WO2018018916A1 - 充电系统、终端、电源适配器和充电线 - Google Patents

充电系统、终端、电源适配器和充电线 Download PDF

Info

Publication number
WO2018018916A1
WO2018018916A1 PCT/CN2017/078884 CN2017078884W WO2018018916A1 WO 2018018916 A1 WO2018018916 A1 WO 2018018916A1 CN 2017078884 W CN2017078884 W CN 2017078884W WO 2018018916 A1 WO2018018916 A1 WO 2018018916A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
interfaces
terminal
power adapter
interface
Prior art date
Application number
PCT/CN2017/078884
Other languages
English (en)
French (fr)
Inventor
陈鑫锋
田晨
张加亮
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to US16/310,955 priority Critical patent/US10910845B2/en
Priority to EP17833223.5A priority patent/EP3490100A4/en
Publication of WO2018018916A1 publication Critical patent/WO2018018916A1/zh
Priority to US16/435,530 priority patent/US10720779B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/02Intermediate parts for distributing energy to two or more circuits in parallel, e.g. splitter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/06Intermediate parts for linking two coupling parts, e.g. adapter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of charging technologies, and in particular, to a charging system, a terminal, a power adapter, and a charging line.
  • Fast charging is a charging method that brings the battery to or near full charge within 1-5 hours. How to charge quickly without damaging the performance and life of the battery is a hot research topic.
  • the rapid charging of the battery is mainly achieved by increasing the charging current, but since the charging device and the charging input/output interface of the device to be charged have limited overcurrent capability, it has a great influence on the rapid charging of the battery.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the first object of the present invention is to provide a charging system that charges a terminal through a plurality of charging input/output interfaces, which can effectively solve the problem that the charging current cannot be improved due to the limited overcurrent capability of the single charging input/output interface. Problem to solve the problem of fast charging.
  • a second object of the present invention is to propose a terminal.
  • a third object of the present invention is to provide a power adapter.
  • a fourth object of the present invention is to provide a charging line.
  • a charging system includes: a terminal, the terminal includes a first controller and M charging input interfaces, wherein M is an integer greater than 1; a power adapter, The power adapter includes a second controller and N charging output interfaces, wherein when at least one of the N charging output interfaces is connected to a charging input interface of the terminal, the second controller is Communicating with each other to determine the number of charging output interfaces of the power adapter connected to the terminal, and outputting the power adapter to the power adapter according to the number of charging output interfaces of the power adapter connected to the terminal The charging current of the terminal is adjusted, wherein N is an integer greater than one.
  • the terminal includes a first controller and M charging input interfaces
  • the power adapter includes a second controller and N charging output interfaces, wherein when at least one of the N charging output interfaces is connected to
  • the second controller communicates with the first controller to determine the number of charging output interfaces connected to the terminal by the power adapter, and outputs the power adapter according to the number of charging output interfaces connected to the terminal by the power adapter.
  • the charging current to the terminal is adjusted.
  • the system charges the terminal through a plurality of charging input and output interfaces, which can effectively solve the problem that the charging current cannot be improved due to the limited overcurrent capability of the single charging input/output interface, thereby solving the problem of fast charging.
  • the second controller is configured to determine a quantity of a charging output interface of the power adapter connected to the terminal, and according to the number of charging output interfaces of the power adapter connected to the terminal The charging current output from the power adapter to the terminal is adjusted.
  • the first controller is configured to determine a quantity of a charging output interface of the power adapter connected to the terminal, and according to the number of charging output interfaces of the power adapter connected to the terminal, The second controller adjusts a charging current output by the power adapter to the terminal.
  • the charging current outputted by the power adapter to the terminal is adjusted to a preset charging current of k times, Where k is an integer greater than or equal to 1.
  • the charging system further includes: a charging line, one end of the charging line includes M first interfaces matching the M charging input interfaces, and the other end of the charging line The N second interfaces are matched with the N charging output interfaces, and the charging output interface of the power adapter is connected to the charging input interface of the terminal through the charging line.
  • each of the M charging input interfaces is connected to a preset power source through a pull-up resistor, and each of the M first interfaces passes a pull-down resistor Grounding; each of the N charging output interfaces is connected to the preset power source through the pull-up resistor, and each of the N second interfaces passes the pull-down resistor And wherein, according to the voltage of each of the charging input interfaces and the voltage of each of the charging output interfaces, the number of charging output interfaces of the power adapter connected to the terminal is determined.
  • each of the M charging input interfaces, the M first interfaces, the N second interfaces, and the N charging output interfaces are USB interfaces.
  • a terminal includes: M charging input interfaces, wherein M is an integer greater than 1; a battery; a first controller, and the first controller respectively
  • the M charging input interfaces are connected to the battery, and the first controller is configured to determine that the power adapter is connected to the power adapter when at least one of the N charging output interfaces of the power adapter is connected to the charging input interface Charging output of the charging input interface
  • the number of interfaces, and the charging current outputted to the battery by the power adapter is adjusted according to the number of charging output interfaces of the power adapter connected to the charging input interface, wherein N is an integer greater than 1.
  • the first controller is respectively connected to the M charging input interfaces and the battery, and the first controller determines the power adapter when at least one of the N charging output interfaces of the power adapter is connected to the charging input interface.
  • the number of charging output connectors connected to the charging input interface, and the charging current of the power adapter output to the battery is regulated by the power adapter according to the number of charging output interfaces to which the power adapter is connected to the charging input interface.
  • the terminal charges the battery through a plurality of charging input interfaces, which can effectively solve the problem that the charging current cannot be improved due to the limited overcurrent capability of the single charging input interface, thereby solving the problem of rapid charging of the terminal.
  • the first controller outputs the power adapter to the battery through the power adapter
  • the charging current is adjusted to k times the preset charging current, where k is an integer greater than or equal to 1.
  • each of the M charging input interfaces is connected to a preset power source through a pull-up resistor, wherein the first controller is configured according to a voltage of each of the charging input interfaces. Determining the number of charging output interfaces of the power adapter connected to the charging input interface.
  • the M charging input interfaces are USB interfaces.
  • a power adapter includes: a power module; N charging output interfaces, wherein N is an integer greater than 1; and a second controller, the second controller Connected to the power module and the N charging output interfaces respectively, the second controller is configured to determine to connect to the terminal when at least one of the N charging output interfaces is connected to the charging input interface of the terminal The number of charging output interfaces is adjusted, and the charging current output from the power module to the terminal is adjusted according to the number of charging output interfaces connected to the terminal.
  • the second controller is respectively connected to the power module and the N charging output interfaces, and the second controller determines the connection when at least one of the N charging output interfaces is connected to the charging input interface of the terminal.
  • the number of charging output interfaces to the terminal and adjusts the charging current output from the power module to the terminal according to the number of charging output interfaces connected to the terminal.
  • the power adapter supplies power to the terminal through multiple charging output interfaces, which can effectively solve the problem that the charging current cannot be improved due to the limited overcurrent capability of the single charging output interface, thereby solving the problem of rapid charging.
  • the second controller adjusts the charging current output by the power module to the terminal to a preset charging of k times.
  • Current where k is an integer greater than or equal to 1.
  • each of the N charging output interfaces is powered by pull-up
  • the resistor is connected to the preset power source, wherein the second controller determines the number of the charging output interfaces connected to the terminal according to the voltage of each of the charging output interfaces.
  • the N charging output interfaces are USB interfaces.
  • a charging line includes: a connecting line; M first interfaces, the M first interfaces are connected to one end of the connecting line, and the M is The first interface is matched with the charging input interface of the terminal; the N second interfaces are connected to the other end of the connecting line, and the charging output of the N second interfaces and the power adapter Interface matching settings, where M and N are integers greater than one.
  • one end of the connecting line has M first interfaces, and the other end of the connecting line has N second interfaces, and the M first interfaces are matched with the charging input interfaces of the terminal, N
  • the two interfaces are matched with the charging output interface of the power adapter, so that the plurality of charging output interfaces of the power adapter can be simultaneously connected with the plurality of charging input interfaces of the terminal, so that the power adapter charges the terminal through the plurality of charging input and output interfaces.
  • each of the M first interfaces is grounded through a pull-down resistor, and each of the N second interfaces is connected by the pull-down resistor Ground.
  • the M first interfaces and the N second interfaces are both USB interfaces.
  • FIG. 1 is a block schematic diagram of a charging system in accordance with an embodiment of the present invention.
  • FIG. 2 is a block schematic diagram of a charging system in accordance with one embodiment of the present invention.
  • FIG. 3 is a block schematic diagram of a charging system in accordance with another embodiment of the present invention.
  • 4a and 4b are schematic diagrams showing the structure of a charging output interface and a second interface according to an embodiment of the present invention
  • FIG. 5 is a block diagram of a terminal according to an embodiment of the present invention.
  • 6a and 6b are schematic diagrams showing the structure of a charging input interface and a charging output interface according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a power adapter according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a charging line according to an embodiment of the present invention.
  • FIG. 1 is a block schematic diagram of a charging system in accordance with an embodiment of the present invention. As shown in FIG. 1, the charging system includes a terminal 100 and a power adapter 200.
  • the terminal 100 includes a first controller 110 and M charging input interfaces.
  • the power adapter 200 includes a second controller 210 and N charging output interfaces. When at least one of the N charging output interfaces is connected to the charging input interface of the terminal 100, the second controller 210 and the first controller 110 perform Communicating with each other to determine the number of charging output interfaces of the power adapter 200 connected to the terminal 100, and adjusting the charging current output from the power adapter 200 to the terminal 100 according to the number of charging output interfaces of the power adapter 200 connected to the terminal 100, wherein M and N Both are integers greater than one.
  • the fast charging of the terminal 100 can be achieved by increasing the charging current output from the power adapter 200 to the terminal 100.
  • the charging output interface of the power adapter 200 and the charging input of the terminal 100 are also considered. Whether the interface can meet the charging current requirements.
  • the overcurrent capability of a single charging input/output interface (such as a USB interface) is limited. If the problem is not solved, it is difficult to increase the charging current.
  • a plurality of charging input interfaces may be provided on the terminal 100, and a plurality of charging output interfaces may be disposed on the power adapter 200.
  • a plurality of charging input interfaces of the terminal 100 may be connected to a plurality of charging output interfaces of the power adapter 200, and then output to the terminal according to the number of charging output interfaces of the power adapter 200 connected to the terminal 100.
  • the charging current of 100 is adjusted so that the power adapter 200 can charge the terminal 100 through a plurality of interfaces, thereby effectively increasing the charging current and achieving the purpose of fast charging.
  • the charging current outputted by the power adapter 200 to the terminal 100 is adjusted to k times the preset charging current, where k is An integer greater than or equal to 1.
  • the corresponding charging current is a preset charging current
  • the number of charging output interfaces of the power adapter 200 connected to the terminal 100 is k
  • the charging current output from the power adapter 200 to the terminal 100 can be increased to a preset charging current of k times.
  • the charging current is 1 times the preset charging current; when the two charging input interfaces of the terminal 100 are charged with the power adapter 200, When the output interface is connected, the charging current is twice the preset charging current, where each interface corresponds to 1 times the preset charging current, and so on. Since the system charges the terminal through a plurality of charging input and output interfaces, the problem that the charging current cannot be improved due to the limited overcurrent capability of the single charging input/output interface can be effectively solved, thereby solving the problem of rapid charging.
  • connection may be through the first controller 110 or the second controller 210.
  • the number of charging output interfaces of the terminal 100 is determined.
  • the second controller 210 is configured to determine the number of charging output interfaces of the power adapter 200 connected to the terminal 100, and output the power adapter 200 to the terminal according to the number of charging output interfaces of the power adapter 200 connected to the terminal 100.
  • the charging current of 100 is adjusted.
  • the second controller 210 may sequentially send the preset signal to each charging output interface. If the signal fed back by the first controller 110 is received, the charging output interface and the terminal are illustrated. The charging input interface of 100 is connected, and the second controller 210 records the number of all charging output interfaces connected to the terminal 100, and then adjusts the charging current according to the number of charging output interfaces.
  • the first controller 110 is configured to determine the number of charging output interfaces of the power adapter 200 connected to the terminal 100, and pass the second controller 210 according to the number of charging output interfaces of the power adapter 200 connected to the terminal 100. The charging current output from the power adapter 200 to the terminal 100 is adjusted.
  • the first controller 110 may sequentially send a preset signal to each charging input interface. If the signal fed back by the second controller 210 is received, the charging input interface and the power adapter are illustrated. The charging output interface of 200 is connected, the first controller 110 records the number of all charging output interfaces connected to the terminal 100, and then sends the number of charging output interfaces to the second controller 210, so that the second controller 210 is based on the number of charging output interfaces. Adjust the charging current.
  • the charging system further includes: a charging line 300, and one end of the charging line 300 includes M first interfaces matched with M charging input interfaces, and charging The other end of the line 300 includes N second interfaces that match the N charging output interfaces, and the charging output interface of the power adapter 200 is connected to the charging input interface of the terminal 100 through the charging line 300.
  • the first interface 1 of the charging line 300 can be connected to the charging input interface 1, and the second interface 1 and the charging output interface 1 can be connected.
  • the adapter 200 outputs a preset charging current that is one times the charging current to the terminal 100.
  • the first interface 1 and the second interface 2 of the charging line 300 can be connected to the charging input interface 1 and the charging input interface 2, respectively, and the second interface of the charging line 300 can be connected.
  • 1 and the second interface 2 are respectively connected to the charging output interface 1 and the charging output interface 2, and at this time, the charging current output from the power adapter 200 to the terminal 100 is twice the preset charging current.
  • Each of the M charging input interfaces, the M first interfaces, the N second interfaces, and the N charging output interfaces may be USB interfaces.
  • each of the M charging input interfaces is connected to the preset power source through a pull-up resistor, and each of the first interfaces of the M first interfaces is grounded through a pull-down resistor.
  • Each of the N charging output interfaces is connected to a preset power source through a pull-up resistor, and each of the N second interfaces The second interface is grounded through a pull-down resistor, wherein the number of charge output interfaces to which the power adapter is connected to the terminal is determined according to the voltage of each of the charge input interfaces and the voltage of each of the charge output interfaces.
  • the charging output interface and the second interface may be a USB interface (VBUS is a power terminal, GND is a ground terminal, and D+ and D- are data terminals), wherein the charging output interface passes the pull-up resistor Rs.
  • VCC voltage can be 3.3V
  • the second interface is grounded through the pull-down resistor Rx.
  • the second controller 210 determines whether the charging output interface is connected to the second interface by detecting the voltage of the voltage detecting terminal, that is, the voltage of the USB interface, in real time. Wherein, when the voltage of the USB interface detected by the second controller 210 is 3.3V, the charging output interface is not connected to the second interface; as shown in FIG.
  • the second controller 210 when the voltage of the USB interface detected by the second controller 210 is less than At 3.3V, the charging output interface is connected to the second interface. In this way, the second controller 210 can automatically detect whether there is a charging output interface connected to the second interface, and the number of connections.
  • the first controller 110 can also automatically detect whether there is a charging input interface connected to the first interface, and the number of connections. The first controller 110 then communicates with the second controller 210 to determine the number of charging output interfaces that the power adapter 200 is connected to the terminal 100. For example, the number of detected smaller connections may be used as the final number of charging output interfaces, or the first controller 110 may communicate with the second controller 210 through the charging line 300 to determine the number of charging output interfaces, thereby preventing When the other devices are interconnected, the number of charging output interfaces is incorrect.
  • the charging line 300 may be a wire harness, and the wire harness is composed of a plurality of single connecting wires, and one end of each of the single connecting wires is connected with a first interface and a first wire.
  • the second interface; or, the charging line 300 is composed of a connecting line, a first interface and a second interface.
  • a plurality of charging lines can be used to connect the power adapter to the terminal.
  • the terminal includes a first controller and M charging input interfaces
  • the power adapter includes a second controller and N charging output interfaces, wherein, among the N charging output interfaces
  • the second controller communicates with the first controller to determine the number of charging output interfaces of the power adapter connected to the terminal, and is connected to the charging output interface of the terminal according to the power adapter.
  • the quantity adjusts the charging current of the power adapter output to the terminal.
  • the system charges the terminal through a plurality of charging input and output interfaces, which can effectively solve the problem that the charging current cannot be improved due to the limited overcurrent capability of the single charging input/output interface, thereby solving the problem of fast charging.
  • FIG. 5 is a block schematic diagram of a terminal in accordance with an embodiment of the present invention.
  • the terminal 100 includes: M charging input interfaces, a first controller 110, and a battery 120.
  • the first controller 110 is respectively connected to the M charging input interfaces and the battery 120.
  • the first controller 110 is configured to determine the power adapter connection when at least one of the N charging output interfaces of the power adapter is connected to the charging input interface.
  • the number of charging output interfaces to the charging input interface, and according to the charging of the power adapter connected to the charging input interface The number of electrical output interfaces is adjusted by the power adapter to the charging current output from the power adapter to the battery 120.
  • M and N are integers greater than one.
  • a plurality of charging input interfaces may be disposed on the terminal 100.
  • a plurality of charging input interfaces may be connected to the plurality of charging output interfaces of the power adapter, and then the first controller 110 determines to connect to the charging.
  • the number of charging output interfaces of the input interface is sent to the power adapter so that the power adapter adjusts the charging current output to the battery 120 according to the number.
  • the first controller 110 adjusts the charging current of the power adapter output to the battery 120 through the power adapter to a preset of k times. a charging current, where k is an integer greater than or equal to 1.
  • the overcurrent capabilities of each of the charging input interface and the charging output interface are the same, and the corresponding charging current is a preset charging current
  • the number of charging output interfaces of the power adapter connected to the charging input interface is k
  • the charging current output from the power adapter to the battery 120 can be increased to a preset charging current of k times.
  • the charging current is 1 times the preset charging current; when the two charging input interfaces of the terminal 100 and the two charging output interfaces of the power adapter When connected, the charging current is twice the preset charging current, where each interface corresponds to 1 times the preset charging current, and so on. Since the terminal charges the battery through a plurality of charging input interfaces, the problem that the charging current cannot be improved due to the limited overcurrent capability of the single charging input interface can be effectively solved, thereby solving the problem of rapid charging of the terminal.
  • each of the M charging input interfaces is connected to a preset power source through a pull-up resistor, and the first controller 110 determines that the power adapter is connected to the charging input according to the voltage of each charging input interface.
  • the charging input interface and the charging output interface may be a USB interface, wherein the charging input interface of the terminal 100 is connected to the preset power source VCC (the voltage may be 3.3V) through the pull-up resistor Rs, and the power source is simultaneously
  • the charging output interface of the adapter is connected to the ground through a pull-down resistor Rx, and the first controller 110 determines the number of charging output interfaces connected to the charging input interface by detecting the voltage of the voltage detecting terminal.
  • the charging input interface is not connected to the charging output interface; as shown in FIG. 6b, when the voltage detected by the first controller 110 is less than 3.3V, the charging input interface is The charging output interface is connected. In this way, the first controller 110 can automatically detect whether there is a charging output interface connected to the charging input interface, and the number of connections.
  • the power adapter can also be connected to the charging input interface of the terminal through a charging line.
  • a charging line For details, refer to FIG. 4a and FIG. 4b, which will not be described in detail herein.
  • the M charging input interfaces can be soldered to the flexible circuit board and then connected to the first controller 110 through the board-to-board connector.
  • the first controller is respectively connected to the M charging input interfaces and the battery, and the first controller determines the power adapter when at least one of the N charging output interfaces of the power adapter is connected to the charging input interface.
  • the number of charging output connectors connected to the charging input interface, and the charging current of the power adapter output to the battery is regulated by the power adapter according to the number of charging output interfaces to which the power adapter is connected to the charging input interface.
  • the terminal charges the battery through a plurality of charging input interfaces, which can effectively solve the problem that the charging current cannot be improved due to the limited overcurrent capability of the single charging input interface, thereby solving the problem of rapid charging of the terminal.
  • FIG. 7 is a schematic structural diagram of a power adapter according to an embodiment of the present invention.
  • the power adapter 200 includes: N charging output interfaces, a second controller 210, and a power module 220.
  • the second controller 210 is respectively connected to the power module 220 and the N charging output interfaces, and the second controller 210 is configured to determine that the terminal is connected to the terminal when at least one of the N charging output interfaces is connected to the charging input interface of the terminal.
  • the number of charging output interfaces is adjusted, and the charging current output from the power module 220 to the terminal is adjusted according to the number of charging output interfaces connected to the terminal, where N is an integer greater than one.
  • a plurality of charging output interfaces may be disposed on the power adapter 200, and when charging is required, the plurality of charging input interfaces of the terminal may be connected to the plurality of charging output interfaces of the power adapter 200. Then, the second controller 210 determines the number of charging output interfaces connected to the terminal, and adjusts the charging current output from the power module 220 to the terminal according to the number.
  • the second controller 210 adjusts the charging current outputted by the power module 220 to the terminal to a preset charging current of k times, where k is An integer greater than or equal to 1.
  • the power module 220 outputs The charging current to the terminal can be increased to k times the preset charging current.
  • the charging current is 1 times the preset charging current; when the two charging input interfaces of the terminal and the two charging output interfaces of the power adapter 200 When connected, the charging current is twice the preset charging current, where each interface corresponds to 1 times the preset charging current, and so on. Since the power adapter charges the terminal through a plurality of charging output interfaces, the problem that the charging current cannot be improved due to the limited overcurrent capability of the single charging output interface can be effectively solved, thereby solving the problem of rapid charging.
  • each of the N charging output interfaces is connected to the preset power source through a pull-up resistor, and the second controller 210 determines the charging output connected to the terminal according to the voltage of each charging output interface.
  • the N charging output interfaces may be USB interfaces.
  • the charging input interface and the charging output interface may be a USB interface, wherein the charging output interface of the power adapter 200 is connected to the preset power source VCC (the voltage may be 3.3V) through the pull-up resistor Rs, and the charging input interface of the terminal passes The pull-down resistor Rx is connected to the ground, and the second controller 210 determines the number of the charging output interfaces connected to the charging input interface by detecting the voltage of the voltage detecting terminal. Wherein, when the voltage detected by the second controller 210 is 3.3V, the charging input interface is not connected to the charging output interface; when the voltage detected by the second controller 210 is less than 3.3V, the charging input interface is connected to the charging output interface. In this way, the second controller 210 can automatically detect whether there is a charging output interface connected to the charging input interface, and the number of connections. For details, please refer to FIG. 6a and FIG. 6b.
  • the power adapter can also be connected to the charging input interface of the terminal through a charging line, which is not detailed herein.
  • the second controller is respectively connected to the power module and the N charging output interfaces, and the second controller determines the connection when at least one of the N charging output interfaces is connected to the charging input interface of the terminal.
  • the number of charging output interfaces to the terminal and adjusts the charging current output from the power module to the terminal according to the number of charging output interfaces connected to the terminal.
  • the power adapter supplies power to the terminal through multiple charging output interfaces, which can effectively solve the problem that the charging current cannot be improved due to the limited overcurrent capability of the single charging output interface, thereby solving the problem of rapid charging.
  • FIG. 8 is a schematic structural view of a charging line according to an embodiment of the present invention. As shown in FIG. 8, the charging line includes: a connecting line 310, M first interfaces, and N second interfaces.
  • the M first interfaces are connected to one end of the connection line 310, and the M first interfaces are matched with the charging input interfaces of the terminal.
  • the N second interfaces are connected to the other end of the connection line, and the N second interfaces are matched with the charging output interface of the power adapter, and both M and N are integers greater than 1.
  • the first interface 1 of the charging line can be connected to the charging input interface 1, and the second interface 1 and the charging output interface 1 can be connected.
  • the charging current output to the terminal through the charging line is 1 times the preset charging current.
  • the first interface 1 and the second interface 2 of the charging line can be respectively connected to the charging input interface 1 and the charging input interface 2, and the second interface 1 of the charging line and The second interface 2 is respectively connected to the charging output interface 1 and the charging output interface 2, and the charging current outputted to the terminal by the power adapter is twice the preset charging current. Since the charging line has a plurality of first interfaces and second interfaces, the power adapter can charge the terminals through the plurality of first interfaces and the second interfaces, so that the charging current is improved, effectively solving each end of the charging line. There is only one interface that causes the charging current to not rise.
  • the connecting line 310 may be a wire harness, and the wire harness is composed of a plurality of single connecting wires, and one end of each of the single connecting wires is connected with a first interface and a first wire.
  • the second interface; or, the charging line is composed of a connecting line 310, a first interface and a second interface.
  • a plurality of charging lines can be used to connect the power adapter to the terminal.
  • each of the M first interfaces is grounded by a pull-down resistor
  • each of the N second interfaces is grounded by a pull-down resistor.
  • the M first interfaces and the N second interfaces may each be a USB interface.
  • each of the M first interfaces, the N second interfaces, the charging input interface of the terminal, and the charging output interface of the power adapter may be a USB interface.
  • the charging output interface of the power adapter can be connected to the preset power supply VCC (the voltage can be 3.3V) through the pull-up resistor Rs, and the second interface of the charging line can be grounded through the pull-down resistor Rx.
  • the power adapter can detect whether the charging output interface is connected to the second interface by detecting the voltage of the voltage detecting terminal, that is, the voltage of the USB interface. Wherein, when the voltage of the USB interface detected by the power adapter is 3.3V, the charging output interface is not connected to the second interface; as shown in FIG.
  • the charging output is The interface is connected to the second interface. In this way, the power adapter can automatically detect whether there is a charging output interface connected to the second interface, and the number of connections.
  • the charging input interface of the terminal can be connected to the preset power supply VCC (the voltage can be 3.3V) through the pull-up resistor Rs, and the first interface of the charging line can be grounded through the pull-down resistor Rx.
  • the terminal can detect whether the charging input interface is connected to the first interface by detecting the voltage of the voltage detecting terminal, that is, the voltage of the USB interface in real time. Wherein, when the voltage of the USB interface detected by the terminal is 3.3V, the charging input interface is not connected to the first interface; when the voltage of the USB interface detected by the terminal is less than 3.3V, the charging input interface is connected to the first interface. In this way, the terminal can automatically detect whether there is a charging input interface connected to the first interface, and the number of connections.
  • the power adapter communicates with the terminal to determine the number of charging output interfaces of the power adapter connected to the terminal through the charging line, and finally adjusts the charging current of the power adapter output to the terminal according to the number of charging output interfaces connected to the terminal, so as to realize fast The purpose of charging.
  • one end of the connecting line has M first interfaces, and the other end of the connecting line has N second interfaces, and the M first interfaces are matched with the charging input interfaces of the terminal, N
  • the two interfaces are matched with the charging output interface of the power adapter, so that the plurality of charging output interfaces of the power adapter can be simultaneously connected with the plurality of charging input interfaces of the terminal, so that the power adapter charges the terminal through the plurality of charging input and output interfaces.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality" is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.

Abstract

本发明公开了一种充电系统、终端、电源适配器和充电线,所述充电系统包括:终端,终端包括第一控制器和M个充电输入接口;电源适配器,电源适配器包括第二控制器和N个充电输出接口,其中,当N个充电输出接口中的至少一个连接到终端的充电输入接口时,第二控制器与第一控制器之间进行相互通信以判断电源适配器连接到终端的充电输出接口数量,并根据电源适配器连接到终端的充电输出接口数量对电源适配器输出至终端的充电电流进行调节。该系统通过多个充电输入输出接口对终端进行充电,能够有效解决由于单个充电输入输出接口的过流能力有限导致的充电电流无法提升的问题,从而解决快速充电的问题。

Description

充电系统、终端、电源适配器和充电线
相关申请的交叉引用
本申请要求广东欧珀移动通信有限公司于2016年07年28日提交的、发明名称为“充电系统、终端、电源适配器和充电线”的、中国专利申请号“201610608768.6”的优先权。
技术领域
本发明涉及充电技术领域,特别涉及一种充电系统、一种终端、一种电源适配器和一种充电线。
背景技术
快速充电是在1-5h内使蓄电池达到或接近完全充电状态的一种充电方法,如何能够快速充电而不损害蓄电池的性能和寿命,是人们关注的热门研究课题。
目前,蓄电池的快速充电主要是通过提高充电电流来实现,但由于充电设备和待充电设备的充电输入输出接口的过流能力有限,因此会对蓄电池的快速充电产生很大影响。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的第一个目的在于提出一种充电系统,通过多个充电输入输出接口对终端进行充电,能够有效解决由于单个充电输入输出接口的过流能力有限导致的充电电流无法提升的问题,从而解决快速充电的问题。
本发明的第二个目的在于提出一种终端。
本发明的第三个目的在于提出一种电源适配器。
本发明的第四个目的在于提出一种充电线。
为实现上述目的,本发明第一方面实施例提出的一种充电系统,包括:终端,所述终端包括第一控制器和M个充电输入接口,其中,M为大于1的整数;电源适配器,所述电源适配器包括第二控制器和N个充电输出接口,其中,当所述N个充电输出接口中的至少一个连接到所述终端的充电输入接口时,所述第二控制器与所述第一控制器之间进行相互通信以判断所述电源适配器连接到所述终端的充电输出接口数量,并根据所述电源适配器连接到所述终端的充电输出接口数量对所述电源适配器输出至所述终端的充电电流进行调节,其中,N为大于1的整数。
根据本发明实施例的充电系统,终端包括第一控制器和M个充电输入接口,电源适配器包括第二控制器和N个充电输出接口,其中,当N个充电输出接口中的至少一个连接到终端的充电输入接口时,第二控制器与第一控制器之间进行相互通信以判断电源适配器连接到终端的充电输出接口数量,并根据电源适配器连接到终端的充电输出接口数量对电源适配器输出至终端的充电电流进行调节。该系统通过多个充电输入输出接口对终端进行充电,能够有效解决由于单个充电输入输出接口的过流能力有限导致的充电电流无法提升的问题,从而解决快速充电的问题。
根据本发明的一个实施例,所述第二控制器用于判断所述电源适配器连接到所述终端的充电输出接口数量,并根据所述电源适配器连接到所述终端的充电输出接口数量对所述电源适配器输出至所述终端的充电电流进行调节。
根据本发明的一个实施例,所述第一控制器用于判断所述电源适配器连接到所述终端的充电输出接口数量,并根据所述电源适配器连接到所述终端的充电输出接口数量通过所述第二控制器对所述电源适配器输出至所述终端的充电电流进行调节。
根据本发明的一个实施例,如果所述电源适配器连接到所述终端的充电输出接口数量为k,则将所述电源适配器输出至所述终端的充电电流调节至k倍的预设充电电流,其中,k为大于等于1的整数。
根据本发明的一个实施例,上述的充电系统,还包括:充电线,所述充电线的一端包括与所述M个充电输入接口相匹配的M个第一接口,所述充电线的另一端包括与所述N个充电输出接口相匹配的N个第二接口,所述电源适配器的充电输出接口通过所述充电线连接到所述终端的充电输入接口。
根据本发明的一个实施例,所述M个充电输入接口中的每个充电输入接口通过上拉电阻与预设电源相连,且所述M个第一接口中的每个第一接口通过下拉电阻接地;所述N个充电输出接口中的每个充电输出接口通过所述上拉电阻与所述预设电源相连,且所述N个第二接口中的每个第二接口通过所述下拉电阻接所述地,其中,根据所述每个充电输入接口的电压和所述每个充电输出接口的电压判断所述电源适配器连接到所述终端的充电输出接口数量。
根据本发明的一个实施例,所述M个充电输入接口、所述M个第一接口、所述N个第二接口和所述N个充电输出接口中的每个接口均为USB接口。
为实现上述目的,本发明第二方面实施例提出的一种终端,包括:M个充电输入接口,其中,M为大于1的整数;电池;第一控制器,所述第一控制器分别与所述M个充电输入接口和所述电池相连,所述第一控制器用于在电源适配器的N个充电输出接口中的至少一个连接到所述充电输入接口时,判断所述电源适配器连接到所述充电输入接口的充电输出 接口数量,并根据所述电源适配器连接到所述充电输入接口的充电输出接口数量通过所述电源适配器对所述电源适配器输出至所述电池的充电电流进行调节,其中,N为大于1的整数。
根据本发明实施例的终端,第一控制器分别与M个充电输入接口和电池相连,第一控制器在电源适配器的N个充电输出接口中的至少一个连接到充电输入接口时,判断电源适配器连接到充电输入接口的充电输出接口数量,并根据电源适配器连接到充电输入接口的充电输出接口数量通过电源适配器对电源适配器输出至电池的充电电流进行调节。该终端通过多个充电输入接口对电池进行充电,能够有效解决由于单个充电输入接口的过流能力有限导致的充电电流无法提升的问题,从而解决了终端的快速充电问题。
根据本发明的一个实施例,如果所述电源适配器连接到所述充电输入接口的充电输出接口数量为k,所述第一控制器则通过所述电源适配器将所述电源适配器输出至所述电池的充电电流调节至k倍的预设充电电流,其中,k为大于等于1的整数。
根据本发明的一个实施例,所述M个充电输入接口中的每个充电输入接口通过上拉电阻与预设电源相连,其中,所述第一控制器根据所述每个充电输入接口的电压判断所述电源适配器连接到所述充电输入接口的充电输出接口数量。
根据本发明的一个实施例,所述M个充电输入接口为USB接口。
为实现上述目的,本发明第三方面实施例提出的一种电源适配器,包括:电源模块;N个充电输出接口,其中,N为大于1的整数;第二控制器,所述第二控制器分别与所述电源模块和所述N个充电输出接口相连,所述第二控制器用于在所述N个充电输出接口中的至少一个连接到终端的充电输入接口时,判断连接到所述终端的充电输出接口数量,并根据连接到所述终端的充电输出接口数量对所述电源模块输出至所述终端的充电电流进行调节。
根据本发明实施例的电源适配器,第二控制器分别与电源模块和N个充电输出接口相连,第二控制器在N个充电输出接口中的至少一个连接到终端的充电输入接口时,判断连接到终端的充电输出接口数量,并根据连接到终端的充电输出接口数量对电源模块输出至终端的充电电流进行调节。该电源适配器通过多个充电输出接口给终端进行供电,能够有效解决由于单个充电输出接口的过流能力有限导致的充电电流无法提升的问题,从而解决了快速充电的问题。
根据本发明的一个实施例,如果连接到所述终端的充电输出接口数量为k,所述第二控制器则将所述电源模块输出至所述终端的充电电流调节至k倍的预设充电电流,其中,k为大于等于1的整数。
根据本发明的一个实施例,所述N个充电输出接口中的每个充电输出接口通过上拉电 阻与预设电源相连,其中,所述第二控制器根据所述每个充电输出接口的电压判断连接到所述终端的充电输出接口数量。
根据本发明的一个实施例,所述N个充电输出接口为USB接口。
为实现上述目的,本发明第四方面实施例提出的一种充电线,包括:连接线;M个第一接口,所述M个第一接口与所述连接线的一端相连,且所述M个第一接口与终端的充电输入接口匹配设置;N个第二接口,所述N个第二接口与所述连接线的另一端相连,且所述N个第二接口与电源适配器的充电输出接口匹配设置,其中,M和N均为大于1的整数。
根据本发明实施例的充电线,连接线的一端具有M个第一接口,连接线的另一端具有N个第二接口,并且M个第一接口与终端的充电输入接口匹配设置,N个第二接口与电源适配器的充电输出接口匹配设置,从而可以使电源适配器的多个充电输出接口能够同时与终端的多个充电输入接口相连,以便电源适配器通过多个充电输入输出接口对终端进行充电,有效解决了当充电线的两端均只有一个接口时,而该接口的过流能力有限导致的充电电流无法提升的问题,从而解决了快速充电的问题。
根据本发明的一个实施例,所述M个第一接口中的每个第一接口通过下拉电阻接地,且所述N个第二接口中的每个第二接口通过所述下拉电阻接所述地。
根据本发明的一个实施例,所述M个第一接口和所述N个第二接口均为USB接口。
附图说明
图1是根据本发明实施例的充电系统的方框示意图;
图2是根据本发明一个实施例的充电系统的方框示意图;
图3是根据本发明另一个实施例的充电系统的方框示意图;
图4a和图4b是根据本发明一个实施例的充电输出接口和第二接口的结构示意图;
图5是根据本发明实施例的终端的方框示意图;
图6a和图6b是根据本发明一个实施例的充电输入接口和充电输出接口的结构示意图;
图7是根据本发明实施例的电源适配器的结构示意图;以及
图8是根据本发明实施例的充电线的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图来描述本发明实施例的充电系统、终端、电源适配器和充电线。
图1是根据本发明实施例的充电系统的方框示意图。如图1所示,该充电系统包括:终端100和电源适配器200。
其中,终端100包括第一控制器110和M个充电输入接口。电源适配器200包括第二控制器210和N个充电输出接口,当N个充电输出接口中的至少一个连接到终端100的充电输入接口时,第二控制器210与第一控制器110之间进行相互通信以判断电源适配器200连接到终端100的充电输出接口数量,并根据电源适配器200连接到终端100的充电输出接口数量对电源适配器200输出至终端100的充电电流进行调节,其中,M和N均为大于1的整数。
具体地,可以通过提高电源适配器200输出至终端100的充电电流来实现终端100的快速充电,但是,在对充电电流进行提高时,还需考虑电源适配器200的充电输出接口以及终端100的充电输入接口是否均能满足充电电流的要求。通常情况下,单个充电输入输出接口(例如USB接口)的过电流能力是有限的,如果不解决该问题,则很难对充电电流进行提高。
为此,在本发明的实施例中,可以在终端100上设置多个充电输入接口,并在电源适配器200上设置多个充电输出接口。当需要快速充电时,可以将终端100的多个充电输入接口与电源适配器200的多个充电输出接口相连,然后,根据电源适配器200连接到终端100的充电输出接口数量对电源适配器200输出至终端100的充电电流进行调节,使得电源适配器200可以通过多个接口给终端100进行充电,从而有效提高充电电流,达到快速充电的目的。
根据本发明的一个实施例,如果电源适配器200连接到终端100的充电输出接口数量为k,则将电源适配器200输出至终端100的充电电流调节至k倍的预设充电电流,其中,k为大于等于1的整数。
具体而言,假设每个充电输入接口和充电输出接口的过流能力都相同,且对应的充电电流为预设充电电流,那么当电源适配器200连接到终端100的充电输出接口数量为k时,电源适配器200输出至终端100的充电电流可以提高至k倍的预设充电电流。
例如,当终端100的一个充电输入接口与电源适配器200的一个充电输出接口相连时,充电电流为1倍的预设充电电流;当终端100的两个充电输入接口与电源适配器200的两个充电输出接口相连时,充电电流为两倍的预设充电电流,其中,每个接口对应1倍的预设充电电流,以此类推。由于该系统通过多个充电输入输出接口对终端进行充电,因而能够有效解决由于单个充电输入输出接口的过流能力有限导致的充电电流无法提升的问题,从而解决了快速充电的问题。
进一步地,在本发明的实施例中,可以通过第一控制器110或者第二控制器210对连 接到终端100的充电输出接口数量进行判断。
根据本发明的一个实施例,第二控制器210用于判断电源适配器200连接到终端100的充电输出接口数量,并根据电源适配器200连接到终端100的充电输出接口数量对电源适配器200输出至终端100的充电电流进行调节。
具体而言,当电源适配器200开启充电功能时,第二控制器210可以依次发送预设信号至各个充电输出接口,如果接收到第一控制器110反馈的信号,则说明该充电输出接口与终端100的充电输入接口相连,第二控制器210记录所有连接到终端100的充电输出接口数量,然后根据充电输出接口数量对充电电流进行调节。
根据本发明的另一个实施例,第一控制器110用于判断电源适配器200连接到终端100的充电输出接口数量,并根据电源适配器200连接到终端100的充电输出接口数量通过第二控制器210对电源适配器200输出至终端100的充电电流进行调节。
具体而言,当终端100开启充电功能时,第一控制器110可以依次发送预设信号至各个充电输入接口,如果接收到第二控制器210反馈的信号,则说明该充电输入接口与电源适配器200的充电输出接口相连,第一控制器110记录所有连接到终端100的充电输出接口数量,然后将充电输出接口数量发送至第二控制器210,以使第二控制器210根据充电输出接口数量对充电电流进行调节。
根据本发明的一个实施例,如图2和图3所示,上述的充电系统还包括:充电线300,充电线300的一端包括与M个充电输入接口相匹配的M个第一接口,充电线300的另一端包括与N个充电输出接口相匹配的N个第二接口,电源适配器200的充电输出接口通过充电线300连接到终端100的充电输入接口。
具体地,如图2所示,当用户不需要快速充电时,可以将充电线300的第一接口1与充电输入接口1相连,并将第二接口1和充电输出接口1相连,此时电源适配器200输出至终端100的充电电流为1倍的预设充电电流。
如图3所示,当用户需要快速充电时,可以将充电线300的第一接口1和第二接口2分别与充电输入接口1和充电输入接口2相连,并将充电线300的第二接口1和第二接口2分别与充电输出接口1和充电输出接口2相连,此时电源适配器200输出至终端100的充电电流为2倍的预设充电电流。
其中,M个充电输入接口、M个第一接口、N个第二接口和N个充电输出接口中的每个接口均可为USB接口。
进一步地,根据本发明的一个实施例,M个充电输入接口中的每个充电输入接口通过上拉电阻与预设电源相连,且M个第一接口中的每个第一接口通过下拉电阻接地;N个充电输出接口中的每个充电输出接口通过上拉电阻与预设电源相连,且N个第二接口中的每个 第二接口通过下拉电阻接地,其中,根据每个充电输入接口的电压和每个充电输出接口的电压判断电源适配器连接到终端的充电输出接口数量。
具体地,如图4a所示,充电输出接口和第二接口可以为USB接口(VBUS为电源端,GND为地端,D+和D-为数据端),其中,充电输出接口通过上拉电阻Rs与预设电源VCC(电压可以为3.3V)相连,第二接口通过下拉电阻Rx后接地。第二控制器210通过实时检测电压检测端的电压,即USB接口的电压来判断充电输出接口是否与第二接口相连。其中,当第二控制器210检测到的USB接口的电压为3.3V时,充电输出接口没有和第二接口相连;如图4b所示,当第二控制器210检测到的USB接口的电压小于3.3V时,充电输出接口与第二接口相连。通过该方式,第二控制器210可以自动检测出是否有充电输出接口与第二接口相连,以及连接的数量。
同样地,通过上述方式,第一控制器110也可以自动检测出是否有充电输入接口与第一接口相连,以及连接的数量。然后,第一控制器110与第二控制器210进行通信,以确定电源适配器200连接到终端100的充电输出接口数量。例如,可以以检测的较小的连接数量作为最终的充电输出接口数量,也可以通过第一控制器110与第二控制器210通过充电线300进行通信,以确定充电输出接口数量,从而防止与其它设备互联时造成充电输出接口数量出现错误。
需要说明的是,在本发明的实施例中,充电线300可以为一个线束,该线束由多根单体连接线构成,每个单体连接线的一端均连接有一个第一接口和一个第二接口;或者,充电线300由一根连接线、一个第一接口和一个第二接口构成,当需要快速充电时,可以使用多根充电线将电源适配器与终端相连。
综上所述,根据本发明实施例的充电系统,终端包括第一控制器和M个充电输入接口,电源适配器包括第二控制器和N个充电输出接口,其中,当N个充电输出接口中的至少一个连接到终端的充电输入接口时,第二控制器与第一控制器之间进行相互通信以判断电源适配器连接到终端的充电输出接口数量,并根据电源适配器连接到终端的充电输出接口数量对电源适配器输出至终端的充电电流进行调节。该系统通过多个充电输入输出接口对终端进行充电,能够有效解决由于单个充电输入输出接口的过流能力有限导致的充电电流无法提升的问题,从而解决快速充电的问题。
图5是根据本发明实施例的终端的方框示意图。如图5所示,该终端100包括:M个充电输入接口、第一控制器110和电池120。
其中,第一控制器110分别与M个充电输入接口和电池120相连,第一控制器110用于在电源适配器的N个充电输出接口中的至少一个连接到充电输入接口时,判断电源适配器连接到充电输入接口的充电输出接口数量,并根据电源适配器连接到充电输入接口的充 电输出接口数量通过电源适配器对电源适配器输出至电池120的充电电流进行调节。其中,M和N均为大于1的整数。
具体地,可以在终端100上设置多个充电输入接口,当需要快速充电时,可以将多个充电输入接口与电源适配器的多个充电输出接口相连,然后,第一控制器110判断连接到充电输入接口的充电输出接口数量,并将该数量发送至电源适配器,以使电源适配器根据该数量对输出至电池120的充电电流进行调节。
根据本发明的一个实施例,如果电源适配器连接到充电输入接口的充电输出接口数量为k,第一控制器110则通过电源适配器将电源适配器输出至电池120的充电电流调节至k倍的预设充电电流,其中,k为大于等于1的整数。
具体而言,假设每个充电输入接口和充电输出接口的过流能力都相同,且对应的充电电流为预设充电电流,那么当电源适配器连接到充电输入接口的充电输出接口数量为k时,电源适配器输出至电池120的充电电流可以提高至k倍的预设充电电流。
例如,当终端100的一个充电输入接口与电源适配器的一个充电输出接口相连时,充电电流为1倍的预设充电电流;当终端100的两个充电输入接口与电源适配器的两个充电输出接口相连时,充电电流为两倍的预设充电电流,其中,每个接口对应1倍的预设充电电流,以此类推。由于该终端通过多个充电输入接口对电池进行充电,因而能够有效解决由于单个充电输入接口的过流能力有限导致的充电电流无法提升的问题,从而解决了终端快速充电的问题。
根据本发明的一个实施例,M个充电输入接口中的每个充电输入接口通过上拉电阻与预设电源相连,第一控制器110根据每个充电输入接口的电压判断电源适配器连接到充电输入接口的充电输出接口数量。其中,M个充电输入接口可以为USB接口。
具体地,如图6a所示,充电输入接口和充电输出接口可以为USB接口,其中,终端100的充电输入接口通过上拉电阻Rs与预设电源VCC(电压可以为3.3V)相连,同时电源适配器的充电输出接口通过下拉电阻Rx与地相连,第一控制器110通过检测电压检测端的电压来判断连接到充电输入接口的充电输出接口数量。其中,当第一控制器110检测的电压为3.3V时,充电输入接口与充电输出接口不相连;如图6b所示,当第一控制器110检测的电压小于3.3V时,充电输入接口与充电输出接口相连。通过该方式,第一控制器110可以自动检测出是否有充电输出接口与充电输入接口相连,以及连接的数量。
可以理解的是,在本发明的实施例中,电源适配器也可以通过充电线与终端的充电输入接口相连,具体可参考图4a和图4b,这里不再详述。
在实际应用中,M个充电输入接口均可以焊接在柔性电路板上,再通过板对板连接器连接到第一控制器110上。
另外,需要说明的是,在本发明实施例中未披露的细节可参见本发明实施例的充电系统中所描述的内容,这里不再赘述。
根据本发明实施例的终端,第一控制器分别与M个充电输入接口和电池相连,第一控制器在电源适配器的N个充电输出接口中的至少一个连接到充电输入接口时,判断电源适配器连接到充电输入接口的充电输出接口数量,并根据电源适配器连接到充电输入接口的充电输出接口数量通过电源适配器对电源适配器输出至电池的充电电流进行调节。该终端通过多个充电输入接口对电池进行充电,能够有效解决由于单个充电输入接口的过流能力有限导致的充电电流无法提升的问题,从而解决了终端的快速充电问题。
图7是根据本发明实施例的电源适配器的结构示意图。如图7所示,该电源适配器200包括:N个充电输出接口、第二控制器210和电源模块220。
其中,第二控制器210分别与电源模块220和N个充电输出接口相连,第二控制器210用于在N个充电输出接口中的至少一个连接到终端的充电输入接口时,判断连接到终端的充电输出接口数量,并根据连接到终端的充电输出接口数量对电源模块220输出至终端的充电电流进行调节,其中,N为大于1的整数。
具体地,可以在电源适配器200上设置多个充电输出接口,当需要快速充电时,可以将终端的多个充电输入接口与电源适配器200的多个充电输出接口相连。然后,第二控制器210判断连接到终端的充电输出接口数量,并根据该数量对电源模块220输出至终端的充电电流进行调节。
根据本发明的一个实施例,如果连接到终端的充电输出接口数量为k,第二控制器210则将电源模块220输出至终端的充电电流调节至k倍的预设充电电流,其中,k为大于等于1的整数。
具体而言,假设每个充电输入接口和充电输出接口的过流能力都相同,且对应的充电电流为预设充电电流,那么当连接到终端的充电输出接口数量为k时,电源模块220输出至终端的充电电流可以提高至k倍的预设充电电流。
例如,当终端的一个充电输入接口与电源适配器200的一个充电输出接口相连时,充电电流为1倍的预设充电电流;当终端的两个充电输入接口与电源适配器200的两个充电输出接口相连时,充电电流为两倍的预设充电电流,其中,每个接口对应1倍的预设充电电流,以此类推。由于该电源适配器通过多个充电输出接口对终端进行充电,因而能够有效解决由于单个充电输出接口的过流能力有限导致的充电电流无法提升的问题,从而解决了快速充电的问题。
根据本发明的一个实施例,N个充电输出接口中的每个充电输出接口通过上拉电阻与预设电源相连,第二控制器210根据每个充电输出接口的电压判断连接到终端的充电输出接 口数量。其中,N个充电输出接口可以为USB接口。
具体地,充电输入接口和充电输出接口可以为USB接口,其中,电源适配器200的充电输出接口通过上拉电阻Rs与预设电源VCC(电压可以为3.3V)相连,同时终端的充电输入接口通过下拉电阻Rx与地相连,第二控制器210通过检测电压检测端的电压来判断连接到充电输入接口的充电输出接口数量。其中,当第二控制器210检测的电压为3.3V时,充电输入接口与充电输出接口不相连;当第二控制器210检测的电压小于3.3V时,充电输入接口与充电输出接口相连。通过该方式,第二控制器210可以自动检测出是否有充电输出接口与充电输入接口相连,以及连接的数量。具体可参考图6a和图6b。
可以理解的是,在本发明的实施例中,电源适配器也可以通过充电线与终端的充电输入接口相连,具体这里不再详述。
另外,需要说明的是,在本发明实施例中未披露的细节可参见本发明实施例的充电系统中所描述的内容,这里不再赘述。
根据本发明实施例的电源适配器,第二控制器分别与电源模块和N个充电输出接口相连,第二控制器在N个充电输出接口中的至少一个连接到终端的充电输入接口时,判断连接到终端的充电输出接口数量,并根据连接到终端的充电输出接口数量对电源模块输出至终端的充电电流进行调节。该电源适配器通过多个充电输出接口给终端进行供电,能够有效解决由于单个充电输出接口的过流能力有限导致的充电电流无法提升的问题,从而解决了快速充电的问题。
图8是根据本发明实施例的充电线的结构示意图。如图8所示,该充电线包括:连接线310、M个第一接口和N个第二接口。
其中,M个第一接口与连接线310的一端相连,且M个第一接口与终端的充电输入接口匹配设置。N个第二接口与所述连接线的另一端相连,且N个第二接口与电源适配器的充电输出接口匹配设置,M和N均为大于1的整数。
具体地,如图2所示,当用户不需要快速充电时,可以将充电线的第一接口1与充电输入接口1相连,并将第二接口1和充电输出接口1相连,此时电源适配器通过充电线输出至终端的充电电流为1倍的预设充电电流。
如图3所示,当用户需要快速充电时,可以将充电线的第一接口1和第二接口2分别与充电输入接口1和充电输入接口2相连,并将充电线的第二接口1和第二接口2分别与充电输出接口1和充电输出接口2相连,此时电源适配器通过充电线输出至终端的充电电流为2倍的预设充电电流。由于该充电线具有多个第一接口和第二接口,因而可以电源适配器可以通过多个第一接口和第二接口对终端进行充电,使得充电电流得以提高,有效解决了因充电线的每一端仅有一个接口导致的充电电流无法提升的问题。
需要说明的是,在本发明的实施例中,连接线310可以为一个线束,该线束由多根单体连接线构成,每个单体连接线的一端均连接有一个第一接口和一个第二接口;或者,充电线由一个连接线310、一个第一接口和一个第二接口构成,当需要快速充电时,可以使用多根充电线将电源适配器与终端相连。
根据本发明的一个实施例,M个第一接口中的每个第一接口通过下拉电阻接地,且N个第二接口中的每个第二接口通过下拉电阻接地。其中,M个第一接口和N个第二接口均可以为USB接口。
具体地,M个第一接口、N个第二接口、终端的充电输入接口和电源适配器的充电输出接口中的每个接口均可为USB接口。如图4a所示,电源适配器的充电输出接口可通过上拉电阻Rs与预设电源VCC(电压可以为3.3V)相连,充电线的第二接口可通过下拉电阻Rx后接地。此时电源适配器可通过实时检测电压检测端的电压,即USB接口的电压来判断充电输出接口是否与第二接口相连。其中,当电源适配器检测到的USB接口的电压为3.3V时,充电输出接口没有和第二接口相连;如图4b所示,当电源适配器检测到的USB接口的电压小于3.3V时,充电输出接口与第二接口相连。通过该方式,电源适配器可以自动检测出是否有充电输出接口与第二接口相连,以及连接的数量。
同样地,终端的充电输入接口可通过上拉电阻Rs与预设电源VCC(电压可以为3.3V)相连,充电线的第一接口可通过下拉电阻Rx后接地。此时终端可通过实时检测电压检测端的电压,即USB接口的电压来判断充电输入接口是否与第一接口相连。其中,当终端检测到的USB接口的电压为3.3V时,充电输入接口没有和第一接口相连;当终端检测到的USB接口的电压小于3.3V时,充电输入接口与第一接口相连。通过该方式,终端可以自动检测出是否有充电输入接口与第一接口相连,以及连接的数量。
然后,电源适配器与终端进行通信,以确定电源适配器通过充电线连接到终端的充电输出接口数量,最后根据连接到终端的充电输出接口数量对电源适配器输出至终端的充电电流进行调节,以实现快速充电的目的。
另外,需要说明的是,在本发明实施例中未披露的细节可参见本发明实施例的充电系统中所描述的内容,这里不再赘述。
根据本发明实施例的充电线,连接线的一端具有M个第一接口,连接线的另一端具有N个第二接口,并且M个第一接口与终端的充电输入接口匹配设置,N个第二接口与电源适配器的充电输出接口匹配设置,从而可以使电源适配器的多个充电输出接口能够同时与终端的多个充电输入接口相连,以便电源适配器通过多个充电输入输出接口对终端进行充电,有效解决了当充电线的两端均只有一个接口时,而该接口的过流能力有限导致的充电电流无法提升的问题,从而解决了快速充电的问题。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (18)

  1. 一种充电系统,其特征在于,包括:
    终端,所述终端包括第一控制器和M个充电输入接口,其中,M为大于1的整数;
    电源适配器,所述电源适配器包括第二控制器和N个充电输出接口,其中,当所述N个充电输出接口中的至少一个连接到所述终端的充电输入接口时,所述第二控制器与所述第一控制器之间进行相互通信以判断所述电源适配器连接到所述终端的充电输出接口数量,并根据所述电源适配器连接到所述终端的充电输出接口数量对所述电源适配器输出至所述终端的充电电流进行调节,其中,N为大于1的整数。
  2. 根据权利要求1所述的充电系统,其特征在于,所述第二控制器用于判断所述电源适配器连接到所述终端的充电输出接口数量,并根据所述电源适配器连接到所述终端的充电输出接口数量对所述电源适配器输出至所述终端的充电电流进行调节。
  3. 根据权利要求1所述的充电系统,其特征在于,所述第一控制器用于判断所述电源适配器连接到所述终端的充电输出接口数量,并根据所述电源适配器连接到所述终端的充电输出接口数量通过所述第二控制器对所述电源适配器输出至所述终端的充电电流进行调节。
  4. 根据权利要求1-3中任一项所述的充电系统,其特征在于,如果所述电源适配器连接到所述终端的充电输出接口数量为k,则将所述电源适配器输出至所述终端的充电电流调节至k倍的预设充电电流,其中,k为大于等于1的整数。
  5. 根据权利要求4所述的充电系统,其特征在于,还包括:
    充电线,所述充电线的一端包括与所述M个充电输入接口相匹配的M个第一接口,所述充电线的另一端包括与所述N个充电输出接口相匹配的N个第二接口,所述电源适配器的充电输出接口通过所述充电线连接到所述终端的充电输入接口。
  6. 根据权利要求5所述的充电系统,其特征在于,
    所述M个充电输入接口中的每个充电输入接口通过上拉电阻与预设电源相连,且所述M个第一接口中的每个第一接口通过下拉电阻接地;
    所述N个充电输出接口中的每个充电输出接口通过所述上拉电阻与所述预设电源相连,且所述N个第二接口中的每个第二接口通过所述下拉电阻接所述地,其中,
    根据所述每个充电输入接口的电压和所述每个充电输出接口的电压判断所述电源适配器连接到所述终端的充电输出接口数量。
  7. 根据权利要求1-6中任一项所述的充电系统,其特征在于,所述M个充电输入接口、所述M个第一接口、所述N个第二接口和所述N个充电输出接口中的每个接口均为USB接 口。
  8. 一种终端,其特征在于,包括:
    M个充电输入接口,其中,M为大于1的整数;
    电池;
    第一控制器,所述第一控制器分别与所述M个充电输入接口和所述电池相连,所述第一控制器用于在电源适配器的N个充电输出接口中的至少一个连接到所述充电输入接口时,判断所述电源适配器连接到所述充电输入接口的充电输出接口数量,并根据所述电源适配器连接到所述充电输入接口的充电输出接口数量通过所述电源适配器对所述电源适配器输出至所述电池的充电电流进行调节,其中,N为大于1的整数。
  9. 根据权利要求8所述的终端,其特征在于,如果所述电源适配器连接到所述充电输入接口的充电输出接口数量为k,所述第一控制器则通过所述电源适配器将所述电源适配器输出至所述电池的充电电流调节至k倍的预设充电电流,其中,k为大于等于1的整数。
  10. 根据权利要求8或9所述的终端,其特征在于,所述M个充电输入接口中的每个充电输入接口通过上拉电阻与预设电源相连,其中,
    所述第一控制器根据所述每个充电输入接口的电压判断所述电源适配器连接到所述充电输入接口的充电输出接口数量。
  11. 根据权利要求10所述的终端,其特征在于,所述M个充电输入接口为USB接口。
  12. 一种电源适配器,其特征在于,包括:
    电源模块;
    N个充电输出接口,其中,N为大于1的整数;
    第二控制器,所述第二控制器分别与所述电源模块和所述N个充电输出接口相连,所述第二控制器用于在所述N个充电输出接口中的至少一个连接到终端的充电输入接口时,判断连接到所述终端的充电输出接口数量,并根据连接到所述终端的充电输出接口数量对所述电源模块输出至所述终端的充电电流进行调节。
  13. 根据权利要求12所述的电源适配器,其特征在于,如果连接到所述终端的充电输出接口数量为k,所述第二控制器则将所述电源模块输出至所述终端的充电电流调节至k倍的预设充电电流,其中,k为大于等于1的整数。
  14. 根据权利要求12或13所述的电源适配器,其特征在于,所述N个充电输出接口中的每个充电输出接口通过上拉电阻与预设电源相连,其中,
    所述第二控制器根据所述每个充电输出接口的电压判断连接到所述终端的充电输出接口数量。
  15. 根据权利要求14所述的电源适配器,其特征在于,所述N个充电输出接口为USB 接口。
  16. 一种充电线,其特征在于,包括:
    连接线;
    M个第一接口,所述M个第一接口与所述连接线的一端相连,且所述M个第一接口与终端的充电输入接口匹配设置;
    N个第二接口,所述N个第二接口与所述连接线的另一端相连,且所述N个第二接口与电源适配器的充电输出接口匹配设置,其中,M和N均为大于1的整数。
  17. 根据权利要求16所示的充电线,其特征在于,所述M个第一接口中的每个第一接口通过下拉电阻接地,且所述N个第二接口中的每个第二接口通过所述下拉电阻接所述地。
  18. 根据权利要求16所示的充电线,其特征在于,所述M个第一接口和所述N个第二接口均为USB接口。
PCT/CN2017/078884 2016-07-28 2017-03-30 充电系统、终端、电源适配器和充电线 WO2018018916A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/310,955 US10910845B2 (en) 2016-07-28 2017-03-30 Terminal, power adapter for charging terminal, and charging line for coupling terminal and power adapter
EP17833223.5A EP3490100A4 (en) 2016-07-28 2017-03-30 LOAD SYSTEM, TERMINAL, POWER ADAPTER AND LOAD LINE
US16/435,530 US10720779B2 (en) 2016-07-28 2019-06-09 Quick charging system, terminal, power adapter and charging line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610608768.6 2016-07-28
CN201610608768.6A CN106100084B (zh) 2016-07-28 2016-07-28 充电系统、终端、电源适配器和充电线

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/310,955 A-371-Of-International US10910845B2 (en) 2016-07-28 2017-03-30 Terminal, power adapter for charging terminal, and charging line for coupling terminal and power adapter
US16/435,530 Continuation US10720779B2 (en) 2016-07-28 2019-06-09 Quick charging system, terminal, power adapter and charging line

Publications (1)

Publication Number Publication Date
WO2018018916A1 true WO2018018916A1 (zh) 2018-02-01

Family

ID=57479897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078884 WO2018018916A1 (zh) 2016-07-28 2017-03-30 充电系统、终端、电源适配器和充电线

Country Status (4)

Country Link
US (2) US10910845B2 (zh)
EP (1) EP3490100A4 (zh)
CN (2) CN106100084B (zh)
WO (1) WO2018018916A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106100084B (zh) * 2016-07-28 2018-05-29 广东欧珀移动通信有限公司 充电系统、终端、电源适配器和充电线
CN106374592A (zh) * 2016-11-30 2017-02-01 深圳天珑无线科技有限公司 一种终端及充电的方法
CN108270253A (zh) * 2016-12-30 2018-07-10 维沃移动通信有限公司 一种充电方法及移动终端
CN113078696A (zh) * 2020-01-03 2021-07-06 北京小米移动软件有限公司 电子设备及其充电方法,装置,可读存储介质
CN113009382B (zh) * 2021-02-25 2022-10-18 上海商米科技集团股份有限公司 一种自定义接口监测方法和装置
CN114034979A (zh) * 2021-11-12 2022-02-11 昆明理工大学 一种交流输电线路测距方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202737499U (zh) * 2012-06-20 2013-02-13 北京壹人壹本信息科技有限公司 便携式电子设备
CN103532187A (zh) * 2013-09-29 2014-01-22 小米科技有限责任公司 充电器、充电线、充电系统及充电方法
CN204376478U (zh) * 2015-01-29 2015-06-03 宝创企业股份有限公司 具有快速充电功能的移动电源装置
CN105656092A (zh) * 2014-11-12 2016-06-08 中兴通讯股份有限公司 一种充电方法及装置
CN205406887U (zh) * 2016-03-14 2016-07-27 重庆蓝岸通讯技术有限公司 多头usb充电线
CN106100084A (zh) * 2016-07-28 2016-11-09 广东欧珀移动通信有限公司 充电系统、终端、电源适配器和充电线

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218286A (en) * 1991-09-16 1993-06-08 Monarch Marking Systems, Inc. Multichannel battery charger
TW512232B (en) * 2001-05-08 2002-12-01 Prolific Technology Inc USB connection-detection circuitry and operation methods of the same
US7615965B2 (en) 2004-05-14 2009-11-10 O2Micro International Limited Power management system
US20080111522A1 (en) * 2006-11-15 2008-05-15 Motorola, Inc. Method and system for charging electronic devices
CN201113783Y (zh) 2007-10-23 2008-09-10 黄子田 一种具有多个usb接口的电源适配器
CN203151126U (zh) * 2012-12-04 2013-08-21 江苏嘉钰新能源技术有限公司 一机多充电动车充电机
CN203071364U (zh) * 2013-02-01 2013-07-17 海林电脑科技(深圳)有限公司 一种多功能数据线
CN104079022B (zh) * 2013-03-29 2017-06-27 联想(北京)有限公司 一种充电装置及充电方法
CN103219770B (zh) 2013-04-24 2015-07-15 惠州Tcl移动通信有限公司 一种具有多端口充电控制功能的移动终端
US10114401B2 (en) * 2013-11-18 2018-10-30 Infineon Technologies Ag System and method for a serial bus interface
KR20150089393A (ko) * 2014-01-27 2015-08-05 삼성전자주식회사 배터리 충전 제어 방법 및 그 전자 장치
US9711983B2 (en) * 2014-04-09 2017-07-18 Blackberry Limited Device, system and method for charging a battery
TWI536705B (zh) * 2014-10-09 2016-06-01 勝德國際研發股份有限公司 充電裝置
CN204131189U (zh) * 2014-10-24 2015-01-28 摩米士科技(深圳)有限公司 多接口双面usb适配器
CN204669001U (zh) * 2015-05-27 2015-09-23 深圳万思佳电器有限公司 快速充电连接器
CN104993182B (zh) 2015-08-05 2018-01-09 青岛海信移动通信技术股份有限公司 一种移动终端、可直充电源适配器及充电方法
CN204886307U (zh) * 2015-08-21 2015-12-16 昆山金鑫新能源科技有限公司 可快速充电的多串锂电池组充电电路
CN205070534U (zh) * 2015-10-29 2016-03-02 国网山东乐陵市供电公司 多功能手机充电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202737499U (zh) * 2012-06-20 2013-02-13 北京壹人壹本信息科技有限公司 便携式电子设备
CN103532187A (zh) * 2013-09-29 2014-01-22 小米科技有限责任公司 充电器、充电线、充电系统及充电方法
CN105656092A (zh) * 2014-11-12 2016-06-08 中兴通讯股份有限公司 一种充电方法及装置
CN204376478U (zh) * 2015-01-29 2015-06-03 宝创企业股份有限公司 具有快速充电功能的移动电源装置
CN205406887U (zh) * 2016-03-14 2016-07-27 重庆蓝岸通讯技术有限公司 多头usb充电线
CN106100084A (zh) * 2016-07-28 2016-11-09 广东欧珀移动通信有限公司 充电系统、终端、电源适配器和充电线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3490100A4 *

Also Published As

Publication number Publication date
CN106100084B (zh) 2018-05-29
US10910845B2 (en) 2021-02-02
US10720779B2 (en) 2020-07-21
CN108565915A (zh) 2018-09-21
CN106100084A (zh) 2016-11-09
EP3490100A1 (en) 2019-05-29
US20190356150A1 (en) 2019-11-21
EP3490100A4 (en) 2019-07-24
US20190296569A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
WO2018018916A1 (zh) 充电系统、终端、电源适配器和充电线
CN106716389B (zh) 用于快速usb充电的方法、电子装置及充电器设备
US8878484B2 (en) Methods, systems and apparatus for determining whether an accessory includes particular circuitry
US10241935B2 (en) Portable device, cable assembly, and USB system
US20140136863A1 (en) High voltage charging for a portable device
WO2021135687A1 (zh) 电子设备与兼具快充与音频传输功能的配件
JP2017525053A5 (zh)
US20130191566A1 (en) Overcoming Limited Common-Mode Range for USB Systems
KR20090028196A (ko) 휴대 단말기의 충전 장치 및 방법
CN111817380B (zh) 充电器、数据线、充电设备和电子设备
WO2017063459A1 (zh) Usb控制装置及设备
KR20160030261A (ko) 전류 제한을 변경하는 장치 및 방법
US20130113414A1 (en) Automatic mobile device detector
US10713200B2 (en) USB adapter and cable
TWI554889B (zh) 電子系統
TW201216070A (en) Host apparatus, management method and control circuit for universal serial bus
CN210379694U (zh) 多连接器数据线
EP2383860B1 (en) Rapid charging apparatus
US20190286593A1 (en) Audio Signal Transmission
US20150185817A1 (en) Charging circuit for usb interface
CN105098766B (zh) 电力输送控制器
US10063160B2 (en) Power adapter, cable, and charger
TWI548996B (zh) 電腦裝置
TWI633440B (zh) 電子裝置
TWM602743U (zh) 外部供電之傳輸裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017833223

Country of ref document: EP

Effective date: 20190221