WO2018019148A1 - 电动汽车、电动汽车的多功能车载充电器及其控制方法 - Google Patents

电动汽车、电动汽车的多功能车载充电器及其控制方法 Download PDF

Info

Publication number
WO2018019148A1
WO2018019148A1 PCT/CN2017/093203 CN2017093203W WO2018019148A1 WO 2018019148 A1 WO2018019148 A1 WO 2018019148A1 CN 2017093203 W CN2017093203 W CN 2017093203W WO 2018019148 A1 WO2018019148 A1 WO 2018019148A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion circuit
circuit
battery
low voltage
bidirectional
Prior art date
Application number
PCT/CN2017/093203
Other languages
English (en)
French (fr)
Inventor
滕景翠
杨仕青
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to JP2019503981A priority Critical patent/JP2019525707A/ja
Priority to EP17833451.2A priority patent/EP3492299A4/en
Priority to US16/321,176 priority patent/US20190176652A1/en
Publication of WO2018019148A1 publication Critical patent/WO2018019148A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • H02J7/022
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the invention relates to the technical field of electric vehicles, in particular to a multifunctional vehicle charger for an electric vehicle, an electric vehicle and a control method for a multifunctional vehicle charger of the electric vehicle.
  • Electric vehicles are gradually favored by consumers because of their advantages such as energy saving and environmental protection.
  • the car charger in an electric vehicle generally only has the function of charging the power battery, and the function is relatively simple.
  • the implementation of other charging and powering functions of electric vehicles (such as charging for low-voltage batteries, etc.) requires additional circuits and interfaces, which undoubtedly increases the size and weight of electric vehicles and increases design and manufacturing costs.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned techniques to some extent. Accordingly, it is an object of the present invention to provide a multi-function car charger for an electric vehicle that is small in size and weight, low in cost, and capable of easily implementing various functions.
  • a second object of the present invention is to provide an electric vehicle.
  • a third object of the present invention is to provide a method of controlling a multi-function vehicle charger for an electric vehicle.
  • a first aspect of the present invention provides a multi-function vehicle charger for an electric vehicle, comprising: a bidirectional AC/DC conversion circuit, wherein an AC end of the bidirectional AC/DC conversion circuit is coupled to a first DC/DC conversion circuit, wherein a first DC terminal of the first DC/DC conversion circuit is connected to a DC terminal of the bidirectional AC/DC conversion circuit, and a first DC/DC conversion circuit a DC terminal for coupling to a power battery of the electric vehicle; a second DC/DC conversion circuit, wherein the first DC terminal of the second DC/DC converter circuit and the DC of the bidirectional AC/DC converter circuit are respectively a terminal connected to a first DC terminal of the first DC/DC converter circuit, a second DC terminal of the second DC/DC converter circuit for coupling to a low voltage battery of the electric vehicle; a sampling circuit, The sampling circuit is configured to separately sample voltage and current of the power grid, DC terminal voltage of the bidirectional AC/DC conversion circuit, voltage and current of the power battery, voltage and current of
  • a multifunctional vehicle charger for an electric vehicle integrates a bidirectional AC/DC conversion circuit, a first DC/DC conversion circuit and a second DC/DC conversion circuit, the sampling circuit is used to sample relevant voltage and current parameters in the vehicle charger circuit, and the control module applies a bidirectional AC/DC conversion circuit according to the relevant voltage and current parameters,
  • the first DC/DC conversion circuit and the second DC/DC conversion circuit are controlled to implement various functions.
  • some circuits and ports can be multiplexed under different functions, so the volume and weight are small, the cost is low, and various functions can be conveniently realized.
  • the charging and discharging efficiency can be improved, the capacity of the charging power can be easily expanded, and the reliability can be improved and the service life thereof can be prolonged.
  • an embodiment of the second aspect of the present invention provides an electric vehicle including the multi-function vehicle charger of the electric vehicle according to the first aspect of the present invention.
  • the on-board charger has a highly integrated design, so that some circuits and ports can be multiplexed under different functions, so that the on-board charger has a small volume and weight, and the cost is low, and Conveniently implement multiple functions.
  • a third aspect of the present invention provides a method for controlling a multi-function vehicle charger of an electric vehicle, wherein the multi-function vehicle charger of the electric vehicle includes a bidirectional AC/DC conversion circuit, and a first a DC/DC conversion circuit and a second DC/DC conversion circuit, an AC terminal of the bidirectional AC/DC conversion circuit is coupled to the power grid, and the first DC terminal of the first DC/DC conversion circuit and the two-way a DC terminal of the AC/DC converter circuit is connected, a second DC terminal of the first DC/DC converter circuit is coupled to a power battery of the electric vehicle, and a first DC of the second DC/DC converter circuit a terminal is respectively connected to a DC terminal of the bidirectional AC/DC conversion circuit and a first DC terminal of the first DC/DC conversion circuit, and a second DC terminal of the second DC/DC conversion circuit is coupled to The low voltage battery of the electric vehicle, the method comprising the steps of: voltage and current to the power grid, DC terminal voltage of the bidirectional AC/DC conversion
  • the vehicle charger integrates a bidirectional AC/DC conversion circuit, a first DC/DC conversion circuit and a second DC/DC conversion circuit, and is charged by sampling on-board
  • the relevant voltage and current parameters in the circuit, and the bidirectional AC/DC conversion circuit, the first DC/DC conversion circuit, and the second DC/DC conversion circuit are controlled according to the relevant voltage and current parameters to implement various functions.
  • some circuits and ports can be multiplexed under different functions, so the size and weight of the on-board charger are small, the cost is low, and various functions can be conveniently realized.
  • the charging and discharging efficiency of the vehicle charger can be improved, the charging power can be expanded, and the reliability of the vehicle charger can be improved, and the service life of the vehicle charger can be prolonged.
  • FIG. 1 is a block diagram showing a multi-function vehicle charger of an electric vehicle according to an embodiment of the present invention
  • FIG. 2 is a circuit diagram of a multi-function vehicle charger of an electric vehicle according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a sampling circuit and a control module of a multi-function vehicle charger of an electric vehicle according to an embodiment of the present invention
  • FIG. 4 is a block schematic diagram of an electric vehicle according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method of controlling a multi-function vehicle charger of an electric vehicle according to an embodiment of the present invention
  • FIG. 6 is a flow chart of a method of controlling a multi-function vehicle charger of an electric vehicle according to an embodiment of the present invention.
  • FIG. 1 is a block schematic diagram of a multi-function vehicle charger for an electric vehicle according to an embodiment of the present invention.
  • a multifunctional vehicle charger for an electric vehicle includes a bidirectional AC/DC conversion circuit 10, a first DC/DC conversion circuit 20, a second DC/DC conversion circuit 30, and a sampling circuit 40. And control module 50.
  • the AC terminal of the bidirectional AC/DC converter circuit 10 is used to couple to the power grid, that is, the AC power source.
  • the first DC terminal of the first DC/DC converter circuit 20 is coupled to the DC terminal of the bidirectional AC/DC converter circuit 10, and the second DC terminal of the first DC/DC converter circuit 20 is coupled to the power battery of the electric vehicle.
  • the first DC terminal of the second DC/DC converter circuit 30 is coupled to the DC terminal of the bidirectional AC/DC converter circuit 10, thereby simultaneously coupling with the first DC terminal of the first DC/DC converter circuit 20, the second DC
  • the second DC terminal of the /DC converter circuit 30 is for coupling to a low voltage battery of the electric vehicle.
  • the bidirectional AC/DC conversion circuit 10 can include a first bridge circuit including a first bridge arm and a second bridge arm in parallel.
  • the first bridge arm includes a first switching transistor Q1 and a second switching transistor Q2 connected in series with a source and a drain.
  • the second bridge arm includes a third switching transistor Q3 and a fourth switching transistor Q4 connected in series with the source and the drain.
  • the node B1 between the node A1, the third switch tube Q3, and the fourth switch tube Q4 between the first switch tube Q1 and the second switch tube Q2 serves as the AC terminal of the bidirectional AC/DC converter circuit 10, and is connected in parallel with each other.
  • the bidirectional AC/DC conversion circuit 10 may further include a first capacitor C1 in parallel with the AC power source and a first inductor L1 connected in series in the path formed by the nodes A1, B1 and the first capacitor C1, so that the first capacitor C1 and the An inductor L1 performs filtering.
  • the first DC/DC conversion circuit 20 may include a second bridge circuit connected in cascade, a first transformer T1, and a third bridge circuit.
  • the second bridge circuit comprises a third bridge arm and a fourth bridge arm connected in parallel.
  • Third bridge arm The fifth switch tube Q5 and the sixth switch tube Q6 connected in series with the source and the drain are included.
  • the fourth bridge arm includes a seventh switching transistor Q7 and an eighth switching transistor Q8 that are connected in series with the source and the drain.
  • the two ends A2, B2 of the third bridge arm and the fourth bridge arm which are connected in parallel are used as the first DC terminal of the first DC/DC converter circuit 20.
  • a second capacitor C2 is also connected between the nodes E1, D1 of the first bridge circuit (and also between the nodes A2, B2 of the second bridge circuit).
  • the node E2 between the fifth switch tube Q5 and the sixth switch tube Q6 is connected to the first terminal of the first side of the transformer T1 through the second inductor Lr1, and the node D2 between the seventh switch tube Q7 and the eighth switch tube Q8 is passed.
  • the third capacitor Cr1 is connected to the second terminal of the first side of the transformer T1.
  • the third bridge circuit includes a fifth bridge arm and a sixth bridge arm that are connected in parallel.
  • the fifth bridge arm includes a ninth switch tube Q9 and a tenth switch tube Q10 that are connected in series with the source and the drain.
  • the sixth bridge arm includes an eleventh switch tube Q11 and a twelfth switch tube Q12 that are connected in series with the source and the drain.
  • the two ends E3 and D3 of the fifth bridge arm and the sixth bridge arm which are connected in parallel are used as the second DC terminal of the first DC/DC converter circuit 20.
  • the node A3 between the ninth switch tube Q9 and the tenth switch tube Q10 is connected to the third terminal of the second side of the transformer T1, and the node B3 and the transformer T1 between the eleventh switch tube Q11 and the twelfth switch tube Q12 are connected.
  • the fourth terminals on the two sides are connected.
  • a fourth capacitor C3 in parallel with the power battery may also be included at the second DC terminal of the first DC/DC converter circuit 20.
  • the second DC/DC conversion circuit 30 may include a cascaded fourth bridge circuit, a second transformer T2, and a fifth bridge circuit.
  • the fourth bridge circuit comprises a seventh bridge arm and an eighth bridge arm connected in parallel.
  • the seventh bridge arm includes a thirteenth switch tube Q13 and a fourteenth switch tube Q14 that are connected in series with the source and the drain.
  • the eighth bridge arm includes a fifteenth switch tube Q15 and a sixteenth switch tube Q16 that are connected in series with the source and the drain.
  • the ends A4 and B4 of the seventh bridge arm and the eighth bridge arm which are connected in parallel are used as the first DC terminal of the second DC/DC converter circuit 30.
  • the node E4 between the thirteenth switch tube Q13 and the fourteenth switch tube Q14 is connected to the fifth terminal of the first side of the transformer T2 through the third inductor Lr2, and between the fifteenth switch tube Q15 and the sixteenth switch tube Q16.
  • the node D4 is connected to the sixth terminal of the first side of the transformer T2 through the fifth capacitor Cr2.
  • the fifth bridge circuit includes a seventeenth switch tube Q17 and an eighteenth switch tube Q18 connected in series with the source and the drain, and one end of the seventeenth switch tube Q17 is connected to the seventh terminal of the second side of the transformer T2.
  • One end of the eighteenth switch tube Q18 is connected to the eighth terminal of the second side of the transformer T2, and the other end of the seventeenth switch tube Q17 and the other end of the eighteenth switch tube Q18 are commonly connected at the node D5, D5 and the transformer T2
  • the ninth terminal (node E5) of the second side constitutes the second DC terminal of the second DC/DC converter circuit 30 to obtain a divided voltage output.
  • filtering may also be performed at a second DC terminal of the second DC/DC conversion circuit 30 by a filter circuit including a fourth inductor Lr3 and a sixth capacitor C4.
  • the sampling circuit 40 can be integrated in the control module 50. 2 and FIG. 3, the sampling circuit 40 can be used for the voltage Uac and current Iac of the power grid, the DC terminal voltage Udc of the bidirectional AC/DC conversion circuit 10, the voltage Uhbt and the current Ihbt of the power battery, and the voltage Ulbt of the low voltage battery. And the current Ilbt is sampled separately.
  • a first control circuit for controlling the bidirectional AC/DC conversion circuit 10, a second control circuit for controlling the first DC/DC conversion circuit 20, and a second control circuit for controlling the second DC/DC conversion circuit 30 are integrated in the control module 50.
  • the control module 50 is configured to use the voltage Uac and current Iac of the power grid sampled by the sampling circuit 40, the DC terminal voltage Udc of the bidirectional AC/DC conversion circuit 10, the voltage Uhbt and the current Ihbt of the power battery, and the low voltage battery
  • the voltage Ulbt and the current Ilbt are correspondingly bidirectional through the first control circuit, the second control circuit and the third control circuit
  • the AC/DC conversion circuit 10, the first DC/DC conversion circuit 20, and the second DC/DC conversion circuit 30 perform control.
  • the pulse width modulation control signals PWM1 to PWM6 can be outputted to the gates (gates) of the switches Q1 to Q18 to control the on/off of the switch tube, thereby realizing the power battery charging function, the low voltage battery charging function, Power battery inverter AC function, low-voltage battery inverter AC function, power battery output low-voltage load function.
  • control module 50 is configured to use the voltage Uac and the current Iac of the power grid sampled by the sampling circuit 40, the DC terminal voltage Udc of the bidirectional AC/DC conversion circuit 10, the voltage Uhbt of the power battery, and the current Ihbt.
  • the voltage Ulbt and the current Ilbt of the low voltage battery correspond to the bidirectional AC/DC conversion circuit 10, the first DC/DC conversion circuit 20, and the second DC/DC conversion circuit through the first control circuit, the second control circuit, and the third control circuit. 30 control to achieve power battery charging function and low-voltage battery charging function, or power battery inverter AC power function and power battery output low-voltage load function, or power battery inverter AC power function and low-voltage battery inverter AC power function.
  • the first switch tube Q1 to the eighteenth switch tube Q18 may be both an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (metal-oxide-semiconductor field effect transistor). Semiconductor field effect transistor). And between the source and the drain of each of the switching transistors Q1 to Q18, a diode and a capacitor can be connected in parallel.
  • the first switch tube Q1 to the eighteenth switch tube Q18 in FIG. 2 can be correspondingly controlled by the PWM1-PWM6 signals outputted by the control module 50 in FIG. 3, respectively.
  • the second bridge circuit, the third bridge circuit, and the fourth bridge circuit can adopt synchronous switching modes of the two switching tubes, respectively, which can reduce the conduction loss.
  • the control module 50 when the multi-function vehicle charger is in a charging state, wherein if the power of the low-voltage battery is less than the first preset value, the control module 50 controls the bidirectional AC/DC conversion circuit 10 and the second The DC/DC conversion circuit 30 charges the low voltage battery; if the power of the low voltage battery is greater than or equal to the first preset value, the control module 50 controls the bidirectional AC/DC conversion circuit 10, first when the power battery is in an underfill state.
  • the DC/DC conversion circuit 20 and the second DC/DC conversion circuit 30 respectively supply power to the low voltage load of the electric vehicle and charge the power battery.
  • the control module 50 also determines whether the power battery and the low voltage battery are abnormal, and controls the multifunctional vehicle charger to stop charging when the power battery and the low voltage battery are abnormal.
  • the control module 50 determines whether the electric vehicle is in a running state, wherein if the electric vehicle is in a running state, the control module 50 controls the first DC/ The DC conversion circuit 20 and the second DC/DC conversion circuit 30 supply power to the low voltage load of the electric vehicle through the power battery, and control the bidirectional AC/DC conversion circuit 10 to operate when the AC discharge demand command is received to allow the power battery to pass simultaneously
  • the first DC/DC conversion circuit 20 and the bidirectional AC/DC conversion circuit 10 perform AC discharge.
  • the control module 50 receives the AC discharge demand command, it is determined whether the low-voltage battery is less than the first preset value, wherein if the low-voltage battery is charged Less than the first preset value, the control module 50 controls the first DC/DC conversion circuit 20 and the The two DC/DC conversion circuit 30 charges the low voltage battery through the power battery, and controls the bidirectional AC/DC conversion circuit 10 to operate so that the power battery is simultaneously passed through the first DC/DC conversion circuit 20 and the bidirectional AC/DC conversion circuit 10.
  • the power of the bidirectional AC/DC conversion circuit 10, the first DC/DC conversion circuit 20, and the second DC/DC conversion circuit 30 also needs to meet specific charging and discharging requirements. Specifically, when the multi-function vehicle charger is in a charging state, such as the rated power of the bidirectional AC/DC conversion circuit 10 is Pw, the rated power of the first DC/DC conversion circuit 20 is Pd1, and the second DC/DC conversion circuit The rated power of 30 is Pd2, and it is assumed that the conversion efficiency of the circuit is approximately 1.
  • Pw Pd1+Pd2.
  • the rated power of the bidirectional AC/DC converting circuit 10 is Pw0
  • the rated power of the first DC/DC converting circuit 20 is Pd10
  • the rated power of the second DC/DC converting circuit 30 is Pd20, and it is assumed that the conversion efficiency of the circuit is approximately 1.
  • a multifunctional vehicle charger for an electric vehicle integrates a bidirectional AC/DC conversion circuit, a first DC/DC conversion circuit, and a second DC/DC conversion circuit, and samples the in-vehicle charger circuit through the sampling circuit
  • the voltage and current parameters are correlated, and the bidirectional AC/DC conversion circuit, the first DC/DC conversion circuit, and the second DC/DC conversion circuit are controlled by the control module according to the relevant voltage and current parameters to implement various functions.
  • some circuits and ports can be multiplexed under different functions, so the size and weight of the on-board charger are small, the cost is low, and various functions can be conveniently realized.
  • the charging and discharging efficiency of the vehicle charger can be improved, the charging power can be expanded, and the reliability can be improved and the service life can be prolonged.
  • the present invention also proposes an electric vehicle.
  • the electric vehicle 200 of the embodiment of the present invention includes the multifunctional vehicle charger 100 of the electric vehicle according to the above embodiment of the present invention.
  • the specific embodiment refer to the above embodiment, in order to avoid redundancy, This will not be repeated here.
  • the on-board charger has a highly integrated design, so that some circuits and ports can be multiplexed under different functions, so that the on-board charger has a small volume and weight, and the cost is low, and Conveniently implement multiple functions.
  • the present invention also provides a control method for a multi-function vehicle charger of an electric vehicle.
  • the multifunctional vehicle charger of the electric vehicle comprises a bidirectional AC/DC conversion circuit, a first DC/DC conversion circuit and a second DC/DC conversion circuit, and the AC end of the bidirectional AC/DC conversion circuit is used for coupling to the power grid
  • a first DC terminal of a DC/DC converter circuit is coupled to a DC terminal of the bidirectional AC/DC converter circuit
  • a second DC terminal of the first DC/DC converter circuit is coupled to a power battery of the electric vehicle
  • the second DC The first DC terminal of the /DC conversion circuit is coupled to the DC terminal of the bidirectional AC/DC conversion circuit and the first DC terminal of the first DC/DC conversion circuit, respectively, and the second DC terminal of the second DC/DC conversion circuit
  • a method for controlling a multi-function vehicle charger for an electric vehicle includes the following steps:
  • S1 sampling the voltage and current of the power grid, the DC terminal voltage of the bidirectional AC/DC converter circuit, the voltage and current of the power battery, and the voltage and current of the low voltage battery, respectively.
  • the DC voltage of the bidirectional AC/DC converter circuit according to the voltage and current of the sampled grid, the DC voltage of the bidirectional AC/DC converter circuit, the voltage and current of the power battery, the voltage and current of the low voltage battery, the bidirectional AC/DC conversion circuit, the first DC/DC
  • the conversion circuit and the second DC/DC conversion circuit are controlled to realize any one of a power battery charging function, a low voltage battery charging function, a power battery inverter alternating current function, a low voltage battery inverter alternating current function, and a power battery output low voltage loading function.
  • the voltage and current of the sampled power grid, the DC terminal voltage of the bidirectional AC/DC converter circuit, the voltage and current of the power battery, and the voltage and current of the low voltage battery may also pass through the bidirectional AC/ The DC conversion circuit, the first DC/DC conversion circuit and the second DC/DC conversion circuit are controlled to realize a power battery charging function and a low voltage battery charging function, or a power battery inverter alternating current function and a power battery output low voltage loading function, Or power battery inverter AC function and low voltage battery inverter AC function.
  • the multi-function vehicle charger when the multi-function vehicle charger is in a charging state, wherein if the power of the low-voltage battery is less than the first preset value, by controlling the bidirectional AC/DC conversion circuit and the second DC/DC conversion
  • the circuit charges the low voltage battery; if the power of the low voltage battery is greater than or equal to the first preset value, by controlling the bidirectional AC/DC conversion circuit, the first DC/DC conversion circuit, and the second DC when the power battery is in an unfilled state
  • the /DC conversion circuit supplies power to the low voltage load of the electric vehicle and the power battery, respectively.
  • the multi-function vehicle charger when the multi-function vehicle charger is in a charging state, it is further determined whether the power battery and the low-voltage battery are abnormal, and the multi-function vehicle charger is stopped when the power battery and the low-voltage battery are abnormal. jobs.
  • the multi-function vehicle charger when the multi-function vehicle charger is in a discharge state, it is further determined whether the electric vehicle is in a running state, wherein if the electric vehicle is in a running state, by controlling the first DC/DC conversion circuit and the The second DC/DC conversion circuit supplies power to the low voltage load of the electric vehicle through the power battery, and controls the bidirectional AC/DC conversion circuit to operate when the AC discharge demand command is received, so that the power battery simultaneously passes through the first DC/DC conversion circuit and The bidirectional AC/DC converter circuit performs AC discharge.
  • the multi-function vehicle charger When the multi-function vehicle charger is in a discharged state and the electric vehicle is in a stop state, if an AC discharge demand command is received, it is determined whether the low-voltage battery is less than a first preset value, wherein if the low-voltage battery is less than the first power a preset value, by controlling the first DC/DC conversion circuit and the second DC/DC conversion circuit to charge the low voltage battery through the power battery, and controlling the bidirectional AC/DC conversion circuit to operate to make the power battery pass the first DC at the same time
  • the /DC conversion circuit and the bidirectional AC/DC conversion circuit perform AC discharge; if the power of the low voltage battery is greater than or equal to the first preset value, by controlling the first DC/DC conversion circuit, the second DC/DC conversion circuit, and the bidirectional AC/
  • the DC conversion circuit is configured to simultaneously perform AC discharge on the power battery and the low voltage battery.
  • control method of the multifunctional vehicle charger of the electric vehicle may include the following steps:
  • S501 collecting a charging gun signal, a vehicle gear position signal and a CAN signal. In order to judge whether the subsequent charging or the electric vehicle is in a running state or the like.
  • step S503 Determine that the multi-function vehicle charger is in a charging state or a discharging state. If it is in the charging state, step S504 is performed; if it is in the discharging state, step S511 is performed.
  • step S504 Collect information of the power battery and the low voltage battery, and determine whether the power battery and the low voltage battery are abnormal. If yes, go to step S505; if no, go to step S506.
  • step S506 judging whether the low voltage battery is seriously deficient. In the embodiment of the present invention, if the power of the low voltage battery is less than the first preset value, it can be judged that the power loss is serious. If yes, go to step S508; if no, go to step S507.
  • step S507 determining whether the power battery is full. If yes, go to step S505; if no, go to step S510.
  • step S508 the bidirectional AC/DC conversion circuit and the second DC/DC conversion circuit are activated to charge the low voltage battery, and the process proceeds to step S509.
  • step S509 determining whether the low-voltage battery is normal. That is, the battery is fully charged. If yes, go to step S507; if no, go back to step S508 to continue charging the low voltage battery.
  • step S510 the bidirectional AC/DC conversion circuit, the first DC/DC conversion circuit, and the second DC/DC conversion circuit are activated to respectively supply the low voltage load of the electric vehicle and the power battery.
  • step S509 the low voltage battery is normal, and when the low voltage battery is insufficient, step S508 is performed to charge the low voltage battery.
  • step S504 it is determined whether the power battery and the low voltage battery are abnormal.
  • step S511 determining whether the electric vehicle is traveling. If yes, go to step S512; if no, go to step S515.
  • step S512 the first DC/DC conversion circuit and the second DC/DC conversion circuit are activated to supply power to the low voltage load of the electric vehicle through the power battery, and the process proceeds to step S513.
  • step S514 it is determined whether there is an AC discharge demand. If yes, go to step S514; if no, go back to step S512.
  • step S517 judging whether the low voltage battery is seriously deficient. If yes, step S517 is performed; if no, step S518 is performed.
  • step S517 starting the first DC/DC conversion circuit and the second DC/DC conversion circuit to operate to charge the low voltage battery through the power battery.
  • step S514 is performed to perform an alternating current discharge.
  • the vehicle charger integrates a bidirectional AC/DC conversion circuit, a first DC/DC conversion circuit and a second DC/DC conversion circuit, and is charged by sampling on-board
  • the relevant voltage and current parameters in the circuit, and the bidirectional AC/DC conversion circuit, the first DC/DC conversion circuit, and the second DC/DC conversion circuit are controlled according to the relevant voltage and current parameters to implement various functions.
  • some circuits and ports can be multiplexed under different functions, so the size and weight of the on-board charger are small, the cost is low, and various functions can be conveniently realized.
  • the charging and discharging efficiency of the vehicle charger can be improved, the charging power can be expanded, and the reliability of the vehicle charger can be improved, and the service life of the vehicle charger can be prolonged.
  • Coupled represents the interlinkage between two otherwise separate circuits or between two originally separate portions of a circuit, which may be direct or indirect. "Coupling” allows energy or signals to be transferred from one circuit to another or from one part of the circuit to another.
  • “coupled” in this application will include, but is not limited to, a physical connection in the form of electrical connections and signal transmissions.
  • the coupling between the ports of the two two-port networks may be two terminals on one side of the first two-port network and one side of the second two-port network. The two terminals are electrically connected.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电动汽车(200)、电动汽车的多功能车载充电器(100)及其控制方法,所述多功能车载充电器(100)包括:双向AC/DC变换电路(10)、第一DC/DC变换电路(20)、第二DC/DC变换电路(30)、采样电路(40)和控制模块(50),其中,采样电路(40)用于对电网的电压和电流、双向AC/DC变换电路(10)的直流端电压、动力电池的电压和电流、低压电池的电压和电流分别进行采样;控制模块(50)用于根据采样电路(40)的采样结果对双向AC/DC变换电路(10)、第一DC/DC变换电路(20)和第二DC/DC变换电路(30)进行控制,以实现动力电池充电功能、低压电池充电功能、动力电池逆变交流电功能、低压电池逆变交流电功能、动力电池输出低压带载功能中的任意一种。

Description

电动汽车、电动汽车的多功能车载充电器及其控制方法 技术领域
本发明涉及电动汽车技术领域,特别涉及一种电动汽车的多功能车载充电器、一种电动汽车以及一种电动汽车的多功能车载充电器的控制方法。
背景技术
电动汽车因其节能环保等优点而逐渐受到消费者的青睐。
目前,电动汽车中的车载充电器一般仅具有为动力电池充电的功能,功能较为单一。电动汽车其他充电和供电功能(例如为低压电池充电等)的实现还需额外增加电路和接口,这无疑会增大电动汽车电气设备的体积和重量,并增加设计和制造成本。
发明内容
本发明旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本发明的一个目的在于提出一种电动汽车的多功能车载充电器,体积和重量较小,成本较低,能够方便地实现多种功能。
本发明的第二个目的在于提出一种电动汽车。
本发明的第三个目的在于提出一种电动汽车的多功能车载充电器的控制方法。
为达到上述目的,本发明第一方面实施例提出了一种电动汽车的多功能车载充电器,其包括:双向AC/DC变换电路,所述双向AC/DC变换电路的交流端用于耦合到电网;第一DC/DC变换电路,所述第一DC/DC变换电路的第一直流端与所述双向AC/DC变换电路的直流端相连,所述第一DC/DC变换电路的第二直流端用于耦合到所述电动汽车的动力电池;第二DC/DC变换电路,所述第二DC/DC变换电路的第一直流端分别与所述双向AC/DC变换电路的直流端和所述第一DC/DC变换电路的第一直流端相连,所述第二DC/DC变换电路的第二直流端用于耦合到所述电动汽车的低压电池;采样电路,所述采样电路用于对所述电网的电压和电流、所述双向AC/DC变换电路的直流端电压、所述动力电池的电压和电流、所述低压电池的电压和电流分别进行采样;控制模块,所述控制模块中集成有用于控制所述双向AC/DC变换电路的第一控制电路、用于控制所述第一DC/DC变换电路的第二控制电路和用于控制所述第二DC/DC变换电路的第三控制电路,所述控制模块用于根据所述采样电路采样到的所述电网的电压和电流、所述双向AC/DC变换电路的直流端电压、所述动力电池的电压和电流、所述低压电池的电压和电流通过所述第一控制电路、所述第二控制电路和所述第三控制电路相应对所述双向AC/DC变换电路、所述第一DC/DC变换电路和所述第二DC/DC变换电路进行控制,以实现动力电池充电功能、低压电池充电功能、动力电池逆变交流电功能、低压电池逆变交流电功能、动力电池输出低压带载功能中的任意一种。
根据本发明实施例的电动汽车的多功能车载充电器,集成了双向AC/DC变换电路、 第一DC/DC变换电路和第二DC/DC变换电路,通过采样电路采样车载充电器电路中的相关电压和电流参数,并通过控制模块根据相关电压和电流参数对双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路进行控制,以实现多种功能。由此,通过高度集成化的设计,使得部分电路和端口可以在不同功能下复用,因此体积和重量较小,成本较低,能够方便地实现多种功能。此外,基于上述设计能够提高其充放电效率,方便充电功率的扩容,并且能够提高其可靠性,延长其使用寿命。
为达到上述目的,本发明第二方面实施例提出了一种电动汽车,该电动汽车包括本发明第一方面实施例提出的电动汽车的多功能车载充电器。
根据本发明实施例的电动汽车,其车载充电器具有高度集成化的设计,使得部分电路和端口可以在不同功能下复用,因此其车载充电器的体积和重量较小,成本较低,能够方便地实现多种功能。
为达到上述目的,本发明第三方面实施例提出了一种电动汽车的多功能车载充电器的控制方法,其中,所述电动汽车的多功能车载充电器包括双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路,所述双向AC/DC变换电路的交流端用于耦合到电网,所述第一DC/DC变换电路的第一直流端与所述双向AC/DC变换电路的直流端相连,所述第一DC/DC变换电路的第二直流端用于耦合到所述电动汽车的动力电池,所述第二DC/DC变换电路的第一直流端分别与所述双向AC/DC变换电路的直流端和所述第一DC/DC变换电路的第一直流端相连,所述第二DC/DC变换电路的第二直流端用于耦合到所述电动汽车的低压电池,所述方法包括以下步骤:对所述电网的电压和电流、所述双向AC/DC变换电路的直流端电压、所述动力电池的电压和电流、所述低压电池的电压和电流分别进行采样;根据采样到的所述电网的电压和电流、所述双向AC/DC变换电路的直流端电压、所述动力电池的电压和电流、所述低压电池的电压和电流通过对所述双向AC/DC变换电路、所述第一DC/DC变换电路和所述第二DC/DC变换电路进行控制,以实现动力电池充电功能、低压电池充电功能、动力电池逆变交流电功能、低压电池逆变交流电功能、动力电池输出低压带载功能中的任意一种。
根据本发明实施例的电动汽车的多功能车载充电器的控制方法,车载充电器集成了双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路,通过采样车载充电器电路中的相关电压和电流参数,并根据相关电压和电流参数对双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路进行控制,以实现多种功能。由此,通过高度集成化的设计,使得部分电路和端口可以在不同功能下复用,因此车载充电器的体积和重量较小,成本较低,能够方便地实现多种功能。此外,基于上述控制方法能够提高车载充电器的充放电效率,方便充电功率的扩容,并且能够提高车载充电器的可靠性,延长车载充电器的使用寿命。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为根据本发明实施例的电动汽车的多功能车载充电器的方框示意图;
图2为根据本发明一个实施例的电动汽车的多功能车载充电器的电路图;
图3为根据本发明一个实施例的电动汽车的多功能车载充电器的采样电路和控制模块的结构示意图;
图4为根据本发明实施例的电动汽车的方框示意图;
图5为根据本发明实施例的电动汽车的多功能车载充电器的控制方法的流程图;
图6为根据本发明一个具体实施例的电动汽车的多功能车载充电器的控制方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面结合附图来描述本发明实施例提出的电动汽车、电动汽车的多功能车载充电器及其控制方法。
图1为根据本发明实施例的电动汽车的多功能车载充电器的方框示意图。
如图1所示,本发明实施例的电动汽车的多功能车载充电器,包括双向AC/DC变换电路10、第一DC/DC变换电路20、第二DC/DC变换电路30、采样电路40和控制模块50。
其中,参见图2,双向AC/DC变换电路10的交流端用于耦合到电网,即AC电源。第一DC/DC变换电路20的第一直流端与双向AC/DC变换电路10的直流端相耦合,第一DC/DC变换电路20的第二直流端用于耦合到电动汽车的动力电池。第二DC/DC变换电路30的第一直流端与双向AC/DC变换电路10的直流端耦合,从而同时也和第一DC/DC变换电路20的第一直流端耦合,第二DC/DC变换电路30的第二直流端用于耦合到电动汽车的低压电池。
参见图2,双向AC/DC变换电路10可包括第一桥式电路,该第一桥式电路包括并联的第一桥臂和第二桥臂。第一桥臂包括以源极和漏极串联接入的第一开关管Q1和第二开关管Q2。第二桥臂包括以源极和漏极串联接入的第三开关管Q3和第四开关管Q4。其中,第一开关管Q1和第二开关管Q2之间的节点A1、第三开关管Q3和第四开关管Q4之间的节点B1作为双向AC/DC变换电路10的交流端,相互并联的第一桥臂和第二桥臂的两端节点E1和节点D1作为双向AC/DC变换电路10的直流端。双向AC/DC变换电路10还可包括与AC电源并联的第一电容C1以及串联在节点A1、B1和第一电容C1构成的路径中的第一电感L1,从而可通过第一电容C1和第一电感L1进行滤波。
参见图2,第一DC/DC变换电路20可包括级联连接的第二桥式电路、第一变压器T1和第三桥式电路。其中,第二桥式电路包括并联的第三桥臂和第四桥臂。第三桥臂 包括以源极和漏极串联接入的第五开关管Q5和第六开关管Q6。第四桥臂包括以源极和漏极串联接入的第七开关管Q7和第八开关管Q8。相互并联的第三桥臂和第四桥臂的两端A2,B2作为第一DC/DC变换电路20的第一直流端。在第一桥式电路的节点E1、D1之间(同时也是第二桥式电路的节点A2、B2之间)还连接有第二电容C2。第五开关管Q5和第六开关管Q6之间的节点E2通过第二电感Lr1与变压器T1第一侧的第一端子相连,第七开关管Q7和第八开关管Q8之间的节点D2通过第三电容Cr1与变压器T1第一侧的第二端子相连。第三桥式电路包括并联的第五桥臂和第6桥臂。第五桥臂包括以源极和漏极串联接入的第九开关管Q9和第十开关管Q10。第六桥臂包括以源极和漏极串联接入的第十一开关管Q11和第十二开关管Q12。相互并联的第五桥臂和第六桥臂的两端E3、D3作为第一DC/DC变换电路20的第二直流端。第九开关管Q9和第十开关管Q10之间的节点A3与变压器T1第二侧的第三端子相连,第十一开关管Q11和第十二开关管Q12之间的节点B3与变压器T1第二侧的第四端子相连。在本发明的一个实施例中,在第一DC/DC变换电路20的第二直流端处还可包括与动力电池并联的第四电容C3。
参见图2,第二DC/DC变换电路30可包括级联的第四桥式电路、第二变压器T2,以及第五桥式电路。其中,第四桥式电路包括并联的第七桥臂和第八桥臂。第七桥臂包括以源极和漏极串联接入的第十三开关管Q13和第十四开关管Q14。第八桥臂包括以源极和漏极串联接入的第十五开关管Q15和第十六开关管Q16。相互并联的第七桥臂和第八桥臂的两端A4、B4作为第二DC/DC变换电路30的第一直流端。第十三开关管Q13和第十四开关管Q14之间的节点E4通过第三电感Lr2与变压器T2第一侧的第五端子相连,第十五开关管Q15和第十六开关管Q16之间的节点D4通过第五电容Cr2与变压器T2第一侧的第六端子相连。第五桥式电路包括以源极和漏极串联接入的第十七开关管Q17和第十八开关管Q18,第十七开关管Q17的一端与变压器T2第二侧侧的第七端子相连,第十八开关管Q18的一端与变压器T2第二侧的第八端子相连,第十七开关管Q17的另一端与第十八开关管Q18的另一端共同连接在节点D5,D5与变压器T2第二侧的第九端子(节点E5)构成第二DC/DC变换电路30的第二直流端,以获得分压输出。在本发明的一个实施例中,在第二DC/DC变换电路30的第二直流端处还可通过包括第四电感Lr3和第六电容C4的滤波电路进行滤波。
如图3所示,采样电路40可集成在控制模块50中。其中,参照图2和图3,采样电路40可用于对电网的电压Uac和电流Iac、双向AC/DC变换电路10的直流端电压Udc、动力电池的电压Uhbt和电流Ihbt、低压电池的电压Ulbt和电流Ilbt分别进行采样。
控制模块50中集成有用于控制双向AC/DC变换电路10的第一控制电路、用于控制第一DC/DC变换电路20的第二控制电路和用于控制第二DC/DC变换电路30的第三控制电路,控制模块50用于根据采样电路40采样到的电网的电压Uac和电流Iac、双向AC/DC变换电路10的直流端电压Udc、动力电池的电压Uhbt和电流Ihbt、低压电池的电压Ulbt和电流Ilbt通过第一控制电路、第二控制电路和第三控制电路相应对双向 AC/DC变换电路10、第一DC/DC变换电路20和第二DC/DC变换电路30进行控制。具体而言,例如可通过输出脉宽调制控制信号PWM1~PWM6到开关管Q1~Q18的控制极(栅极),以控制开关管的通断,从而实现动力电池充电功能、低压电池充电功能、动力电池逆变交流电功能、低压电池逆变交流电功能、动力电池输出低压带载功能中的任意一种。
在本发明的一个实施例中,控制模块50用于根据采样电路40采样到的电网的电压Uac和电流Iac、双向AC/DC变换电路10的直流端电压Udc、动力电池的电压Uhbt和电流Ihbt、低压电池的电压Ulbt和电流Ilbt通过第一控制电路、第二控制电路和第三控制电路相应对双向AC/DC变换电路10、第一DC/DC变换电路20和第二DC/DC变换电路30进行控制,以实现动力电池充电功能和低压电池充电功能、或者动力电池逆变交流电功能和动力电池输出低压带载功能、或者动力电池逆变交流电功能和低压电池逆变交流电功能。
在本发明的实施例中,第一开关管Q1至第十八开关管Q18可均为IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)或MOSFET(metal-oxide-semiconductor field effect transistor金属氧化物半导体场效晶体管)。并且在每个开关管Q1至Q18的源极和漏极之间,可并联有二极管和电容。图2中的第一开关管Q1至第十八开关管Q18可分别由图3中控制模块50输出的PWM1-PWM6信号对应控制。具体的对应关系可参照图2和图3,在此不做赘述。其中,参照图2,第二桥式电路、第三桥式电路和第四桥式电路分别可采用两个开关管同步导通的方式,能够降低导通损耗。
在本发明的一个实施例中,当多功能车载充电器处于充电状态时,其中,如果低压电池的电量小于第一预设值,控制模块50则通过控制双向AC/DC变换电路10和第二DC/DC变换电路30以给低压电池充电;如果低压电池的电量大于等于第一预设值,则在动力电池处于未充满状态时,控制模块50通过控制双向AC/DC变换电路10、第一DC/DC变换电路20和第二DC/DC变换电路30以分别给电动汽车的低压负载供电和动力电池充电。当多功能车载充电器处于充电状态时,控制模块50还判断动力电池和低压电池是否异常,并在动力电池和低压电池异常时控制多功能车载充电器停止充电工作。
在本发明的一个实施例中,当多功能车载充电器处于放电状态时,控制模块50判断电动汽车是否处于行驶状态,其中,如果电动汽车处于行驶状态,控制模块50则通过控制第一DC/DC变换电路20和第二DC/DC变换电路30以通过动力电池给电动汽车的低压负载供电,并在接收到交流放电需求指令时控制双向AC/DC变换电路10进行工作以使动力电池同时通过第一DC/DC变换电路20和双向AC/DC变换电路10进行交流放电。
而当多功能车载充电器处于放电状态且电动汽车处于停止状态时,如果控制模块50接收到交流放电需求指令,则判断低压电池的电量是否小于第一预设值,其中,如果低压电池的电量小于第一预设值,控制模块50则通过控制第一DC/DC变换电路20和第 二DC/DC变换电路30以通过动力电池给低压电池充电,并控制双向AC/DC变换电路10进行工作以使动力电池同时通过第一DC/DC变换电路20和双向AC/DC变换电路10进行交流放电;如果低压电池的电量大于等于第一预设值,控制模块则通过控制第一DC/DC变换电路20、第二DC/DC变换电路30和双向AC/DC变换电路10以使动力电池和低压电池同时进行交流放电。
需要说明的是,双向AC/DC变换电路10、第一DC/DC变换电路20和第二DC/DC变换电路30的功率还需满足具体的充放电需求。具体而言,当多功能车载充电器处于充电状态时,比如双向AC/DC变换电路10的额定功率为Pw,第一DC/DC变换电路20的额定功率为Pd1,第二DC/DC变换电路30的额定功率为Pd2,并且假设电路的转换效率近似为1。则在高压电池(动力电池)和低压电池同时充电时,可控制双向AC/DC变换电路10、第一DC/DC变换电路20和第二DC/DC变换电路30同时工作时,此时Pw=Pd1+Pd2。在仅为高压电池充电时,则控制双向AC/DC变换电路10和第一DC/DC变换电路20工作,第二DC/DC变换电路30不工作,Pw=Pd1。在仅为低压电池充电时,则控制双向AC/DC变换电路10和第二DC/DC变换电路30工作,第一DC/DC变换电路20不工作,Pw=Pd2。
当多功能车载充电器处于放电状态时,比如双向AC/DC变换电路10的额定功率为Pw0,第一DC/DC变换电路20的额定功率为Pd10,第二DC/DC变换电路30的额定功率为Pd20,并且假设电路的转换效率近似为1。则在电动汽车处于停止状态,进行交流放电并且低压电池不亏电时,双向AC/DC变换电路10、第一DC/DC变换电路20和第二DC/DC变换电路30同时工作,Pw0=Pd10+Pd20,此时交流放电的功率可达最大值。在电动汽车处于停止状态,进行交流放电并且低压电池亏电时,双向AC/DC变换电路10、第一DC/DC变换电路20和第二DC/DC变换电路30同时工作,低压电池充电吸收功率,Pw0=Pd10-Pd20。在车辆在行驶过程中,首先要确保整车低压电池和低压负载供电使用,若有放电需求,则根据采集到的动力电池、低压电池、电网及控制信号信息判断开启顺序。在电动汽车处于行驶状态并且进行交流放电时,双向AC/DC变换电路10、第一DC/DC变换电路20和第二DC/DC变换电路30同时工作,Pw0=Pd10-Pd20。在电动汽车处于行驶状态并且不进行交流放电时,仅第一DC/DC变换电路20和第二DC/DC变换电路30工作,Pd10=Pd20。
根据本发明实施例的电动汽车的多功能车载充电器,集成了双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路,通过采样电路采样车载充电器电路中的相关电压和电流参数,并通过控制模块根据相关电压和电流参数对双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路进行控制,以实现多种功能。由此,通过高度集成化的设计,使得部分电路和端口可以在不同功能下复用,因此车载充电器的体积和重量较小,成本较低,能够方便地实现多种功能。此外,基于上述设计能够提高车载充电器的充放电效率,方便充电功率的扩容,并且能够提高其可靠性,延长其使用寿命。
对应上述实施例,本发明还提出一种电动汽车。
如图4所示,本发明实施例的电动汽车200,包括本发明上述实施例提出的电动汽车的多功能车载充电器100,其具体的实施方式可参照上述实施例,为避免冗余,在此不再赘述。
根据本发明实施例的电动汽车,其车载充电器具有高度集成化的设计,使得部分电路和端口可以在不同功能下复用,因此其车载充电器的体积和重量较小,成本较低,能够方便地实现多种功能。
对应上述实施例,本发明还提出一种电动汽车的多功能车载充电器的控制方法。
其中,电动汽车的多功能车载充电器包括双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路,双向AC/DC变换电路的交流端用于耦合到电网,第一DC/DC变换电路的第一直流端与双向AC/DC变换电路的直流端相耦合,第一DC/DC变换电路的第二直流端用于耦合到电动汽车的动力电池,第二DC/DC变换电路的第一直流端分别与双向AC/DC变换电路的直流端和第一DC/DC变换电路的第一直流端相耦合,第二DC/DC变换电路的第二直流端用于耦合到电动汽车的低压电池。更具体的电路耦合到方式可参照图2及上述实施例,在此不做赘述。
如图5所示,本发明实施例的电动汽车的多功能车载充电器的控制方法,包括以下步骤:
S1,对电网的电压和电流、双向AC/DC变换电路的直流端电压、动力电池的电压和电流、低压电池的电压和电流分别进行采样。
S2,根据采样到的电网的电压和电流、双向AC/DC变换电路的直流端电压、动力电池的电压和电流、低压电池的电压和电流通过对双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路进行控制,以实现动力电池充电功能、低压电池充电功能、动力电池逆变交流电功能、低压电池逆变交流电功能、动力电池输出低压带载功能中的任意一种。
在本发明的一个实施例中,还可根据采样到的电网的电压和电流、双向AC/DC变换电路的直流端电压、动力电池的电压和电流、低压电池的电压和电流通过对双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路进行控制,以实现动力电池充电功能和低压电池充电功能、或者动力电池逆变交流电功能和动力电池输出低压带载功能、或者动力电池逆变交流电功能和低压电池逆变交流电功能。
在本发明的一个实施例中,当多功能车载充电器处于充电状态时,其中,如果低压电池的电量小于第一预设值,则通过控制双向AC/DC变换电路和第二DC/DC变换电路以给低压电池充电;如果低压电池的电量大于等于第一预设值,则在动力电池处于未充满状态时,通过控制双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路以分别给电动汽车的低压负载供电和动力电池充电。
在本发明的一个实施例中,当多功能车载充电器处于充电状态时,还判断动力电池和低压电池是否异常,并在动力电池和低压电池异常时控制多功能车载充电器停止充电 工作。
在本发明的一个实施例中,当多功能车载充电器处于放电状态时,还判断电动汽车是否处于行驶状态,其中,如果电动汽车处于行驶状态,则通过控制第一DC/DC变换电路和第二DC/DC变换电路以通过动力电池给电动汽车的低压负载供电,并在接收到交流放电需求指令时控制双向AC/DC变换电路进行工作以使动力电池同时通过第一DC/DC变换电路和双向AC/DC变换电路进行交流放电。
而当多功能车载充电器处于放电状态且电动汽车处于停止状态时,如果接收到交流放电需求指令,则判断低压电池的电量是否小于第一预设值,其中,如果低压电池的电量小于第一预设值,则通过控制第一DC/DC变换电路和第二DC/DC变换电路以通过动力电池给低压电池充电,并控制双向AC/DC变换电路进行工作以使动力电池同时通过第一DC/DC变换电路和双向AC/DC变换电路进行交流放电;如果低压电池的电量大于等于第一预设值,则通过控制第一DC/DC变换电路、第二DC/DC变换电路和双向AC/DC变换电路以使动力电池和低压电池同时进行交流放电。
在本发明的一个具体实施例中,如图6所示,电动汽车的多功能车载充电器的控制方法可包括以下步骤:
S501,采集充电枪信号、整车档位信号及CAN信号。以便于对后续的是否充电、电动汽车是否处于行驶状态等进行判断。
S502,低压负载及控制电路上电。
S503,判断多功能车载充电器处于充电状态或放电状态。如果处于充电状态则执行步骤S504;如果处于放电状态则执行步骤S511。
S504,采集动力电池和低压电池的信息,并判断动力电池和低压电池是否异常。如果是,则执行步骤S505;如果否,则执行步骤S506。
S505,停止充电。
S506,判断低压电池是否亏电严重。在本发明的实施例中,如果低压电池的电量小于第一预设值,则可判断其亏电严重。如果是,则执行步骤S508;如果否,则执行步骤S507。
S507,判断动力电池是否充满。如果是,则执行步骤S505;如果否,则执行步骤S510。
S508,启动双向AC/DC变换电路和第二DC/DC变换电路工作以给低压电池充电,进入步骤S509。
S509,判断低压电池电量是否正常。即电池的电量是否充足。如果是,则执行步骤S507;如果否,则返回步骤S508,继续给低压电池充电。
S510,启动双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路工作以分别给电动汽车的低压负载供电和动力电池充电。在为低压负载供电时,可返回步骤S509判断低压电池电量是否正常,并在低压电池的电量不充足时执行步骤S508以给低压电池充电。另外,在给电动汽车的低压负载供电和动力电池充电的过程中,可实 时执行步骤S504,判断动力电池和低压电池是否异常。
S511,判断电动汽车是否行驶。如果是,则执行步骤S512;如果否,则执行步骤S515。
S512,启动第一DC/DC变换电路和第二DC/DC变换电路工作以通过动力电池给电动汽车的低压负载供电,进入步骤S513。
S513,判断是否有交流放电需求。如果是,则执行步骤S514;如果否,则返回步骤S512。
S514,启动双向AC/DC变换电路工作,以使动力电池通过第一DC/DC变换电路和双向AC/DC变换电路进行交流放电。
S515,判定有交流放电需求。电动汽车未行驶时,放电过程一般为交流放电。
S516,判断低压电池是否亏电严重。如果是,则执行步骤S517;如果否,则执行步骤S518。
S517,启动第一DC/DC变换电路和第二DC/DC变换电路工作以通过动力电池给低压电池充电。同时执行步骤S514以进行交流放电。
S518,启动第一DC/DC变换电路、第二DC/DC变换电路和双向AC/DC变换电路以使动力电池和低压电池同时进行交流放电。此时交流放电的功率可达最大值。
根据本发明实施例的电动汽车的多功能车载充电器的控制方法,车载充电器集成了双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路,通过采样车载充电器电路中的相关电压和电流参数,并根据相关电压和电流参数对双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路进行控制,以实现多种功能。由此,通过高度集成化的设计,使得部分电路和端口可以在不同功能下复用,因此车载充电器的体积和重量较小,成本较低,能够方便地实现多种功能。此外,基于上述控制方法能够提高车载充电器的充放电效率,方便充电功率的扩容,并且能够提高车载充电器的可靠性,延长车载充电器的使用寿命。
在对各个实施例的描述中,涉及到“耦合”一词。耦合表示两个本来分开的电路之间或一个电路的两个本来相互分开的部分之间的交链,耦合可以是直接的也可以间接的。“耦合”可使能量或者信号从一个电路传送到另一个电路,或由电路的一个部分传送到另一部分。因此,本申请中的“耦合”将包括但不限于物理上的电连接和信号传输形式的通信链接。具体地,对两个等价的二端口网络而言,两个二端口网络的端口之间的耦合,可以是第一二端口网络的一侧的两个端子与第二二端口网络的一侧的两个端子分别电连接。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明 的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (17)

  1. 一种电动汽车的多功能车载充电器,其特征在于,包括:
    双向AC/DC变换电路,所述双向AC/DC变换电路的交流端用于耦合到电网;
    第一DC/DC变换电路,所述第一DC/DC变换电路的第一直流端与所述双向AC/DC变换电路的直流端相耦合,所述第一DC/DC变换电路的第二直流端用于耦合到所述电动汽车的动力电池;
    第二DC/DC变换电路,所述第二DC/DC变换电路的第一直流端分别与所述双向AC/DC变换电路的直流端和所述第一DC/DC变换电路的第一直流端相耦合,所述第二DC/DC变换电路的第二直流端用于耦合到所述电动汽车的低压电池;
    采样电路,所述采样电路用于对所述电网的电压和电流、所述双向AC/DC变换电路的直流端电压、所述动力电池的电压和电流、所述低压电池的电压和电流分别进行采样;
    控制模块,所述控制模块中集成有用于控制所述双向AC/DC变换电路的第一控制电路、用于控制所述第一DC/DC变换电路的第二控制电路和用于控制所述第二DC/DC变换电路的第三控制电路,所述控制模块用于根据所述采样电路采样到的所述电网的电压和电流、所述双向AC/DC变换电路的直流端电压、所述动力电池的电压和电流、所述低压电池的电压和电流通过所述第一控制电路、所述第二控制电路和所述第三控制电路相应对所述双向AC/DC变换电路、所述第一DC/DC变换电路和所述第二DC/DC变换电路进行控制,以实现动力电池充电功能、低压电池充电功能、动力电池逆变交流电功能、低压电池逆变交流电功能、动力电池输出低压带载功能中的任意一种。
  2. 如权利要求1所述的电动汽车的多功能车载充电器,其特征在于,
    所述控制模块还用于根据所述采样电路采样到的所述电网的电压和电流、所述双向AC/DC变换电路的直流端电压、所述动力电池的电压和电流、所述低压电池的电压和电流通过所述第一控制电路、所述第二控制电路和所述第三控制电路相应对所述双向AC/DC变换电路、所述第一DC/DC变换电路和所述第二DC/DC变换电路进行控制,以实现所述动力电池充电功能和所述低压电池充电功能、或者所述动力电池逆变交流电功能和所述动力电池输出低压带载功能、或者所述动力电池逆变交流电功能和所述低压电池逆变交流电功能。
  3. 如权利要求1或2所述的电动汽车的多功能车载充电器,其特征在于,所述采样电路集成在所述控制模块中。
  4. 如权利要求2所述的电动汽车的多功能车载充电器,其特征在于,所述控制模块还用于当所述多功能车载充电器处于充电状态时,其中,
    如果所述低压电池的电量小于第一预设值,通过控制所述双向AC/DC变换电路和所述第二DC/DC变换电路以给所述低压电池充电;
    如果所述低压电池的电量大于等于所述第一预设值,则在所述动力电池处于未充满状态时,通过控制所述双向AC/DC变换电路、所述第一DC/DC变换电路和所述第二DC/DC变换电路以分别给所述电动汽车的低压负载供电和所述动力电池充电。
  5. 如权利要求4所述的电动汽车的多功能车载充电器,其特征在于,所述控制模块还用于当所述多功能车载充电器处于充电状态时,判断所述动力电池和所述低压电池是否异常,并在所述动力电池和所述低压电池异常时控制所述多功能车载充电器停止充电工作。
  6. 如权利要求2所述的电动汽车的多功能车载充电器,其特征在于,所述控制模块还用于当所述多功能车载充电器处于放电状态时,判断所述电动汽车是否处于行驶状态,其中,
    如果所述电动汽车处于行驶状态,所述控制模块则通过控制所述第一DC/DC变换电路和所述第二DC/DC变换电路以通过所述动力电池给所述电动汽车的低压负载供电,并在接收到交流放电需求指令时控制所述双向AC/DC变换电路进行工作以使所述动力电池同时通过所述第一DC/DC变换电路和所述双向AC/DC变换电路进行交流放电。
  7. 如权利要求6所述的电动汽车的多功能车载充电器,其特征在于,所述控制模块还用于当所述多功能车载充电器处于放电状态且所述电动汽车处于停止状态时,接收到所述交流放电需求指令,则判断所述低压电池的电量是否小于第一预设值,其中,
    如果所述低压电池的电量小于第一预设值,所述控制模块则通过控制所述第一DC/DC变换电路和所述第二DC/DC变换电路以通过所述动力电池给所述低压电池充电,并控制所述双向AC/DC变换电路进行工作以使所述动力电池同时通过所述第一DC/DC变换电路和所述双向AC/DC变换电路进行交流放电;
    如果所述低压电池的电量大于等于所述第一预设值,所述控制模块则通过控制所述第一DC/DC变换电路、所述第二DC/DC变换电路和所述双向AC/DC变换电路以使所述动力电池和所述低压电池同时进行交流放电。
  8. 如权利要求1-7任意一项所述的电动汽车的多功能车载充电器,其特征在于,
    所述双向AC/DC变换电路包括第一桥式电路,该第一桥式电路包括并联的第一桥臂和第二桥臂;第一桥臂包括以源极和漏极串联接入的第一开关管Q1和第二开关管Q2,第二桥臂包括以源极和漏极串联接入的第三开关管Q3和第四开关管Q4;其中,第一开关管Q1和第二开关管Q2之间的节点A1、第三开关管Q3和第四开关管Q4之间的节点B1作为双向AC/DC变换电路的交流端,相互并联的第一桥臂和第二桥臂的两 端节点E1和节点D1作为双向AC/DC变换电路的直流端;开关管Q1-Q4的控制极耦合到所述控制模块,由控制模块控制其通断状态。
  9. 如权利要求1-8任意一项所述的电动汽车的多功能车载充电器,其特征在于,
    所述第一DC/DC变换电路包括级联连接的第二桥式电路、第一变压器和第三桥式电路,其中,第二桥式电路和第三桥式电路的桥臂包括开关管Q5-Q12,且所述开关管Q5-Q12的控制极耦合到所述控制模块,由控制模块控制其通断状态。
  10. 如权利要求1-9任意一项所述的电动汽车的多功能车载充电器,其特征在于,
    所述第二DC/DC变换电路包括级联的第四桥式电路、第二变压器和第五桥式电路,其中,第四桥式电路和第五桥式电路的桥臂包括开关管Q13-Q18,且所述开关管Q13-Q18的控制极耦合到所述控制模块,由控制模块控制其通断状态。
  11. 一种电动汽车,其特征在于,包括如权利要求1-10中任一项所述的电动汽车的多功能车载充电器。
  12. 一种电动汽车的多功能车载充电器的控制方法,其特征在于,所述电动汽车的多功能车载充电器包括双向AC/DC变换电路、第一DC/DC变换电路和第二DC/DC变换电路,所述双向AC/DC变换电路的交流端用于耦合到电网,所述第一DC/DC变换电路的第一直流端与所述双向AC/DC变换电路的直流端相连,所述第一DC/DC变换电路的第二直流端用于耦合到所述电动汽车的动力电池,所述第二DC/DC变换电路的第一直流端分别与所述双向AC/DC变换电路的直流端和所述第一DC/DC变换电路的第一直流端相连,所述第二DC/DC变换电路的第二直流端用于耦合到所述电动汽车的低压电池,所述方法包括以下步骤:
    对所述电网的电压和电流、所述双向AC/DC变换电路的直流端电压、所述动力电池的电压和电流、所述低压电池的电压和电流分别进行采样;
    根据采样到的所述电网的电压和电流、所述双向AC/DC变换电路的直流端电压、所述动力电池的电压和电流、所述低压电池的电压和电流通过对所述双向AC/DC变换电路、所述第一DC/DC变换电路和所述第二DC/DC变换电路进行控制,以实现动力电池充电功能、低压电池充电功能、动力电池逆变交流电功能、低压电池逆变交流电功能、动力电池输出低压带载功能中的任意一种。
  13. 如权利要求12所述的方法,其特征在于,还包括:
    根据采样到的所述电网的电压和电流、所述双向AC/DC变换电路的直流端电压、所述动力电池的电压和电流、所述低压电池的电压和电流通过对所述双向AC/DC变换电路、所述第一DC/DC变换电路和所述第二DC/DC变换电路进行控制,以实现所述动 力电池充电功能和所述低压电池充电功能、或者所述动力电池逆变交流电功能和所述动力电池输出低压带载功能、或者所述动力电池逆变交流电功能和所述低压电池逆变交流电功能。
  14. 如权利要求12或13所述的方法,其特征在于,当所述多功能车载充电器处于充电状态时,其中,
    如果所述低压电池的电量小于第一预设值,则通过控制所述双向AC/DC变换电路和所述第二DC/DC变换电路以给所述低压电池充电;
    如果所述低压电池的电量大于等于所述第一预设值,则在所述动力电池处于未充满状态时,通过控制所述双向AC/DC变换电路、所述第一DC/DC变换电路和所述第二DC/DC变换电路以分别给所述电动汽车的低压负载供电和所述动力电池充电。
  15. 如权利要求14所述的方法,其特征在于,当所述多功能车载充电器处于充电状态时,还判断所述动力电池和所述低压电池是否异常,并在所述动力电池和所述低压电池异常时控制所述多功能车载充电器停止充电工作。
  16. 如权利要求12或13所述的方法,其特征在于,当所述多功能车载充电器处于放电状态时,还判断所述电动汽车是否处于行驶状态,其中,
    如果所述电动汽车处于行驶状态,则通过控制所述第一DC/DC变换电路和所述第二DC/DC变换电路以通过所述动力电池给所述电动汽车的低压负载供电,并在接收到交流放电需求指令时控制所述双向AC/DC变换电路进行工作以使所述动力电池同时通过所述第一DC/DC变换电路和所述双向AC/DC变换电路进行交流放电。
  17. 如权利要求16所述的方法,其特征在于,当所述多功能车载充电器处于放电状态且所述电动汽车处于停止状态时,如果接收到所述交流放电需求指令,则判断所述低压电池的电量是否小于第一预设值,其中,
    如果所述低压电池的电量小于第一预设值,则通过控制所述第一DC/DC变换电路和所述第二DC/DC变换电路以通过所述动力电池给所述低压电池充电,并控制所述双向AC/DC变换电路进行工作以使所述动力电池同时通过所述第一DC/DC变换电路和所述双向AC/DC变换电路进行交流放电;
    如果所述低压电池的电量大于等于所述第一预设值,则通过控制所述第一DC/DC变换电路、所述第二DC/DC变换电路和所述双向AC/DC变换电路以使所述动力电池和所述低压电池同时进行交流放电。
PCT/CN2017/093203 2016-07-28 2017-07-17 电动汽车、电动汽车的多功能车载充电器及其控制方法 WO2018019148A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019503981A JP2019525707A (ja) 2016-07-28 2017-07-17 電気車両、電気車両用多機能型自動車充電器、およびその制御方法
EP17833451.2A EP3492299A4 (en) 2016-07-28 2017-07-17 ELECTRIC VEHICLE, MULTIFUNCTIONAL VEHICLE INTERNAL CHARGER FOR ELECTRIC VEHICLE AND CONTROL PROCESS THEREFOR
US16/321,176 US20190176652A1 (en) 2016-07-28 2017-07-17 Electric vehicle, multifunctional car charger for electric vehicle, and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610614733.3A CN107662498A (zh) 2016-07-28 2016-07-28 电动汽车、电动汽车的多功能车载充电器及其控制方法
CN201610614733.3 2016-07-28

Publications (1)

Publication Number Publication Date
WO2018019148A1 true WO2018019148A1 (zh) 2018-02-01

Family

ID=61015807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093203 WO2018019148A1 (zh) 2016-07-28 2017-07-17 电动汽车、电动汽车的多功能车载充电器及其控制方法

Country Status (5)

Country Link
US (1) US20190176652A1 (zh)
EP (1) EP3492299A4 (zh)
JP (1) JP2019525707A (zh)
CN (1) CN107662498A (zh)
WO (1) WO2018019148A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323811A (zh) * 2018-03-29 2019-10-11 比亚迪股份有限公司 车载充电器及其控制方法
CN110549889B (zh) * 2018-03-29 2021-05-14 比亚迪股份有限公司 车载充电器及其控制方法
KR102602928B1 (ko) * 2018-04-17 2023-11-16 현대자동차주식회사 차량용 전력 변환 시스템 및 그 제어방법
CN110395125A (zh) * 2018-04-20 2019-11-01 比亚迪股份有限公司 车载充电器的自检方法和装置、车载充电器及电动车辆
CN108312889B (zh) * 2018-04-25 2024-01-09 苏州市万松电气有限公司 用于地铁车辆的大功率高效率的双向充电机
CN110417268B (zh) * 2018-04-26 2021-07-20 比亚迪股份有限公司 车载充电机和电动车辆
CN111231669B (zh) * 2018-11-09 2022-06-14 比亚迪股份有限公司 车载充电器、电动车辆的供电系统、电动车辆
CN111371160B (zh) * 2018-12-25 2022-05-13 比亚迪股份有限公司 电动汽车及其车载集成装置、车载集成装置的控制方法
CN109728624A (zh) * 2018-12-27 2019-05-07 台达电子企业管理(上海)有限公司 车载充放电系统
CN109703399B (zh) 2018-12-27 2021-05-18 台达电子企业管理(上海)有限公司 车载充放电系统及其所适用的控制方法
KR20200122033A (ko) * 2019-04-17 2020-10-27 현대자동차주식회사 통합형 컨버터 장치
CN110033635B (zh) * 2019-05-29 2021-06-04 广州小鹏汽车科技有限公司 停车场车辆的取车引导方法、装置及服务器
CN110341518A (zh) * 2019-06-15 2019-10-18 江苏开沃汽车有限公司 一种高度集成式充放电装置
CN114175444A (zh) * 2019-07-15 2022-03-11 伊顿智能动力有限公司 具有高效逆变器的移动应用的电源分配和电路保护
CN110356269A (zh) * 2019-07-19 2019-10-22 宝能(广州)汽车研究院有限公司 集成dc/dc的双向车载充电机和电动汽车
CN112350415B (zh) * 2019-08-09 2023-01-06 广汽埃安新能源汽车有限公司 车载充电机的控制方法、装置、设备及存储介质
CN110474410B (zh) 2019-08-15 2023-08-29 深圳威迈斯新能源股份有限公司 车载集成充电装置及其电流分配计算方法
CN112440815B (zh) * 2019-08-30 2022-06-28 北京新能源汽车股份有限公司 一种高压控制器、系统及电动汽车
CN110401252A (zh) * 2019-09-03 2019-11-01 台达电子企业管理(上海)有限公司 车载充放电系统
CN110733367A (zh) * 2019-10-23 2020-01-31 广东维可特科技有限公司 一种家用电动车智能充放电检测系统及智能充电器
CN110707792B (zh) * 2019-10-24 2022-05-31 华为数字能源技术有限公司 一种车载充放电系统及控制方法
CN111452643B (zh) * 2020-03-30 2023-01-31 上海电气集团股份有限公司 车载充电机和车载dc/dc的集成电路、电动汽车
CN111525827B (zh) * 2020-04-16 2022-12-13 深圳市鹏源电子有限公司 能源路由系统
CN111641247B (zh) * 2020-05-15 2022-03-08 华为数字能源技术有限公司 一种车载充电机的充电电路、车载充电机及充电控制方法
CN115313592A (zh) * 2020-07-31 2022-11-08 华为数字能源技术有限公司 一种车载充电机以及车辆
CN114069740B (zh) * 2020-07-31 2023-10-20 华为技术有限公司 充电方法和电子设备
CN114312392A (zh) * 2020-09-30 2022-04-12 比亚迪股份有限公司 车辆充电装置、方法及车辆
CN112428836B (zh) * 2020-11-06 2022-08-16 广州小鹏汽车科技有限公司 一种充电系统、充电系统的控制方法及电动汽车
CN112693340B (zh) * 2020-12-01 2023-04-25 合肥华耀电子工业有限公司 一种功能集成式车载充电机及其工作方法
CN114179642B (zh) * 2021-11-22 2024-06-11 泉州装备制造研究所 一种基于强鲁棒预测控制算法的新能源汽车双向充放电装置
CN114679068B (zh) * 2022-05-30 2022-08-09 深圳戴普森新能源技术有限公司 一种储能变换器电能变换双向dcdc变换器及储能系统
CN114914992B (zh) * 2022-06-14 2023-09-19 无锡力芯微电子股份有限公司 一种耐高压的死电池下拉模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499673A (zh) * 2009-02-27 2009-08-05 天津清源电动车辆有限责任公司 一种用于电动汽车的具有补偿充电的多功能一体化充电机
CN103138334A (zh) * 2011-11-25 2013-06-05 Ls产电株式会社 用于电动车的供电系统及其控制方法
CN105226989A (zh) * 2014-06-27 2016-01-06 联合汽车电子有限公司 新能源汽车的电力电子集成系统及其工作方法
CN105322812A (zh) * 2014-07-04 2016-02-10 现代自动车株式会社 脉冲宽度调制谐振转换器及使用其的用于车辆的充电器
US20160172877A1 (en) * 2014-12-16 2016-06-16 Lingxiao Xue Optimal Battery Current Waveform for Bidirectional PHEV Battery Charger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4842885B2 (ja) * 2007-05-23 2011-12-21 トヨタ自動車株式会社 車載機器制御システムおよび車両
CN102025182B (zh) * 2010-11-30 2012-10-31 梁一桥 多功能电动汽车动力电池组模块化充放电系统
CN104024030B (zh) * 2011-11-04 2017-04-12 丰田自动车株式会社 电源系统、具备该电源系统的车辆以及电源系统的控制方法
WO2015192133A2 (en) * 2014-06-13 2015-12-17 University Of Maryland An integrated dual-output grid-to-vehicle (g2v) and vehicle-to-grid (v2g) onboard charger for plug-in electric vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499673A (zh) * 2009-02-27 2009-08-05 天津清源电动车辆有限责任公司 一种用于电动汽车的具有补偿充电的多功能一体化充电机
CN103138334A (zh) * 2011-11-25 2013-06-05 Ls产电株式会社 用于电动车的供电系统及其控制方法
CN105226989A (zh) * 2014-06-27 2016-01-06 联合汽车电子有限公司 新能源汽车的电力电子集成系统及其工作方法
CN105322812A (zh) * 2014-07-04 2016-02-10 现代自动车株式会社 脉冲宽度调制谐振转换器及使用其的用于车辆的充电器
US20160172877A1 (en) * 2014-12-16 2016-06-16 Lingxiao Xue Optimal Battery Current Waveform for Bidirectional PHEV Battery Charger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3492299A4 *

Also Published As

Publication number Publication date
JP2019525707A (ja) 2019-09-05
CN107662498A (zh) 2018-02-06
EP3492299A1 (en) 2019-06-05
EP3492299A4 (en) 2019-07-24
US20190176652A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2018019148A1 (zh) 电动汽车、电动汽车的多功能车载充电器及其控制方法
RU2569513C1 (ru) Система контроля работы электромобиля
CN106208641B (zh) 一种交直流复用的电路
RU2585195C2 (ru) Система контроля работы электромобиля
CN202423513U (zh) 电池加热装置
CN110356268A (zh) 一种车载充放电装置和系统
CN103187876A (zh) 一种不间断电源的dc/dc电路
CN103368231A (zh) 一种不间断电源电路
CN104736378A (zh) 用于车辆的电源系统
CN103187760A (zh) 电动汽车及用于电动汽车的主动泄放系统
WO2013129231A1 (ja) 電源装置
CN103715746A (zh) 一种ups及其dc/dc电路
Tan et al. A 6-kW, 2-kWh Lithium-Ion battery energy storage system using a bidirectional isolated DC-DC converter
TW201427232A (zh) 電能儲存裝置
CN110356269A (zh) 集成dc/dc的双向车载充电机和电动汽车
CN105871205A (zh) 一种集成式多功能电源转换系统
WO2014026460A1 (zh) 一种集成开关磁阻电机驱动与低压电池充电的变换装置
CN110417268B (zh) 车载充电机和电动车辆
CN103326583A (zh) 电源转换器及其充放电系统
KR101330349B1 (ko) 전력 변환 장치 및 이를 이용한 전력 변환 방법
TWI399010B (zh) Power supply
WO2018113681A1 (zh) 充放电设备及移动充电车
JP2014027857A (ja) 充放電装置
CN112297893B (zh) 放电车辆和车辆充电系统
CN205725456U (zh) 集成式多功能电源转换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017833451

Country of ref document: EP

Effective date: 20190228