 24d, and the surface thereof is formed as an upwardly convex curved surface, preferably an upwardly convex cylindrical surface, or an upwardly convex bent surface. The protrusion 24m avoids leaving the above-mentioned corner as a dead space.
  • the protrusion part 24m is formed as the cylindrical surface where the surface is convex upwards, powdery ice does not adhere easily. This prevents powdered ice from accumulating in the corners described above, does not cause sanitary problems, and does not prevent the shutter 27 from being opened and closed by the accumulated powdered ice.
  • the protrusion 24q filling is formed as a protrusion with a concave surface on the surface, preferably a concave cylindrical surface on the top, or a concave bent surface on the top. Even if the member is provided, the same effect as described above can be obtained.
  • the protrusion is provided integrally with the lower wall 24d. That is, the lower wall 24d is provided near the flange 24a.
  • An effect similar to the above can also be obtained by configuring the part as having an upwardly convex curved surface, preferably an upwardly convex cylindrical surface, or an upwardly convex curved surface.
  • the lower wall 24d and the flange portion 24a are connected to the upper end portion of the lower wall 24d, and the surface thereof is an upwardly convex curved surface, preferably an upwardly convex cylindrical surface, Or you may connect by the wall part 24n formed as an upward convex bending surface.
  • the lower wall 24d and the flange portion 24a are connected to the upper end portion of the lower wall 24d, and the surface thereof is a downwardly convex curved surface, preferably a downwardly convex cylindrical surface.
  • An S-shaped cross section comprising a formed first wall portion 24p1 and a second wall portion 24p2 connected to the flange portion 24a and whose surface is formed as an upwardly convex curved surface, preferably as an upwardly convex cylindrical surface. You may connect by the wall part 24p. As shown in FIG.
  • the lower wall 24d and the flange portion 24a are connected to the upper end of the lower wall 24d, and the surface thereof is a concave curved surface, preferably a concave cylindrical surface. You may connect by the formed wall part 24r. Further, as shown in FIG. 4F, the lower wall 24d and the flange portion 24a are connected to the upper end portion of the lower wall 24d, and the surface thereof is connected by a wall portion 24s formed as a concave bent surface. May be.
  • One side (left part) of the lid 3 is supported by the housing 2 via a hinge 30 so as to be swingable.
  • An electric lock mechanism 31 that locks the lid 3 that closes the ice slot 21 is provided at the top of the housing 2.
  • the lock mechanism 31 locks the lid 3 by closing the front door 4.
  • the lock mechanism 31 unlocks the lid 3 by operating a lock release switch (not shown) that can be operated with the front door 4 opened. Even when power is not supplied to the ice dispenser 1, the lock mechanism 31 can be unlocked manually with the front door 4 opened.
  • the lock mechanism 31 is unlocked, the lid 3 is opened, and the ice lump 21 is filled with lump of ice.
  • the ice dispenser 1 is installed, for example, on a counter in the vicinity of a cash register of a convenience store, the height of the ice slot 21 from the floor is about the same as the average height of a person. It becomes.
  • the ice dispenser 1 includes an ice full detecting means that can confirm whether or not the ice storage 20 is full even when the inside of the ice storage 20 cannot be directly visually recognized. Yes.
  • the full ice detection means of one embodiment is constituted by a mirror disposed on the back surface of the lid 3.
  • the mirror preferably includes a dew condensation prevention heater.
  • a dew condensation prevention heater When the outside air comes into contact with a mirror that is at the same low temperature as the inside of the ice storage 20 when the lid 3 is opened, water vapor contained in the outside air condenses on the surface of the mirror and becomes cloudy, so that the inside of the ice storage 20 can be visually recognized. It is expected to disappear.
  • the dew condensation prevention heater is started with the detection of the opening of the lid 3 or the previous stage (for example, opening of the front door 4 for releasing the lock of the lock mechanism 31) as a trigger. Good.
  • the mirror is heated by the dew condensation prevention heater, and the water vapor contained in the outside air can be prevented or eliminated from being condensed on the surface of the mirror.
  • the mirror may be disposed around the ice slot 21 at the top of the housing 2 (for example, the rear or right part of the ice slot 21) instead of the back surface of the lid 3.
  • the full ice detection means of another embodiment is constituted by an optical sensor disposed at the upper end of the ice storage 20 (in the vicinity of the ice slot 21) and full ice notification means connected to the optical sensor.
  • the optical sensor includes one or more pairs of light emitting elements and light receiving elements, each of which is ice on which light rays traveling from the light emitting elements to the light receiving elements are accumulated when the ice storage 20 is full. It is arranged at a position where it is blocked by.
  • the full ice notification means connected to the optical sensor notifies that the ice storage 20 is full.
  • the full ice notification means can be constituted by an appropriate device such as an indicator lamp, a display, or a buzzer.
  • the full ice detection means of another embodiment includes a weight sensor arranged so as to be able to measure the weight of ice in the ice storage 20 and a full ice notification means connected to the weight sensor.
  • the weight sensor may be arranged so that the weight of ice in the ice storage 20 can be directly measured, or the weight of the ice in the ice storage 20 can be indirectly measured by measuring the weight of the ice storage 20 as a whole. It may be arranged so that it can be measured automatically. In any case, when the weight measured by the weight sensor reaches a weight corresponding to the full ice state of the ice storage 20, the ice full notification means connected to the weight sensor indicates that the ice storage 20 is full. Inform you.
  • the full ice notification means can be constituted by an appropriate device such as an indicator lamp, a display, or a buzzer.
  • the full ice notification means When the full ice notification means is constituted by a display, the weight measured by the weight sensor may be converted into a percentage with respect to the weight corresponding to the full ice state of the ice storage 20, for example, and displayed. By configuring in this way, the amount of ice in the ice storage 20 can be grasped in real time, so that it is easy to avoid the inconvenience of throwing in ice that greatly exceeds the full state.
  • the full ice detection means of another embodiment is constituted by a temperature sensor disposed in the upper part of the ice storage 20 (in the vicinity of the ice inlet 21), and full ice notification means connected to the temperature sensor. As the ice accumulates in the ice storage 20 and approaches the full state, the temperature of the upper part of the ice storage 20 decreases.
  • the correlation between the amount of ice in the ice storage 20 and the temperature of the upper part of the ice storage 20 is previously determined. If it is grasped, the amount of ice in the ice storage 20 can be estimated from the temperature of the upper part of the ice storage 20. Therefore, when the temperature measured by the temperature sensor disposed at the upper part of the ice storage 20 becomes equal to or lower than a predetermined temperature, the full ice notification means connected to the temperature sensor notifies that the ice storage 20 is full. What is necessary is just to comprise.
  • the full ice notification means can be constituted by an appropriate device such as an indicator lamp, a display, or a buzzer.
  • FIG. 5 is a perspective view showing the structure of the ice storage and the stirring mechanism in the ice dispenser 1 of the present embodiment.
  • the cooling mechanism includes an electric compressor 40 that compresses the refrigerant and a condenser 41 that cools the compressed refrigerant.
  • the electric compressor 40 and the condenser 41 are disposed in the lower part of the ice storage 20.
  • the capacitor 41 is provided with an electric fan motor 42 for cooling the capacitor 41.
  • an evaporator 43 of a cooling mechanism is provided at the upper part of the outer surface of the ice storage 20.
  • the evaporator 43 is configured such that a pipe having high heat conductivity such as copper or aluminum is wound around the outer surface of the ice storage 20.
  • a pipe having high heat conductivity such as copper or aluminum is wound around the outer surface of the ice storage 20.
  • heat exchange with the ice storage 20 can be performed, and the inside of the ice storage 20 can be cooled.
  • the evaporator 43 is wound only on the upper part of the ice storage 20. This is to prevent the lower part of the ice storage 20 from being overcooled. For example, when the lid 3 is opened or the power is turned off while the ice is stored in the ice storage 20, the temperature of the ice storage 20 rises and the ice is partially melted.
  • the stirring mechanism 36 includes a stirrer 45 and an electric stirring motor 46.
  • the stirrer 45 includes a plurality of stirring rods 48 on a cylindrical shaft portion 47.
  • the shaft portion 47 is disposed coaxially with the ice storage 20 at the bottom of the ice storage 20.
  • the stirring bar 48 is formed of a cylindrical bar, is bent obliquely in the vertical direction from the shaft portion 47, and extends radially outward to the vicinity of the inner peripheral wall of the ice storage 20.
  • the stirring rods 48 are arranged radially on the outer peripheral surface of the shaft portion 47 by several tens of degrees, for example, and are arranged in three stages in the vertical direction.
  • the stirring motor 46 is disposed at the lower part of the ice storage 20.
  • the agitation motor 46 has an output shaft connected to the shaft portion 47, and rotates the agitator 45 in the ice storage 20 by rotating the shaft portion 47.
  • FIG. 6 is a circuit diagram of the cooling mechanism 35 in the ice dispenser 1. As shown in FIG. 6, the cooling mechanism 35 of the ice dispenser 1 is provided in the refrigerant circulation path 51 in turn with an electric compressor 40 (compressor), an electric first on-off valve 52, a condenser 41 (condenser), and a dryer.
  • an electric compressor 40 compressor
  • an electric first on-off valve 52 compressor
  • a condenser 41 condenser
  • the cooling mechanism 35 is a known cooling circuit that drives the electric compressor 40 to circulate the refrigerant, compresses and expands it, and cools it by exchanging heat with the refrigerant at a low temperature, and will not be described in detail.
  • a communication path 57 is provided that connects the circulation path 51 between the electric compressor 40 and the first on-off valve 52 and the circulation path 51 between the capillary tube 55 and the evaporator 43.
  • the communication passage 57 is provided with an electric second opening / closing valve 58.
  • FIG. 7 is a block diagram showing the configuration of the control system of the ice dispenser 1.
  • the ice dispenser 1 includes an electric compressor 40, a first on-off valve 52, a second on-off valve 58, and a control unit 60 (control means) that controls the operation of the fan motor 42.
  • the control unit 60 includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a timer, a central processing unit (CPU), and the like.
  • the control unit 60 operates when the power switch 61 is on.
  • the power switch 61 is disposed, for example, on the surface of the front door 4 or in the front door 4.
  • the control unit 60 operates each device of the cooling mechanism 35 when the cooling switch 62 disposed in the front door 4 is turned on, and cools the ice storage 20.
  • the control unit 60 switches the first on-off valve 52 and the second on-off valve 58 of the cooling mechanism 35 by turning on the defrost switch 63 disposed in the front door 4, so that the electric compressor 40 is driven and a defrost function is performed.
  • the control unit 60 inputs an operation signal of the ice fixed amount discharge button 7, the ice small amount discharge button 8, the ice discharge lever 6, and the detection signal from the ice sensor 33, and controls the opening / closing motor 29 to control the shutter 27.
  • the opening motor and the stirring motor 46 are operated to discharge a predetermined amount or a small amount of ice set by the ice fixed amount discharge button 7 or the ice small amount discharge button 8.
  • the control unit 60 operates the stirring motor 46 for a predetermined time (for example, several minutes) every predetermined period (for example, several tens of minutes to several hours) when the power is turned on. Thereby, sticking of blocky ice in the ice storage 20 is suppressed.
  • a shutter lock mechanism that locks the shutter 27 in the closed state may be provided, and the shutter 27 may be locked in the normally closed state and controlled so that the lock is released only when the ice is discharged.
  • control unit 60 has a safety function that controls the operation of the lock mechanism 31 when the agitation motor 46 is operated to restrict the opening of the lid 3.
  • the lid 3 is provided with an open / close sensor 66 for detecting opening and closing, and the control unit 60 is a safety function for stopping the rotation of the stirring motor 46 when it is detected that the lid 3 is opened. It also has.
  • a rotation sensor 67 for detecting the rotation speed is provided on the rotation shaft of the agitator 45 or the agitation motor 46.
  • the control unit 60 has a motor protection function for stopping the operation control of the stirring motor 46 when the rotation of the rotation shaft is not detected for a predetermined time (for example, several seconds) regardless of the rotation control of the stirring motor 46.
  • a predetermined time for example, several seconds
  • the stirring motor 46 becomes unable to rotate.
  • the stirring motor 46 can be protected by stopping the operation.
  • the ice dispenser 1 is provided with an ice adhesion preventing mechanism.
  • the ice adhesion preventing mechanism is configured by, for example, a heater 68 provided on the slope 24, the lid 3, and the shutter 27.
  • These heaters 68 may continue to be heated with a relatively weak calorific value when the power of the ice dispenser 1 is turned on, for example, or may be heated every predetermined time. Alternatively, when ice is replenished, heating may be performed with a relatively strong heating value until a predetermined time elapses or a predetermined amount is discharged. Thereby, it is suppressed that ice adheres to the slope 24 and the shutter 27, and the discharge property of ice can be improved.
  • the control unit 60 has a remaining amount determination function for determining the remaining amount of ice in the ice storage 20.
  • a temperature sensor 70 that detects the internal temperature of the bottom of the ice storage 20 is provided at the bottom of the ice storage 20.
  • the control unit 60 remains at least a predetermined amount that ice can be discharged into the ice storage 20. It is determined that This is because if the ice remains in the ice storage 20 by a predetermined amount or more, the temperature in the bottom of the ice storage 20 decreases to below 0 degrees Celsius due to the ice. Note that the evaporator 43 is disposed on the outer surface upper part of the ice storage 20 and is not provided on the lower part of the ice storage 20, so that the influence of cooling by the evaporator 43 on the detection value of the temperature sensor 70 is suppressed.
  • the control unit 60 determines that the remaining amount of ice is greater than or equal to a predetermined amount in the power-on state, the ice constant discharge button 7a, 7b, 7c and the small amount of ice discharge button 8 are turned on, and the user can discharge ice. Notify that.
  • the control unit 60 determines that the remaining amount of ice is less than the predetermined amount, the control unit 60 turns off the ice fixed amount discharge buttons 7a, 7b and 7c and the ice small amount discharge button 8. Further, not only when the remaining amount of ice is less than a predetermined amount, but also when the device of the ice dispenser 1 is out of order, for example, the ice fixed amount discharge buttons 7a, 7b, 7c and the small amount of ice discharge button 8 are turned off. .
  • the control unit 60 operates to blink the selected ice fixed amount discharge buttons 7a, 7b, 7c when the ice fixed amount discharge is being performed by operating the ice fixed amount discharge buttons 7a, 7b, 7c.
  • the buttons 7a, 7b, 7c and the ice trace discharge button 8 are turned off.
  • the remaining amount determination function is not determined based on the inside temperature of the bottom of the ice storage 20 detected by the temperature sensor 70 as described above, but may be other methods. For example, if the ice discharge amount per unit time detected by the ice sensor 33 is less than a predetermined amount when the ice is discharged by operating the ice quantitative discharge button 7, it is determined that the remaining amount of ice is low. Also good. Further, when it is determined that the remaining amount of ice is less than a predetermined amount, a notification such as a buzzer may be used.
  • an ice discharge lever 6 is provided in addition to the three types of ice constant discharge buttons 7a, 7b and 7c capable of setting large, medium and small discharge amounts. By operating both the ice constant discharge buttons 7a, 7b and 7c and the ice discharge lever 6, a fixed amount of ice can be carried out.
  • the control unit 60 performs the opening operation of the shutter 27 and the stirring operation by the stirrer 45 when both the ice fixed amount discharging buttons 7a, 7b, 7c and the ice discharging lever 6 are operated. , Drain the ice.
  • the operations of both the ice fixed amount discharge buttons 7a, 7b and 7c and the ice discharge lever 6 are the operation of the ice discharge lever 6 after the operation of the ice fixed amount discharge buttons 7a, 7b and 7c and the operation of the ice discharge lever 6. Any of pressing the ice fixed amount discharge buttons 7a, 7b and 7c may be performed.
  • the control unit 60 confirms the operation state of the ice discharge lever 6 when the ice fixed discharge buttons 7a, 7b, and 7c are operated, and controls the ice to be discharged when the ice discharge lever 6 is operated. Thus, it is confirmed that the ice fixed amount discharge buttons 7a, 7b and 7c are pushed while the ice discharge lever 6 is operated. If the operation of the ice discharge lever 6 is canceled while the set amount of ice set by the ice fixed discharge buttons 7a, 7b, and 7c is being discharged, the ice discharge is stopped.
  • the ice discharge lever 6 is provided in the vicinity of the discharge port 5 (the lower back side), and is disposed at a position where the user can operate when holding the cup and approaching the lower side of the discharge port 5.
  • the cup When 6 is operated, the cup is positioned below the discharge port 5. Therefore, in the state where the cup is not disposed close to the lower side of the discharge port 5, even if the ice fixed amount discharge buttons 7a, 7b, 7c or the ice small amount discharge button 8 are erroneously pressed, the ice is not discharged, which is useless. Ice discharge can be suppressed. Further, the urging force (returning force) of the ice discharge lever 6 may be set relatively large so that the operation is released even when a lightweight cup made of paper or the like is placed on the tray 9 below the discharge port 5. .
  • the control unit 60 discharges the ice when the ice discharge lever 6 is operated again after a predetermined time elapses after the ice discharge lever 6 is stopped by releasing the operation of the ice discharge lever 6 during the fixed amount discharge of the ice.
  • the control unit 60 stops the constant discharge of ice when the ice discharge lever 6 is released during the fixed discharge of ice and a predetermined time has elapsed.
  • the control unit 60 controls the operated ice quantitative discharge buttons 7a, 7b, and 7c to blink during the quantitative discharge, but when the operation of the ice discharge lever 6 is canceled during the constant discharge of ice, the control unit 60 performs a predetermined time. It is good to control so that this blinking operation may be continued until it passes. As a result, when the ice fixed amount discharge buttons 7a, 7b, and 7c are blinking, it becomes a notification means for notifying the user that the fixed amount discharge of ice can be resumed. Judgment can be easily made and the usability is excellent.
  • the timing at which the quantitative discharge of ice is switched from resumable to impossible may be such that quantitative discharge can be restarted until a predetermined time has elapsed since the operation of the ice discharge lever 6 was canceled as described above.
  • the fixed discharge may be resumable when the ice discharge lever 6 is operated again after a predetermined time set appropriately from the start of the fixed discharge.
  • an ice trace discharge button 8 for discharging a trace amount (for example, several pieces) of ice is provided as an operation means for instructing the discharge of ice.
  • the ice small amount discharge button 8 both the ice discharge lever 6 and the ice discharge lever 6 are operated in the same manner as the ice fixed amount discharge buttons 7a, 7b and 7c.
  • a conventional ice dispenser that does not include the ice micro-discharge button 8
  • when ice is discharged by operating the ice quantitative discharge buttons 7a, 7b, and 7c for example, if a portion of ice spills from the cup, Insufficient ice supply.
  • the ice fixed amount discharge buttons 7a, 7b, and 7c are operated again to add ice, the ice is excessively supplied into the cup, and there is a possibility that the ice is consumed wastefully.
  • a small amount (several pieces) of ice can be supplied to the cup by providing the small amount of ice discharge button 8 as in the present embodiment. It should be noted that several ice pieces are discharged every time the small amount of ice discharge button 8 is operated.
  • the ice dispenser 1 is provided with a micro discharge amount setting device 8a (second discharge amount setting means).
  • the micro discharge amount setting device 8a is, for example, a dial switch, and sets the discharge amount when the ice micro discharge button 8 is pressed.
  • the trace discharge amount setting device 8a may be provided on the surface of the front door 4 or on the inner side of the front door 4.
  • the supply amount of ice can be further easily adjusted.
  • the ice trace discharge button 8 a small amount of ice may be discharged every time it is operated, or it is continuously discharged little by little while the ice trace discharge button 8 is operated. Also good. Further, the ice discharge by the ice minute discharge button 8 may be controlled to be performed without the operation of the ice discharge lever 6.
  • the predetermined amount of time (first predetermined time) is discharged after discharging the fixed amount of ice indicated by the operation of the ice fixed amount discharge buttons 7a, 7b, 7c. ) Should be accepted. Or after discharging the fixed quantity of ice instruct
  • a small amount of ice can be discharged by operating the small amount of ice discharge button 8 after the fixed amount of ice is discharged by operating the constant amount of ice discharging buttons 7a, 7b, 7c. Unnecessary operations can be suppressed.
  • a small amount of ice is discharged by the ice small amount discharge button 8 after the fixed amount of ice is discharged.
  • a small amount of ice is discharged by operating the ice fixed amount discharge buttons 7a, 7b, 7c. It may be.
  • the control unit 60 discharges the fixed amount of ice indicated by the operation of the fixed amount of ice discharge buttons 7a, 7b, and 7c, and then passes the fixed amount of ice discharge button until a predetermined time (second predetermined time) elapses.
  • a predetermined time second predetermined time
  • control is performed to discharge a small amount of ice. That is, after the fixed amount of ice is discharged, the discharge operation means for instructing the operation of discharging a small amount of ice is changed from the ice small amount discharge button 8 to the ice fixed amount discharge buttons 7a, 7b and 7c.
  • the discharging operation means for instructing a small amount of ice discharging operation is returned from the ice fixed amount discharging buttons 7a, 7b and 7c to the ice small amount discharging button 8.
  • a predetermined time second predetermined time
  • a fixed amount of ice can be discharged anew by operating the ice fixed amount discharge buttons 7a, 7b and 7c.
  • the discharging operation means for instructing the operation of discharging a small amount of ice is changed from the ice small amount discharging button 8 to the ice fixed amount discharging button 7a, 7b, 7c, for example, the ice fixed amount discharging button 7a, 7b, 7c is changed.
  • the user should be notified by blinking. Thereby, when the user gives an operation instruction for discharging a small amount of ice, the user can easily operate without making a mistake.
  • a method for detecting the amount of ice carried out will be described in detail.
  • the size of ice is generally in a predetermined range, but the size of all ice is not constant.
  • the ice sensor 33 for detecting the amount of discharged ice is constituted by two (two sets) ice sensors 33a and 33b arranged in the ice sensor housing 24h.
  • the ice sensors 33a and 33b are provided at the lower end portion (including the vicinity of the lower end portion) of the slope 24 extending obliquely downward from the opening 22 of the ice storage 20, and are substantially perpendicular to the extending direction of the slope 24, that is, The ice movement direction (discharge direction) on the slope 24 is arranged away from each other in a direction substantially perpendicular to the ice discharge direction (for example, the vertical direction), and the passage of ice at each installation position can be detected. It has become.
  • the control unit 60 includes an ice discharge amount measuring unit 80 that estimates the amount of ice passing by receiving detection signals from the two ice sensors 33a and 33b every predetermined time (for example, 1 msec).
  • the ice discharge amount measuring unit 80 estimates the size of ice based on the detection signals detected by the two ice sensors 33a and 33b. Since the slope 24 is inclined obliquely downward, the ice discharged from the opening 22 and passing through the slope 24 slides down on the lower wall 24d of the slope 24, and a relatively small ice is not formed at the lower end of the slope 24. It generally passes near the tip (lower end) of the lower wall 24d of the slope 24. Therefore, when ice is detected only by the ice sensor 33b disposed below the two ice sensors 33a and 33b, relatively small ice passes and the ice is detected by both ice sensors 33a and 33b. It can be accurately estimated that relatively large ice has passed.
  • emission amount measurement part 80 calculates the passage amount of ice based on the magnitude
  • a and B correspond to the volume information of the present invention, and may be confirmed and set in advance by a test or the like.
  • the total ice passage amount that is, the ice discharge amount is calculated by adding the ice passage amounts.
  • the timing of closing the shutter 27 is controlled based on the estimated amount of discharged ice, thereby discharging the ice with high accuracy.
  • the ice sensor 33 may be provided in the range on the slope 24 instead of the lower end of the slope 24. Moreover, you may provide the ice sensor 33 in the chute
  • Three or more ice sensors 33 may be provided. In this case, it can be estimated that the larger the number of ice sensors 33 that have detected ice, the larger the ice.
  • the ice dispenser 1 of this embodiment supplies and stores lump-like ice from the outside, supplies an appropriate amount to a cup or the like, and does not have an ice making function. Can be Thereby, it is easy to install in a place where the installation space is limited, and the supply amount of ice can be increased by installing a plurality of units, and an ice dispenser with a wide use range can be obtained.
  • the ice dispenser of this invention is not limited to the above embodiment. The present invention can be widely applied to ice dispensers that supply an appropriate amount of stored massive ice. At that time, the ice dispenser may include an ice making machine.
  • Ice Dispenser 20 Ice Storage 22 Opening (Outlet) 23 Ice guidance unit 24 Slope (fixed ice guidance unit) 25 Chute 25d Upper guide (guide) 25e Lower guide (guide) 26 Bracket (fixed ice guidance unit) 33, 33a, 33b Ice sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

The purpose of the present invention is to provide an ice dispenser in which a shooter can be easily removed for cleaning. An ice dispenser (1) is provided with an ice retaining chamber (20) for retaining ice, an ice guiding unit (23) for guiding ice ejected from a discharge port (22) of the ice retaining chamber, and an ice sensor (33) for detecting the quantity of ice that passes through the ice guiding unit. The ice guiding unit includes: a slope (24) that guides at least the ice ejected from the ice discharge port downward at an incline and comprises a fixed ice guiding unit secured to the ice retaining chamber or a housing of the ice dispenser; and a chute (25) that is disposed downstream of the slope and that guides the ice downward. The ice sensor is attached to the fixed ice guiding unit, and the chute can be attached to and removed from the fixed ice guiding unit.

Description

氷ディスペンサIce dispenser
 本発明は、塊状の氷を貯留して所定量ずつ提供する氷ディスペンサに関する。 The present invention relates to an ice dispenser that stores and provides a predetermined amount of block ice.
 店舗等において飲料を提供する際にカップに所定量の氷を提供する氷ディスペンサが開発されている。
 例えば、特許文献1に記載された氷ディスペンサ(氷供給装置)は、塊状の氷を製造する製氷機構と、製氷機構で製氷した氷を貯留する貯氷庫(貯氷部)とを備えており、貯氷庫内に貯留された氷は、貯氷庫の側面下部に設けられた開口部(吐出口)から排出され、シュート(シュータ)により案内されてカップに提供される。また、開口部から排出された氷が通過する部位には、氷量検知センサ(光センサ)が取り付けられており、カップに提供される氷の量を検知できるようになっている。
Ice dispensers have been developed that provide a predetermined amount of ice to a cup when a beverage is provided in a store or the like.
For example, an ice dispenser (ice supply device) described in Patent Document 1 includes an ice making mechanism that produces lump ice and an ice storage (ice storage part) that stores ice produced by the ice making mechanism. The ice stored in the warehouse is discharged from an opening (discharge port) provided in the lower side of the ice storage, guided by a chute (shooter), and provided to the cup. In addition, an ice amount detection sensor (light sensor) is attached to a portion through which the ice discharged from the opening passes, so that the amount of ice provided to the cup can be detected.
特開2000−130902号公報JP 2000-130902 A
 上記特許文献1の氷供給装置では、貯氷部(貯氷庫)の側面下部に設けられた吐出口(開口部)を覆うように吐出カバーが取り付けられ、その下部に、吐出カバーから吐出される氷を受け入れるシュータ(シュート)が取り付けられている。そして、シュータには、その内部を通過する氷の量を検出するための光センサ(氷量検知センサ)が装着されている。
 ここで、シュータの内面は、通過する氷の破片、粉状の氷、霜等が付着し、それが融けて濡れるため、汚れやすい部位である。そのため、シュータは、定期的に取り外して清掃する必要がある。
 しかしながら、シュータには光センサが装着されているため、清掃のためにシュータを取り外す際、光センサをシュータから取り外す(または、光センサに接続された配線を、コネクタにおいて、制御部に接続された配線から取り外す)必要があり、作業性が良くない。また、誤って光センサが装着されたままシュータを取り外そうとして、光センサや、光センサに接続された配線を破損させる虞もある。
 本発明はこのような問題を解決するためになされたもので、その目的とするところは、清掃のためのシュータの取り外しが容易に行える氷ディスペンサを提供することにある。
In the ice supply device of Patent Document 1, a discharge cover is attached so as to cover a discharge port (opening) provided at the lower side of the ice storage part (ice storage), and ice discharged from the discharge cover is provided below the cover. A shooter (chute) is installed. The shooter is equipped with an optical sensor (ice amount detection sensor) for detecting the amount of ice passing through the shooter.
Here, the inner surface of the shooter is a portion that easily gets dirty because pieces of passing ice, powdered ice, frost, and the like adhere and melt and become wet. Therefore, the shooter needs to be periodically removed and cleaned.
However, since the optical sensor is attached to the shooter, when removing the shooter for cleaning, the optical sensor is removed from the shooter (or the wiring connected to the optical sensor is connected to the control unit at the connector). Workability is not good. In addition, there is a possibility that the optical sensor and the wiring connected to the optical sensor may be damaged by trying to remove the shooter while the optical sensor is attached.
The present invention has been made to solve such problems, and an object of the present invention is to provide an ice dispenser in which a shooter can be easily removed for cleaning.
 上記した目的を達成するために、本発明の氷ディスペンサは、氷を貯留する貯氷庫と、前記貯氷庫の搬出口から排出された氷を案内する氷誘導ユニットと、前記氷誘導ユニットを通過する氷の量を検出する氷センサと、を備え、前記氷誘導ユニットは、少なくとも前記搬出口から排出された氷を斜め下方へ誘導するスロープを含み、前記貯氷庫または前記氷ディスペンサの筐体に固定された固定氷誘導ユニットと、前記スロープの下流に配置され氷を下方へ誘導するシュートとから成り、前記氷センサは、前記固定氷誘導ユニットに取り付けられており、前記シュートは、前記固定氷誘導ユニットに対して着脱可能であることを特徴とする。
 好ましくは、前記シュートは、前記固定氷誘導ユニットに対して前後方向に着脱可能であるとよい。
 好ましくは、前記氷センサは、前記スロープに取り付けられているとよい。
 好ましくは、前記固定氷誘導ユニットは、更に前記氷センサを支持するブラケットを備え、前記氷センサは、前記ブラケットに取り付けられているとよい。
 好ましくは、前記シュートは、前記スロープに着脱可能に取り付けられるとよい。
 好ましくは、前記シュートは、前記ブラケットに着脱可能に取り付けられるとよい。
 好ましくは、前記シュートは、外周にガイドを備え、前記ガイドが、前記ブラケットと係合するとよい。
To achieve the above object, an ice dispenser of the present invention passes through an ice storage unit for storing ice, an ice induction unit for guiding ice discharged from a carry-out port of the ice storage unit, and the ice induction unit. An ice sensor for detecting the amount of ice, wherein the ice guiding unit includes at least a slope for guiding the ice discharged from the carry-out port obliquely downward, and is fixed to the housing of the ice storage or the ice dispenser. The fixed ice guiding unit and a chute disposed downstream of the slope to guide the ice downward, the ice sensor being attached to the fixed ice guiding unit, and the chute being fixed ice guiding It is detachable from the unit.
Preferably, the chute is detachable in the front-rear direction with respect to the fixed ice guiding unit.
Preferably, the ice sensor is attached to the slope.
Preferably, the fixed ice guiding unit further includes a bracket for supporting the ice sensor, and the ice sensor is attached to the bracket.
Preferably, the chute is detachably attached to the slope.
Preferably, the chute is detachably attached to the bracket.
Preferably, the chute includes a guide on an outer periphery, and the guide is engaged with the bracket.
 本発明の氷ディスペンサによれば、氷誘導ユニットを通過する氷の量を検出する氷センサは、貯氷庫または氷ディスペンサの筐体に固定された固定氷誘導ユニットに取り付けられている。すなわち、固定氷誘導ユニットを構成するスロープの下流に配置され氷を下方へ誘導するシュートには、氷センサが装着されていない。また、シュートは、固定氷誘導ユニットに対して着脱可能に支持されている。そのため、清掃のためにシュートを取り外す際、装着された部品をシュートから事前に取り外す必要がなく、また、シュートの脱着が簡単に行えるという優れた効果が得られる。 According to the ice dispenser of the present invention, the ice sensor for detecting the amount of ice passing through the ice guiding unit is attached to the fixed ice guiding unit fixed to the ice storage or the housing of the ice dispenser. That is, an ice sensor is not attached to a chute that is arranged downstream of the slope that constitutes the fixed ice guiding unit and guides ice downward. The chute is detachably supported with respect to the fixed ice guiding unit. Therefore, when removing the chute for cleaning, it is not necessary to remove the mounted parts from the chute in advance, and an excellent effect that the chute can be easily detached is obtained.
本発明の一実施形態の氷ディスペンサの外観図である。It is an external view of the ice dispenser of one embodiment of the present invention. 本実施形態の氷ディスペンサの内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the ice dispenser of this embodiment. 本実施形態の氷誘導ユニットの構造を示す斜視図である。It is a perspective view which shows the structure of the ice guidance unit of this embodiment. 本実施形態の氷誘導ユニットを構成するシュートの単体斜視図である。It is a single perspective view of the chute which constitutes the ice guidance unit of this embodiment. 図3Aからシュートを取り外した状態を示す斜視図である。It is a perspective view which shows the state which removed the chute | shoot from FIG. 3A. 図3Cからさらにブラケットのハウジングを取り外した状態を示す斜視図である。It is a perspective view which shows the state which removed the housing of the bracket further from FIG. 3C. (A)~(F) 本実施形態のスロープの斜路部の、貯氷庫の開口部の近傍における構造を示す断面図である。(A)-(F) It is sectional drawing which shows the structure in the vicinity of the opening part of the ice storage of the ramp part of the slope of this embodiment. 本実施形態の氷ディスペンサにおける貯氷庫及び撹拌機構の構造を示す斜視図である。It is a perspective view which shows the structure of the ice storage and the stirring mechanism in the ice dispenser of this embodiment. 本実施形態の氷ディスペンサにおける冷却機構の回路図である。It is a circuit diagram of the cooling mechanism in the ice dispenser of this embodiment. 本実施形態の氷ディスペンサの制御系の構成を示すブロック図である。It is a block diagram which shows the structure of the control system of the ice dispenser of this embodiment.
 以下、本発明の実施の形態を図面に基づき説明する。
 図1は本発明の一実施形態に係る氷ディスペンサの外観図である。図2は、本実施形態の氷ディスペンサの内部構造を示す斜視図である。
 本発明の一実施形態の氷ディスペンサ1は、例えばコンビニエンスストアのレジ近辺のカウンタ上に設置され、冷却された飲料を提供する際に、従業員等がカップに氷を入れるために使用される。
 本実施形態の氷ディスペンサ1は、製氷機を備えず氷のみを提供する機器であり、製氷業者等から仕入れた、製氷機を備える氷ディスペンサで製氷された氷より低温で製氷され飲料に投入した場合に解けにくいロックアイス(登録商標)、クラッシュアイスなどと言われる塊状の氷、特に概ね所定の範囲の大きさにある不定形の氷を貯留し、カップに所定量ずつ提供するものである。
 図1に示すように、氷ディスペンサ1は、略矩形状の筐体2を有している。筐体2の上面には塊状の氷を投入する氷投入口を覆う蓋部3が設けられている。
 筐体2の前面には、前面の上部及び中間部を覆う前面扉4が設けられている。また、筐体2の前面には、前面扉4の下端部から下方に向けて塊状の氷を排出する排出口5が設けられている。排出口5の後方には氷排出レバー6(排出操作手段)が設けられている。氷排出レバー6は、ユーザーが排出口5の下方にカップの口部をかざした際に、カップまたはカップを持った手の甲や指によって後方に押すことが可能となるように配置されている。なお、氷排出レバー6については、代りにプッシュ式の操作手段を備えてもよい。
 筐体2の前面扉4の表面には、氷の排出を指示するボタンスイッチが上下方向に4個並べて配置されている。4個のボタンスイッチのうち、上側の3個が定量(第1の所定量)の排出をするための氷定量排出ボタン7(排出操作手段、報知手段)であり、例えば上側から順番に、氷定量排出ボタン7aが多、氷定量排出ボタン7bが中、氷定量排出ボタン7cが少の排出量を設定可能となっている。4個のボタンスイッチのうちの最下方に配置されたボタンスイッチは、微量(例えば数個:第2の所定量)の氷を排出させるための氷微量排出ボタン8(排出操作手段)である。なお、氷定量排出ボタン7a、7b、7c及び氷微量排出ボタン8は、LEDを内蔵したボタンスイッチである。
 排出口5の下方には、こぼれた氷等を受けて溜める受け皿部9が設けられている。
 図2に示すように、氷ディスペンサ1の内部には、塊状の氷を貯留する貯氷庫20が備えられている。
 貯氷庫20は、上下方向に軸線が延びるように配置される略円筒状のタンクであり、アルミニウムやステンレス等の伝熱性の高い材質で形成され、その周囲を断熱材で覆うようにして構成されている。貯氷庫20は、上部が開口して氷投入口21が設けられ、底部が閉塞されている。
 貯氷庫20の前側側面の下部には、貯氷庫20内の氷を排出する開口部22(搬出口)が設けられている。また、貯氷庫20の開口部22から前下方に氷を導く氷誘導ユニット23が設けられている。
 氷誘導ユニット23は、貯氷庫20の側面に固定され、開口部22から前側下方斜めに氷を導くスロープ24(固定氷誘導ユニット)と、スロープ24の先端から下方に氷を導くシュート25(排出路)と、氷ディスペンサ1の筐体に固定され、シュート25を支持するブラケット26(固定氷誘導ユニット)により構成されている。シュート25の下端は、氷排出レバー6の前方で下方に向けて開口しており、この開口が氷を排出する排出口5となる。
 氷誘導ユニット23には、後述するように、通過する氷の量を検出する氷センサが配置されるが、従来の氷ディスペンサにおいて、シュートにセンサを装着したものがあった。しかるに、シュートの内面は、通過する氷の破片等が付着し、それが解けて濡れるため、汚れやすい部位であり、定期的に取り外して清掃する必要がある。このようなシュートにセンサが装着されていると、清掃のためにシュートを取り外す際、センサをシュートから取り外す(または、センサに接続された配線を、コネクタにおいて、制御部に接続された配線から取り外す)必要があり、作業性が良くない。また、誤ってセンサが装着されたままシュートを取り外そうとして、センサや、センサに接続された配線を破損させる虞もある。
 そこで、本実施形態の氷誘導ユニット23は、清掃のためのシュート25の取り外しが容易に行えるように構成されている。
 以下、図3A~図3Dを参照しつつ、氷誘導ユニット23の構造を詳細に説明する。
 ここで、図3Aは氷誘導ユニット23の構造を示す斜視図、図3Bはシュート25の斜視図、図3Cは図3Aからシュート25を取り外した状態を示す斜視図、図3Dはさらにブラケット26のハウジング26bを取り外した状態を示す斜視図である。
 スロープ24は、フランジ部24aと斜路部24bとから構成されている。
 フランジ部24aは、スロープ24の上端部に設けられ、スロープ24を貯氷庫20の前側側面の下部に固定する機能を有している。フランジ部24aには、貯氷庫20の開口部22と略同一の形状を有する開口部24cが設けられており、スロープ24が貯氷庫20の前側側面の下部に固定された時、両開口部の位置が揃うようになっている。
 斜路部24bは、フランジ部24aにおける開口部24cの下縁から下方へ離隔した位置から斜め下方へ延びる平面に沿って延在する下部壁24dと、開口部24cの上縁から斜め上方へ延在する上部壁24eとを備え、上部壁24eは下部壁24dよりも短く形成されている。また、斜路部24bは、開口部24cの左右両縁からそれぞれ前方へ延在する側部壁(側壁)24fを備えている。側部壁24fは、開口部24cの左右両縁と略同一の高さのまま斜め下方へ延在する下方部分と、当該下方部分と上部壁24eとを接続する三角形の上方部分とを、一体にした形状を有している。これにより、斜路部24bの開口部24cに近い部位は、上部壁24e、側部壁24f(上方部分及び下方部分)及び下部壁24dから成る角錐状に形成され、開口部24cから遠い部位は、側部壁24f(下方部分)及び下部壁24dから成る略コの字状に形成されている。
 なお、図3A~図3Dに示した実施形態では、斜路部24bは上記のように樋状に形成されているが、全体を筒状に形成してもよい。
 斜路部24bの下端部近傍の両側部壁24fの外側面には、それぞれボス24gが形成されており、当該ボス24gには、1対の氷センサハウジング24hが装着されている。なお、両側部壁24fの外側面と1対の氷センサハウジング24hの内側面との間には、後述するシュート25の周壁の左右両縁を収容し得る隙間が形成されている。
 一方の氷センサハウジング24hには発光素子、受光素子が例えばこの順に上下方向に配置され、他方の氷センサハウジング24hには受光素子、発光素子が上下方向に配置されている。発光素子と受光素子は、両側部壁24f間の氷通路を挟んで対向して配置されたものが対となって、それぞれ氷センサ33a、33b(検出手段)を構成しており、発光素子から発せられた光線が受光素子によって受光されるようになっている(以下、氷センサ33a、33bを、まとめて氷センサ33と称する)。そして、氷通路に氷が存在すると、発光素子から発せられた光線が氷により遮られ、受光素子によって受光されなくなることを利用して、氷通路内の氷の通過を検知し、検知された氷の通過の時間や回数に基づいて、通過した氷の量を検出するようになっている。
 シュート25は、図3Bに示すように、スクープ部25aと、その下部に連なる筒部25bとから構成されている。
 スクープ部25aは、後側(スロープ24の斜路部24bと対向する側)及び上部が開放された平面視略U字状の断面を有する周壁と、後側の開放端部近傍において周壁の左右両縁を下部において連結する底壁とから構成されており、スロープ24の斜路部24bから放出される氷を受け止め、筒部25bに誘導する機能を有している。また、スクープ部25aの周壁の左右両縁の開放端部近傍の下部には、上下方向に延在する1対のスリット25cが形成されている。
 筒部25bは、略円筒状に形成されており、スロープ24の斜路部24b及びスクープ部25aを経て到達した氷を下方に誘導し、シュート25の下方にセットされた図示しないカップ内に搬出する機能を有している。筒部25bの外面の左右両側には、それぞれ同じ高さ位置から突出する各1対の上ガイド25d及び下ガイド25eが形成されている。これら上ガイド25d及び下ガイド25eは、いずれも、実質的に水平面内を延在する板状の部材として形成されており、後述するブラケット26にシュート25を装着する際に、シュート25を案内及び支持する機能を有している。
 スロープ24の斜路部24bの下端部の下方の氷ディスペンサ1の筐体には、シュート25を支持するブラケット26が固定されている。
 ブラケット26は、図3C及び図3Dに示すように、支持体26aと、支持体26aを収容するハウジング26bとから構成されている。
 支持体26aは、平面視において前側が開放された略コの字状の支持バネ26cと、支持バネ26cの開放端部のそれぞれに取り付けられた挿入ガイド26dとから構成されている。
 支持バネ26cは弾性材料から成り、基部26eと、基部26eの両端からそれぞれ鋭角をなして前方へ突出する1対の腕部26fとを有している。各腕部26fの先端には、平面視において頂部を内側に向けた山形の形状を有する挿入ガイド26dが取り付けられている。そして、支持バネ26cの両腕部26fの間隔はシュート25の筒部25bの左右方向の幅と略同一とされており、また、両挿入ガイド26dの頂部の間隔はシュート25の筒部25bの左右方向の幅より狭く設定されている。
 ハウジング26bは、基部26gと、基部26gの両端からそれぞれ直角をなして前方へ突出する1対の腕部26hとから構成されており、平面視において前側が開放されたコの字状に形成されている。基部26g及び腕部26hは、下方が開放された略コの字状の断面を有しており、内部に形成された空間に支持バネ26cの基部26e及び腕部26fを、それぞれ収容している。ハウジング26bの腕部26hの前端部は開放されており、ここから、支持バネ26cの腕部26fに取り付けられた挿入ガイド26dが突出している。
 シュート25をブラケット26に取り付けるには、シュート25の筒部25bの外面の左右両側に形成された上ガイド25dと下ガイド25eの間にブラケット26のハウジング26bの腕部26hが挟まれるようにシュート25の位置を合わせた後、シュート25を後方へ押し込めばよい。その際、シュート25の筒部25bが、支持体26aの挿入ガイド26dに案内されつつ、支持バネ26cの腕部26fを外側へ押し広げながら挿入ガイド26dの間を通過し、ブラケット26のハウジング26bの基部26gと腕部26hによって囲まれた空間に収容される。このとき、支持バネ26cの腕部26fは元の状態、すなわち両挿入ガイド26dの頂部の間隔がシュート25の筒部25bの左右方向の幅より狭まった状態となっているため、シュート25の筒部25bが前方へ脱落することが防止される。なお、シュート25をブラケット26から取り外すには、シュート25を単に前方へ引き抜くだけでよい。
 さらに、シュート25がブラケット26に取り付けられた状態においては、スクープ部25aの周壁の左右両縁のうちスリット25cより開放端部側の部位が、スロープ24の側部壁24fの外側面と氷センサハウジング24hの内側面との間に形成された隙間に収容される。これにより、氷センサハウジング24h内に収容された光センサである氷センサ33(発光素子及び受光素子)は、スリット25cと対向し、発光素子から発せられた光線は、スリット25cを通過して受光素子へ向かうことになる。
 以上に述べたように、氷誘導ユニット23において、通過する氷の量を検出する氷センサ33は、スロープ24の側部壁24fに装着された氷センサハウジング24hの内部に収容されている。すなわち、シュート25には、氷センサ33及びその関連部品が装着されていない。そのため、清掃のためにシュート25を取り外す際、装着された部品を事前に取り外す必要がない。また、シュート25のブラケット26への取り付け及び取り外しは、締結部材を用いることなく、シュート25を後方へ押し込み、または、前方へ引き抜くだけで簡単に行える。このように、本実施形態の氷誘導ユニット23は、清掃のためのシュート25の脱着が簡単に行えるという優れた効果を有する。
 なお、以上の実施形態では、氷センサ33をスロープ24の斜路部24bの下端部近傍に配置しているが、氷センサ33は、斜路部24bの途中に配置しても良く、斜路部24bの上端部近傍、すなわちフランジ部24aの開口部24cの近傍に配置しても良い。後述するように、本実施形態の氷ディスペンサ1は、氷センサ33により検出された氷の量が所定量に達すると推定された時にシャッター27が閉じられるように構成されているが、この時点で氷センサ33より上流側にある氷は、氷センサ33によって実際には検出されてはいないものの排出はされるため、実際の排出量は所定量に対して誤差が多くなってしまう。そのため、氷センサ33は、シャッター27になるべく近い位置、すなわちフランジ部24aの開口部24cの近傍に配置することが好ましい。
 なお、氷センサ33をスロープ24の斜路部24bの何れかの部位に配置する場合において、氷センサハウジング24hは、スロープ24の何れかの部位に取り付けても良いし、貯氷庫20、筐体2等に取り付けられた専用のブラケットに取り付けても良い。
 また、スペースの制約等により、氷センサ33をスロープ24の斜路部24bの何れかの部位に配置できない場合には、氷センサ33を、シュート25、例えば筒部25bの途中に配置しても良い。この場合、氷センサハウジング24hは、ブラケット26のハウジング26bの腕部26hに取り付けることが好ましいが、貯氷庫20、筐体2等に取り付けられた専用のブラケットに取り付けても良い。
 なお、以上の実施形態では、シュート25が、ブラケット26に対して前後方向に着脱可能に取り付けられているが、ブラケット26を設けることなく、スロープ24に着脱機構を設けて、シュート25を、スロープ24に対して前後方向に着脱可能に取り付けられるように構成してもよい。
 貯氷庫20の前部には、開口部22を覆うシャッター27が設けられている。シャッター27は、スプリング28によって開口部22を閉じる方向に付勢されている。また、シャッター27は、開閉モータ29(排出手段)の作動によってスプリング28の付勢力に抗して開方向に揺動される。
 開閉モータ29の出力軸は、歯車減速機構を介してカム(図示省略)に接続されている。したがって、開閉モータ29の出力軸が回転すると、その回転運動は歯車減速機構を経てカムに伝達され、カムが回転する。カムの側面には、シャッター27に取り付けられたバー(図示省略)が当接している。シャッター27は、スプリング28によって開口部22を閉じる方向に付勢されているが、カムの回転によって、シャッター27に取り付けられたバーがカムの側面に沿って運動すると、開口部22の上方に位置する回動軸27aを中心に開方向に回動される。そして、カムが所定角度だけ回転すると、カムの側面によるバーのシャッター27開方向への押圧が解除され、スプリング28の作用によりシャッター27は一気に閉鎖される。
 シャッター27のこのような一連の運動によって、シャッター27の開度は時間と共に変化するが、排出される氷の量は、開度を時間積分した総開度に概ね比例すると考えられる。したがって、開閉モータ29の回転速度を増減させることで、総開度を増減させることにより、排出される氷の量を調整することができる。
 なお、開閉モータ29によるシャッター27の開閉駆動方法は、上記したものに限定されない。開閉モータ29として正転・逆転が可能なモータを用いれば、モータの正転によりシャッター27を開き、モータの逆転によりシャッター27を閉じることができる。このとき、モータの正転・逆転の回転速度を一定として、シャッター27の最大開度を増減させることにより、または、シャッター27の最大開度を一定としてモータの正転・逆転の回転速度を増減させることにより、排出される氷の量を調整することができる。
 このように、シャッター27の駆動にモータを用いることにより、従来のようにソレノイドを用いる場合と比較して、所要スペースを小さくできる、起動時電力を小さくできる、大きな動作トルクを得ることができる、静粛性が向上する等の優れた効果を得ることができる。
 ところで、シャッター27が開いて開口部22から氷が排出されつつある時にシャッター27が閉じると、シャッター27の下端部とスロープ24との間に氷が挟まる可能性がある。
 これを防止するために、スロープ24の斜路部24bの下部壁24dは、フランジ部24aにおける開口部24cの下縁から下方へ離隔した位置から斜め下方へ延びる平面に沿って延在するように構成されている。すなわち、下部壁24dが延在する平面は、フランジ部24aにおける開口部24cの下縁、すなわち、閉鎖位置近傍にあるシャッター27の下端部から離隔した位置にある。
 さらに、貯氷庫20の外面とスロープ24の斜路部24bの下部壁24dとの接続部、一実施例において下部壁24dの表面と、フランジ部24aにおける開口部24cより下の部位の表面との間に形成される隅部は、氷堆積防止部を備えている。
 以下、氷堆積防止部の実施例について、図4(A)~(F)を参照しつつ説明する。
 一実施例において、下部壁24dとフランジ部24aとは、図4(A)に示すように、開口部24cの下縁から下方へ離隔した位置で交わるように構成されており、このような構成により形成される隅部、すなわちフランジ部24aにおける開口部24cの下縁よりも下方の部位と下部壁24dとの間に形成される隅部に、突起部24m(充填部材)が設けられている。突起部24mは、下部壁24dの全幅にわたって設けられ、その表面は上に凸の曲面、好ましくは上に凸の円筒面、または上に凸の屈曲面として形成されている。
 突起部24mによって、上記した隅部がデッドスペースとして残されることが回避される。また、突起部24mは、その表面が上に凸の円筒面として形成されているので、粉状の氷が付着しにくい。これにより、上記した隅部に粉状の氷が堆積することが防止され、衛生上の問題を引き起こすことがなく、また、堆積した粉状の氷によってシャッター27の開閉が妨げられる虞もない。
 なお、図4(D)に示すように、突起部として、その表面が上に凹の曲面、好ましくは上に凹の円筒面、または上に凹の屈曲面として形成された突起部24q(充填部材)を設けても、上記と同様の効果を得ることができる。
 なお、上記した隅部に、下部壁24dとは別体の突起部24mを設けることに代えて、突起部を下部壁24dと一体に設ける、すなわち、下部壁24dを、フランジ部24aの近傍の部位において、上に凸の曲面、好ましくは上に凸の円筒面、または上に凸の屈曲面として形成された表面を有するものとして構成することによっても、上記と同様の効果が得られる。例えば、図4(B)に示すように、下部壁24dとフランジ部24aとを、下部壁24dの上端部に接続され、その表面が上に凸の曲面、好ましくは上に凸の円筒面、または上に凸の屈曲面として形成された壁部24nによって接続してもよい。また、図4(C)に示すように、下部壁24dとフランジ部24aとを、下部壁24dの上端部に接続され、その表面が下に凸の曲面、好ましくは下に凸の円筒面として形成された第1壁部24p1と、フランジ部24aに接続され、その表面が上に凸の曲面、好ましくは上に凸の円筒面として形成された第2壁部24p2とから成る断面S字状の壁部24pによって接続してもよい。
 なお、図4(E)に示すように、下部壁24dとフランジ部24aとを、下部壁24dの上端部に接続され、その表面が上に凹の曲面、好ましくは上に凹の円筒面として形成された壁部24rによって接続してもよい。また、図4(F)に示すように、下部壁24dとフランジ部24aとを、下部壁24dの上端部に接続され、その表面が上に凹の屈曲面として形成された壁部24sによって接続してもよい。
 蓋部3は、その一側部(左部)がヒンジ30を介して筐体2に揺動可能に支持されている。筐体2の上部には、氷投入口21を閉じた蓋部3をロックする電動のロック機構31が備えられている。ロック機構31は、前面扉4を閉じることで蓋部3のロックを行なう。ロック機構31は、前面扉4を開けた状態で操作可能な図示しないロック解除スイッチを操作することで、蓋部3のロックが解除される。なお、氷ディスペンサ1に電源が供給されていない場合でも、前面扉4を開けた状態で手動によりロック機構31のロック解除が可能となっている。
 貯氷庫20に塊状の氷を補充するには、ロック機構31のロックを解除して蓋部3を開き、氷投入口21から塊状の氷を投入する。
 ここで、氷ディスペンサ1は、前述したように、例えばコンビニエンスストアのレジ近辺のカウンタ上に設置されるため、氷投入口21の床面からの高さは、人の平均的な身長と同程度となる。そのため、塊状の氷を投入する人の身長が低い場合、貯氷庫20の内部を直接的に視認できず、貯氷庫20が満杯になったか否かを確認するために氷投入口21から貯氷庫20の中に手を差し入れることが予想され、衛生上好ましくない。
 そこで、本実施形態の氷ディスペンサ1は、貯氷庫20の内部を直接的に視認できない場合であっても、貯氷庫20が満杯になったか否かを確認できるような満氷検知手段を備えている。
 一実施例の満氷検知手段は、蓋部3の裏面に配置された鏡により構成される。このような構成により、蓋部3を開放した際、その裏面に配置された鏡によって貯氷庫20の内部を間接的に視認でき、貯氷庫20が満杯になったか否かを容易に確認することができる。
 鏡は、結露防止ヒータを備えていることが好ましい。蓋部3を開放した際、貯氷庫20内部と同等の低温になっている鏡に外気が接触すると、外気に含まれる水蒸気が鏡の表面に結露して曇り、貯氷庫20の内部を視認できなくなることが予想される。そのため、蓋部3の開放、または、その前段階(例えば、ロック機構31のロックを解除するための前面扉4の開放)の検知をトリガーとして、結露防止ヒータへの通電を開始するように構成するとよい。これにより、貯氷庫20の内部を視認する時点までに、鏡が結露防止ヒータによって加熱され、外気に含まれる水蒸気が鏡の表面に結露して曇ることを防止したり解消したりすることができる。
 なお、鏡は、蓋部3の裏面に代えて、筐体2上部の氷投入口21の周囲(例えば、氷投入口21の後部または右部)に配置してもよい。この場合、鏡は、蓋部3を閉じた状態で貯氷庫20の外部となる位置に配置されることになるので、結露防止ヒータを設ける必要はない。
 また、他の実施例の満氷検知手段は、貯氷庫20の上端部(氷投入口21の近傍)に配置された光センサと、当該光センサに接続された満氷報知手段とにより構成される。より具体的には、光センサは1対または複数対の発光素子及び受光素子を含み、それぞれの素子は、貯氷庫20が満杯になった時に、発光素子から受光素子へ向かう光線が堆積した氷により遮られるような位置に配置される。そして、発光素子から受光素子へ向かう光線が遮られた状態が所定時間以上継続した場合に、光センサに接続された満氷報知手段が、貯氷庫20が満杯であることを報知する。満氷報知手段は、表示灯、ディスプレイ、ブザー等、適宜の装置により構成することができる。このような構成により、投入される氷が貯氷庫20内へ落下する時、または、貯氷庫20内に氷が一時的に高く積み上がり、その後崩れた時など、発光素子から受光素子へ向かう光線が遮られる時間が所定時間に満たない場合は、満氷報知は行われず、貯氷庫20が満杯になり、堆積した氷により発光素子から受光素子へ向かう光線が遮られる時間が所定時間以上となった場合にのみ、満氷報知が行われる。そのため、貯氷庫20が満杯になったか否かを確実に確認することができる。
 さらに他の実施例の満氷検知手段は、貯氷庫20内の氷の重量を計測し得るように配置された重量センサと、当該重量センサに接続された満氷報知手段とにより構成される。重量センサは、貯氷庫20内の氷の重量を直接的に計測し得るように配置してもよいし、貯氷庫20全体の重量を計測することにより、貯氷庫20内の氷の重量を間接的に計測し得るように配置してもよい。いずれの場合においても、重量センサにより計測された重量が、貯氷庫20の満氷状態に相当する重量に達した時に、重量センサに接続された満氷報知手段が、貯氷庫20が満杯であることを報知する。満氷報知手段は、表示灯、ディスプレイ、ブザー等、適宜の装置により構成することができる。満氷報知手段をディスプレイにより構成した場合には、重量センサにより計測された重量を、例えば貯氷庫20の満氷状態に相当する重量に対するパーセンテージに変換して表示させるようにしてもよい。このように構成することにより、貯氷庫20内の氷の量をリアルタイムで把握できるので、満杯状態を大きく超えて氷を投入してしまうといった不都合を回避することが容易となる。
 さらに他の実施例の満氷検知手段は、貯氷庫20の上部(氷投入口21の近傍)に配置された温度センサと、当該温度センサに接続された満氷報知手段とにより構成される。貯氷庫20内で氷が堆積して満杯状態に近づくにつれて、貯氷庫20の上部の温度は低下するので、貯氷庫20内の氷の量と貯氷庫20の上部の温度との相関関係を予め把握しておけば、貯氷庫20の上部の温度から貯氷庫20内の氷の量を推定することができる。そこで、貯氷庫20の上部に配置された温度センサで計測された温度が所定温度以下になった時に、温度センサに接続された満氷報知手段が、貯氷庫20が満杯であることを報知するように構成すればよい。満氷報知手段は、表示灯、ディスプレイ、ブザー等、適宜の装置により構成することができる。
 なお、上記いずれの満氷検知手段を採用する場合においても、満杯状態を超えて氷を投入してしまう可能性はある。また、投入された氷は、貯氷庫20内で円錐状に堆積することが多いと考えられ、満杯状態に相当する量の氷を投入した場合であっても、堆積した氷の頂部が貯氷庫20の上端(氷投入口21)より高くなることがある。
 そこで、上記のような場合においても、堆積した氷の頂部が収容され得るよう、蓋部3の裏面をドーム状に形成する(すなわち、凹部を設ける)と良い。このような構成により、堆積した氷によって蓋部3を閉めることができなくなるという事態を回避することができる。
 また、円錐状に堆積した氷の頂部が貯氷庫20の上端(氷投入口21)より高くなった場合であっても、貯氷庫20内の氷を撹拌することによって当該円錐を崩すことにより、堆積した氷の頂部の高さを低くすることができる。そこで、蓋部3が開いている状態であっても、所定のボタンを押下等することにより、後述する撹拌機構36(排出手段)が作動するように構成すると良い。または、蓋部3が閉じたことが検知された場合に、撹拌機構36が自動的に作動するように構成しても良い。
 図5は、本実施形態の氷ディスペンサ1における貯氷庫及び撹拌機構の構造を示す斜視図である。
 氷ディスペンサ1の筐体2内には、貯氷庫20を冷却する冷却機構と、貯氷庫20内の氷を撹拌する撹拌機構36が備えられている。
 冷却機構は、冷媒を圧縮する電動コンプレッサ40と、圧縮した冷媒を冷却するコンデンサ41を有している。電動コンプレッサ40及びコンデンサ41は、図2に示すように、貯氷庫20の下部に配置されている。コンデンサ41には、コンデンサ41を冷却するための電動のファンモータ42が備えられている。
 図5に示すように、貯氷庫20の外側面上部には、冷却機構のエバポレータ43が設けられている。エバポレータ43は、銅やアルミニウム等の伝熱性の高いパイプを貯氷庫20の外側面に巻き回すように配置して構成されている。エバポレータ43内を低温の冷媒が通過することで、貯氷庫20と熱交換して、貯氷庫20内を冷却することが可能となっている。
 なお、エバポレータ43は貯氷庫20の上部にのみ巻き回されている。これは、貯氷庫20の下部を冷却し過ぎないようにするためである。例えば貯氷庫20内に氷が貯留している状態で蓋部3を開放したり電源オフとなったりして、貯氷庫20内の温度が上昇して氷が一部解けた後に、冷却機構のエバポレータ43により貯氷庫20の下部を冷却し過ぎると、氷同士が固着したり、氷と開口部22やスロープ24とが付着して、氷の排出が妨げられる虞がある。本実施形態では、エバポレータ43を貯氷庫20の上部にのみ巻き回して、貯氷庫20の下部を冷却し過ぎないようにすることで、このような氷の排出の妨げが回避される。したがって、冷却機構により貯氷庫20の下部において摂氏0度程度に冷却するように、エバポレータ43の位置や能力を設定すればよい。
 撹拌機構36は、撹拌器45及び電動の撹拌モータ46によって構成されている。撹拌器45は、円柱状の軸部47に複数の撹拌棒48を備えて構成されている。軸部47は貯氷庫20内の底部に貯氷庫20と同軸に配置されている。撹拌棒48は、円柱状の棒材により形成され、軸部47から上下方向に斜めに屈曲し、貯氷庫20の内周壁近辺まで径方向外方に延びている。撹拌棒48は、軸部47の外周面に例えば数十度ずつ離間して放射状に、かつ上下方向3段に配置されている。撹拌モータ46は、貯氷庫20の下部に配置されている。撹拌モータ46は、その出力軸が軸部47に連結されており、軸部47を回転させることで貯氷庫20内において撹拌器45を回転させる。また、貯氷庫20の底壁49の上面は、中心部から外周部に向かって下方に傾斜している。
 貯氷庫20の底壁49には、貯氷庫20内の水抜きkのパイプ50が設けられており、貯氷庫20内の水を氷ディスペンサ1の外部に排出可能となっている。
 図6は、氷ディスペンサ1における冷却機構35の回路図である。
 図6に示すように、氷ディスペンサ1の冷却機構35は、冷媒の循環路51に、順番に電動コンプレッサ40(圧縮機)、電動の第1の開閉弁52、コンデンサ41(凝縮器)、ドライヤ53、逆止弁54、キャピラリーチューブ(毛細管:膨張弁の機能を有する)55、エバポレータ43(蒸発器)、アキュムレータ56を備えている。冷却機構35は、電動コンプレッサ40を駆動して冷媒を循環させて圧縮・膨張し、低温となった冷媒との熱交換により冷却する公知の冷却回路であって、詳細な説明は省略する。
 また、電動コンプレッサ40と第1の開閉弁52との間の循環路51と、キャピラリーチューブ55とエバポレータ43との間の循環路51とを連通する連通路57を備えている。連通路57には、電動の第2の開閉弁58が備えられている。
 そして、第1の開閉弁52を開弁し、第2の開閉弁58を閉弁させた状態で、電動コンプレッサ40を稼働することで、図6中の実線矢印で示すように循環路51内を冷媒が循環し、エバポレータ43において低温の冷媒と熱交換して貯氷庫20を冷却する。
 また、第1の開閉弁52を閉弁し、第2の開閉弁58を開弁した状態で、電動コンプレッサ40を稼働することで、図6中の破線矢印で示すように循環路51及び連通路57内を冷媒が循環し、電動コンプレッサ40によって圧縮され高温となった冷媒がエバポレータ43において熱交換して貯氷庫20を加熱する。このように貯氷庫20を加熱することで、貯氷庫20の内壁に付着した霜を除去する除霜機能が可能となっている。
 図7は、氷ディスペンサ1の制御系の構成を示すブロック図である。
 氷ディスペンサ1は、電動コンプレッサ40、第1の開閉弁52、第2の開閉弁58、ファンモータ42を作動制御するコントロールユニット60(制御手段)を備えている。コントロールユニット60は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、タイマ及び中央演算処理装置(CPU)等を含んで構成されている。コントロールユニット60は、電源スイッチ61のオン操作状態で稼働する。電源スイッチ61は、例えば前面扉4の表面や、前面扉4内に配置されている。コントロールユニット60は、前面扉4内に配置された冷却スイッチ62がオン操作されることで上記冷却機構35の各機器を作動させ、貯氷庫20の冷却を行なう。また、コントロールユニット60は、前面扉4内に配置された除霜スイッチ63がオン操作されることで、上記冷却機構35の第1の開閉弁52、第2の開閉弁58を切換えて電動コンプレッサ40を駆動し、除霜機能を実行する。
 更に、コントロールユニット60は、氷定量排出ボタン7、氷微量排出ボタン8、氷排出レバー6の操作信号、氷センサ33からの検出信号を入力し、開閉モータ29を作動制御して、シャッター27を開作動させるとともに撹拌モータ46を作動させ、氷定量排出ボタン7または氷微量排出ボタン8によって設定された所定量あるいは微量の氷を排出させる。
 また、コントロールユニット60は、電源オン時に所定期間(例えば数10分~数時間)毎に撹拌モータ46を所定時間(例えば数分)作動させる。これにより、貯氷庫20内で塊状の氷同士の固着が抑制される。
 なお、シャッター27を閉状態でロックするシャッターロック機構を備え、シャッター27を常時閉状態でロックし、氷を排出させるときのみロックを解除するように制御するとよい。このようなシャッターロック機構を設けることで、上記のように氷が固着しないように撹拌モータ46を作動させた際に、開口部22からの氷の不要な排出を防止することができる。
 また、コントロールユニット60は、撹拌モータ46の作動時にロック機構31を作動制御して蓋部3の開放を規制する安全機能を備えている。また、蓋部3には、開閉を検出する開閉センサ66が備えられており、コントロールユニット60は、蓋部3が開いたことが検出された場合に、撹拌モータ46の回転を停止させる安全機能も備えている。
 また、撹拌器45または撹拌モータ46の回転軸には、回転速度を検出する回転センサ67が設けられている。コントロールユニット60は、撹拌モータ46の回転制御に拘わらず回転軸の回転が所定時間(例えば数秒)以上検出されない場合には、撹拌モータ46の作動制御を停止するモータ保護機能を有している。これにより、例えば氷が開口部22付近に付着したり、撹拌棒48と開口部22の縁部との間で挟み込まれたりして、撹拌器45の回転が不能となった場合に撹拌モータ46の作動を停止して撹拌モータ46を保護することができる。
 また、氷ディスペンサ1には、氷付着防止機構が備えられている。氷付着防止機構は、例えばスロープ24、蓋部3、シャッター27に設けられたヒータ68によって構成されている。
 これらのヒータ68は、例えば氷ディスペンサ1の電源オン時に比較的弱い発熱量で加熱し続けてもよいし、所定時間経過毎に加熱してもよい。または、氷が補充された場合に所定時間経過、または所定量排出されるまで、比較的強い発熱量で加熱してもよい。これにより、スロープ24やシャッター27に氷が付着することが抑制され、氷の排出性を向上させることができる。
 また、コントロールユニット60は、貯氷庫20内における氷の残量を判定する残量判定機能を有している。貯氷庫20の底部には、貯氷庫20の底部の庫内温度を検出する温度センサ70が備えられている。コントロールユニット60は、温度センサ70により検出した貯氷庫20の底部の庫内温度が、摂氏0度付近に設定した所定温度以下であれば、氷が貯氷庫20内に排出可能な所定量以上残っていると判定する。これは、氷が貯氷庫20内に所定量以上残っていれば、その氷によって貯氷庫20の底部の庫内温度が摂氏0度付近以下に低下するためである。
 なお、エバポレータ43は、貯氷庫20の外側面上部に配置され、貯氷庫20の下部には設けられていないので、エバポレータ43による冷却が温度センサ70の検出値に与える影響は抑制される。即ち、氷が貯氷庫20内に殆ど残っていないにも拘わらず、エバポレータ43による冷却によって貯氷庫20の底部の庫内温度が所定温度以下に低下して氷の残量が少ないと誤判定することを防止することができる。
 コントロールユニット60は、電源オン状態で氷の残量が所定量以上であると判定すれば、氷定量排出ボタン7a、7b、7c及び氷微量排出ボタン8を点灯させ、ユーザーに氷の排出が可能であることを報知する。また、コントロールユニット60は、氷の残量が所定量未満であると判定した場合には、氷定量排出ボタン7a、7b、7c及び氷微量排出ボタン8を消灯させる。また、氷の残量が所定量未満である場合だけでなく、例えば氷ディスペンサ1の機器が故障している場合にも、氷定量排出ボタン7a、7b、7c及び氷微量排出ボタン8を消灯させる。
 また、コントロールユニット60は、氷定量排出ボタン7a、7b、7cの操作により、氷の定量排出中であるときには、選択した氷定量排出ボタン7a、7b、7cを点滅作動し、他の氷定量排出ボタン7a、7b、7c及び氷微量排出ボタン8は消灯させる。
 なお、残量判定機能については、上記のように温度センサ70により検出した貯氷庫20の底部の庫内温度に基づいて判定するのではなく、他の方法でも可能である。例えば、氷定量排出ボタン7を操作して氷を排出した際に、氷センサ33により検出した単位時間あたりの氷の排出量が所定量より少ない場合に、氷の残量が少ないと判定してもよい。また、氷の残量が所定量未満であると判定した場合に、ブザー等の音により報知してもよい。
 本実施形態では、氷の排出を指示する操作手段として、多、中、少の排出量を設定可能な3種類の氷定量排出ボタン7a、7b、7cの他に氷排出レバー6を備えており、氷定量排出ボタン7a、7b、7cと氷排出レバー6の両方の操作によって、定量の氷の搬出が可能となっている。
 氷定量排出ボタン7a、7b、7cのみを備えた氷ディスペンサでは、例えば排出口5の下にカップを配置していない状態で誤って氷定量排出ボタン7a、7b、7cを押した場合、あるいは排出口5の下にカップを置いて氷定量排出ボタン7a、7b、7cを操作した後に誤ってカップを倒してしまったり、排出(落下)した氷の勢いでカップが倒れてしまったりした場合では、氷が無駄に排出されてしまう虞がある。また、一度氷定量排出ボタン7a、7b、7cを押して氷の排出が開始すると設定された量を排出するまで停止することができず、氷を多量に無駄にしてしまう虞がある。
 本実施形態では、コントロールユニット60は、氷定量排出ボタン7a、7b、7cと氷排出レバー6の両方の操作が行なわれた場合に、シャッター27の開作動と、撹拌器45による撹拌作動を行ない、氷の排出を行なう。この氷定量排出ボタン7a、7b、7cと氷排出レバー6の両方の操作とは、氷定量排出ボタン7a、7b、7cの操作後に氷排出レバー6を操作することと、氷排出レバー6を操作したまま氷定量排出ボタン7a、7b、7cを押すことのいずれでもよい。コントロールユニット60は、氷定量排出ボタン7a、7b、7cが操作されると、氷排出レバー6の操作状態を確認し、氷排出レバー6が操作されている場合に氷が排出するように制御することで、氷排出レバー6を操作したまま氷定量排出ボタン7a、7b、7cを押すことが確認される。なお、氷定量排出ボタン7a、7b、7cにより設定した設定量の氷が排出されている途中で氷排出レバー6の操作が解除された場合には、氷の排出が停止される。
 氷排出レバー6は、排出口5の近辺(下方奥側)に設けられ、ユーザーがカップを持って排出口5の下方に近づけた際に操作可能な位置に配置されているので、氷排出レバー6が操作されている際には排出口5の下方にカップが位置していることになる。
 したがって、排出口5の下方に近接してカップが配置されていない状態では、誤って氷定量排出ボタン7a、7b、7cあるいは氷微量排出ボタン8を押したとしても氷が排出されず、無駄な氷の排出を抑制することができる。
 また、氷排出レバー6の付勢力(戻り力)は、排出口5の下方の受け皿部9に紙製等の軽量のカップを置いた場合でも操作が解除される程度に比較的大きく設定するとよい。これにより、ユーザーがカップを持たずに受け皿部9に置いたとしても、氷排出レバー6が操作されず、例え氷定量排出ボタン7a、7b、7c氷微量排出ボタン8を押したとしても、氷の排出が抑制される。これにより、カップが倒れた状態で氷が排出されることを防止することができる。
 また、コントロールユニット60は、氷の定量排出中に氷排出レバー6の操作解除により氷の排出を停止してから所定時間経過するまでに氷排出レバー6が再操作された場合には氷の排出を再開し、それまでの定量排出中における氷の排出量と合わせて、氷定量排出ボタン7a、7b、7cにより設定した設定量の氷が排出されるように制御する。
 これにより、氷の定量排出中に氷排出レバー6を誤って操作解除しても、所定時間経過する前に氷排出レバー6を再操作することで、氷の定量排出が再開され、所定量の排出が可能となる。
 コントロールユニット60は、氷の定量排出中に氷排出レバー6が操作解除されて所定時間経過した場合には氷の定量排出を中止する。そして、この氷の定量排出が中止された以降に氷排出レバー6が操作されても、氷定量排出ボタン7a、7b、7cが再度操作されるまで氷の定量排出は行なわない。
 コントロールユニット60は、定量排出中では、操作された氷定量排出ボタン7a、7b、7cを点滅作動させるよう制御するが、氷の定量排出中に氷排出レバー6が操作解除された際に所定時間経過するまで、この点滅作動を継続させるように制御するとよい。これにより、氷定量排出ボタン7a、7b、7cが点滅作動中においては、氷の定量排出の再開が可能であることをユーザーに知らせる報知手段となり、氷の定量排出の再開可能、不可をユーザーが容易に判断することが可能となり、使用性の優れたものとなる。
 なお、氷の定量排出を再開可能から不可に切換えるタイミングについては、上記のように氷排出レバー6が操作解除されたときから所定時間経過するまで定量排出が再開可能とするようにしてもよいし、定量排出開始から適宜設定された所定時間経過するまでに氷排出レバー6が再操作された場合に定量排出が再開可能とするようにしてもよい。
 また、本実施形態では、氷の排出を指示する操作手段として、微量(例えば数個)の氷を排出させる氷微量排出ボタン8が備えられている。氷微量排出ボタン8については、氷定量排出ボタン7a、7b、7cと同様に、氷排出レバー6と両方が操作されることで、氷の排出が可能となっている。
 氷微量排出ボタン8を備えていない従来の氷ディスペンサでは、氷定量排出ボタン7a、7b、7cの操作によって氷を排出させた際に、例えば氷の一部がカップからこぼれた場合では、カップへの氷の供給量が足りなくなる。ここで氷を追加しようとして、再度氷定量排出ボタン7a、7b、7cを操作すると、氷が過剰にカップ内に供給されることになり、氷を無駄に消費してしまう虞がある。
 これに対して、本実施形態のように、氷微量排出ボタン8を備えることで、カップへ少量(数個)の氷を供給することが可能となる。なお、氷微量排出ボタン8が操作される毎に何度でも数個ずつ氷が排出される。
 これにより、氷定量排出ボタン7a、7b、7cの操作によって指示した定量の氷を排出させた際に、例えば氷の一部がカップからこぼれてカップ内への氷の供給が不足している場合には、氷微量排出ボタン8を押すことで、氷のカップへの供給量を調整することができる。
 また、氷ディスペンサ1には、微量排出量設定器8a(第2の排出量設定手段)が備えられている。微量排出量設定器8aは、例えばダイヤル式スイッチであって、氷微量排出ボタン8を押した際の排出量を設定する。微量排出量設定器8aは、前面扉4の表面、あるいは前面扉4の内側に設けるとよい。この微量排出量設定器8aにより、氷微量排出ボタン8を押した際の氷の排出量を適宜設定しておくことで、氷の供給量の調整を更にし易いものとすることができる。
 なお、氷微量排出ボタン8については、一度操作する毎に少量の氷を排出するようにしてもよいし、氷微量排出ボタン8の操作している間に連続して少量ずつ排出するようにしてもよい。また、氷微量排出ボタン8による氷の排出については、氷排出レバー6の操作がなくとも行なわれるように制御してもよい。
 また、氷微量排出ボタン8の操作による微量の氷の排出については、氷定量排出ボタン7a、7b、7cの操作によって指示された定量の氷を排出させた後に、所定時間(第1の所定時間)内で受け付けるようにするとよい。あるいは、定量排出ボタン7a、7b、7cの操作によって指示された定量の氷を排出させた後に、所定回数まで氷微量排出ボタン8の操作による微量の氷の排出を受け付けるようにしてもよい。これにより、氷定量排出ボタン7a、7b、7cの操作による定量の氷の排出後に、氷微量排出ボタン8の操作による微量の氷の排出が可能であることが限定され、氷微量排出ボタン8の必要以上の操作を抑制することができる。
 また、上記実施形態では、定量の氷の排出後に、氷微量排出ボタン8によって微量の氷の排出が行なわれるが、氷定量排出ボタン7a、7b、7cの操作によって微量の氷の排出を行なうようにしてもよい。例えば、コントロールユニット60は、氷定量排出ボタン7a、7b、7cの操作によって指示された定量の氷を排出させた後、所定時間(第2の所定時間)経過するまでに、その氷定量排出ボタン7a、7b、7cを再度操作することで、微量の氷の排出を行なうように制御する。即ち、定量の氷の排出後においては、微量の氷の排出の操作指示をする排出操作手段を氷微量排出ボタン8から氷定量排出ボタン7a、7b、7cに変更する。これにより、1つのボタンで氷の提供及び調整が可能となり、操作性を向上させることができる。そして、所定時間(第2の所定時間)経過後は、微量の氷の排出の操作指示をする排出操作手段を氷定量排出ボタン7a、7b、7cから氷微量排出ボタン8に戻す。これにより、所定時間経過後は、氷定量排出ボタン7a、7b、7cの操作によって、新たに定量の氷の排出が可能となる。
 なお、微量の氷の排出の操作指示をする排出操作手段を氷微量排出ボタン8から氷定量排出ボタン7a、7b、7cに変更しているときには、例えば当該氷定量排出ボタン7a、7b、7cを点滅させるようにして、ユーザに報知させるとよい。これにより、ユーザーが微量の氷の排出の操作指示をする際に、間違えることなく容易に操作をすることができる。
 次に、氷の搬出量の検出方法について詳細に説明する。
 本実施形態のように、塊状の氷を貯留し、所定量ずつ排出するような氷ディスペンサでは、氷の大きさは概ね所定の範囲にあるものの、全ての氷の大きさが一定ではない。したがって、塊状の氷の排出量を正確に検知することは難しく、設定量の氷を精度よく提供することは困難である。
 そこで、本実施形態では、氷の排出量を検出する氷センサ33が、氷センサハウジング24h内に配置された2つ(2組)の氷センサ33a、33bによって構成されている。氷センサ33a、33bは、貯氷庫20の開口部22から斜め下方に延在するスロープ24の下端部(下端部近傍を含む)に設けられ、スロープ24の延在方向と略垂直方向に、すなわちスロープ24上の氷の移動方向(排出方向)氷の排出方向に対して略垂直方向(例えば上下方向)に、互いに離間して配置されており、夫々の設置位置における氷の通過を検出可能となっている。
 コントロールユニット60には、2つの氷センサ33a、33bから所定時間(例えば1msec)毎に検出信号を入力されることにより、氷の通過量を推定する氷排出量計測部80が備えられている。
 氷排出量計測部80は、2つの氷センサ33a、33bにより検出した検出信号に基づいて、氷の大きさを推定する。スロープ24が斜め下方に傾斜しているので、開口部22から排出されてスロープ24を通過する氷は、スロープ24の下部壁24d上を滑り落ち、スロープ24の下端部において、比較的小さい氷は概ねスロープ24の下部壁24dの先端部(下端部)近くを通過する。したがって、2つの氷センサ33a、33bのうち下方に配置された氷センサ33bのみで氷を検出した場合には、比較的小さい氷が通過し、両方の氷センサ33a、33bで氷を検出した場合には、比較的大きな氷が通過したものと精度良く推定することができる。
 そして、氷排出量計測部80は、氷の大きさと氷センサ33a、33bにより検出した氷の検出時間とに基づいて、氷の通過量を演算する。具体的には、例えば1つのセンサの場合Ag、2つのセンサの場合B(≒2×A)g、夫々1回(1msec)氷の通過を検出する毎に、氷が通過したものと推定する。なお、このA及びBは、本発明の体積情報に該当し、試験等であらかじめ確認して設定すればよい。
 したがって、例えば1000msecの間に1つの氷センサ33aまたは33bで600msec氷を検出した場合に、600×Agの氷が通過したと推定し、また、2つの氷センサ33a、33bで同時に400msec氷を検出した場合には、400×Bgの氷が通過したと推定する。そして、この氷の通過量を加算して、全体的な氷の通過量、即ち氷の排出量を演算する。
 このように、氷センサ33a、33bの検出時間だけでなく、2つの氷センサ33a、33bの検出結果に基づいて氷の大きさを推定し氷の排出量を演算するので、精度良く氷の排出量を推定することができる。したがって、氷定量排出ボタン7a、7b、7cの操作による氷の定量排出の際に、この氷の排出量の推定値に基づいてシャッター27を閉じるタイミングを制御することで、精度のよい氷の排出が可能となる。
 なお、氷センサ33については、スロープ24の下端部ではなく、スロープ24上の範囲内に設けてもよい。
 また、氷センサ33を例えばシュート25に設けてもよい。この場合、氷排出量計測部80は、2つの氷センサ33a、33bにより略同時に氷の通過が検出された場合には大型の氷が通過し、2つの氷センサ33a、33bのいずれか一方のみ氷の通過が検出された場合には、小型の氷が通過したものと推定すればよい。
 また、氷センサ33を3個以上設けてもよい。この場合には同時に氷を検出した氷センサ33の数が多いほど、大型の氷であると推定すればよい。
 そして、本実施形態の氷ディスペンサ1は、塊状の氷を外部から供給して貯留し、カップ等に対して適量ずつ供給するものであって、製氷機能を設けていないので、氷ディスペンサ1を小型化することができる。これにより、設置スペースの限られた場所に設置しやすく、また複数台設置することで氷の供給量を増加させることもでき、使用範囲の広い氷ディスペンサにすることができる。
 なお、本発明の氷ディスペンサは、以上の実施形態に限定されるものではない。本発明は、貯留した塊状の氷を適量ずつ供給する氷ディスペンサに広く適用することができる。その際、氷ディスペンサは、製氷機を備えるものであってもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an external view of an ice dispenser according to an embodiment of the present invention. FIG. 2 is a perspective view showing the internal structure of the ice dispenser of this embodiment.
The ice dispenser 1 according to an embodiment of the present invention is installed on a counter near a cash register of a convenience store, for example, and is used by an employee or the like to put ice in a cup when serving a cooled beverage.
The ice dispenser 1 of the present embodiment is an apparatus that provides only ice without an ice maker, and is made at a lower temperature than the ice made by an ice dispenser with an ice maker purchased from an ice maker and put into a beverage. In this case, block ice, such as Rock Ice (registered trademark) or crush ice, which is difficult to melt in some cases, particularly irregular shaped ice having a size within a predetermined range, is stored and provided to the cup in a predetermined amount.
As shown in FIG. 1, the ice dispenser 1 has a substantially rectangular housing 2. On the upper surface of the housing 2, there is provided a lid portion 3 that covers an ice slot into which massive ice is poured.
A front door 4 is provided on the front surface of the housing 2 to cover the upper and middle portions of the front surface. In addition, a discharge port 5 is provided on the front surface of the housing 2 to discharge massive ice from the lower end of the front door 4 downward. An ice discharge lever 6 (discharge operation means) is provided behind the discharge port 5. The ice discharge lever 6 is arranged so that when the user holds the mouth of the cup below the discharge port 5, the ice can be pushed backward by the back of the hand or the finger holding the cup. Note that the ice discharge lever 6 may be provided with push-type operation means instead.
On the surface of the front door 4 of the housing 2, four button switches for instructing the discharge of ice are arranged in the vertical direction. Of the four button switches, the upper three are ice fixed amount discharge buttons 7 (discharge operation means, notification means) for discharging a fixed amount (first predetermined amount). The fixed amount discharge button 7a can be set to a large discharge amount, the constant amount of ice discharge button 7b can be set, and the fixed amount discharge button 7c can be set to a small discharge amount. The button switch arranged at the bottom of the four button switches is an ice trace discharge button 8 (discharge operation means) for discharging a trace amount (for example, several: a second predetermined amount) of ice. The ice fixed amount discharge buttons 7a, 7b, and 7c and the ice small amount discharge button 8 are button switches with built-in LEDs.
Below the discharge port 5, a tray portion 9 is provided for receiving and storing spilled ice or the like.
As shown in FIG. 2, an ice storage 20 for storing massive ice is provided inside the ice dispenser 1.
The ice storage 20 is a substantially cylindrical tank arranged so that its axis extends in the vertical direction, and is formed of a highly heat-conductive material such as aluminum or stainless steel, and is configured to cover its periphery with a heat insulating material. ing. The ice storage 20 is open at the top, is provided with an ice inlet 21, and is closed at the bottom.
In the lower part of the front side surface of the ice storage 20, an opening 22 (a carry-out port) for discharging the ice in the ice storage 20 is provided. In addition, an ice guiding unit 23 that guides ice from the opening 22 of the ice storage 20 to the front lower side is provided.
The ice guiding unit 23 is fixed to the side surface of the ice storage 20 and has a slope 24 (fixed ice guiding unit) for guiding ice obliquely downward from the opening 22 and a chute 25 (discharge) for guiding ice downward from the tip of the slope 24. Road) and a bracket 26 (fixed ice guiding unit) that is fixed to the housing of the ice dispenser 1 and supports the chute 25. The lower end of the chute 25 is opened downward in front of the ice discharge lever 6, and this opening serves as a discharge port 5 for discharging ice.
As will be described later, the ice guiding unit 23 is provided with an ice sensor for detecting the amount of ice passing therethrough. However, some conventional ice dispensers have a sensor mounted on a chute. However, the inner surface of the chute adheres to pieces of ice that pass through and melts and gets wet, so it is a site that tends to get dirty and needs to be periodically removed and cleaned. When a sensor is mounted on such a chute, when removing the chute for cleaning, the sensor is removed from the chute (or the wiring connected to the sensor is removed from the wiring connected to the control unit in the connector). ) It is necessary and workability is not good. Moreover, there is a possibility that the sensor and the wiring connected to the sensor may be damaged by trying to remove the chute while the sensor is attached.
Therefore, the ice guiding unit 23 of the present embodiment is configured so that the chute 25 for cleaning can be easily removed.
Hereinafter, the structure of the ice guiding unit 23 will be described in detail with reference to FIGS. 3A to 3D.
3A is a perspective view showing the structure of the ice guiding unit 23, FIG. 3B is a perspective view of the chute 25, FIG. 3C is a perspective view showing a state in which the chute 25 is removed from FIG. 3A, and FIG. It is a perspective view which shows the state which removed the housing 26b.
The slope 24 includes a flange portion 24a and a ramp portion 24b.
The flange portion 24 a is provided at the upper end portion of the slope 24 and has a function of fixing the slope 24 to the lower portion of the front side surface of the ice storage 20. The flange 24 a is provided with an opening 24 c having substantially the same shape as the opening 22 of the ice storage 20. When the slope 24 is fixed to the lower part of the front side surface of the ice storage 20, The positions are aligned.
The sloping portion 24b extends obliquely upward from the lower wall 24d extending along a plane extending obliquely downward from a position spaced apart from the lower edge of the opening 24c in the flange portion 24a, and the upper edge of the opening 24c. The upper wall 24e is formed shorter than the lower wall 24d. The ramp portion 24b includes a side wall (side wall) 24f that extends forward from the left and right edges of the opening 24c. The side wall 24f is formed by integrating a lower part extending obliquely downward with substantially the same height as the left and right edges of the opening 24c, and a triangular upper part connecting the lower part and the upper wall 24e. It has the shape made into. Thereby, the part near the opening part 24c of the ramp part 24b is formed in a pyramid shape composed of the upper wall 24e, the side wall 24f (upper part and lower part) and the lower wall 24d, and the part far from the opening part 24c is The side wall 24f (lower part) and the lower wall 24d are formed in a substantially U-shape.
In the embodiment shown in FIGS. 3A to 3D, the ramp portion 24b is formed in a bowl shape as described above, but the whole may be formed in a cylindrical shape.
Bosses 24g are formed on the outer side surfaces of both side walls 24f near the lower end of the ramp portion 24b, and a pair of ice sensor housings 24h are mounted on the bosses 24g. Note that a gap is formed between the outer side surface of both side walls 24f and the inner side surface of the pair of ice sensor housings 24h that can accommodate both left and right edges of the peripheral wall of the chute 25 described later.
In one ice sensor housing 24h, for example, light emitting elements and light receiving elements are arranged in the vertical direction in this order, and in the other ice sensor housing 24h, light receiving elements and light emitting elements are arranged in the vertical direction. The light emitting element and the light receiving element, which are arranged opposite to each other across the ice passage between the side walls 24f, constitute a pair of ice sensors 33a and 33b (detection means), respectively. The emitted light is received by the light receiving element (hereinafter, the ice sensors 33a and 33b are collectively referred to as the ice sensor 33). Then, when ice is present in the ice passage, the light emitted from the light emitting element is blocked by the ice and is not received by the light receiving element, so that the passage of ice in the ice passage is detected, and the detected ice is detected. The amount of ice that has passed is detected based on the time and number of passes.
As shown in FIG. 3B, the chute 25 includes a scoop portion 25a and a cylindrical portion 25b connected to the lower portion thereof.
The scoop part 25a includes a peripheral wall having a substantially U-shaped cross section in plan view with the rear side (side facing the ramp part 24b of the slope 24) and the upper part open, and both the left and right sides of the peripheral wall in the vicinity of the open end part on the rear side. It comprises a bottom wall connecting the edges at the lower part, and has a function of receiving ice discharged from the ramp portion 24b of the slope 24 and guiding it to the cylinder portion 25b. In addition, a pair of slits 25c extending in the vertical direction is formed in the lower part near the open ends of the left and right edges of the peripheral wall of the scoop part 25a.
The cylindrical portion 25b is formed in a substantially cylindrical shape, guides the ice that has reached through the ramp portion 24b and the scoop portion 25a of the slope 24, and carries it out into a cup (not shown) set below the chute 25. It has a function. A pair of upper guides 25d and lower guides 25e that protrude from the same height position are formed on the left and right sides of the outer surface of the cylindrical portion 25b. Each of the upper guide 25d and the lower guide 25e is formed as a plate-like member that extends substantially in a horizontal plane. When the chute 25 is mounted on a bracket 26 described later, the chute 25 is guided and It has a function to support.
A bracket 26 that supports the chute 25 is fixed to the housing of the ice dispenser 1 below the lower end of the ramp portion 24 b of the slope 24.
As shown in FIGS. 3C and 3D, the bracket 26 includes a support body 26a and a housing 26b that accommodates the support body 26a.
The support 26a includes a substantially U-shaped support spring 26c whose front side is opened in plan view, and an insertion guide 26d attached to each of the open ends of the support spring 26c.
The support spring 26c is made of an elastic material, and includes a base portion 26e and a pair of arm portions 26f that protrude forward from each end of the base portion 26e at an acute angle. An insertion guide 26d having a mountain shape with the top facing inward in plan view is attached to the tip of each arm 26f. The distance between both arm portions 26f of the support spring 26c is substantially the same as the width in the left-right direction of the cylindrical portion 25b of the chute 25, and the interval between the top portions of both insertion guides 26d is the distance between the cylindrical portion 25b of the chute 25. It is set narrower than the width in the left-right direction.
The housing 26b includes a base portion 26g and a pair of arm portions 26h projecting forward at right angles from both ends of the base portion 26g. The housing 26b is formed in a U-shape with the front side open in plan view. ing. The base part 26g and the arm part 26h have a substantially U-shaped cross-section with the lower part opened, and the base part 26e and the arm part 26f of the support spring 26c are accommodated in spaces formed therein, respectively. . The front end portion of the arm portion 26h of the housing 26b is opened, and an insertion guide 26d attached to the arm portion 26f of the support spring 26c protrudes therefrom.
In order to attach the chute 25 to the bracket 26, the chute 25h is sandwiched between the upper guide 25d and the lower guide 25e formed on the left and right sides of the outer surface of the cylindrical portion 25b of the chute 25. After adjusting the position of 25, the chute 25 may be pushed backward. At that time, the cylindrical portion 25b of the chute 25 is guided by the insertion guide 26d of the support body 26a, and passes between the insertion guides 26d while spreading the arm portion 26f of the support spring 26c outward, so that the housing 26b of the bracket 26 is provided. Is housed in a space surrounded by the base portion 26g and the arm portion 26h. At this time, the arm portion 26f of the support spring 26c is in the original state, that is, the distance between the top portions of the both insertion guides 26d is narrower than the width in the left-right direction of the tube portion 25b of the chute 25. The portion 25b is prevented from falling forward. In order to remove the chute 25 from the bracket 26, it is only necessary to pull the chute 25 forward.
Further, in the state where the chute 25 is attached to the bracket 26, the part on the open end side of the left and right edges of the peripheral wall of the scoop part 25a is the outer surface of the side wall 24f of the slope 24 and the ice sensor. It is accommodated in a gap formed between the inner surface of the housing 24h. As a result, the ice sensor 33 (light emitting element and light receiving element), which is an optical sensor housed in the ice sensor housing 24h, faces the slit 25c, and the light emitted from the light emitting element passes through the slit 25c and is received. Head to the element.
As described above, in the ice guiding unit 23, the ice sensor 33 for detecting the amount of ice passing through is accommodated in the ice sensor housing 24h attached to the side wall 24f of the slope 24. That is, the ice sensor 33 and its related parts are not mounted on the chute 25. Therefore, when removing the chute 25 for cleaning, it is not necessary to remove the mounted parts in advance. The chute 25 can be easily attached to and detached from the bracket 26 by simply pushing the chute 25 backward or pulling it forward without using a fastening member. Thus, the ice guiding unit 23 of the present embodiment has an excellent effect that the chute 25 for cleaning can be easily attached and detached.
In the above embodiment, the ice sensor 33 is disposed in the vicinity of the lower end of the ramp portion 24b of the slope 24. However, the ice sensor 33 may be disposed in the middle of the ramp portion 24b. You may arrange | position in the vicinity of the upper end part, ie, the opening part 24c of the flange part 24a. As will be described later, the ice dispenser 1 of the present embodiment is configured such that the shutter 27 is closed when it is estimated that the amount of ice detected by the ice sensor 33 reaches a predetermined amount. The ice on the upstream side of the ice sensor 33 is discharged although it is not actually detected by the ice sensor 33, but the actual discharge amount has a larger error than the predetermined amount. For this reason, the ice sensor 33 is preferably arranged as close as possible to the shutter 27, that is, in the vicinity of the opening 24c of the flange portion 24a.
In the case where the ice sensor 33 is disposed in any part of the ramp portion 24b of the slope 24, the ice sensor housing 24h may be attached to any part of the slope 24, the ice storage 20, the casing 2 or the like. You may attach to the bracket for exclusive use attached to etc.
Further, when the ice sensor 33 cannot be disposed in any part of the ramp portion 24b of the slope 24 due to space restrictions or the like, the ice sensor 33 may be disposed in the middle of the chute 25, for example, the cylinder portion 25b. . In this case, the ice sensor housing 24h is preferably attached to the arm portion 26h of the housing 26b of the bracket 26, but may be attached to a dedicated bracket attached to the ice storage 20, the housing 2, or the like.
In the above-described embodiment, the chute 25 is detachably attached to the bracket 26 in the front-rear direction. However, the bracket 24 is not provided, and an attachment / detachment mechanism is provided on the slope 24 to connect the chute 25 to the slope. You may comprise so that it can attach or detachably with respect to 24 in the front-back direction.
A shutter 27 that covers the opening 22 is provided at the front of the ice storage 20. The shutter 27 is urged by a spring 28 in a direction to close the opening 22. The shutter 27 is swung in the opening direction against the biasing force of the spring 28 by the operation of the opening / closing motor 29 (discharge means).
The output shaft of the opening / closing motor 29 is connected to a cam (not shown) via a gear reduction mechanism. Therefore, when the output shaft of the opening / closing motor 29 rotates, the rotational motion is transmitted to the cam via the gear reduction mechanism, and the cam rotates. A bar (not shown) attached to the shutter 27 is in contact with the side surface of the cam. The shutter 27 is biased in a direction to close the opening 22 by a spring 28. However, when the bar attached to the shutter 27 moves along the side surface of the cam by the rotation of the cam, the shutter 27 is positioned above the opening 22. The rotating shaft 27a is rotated in the opening direction. Then, when the cam rotates by a predetermined angle, the pressing of the bar in the opening direction of the shutter 27 by the side surface of the cam is released, and the shutter 27 is closed at once by the action of the spring 28.
By such a series of movements of the shutter 27, the opening degree of the shutter 27 changes with time, but the amount of ice discharged is considered to be approximately proportional to the total opening degree obtained by integrating the opening degree over time. Therefore, by increasing or decreasing the rotation speed of the opening / closing motor 29, the amount of ice discharged can be adjusted by increasing or decreasing the total opening.
Note that the opening / closing driving method of the shutter 27 by the opening / closing motor 29 is not limited to the above. If a motor capable of normal rotation / reverse rotation is used as the opening / closing motor 29, the shutter 27 can be opened by normal rotation of the motor, and the shutter 27 can be closed by reverse rotation of the motor. At this time, by increasing / decreasing the maximum opening degree of the shutter 27 with the rotation speed of the motor normal rotation / reverse rotation being constant, or increasing / decreasing the rotation speed of the motor forward / reverse rotation with the maximum opening degree of the shutter 27 being constant. By doing so, the amount of ice discharged can be adjusted.
In this way, by using the motor for driving the shutter 27, compared with the case where a solenoid is used as in the conventional case, the required space can be reduced, the starting power can be reduced, and a large operating torque can be obtained. Excellent effects such as improvement in silence can be obtained.
By the way, if the shutter 27 is closed when the shutter 27 is opened and the ice is being discharged from the opening 22, there is a possibility that the ice may be caught between the lower end portion of the shutter 27 and the slope 24.
In order to prevent this, the lower wall 24d of the ramp portion 24b of the slope 24 is configured to extend along a plane extending obliquely downward from a position spaced downward from the lower edge of the opening 24c in the flange portion 24a. Has been. That is, the plane in which the lower wall 24d extends is at a position separated from the lower edge of the opening portion 24c in the flange portion 24a, that is, the lower end portion of the shutter 27 in the vicinity of the closed position.
Further, the connection between the outer surface of the ice storage 20 and the lower wall 24d of the ramp portion 24b of the slope 24, in one embodiment, the surface of the lower wall 24d and the surface of the flange portion 24a below the opening 24c. The corners formed in the are provided with an ice accumulation preventing part.
Hereinafter, an embodiment of the ice accumulation preventing unit will be described with reference to FIGS. 4 (A) to (F).
In one embodiment, as shown in FIG. 4A, the lower wall 24d and the flange portion 24a are configured to intersect at a position spaced downward from the lower edge of the opening 24c. A protrusion 24m (filling member) is provided at a corner formed by the above-mentioned, that is, a corner formed between a portion of the flange portion 24a below the lower edge of the opening 24c and the lower wall 24d. . The protrusion 24m is provided over the entire width of the lower wall 24d, and the surface thereof is formed as an upwardly convex curved surface, preferably an upwardly convex cylindrical surface, or an upwardly convex bent surface.
The protrusion 24m avoids leaving the above-mentioned corner as a dead space. Moreover, since the protrusion part 24m is formed as the cylindrical surface where the surface is convex upwards, powdery ice does not adhere easily. This prevents powdered ice from accumulating in the corners described above, does not cause sanitary problems, and does not prevent the shutter 27 from being opened and closed by the accumulated powdered ice.
In addition, as shown in FIG. 4D, the protrusion 24q (filling) is formed as a protrusion with a concave surface on the surface, preferably a concave cylindrical surface on the top, or a concave bent surface on the top. Even if the member is provided, the same effect as described above can be obtained.
Instead of providing the protrusion 24m separate from the lower wall 24d at the corner, the protrusion is provided integrally with the lower wall 24d. That is, the lower wall 24d is provided near the flange 24a. An effect similar to the above can also be obtained by configuring the part as having an upwardly convex curved surface, preferably an upwardly convex cylindrical surface, or an upwardly convex curved surface. For example, as shown in FIG. 4B, the lower wall 24d and the flange portion 24a are connected to the upper end portion of the lower wall 24d, and the surface thereof is an upwardly convex curved surface, preferably an upwardly convex cylindrical surface, Or you may connect by the wall part 24n formed as an upward convex bending surface. Further, as shown in FIG. 4C, the lower wall 24d and the flange portion 24a are connected to the upper end portion of the lower wall 24d, and the surface thereof is a downwardly convex curved surface, preferably a downwardly convex cylindrical surface. An S-shaped cross section comprising a formed first wall portion 24p1 and a second wall portion 24p2 connected to the flange portion 24a and whose surface is formed as an upwardly convex curved surface, preferably as an upwardly convex cylindrical surface. You may connect by the wall part 24p.
As shown in FIG. 4E, the lower wall 24d and the flange portion 24a are connected to the upper end of the lower wall 24d, and the surface thereof is a concave curved surface, preferably a concave cylindrical surface. You may connect by the formed wall part 24r. Further, as shown in FIG. 4F, the lower wall 24d and the flange portion 24a are connected to the upper end portion of the lower wall 24d, and the surface thereof is connected by a wall portion 24s formed as a concave bent surface. May be.
One side (left part) of the lid 3 is supported by the housing 2 via a hinge 30 so as to be swingable. An electric lock mechanism 31 that locks the lid 3 that closes the ice slot 21 is provided at the top of the housing 2. The lock mechanism 31 locks the lid 3 by closing the front door 4. The lock mechanism 31 unlocks the lid 3 by operating a lock release switch (not shown) that can be operated with the front door 4 opened. Even when power is not supplied to the ice dispenser 1, the lock mechanism 31 can be unlocked manually with the front door 4 opened.
In order to replenish the ice storage 20 with the lump of ice, the lock mechanism 31 is unlocked, the lid 3 is opened, and the ice lump 21 is filled with lump of ice.
Here, as described above, since the ice dispenser 1 is installed, for example, on a counter in the vicinity of a cash register of a convenience store, the height of the ice slot 21 from the floor is about the same as the average height of a person. It becomes. Therefore, when the height of the person who throws the lump of ice is low, the inside of the ice storage 20 cannot be directly seen, and the ice storage 21 is checked from the ice insertion port 21 to confirm whether or not the ice storage 20 is full. It is anticipated that a hand will be inserted into 20, and this is not preferable for hygiene purposes.
Therefore, the ice dispenser 1 according to the present embodiment includes an ice full detecting means that can confirm whether or not the ice storage 20 is full even when the inside of the ice storage 20 cannot be directly visually recognized. Yes.
The full ice detection means of one embodiment is constituted by a mirror disposed on the back surface of the lid 3. With such a configuration, when the lid portion 3 is opened, the inside of the ice storage 20 can be indirectly visually recognized by the mirror disposed on the back surface thereof, and it can be easily confirmed whether or not the ice storage 20 is full. Can do.
The mirror preferably includes a dew condensation prevention heater. When the outside air comes into contact with a mirror that is at the same low temperature as the inside of the ice storage 20 when the lid 3 is opened, water vapor contained in the outside air condenses on the surface of the mirror and becomes cloudy, so that the inside of the ice storage 20 can be visually recognized. It is expected to disappear. Therefore, energization of the dew condensation prevention heater is started with the detection of the opening of the lid 3 or the previous stage (for example, opening of the front door 4 for releasing the lock of the lock mechanism 31) as a trigger. Good. Thereby, by the time of visually recognizing the inside of the ice storage 20, the mirror is heated by the dew condensation prevention heater, and the water vapor contained in the outside air can be prevented or eliminated from being condensed on the surface of the mirror. .
Note that the mirror may be disposed around the ice slot 21 at the top of the housing 2 (for example, the rear or right part of the ice slot 21) instead of the back surface of the lid 3. In this case, since the mirror is disposed at a position outside the ice storage 20 with the lid 3 closed, it is not necessary to provide a dew condensation prevention heater.
Further, the full ice detection means of another embodiment is constituted by an optical sensor disposed at the upper end of the ice storage 20 (in the vicinity of the ice slot 21) and full ice notification means connected to the optical sensor. The More specifically, the optical sensor includes one or more pairs of light emitting elements and light receiving elements, each of which is ice on which light rays traveling from the light emitting elements to the light receiving elements are accumulated when the ice storage 20 is full. It is arranged at a position where it is blocked by. Then, when the state where the light beam from the light emitting element to the light receiving element is blocked continues for a predetermined time or longer, the full ice notification means connected to the optical sensor notifies that the ice storage 20 is full. The full ice notification means can be constituted by an appropriate device such as an indicator lamp, a display, or a buzzer. With such a configuration, when the thrown-in ice falls into the ice storage 20, or when the ice temporarily accumulates in the ice storage 20 and then collapses, the light beam traveling from the light emitting element to the light receiving element. When the time during which the light is blocked is less than the predetermined time, the full ice notification is not performed, the ice storage 20 is full, and the time during which the light rays from the light emitting element to the light receiving element are blocked by the accumulated ice is longer than the predetermined time. Only in the event of a failure, full ice notification is given. Therefore, it can be confirmed reliably whether or not the ice storage 20 is full.
Further, the full ice detection means of another embodiment includes a weight sensor arranged so as to be able to measure the weight of ice in the ice storage 20 and a full ice notification means connected to the weight sensor. The weight sensor may be arranged so that the weight of ice in the ice storage 20 can be directly measured, or the weight of the ice in the ice storage 20 can be indirectly measured by measuring the weight of the ice storage 20 as a whole. It may be arranged so that it can be measured automatically. In any case, when the weight measured by the weight sensor reaches a weight corresponding to the full ice state of the ice storage 20, the ice full notification means connected to the weight sensor indicates that the ice storage 20 is full. Inform you. The full ice notification means can be constituted by an appropriate device such as an indicator lamp, a display, or a buzzer. When the full ice notification means is constituted by a display, the weight measured by the weight sensor may be converted into a percentage with respect to the weight corresponding to the full ice state of the ice storage 20, for example, and displayed. By configuring in this way, the amount of ice in the ice storage 20 can be grasped in real time, so that it is easy to avoid the inconvenience of throwing in ice that greatly exceeds the full state.
Further, the full ice detection means of another embodiment is constituted by a temperature sensor disposed in the upper part of the ice storage 20 (in the vicinity of the ice inlet 21), and full ice notification means connected to the temperature sensor. As the ice accumulates in the ice storage 20 and approaches the full state, the temperature of the upper part of the ice storage 20 decreases. Therefore, the correlation between the amount of ice in the ice storage 20 and the temperature of the upper part of the ice storage 20 is previously determined. If it is grasped, the amount of ice in the ice storage 20 can be estimated from the temperature of the upper part of the ice storage 20. Therefore, when the temperature measured by the temperature sensor disposed at the upper part of the ice storage 20 becomes equal to or lower than a predetermined temperature, the full ice notification means connected to the temperature sensor notifies that the ice storage 20 is full. What is necessary is just to comprise. The full ice notification means can be constituted by an appropriate device such as an indicator lamp, a display, or a buzzer.
In addition, even when any of the above-mentioned full ice detection means is employed, there is a possibility that ice will be thrown in exceeding the full state. In addition, it is considered that the thrown-in ice often accumulates in a conical shape in the ice storage 20, and even when an amount of ice corresponding to a full state is charged, the top of the accumulated ice is stored in the ice storage. It may be higher than the upper end of 20 (ice inlet 21).
Therefore, even in the above case, it is preferable to form the back surface of the lid 3 in a dome shape (that is, to provide a recess) so that the top of the accumulated ice can be accommodated. With such a configuration, it is possible to avoid a situation in which the lid 3 cannot be closed by the accumulated ice.
Further, even when the top of ice accumulated in a cone shape is higher than the upper end (ice inlet 21) of the ice storage 20, by breaking the cone by stirring the ice in the ice storage 20, The height of the top of the accumulated ice can be lowered. Therefore, even when the lid 3 is in an open state, it is preferable that a stirring mechanism 36 (discharge means) described later is operated by pressing a predetermined button or the like. Alternatively, the stirring mechanism 36 may be configured to automatically operate when it is detected that the lid 3 is closed.
FIG. 5 is a perspective view showing the structure of the ice storage and the stirring mechanism in the ice dispenser 1 of the present embodiment.
In the housing 2 of the ice dispenser 1, a cooling mechanism for cooling the ice storage 20 and a stirring mechanism 36 for stirring the ice in the ice storage 20 are provided.
The cooling mechanism includes an electric compressor 40 that compresses the refrigerant and a condenser 41 that cools the compressed refrigerant. As shown in FIG. 2, the electric compressor 40 and the condenser 41 are disposed in the lower part of the ice storage 20. The capacitor 41 is provided with an electric fan motor 42 for cooling the capacitor 41.
As shown in FIG. 5, an evaporator 43 of a cooling mechanism is provided at the upper part of the outer surface of the ice storage 20. The evaporator 43 is configured such that a pipe having high heat conductivity such as copper or aluminum is wound around the outer surface of the ice storage 20. When the low-temperature refrigerant passes through the evaporator 43, heat exchange with the ice storage 20 can be performed, and the inside of the ice storage 20 can be cooled.
The evaporator 43 is wound only on the upper part of the ice storage 20. This is to prevent the lower part of the ice storage 20 from being overcooled. For example, when the lid 3 is opened or the power is turned off while the ice is stored in the ice storage 20, the temperature of the ice storage 20 rises and the ice is partially melted. If the evaporator 43 cools the lower part of the ice storage 20 too much, the ice may stick to each other, or the ice and the opening 22 or the slope 24 may adhere to prevent the ice from being discharged. In the present embodiment, the evaporator 43 is wound only around the upper part of the ice storage 20 to prevent the lower part of the ice storage 20 from being overcooled, thereby preventing such ice discharge. Therefore, the position and capacity of the evaporator 43 may be set so that the cooling mechanism cools to about 0 degrees Celsius below the ice storage 20.
The stirring mechanism 36 includes a stirrer 45 and an electric stirring motor 46. The stirrer 45 includes a plurality of stirring rods 48 on a cylindrical shaft portion 47. The shaft portion 47 is disposed coaxially with the ice storage 20 at the bottom of the ice storage 20. The stirring bar 48 is formed of a cylindrical bar, is bent obliquely in the vertical direction from the shaft portion 47, and extends radially outward to the vicinity of the inner peripheral wall of the ice storage 20. The stirring rods 48 are arranged radially on the outer peripheral surface of the shaft portion 47 by several tens of degrees, for example, and are arranged in three stages in the vertical direction. The stirring motor 46 is disposed at the lower part of the ice storage 20. The agitation motor 46 has an output shaft connected to the shaft portion 47, and rotates the agitator 45 in the ice storage 20 by rotating the shaft portion 47. Further, the upper surface of the bottom wall 49 of the ice storage 20 is inclined downward from the central portion toward the outer peripheral portion.
The bottom wall 49 of the ice storage 20 is provided with a pipe 50 for draining the water in the ice storage 20 so that the water in the ice storage 20 can be discharged to the outside of the ice dispenser 1.
FIG. 6 is a circuit diagram of the cooling mechanism 35 in the ice dispenser 1.
As shown in FIG. 6, the cooling mechanism 35 of the ice dispenser 1 is provided in the refrigerant circulation path 51 in turn with an electric compressor 40 (compressor), an electric first on-off valve 52, a condenser 41 (condenser), and a dryer. 53, a check valve 54, a capillary tube (capillary: having an expansion valve function) 55, an evaporator 43 (evaporator), and an accumulator 56. The cooling mechanism 35 is a known cooling circuit that drives the electric compressor 40 to circulate the refrigerant, compresses and expands it, and cools it by exchanging heat with the refrigerant at a low temperature, and will not be described in detail.
In addition, a communication path 57 is provided that connects the circulation path 51 between the electric compressor 40 and the first on-off valve 52 and the circulation path 51 between the capillary tube 55 and the evaporator 43. The communication passage 57 is provided with an electric second opening / closing valve 58.
Then, by operating the electric compressor 40 in a state where the first on-off valve 52 is opened and the second on-off valve 58 is closed, the inside of the circulation path 51 as shown by the solid line arrow in FIG. The refrigerant circulates, and the evaporator 43 cools the ice storage 20 by exchanging heat with the low-temperature refrigerant.
Further, by operating the electric compressor 40 with the first on-off valve 52 closed and the second on-off valve 58 opened, the circulation path 51 and the communication path 51 are connected as shown by the broken line arrows in FIG. The refrigerant circulates in the passage 57, and the refrigerant, which is compressed by the electric compressor 40 and becomes high temperature, exchanges heat in the evaporator 43 to heat the ice storage 20. By heating the ice storage 20 in this way, a defrosting function for removing frost attached to the inner wall of the ice storage 20 is possible.
FIG. 7 is a block diagram showing the configuration of the control system of the ice dispenser 1.
The ice dispenser 1 includes an electric compressor 40, a first on-off valve 52, a second on-off valve 58, and a control unit 60 (control means) that controls the operation of the fan motor 42. The control unit 60 includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a timer, a central processing unit (CPU), and the like. The control unit 60 operates when the power switch 61 is on. The power switch 61 is disposed, for example, on the surface of the front door 4 or in the front door 4. The control unit 60 operates each device of the cooling mechanism 35 when the cooling switch 62 disposed in the front door 4 is turned on, and cools the ice storage 20. In addition, the control unit 60 switches the first on-off valve 52 and the second on-off valve 58 of the cooling mechanism 35 by turning on the defrost switch 63 disposed in the front door 4, so that the electric compressor 40 is driven and a defrost function is performed.
Further, the control unit 60 inputs an operation signal of the ice fixed amount discharge button 7, the ice small amount discharge button 8, the ice discharge lever 6, and the detection signal from the ice sensor 33, and controls the opening / closing motor 29 to control the shutter 27. The opening motor and the stirring motor 46 are operated to discharge a predetermined amount or a small amount of ice set by the ice fixed amount discharge button 7 or the ice small amount discharge button 8.
The control unit 60 operates the stirring motor 46 for a predetermined time (for example, several minutes) every predetermined period (for example, several tens of minutes to several hours) when the power is turned on. Thereby, sticking of blocky ice in the ice storage 20 is suppressed.
Note that a shutter lock mechanism that locks the shutter 27 in the closed state may be provided, and the shutter 27 may be locked in the normally closed state and controlled so that the lock is released only when the ice is discharged. By providing such a shutter lock mechanism, unnecessary discharge of ice from the opening 22 can be prevented when the agitation motor 46 is operated so that ice does not stick as described above.
In addition, the control unit 60 has a safety function that controls the operation of the lock mechanism 31 when the agitation motor 46 is operated to restrict the opening of the lid 3. Further, the lid 3 is provided with an open / close sensor 66 for detecting opening and closing, and the control unit 60 is a safety function for stopping the rotation of the stirring motor 46 when it is detected that the lid 3 is opened. It also has.
A rotation sensor 67 for detecting the rotation speed is provided on the rotation shaft of the agitator 45 or the agitation motor 46. The control unit 60 has a motor protection function for stopping the operation control of the stirring motor 46 when the rotation of the rotation shaft is not detected for a predetermined time (for example, several seconds) regardless of the rotation control of the stirring motor 46. Thereby, for example, when the ice adheres to the vicinity of the opening 22 or is sandwiched between the stirrer 48 and the edge of the opening 22, the stirring motor 46 becomes unable to rotate. The stirring motor 46 can be protected by stopping the operation.
Further, the ice dispenser 1 is provided with an ice adhesion preventing mechanism. The ice adhesion preventing mechanism is configured by, for example, a heater 68 provided on the slope 24, the lid 3, and the shutter 27.
These heaters 68 may continue to be heated with a relatively weak calorific value when the power of the ice dispenser 1 is turned on, for example, or may be heated every predetermined time. Alternatively, when ice is replenished, heating may be performed with a relatively strong heating value until a predetermined time elapses or a predetermined amount is discharged. Thereby, it is suppressed that ice adheres to the slope 24 and the shutter 27, and the discharge property of ice can be improved.
The control unit 60 has a remaining amount determination function for determining the remaining amount of ice in the ice storage 20. A temperature sensor 70 that detects the internal temperature of the bottom of the ice storage 20 is provided at the bottom of the ice storage 20. If the temperature in the bottom of the ice storage 20 detected by the temperature sensor 70 is equal to or lower than a predetermined temperature set near 0 degrees Celsius, the control unit 60 remains at least a predetermined amount that ice can be discharged into the ice storage 20. It is determined that This is because if the ice remains in the ice storage 20 by a predetermined amount or more, the temperature in the bottom of the ice storage 20 decreases to below 0 degrees Celsius due to the ice.
Note that the evaporator 43 is disposed on the outer surface upper part of the ice storage 20 and is not provided on the lower part of the ice storage 20, so that the influence of cooling by the evaporator 43 on the detection value of the temperature sensor 70 is suppressed. That is, although the ice is hardly left in the ice storage 20, it is erroneously determined that the internal temperature at the bottom of the ice storage 20 is lowered to a predetermined temperature or less due to cooling by the evaporator 43 and the remaining amount of ice is small. This can be prevented.
If the control unit 60 determines that the remaining amount of ice is greater than or equal to a predetermined amount in the power-on state, the ice constant discharge button 7a, 7b, 7c and the small amount of ice discharge button 8 are turned on, and the user can discharge ice. Notify that. When the control unit 60 determines that the remaining amount of ice is less than the predetermined amount, the control unit 60 turns off the ice fixed amount discharge buttons 7a, 7b and 7c and the ice small amount discharge button 8. Further, not only when the remaining amount of ice is less than a predetermined amount, but also when the device of the ice dispenser 1 is out of order, for example, the ice fixed amount discharge buttons 7a, 7b, 7c and the small amount of ice discharge button 8 are turned off. .
The control unit 60 operates to blink the selected ice fixed amount discharge buttons 7a, 7b, 7c when the ice fixed amount discharge is being performed by operating the ice fixed amount discharge buttons 7a, 7b, 7c. The buttons 7a, 7b, 7c and the ice trace discharge button 8 are turned off.
Note that the remaining amount determination function is not determined based on the inside temperature of the bottom of the ice storage 20 detected by the temperature sensor 70 as described above, but may be other methods. For example, if the ice discharge amount per unit time detected by the ice sensor 33 is less than a predetermined amount when the ice is discharged by operating the ice quantitative discharge button 7, it is determined that the remaining amount of ice is low. Also good. Further, when it is determined that the remaining amount of ice is less than a predetermined amount, a notification such as a buzzer may be used.
In this embodiment, as an operation means for instructing ice discharge, an ice discharge lever 6 is provided in addition to the three types of ice constant discharge buttons 7a, 7b and 7c capable of setting large, medium and small discharge amounts. By operating both the ice constant discharge buttons 7a, 7b and 7c and the ice discharge lever 6, a fixed amount of ice can be carried out.
In an ice dispenser equipped with only the ice fixed amount discharge buttons 7a, 7b, 7c, for example, when the ice fixed amount discharge buttons 7a, 7b, 7c are accidentally pressed without a cup placed under the discharge port 5, or discharged If you place a cup under the outlet 5 and operate the ice fixed amount discharge buttons 7a, 7b, 7c, or if the cup is accidentally tilted, or if the cup falls due to discharged (falling) ice, There is a risk that the ice will be wasted. In addition, once the ice fixed amount discharge buttons 7a, 7b, and 7c are pressed to start discharging the ice, it cannot be stopped until the set amount is discharged, and there is a possibility that a large amount of ice is wasted.
In the present embodiment, the control unit 60 performs the opening operation of the shutter 27 and the stirring operation by the stirrer 45 when both the ice fixed amount discharging buttons 7a, 7b, 7c and the ice discharging lever 6 are operated. , Drain the ice. The operations of both the ice fixed amount discharge buttons 7a, 7b and 7c and the ice discharge lever 6 are the operation of the ice discharge lever 6 after the operation of the ice fixed amount discharge buttons 7a, 7b and 7c and the operation of the ice discharge lever 6. Any of pressing the ice fixed amount discharge buttons 7a, 7b and 7c may be performed. The control unit 60 confirms the operation state of the ice discharge lever 6 when the ice fixed discharge buttons 7a, 7b, and 7c are operated, and controls the ice to be discharged when the ice discharge lever 6 is operated. Thus, it is confirmed that the ice fixed amount discharge buttons 7a, 7b and 7c are pushed while the ice discharge lever 6 is operated. If the operation of the ice discharge lever 6 is canceled while the set amount of ice set by the ice fixed discharge buttons 7a, 7b, and 7c is being discharged, the ice discharge is stopped.
The ice discharge lever 6 is provided in the vicinity of the discharge port 5 (the lower back side), and is disposed at a position where the user can operate when holding the cup and approaching the lower side of the discharge port 5. When 6 is operated, the cup is positioned below the discharge port 5.
Therefore, in the state where the cup is not disposed close to the lower side of the discharge port 5, even if the ice fixed amount discharge buttons 7a, 7b, 7c or the ice small amount discharge button 8 are erroneously pressed, the ice is not discharged, which is useless. Ice discharge can be suppressed.
Further, the urging force (returning force) of the ice discharge lever 6 may be set relatively large so that the operation is released even when a lightweight cup made of paper or the like is placed on the tray 9 below the discharge port 5. . Thus, even if the user places the ice tray lever 9 without holding the cup, the ice discharge lever 6 is not operated, and even if the ice fixed amount discharge buttons 7a, 7b, 7c are pressed, Emission is suppressed. Thereby, it can prevent that ice is discharged | emitted in the state which the cup fell down.
Further, the control unit 60 discharges the ice when the ice discharge lever 6 is operated again after a predetermined time elapses after the ice discharge lever 6 is stopped by releasing the operation of the ice discharge lever 6 during the fixed amount discharge of the ice. Is controlled so that the set amount of ice set by the ice fixed amount discharge buttons 7a, 7b, and 7c is discharged together with the amount of ice discharged during the fixed amount discharge until then.
Thus, even if the ice discharge lever 6 is erroneously canceled during the fixed amount discharge of ice, the fixed discharge of ice is resumed by re-operating the ice discharge lever 6 before a predetermined time elapses. The discharge becomes possible.
The control unit 60 stops the constant discharge of ice when the ice discharge lever 6 is released during the fixed discharge of ice and a predetermined time has elapsed. Even if the ice discharge lever 6 is operated after the ice quantitative discharge is stopped, the ice quantitative discharge is not performed until the ice fixed discharge buttons 7a, 7b and 7c are operated again.
The control unit 60 controls the operated ice quantitative discharge buttons 7a, 7b, and 7c to blink during the quantitative discharge, but when the operation of the ice discharge lever 6 is canceled during the constant discharge of ice, the control unit 60 performs a predetermined time. It is good to control so that this blinking operation may be continued until it passes. As a result, when the ice fixed amount discharge buttons 7a, 7b, and 7c are blinking, it becomes a notification means for notifying the user that the fixed amount discharge of ice can be resumed. Judgment can be easily made and the usability is excellent.
Note that the timing at which the quantitative discharge of ice is switched from resumable to impossible may be such that quantitative discharge can be restarted until a predetermined time has elapsed since the operation of the ice discharge lever 6 was canceled as described above. The fixed discharge may be resumable when the ice discharge lever 6 is operated again after a predetermined time set appropriately from the start of the fixed discharge.
Further, in the present embodiment, an ice trace discharge button 8 for discharging a trace amount (for example, several pieces) of ice is provided as an operation means for instructing the discharge of ice. As for the ice small amount discharge button 8, both the ice discharge lever 6 and the ice discharge lever 6 are operated in the same manner as the ice fixed amount discharge buttons 7a, 7b and 7c.
In a conventional ice dispenser that does not include the ice micro-discharge button 8, when ice is discharged by operating the ice quantitative discharge buttons 7a, 7b, and 7c, for example, if a portion of ice spills from the cup, Insufficient ice supply. Here, if the ice fixed amount discharge buttons 7a, 7b, and 7c are operated again to add ice, the ice is excessively supplied into the cup, and there is a possibility that the ice is consumed wastefully.
On the other hand, a small amount (several pieces) of ice can be supplied to the cup by providing the small amount of ice discharge button 8 as in the present embodiment. It should be noted that several ice pieces are discharged every time the small amount of ice discharge button 8 is operated.
Thereby, when the fixed amount of ice indicated by the operation of the fixed amount discharge button 7a, 7b, 7c is discharged, for example, when a part of the ice spills from the cup and the supply of ice into the cup is insufficient. The amount of ice supplied to the cup can be adjusted by pressing the ice micro discharge button 8.
Further, the ice dispenser 1 is provided with a micro discharge amount setting device 8a (second discharge amount setting means). The micro discharge amount setting device 8a is, for example, a dial switch, and sets the discharge amount when the ice micro discharge button 8 is pressed. The trace discharge amount setting device 8a may be provided on the surface of the front door 4 or on the inner side of the front door 4. By appropriately setting the amount of ice discharged when the small amount of ice discharge button 8 is pressed by the minute amount discharge setting device 8a, the supply amount of ice can be further easily adjusted.
As for the ice trace discharge button 8, a small amount of ice may be discharged every time it is operated, or it is continuously discharged little by little while the ice trace discharge button 8 is operated. Also good. Further, the ice discharge by the ice minute discharge button 8 may be controlled to be performed without the operation of the ice discharge lever 6.
Further, regarding the discharge of a small amount of ice by the operation of the ice small amount discharge button 8, the predetermined amount of time (first predetermined time) is discharged after discharging the fixed amount of ice indicated by the operation of the ice fixed amount discharge buttons 7a, 7b, 7c. ) Should be accepted. Or after discharging the fixed quantity of ice instruct | indicated by operation of fixed quantity discharge button 7a, 7b, 7c, you may make it receive discharge | emission of the trace amount ice by operation of the ice small quantity discharge button 8 to predetermined times. As a result, it is limited that a small amount of ice can be discharged by operating the small amount of ice discharge button 8 after the fixed amount of ice is discharged by operating the constant amount of ice discharging buttons 7a, 7b, 7c. Unnecessary operations can be suppressed.
In the above embodiment, a small amount of ice is discharged by the ice small amount discharge button 8 after the fixed amount of ice is discharged. However, a small amount of ice is discharged by operating the ice fixed amount discharge buttons 7a, 7b, 7c. It may be. For example, the control unit 60 discharges the fixed amount of ice indicated by the operation of the fixed amount of ice discharge buttons 7a, 7b, and 7c, and then passes the fixed amount of ice discharge button until a predetermined time (second predetermined time) elapses. By operating 7a, 7b, and 7c again, control is performed to discharge a small amount of ice. That is, after the fixed amount of ice is discharged, the discharge operation means for instructing the operation of discharging a small amount of ice is changed from the ice small amount discharge button 8 to the ice fixed amount discharge buttons 7a, 7b and 7c. Thus, ice can be provided and adjusted with one button, and operability can be improved. Then, after a predetermined time (second predetermined time) has elapsed, the discharging operation means for instructing a small amount of ice discharging operation is returned from the ice fixed amount discharging buttons 7a, 7b and 7c to the ice small amount discharging button 8. Thus, after a predetermined time has elapsed, a fixed amount of ice can be discharged anew by operating the ice fixed amount discharge buttons 7a, 7b and 7c.
When the discharging operation means for instructing the operation of discharging a small amount of ice is changed from the ice small amount discharging button 8 to the ice fixed amount discharging button 7a, 7b, 7c, for example, the ice fixed amount discharging button 7a, 7b, 7c is changed. The user should be notified by blinking. Thereby, when the user gives an operation instruction for discharging a small amount of ice, the user can easily operate without making a mistake.
Next, a method for detecting the amount of ice carried out will be described in detail.
In an ice dispenser that stores massive ice and discharges a predetermined amount as in this embodiment, the size of ice is generally in a predetermined range, but the size of all ice is not constant. Therefore, it is difficult to accurately detect the discharge amount of massive ice, and it is difficult to provide a set amount of ice with high accuracy.
Therefore, in the present embodiment, the ice sensor 33 for detecting the amount of discharged ice is constituted by two (two sets) ice sensors 33a and 33b arranged in the ice sensor housing 24h. The ice sensors 33a and 33b are provided at the lower end portion (including the vicinity of the lower end portion) of the slope 24 extending obliquely downward from the opening 22 of the ice storage 20, and are substantially perpendicular to the extending direction of the slope 24, that is, The ice movement direction (discharge direction) on the slope 24 is arranged away from each other in a direction substantially perpendicular to the ice discharge direction (for example, the vertical direction), and the passage of ice at each installation position can be detected. It has become.
The control unit 60 includes an ice discharge amount measuring unit 80 that estimates the amount of ice passing by receiving detection signals from the two ice sensors 33a and 33b every predetermined time (for example, 1 msec).
The ice discharge amount measuring unit 80 estimates the size of ice based on the detection signals detected by the two ice sensors 33a and 33b. Since the slope 24 is inclined obliquely downward, the ice discharged from the opening 22 and passing through the slope 24 slides down on the lower wall 24d of the slope 24, and a relatively small ice is not formed at the lower end of the slope 24. It generally passes near the tip (lower end) of the lower wall 24d of the slope 24. Therefore, when ice is detected only by the ice sensor 33b disposed below the two ice sensors 33a and 33b, relatively small ice passes and the ice is detected by both ice sensors 33a and 33b. It can be accurately estimated that relatively large ice has passed.
And the ice discharge | emission amount measurement part 80 calculates the passage amount of ice based on the magnitude | size of ice and the detection time of ice detected by ice sensor 33a, 33b. Specifically, for example, Ag in the case of one sensor, B (≈2 × A) g in the case of two sensors, each time it is detected that ice has passed (1 msec), it is estimated that ice has passed. . Note that A and B correspond to the volume information of the present invention, and may be confirmed and set in advance by a test or the like.
Therefore, for example, when 600 msec ice is detected by one ice sensor 33a or 33b during 1000 msec, it is estimated that 600 × Ag ice has passed, and 400 msec ice is simultaneously detected by two ice sensors 33a and 33b. In that case, it is estimated that 400 × Bg of ice has passed. Then, the total ice passage amount, that is, the ice discharge amount is calculated by adding the ice passage amounts.
Thus, since the ice size is estimated and the ice discharge amount is calculated based on the detection results of the two ice sensors 33a and 33b as well as the detection time of the ice sensors 33a and 33b, the ice discharge is accurately performed. The amount can be estimated. Therefore, when the fixed amount of ice is discharged by operating the fixed amount of ice discharge buttons 7a, 7b and 7c, the timing of closing the shutter 27 is controlled based on the estimated amount of discharged ice, thereby discharging the ice with high accuracy. Is possible.
The ice sensor 33 may be provided in the range on the slope 24 instead of the lower end of the slope 24.
Moreover, you may provide the ice sensor 33 in the chute | shoot 25, for example. In this case, the ice discharge amount measuring unit 80 passes large ice when the two ice sensors 33a and 33b detect the passage of ice substantially simultaneously, and only one of the two ice sensors 33a and 33b passes. When the passage of ice is detected, it may be estimated that small ice has passed.
Three or more ice sensors 33 may be provided. In this case, it can be estimated that the larger the number of ice sensors 33 that have detected ice, the larger the ice.
And the ice dispenser 1 of this embodiment supplies and stores lump-like ice from the outside, supplies an appropriate amount to a cup or the like, and does not have an ice making function. Can be Thereby, it is easy to install in a place where the installation space is limited, and the supply amount of ice can be increased by installing a plurality of units, and an ice dispenser with a wide use range can be obtained.
In addition, the ice dispenser of this invention is not limited to the above embodiment. The present invention can be widely applied to ice dispensers that supply an appropriate amount of stored massive ice. At that time, the ice dispenser may include an ice making machine.
1          氷ディスペンサ
20         貯氷庫
22         開口部(搬出口)
23         氷誘導ユニット
24         スロープ(固定氷誘導ユニット)
25         シュート
25d        上ガイド(ガイド)
25e        下ガイド(ガイド)
26         ブラケット(固定氷誘導ユニット)
33、33a、33b 氷センサ
1 Ice Dispenser 20 Ice Storage 22 Opening (Outlet)
23 Ice guidance unit 24 Slope (fixed ice guidance unit)
25 Chute 25d Upper guide (guide)
25e Lower guide (guide)
26 Bracket (fixed ice guidance unit)
33, 33a, 33b Ice sensor

Claims (7)

  1.  氷を貯留する貯氷庫と、
     前記貯氷庫の搬出口から排出された氷を案内する氷誘導ユニットと、
     前記氷誘導ユニットを通過する氷の量を検出する氷センサと、
    を備える氷ディスペンサであって、
     前記氷誘導ユニットは、
     少なくとも前記搬出口から排出された氷を斜め下方へ誘導するスロープを含み、前記貯氷庫または前記氷ディスペンサの筐体に固定された固定氷誘導ユニットと、
     前記スロープの下流に配置され氷を下方へ誘導するシュートと、
    から成り、
     前記氷センサは、前記固定氷誘導ユニットに取り付けられており、
     前記シュートは、前記固定氷誘導ユニットに対して着脱可能である
     ことを特徴とする氷ディスペンサ。
    An ice storage for storing ice,
    An ice guiding unit for guiding the ice discharged from the outlet of the ice storage;
    An ice sensor for detecting the amount of ice passing through the ice guiding unit;
    An ice dispenser comprising:
    The ice guiding unit is
    A fixed ice guiding unit fixed to a housing of the ice storage or the ice dispenser, including at least a slope for guiding the ice discharged from the carry-out port diagonally downward;
    A chute arranged downstream of the slope to guide the ice downward;
    Consisting of
    The ice sensor is attached to the fixed ice guiding unit;
    The ice dispenser, wherein the chute is detachable from the fixed ice guiding unit.
  2.  前記シュートは、前記固定氷誘導ユニットに対して前後方向に着脱可能であることを特徴とする請求項1に記載の氷ディスペンサ。 The ice dispenser according to claim 1, wherein the chute is detachable in the front-rear direction with respect to the fixed ice guiding unit.
  3.  前記氷センサは、前記スロープに取り付けられていることを特徴とする請求項1または2に記載の氷ディスペンサ。 The ice dispenser according to claim 1 or 2, wherein the ice sensor is attached to the slope.
  4.  前記固定氷誘導ユニットは、更に前記氷センサを支持するブラケットを備え、
     前記氷センサは、前記ブラケットに取り付けられていることを特徴とする請求項1または2に記載の氷ディスペンサ。
    The fixed ice guiding unit further includes a bracket for supporting the ice sensor,
    The ice dispenser according to claim 1 or 2, wherein the ice sensor is attached to the bracket.
  5.  前記シュートは、前記スロープに着脱可能に取り付けられることを特徴とする請求項1乃至4のいずれか1項に記載の氷ディスペンサ。 The ice dispenser according to any one of claims 1 to 4, wherein the chute is detachably attached to the slope.
  6.  前記シュートは、前記ブラケットに着脱可能に取り付けられることを特徴とする請求項4に記載の氷ディスペンサ。 The ice dispenser according to claim 4, wherein the chute is detachably attached to the bracket.
  7.  前記シュートは、外周にガイドを備え、前記ガイドが、前記ブラケットと係合することを特徴とする請求項6に記載の氷ディスペンサ。 The ice dispenser according to claim 6, wherein the chute includes a guide on an outer periphery, and the guide is engaged with the bracket.
PCT/JP2017/025635 2016-07-27 2017-07-07 Ice dispenser WO2018021052A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016147749A JP2018017449A (en) 2016-07-27 2016-07-27 Ice dispenser
JP2016-147749 2016-07-27

Publications (1)

Publication Number Publication Date
WO2018021052A1 true WO2018021052A1 (en) 2018-02-01

Family

ID=61016099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025635 WO2018021052A1 (en) 2016-07-27 2017-07-07 Ice dispenser

Country Status (2)

Country Link
JP (1) JP2018017449A (en)
WO (1) WO2018021052A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201904722D0 (en) * 2019-04-03 2019-05-15 Costa Express Ltd Ice dispensing system
JP7336687B2 (en) * 2020-01-16 2023-09-01 パナソニックIpマネジメント株式会社 ice machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076253A (en) * 1993-06-15 1995-01-10 Sanyo Electric Co Ltd Ice supply device
JP2540246Y2 (en) * 1990-10-09 1997-07-02 東芝機器株式会社 Ice chip supply device
JP2000130902A (en) * 1998-10-29 2000-05-12 Toshiba Electric Appliance Co Ltd Ice supplying device
US20080156005A1 (en) * 2006-12-29 2008-07-03 Whirlpool Corporation Apparatus, method, and system for automatically turning off an actuator in a refrigeration device upon detection of an unwanted condition
JP2011202937A (en) * 2010-03-02 2011-10-13 Hoshizaki Electric Co Ltd Ice-making machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2540246Y2 (en) * 1990-10-09 1997-07-02 東芝機器株式会社 Ice chip supply device
JPH076253A (en) * 1993-06-15 1995-01-10 Sanyo Electric Co Ltd Ice supply device
JP2000130902A (en) * 1998-10-29 2000-05-12 Toshiba Electric Appliance Co Ltd Ice supplying device
US20080156005A1 (en) * 2006-12-29 2008-07-03 Whirlpool Corporation Apparatus, method, and system for automatically turning off an actuator in a refrigeration device upon detection of an unwanted condition
JP2011202937A (en) * 2010-03-02 2011-10-13 Hoshizaki Electric Co Ltd Ice-making machine

Also Published As

Publication number Publication date
JP2018017449A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
KR101456571B1 (en) Full ice detecting apparatus of ice maker for refrigerator, and full ice detecting method thereof
US9182162B2 (en) Apparatus, method, and system for automatically turning off an actuator in a refrigeration device upon detection of an unwanted condition
US20070251261A1 (en) Hot water supplying refrigerator and control method thereof
KR20100004855A (en) Steamer
US8376184B2 (en) Ice dispenser with automated flap opening
WO2018021052A1 (en) Ice dispenser
KR20080094352A (en) Deicing apparatus for refrigerator
US20170319005A1 (en) Apparatus and method for brewing and cooling a beverage
JP4479120B2 (en) Automatic ice machine
KR20100076027A (en) Machine for the production and distribution of ice particles
JP2007010172A (en) Heating cooker
JP6742185B2 (en) Ice dispenser
JP2018017453A (en) Ice dispenser
JP2018017450A (en) Ice dispenser
JP2018017452A (en) Ice dispenser
JP2011514958A (en) Steam device with rinse function
US8286443B2 (en) Dispenser
JP6401956B2 (en) Ice dispenser
JP2004298418A (en) Extracting apparatus
KR101478897B1 (en) Water purifier and method for controlling the same
JP6242736B2 (en) Beverage supply equipment
KR100574631B1 (en) Ice-making machine with improved structure
KR200333720Y1 (en) Vending machine for ice
KR101057062B1 (en) Refrigerator with ice maker
JP4449805B2 (en) Beverage supply device drainage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834060

Country of ref document: EP

Kind code of ref document: A1