WO2018019082A1 - 一种重传极化码的方法及其发送设备、接收设备 - Google Patents

一种重传极化码的方法及其发送设备、接收设备 Download PDF

Info

Publication number
WO2018019082A1
WO2018019082A1 PCT/CN2017/090896 CN2017090896W WO2018019082A1 WO 2018019082 A1 WO2018019082 A1 WO 2018019082A1 CN 2017090896 W CN2017090896 W CN 2017090896W WO 2018019082 A1 WO2018019082 A1 WO 2018019082A1
Authority
WO
WIPO (PCT)
Prior art keywords
data transmission
mode
code rate
nth
information
Prior art date
Application number
PCT/CN2017/090896
Other languages
English (en)
French (fr)
Inventor
张公正
罗禾佳
王桂杰
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018019082A1 publication Critical patent/WO2018019082A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end

Definitions

  • the present application relates to the field of communications, and more particularly, to a method for retransmitting a polarization code, a transmitting device thereof, and a receiving device.
  • the Polar code (ie, the polarization code) is an encoding method that can achieve Shannon capacity and has low coding and decoding complexity.
  • B N is an N ⁇ N transposed matrix, such as a bit reversal matrix. Is the Kronecker power of F 2 , defined as
  • a part of the bits are used to carry information, which is called an information bit channel.
  • the set of sequence numbers of these information bit channels is denoted as A; the other part of the bits is set to a fixed value pre-agreed by the transceiver, which is called a fixed bit, and its serial number.
  • the set is represented by the complement A c of A.
  • these fixed bits are usually set to zero. In fact, only the transceiver terminal needs to be pre-agreed, and the fixed bit sequence can be arbitrarily set.
  • the encoded bit sequence of the Polar code can be obtained by the following method:
  • indicates the number of elements in the set, that is, K represents the number of elements in the set A, and also indicates the number of information bits to be encoded.
  • Sub-matrix is a matrix obtained from G N A set of rows corresponding to the index, G N is a K ⁇ N matrix. The selection of set A determines the performance of the Polar code.
  • Hybrid Automatic Repeat Request is a commonly used transmission method to improve system throughput in communication applications that are not sensitive to system delay.
  • the transmitting end When transmitting a certain information block, the transmitting end encodes the information block and sends it to the channel. If the receiving end decodes the received signal and finds that the transmission is successful, (at this time, the receiving end sends a correct acknowledgement (Acknowledgement, ACK). The message is sent to the sender to complete the transmission of the information block; if the receiver decodes the received signal and finds that the transmission failed (for example, cannot pass the cyclic redundancy check), the receiver passes a feedback chain.
  • Acknowledgement Acknowledgement
  • the path transmits a Negative-Acknowledgement (NACK) message to the transmitting end, and the transmitting end retransmits the information block.
  • NACK Negative-Acknowledgement
  • the transmitting end performs the message. Retransmission of information blocks. This process continues until the receiver decodes correctly. In order to obtain the largest possible link throughput, the receiver will buffer all received signals and translate them with the newly received signals. code.
  • the embodiment of the present application provides a method for retransmitting a Polar code (ie, a polarization code), which can fully implement coding gain and improve system throughput.
  • a Polar code ie, a polarization code
  • a method for retransmitting a Polar code including: determining, according to an encoding parameter of a previous n data transmission, a target retransmission mode of the n+1th data transmission, where n is Positive integer
  • the n+1th data transmission is performed by the standard transmission mode and the coding parameter.
  • the encoding parameters include at least one of the following: the number of encoded bits, the number of information bits, and the code rate.
  • the embodiment of the present application can determine the transmission mode of the (n+1)th data transmission according to the coding parameters of the previous n data transmissions, and thus can facilitate the full implementation of the coding gain and improve the system throughput.
  • the determining, according to an encoding parameter of the first n data transmission, determining a target retransmission mode of the (n+1)th data transmission including:
  • the method further includes:
  • the retransmission mode includes: when the n+1th data transmission is required, determining to adopt the increment according to at least one of the number of information bits of the nth data transmission and the code rate of the nth data transmission
  • the freeze IF mode or the Chase merge CC mode is used as the target retransmission mode of the n+1th data transmission.
  • the method provided in the embodiment of the present application can determine that the retransmission mode used in the retransmission is the IF mode or the CC mode by using at least one of the number of information bits of the last data transmission and the code rate, and can fully utilize The coding gain of the IF mode while avoiding negative coding gain generation.
  • the method when the sending device determines that the (n+1)th data transmission is performed by using an IF mode, the method further includes Receiving feedback information transmitted by the receiving device; determining, according to the feedback information, an encoding parameter of the n+1th data transmission.
  • the transmitting device can adjust the coding parameters such as the code rate, the code length, or the number of information bits by using the feedback information sent by the receiving device, so that the retransmission can be adaptive and the system throughput can be improved.
  • the feedback information is channel state information of the nth data transmission, and determining the nth according to the feedback information
  • the coding parameter of the +1 data transmission includes: determining the code rate and the number of information bits of the (n+1)th data transmission according to the channel state information of the nth data transmission.
  • the feedback information includes a desired modulation and coding scheme MCS and/or a desired transmission resource size
  • the sending device is configured according to Determining the encoding parameter of the n+1th data transmission, including: determining at least two of the following parameters according to the modulation coding scheme MCS and/or the transmission resource size in the feedback information: the n+1th The code rate of the secondary data transmission, the number of coded bits, and the number of information bits.
  • the sending device when performing the (n+1)th data transmission, is configured according to the coded bit of the nth data transmission The number of information bits or the number of coded bits in the sequence, and the code rate of the nth data transmission, determined to use the incremental freeze IF mode Or Chase merge CC mode, including: when the code rate of the nth data transmission is greater than or equal to a preset rate threshold, and the number of information bits in the nth data transmission is greater than or equal to a preset When the number of thresholds is used, the n+1th data transmission is performed by using the IF mode; when the code rate of the nth data transmission is less than a preset rate threshold, or the information bits in the nth data transmission When the number of the number is less than the preset number of thresholds, the n+1th data transmission is performed using the CC mode.
  • the n+1th data transmission is performed by using an IF mode, and the first to the n+1th times are performed.
  • the method further includes: according to the code rate and the constructed signal to noise ratio of the n+1th data transmission, the sequence number corresponding to the at least one polarization channel ranked highest by reliability Determining a set of sequence numbers A n+1 of the polarized channel for the (n+1)th data transmission; for the jth data transmission, by the set Information bits transmitted on the characterized polarized channel, as information bits of the n+1th data transmission, wherein A n is a set of serial numbers of polarized channels of the nth data transmission determined according to a code rate and a constructed signal to noise ratio at the time of the nth data transmission, and information transmitted during the nth data transmission The bits are transmitted using the polarized channel characterized by the A n , where 1
  • the constructed signal-to-noise ratio is the signal-to-noise ratio used for the Polar code construction at a specific code rate.
  • set of sequence numbers A n+1 of the polarization channel may also be obtained in other manners than the order of reliability, which is not limited in this application.
  • retransmission is performed by selecting the least reliable information bits in all previous transmissions, thereby enhancing the reliability of the most unreliable information bits and improving the success rate of decoding.
  • the method further includes: determining, according to an actual code rate of the jth data transmission in the first n data transmissions, selecting coding bits participating in the (n+1)th data transmission from the coded bit sequence of the jth data transmission The number, wherein the higher the code rate of the jth data transmission, the number of coded bits selected from the coded bit sequence of the jth data transmission is the coded bit sequence of the n+1th data transmission The larger the proportion of the median, the actual bit rate of the jth data transmission is the code rate after the retransmission of the information bits, 1 ⁇ j ⁇ n.
  • the number of coded bits in each IF transmission selected in the CC mode can be allocated according to the code rate at the time of IF transmission to provide as much matching energy gain as possible for each IF transmission.
  • a method for retransmitting a Polar code including: determining, according to an encoding parameter of a previous n data transmission, a target retransmission mode of the n+1th data transmission, where n is a positive integer; The target retransmission mode decodes data of the n+1th data transmission.
  • the embodiment of the present application can determine the transmission mode of the n+1th data transmission according to the coding parameters of the previous n data transmissions, and thus can fully implement the coding gain.
  • the determining, according to an encoding parameter of the first n data transmission, determining a target retransmission mode of the (n+1)th data transmission including: determining by the receiving device a coded bit sequence of the nth data transmission; when the receiving device needs to perform the n+1th data transmission, according to the number of information bits in the coded bit sequence of the nth data transmission and the nth data transmission
  • the code rate is determined by using the incremental freeze IF mode or the Chase merge CC mode for the (n+1)th data retransmission.
  • the method provided by the embodiment of the present application can determine, by using at least one of the number of information bits and the code rate in the coded bit sequence of the last data transmission, that the retransmission mode used in the retransmission is the IF mode or the CC mode.
  • the code gain can be fully utilized in the IF mode while avoiding negative coding gain.
  • the method further includes: the receiving device, according to decoding the coded bit sequence of the nth data transmission As a result, feedback information is sent to the transmitting device, so that the transmitting device determines the number of encoded bits and the number of information bits of the n+1th data transmission according to the feedback information.
  • the feedback information includes one of the following information: channel state information of the nth data transmission;
  • the n+1th data transmission is performed on a desired modulation and coding scheme MCS;
  • the n+1th data transmission is a desired transmission resource size.
  • the receiving device determines that the n+1th data retransmission adopts an incremental freeze IF mode or a Chase merge CC mode, including: when the code rate of the nth data transmission is greater than or equal to a preset bit rate a threshold value, and when the number of information bits in the nth data transmission is greater than or equal to a preset number of thresholds, determining that the transmitting device performs an (n+1)th data transmission by using an IF mode; When the code rate of the n-th data transmission is less than the preset rate threshold, or the number of information bits in the n-th data transmission is less than the preset threshold, it is determined that the transmitting device adopts the CC mode for the nth +1 data transfer.
  • a transmitting device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the transmitting device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a receiving device for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • the receiving device comprises means for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a transmitting apparatus comprising: a transceiver, a memory, a processor, and a bus system.
  • the transceiver, the memory and the processor are coupled by the bus system for storing instructions for executing instructions stored by the memory to control the transceiver to receive signals and/or transmit signals, and
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a receiving device comprising: a transceiver, a memory, a processor, and a bus system.
  • the transceiver, the memory and the processor are coupled by the bus system for storing instructions for executing instructions stored by the memory to control the transceiver to receive signals and/or transmit signals, and
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a seventh aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of the second aspect or any of the possible implementations of the second aspect.
  • FIG. 1 is a schematic diagram of a scenario applied by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for retransmitting a Polar code according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for retransmitting a Polar code according to another embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for retransmitting a Polar code according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of information bit selection in another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for retransmitting a Polar code according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of an IF mode encoder according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of transmission coding according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for retransmitting a Polar code according to another embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a transmitting device according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a receiving device according to another embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a transmitting apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a receiving apparatus according to another embodiment of the present application.
  • FIG. 14 is a schematic diagram of transmission performance of a method for retransmitting a Polar code according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of transmission performance of a method for retransmitting a Polar code according to another embodiment of the present application.
  • FIG. 1 is a diagram of a wireless communication system in accordance with various embodiments described herein.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may pass, for example, according to a signal having one or more data packets (eg, data from one component interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Local and / or remote processes to communicate.
  • data packets eg, data from one component interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • An access terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, a user device, or a UE (User Equipment, User equipment).
  • the access terminal may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless communication.
  • the base station can be used for communicating with a mobile device, and the base station can be a BTS (Base Transceiver Station) in GSM (Global System for Mobile communication) or CDMA (Code Division Multiple Access), or can be WCDMA.
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code NB (NodeB, base station) in the multiplex (Long Term Evolution), or an eNB or eNodeB (evolved Node B) in the LTE (Long Term Evolution), or a relay station or access Point, or base station equipment in the future 5G network.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (eg, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the wireless communication system 100 includes a base station 102 that can include multiple antenna groups.
  • Each antenna group may include one or more antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
  • Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
  • Base station 102 can additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which can include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • a transmitter chain and a receiver chain can include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • Base station 102 can communicate with one or more access terminals, such as access terminal 116 and access terminal 122. However, it will be appreciated that base station 102 can communicate with any number of access terminals similar to access terminal 116 or 122. Access terminals 116 and 122 can be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other for communicating over wireless communication system 100. Suitable for equipment. As shown, access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to access terminal 116 over forward link 118 and receiving information from access terminal 116 over reverse link 120.
  • access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to access terminal 116 over forward link 118 and receiving information from access terminal 116 over reverse link 120.
  • access terminal 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to access terminal 122 over forward link 124 and receive information from access terminal 122 over reverse link 126.
  • FDD Frequency Division Duplex
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link 126. Different frequency bands used.
  • the forward link 118 and the reverse link 120 can use a common frequency band, and the forward link 124 and the reverse link 126 can use a common frequency band.
  • Each set of antennas and/or regions designed for communication is referred to as a sector of base station 102.
  • the antenna group can be designed to communicate with access terminals in sectors of the coverage area of base station 102.
  • the transmit antenna of base station 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the base station 102 uses beamforming to transmit signals to the randomly dispersed access terminals 116 and 122 in the relevant coverage area, the base station 102 uses a single antenna to transmit signals to all of its access terminals. Mobile devices are subject to less interference.
  • base station 102, access terminal 116, or access terminal 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device can acquire (eg, generate, receive from other communication devices, or protect in the memory) A certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the sending device of the method may be a network device or a user device. As shown in FIG. 2, the method 200 includes:
  • Step 210 Determine, according to coding parameters of the first n data transmissions, a target retransmission mode of the n+1th data transmission, where n is a positive integer, and the coding parameter includes at least one of a number of information bits and a code rate. ;
  • step 220 the n+1th data transmission is performed by using the target retransmission mode.
  • the target retransmission mode of the n+1th data transmission can be determined; and the coding parameters and the transmission resource size of the first n data transmissions can also be used.
  • the encoding parameters of the n+1th data transmission are determined.
  • the encoding parameters of the n+1th data transmission can be determined according to the encoding parameters of the first n data transmissions and the size of the transmission resources.
  • the encoding parameters include at least one of the following parameters: code length (which may also be referred to as the number of coded bits), number of information bits, and code rate.
  • the size of the transmission resource refers to the amount of resources that can be used in the data transmission, and thus the size of the code that can be transmitted.
  • the transmission resource is the product of the number of subcarriers and the number of symbols in LTE, that is, the number of resource elements (Resource Element, RE) RE.
  • the number of REs multiplied by the modulation order is the number of coded bits that can be transmitted, that is, the code length.
  • the code length multiplied by the code rate is the number of information bits.
  • the embodiment of the present application can determine the transmission mode of the n+1th data transmission according to the coding parameters of the previous n data transmissions, so that the coding gain can be fully realized, and the system throughput rate can be improved.
  • the sending device when the sending device needs to perform the (n+1)th data transmission, determining, by the n+1th data transmission, determining at least one of the number of information bits of the nth data transmission and the code rate of the nth data transmission. It is determined that the incremental freeze IF mode or the Chase merge CC mode is adopted as the target retransmission mode of the n+1th data transmission, where n is an integer.
  • the transmitting device needs to perform the (n+1)th data transmission, that is, after the nth data transmission, after the receiving device fails to decode the data of the n times of transmission, the transmitting device needs to perform the n+1th data transmission.
  • the sending device may confirm that the decoding of the receiving end fails according to the received Negative-Acknowledgement (NACK) information.
  • NACK Negative-Acknowledgement
  • n 1
  • the transmitting device can determine information such as the code rate of the transmission and the number of information bits by receiving the scheduling of the base station, for example, by receiving indication information sent by the base station, where the indication information may include a coding modulation scheme ( The number of the Modulation and Coding Scheme (MCS) and the Resource Block (RB), the transmitting device determines the initial code rate, the number of coded bits, and the number of information bits according to the indication information. In the case where there is no other scheduling, the transmitting device obtains the above parameters according to information such as the available transmission resources and the agreed code rate and modulation order.
  • MCS Modulation and Coding Scheme
  • RB Resource Block
  • the transmitting device may determine to use the Incremental Freezing (IF) mode for the n+ according to whether the at least one of the number of information bits and the code rate in the nth data transmission meets a certain threshold condition. 1 time data transmission or Chase Combing (CC) mode for n+1th data transmission.
  • the threshold condition is established by using the IF mode when a certain threshold condition is met. According to the retransmission, a positive coding gain is obtained; when the other preset conditions are met, the IF mode may not be able to bring a positive coding gain, and then the CC mode is used to retransmit the data, although the coding gain cannot be brought. But it can bring energy gain.
  • the IF mode is used to perform the n+th 1 data transmission, in other cases, CC mode for data transmission.
  • the receiving device performs serial freeze decoding according to the received data, that is, first decodes the last received coded bit sequence, and decodes the obtained coded bit sequence.
  • the information bit sequence is used as the previously transmitted frozen bit, and the previously received coded bit sequence is decoded until the first received coded bit sequence is successfully decoded.
  • the transmitting device retransmits the already transmitted coded bit sequence, and the receiving end first adds the received identical coded bit sequences, that is, soft merge, and then performs Decoding.
  • the receiving end first adds the received identical coded bit sequences, that is, soft merge, and then performs Decoding.
  • the decoding performance can be enhanced.
  • the method provided by the embodiment of the present application can determine, by using at least one of the number of information bits and the code rate in the coded bit sequence of the last data transmission, that the retransmission mode used in the retransmission is the IF mode or the CC mode. Can fully utilize the coding gain of the IF mode while avoiding the negative coding gain.
  • the method when the sending device determines to perform the (n+1)th data transmission by using the IF mode, the method further includes: the sending device receives the feedback information of the nth data transmission; and the sending device according to the feedback information , determining the encoding parameters of the n+1th data transmission.
  • the feedback information may include Channel State Information (CSI), Signal to Interference plus Noise Ratio (SINR), or Channel Quality in Long Term Evolution (LTE).
  • Channel quality indicator (CQI) may also include a code rate size directly transmitted by the receiving device; or a modulation and coding scheme (MCS) and a transmission resource size, etc.; the coding parameter includes one of a code length, a code rate, and a number of information bits. Multiple parameters.
  • the number of coded bits is the code length. In the embodiment of the present application, the foregoing two concepts may be mutually replaced. It should also be understood that the number of information bits may be determined by the code length and the code rate, and the code length and the number of information bits may also be used. To determine the code rate, only two of the parameters are needed to infer the third parameter.
  • the transmitting device can adjust the coding parameters such as the code rate, the code length, or the number of information bits by using the feedback information sent by the receiving device, so that the retransmission can be adaptive.
  • the feedback information is channel state information of the nth data transmission
  • the sending device determines, according to the feedback information, the coding parameter of the n+1th data transmission, including: according to the nth data transmission Channel state information, determining a code rate of the n+1th data transmission and a number of the information bits.
  • the channel state information may include a CQI or an SINR.
  • the CQI as an example, there is a mapping table between the CQI and the code rate, that is, the code rate can be determined by the CQI.
  • the code rate that the channel can actually accommodate in the previous transmission can be determined, and if the transmission resource is unchanged, the code rate can be determined according to the actual rate that the channel can be provided in the previous transmission.
  • the second data transmission is performed, for example, receiving the feedback information CSI sent by the opposite end, determining the code rate that the channel can actually accommodate when the first data transmission is performed, and determining the first
  • the same probability that the fourth retransmission can be obtained is R-R1-R2-R3, and the number of retransmitted information bits is N*(R-R1-R2-R3).
  • the feedback information includes a desired Modulation and Coding Scheme (MCS) and/or a desired transmission resource size request
  • MCS Modulation and Coding Scheme
  • the sending device determines the (n+1)th data according to the feedback information.
  • the encoding parameters of the transmission include: determining at least two of the following parameters according to the MCS and/or the transmission resource size of the feedback: a code rate of the n+1th data transmission, a number of coding bits, and a number of information bits.
  • the feedback information includes the MCS and/or transmission resource size expected by the transmitting device.
  • the coding parameter may be determined according to the default resource size, or the feedback information may only include the transmission resource size, and the coding parameter may be determined according to the default code rate and the like, which is not limited in this application.
  • the MCS is a modulation and coding mode, including a modulation order and a coding rate.
  • the transmission resource is a product of the number of subcarriers and the number of symbols in LTE, that is, a resource element (Resource Element, RE).
  • the number of REs multiplied by the modulation order is the number of coded bits that can be transmitted, that is, the code length.
  • the code length multiplied by the code rate is the number of information bits.
  • the transmitting device may determine at least two of the following parameters according to the above information: for the n+1th time The code rate, code length, and number of information bits transmitted.
  • the sending device determines, according to the number of information bits of the nth data transmission, and the code rate of the nth data transmission, determining to adopt the increment.
  • the frozen IF mode or the Chase merge CC mode performs the n+1th data transmission, including: when the code rate of the nth data transmission is greater than or equal to a preset rate threshold, and the information bits in the nth data transmission The number is greater than or equal to the preset number For the threshold value, the n+1th data transmission is performed by using the IF mode; when the code rate of the nth data transmission is less than the preset rate threshold, or the number of information bits in the nth data transmission is less than the preset For the number of thresholds, the n+1th data transmission is performed using the CC mode.
  • the transmission mode selection pseudo code when retransmitting is as follows:
  • CodeRate refers to the code rate
  • InformationBitsLength refers to the length of the information bit
  • Thredhold_1 is the preset rate threshold
  • Threshold_2 is the number of information bits, which is the preset number of thresholds.
  • the code rate threshold may be 1/5, and the number of information bits is 300. That is, when the code rate of the nth data transmission is less than 1/5 or the number of information bits of the nth data transmission is less than 300, the n+1th data transmission is performed by using the CC mode; otherwise, the IF mode is adopted. The n+1th data transmission. It should be understood that the numerical values of the above embodiments are merely exemplary and are not limited herein.
  • the method further includes: The code rate and the constructed signal-to-noise ratio of the n+1th data transmission are determined by the sequence number corresponding to the at least one polarization channel with the highest reliability, and determined as the set of the sequence numbers of the polarized channels of the n+1th data transmission.
  • the bit uses the polarized channel characterized by A n to transmit the bits.
  • retransmission is performed by selecting the least reliable information bits in all previous transmissions, thereby enhancing the reliability of the most unreliable information bits and improving the success rate of decoding.
  • the code length from the 1st to the n+1th data transmission does not change, that is, the transmission resource in the data retransmission does not change, and the number of coded bits that can be transmitted does not change.
  • data transmission in the first IF mode, data transmission in the second IF mode, data transmission in the third IF mode, and data transmission in the fourth IF mode are sequentially performed from top to bottom. .
  • the current polarization channel can be ranked by reliability, and the 12 polarization channels with the highest reliability ranking can be ranked.
  • the corresponding sequence number is used as the set A 1 .
  • 12 information bits are respectively transmitted, which are u 1 , u 2 , ... u 12 , respectively.
  • the current polarization channel can be ranked by reliability, and the 6 poles with the highest reliability ranking are ranked.
  • the sequence number corresponding to the channel is taken as the set A 2 , and further determined in the first data transmission, the mapping is
  • the information bits on the channel are ⁇ u 7 , u 8 , u 9 , u 10 , u 11 , u 12 ⁇ .
  • the information bits ⁇ u 7 , u 8 , u 9 , u 10 , u 11 , u 12 ⁇ are respectively mapped on the polarization channel characterized by A 2 for transmission.
  • the code rate of the second data transmission is determined to be R/2, because when there is no feedback information of the receiving device, it is desirable to divide the code rate of each transmission: such as the initial transmission rate R, the first Take half of the information bit when retransmitting After the retransmission, the code rate of the two transmissions is R/2; in the case of the same information quality of the two transmissions, the strategy of equal division of the code rate can ensure that the correct rate of the two transmission decodings is the same. , will not be due to one of the code rate is too high, resulting in decoding failure. Similarly, the bit rate of each subsequent data transmission can be determined.
  • the current polarization channel can be ranked by reliability, and the reliability is ranked highest.
  • the sequence number corresponding to the four polarization channels is taken as the set A 3 , and further determined in the first data transmission, the mapping is Information bits u 5 , u 6 on the channel, and in the second data transmission, mapped The information bits u 11 , u 12 on the channel finally map the information bit sequence ⁇ u 5 , u 6 , u 11 , u 12 ⁇ to the polarized channel represented by A 3 for transmission.
  • the current polarization channel can be ranked by reliability, and the three poles with the highest reliability ranking are ranked.
  • the sequence number corresponding to the channel is taken as the set A 4 , and further determined in the first data transmission, the mapping is Information bit u 4 on the channel, and in the second data transmission, mapped in Information bit u 10 on the channel, in the third data transmission, mapped in The information bits u 12 on the channel finally map the information bit sequences ⁇ u 4 , u 10 , u 12 ⁇ to the polarized channels represented by A4 for transmission.
  • the information bits of the IF retransmission may be determined by constructing a nested nesting sequence, as shown in FIG. 5, because the information bit channel set selected by the low code rate (A n+1 ) It is a subset of the high code rate (A n ), which can be constructed from a low code rate to determine the corresponding information bit channel set; then gradually increase the code rate and expand the channel bit channel set.
  • the low bit rate information bit channel is always at the forefront of the nesting sequence.
  • the information bit channel set of the 4th transmission structure is A1, A2, A3, A4, respectively, which satisfy Therefore, a Nesting sequence can be constructed, sorted into [A4, A3 ⁇ A4, A2 ⁇ A3, A1 ⁇ A2], and the information bit channel set is selected directly from the sequence to the following:
  • the method further includes: following the first n data transmissions, the jth The actual code rate of the secondary data transmission, determining the number of coded bits selected to participate in the (n+1)th data transmission from the coded bit sequence of the jth data transmission, wherein the code rate of the jth data transmission The higher the proportion of the coded bits selected from the coded bit sequence of the jth data transmission, the larger the proportion of the coded bit sequence of the (n+1)th data transmission, the jth data transmission The actual code rate is the code rate after the retransmission of information bits is removed, 1 ⁇ j ⁇ n.
  • the number of coded bits in each IF transmission selected in the CC mode can be allocated according to the code rate at the time of IF transmission to provide as much matching energy gain as possible for each IF transmission. If the code rates of the IF transmissions are equal, the CC selects equal coded bit retransmissions from each IF transmission to provide the same incremental gain for each IF; Each IF transmission is different according to the channel rate information and the like, and a high code rate IF decoding requires a higher energy, and a higher code rate IF transmission selects more coded bits in the CC. For example, after an IF retransmission, the initial transmission and retransmission code rates are 1/2 and 1/4, the number of coding bits is 12, and the second retransmission uses CC mode.
  • both of the IF mode transmissions are re-encoded coded bits, and the CC mode transmits the partial coded output bits transmitted in all previous IF transmission modes.
  • 6-1 indicates that the IF mode is from the initial transmission to the third retransmission; in Figure 6, 6-2 indicates that the first three data transmissions are in the equal rate IF mode, then in the fourth data transmission, the CC mode.
  • the coded bit sequence is selected, it is possible to equally select a number of the same number of bits from the information bits transmitted in the previous IF modes as retransmission bits.
  • 6-3 in Fig. 6 indicates that the first two data transmissions are in the equal rate IF mode, the third transmission uses the CC mode, and the fourth uses the CC mode.
  • 6-4 in Figure 6 indicates that all retransmissions are in CC mode. In CC mode, each retransmission does not require re-encoding, that is, the coded bits are transmitted the same each time.
  • FIG. 7 is a schematic diagram of an IF mode encoder according to an embodiment of the present application.
  • M is the maximum number of IF transmissions (including the initial transmission), which is determined by the retransmission mode algorithm in the foregoing embodiment, and details are not described herein again.
  • each re-encoded bit includes a partial information bit in all previous IF transmissions, and the selected information bit is a bit with low reliability of the Polar code polarization channel reconstructed according to the current retransmission code rate.
  • the encoded bits are sent to the coded bit buffer in accordance with the rules at the time of encoding.
  • RV0-RV3 denotes a transmission version indicating the starting point of bit selection for each transmission.
  • the data transmission situation of three transmissions is shown. If the current transmission is in the IF mode, the coded bits except the preset puncturing bits are sequentially sequentially excluded from the corresponding coded bits until the required number of transmission bits is reached. If the current transmission is in CC mode, the coded bits are selected in the encoder order from the outputs of the respective encoders until the number of bits required to be transmitted; in general, starting from the bit following the last bit of the previous CC selection.
  • the coded bits in the initial transmission and each retransmission can be placed in the buffer area, and each time the retransmission is performed, the transmission is directly selected from the coded bit buffer.
  • the bit regardless of the CC mode or the IF mode retransmission, is the same as the coding strategy described in the foregoing embodiment, and details are not described herein again.
  • FIG. 9 is a schematic flowchart of a method for retransmitting a Polar code according to another embodiment of the present application.
  • the sending device of the method may be a network device or a user device. As shown in FIG. 9, the method 900 includes:
  • Step 910 Determine, according to coding parameters of the first n data transmissions, a target retransmission mode of the (n+1)th data transmission, where n is a positive integer, and the coding parameter includes at least one of a number of information bits and a code rate. ;
  • Step 920 Decode data of the (n+1)th data transmission according to a target retransmission mode.
  • the embodiment of the present application can determine the transmission mode of the n+1th data transmission according to the coding parameters of the previous n data transmissions, and thus can fully implement the coding gain.
  • determining a target retransmission mode of the n+1th data transmission according to the coding parameters and the transmission resource size of the first n data transmission including: when the n+1th data needs to be performed.
  • the n+1th data retransmission uses the incremental freeze IF mode or the Chase merge CC mode.
  • the method provided by the embodiment of the present application can determine, by using at least one of the number of information bits and the code rate in the coded bit sequence of the last data transmission, that the retransmission mode used in the retransmission is the IF mode or the CC mode.
  • the code gain can be fully utilized in the IF mode while avoiding negative coding gain.
  • the method further includes: the receiving device sending, according to a decoding result of the encoded bit sequence of the nth data transmission, feedback information to the sending device, to facilitate The transmitting device determines the number of coded bits and the number of information bits of the n+1th data transmission according to the feedback information.
  • the feedback information includes one of the following information: channel state information of the nth data transmission; the n+1th data transmission desired modulation and coding scheme MCS; The n+1th data transmission transmits a desired transmission resource size.
  • the receiving device determines, according to the number of information bits of the nth data transmission, and the code rate of the nth data transmission, the (n+1)th data.
  • the retransmission adopts an incremental freeze IF mode or a Chase merge CC mode, including: when the code rate of the nth data transmission is greater than or equal to a preset code rate threshold, and in the nth data transmission When the number of information bits is greater than or equal to the preset number of thresholds, determining that the transmitting device uses the IF mode for the n+1th data transmission; when the code rate of the nth data transmission is less than the preset rate threshold The value, or the number of information bits in the nth data transmission is less than a preset number of thresholds, determining that the transmitting device performs the (n+1)th data transmission in the CC mode.
  • a method for retransmission of a Polar code according to an embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 9.
  • a device for retransmission of a Polar code according to an embodiment of the present application will be described in detail with reference to FIG. 10 to FIG. .
  • FIG. 10 is a schematic block diagram of a transmitting device according to an embodiment of the present application. As shown in FIG. 10, the sending device includes:
  • the determining unit 1001 determines, according to the encoding parameters of the first n data transmissions, a target retransmission mode of the (n+1)th data transmission, where n is a positive integer, and the encoding parameter includes at least one of a number of information bits and a code rate.
  • n is a positive integer
  • the encoding parameter includes at least one of a number of information bits and a code rate.
  • the transmitting unit 1002 performs the (n+1)th data transmission by using the target retransmission mode.
  • the determining unit 1001 is specifically configured to: when the n+1th data transmission needs to be performed, according to the number of information bits of the nth data transmission and the At least one of the code rates of the nth data transmission determines whether the incremental freeze IF mode or the Chase merge CC mode is used as the target retransmission mode of the (n+1)th data transmission.
  • the sending device further includes: a receiving unit, where the receiving unit is configured to receive feedback information of the nth data transmission; and the determining unit is configured to use, according to the feedback information, , determining the encoding parameters of the n+1th data transmission.
  • the determining unit 1001 is further configured to: determine, according to channel state information of the nth data transmission, a code rate and information bits of the (n+1)th data transmission. number.
  • the sending unit 1002 is specifically configured to: determine, according to the modulation coding scheme MCS and/or the transmission resource size in the feedback information, at least two of the following parameters: the nth The code rate of +1 data transmission, the number of coded bits, and the number of information bits.
  • the determining unit 1001 is further configured to: when a code rate of the nth data transmission is greater than or equal to a preset rate threshold, and the nth data transmission When the number of information bits in the number is greater than or equal to the preset number of thresholds, the ith mode is used for the n+1th data transmission; when the code rate of the nth data transmission is less than the preset rate threshold, or When the number of information bits in the nth data transmission is less than a preset number of thresholds, the n+1th data transmission is performed in the CC mode.
  • the determining unit 1001 is further configured to: according to the code rate and the constructed signal to noise ratio of the (n+1)th data transmission, at least one pole ranked highest by reliability
  • the sequence number corresponding to the channel is determined as the set A n+1 of the sequence number of the polarized channel of the (n+1)th data transmission; and the jth data transmission is performed by the set Information bits transmitted on the characterized polarized channel, as information bits of the n+1th data transmission, wherein A n is a set of serial numbers of polarized channels of the nth data transmission determined according to a code rate and a constructed signal to noise ratio at the time of the nth data transmission, and information transmitted during the nth data transmission The bits are transmitted using the polarized channel characterized by the A n , where 1 ⁇ j ⁇ n.
  • the determining unit 1001 is further configured to: determine, according to an actual code rate of the jth data transmission in the first n data transmissions, an encoding from the jth data transmission. Selecting, in the bit sequence, the number of coded bits participating in the (n+1)th data transmission, wherein the higher the code rate of the jth data transmission, the code selected from the coded bit sequence of the jth data transmission The larger the proportion of the number of bits in the coded bit sequence of the n+1th data transmission, the actual code rate of the jth data transmission is the code rate after the retransmission information bit is removed, 1 ⁇ j ⁇ n.
  • the transmitting device 1000 herein is embodied in the form of a functional unit.
  • the term "unit” herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a proprietary processor, or a group). Processors, etc.) and memory, merge logic, and other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • the device 1000 may be specifically the first network device in the foregoing embodiment, and the device 1000 may be used to perform various processes corresponding to the first network device in the foregoing method embodiment. Steps, to avoid repetition, will not be repeated here.
  • FIG. 11 is a schematic block diagram of a receiving device according to another embodiment of the present application. As shown in FIG. 11, the receiving device 1100 includes:
  • a determining unit 1101 configured to determine, according to an encoding parameter of the first n data transmissions, a target retransmission mode of the (n+1)th data transmission, where n is a positive integer, and the encoding parameter includes the number of information bits. And at least one of the code rates.
  • the decoding unit 1102 is configured to decode the data of the n+1 data transmission according to the target retransmission mode.
  • the determining unit 1101 is configured to determine, according to the number of information bits in the coded bit sequence of the nth data transmission, when the n+1th data transmission needs to be performed, a code rate of the nth data transmission, determining that the (n+1)th data retransmission adopts an incremental freeze IF mode or a Chase merge CC mode, where n is a positive integer; the decoding unit 1102 is configured to perform according to the The retransmission mode adopted by the n+1th data transmission is decoded.
  • the receiving device further includes: a sending unit, where the sending unit is configured to send, according to a decoding result of the encoded bit sequence of the nth data transmission, to the sending device Sending feedback information, so that the sending device determines the number of coded bits and the number of information bits of the n+1th data transmission according to the feedback information.
  • the feedback information includes one of the following information: channel state information of the nth data transmission; and a desired modulation and coding scheme MCS of the (n+1)th data transmission.
  • the n+1th data transmission is expected to be a transmission resource size.
  • the determining unit 1102 is specifically configured to: when a code rate of the nth data transmission is greater than or equal to a preset rate threshold, and in the nth data transmission When the number of information bits is greater than or equal to the preset number of thresholds, determining that the transmitting device uses the IF mode for the n+1th data transmission; when the code rate of the nth data transmission is less than the preset rate threshold The value, or the number of information bits in the nth data transmission is less than a preset number of thresholds, determining that the transmitting device performs the (n+1)th data transmission in the CC mode.
  • the apparatus 1100 herein is embodied in the form of a functional unit.
  • the term "unit” herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a proprietary processor, or a group). Processors, etc.) and memory, merge logic, and other suitable components that support the described functionality.
  • the device 1100 may be specifically the second network device in the foregoing embodiment, and the device 1100 may be used to perform various processes corresponding to the second network device in the foregoing method embodiment. Steps, to avoid repetition, will not be repeated here.
  • FIG. 12 shows a transmitting apparatus 1200 for Polar code transmission provided by an embodiment of the present application.
  • the apparatus 1200 includes a processor 1210, a transceiver 1220, a memory 1230, and a bus system 1240.
  • the processor 1210, the transceiver 1220 and the memory 1230 are connected by a bus system 1240 for storing instructions.
  • the processor 1210 is configured to execute instructions stored by the memory 1230 to control the transceiver 1220 to send signals and receive. signal.
  • Memory 1230 can include read only memory and random access memory and provides instructions and data to processor 1210.
  • the various components of the transmitting device 1200 are coupled together by a bus system 1240 that includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • bus system 1240 includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • various buses are labeled as bus system 1240 in the figure.
  • the transmitting device 1200 can be the base station 102 shown in FIG.
  • the sending device 1200 can implement the corresponding processes in the foregoing method embodiments. To avoid repetition, details are not described herein again.
  • the processor 1210 may be a central processing unit (CPU), and the processor 1210 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • Memory 1230 can include read only memory and random access memory and provides instructions and data to processor 11. A portion of the memory 1230 can also include a non-volatile random access memory. For example, the memory 1230 can also store information of the device type.
  • the bus system 1240 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 1240 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1210 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1230, and the processor 12101 reads the information in the memory 1230 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • FIG. 13 shows another apparatus 1300 for managing network slices provided by an embodiment of the present application.
  • the device 1300 A processor 1310, a transceiver 1320, a memory 1330, and a bus system 1340 are included.
  • the processor 1310, the transceiver 1320 and the memory 1330 are connected by a bus system 1340 for storing instructions, and the processor 1310 is configured to execute instructions stored by the memory 1330 to control the transceiver 1320 to send signals and receive. signal.
  • Memory 1330 can include read only memory and random access memory and provides instructions and data to processor 1310.
  • the various components of the transmitting device 1300 are coupled together by a bus system 1340, which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 1340 in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • various buses are labeled as bus system 1340 in the figure.
  • the transmitting device 1300 can be the base station 102 shown in FIG.
  • the sending device 1300 can implement the corresponding processes in the foregoing method embodiments. To avoid repetition, details are not described herein again.
  • the processor 1310 may be a central processing unit (CPU), and the processor 1310 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • Memory 1330 can include read only memory and random access memory and provides instructions and data to processor 11. A portion of the memory 1330 can also include a non-volatile random access memory. For example, the memory 1330 can also store information of the device type.
  • the bus system 1340 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 1340 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1310 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1330, and the processor 1310 reads the information in the memory 1330 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • FIG. 14 is a schematic diagram of transmission performance of a method for retransmitting a Polar code according to an embodiment of the present application.
  • the horizontal coordinate is the signal-to-noise ratio
  • the ordinate is the error block rate.
  • the simulation curve of the four transmissions is shown in the figure, and it can be seen that the solution of the present application is compared.
  • the existing retransmission scheme of the Polar code can obtain a larger coding gain.
  • FIG. 15 is a schematic diagram of transmission performance of a method for retransmitting a Polar code according to another embodiment of the present application.
  • the horizontal coordinate is the signal to noise ratio, and the ordinate is the error block rate.
  • the simulation curve of the four transmissions is shown in the figure. A larger coding gain can be obtained than a retransmission scheme of the existing Turbo code.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically programmable ROM
  • EEPly erasable programmable ROM registers
  • hard disk removable disk
  • CD-ROM computer-readable media

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种重传Polar码(即极化码)的方法,其特征在于,包括:根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,其中,n为正整数,所述编码参数包括信息比特数目和码率中的至少一种;采用所述目标重传模式进行所述第n+1次数据传输。因此,本申请实施例能够根据前n次数据传输的编码参数,确定第n+1次数据传输的传输模式,因此能够有利于充分实现编码增益,提高系统吞吐率。

Description

一种重传极化码的方法及其发送设备、接收设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种极化码的重传方法及其发送设备、接收设备。
背景技术
通信系统通常采用信道编码提高数据传输的可靠性,保证通信的质量。Polar码(即极化码)是可以取得香农容量且具有低编译码复杂度的编码方式。Polar码是一种线性块码。其生成矩阵为GN.,其编码过程为
Figure PCTCN2017090896-appb-000001
其中,
Figure PCTCN2017090896-appb-000002
是一个二进制的行矢量,
Figure PCTCN2017090896-appb-000003
码长N=2n,n≥0。
Figure PCTCN2017090896-appb-000004
BN是一个N×N转置矩阵,例如比特反转(bit reversal)矩阵。
Figure PCTCN2017090896-appb-000005
是F2的克罗内克幂(Kronecker power),定义为
Figure PCTCN2017090896-appb-000006
Polar码的编码过程中,
Figure PCTCN2017090896-appb-000007
中的一部分比特用来携带信息,称为信息比特信道,这些信息比特信道的序号的集合记作A;另外的一部分比特置为收发端预先约定的固定值,称之为固定比特,其序号的集合用A的补集Ac表示。不失一般性,这些固定比特通常被设为0。实际上,只需要收发端预先约定,固定比特序列可以被任意设置。从而,Polar码的编码比特序列可通过如下方法得到:
Figure PCTCN2017090896-appb-000008
这里
Figure PCTCN2017090896-appb-000009
Figure PCTCN2017090896-appb-000010
中的信息比特信道集合,
Figure PCTCN2017090896-appb-000011
为长度K的行矢量,即
Figure PCTCN2017090896-appb-000012
|·|表示集合中元素的个数,即K表示集合A中元素的个数,也表示待编码信息比特的数目,也
Figure PCTCN2017090896-appb-000013
是矩阵GN中由集合A中的索引对应的那些行得到的子矩阵,GN是一个K×N的矩阵。集合A的选取决定了Polar码的性能。
在对系统延时不敏感的通信应用中,混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)是一种常用的用以提高系统吞吐率的传输方法。在传输某一个信息块时,发送端将信息块编码后送入信道,如果接收端对接收到的信号进行译码后发现传输成功,(此时,接收端会发送一个正确确认(Acknowledgement,ACK)消息给发送端,从而完成对该信息块的传输;如果接收端对接收到的信号进行译码后发现传输失败(比如无法通过循环冗余校验),那么接收端就会通过一个反馈链路传输一个失败确认(Negative-Acknowledgement,NACK)消息给发送端,发送端就会重传该信息块,或者,在超过一定时间没有接收到由接收端发送的ACK反馈时,发送端也会进行信息块的重传。这个过程会一直持续到接收端正确译码,为了获得尽可能大的链路吞吐率,接收端会将所有接收信号都缓存起来,并和新接收到的信号一起进行译码。
发明内容
本申请实施例提供一种Polar码(即极化码)重传的方法,能够充分实现编码增益,提高系统吞吐。
第一方面,提供一种Polar码(即极化码)的重传方法,包括:根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,其中,n为正整数;采用所述目 标重传模式和编码参数进行所述第n+1次数据传输。
应理解,编码参数至少包括下列中的至少一种:编码比特的数目、信息比特数目、码率。
因此,本申请实施例能够根据前n次数据传输的编码参数,确定第n+1次数据传输的传输模式,因此能够有利于充分实现编码增益,提高系统吞吐率。
结合第一方面,在第一方面的第一种可能的实现方式中,所述根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,包括:
根据所述前n次数据传输的编码参数和传输资源,确定所述第n+1次数据传输的目标重传模式。
结合第一方面及其上述实现方式,在第一方面的第二种可能的实现方式中,所述方法还包括:
根据所述前n次数据传输的编码参数和传输资源,确定所述第n+1次数据传输的编码参数。
结合第一方面及其上述实现方式,在第一方面的第三种可能的实现方式中,所述根据前n次数据传输的编码参数和传输资源大小,确定第n+1次数据传输的目标重传模式,包括:需要进行第n+1次数据传输时,根据第n次数据传输的信息比特的数目和所述第n次数据传输的码率中的至少一种信息,确定采用增量冻结IF模式或Chase合并CC模式作为所述第n+1次数据传输的目标重传模式。
因此,本申请实施例提供的方法,能够通过上一次数据传输的信息比特的数目以及码率中的至少一种信息,判断重传时使用的重传模式为IF模式或CC模式,能够充分利用IF模式的编码增益,同时尽量避免负的编码增益产生。
结合第一方面及其上述实现方式,在第一方面的第四种可能的实现方式中,当所述发送设备确定采用IF模式进行所述第n+1次数据传输时,所述方法还包括:接收由接收设备发送的反馈信息;根据所述反馈信息,确定第n+1次数据传输的编码参数。
因此,发送设备能够利用接收设备发送的反馈信息,调整码率、码长或信息比特的数目等编码参数,从而能够实现重传的自适应,提高系统吞吐。
结合第一方面及其上述实现方式,在第一方面的第五种可能的实现方式中,所述反馈信息为所述第n次数据传输的信道状态信息,根据所述反馈信息,确定第n+1次数据传输的编码参数,包括:根据所述第n次数据传输的信道状态信息,确定所述第n+1次数据传输的码率和信息比特的数目。
因此,通过接收设备发送的反馈信息,能够确定如要进行IF模式重传时的码率和信息比特数目。
结合第一方面及其上述实现方式,在第一方面的第六种可能的实现方式中,所述反馈信息包括期望的调制编码方案MCS和/或期望的传输资源大小,所述发送设备根据所述反馈信息,确定第n+1次数据传输的编码参数,包括:根据所述反馈信息中调制编码方案MCS和/或传输资源大小,确定下列参数中的至少两种:所述第n+1次数据传输的码率、编码比特的数目和信息比特的数目。
结合第一方面及其上述实现方式,在第一方面的第七种可能的实现方式中,在进行第n+1次数据传输时,所述发送设备根据所述第n次数据传输的编码比特序列中信息比特的数目或编码比特的数目,以及所述第n次数据传输的码率,确定采用增量冻结IF模 式或Chase合并CC模式,包括:当所述第n次数据传输的码率大于或等于预设码率门限值,并且所述第n次数据传输中的信息比特的数目大于或等于预设数量门限值时,采用IF模式进行第n+1次数据传输;当所述第n次数据传输的码率小于预设码率门限值,或者所述第n次数据传输中的信息比特的数目小于预设数量门限值时,采用CC模式进行第n+1次数据传输。
结合第一方面及其上述实现方式,在第一方面的第八种可能的实现方式中,当采用IF模式进行所述第n+1次数据传输,并且从第1次到第n+1次数据传输的码长不变时,所述方法还包括:根据所述第n+1次数据传输时的码率和构造信噪比,将按可靠度排序最高的至少一个极化信道对应的序号,确定为所述第n+1次数据传输的极化信道的序号的集合An+1;将第j次数据传输中,由集合
Figure PCTCN2017090896-appb-000014
表征的极化信道上传输的信息比特,作为所述第n+1次数据传输时的信息比特,其中,
Figure PCTCN2017090896-appb-000015
Figure PCTCN2017090896-appb-000016
An为根据所述第n次数据传输时的码率和构造信噪比,确定的所述第n次数据传输的极化信道的序号的集合,所述第n次数据传输时传输的信息比特利用所述An所表征的极化信道进行传输的比特,其中1≤j≤n。
其中,构造信噪比为在特定码率下用于Polar码构造的信噪比。
应理解,极化信道的序号的集合An+1也可以按照除可靠度排序以外的其它方式获得,本申请不作限定。
因此,进行IF模式重传时,通过选择前面所有传输中最不可靠的信息比特进行重传,以增强这部分最不可靠的信息比特的可靠度,提高译码的成功率。
结合第一方面及其上述实现方式,在第一方面的第九种可能的实现方式中,当前n次数据传输采用IF模式,且采用CC模式进行第n+1次数据传输时,所述方法还包括:按照所述前n次数据传输中第j次数据传输的实际码率,确定从所述第j次数据传输的编码比特序列中选择参与所述第n+1次数据传输的编码比特数量,其中,所述第j次数据传输的码率越高,从所述第j次数据传输的编码比特序列中选择的编码比特的数量在所述第n+1次数据传输的编码比特序列中占的比例越大,所述第j次数据传输的实际码率为去掉重传信息比特后的码率,1≤j≤n。
因此,CC模式中选择的各次IF传输中编码比特数目可以根据IF传输时的码率进行分配,以便为各次IF传输提供尽可能相匹配的能量增益
第二方面,提供了一种Polar码的重传方法,包括:根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,其中,n为正整数;根据所述目标重传模式对所述第n+1次数据传输的数据进行译码。
因此,本申请实施例能够根据前n次数据传输的编码参数,确定第n+1次数据传输的传输模式,因此能够充分实现编码增益。
结合第二方面,在第二方面的第一种可能的实现方式中,所述根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,包括:接收设备确定第n次数据传输的编码比特序列;所述接收设备需要进行第n+1次数据传输时,根据所述第n次数据传输的编码比特序列中信息比特的数目和所述第n次数据传输的码率,确定所述第n+1次数据重传采用的为增量冻结IF模式或Chase合并CC模式。
因此,本申请实施例提供的方法,能够通过上一次数据传输的编码比特序列中信息比特的数目以及码率中的至少一种信息,判断重传时使用的重传模式为IF模式或CC模 式,能够充分利用IF模式的编码增益,同时尽量避免负的编码增益产生。
结合第二方面及其上述实现方式,在第二方面的第二种可能的实现方式中,所述方法还包括:所述接收设备根据对所述第n次数据传输的编码比特序列的译码结果,向所述发送设备发送反馈信息,以便于所述发送设备根据所述反馈信息,确定第n+1次数据传输的编码比特的数目和信息比特的数目。
结合第二方面及其上式实现方式,在第二方面的第三种可能的实现方式中,所述反馈信息包括下列信息中的一种:所述第n次数据传输的信道状态信息;所述第n+1次数据传输期望的调制编码方案MCS;所述第n+1次数据传输期望的传输资源大小。
结合第二方面及其上式实现方式,在第二方面的第四种可能的实现方式中,所述接收设备根据所述第n次数据传输的信息比特的数目,以及所述第n次数据传输的码率,确定所述第n+1次数据重传采用的为增量冻结IF模式或Chase合并CC模式,包括:当所述第n次数据传输的码率大于或等于预设码率门限值,并且所述第n次数据传输中的信息比特的数目大于或等于预设数量门限值时,确定所述发送设备采用IF模式进行第n+1次数据传输;当所述第n次数据传输的码率小于预设码率门限值,或所述第n次数据传输中的信息比特的数目小于预设数量门限值时,确定所述发送设备采用CC模式进行第n+1次数据传输。
第三方面,提供了一种发送设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该发送设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种接收设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该接收设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种发送装置,该装置包括:收发器、存储器、处理器和总线系统。其中,该收发器、该存储器和该处理器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制该收发器接收信号和/或发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种用接收装置,该装置包括:收发器、存储器、处理器和总线系统。其中,该收发器、该存储器和该处理器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制该收发器接收信号和/或发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
附图说明
下面将对本申请实施例中所需要使用的附图作简单地介绍。
图1是本申请实施例应用的场景的示意图。
图2是本申请一个实施例的重传Polar码的方法的示意性流程图。
图3是本申请另一个实施例的重传Polar码的方法的示意性流程图。
图4是本申请另一个实施例的重传Polar码的方法的示意性流程图。
图5是本申请另一个实施例的信息比特选择的示意图。
图6是本申请另一个实施例的重传Polar码的方法的示意性流程图。
图7为本申请一个实施例IF模式编码器的示意图。
图8为本申请一个实施例的传输编码的示意图。
图9是本申请另一实施例的重传Polar码的方法的示意性流程图。
图10为本申请一个实施例的发送设备的示意性框图。
图11为本申请另一个实施例的接收设备的示意性框图。
图12为本申请一个实施例的发送装置的示意性框图。
图13为本申请另一个实施例的接收装置的示意性框图。
图14为本申请一个实施例的重传Polar码的方法的传输性能的示意图。
图15为本申请另一实施例的重传Polar码的方法的传输性能的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图1是根据本文所述的各个实施例的无线通信系统的示图。
现在参照附图描述多个实施例,其中用相同的附图标记指示本文中的相同元件。在下面的描述中,为便于解释,给出了大量具体细节,以便提供对一个或多个实施例的全面理解。然而,很明显,也可以不用这些具体细节来实现所述实施例。在其它例子中,以方框图形式示出公知结构和设备,以便于描述一个或多个实施例。
在本说明书中使用的术语"部件"、"模块"、"系统"等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的一个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
此外,结合接入终端描述了各个实施例。接入终端也可以称为系统、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或UE(User Equipment,用户设备)。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备。此外,结合基站描述了各个实施例。基站可用于与移动设备通信,基站可以是GSM(Global System forMobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code  Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(evolvedNode B,演进型基站),或者中继站或接入点,或者未来5G网络中的基站设备等。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语"制品"涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语"机器可读介质"可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
现在,参照图1,示出根据本文所述的各个实施例的无线通信系统100。无线通信系统100包括基站102,基站102可包括多个天线组。每个天线组可以包括一个或多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。基站102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
基站102可以与一个或多个接入终端(例如接入终端116和接入终端122)通信。然而,可以理解,基站102可以与类似于接入终端116或122的任意数目的接入终端通信。接入终端116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。如图所示,接入终端116与天线112和114通信,其中天线112和114通过前向链路118向接入终端116发送信息,并通过反向链路120从接入终端116接收信息。此外,接入终端122与天线104和106通信,其中天线104和106通过前向链路124向接入终端122发送信息,并通过反向链路126从接入终端122接收信息。在FDD(Frequency Division Duplex,频分双工)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。此外,在TDD(Time Division Duplex,时分双工)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为基站102的扇区。例如,可将天线组设计为与基站102覆盖区域的扇区中的接入终端通信。在基站102通过前向链路118和124分别与接入终端116和122进行通信的过程中,基站102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与基站通过单个天线向它所有的接入终端发送信号的方式相比,在基站102利用波束成形向相关覆盖区域中随机分散的接入终端116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,基站102、接入终端116或接入终端122可以是无线通信发送设备和/或无线通信接收设备。当发送数据时,无线通信发送设备可对数据进行编码以用于传输。具体地,无线通信发送设备可获取(例如生成、从其它通信装置接收、或在存储器中保 存等)要通过信道发送至无线通信接收设备的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
图2是本申请一个实施例的Polar码的重传方法的示意性流程图,该方法的执行主体发送设备可以为网络设备,也可以为用户设备。如图2所示,该方法200包括:
步骤210,根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,其中,n为正整数,所述编码参数包括信息比特数目和码率中的至少一种;
步骤220,采用目标重传模式进行第n+1次数据传输。
可选地,根据前n次数据传输的编码参数和传输资源的大小,能够确定第n+1次数据传输的目标重传模式;也能够根据前n次数据传输的编码参数和传输资源大小,确定第n+1次数据传输的编码参数。
可选地,根据前n次数据传输的编码参数和传输资源的大小,能够确定第n+1次数据传输的编码参数。
应理解,编码参数包括下列参数中的至少一种:码长(也可以称之为编码比特的数目)、信息比特的数目、码率。
还应理解,传输资源大小指的是数据传输中能够使用的资源多少,因此也就体现了能够传输的码长大小。例如,传输资源在LTE中是子载波个数和符号数的乘积,即资源元素(Resource Element,RE)RE的个数。RE的个数乘以调制阶数即是可以传输的编码比特个数,也即码长。码长乘以码率即是信息比特个数。当传输资源(OFDM子载波个数)在HARQ过程中不变时,例如为Z,调制阶数为M,则可以传输的编码比特数为N=Z*M。
因此,本申请实施例能够根据前n次数据传输的编码参数,确定第n+1次数据传输的传输模式,因此能够充分实现编码增益,提高系统吞吐率。
可选地,作为本申请一个实施例,发送设备需要进行第n+1次数据传输时,确定第n次数据传输的信息比特的数目和第n次数据传输的码率中的至少一种信息,确定采用增量冻结IF模式或Chase合并CC模式作为第n+1次数据传输的目标重传模式,其中,n正整数。
上述发送设备需要进行第n+1次数据传输指的是,当进行第n次数据传输后,接收设备对n次传输的数据译码失败后,发送设备需要进行第n+1次数据传输,具体地,发送设备可以根据接收到的失败确认(Negative-Acknowledgement,NACK)信息,确认接收端译码失败。
应理解,当n为1时,指的是初始传输。当初传时,发送设备如果为用户设备,用户设备可以通过接收基站的调度,确定传输的码率以及信息比特数目等信息,例如通过接收基站发送的指示信息,该指示信息可以包括编码调制方案(Modulation and Coding Scheme,MCS)和资源块(Resource Block,RB)数目,发送设备根据该指示信息确定初传的码率、编码比特的数目以及信息比特的数目。其它没有调度的情况下,发送设备根据能够使用的传输资源和约定的码率和调制阶数等信息,获得上述参数。
在步骤210中,发送设备可以根据第n次数据传输中信息比特的数目和码率中的至少一种信息是否满足一定阈值条件,确定采用增量冻结(Incremental Freezing,IF)模式进行第n+1次的数据传输或者采用Chase合并(Chase Combing,CC)模式进行第n+1次的数据传输。该阈值条件的设立标准为,在满足一定阈值条件时,采用IF模式进行数 据重传会获得正的编码增益;在满足另外的预设条件时,采用IF模式可能不能够带来正的编码增益,这时采用CC模式进数据的重传,虽然不能够带来编码增益,却能够带来能量的增益。
具体地,当第n次数据传输的码率大于或等于预设门限值,并且第n次数据传输中的信息比特数目大于或等于预设数量门限值时,采用IF模式进行第n+1次数据传输,在其它情况下,则采用CC模式进行数据传输。
具体地,如果采用IF模式作为目标重传模式进行重传时,接收设备根据将接收到的数据进行串行冻结译码,即先译码最后一次收到的编码比特序列,将译码得到的信息比特序列作为前面传输的冻结比特,译码前一次收到的编码比特序列,直到第一次接收到的编码比特序列译码成功。
然而,在没有译码成功时,一般而言,随着重传次数增加,码率逐渐下降,IF模式的编码增益也随之降低,在很低码率时甚至为负。并且,为了达到优于其他编码方案的译码性能,每次重传需要新增CRC,导致性能损失,特别是在信息比特较少时这种性能损失越来越严重。
此时,判断需要采用CC模式重传作为目标重传模式时,发送设备重传已经发送的编码比特序列,接收端首先将接收到的相同的编码比特序列进行相加,即软合并,然后进行译码。随着重传次数的增加,合并的接收信号能量逐渐增强,译码性能因此能够得到增强。
因此,本申请实施例提供的方法,能够通过上一次数据传输的编码比特序列中信息比特的数目以及码率中的至少一种信息,判断重传时使用的重传模式为IF模式或CC模式,能够充分利用IF模式的编码增益,同时尽量避免负的编码增益产生。
可选地,作为本申请一个实施例,当发送设备确定采用IF模式进行第n+1次数据传输时,上述方法还包括:发送设备接收第n次数据传输的反馈信息;发送设备根据反馈信息,确定第n+1次数据传输的编码参数。
也就是说,在进行数据重传的时候,能够根据上次数据传输经历的信道质量,确定码长、重传码率或者信息比特的数量。其中,反馈信息可以包括表征信道状态的信道状态信息(Channel State Information,CSI)、信干噪比(Signal to Interference plus Noise Ratio;SINR),或者长期演进(Long Term Evolution;LTE)中的信道质量指示(Channel quality indicator,CQI);也可以包括接收设备直接发送的码率大小;或者调制编码方案(MCS)和传输资源大小等;编码参数包括码长、码率、信息比特数量中的一个或多个参数。
应理解,编码比特的数目即码长,在本申请实施例中上述两个概念可以相互替换,还应理解,由码长和码率可以确定信息比特数目,由码长和信息比特数目也可以确定码率,只需要其中两个参数即可推知第三个参数。
应理解,本申请不限于此,其它能够用于指示发送设备确定编码参数的信息都落入本申请的范围。
因此,发送设备能够利用接收设备发送的反馈信息,调整码率、码长或信息比特的数目等编码参数,从而能够实现重传的自适应。
可选地,作为本申请一个实施例,反馈信息为第n次数据传输的信道状态信息,发送设备根据反馈信息,确定第n+1次数据传输的编码参数,包括:根据第n次数据传输的信道状态信息,确定所述第n+1次数据传输的码率和所述信息比特的数目。
具体地,信道状态信息可以包括CQI或SINR,以CQI为例,CQI与码率之间存在一个映射表,即通过CQI可以确定码率。
也就是说,在接收的反馈信息中能够确定上一次传输中信道实际能够容纳的码率,而在传输资源不变的情况下,能够根据上一次传输中信道实际能够提供的码率,确定本次IF模式重传的码率;进一步地,由于传输资源不变,因此码长也不变,因此可以通过码率和码长确定本次重传的信息比特数目。
如图3所示,第一次数据传输为IF模式时(也就是初传时),发送设备以码率R进行Polar码编码,发送K个信息比特,编码比特的个数为N,则R=K/N,或者K=N*R。
若接收到接收设备的译码失败消息,则进行第二次数据传输,例如,接收对端发送的反馈信息CSI,确定第一次数据传输时信道实际能够容纳的码率为R1,并且确定第二次数据传输为IF模式,第一次数据传输中应该传输的信息比特为K/R*R1,剩余的N*(R-R1)=K*(1-R1/R)比特应该在重传时传输,也就是重传的码率为N*(R-R1)/N=R-R1。
若第二次数据传输失败后,则需要进行第三次数据传输,确定第二次数据传输时信道实际能够容纳的码率为R2,并且确定第三次数据传输为IF模式,第三次数据传输中应该选择N*(R-R1-R2)个信息比特进行重传,也就是重传的码率为N*(R-R1-R2)/N=R-R1-R2。
如果需要进行第四次数据传输,同理可以得到第四次重传的码率应该为R-R1-R2-R3,重传的信息比特数目为N*(R-R1-R2-R3)。
因此,通过接收设备发送的反馈信息,能够确定如要进行IF模式重传时的码率和信息比特数目。
可选地,作为本申请一个实施例,反馈信息包括期望的调制编码方案(Modulation and Coding Scheme,MCS)和/或期望的传输资源大小请求,发送设备根据反馈信息,确定第n+1次数据传输的编码参数,包括:根据反馈的MCS和/或传输资源大小,确定以下参数中的至少两个:第n+1次数据传输的码率、编码比特的数目和信息比特的数目。
也就是说,反馈信息中包括发送设备所期望的MCS和/或传输资源大小。
应理解,当反馈信息只包括MCS时,可以根据默认资源大小,确定编码参数,或反馈信息只包括传输资源大小时,可以根据默认的码率等信息,确定编码参数,本申请不作限定。
具体地,MCS是调制和编码方式,包括调制阶数(Modulation order)和码率(CodingRate),传输资源在LTE中是子载波个数和符号数的乘积,即资源元素(Resource Element,RE)RE的个数。RE的个数乘以调制阶数即是可以传输的编码比特个数,也即码长。码长乘以码率即是信息比特个数。当传输资源(OFDM子载波个数)在HARQ过程中不变时,例如为Z,调制阶数为M,则可以传输的编码比特数为N=Z*M。
也就是说,当反馈信息中包括用于第n+1次数据传输的MCS和/或传输资源大小时,发送设备可以根据上述信息确定以下参数中的至少两种:用于第n+1次传输的码率、码长以及信息比特的数目。
可选地,作为本申请一个实施例,需要进行第n+1次数据传输时,发送设备根据第n次数据传输的信息比特的数目,以及第n次数据传输的码率,确定采用增量冻结IF模式或Chase合并CC模式进行第n+1次数据传输,包括:当第n次数据传输的码率大于或等于预设码率门限值,并且第n次数据传输中的信息比特的数目大于或等于预设数量 门限值时,采用IF模式进行第n+1次数据传输;当第n次数据传输的码率小于预设码率门限值,或第n次数据传输中的信息比特的数目小于预设数量门限值时,采用CC模式进行第n+1次数据传输。
例如,重传时的传输模式选择伪代码如下:
IF CodeRate<Threshold_1OR InfomationBitsLength<Threshold_2
ReTransmissionType=CC
ELSE
ReTransmissionType=IF
END
其中,CodeRate指的是码率,InformationBitsLength指的是信息比特的长度,Thredhold_1是预设码率门限值,Threshold_2是信息比特个数门限值,也就是预设数量门限值,由具体的应用场景确定。例如,码率门限可以为1/5,信息比特的个数门限值为300。也就是说,当第n次数据传输的码率小于1/5或第n次数据传输的信息比特的数目小于300时,采用CC模式进行第n+1次数据传输,否则,采用IF模式进行第n+1次数据传输。应理解,上述实施例的数值仅仅是实例性的,本申请不作限定。
可选地,作为本申请一个实施例,当采用IF模式进行第n+1次数据传输,并且从第1次到第n+1次数据传输的码长不变时,上述方法还包括:根据第n+1次数据传输时的码率和构造信噪比,将按可靠度排序最高的至少一个极化信道对应的序号,确定为第n+1次数据传输的极化信道的序号的集合An+1;将第j(j=1,…,n)次数据传输中,由集合
Figure PCTCN2017090896-appb-000017
表征的信道上传输的信息比特,作为所述第n+1次数据传输时的信息比特序列中的元素,其中,
Figure PCTCN2017090896-appb-000018
An为根据所述第n次数据传输时的码率和构造信噪比,确定的第n次数据传输的极化信道的序号的集合,第n次数据传输时传输的信息比特序列中的比特利用An所表征的极化信道进行传输的比特。
因此,进行IF模式重传时,通过选择前面所有传输中最不可靠的信息比特进行重传,以增强这部分最不可靠的信息比特的可靠度,提高译码的成功率。
应理解,从第1次到第n+1次数据传输的码长不变,也就是说在数据重传中的传输资源不变,能够传输的编码比特的数目不变。
具体地,如图4所示,从上至下依次为第一次IF模式的数据传输,第二次IF模式的数据传输,第三次IF模式的数据传输和第四次IF模式的数据传输。
在第一次IF模式的数据传输中,根据第一次数据传输的码率R和构造信噪比,能够将当前的极化信道进行可靠度排序,将可靠度排序最高的12个极化信道对应的序号作为集合A1,在该集合A1表征的12个极化信道上,分别传输了12个信息比特,分别为u1、u2……u12
在第二次IF模式的数据传输中,根据第二次数据传输的码率R/2和构造信噪比,能够将当前的极化信道进行可靠度排序,将可靠度排序最高的6个极化信道对应的序号作为集合A2,并进一步确定在第一次数据传输中,映射在
Figure PCTCN2017090896-appb-000019
信道上的信息比特,也就是{u7,u8,u9,u10,u11,u12}。将信息比特{u7,u8,u9,u10,u11,u12}分别映射在A2表征的极化信道上进行传输。
其中,优选地,确定第二次数据传输的码率为R/2,这是因为在没有接收设备的反馈信息时,希望每次传输的码率均分:如初传码率为R,第一次重传时拿一半信息比特重 传,一次重传后,两次传输的码率均为R/2;在两次传输信息质量一样的情况下,这样码率均分的策略可以保证两次传输译码的正确率是相同的,不会由于其中一个因码率过高导致译码失败。同理,可以确定以后每次数据传输的码率。
同样的,在第三次IF模式的数据传输中,根据第三次数据传输的码率R/3和构造信噪比,能够将当前的极化信道进行可靠度排序,将可靠度排序最高的4个极化信道对应的序号作为集合A3,并进一步确定在第一次数据传输中,映射在
Figure PCTCN2017090896-appb-000020
Figure PCTCN2017090896-appb-000021
信道上的信息比特u5、u6,以及在第二次数据传输中,映射在
Figure PCTCN2017090896-appb-000022
Figure PCTCN2017090896-appb-000023
信道上的信息比特u11、u12,最终将信息比特序列{u5、u6、u11、u12}分别映射在A3所表征的极化信道上进行传输。
在第四次IF模式的数据传输中,根据第四次数据传输的码率R/4和构造信噪比,能够将当前的极化信道进行可靠度排序,将可靠度排序最高的3个极化信道对应的序号作为集合A4,并进一步确定在第一次数据传输中,映射在
Figure PCTCN2017090896-appb-000024
信道上的信息比特u4,以及在第二次数据传输中,映射在
Figure PCTCN2017090896-appb-000025
Figure PCTCN2017090896-appb-000026
信道上的信息比特u10,在第三次数据传输中,映射在
Figure PCTCN2017090896-appb-000027
Figure PCTCN2017090896-appb-000028
信道上的信息比特u12,最终将信息比特序列{u4、u10、u12}分别映射在A4所表征的极化信道上进行传输。
可选地,作为本申请一个实施例,可以通过构造嵌套nesting序列,确定IF重传的信息比特,如图5所示,因为低码率所选择的信息比特信道集合(An+1)是高码率时(An)的子集,可以从低码率开始构造,确定相应的信息比特信道集合;然后逐渐提高码率,扩大信道比特信道集合。这样,低码率的信息比特信道始终位于nesting序列的最前面。在编码时,只需要根据当前码率需求,选择序列最前面的部分作为信息比特信道即可;重传时,只需要选择位于前面传输时序列最后面部分,即信息比特信道的差集的信息比特作为重传信息比特。
以4次传输为例,其中3次重传都采用IF。4次传输构造的信息比特信道集合分别是A1,A2,A3,A4,它们满足
Figure PCTCN2017090896-appb-000029
因此,可以构造一个Nesting序列,排序为[A4,A3\A4,A2\A3,A1\A2],从该序列中直接从前往后选择信息比特信道集合为:
第一次传输:A4∪(A3\A4)∪(A2\A3)∪(A1\A2)=A1
第二次传输:A4∪(A3\A4)∪(A2\A3)=A2
第三次传输:A4∪(A3\A2)=A3
第四次传输:A4
可选地,作为本申请一个实施例,当前n次数据传输采用IF模式,且采用CC模式进行第n+1次数据传输时,上述方法还包括:按照所述前n次数据传输中第j次数据传输的实际码率,确定从所述第j次数据传输的编码比特序列中选择参与所述第n+1次数据传输的编码比特数量,其中,所述第j次数据传输的码率越高,从所述第j次数据传输的编码比特序列中选择的编码比特的数量在所述第n+1次数据传输的编码比特序列中占的比例越大,所述第j次数据传输的实际码率为去掉重传信息比特后的码率,1≤j≤n。
因此,CC模式中选择的各次IF传输中编码比特数目可以根据IF传输时的码率进行分配,以便为各次IF传输提供尽可能相匹配的能量增益。如果各次IF传输的码率相等,则CC从各次IF传输中选择相等的编码比特重传,为各次IF提供相同的增量增益;如果 各次IF传输根据信道状态信息等确定的码率不同,高码率IF译码成功需要较高的能量,则在CC时为高码率IF传输选择较多的编码比特。例如,例如:一次IF重传后,初传和重传码率分别为1/2和1/4,编码比特个数均为12,第二次重传采用CC模式,则CC时分别从初传和第一次IF重传的编码比特中选择12*1/2/(1/2+1/4)=8和12*1/4/(1/2+1/4)=4个编码比特。应理解,上述数值举例仅仅是示例性的,本申请不作限定。
如图6所示,IF模式传输的均是重新编码的编码比特,CC模式传输的是前面所有IF传输模式下传输的部分编码输出比特。
图6中6-1表示从初传到第三次重传均为IF模式;图6中6-2表示前三次数据传输为等码率IF模式,那么在第四次数据传输时,CC模式时选择编码比特序列时,则可以均等的从前面各次IF模式传输的信息比特中选择若干相同数目的比特作为重传比特。图6中6-3表示前两次数据传输为等码率IF模式,第三次传输时采用CC模式和第四次采用CC模式时。图6中6-4表示所有重传,都采用了CC模式,在CC模式下,每次重传不需要重新编码,也就是每次传输的编码比特相同。
图7为本申请一个实施例IF模式编码器的示意图。
如图7所示,M为最大IF传输次数(包括初传),由前述实施例中重传模式算法确定,在此不再赘述。具体地,每次重新编码的比特包含前面所有IF传输中的部分信息比特,选择的信息比特为根据当前重传码率重新构造的Polar码极化信道可靠度低的比特。编码后的比特按照编码时的规则送入编码比特缓存。
编码后,发送端需要从编码比特缓存中选择传输比特,选择过程如图8所示。RV0-RV3表示传输版本,指示各次传输时比特选择的起点。如图示出了三次传输的数据传输情况,如果本次传输为IF模式,则从相应的编码比特中直接顺序除预设打孔比特外的编码比特,直到到达所需传输比特数。如果本次传输为CC模式,则从各编码器的输出中按编码器顺序选择编码比特,直到所需传输比特数;一般来说,从前一次CC选择的最后一个比特之后的比特开始。
也就说说,在不接收反馈信息的情况下,可以提前编码,将初传和每次重传的编码比特放在缓存区中,每次重传的时候,直接从编码比特缓存中选择传输的比特,不论CC模式或者IF模式重传,跟前述实施例中描述的编码策略相同,在此不再赘述。
图9是本申请另一实施例的Polar码的重传方法的示意性流程图,该方法的执行主体发送设备可以为网络设备,也可以为用户设备。如图9所示,该方法900包括:
步骤910,根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,其中,n为正整数,所述编码参数包括信息比特数目和码率中的至少一种;
步骤920,根据目标重传模式对所述第n+1次数据传输的数据进行译码。
因此,本申请实施例能够根据前n次数据传输的编码参数,确定第n+1次数据传输的传输模式,因此能够充分实现编码增益。
可选地,作为本申请一个实施例,根据前n次数据传输的编码参数和传输资源大小,确定第n+1次数据传输的目标重传模式,包括:当需要进行第n+1次数据传输时,根据第n次数据传输的信息比特的数目和第n次数据传输的码率,确定第n+1次数据重传采用的为增量冻结IF模式或Chase合并CC模式。
因此,本申请实施例提供的方法,能够通过上一次数据传输的编码比特序列中信息比特的数目以及码率中的至少一种信息,判断重传时使用的重传模式为IF模式或CC模 式,能够充分利用IF模式的编码增益,同时尽量避免负的编码增益产生。
可选地,作为本申请一个实施例,上述方法还包括:所述接收设备根据对所述第n次数据传输的编码比特序列的译码结果,向所述发送设备发送反馈信息,以便于所述发送设备根据所述反馈信息,确定第n+1次数据传输的编码比特的数目和信息比特的数目。
可选地,作为本申请一个实施例,上述反馈信息包括下列信息中的一种:所述第n次数据传输的信道状态信息;所述第n+1次数据传输期望的调制编码方案MCS;所述第n+1次数据传输期望的传输资源大小。
可选地,作为本申请一个实施例,所述接收设备根据所述第n次数据传输的信息比特的数目,以及所述第n次数据传输的码率,确定所述第n+1次数据重传采用的为增量冻结IF模式或Chase合并CC模式,包括:当所述第n次数据传输的码率大于或等于预设码率门限值,并且所述第n次数据传输中的信息比特的数目大于或等于预设数量门限值时,确定所述发送设备采用IF模式进行第n+1次数据传输;当所述第n次数据传输的码率小于预设码率门限值,或所述第n次数据传输中的信息比特的数目小于预设数量门限值时,确定所述发送设备采用CC模式进行第n+1次数据传输。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图9,详细描述了根据本申请实施例的Polar码重传的方法,下面将结合图10至图13,详细描述根据本申请实施例的用于Polar码重传的装置。
图10为本申请一个实施例的发送设备的示意性框图。如图10所示,该发送设备包括:
确定单元1001,根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,其中,n为正整数,所述编码参数包括信息比特数目和码率中的至少一种。
发送单元1002,采用所述目标重传模式进行所述第n+1次数据传输。
可选地,作为本申请一个实施例,所述确定单元1001具体用于:在需要进行所述第n+1次数据传输时,根据所述第n次数据传输的信息比特的数目和所述第n次数据传输的码率中的至少一种信息,确定采用增量冻结IF模式或Chase合并CC模式作为所述第n+1次数据传输的目标重传模式。
可选地,作为本申请一个实施例,所述发送设备还包括:接收单元,所述接收单元用于接收所述第n次数据传输的反馈信息;所述确定单元用于根据所述反馈信息,确定第n+1次数据传输的编码参数。
可选地,作为本申请一个实施例,所述确定单元1001还用于:根据所述第n次数据传输的信道状态信息,确定所述第n+1次数据传输的码率和信息比特的数目。
可选地,作为本申请一个实施例,所述发送单元1002具体用于:根据所述反馈信息中调制编码方案MCS和/或传输资源大小,确定以下参数中的至少两种:所述第n+1次数据传输的码率、编码比特的数目和信息比特的数目。
可选地,作为本申请一个实施例,所述确定单元1001还用于:当所述第n次数据传输的码率大于或等于预设码率门限值,并且所述第n次数据传输中的信息比特的数目大于或等于预设数量门限值时,采用IF模式进行第n+1次数据传输;当所述第n次数据传输的码率小于预设码率门限值,或者所述第n次数据传输中的信息比特的数目小于预设数量门限值时,采用CC模式进行第n+1次数据传输。
可选地,作为本申请一个实施例,所述确定单元1001还用于:根据所述第n+1次数据传输时的码率和构造信噪比,将按可靠度排序最高的至少一个极化信道对应的序号,确定为所述第n+1次数据传输的极化信道的序号的集合An+1;将第j次数据传输中,由集合
Figure PCTCN2017090896-appb-000030
表征的极化信道上传输的信息比特,作为所述第n+1次数据传输时的信息比特,其中,
Figure PCTCN2017090896-appb-000031
An为根据所述第n次数据传输时的码率和构造信噪比,确定的所述第n次数据传输的极化信道的序号的集合,所述第n次数据传输时传输的信息比特利用所述An所表征的极化信道进行传输的比特,其中1≤j≤n。
可选地,作为本申请一个实施例,所述确定单元1001还用于:按照所述前n次数据传输中第j次数据传输的实际码率,确定从所述第j次数据传输的编码比特序列中选择参与所述第n+1次数据传输的编码比特数量,其中,所述第j次数据传输的码率越高,从所述第j次数据传输的编码比特序列中选择的编码比特的数量在所述第n+1次数据传输的编码比特序列中占的比例越大,所述第j次数据传输的实际码率为去掉重传信息比特后的码率,1≤j≤n。
应理解,这里的发送设备1000以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(Application Specific Integrated Circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1000可以具体为上述实施例中的第一网络设备,装置1000可以用于执行上述方法实施例中与第一网络设备对应的各个流程和步骤,为避免重复,在此不再赘述。
图11为本申请另一个实施例的接收设备的示意性框图。如图11所示,该接收设备1100包括:
确定单元1101,所述接收单元1101用于根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,其中,n为正整数,所述编码参数包括信息比特数目和码率中的至少一种。
译码单元1102,所述译码单元1102用于根据所述目标重传模式对所述n+1次数据传输的数据进行译码。
可选地,作为本申请一个实施例,所述确定单元1101用于确定需要进行第n+1次数据传输时,根据所述第n次数据传输的编码比特序列中信息比特的数目和所述第n次数据传输的码率,确定所述第n+1次数据重传采用的为增量冻结IF模式或Chase合并CC模式,n为正整数;所述译码单元1102用于根据所述第n+1次数据传输采用的重传模式进行译码。
可选地,作为本申请一个实施例,所述接收设备还包括:发送单元,所述发送单元用于根据对所述第n次数据传输的编码比特序列的译码结果,向所述发送设备发送反馈信息,以便于所述发送设备根据所述反馈信息,确定第n+1次数据传输的编码比特的数目和信息比特的数目。
可选地,作为本申请一个实施例,所述反馈信息包括下列信息中的一种:所述第n次数据传输的信道状态信息;所述第n+1次数据传输期望的调制编码方案MCS;所述第n+1次数据传输期望的传输资源大小。
可选地,作为本申请一个实施例,确定单元1102具体用于:当所述第n次数据传输的码率大于或等于预设码率门限值,并且所述第n次数据传输中的信息比特的数目大于或等于预设数量门限值时,确定所述发送设备采用IF模式进行第n+1次数据传输;当所述第n次数据传输的码率小于预设码率门限值,或所述第n次数据传输中的信息比特的数目小于预设数量门限值时,确定所述发送设备采用CC模式进行第n+1次数据传输。
应理解,这里的装置1100以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(Application Specific Integrated Circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1100可以具体为上述实施例中的第二网络设备,装置1100可以用于执行上述方法实施例中与第二网络设备对应的各个流程和步骤,为避免重复,在此不再赘述。
图12示出了本申请实施例提供的用于Polar码传输的发送装置1200。该装置1200包括处理器1210、收发器1220、存储器1230和总线系统1240。其中,处理器1210、收发器1220和存储器1230通过总线系统1240相连,该存储器1230用于存储指令,该处理器1210用于执行该存储器1230存储的指令,以控制该收发器1220发送信号和接收信号。
存储器1230可以包括只读存储器和随机存取存储器,并向处理器1210提供指令和数据。发送装置1200的各个组件通过总线系统1240耦合在一起,其中总线系统1240除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1240。例如,发送装置1200可以为图1中示出的基站102。发送装置1200能够实现前述方法实施例中的相应流程,为避免重复,这里不再赘述。
应理解,在本申请实施例中,该处理器1210可以是中央处理单元(Central Processing Unit,CPU),该处理器1210还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器1230可以包括只读存储器和随机存取存储器,并向处理器11提供指令和数据。存储器1230的一部分还可以包括非易失性随机存取存储器。例如,存储器1230还可以存储设备类型的信息。
该总线系统1240除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统1240。
在实现过程中,上述方法的各步骤可以通过处理器1210中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1230,处理器12101读取存储器1230中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
图13示出了本申请实施例提供的另一用于管理网络切片的装置1300。该装置1300 包括处理器1310、收发器1320、存储器1330和总线系统1340。其中,处理器1310、收发器1320和存储器1330通过总线系统1340相连,该存储器1330用于存储指令,该处理器1310用于执行该存储器1330存储的指令,以控制该收发器1320发送信号和接收信号。
存储器1330可以包括只读存储器和随机存取存储器,并向处理器1310提供指令和数据。发送装置1300的各个组件通过总线系统1340耦合在一起,其中总线系统1340除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1340。例如,发送装置1300可以为图1中示出的基站102。发送装置1300能够实现前述方法实施例中的相应流程,为避免重复,这里不再赘述。
应理解,在本申请实施例中,该处理器1310可以是中央处理单元(Central Processing Unit,CPU),该处理器1310还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器1330可以包括只读存储器和随机存取存储器,并向处理器11提供指令和数据。存储器1330的一部分还可以包括非易失性随机存取存储器。例如,存储器1330还可以存储设备类型的信息。
该总线系统1340除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统1340。
在实现过程中,上述方法的各步骤可以通过处理器1310中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1330,处理器1310读取存储器1330中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
图14为本申请一个实施例的重传Polar码的方法的传输性能的示意图。是本申请方案与现有IF重传方案的对比,横坐标为信噪比,纵坐标为误块率,图中示出了四次传输的模拟曲线,从中可以看出,本申请方案相比现有Polar码码的重传方案能获得更大的编码增益。
图15为本申请另一实施例的重传Polar码的方法的传输性能的示意图。
是本申请方案与现有Turbo码重传方案的对比,横坐标为信噪比,纵坐标为误块率,图中示出了四次传输的模拟曲线,从中可以看出,本申请方案相比现有Turbo码的重传方案能获得更大的编码增益。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或步骤可以用硬件、处理器执行的软件程序,或者二者的结合来实施。软件程序可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
尽管通过参考附图并结合优选实施例的方式对本申请进行了详细描述,但本申请并不限于此。在不脱离本申请的精神和实质的前提下,本领域普通技术人员可以对本申请的实施例进行各种等效的修改或替换,而这些修改或替换都应在本申请的涵盖范围内。

Claims (41)

  1. 一种重传Polar码的方法,其特征在于,包括:
    根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,其中,n为正整数,所述编码参数包括信息比特数目和码率中的至少一种;
    采用所述目标重传模式进行所述第n+1次数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,包括:
    在需要进行所述第n+1次数据传输时,根据所述第n次数据传输的信息比特的数目和所述第n次数据传输的码率中的至少一种信息,确定采用增量冻结IF模式或Chase合并CC模式作为所述第n+1次数据传输的目标重传模式。
  3. 根据权利2所述的方法,其特征在于,当所述发送设备确定采用IF模式进行所述第n+1次数据传输时,所述方法还包括:
    接收由接收设备发送的反馈信息;
    根据所述反馈信息,确定所述第n+1次数据传输的编码参数。
  4. 根据权利要求3所述的方法,其特征在于,所述反馈信息为所述第n次数据传输的信道状态信息,所述发送设备根据所述反馈信息,确定第n+1次数据传输的编码参数,包括:
    根据所述第n次数据传输的信道状态信息,确定所述第n+1次数据传输的码率和信息比特的数目。
  5. 根据权利要求3或4所述的方法,其特征在于,所述反馈信息包括期望的调制编码方案MCS和/或期望的传输资源大小,所述发送设备根据所述反馈信息,确定第n+1次数据传输的编码参数,包括:
    根据所述反馈信息中调制编码方案MCS和/或传输资源大小,确定以下参数中的至少两种:所述第n+1次数据传输的码率、编码比特的数目和信息比特的数目。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,在进行第n+1次数据传输时,所述发送设备根据所述第n次数据传输的信息比特的数目或编码比特的数目,以及所述第n次数据传输的码率,确定采用增量冻结IF模式或Chase合并CC模式,包括:
    当所述第n次数据传输的码率大于或等于预设码率门限值,并且所述第n次数据传输中的信息比特的数目大于或等于预设数量门限值时,采用IF模式进行第n+1次数据传输;
    当所述第n次数据传输的码率小于预设码率门限值,或者所述第n次数据传输中的信息比特的数目小于预设数量门限值时,采用CC模式进行第n+1次数据传输。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,当确定所述第n+1次数据传输的目标模式为IF模式,并且从第1次到第n+1次数据传输的码长不变时,所述方法还包括:
    根据所述第n+1次数据传输时的码率和构造信噪比,将按可靠度排序最高的至少一个极化信道对应的序号,确定为所述第n+1次数据传输的极化信道的序号的集合An+1
    将第j次数据传输中,由集合
    Figure PCTCN2017090896-appb-100001
    表征的极化信道上传输的信息比特,作为所述第n+1次数据传输时的信息比特,其中,
    Figure PCTCN2017090896-appb-100002
    An为根据所述第n次数据传输时的码率和构造信噪比确定的所述第n次数据传输的极化信 道的序号的集合,所述第n次数据传输时传输的信息比特为利用所述An所表征的极化信道进行传输的比特,其中1≤j≤n。
  8. 根据权利要求2至5中任一项所述的方法,其特征在于,当前n次数据传输采用IF模式,且确定所述第n+1次数据传输的目标模式为CC模式时,所述方法还包括:
    按照所述前n次数据传输中第j次数据传输的实际码率,确定从所述第j次数据传输的编码比特序列中选择参与所述第n+1次数据传输的编码比特数量,其中,所述第j次数据传输的码率越高,从所述第j次数据传输的编码比特序列中选择的编码比特的数量在所述第n+1次数据传输的编码比特序列中占的比例越大,所述第j次数据传输的实际码率为去掉重传信息比特后的码率,1≤j≤n。
  9. 一种重传Polar码的方法,其特征在于,包括:
    根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,其中,n为正整数,所述编码参数包括信息比特数目和码率中的至少一种;
    根据所述目标重传模式对所述n+1次数据传输的数据进行译码。
  10. 根据权利要求9所述的方法,其特征在于,所述根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,包括:
    当需要进行第n+1次数据传输时,根据所述第n次数据传输的信息比特的数目和所述第n次数据传输的码率,确定所述第n+1次数据重传采用的为增量冻结IF模式或Chase合并CC模式。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    向发送设备发送反馈信息,以便于所述发送设备根据所述反馈信息,确定第n+1次数据传输的编码比特的数目和信息比特的数目。
  12. 根据权利要求11所述的方法,其特征在于,所述反馈信息包括下列信息中的至少一种:
    所述第n次数据传输的信道状态信息;
    所述第n+1次数据传输时期望的调制编码方案MCS;
    所述第n+1次数据传输时期望的传输资源大小。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述接收设备根据所述第n次数据传输的信息比特的数目,以及所述第n次数据传输的码率,确定所述第n+1次数据重传采用的为增量冻结IF模式或Chase合并CC模式,包括:
    当所述第n次数据传输的码率大于或等于预设码率门限值,并且所述第n次数据传输中的信息比特的数目大于或等于预设数量门限值时,确定所述发送设备采用IF模式进行第n+1次数据传输;
    当所述第n次数据传输的码率小于预设码率门限值,或所述第n次数据传输中的信息比特的数目小于预设数量门限值时,确定所述发送设备采用CC模式进行第n+1次数据传输。
  14. 一种发送设备,其特征在于,包括:
    确定单元,所述确定单元用于根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,其中,n为正整数,所述编码参数包括信息比特数目和码率中的至少一种;
    发送单元,所述发送单元用于采用所述目标重传模式进行所述第n+1次数据传输。
  15. 根据权利要求14所述的发送设备,其特征在于,所述确定单元具体用于:在确定需要进行第n+1次数据传输时,根据第n次数据传输的信息比特的数目和所述第n次数据传输的码率中的至少一种信息,确定采用增量冻结IF模式或Chase合并CC模式作为所述第n+1次数据传输的目标重传模式。
  16. 根据权利15所述的发送设备,其特征在于,所述发送设备还包括:
    接收单元,所述接收单元用于接收由接收设备发送的反馈信息;
    所述确定单元用于根据所述反馈信息,确定第n+1次数据传输的编码参数。
  17. 根据权利要求16所述的发送设备,其特征在于,所述确定单元还用于:
    根据所述第n次数据传输的信道状态信息,确定所述第n+1次数据传输的码率和信息比特的数目。
  18. 根据权利要求15或16所述的发送设备,其特征在于,所述发送单元具体用于:
    根据所述反馈信息中调制编码方案MCS和/或传输资源大小,确定以下参数中的至少两种:所述第n+1次数据传输的码率、编码比特的数目和信息比特的数目。
  19. 根据权利要求15至18中任一项所述的发送设备,其特征在于,所述确定单元还用于:
    当所述第n次数据传输的码率大于或等于预设码率门限值,并且所述第n次数据传输中的信息比特的数目大于或等于预设数量门限值时,采用IF模式进行第n+1次数据传输;
    当所述第n次数据传输的码率小于预设码率门限值,或者所述第n次数据传输中的信息比特的数目小于预设数量门限值时,采用CC模式进行第n+1次数据传输。
  20. 根据权利要求15至19中任一项所述的发送设备,其特征在于,所述确定单元还用于:
    根据所述第n+1次数据传输时的码率和构造信噪比,将按可靠度排序最高的至少一个极化信道对应的序号,确定为所述第n+1次数据传输的极化信道的序号的集合An+1
    将第j次数据传输中,由集合
    Figure PCTCN2017090896-appb-100003
    表征的极化信道上传输的信息比特,作为所述第n+1次数据传输时的信息比特,其中,
    Figure PCTCN2017090896-appb-100004
    An为根据所述第n次数据传输时的码率和构造信噪比,确定的所述第n次数据传输的极化信道的序号的集合,所述第n次数据传输时传输的信息比特利用所述An所表征的极化信道进行传输的比特,其中1≤j≤n。
  21. 根据权利要求15至19中任一项所述的发送设备,其特征在于,所述确定单元还用于:
    按照所述前n次数据传输中第j次数据传输的实际码率,确定从所述第j次数据传输的编码比特序列中选择参与所述第n+1次数据传输的编码比特数量,其中,所述第j次数据传输的码率越高,从所述第j次数据传输的编码比特序列中选择的编码比特的数量在所述第n+1次数据传输的编码比特序列中占的比例越大,所述第j次数据传输的实际码率为去掉重传信息比特后的码率,1≤j≤n。
  22. 一种接收设备,其特征在于,包括:
    确定单元,所述确定单元用于根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,其中,n为正整数;
    译码单元,所述译码单元用于根据所述目标重传模式对所述n+1次数据传输的数据 进行译码。
  23. 根据权利要求22所述的接收设备,其特征在于,所述确定单元用于:确定需要进行第n+1次数据传输时,根据所述第n次数据传输的信息比特的数目和所述第n次数据传输的码率,确定所述第n+1次数据重传采用的为增量冻结IF模式或Chase合并CC模式,n为正整数。
  24. 根据权利要求23所述的接收设备,其特征在于,所述接收设备还包括:
    发送单元,所述发送单元用于向发送设备发送反馈信息,以便于所述发送设备根据所述反馈信息,确定第n+1次数据传输的编码比特的数目和信息比特的数目。
  25. 根据权利要求24所述的接收设备,其特征在于,所述反馈信息包括下列信息中的至少一种:
    所述第n次数据传输的信道状态信息;
    所述第n+1次数据传输期望的调制编码方案MCS;
    所述第n+1次数据传输期望的传输资源大小。
  26. 根据权利要求23至25中任一项所述的接收设备,其特征在于,确定单元具体用于:
    当所述第n次数据传输的码率大于或等于预设码率门限值,并且所述第n次数据传输中的信息比特的数目大于或等于预设数量门限值时,确定所述发送设备采用IF模式进行第n+1次数据传输;
    当所述第n次数据传输的码率小于预设码率门限值,或所述第n次数据传输中的信息比特的数目小于预设数量门限值时,确定所述发送设备采用CC模式进行第n+1次数据传输。
  27. 一种发送装置,其特征在于,包括:
    收发器、存储器和处理器;
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,其中,n为正整数,所述编码参数包括信息比特数目和码率中的至少一种;
    所述收发器用于采用所述目标重传模式进行所述第n+1次数据传输。
  28. 根据权利要求27所述的发送装置,其特征在于,所述处理器具体用于在确定需要进行第n+1次数据传输时,根据第n次数据传输的信息比特的数目和所述第n次数据传输的码率中的至少一种信息,确定采用增量冻结IF模式或Chase合并CC模式作为所述第n+1次数据传输的目标重传模式。
  29. 根据权利28所述的发送装置,其特征在于,所述收发器还用于接收由接收设备发送的反馈信息;
    所述处理器还用于根据所述反馈信息,确定第n+1次数据传输的编码参数。
  30. 根据权利要求29所述的发送装置,其特征在于,所述处理器还用于根据所述第n次数据传输的信道状态信息,确定所述第n+1次数据传输的码率和信息比特的数目。
  31. 根据权利要求28或29所述的发送装置,其特征在于,所述收发器具体用于根据所述反馈信息中调制编码方案MCS和/或传输资源大小,确定以下参数中的至少两种:所述第n+1次数据传输的码率、编码比特的数目和信息比特的数目。
  32. 根据权利要求28至31中任一项所述的发送装置,其特征在于,所述处理器还 用于:
    当所述第n次数据传输的码率大于或等于预设码率门限值,并且所述第n次数据传输中的信息比特的数目大于或等于预设数量门限值时,采用IF模式进行第n+1次数据传输;
    当所述第n次数据传输的码率小于预设码率门限值,或者所述第n次数据传输中的信息比特的数目小于预设数量门限值时,采用CC模式进行第n+1次数据传输。
  33. 根据权利要求28至32中任一项所述的发送装置,其特征在于,所述处理器还用于:
    根据所述第n+1次数据传输时的码率和构造信噪比,将按可靠度排序最高的至少一个极化信道对应的序号,确定为所述第n+1次数据传输的极化信道的序号的集合An+1
    将第j次数据传输中,由集合
    Figure PCTCN2017090896-appb-100005
    表征的极化信道上传输的信息比特,作为所述第n+1次数据传输时的信息比特,其中,
    Figure PCTCN2017090896-appb-100006
    An为根据所述第n次数据传输时的码率和构造信噪比,确定的所述第n次数据传输的极化信道的序号的集合,所述第n次数据传输时传输的信息比特利用所述An所表征的极化信道进行传输的比特,其中1≤j≤n。
  34. 根据权利要求28至32中任一项所述的发送装置,其特征在于,所述处理器还用于:
    按照所述前n次数据传输中第j次数据传输的实际码率,确定从所述第j次数据传输的编码比特序列中选择参与所述第n+1次数据传输的编码比特数量,其中,所述第j次数据传输的码率越高,从所述第j次数据传输的编码比特序列中选择的编码比特的数量在所述第n+1次数据传输的编码比特序列中占的比例越大,所述第j次数据传输的实际码率为去掉重传信息比特后的码率,1≤j≤n。
  35. 一种接收装置,其特征在于,包括:
    存储器和处理器;
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,根据前n次数据传输的编码参数,确定第n+1次数据传输的目标重传模式,其中,n为正整数;
    并根据所述目标重传模式对所述n+1次数据传输的数据进行译码。
  36. 根据权利要求35所述的接收装置,其特征在于,所述处理器具体用于确定需要进行第n+1次数据传输时,根据所述第n次数据传输的信息比特的数目和所述第n次数据传输的码率,确定所述第n+1次数据重传采用的为增量冻结IF模式或Chase合并CC模式,n为正整数。
  37. 根据权利要求36所述的接收装置,其特征在于,所述所述接收装置还包括收发器,所述收发器用于向发送设备发送反馈信息,以便于所述发送设备根据所述反馈信息,确定第n+1次数据传输的编码比特的数目和信息比特的数目。
  38. 根据权利要求37所述的接收装置,其特征在于,所述反馈信息包括下列信息中的至少一种:
    所述第n次数据传输的信道状态信息;
    所述第n+1次数据传输期望的调制编码方案MCS;
    所述第n+1次数据传输期望的传输资源大小。
  39. 根据权利要求36至38中任一项所述的接收装置,其特征在于,所述处理器体 用于:
    当所述第n次数据传输的码率大于或等于预设码率门限值,并且所述第n次数据传输中的信息比特的数目大于或等于预设数量门限值时,确定所述发送设备采用IF模式进行第n+1次数据传输;
    当所述第n次数据传输的码率小于预设码率门限值,或所述第n次数据传输中的信息比特的数目小于预设数量门限值时,确定所述发送设备采用CC模式进行第n+1次数据传输。
  40. 一种计算机可读介质,其特征在于,
    所述计算机可读介质用于存储计算机程序,所述计算机程序包括用于执行权利要求1至8中任一项所述重传Polar码的方法的指令。
  41. 一种计算机可读介质,其特征在于,
    所述计算机可读介质用于存储计算机程序,所述计算机程序包括用于执行权利要求9至13中任一项所述的重传Polar码的方法的指令。
PCT/CN2017/090896 2016-07-29 2017-06-29 一种重传极化码的方法及其发送设备、接收设备 WO2018019082A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610615919.0A CN107666369B (zh) 2016-07-29 2016-07-29 一种重传极化码的方法及其发送设备、接收设备
CN201610615919.0 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018019082A1 true WO2018019082A1 (zh) 2018-02-01

Family

ID=61017296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090896 WO2018019082A1 (zh) 2016-07-29 2017-06-29 一种重传极化码的方法及其发送设备、接收设备

Country Status (2)

Country Link
CN (1) CN107666369B (zh)
WO (1) WO2018019082A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039536A (zh) * 2020-06-12 2020-12-04 中山大学 一种基于正交频分复用技术的自适应极化码编译码方法
CN113541878A (zh) * 2020-04-14 2021-10-22 华为技术有限公司 一种数据处理方法、装置及设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019227276A1 (en) * 2018-05-28 2019-12-05 Qualcomm Incorporated Polar code construction for incremental redundancy
WO2020042161A1 (en) * 2018-08-31 2020-03-05 Nokia Shanghai Bell Co., Ltd. Incremental redundancy hybrid automatic repeat request transmissions for polar coded systems
CN111371527B (zh) * 2018-12-25 2021-08-13 华为技术有限公司 一种数据传输方法及通信设备
CN111435859B (zh) * 2019-01-11 2021-09-21 华为技术有限公司 发送、接收方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321379A (zh) * 1999-09-10 2001-11-07 诺基亚网络有限公司 无线系统中的数据传输
WO2015006947A1 (zh) * 2013-07-18 2015-01-22 华为技术有限公司 一种低码率的编码方法和设备
CN105743621A (zh) * 2016-02-02 2016-07-06 北京邮电大学 基于极化码的harq信号发送、接收方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2254366B1 (en) * 2008-03-12 2019-02-27 Panasonic Intellectual Property Corporation of America Radio communication device, radio communication system, and radio communication method
JP4965741B2 (ja) * 2009-04-24 2012-07-04 シャープ株式会社 無線通信システム、移動局装置、基地局装置、通信方法、および記録媒体
CA2972655C (en) * 2014-03-24 2020-10-20 Huawei Technologies Co., Ltd. Polar code rate matching method and polar code rate matching apparatus
WO2017156773A1 (en) * 2016-03-18 2017-09-21 Qualcomm Incorporated Hybrid automatic repeat request (harq) with polar coded transmissions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321379A (zh) * 1999-09-10 2001-11-07 诺基亚网络有限公司 无线系统中的数据传输
WO2015006947A1 (zh) * 2013-07-18 2015-01-22 华为技术有限公司 一种低码率的编码方法和设备
CN105743621A (zh) * 2016-02-02 2016-07-06 北京邮电大学 基于极化码的harq信号发送、接收方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541878A (zh) * 2020-04-14 2021-10-22 华为技术有限公司 一种数据处理方法、装置及设备
CN112039536A (zh) * 2020-06-12 2020-12-04 中山大学 一种基于正交频分复用技术的自适应极化码编译码方法

Also Published As

Publication number Publication date
CN107666369A (zh) 2018-02-06
CN107666369B (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
AU2021202501B2 (en) Harq handling for nodes with variable processing times
WO2018045849A1 (zh) 极化码的重传方法及装置
WO2018019082A1 (zh) 一种重传极化码的方法及其发送设备、接收设备
US10826539B2 (en) Method and system for advanced outer coding
JP6731115B2 (ja) 情報送信方法、送信端デバイス及び受信端デバイス
KR101116929B1 (ko) 통신 시스템에서 데이터 전송을 위한 선점 확인 응답
US20180198560A1 (en) Generalized polar code based on polarization of linear block codes and convolutional codes
CN107925990B (zh) 传输反馈信息的方法、终端设备和基站
RU2754435C2 (ru) Способ, устройство передачи данных и система связи
CN106972914B (zh) 移动通信网络中用于通过信号传送控制信息的系统和方法
CN106922206B (zh) 确定调制编码阶数的方法、装置和设备
EP3621237B1 (en) Channel encoding method, data receiving method and associated device
CN110831216B (zh) 一种移动通信系统、终端、网络设备和上行信息复用方法
JP2019502274A (ja) データ記憶方法、端末装置及び基地局
WO2018133001A1 (zh) 传输下行控制信息的方法、网络侧设备和终端设备
CN109565368A (zh) 数据传输方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833385

Country of ref document: EP

Kind code of ref document: A1