EP3490100A1 - Charging system, terminal, power adapter and charging line - Google Patents

Charging system, terminal, power adapter and charging line Download PDF

Info

Publication number
EP3490100A1
EP3490100A1 EP17833223.5A EP17833223A EP3490100A1 EP 3490100 A1 EP3490100 A1 EP 3490100A1 EP 17833223 A EP17833223 A EP 17833223A EP 3490100 A1 EP3490100 A1 EP 3490100A1
Authority
EP
European Patent Office
Prior art keywords
charging
interfaces
terminal
coupled
power adapter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17833223.5A
Other languages
German (de)
French (fr)
Other versions
EP3490100A4 (en
Inventor
Xinfeng Chen
Chen TIAN
Jialiang Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Guangdong Oppo Mobile Telecommunications Corp Ltd
Publication of EP3490100A1 publication Critical patent/EP3490100A1/en
Publication of EP3490100A4 publication Critical patent/EP3490100A4/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/02Intermediate parts for distributing energy to two or more circuits in parallel, e.g. splitter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/06Intermediate parts for linking two coupling parts, e.g. adapter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of charging technologies, and more particularly to a charging system, a terminal, a power adapter and a charging line.
  • Quick charging is a charging method in which a storage battery reaches or nearly reaches a fully charged state.
  • a popular research topic focused by people is how to realize quick charging without damaging a performance and service life of the storage battery.
  • quick charging of the storage battery is mainly realized by enhancing a charging current.
  • the quick charging of the storage battery is greatly affected.
  • the present disclosure aims to solve one of technical problems in the related art to at least some extent.
  • a first objective of the present disclosure is to provide a charging system, which, by charging a terminal via a plurality of charging input interfaces and a plurality of charging output interfaces, may effectively solve a problem of being unable to enhance a charging current due to a limited overcurrent capacity of a single charging input interface and a single charging output interface, and thus solve the problem of quick charging.
  • a second objective of the present disclosure is to provide a terminal.
  • a third objective of the present disclosure is to provide a power adapter.
  • a fourth objective of the present disclosure is to provide a charging line.
  • a charging system provided by embodiments of a first aspect of the present disclosure includes: a terminal, including a first controller and M charging input interfaces, where M is an integer greater than 1; and a power adapter, including a second controller and N charging output interface, wherein, when at least one of the N charging output interfaces is coupled to the charging input interfaces of the terminal, the second controller and the first controller communicate with each other to determine a number of charging output interfaces of the power adapter coupled to the terminal, and a charging current outputted from the power adapter to the terminal is adjusted according to the number of charging output interfaces of the power adapter coupled to the terminal, where N is an integer greater than 1.
  • the terminal includes the first controller and M charging input interfaces
  • the power adapter includes the second controller and N charging output interfaces
  • the second controller and the first controller communicate with each other to determine the number of charging output interfaces of the power adapter coupled to the terminal, and the charging current outputted from the power adapter to the terminal is adjusted according to the number of charging output interfaces of the power adapter coupled to the terminal.
  • the terminal is charged via a plurality of charging input interfaces and a plurality of charging output interfaces, which effectively solves the problem of being unable to enhance a charging current due to a limited overcurrent capacity of a single charging input interface and a single charging output interface, and thus solve the problem of quick charging.
  • the second controller is configured to determine the number of charging output interfaces of the power adapter coupled to the terminal, and to adjust the charging current outputted from the power adapter to the terminal according to the number of charging output interfaces of the power adapter coupled to the terminal.
  • the first controller is configured to determine the number of charging output interfaces of the power adapter coupled to the terminal, and to adjust the charging current outputted from the power adapter to the terminal via the second controller according to the number of charging output interfaces of the power adapter coupled to the terminal.
  • the charging current outputted from the power adapter to the terminal is adjusted to k times a preset charging current, where k is an integer greater than or equal to 1.
  • the charging system further includes a charging line.
  • a first end of the charging line includes M first interfaces matching the M charging input interfaces, a second end of the charging line includes N second interfaces matching the N charging output interfaces, and the charging output interface of the power adapter is coupled to the charging input interface of the terminal via the charging line.
  • each of the M charging input interfaces is coupled to a preset power supply via a pull-up resistor, and each of the M first interfaces is grounded via a pull-down resistor; each of the N charging output interfaces is coupled to the preset power supply via the pull-up resistor, and each of the N second interfaces is grounded via the pull-down resistor, wherein the number of charging output interfaces of the power adapter coupled to the terminal is determined according to a voltage of each charging input interface and a voltage of each charging output interface.
  • each of the M charging input interfaces, the M first interfaces, the N second interfaces, and the N charging output interfaces is a USB interface.
  • a terminal provided by embodiments of a second aspect of the present disclosure includes: M charging input interfaces, where M is an integer greater than 1; a battery; and a first controller, coupled to the M charging input interfaces and the battery respectively, and configured to determine a number of charging output interfaces of a power adapter coupled to the charging input interfaces when at least one of N charging output interfaces of the power adapter is coupled to the charging input interfaces, and to adjust via the power adapter a charging current outputted from the power adapter to the battery according to the number of charging output interfaces of the power adapter coupled to the charging input interfaces, where N is an integer greater than 1.
  • the first controller is coupled to the M charging input interfaces and the battery respectively, and when at least one of the N charging output interfaces of the power adapter is coupled to the charging input interfaces, the first controller determines the number of charging output interfaces of the power adapter coupled to the charging input interfaces, and adjusts via the power adapter, the charging current outputted from the power adapter to the battery according to the number of charging output interfaces of the power adapter coupled to the charging input interfaces.
  • the battery is charged via the plurality of charging input interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of a single charging input interface, and thus solve the problem of quick charging.
  • the first controller when the number of charging output interfaces of the power adapter coupled to the charging input interfaces is k, the first controller is configured to adjust via the power adapter, the charging current outputted from the power adapter to the battery to k times a preset charging current, where k is an integer greater than or equal to 1.
  • each of the M charging input interfaces is coupled to a preset power supply via a pull-up resistor, wherein the first controller is configured to determine the number of charging output interfaces of the power adapter coupled to the charging input interfaces according to a voltage of each charging input interface.
  • each of the M charging input interfaces is a USB interface.
  • a power adapter provided by embodiments of a third aspect of the present disclosure includes: a power supply module; N charging output interfaces, where N is an integer greater than1; and a second controller, coupled to the power supply module and the N charging output interfaces respectively, and configured to determine a number of charging output interfaces coupled to a terminal when at least one of the N charging output interfaces is coupled to charging input interfaces of the terminal, and to adjust a charging current outputted from the power supply module to the terminal according to the number of charging output interfaces coupled to the terminal.
  • the second controller is coupled to the power supply module and the N charging output interfaces respectively, and when at least one of the N charging output interfaces is coupled to charging input interfaces of the terminal, the second controller determines the number of charging output interfaces coupled to the terminal and adjusts the charging current outputted from the power supply module to the terminal according to the number of charging output interfaces coupled to the terminal.
  • the power adapter supplies power for the terminal via the plurality of charging output interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of the single charging output interface, and thus solve the problem of quick charging.
  • the second controller when the number of charging output interfaces coupled to the terminal is k, the second controller is configured to adjust the charging current outputted from the power supply module to the terminal to k times a preset charging current, where k is an integer greater than or equal to 1.
  • each of the N charging output interfaces is coupled to a preset power supply via a pull-up resistor, wherein, the second controller is configured to determine the number of charging output interfaces coupled to the terminal according to a voltage of each charging output interface.
  • each of the N charging output interfaces is a USB interface.
  • a charging line provided by embodiments of a fourth aspect of the present disclosure includes: a connecting line; M first interfaces, coupled with a first end of the connecting line, and arranged to match charging input interfaces of a terminal; and N second interfaces, coupled with a second end of the connecting line, and arranged to match charging output interfaces of a power adapter, where M and N are integers greater than 1.
  • one end of the connecting line has M first interfaces
  • the other end of the connecting line has N second interfaces
  • the M first interfaces are arranged to match the charging input interfaces of the terminal
  • the N second interfaces are arranged to match the charging output interfaces of the power adapter, such that a plurality of charging output interfaces of a power adapter can be simultaneously coupled with a plurality of charging input interfaces of a terminal, and thus the power adapter can charge the terminal via the plurality of charging output interfaces and the plurality of charging input interfaces, which effectively solves a problem that, when each end of the charging line has one interface, it is unable to enhance the charging current due to the limited overcurrent capacity of the interface, and thus solves the problem of quick charging.
  • each of the M first interfaces is grounded via a pull-down resistor
  • each of the N second interfaces is grounded via the pull-down resistor
  • each of the M first interfaces and the N second interfaces is a USB interface.
  • Fig. 1 is a block diagram of a charging system according to embodiments of the present disclosure. As illustrated in Fig. 1 , the charging system includes a terminal 100 and a power adapter 200.
  • the terminal 100 includes a first controller 110 and M charging input interfaces.
  • the power adapter 200 includes a second controller 210 and N charging output interfaces. When at least one of the charging output interface is coupled to the charging input interface of the terminal 100, the second controller 210 and the first controller 110 communicate with each other to determine the number of charging output interfaces coupled to the terminal 100, and a charging current outputted from the power adapter 200 to the terminal 100 is adjusted according to the number of charging output interfaces of the power adapter 200, which are coupled to the terminal 100, where M and N are integers greater than 1.
  • quick charging of the terminal 100 can be achieved by enhancing the charging current outputted from the power adapter 200 to the terminal 100.
  • enhancing the charging current it is necessary to consider whether both the charging output interface of the power adapter 200 and the charging input interface of the terminal 100 can satisfy the requirement of the charging current.
  • an overcurrent capacity of a single charging input interface and a single charging output interface is limited, and if this problem is not solved, it is difficult to enhance the charging current.
  • a plurality of charging input interfaces can be arranged on the terminal, and a plurality of charging output interfaces can be arranged on the power adapter 200.
  • the plurality of charging output interfaces of the terminal 100 can be coupled with the plurality of charging input interfaces of the power adapter 200, and then the charging current outputted from the power adapter 200 to the terminal 100 is adjusted according to the number of charging output interfaces of the power adapter 200, which are coupled to the terminal 100, such that the power adapter 200 may charge the terminal 100 via the plurality of interfaces, thus effectively enhancing the charging current, and achieving the purpose of quick charging.
  • the charging current outputted from the power adapter 200 to the terminal 100 is adjusted to k times a preset charging current, where k is an integer greater than or equal to 1.
  • each of the charging input interfaces and the charging output interfaces has the same overcurrent capacity, and the corresponding charging current is the preset charging current, then when the number of charging output interfaces of the power adapter 200 which are coupled to the terminal 100 is k, the charging current outputted from the power adapter 200 to the terminal can be enhanced to k time the preset charging current.
  • the charging current is 1 times the preset charging current
  • the charging current is 2 times the preset charging current, each interface being corresponding to 1 times the preset charging current
  • the terminal is charged via the plurality of charging input interfaces and the plurality of charging output interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of a single charging output interface and a single charging input interface, and thus solve the problem of quick charging.
  • the number of charging output interfaces coupled to the terminal 100 may be determined by the first controller 110 or the second controller 210.
  • the second controller 210 is configured to determine the number of charging output interfaces of the power adapter 200 coupled to the terminal 100, and to adjust the charging current outputted from the power adapter 200 to the terminal 100 according to the number of charging output interfaces of the power adapter 200 coupled to the terminal 100.
  • the second controller 210 can send a preset signal to respective charging output interfaces in sequence. If the second controller 210 receives a signal fed back from the first controller 110, it indicates that the corresponding charging output interface is coupled with the charging input interface of the terminal 100. The second controller 210 records the number of all the charging output interfaces coupled to the terminal 100, and adjusts the charging current according to the number of charging output interfaces.
  • the first controller 110 is configured to determine the number of charging output interfaces of the power adapter 200 coupled to the terminal 100, and to adjust via the second controller 210, the charging current outputted from the power adapter 200 to the terminal 100 according to the number of charging output interfaces of the power adapter 200 coupled to the terminal 100.
  • the first controller 110 can send a preset signal to respective charging input interfaces in sequence. If the first controller 110 receives a signal fed back from the second controller 210, it indicates that the corresponding charging input interface is coupled with the charging output interface of the power adapter 200. The first controller 110 records the number of all the charging output interfaces coupled to the terminal 100, and sends the number of charging output interfaces to the second controller 210, such that the second controller 210 adjusts the charging current according to the number of charging output interfaces.
  • the charging system further includes a charging line 300.
  • a first end of the charging line 300 includes M first interfaces matching the M charging input interfaces.
  • a second end of the charging line 300 includes N second interfaces matching the N charging output interfaces.
  • the charging output interface of the power adapter 200 is coupled to the charging input interface of the terminal via the charging line 300.
  • the first interface 1 of the charging line 300 is coupled with the charging input interface 1, and the second interface 1 is coupled with the charging output interface 1.
  • the charging current outputted from the power adapter 200 to the terminal 100 is one times the preset charging current.
  • the first interface 1 and the first interface 2 of the charging line 300 can be coupled with the charging input interface 1 and the charging input interface 2 respectively, and the second interface 1 and the second interface 2 of the charging line can be coupled with the charging output interface 1 and the charging output interface 2 respectively.
  • the charging current outputted from the power adapter 200 to the terminal 100 is two times the preset charging current.
  • Each of the M charging input interfaces, the M first interfaces, the N second interfaces and the N charging output interfaces may be a USB interface.
  • each of the M charging input interfaces is coupled to a preset power supply via a pull-up resistor, and each of the M first interfaces is grounded via a pull-down resistor.
  • Each of the N charging output interfaces is coupled to a preset power supply via a pull-up resistor, and each of the N second interfaces is grounded via a pull-down resistor.
  • the number of charging output interfaces of the power adapter which are coupled to the terminal is determined according to a voltage of each charging input interface and a voltage of each charging output interface.
  • the charging output interface and the second interface may be a USB interface (VBUS is a power terminal, GND is a ground terminal, D+ and D- are data terminals).
  • the charging output interface is coupled with the preset power supply VCC (the voltage of which may be 3.3V) via the pull-up resistor Rs, and the second interface is grounded via the pull-down resistor Rx.
  • the second controller 210 determines whether the charging output interface is coupled with the second interface by detecting the voltage at the voltage detection end (i.e., the voltage of the USB interface) in real time. When the voltage of the USB interface detected by the second controller 210 is 3.3V, the charging output interface is not coupled with the second interface. As illustrated in Fig.
  • the second controller 210 may automatically detect whether the charging output interface is coupled with the second interface and the number of the charging output interfaces coupled with the second interfaces.
  • the first controller 110 may also automatically detect whether the charging input interface is coupled with the first interface and the number of charging input interfaces coupled with the first interfaces. Then, the controller 110 and the second controller 210 communicate with each other, to determine the number of charging output interfaces of the power adapter 200 which are coupled to the terminal 100. For example, a minimum of the detected numbers can be used as the final number of charging output interfaces coupled to the terminal. The first controller 110 and the second controller 210 may also communicate with each other via the charging line 300, to determine the number of charging output interfaces coupled to the terminal, avoiding the wrong number of coupled charging output interfaces when interconnected with other devices.
  • the charging line 300 may be a wire harness, the wire harness consisting of a plurality of single connecting lines, each single connecting line being coupled with one first interface and one second interface.
  • the charging line 300 may consist of one connecting line, one first interface, and one second interface, and when there is a need for quick charging, the power adapter can be coupled with the terminal via a plurality of charging lines.
  • the terminal includes the first controller and M charging input interfaces
  • the power adapter includes the second controller and N charging output interfaces
  • the second controller and the first controller communicate with each other to determine the number of charging output interfaces of the power adapter coupled to the terminal, and the charging current outputted from the power adapter to the terminal is adjusted according to the number of charging output interfaces of the power adapter coupled to the terminal.
  • the terminal is charged via a plurality of charging input interfaces and a plurality of charging output interfaces, which effectively solves the problem of being unable to enhance a charging current due to a limited overcurrent capacity of a single charging input interface and a single charging output interface, and thus solve the problem of quick charging.
  • Fig. 5 is a block diagram of a terminal according to embodiments of the present disclosure. As illustrated in Fig. 5 , the terminal 100 includes M charging input interfaces, a first controller 110 and a battery 120.
  • the first controller 110 is coupled with the M charging input interfaces and the battery 120 respectively.
  • the first controller 110 is configured to determine a number of charging output interfaces of a power adapter coupled to the charging input interfaces at least one of N charging output interfaces of the power adapter is coupled to the charging input interfaces, and to adjust via the power adapter a charging current outputted from the power adapter to the battery 120 according to the number of charging output interfaces of the power adapter coupled to the charging input interfaces, where N is an integer greater than 1.
  • a plurality of charging input interfaces may be provided on the terminal 100.
  • the plurality of charging input interfaces may be coupled with a plurality of charging output interfaces of the power adapter. Then, the first controller 110 determines the number of charging output interfaces coupled to the charging input interfaces, and sends the number to the power adapter, such that the power adapter adjusts the charging current outputted to the battery 120 according to the number.
  • the first controller 110 adjusts via the power adapter, the charging current outputted from the power adapter to the battery 120 to k times a preset charging current, where k is an integer greater than or equal to 1.
  • each of the charging input interfaces and the charging output interfaces has the same overcurrent capacity, and the corresponding charging current is the preset charging current, then when the number of charging output interfaces of the power adapter which are coupled to the terminal is k, the charging current outputted from the power adapter to the battery 120 can be enhanced to k time the preset charging current.
  • the charging current is 1 times the preset charging current
  • the charging current is 2 times the preset charging current, each interface being corresponding to 1 times the preset charging current
  • the battery is charged via the plurality of charging input interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of a single charging input interface, and thus solve the problem of quick charging.
  • each of the M charging input interfaces is coupled to a preset power supply via a pull-up resistor, and the first controller 110 is configured to determine the number of charging output interfaces of the power adapter coupled to the charging input interfaces according to the voltage of each charging input interface.
  • Each of the M charging input interfaces may be a USB interface.
  • each of the charging input interfaces and charging output interfaces may be a USB interface.
  • the charging input interface of the terminal 100 is coupled with the preset power supply VCC (the voltage of which may be 3.3V) via the pull-up resistor Rs, and the charging output interface of the power adapter is grounded via the pull-down resistor Rx.
  • the first controller 110 determines the number of charging output interfaces coupled with the charging input interfaces by detecting the voltage at the voltage detection end. When the voltage detected by the first controller 110 is 3.3V, the charging input interface is not coupled with the charging output interface. As illustrated in Fig. 6b , when the voltage detected by the first controller 110 is less than 3.3V, the charging input interface is coupled with the charging output interface. In this way, the first controller 110 may automatically detect whether the charging output interface is coupled with the charging input interface and the number of the charging output interfaces coupled with the charging input interfaces.
  • the power adapter can be coupled with the charging input interfaces of the terminal via a charging line, details of which can refer to Fig. 4a and Fig. 4b , which will not be elaborated here.
  • the M charging input interfaces may be welded on a flexible circuit board, which is coupled to the first controller 110 via a board to board connector.
  • the first controller is coupled to the M charging input interfaces and the battery respectively, and when at least one of the N charging output interfaces of the power adapter is coupled to the charging input interfaces, the first controller determines the number of charging output interfaces of the power adapter coupled to the charging input interfaces, and adjusts via the power adapter, the charging current outputted from the power adapter to the battery according to the number of charging output interfaces of the power adapter coupled to the charging input interfaces.
  • the battery is charged via the plurality of charging input interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of a single charging input interface, and thus solve the problem of quick charging.
  • Fig. 7 is a block diagram of a power adapter according to embodiments of the present disclosure. As illustrated in Fig. 7 , the power adapter 200 includes N charging output interfaces, a second controller 210 and a power supply module 220.
  • the second controller 210 is coupled to power supply module 220 and the N charging output interfaces respectively.
  • the second controller 210 is configured to determine a number of charging output interfaces coupled to a terminal when at least one of the N charging output interfaces is coupled to charging input interfaces of the terminal, and to adjust a charging current outputted from the power supply module 220 to the terminal according to the number of charging output interfaces coupled to the terminal, where N is an integer greater than 1.
  • a plurality of charging output interfaces may be provided on the power adapter 200.
  • the plurality of charging input interfaces of the terminal may be coupled with the plurality of charging output interfaces of the power adapter 200.
  • the second controller 210 determines the number of charging output interfaces coupled to the terminal, and adjusts the charging current outputted from the power supply module 220 to the terminal according to the number.
  • the second controller 210 adjusts the charging current outputted from the power supply module 220 to the terminal to k times a preset charging current, where k is an integer greater than or equal to 1.
  • each of the charging input interfaces and the charging output interfaces has the same overcurrent capacity, and the corresponding charging current is the preset charging current, then when the number of charging output interfaces coupled to the terminal is k, the charging current outputted from the power supply module 220 to the terminal can be enhanced to k time the preset charging current.
  • the charging current is 1 times the preset charging current
  • the charging current is 2 times the preset charging current, each interface being corresponding to 1 times the preset charging current
  • the power adapter charges the terminal via the plurality of charging output interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of a single charging output interface, and thus solve the problem of quick charging.
  • each of the N charging output interfaces is coupled to a preset power supply via a pull-up resistor, and the second controller 210 is configured to determine the number of charging output interfaces coupled to the terminal according to the voltage of each charging output interface.
  • Each of the N charging output interfaces may be a USB interface.
  • each of the charging input interfaces and charging output interfaces may be a USB interface.
  • the charging output interface of the power adapter 200 is coupled with the preset power supply VCC (the voltage of which may be 3.3V) via the pull-up resistor Rs, and the charging input interface of the terminal is grounded via the pull-down resistor Rx.
  • the second controller 210 determines the number of charging output interfaces coupled with the charging input interfaces by detecting the voltage at the voltage detection end. When the voltage detected by the second controller 210 is 3.3V, the charging output interface is not coupled with the charging input interface. When the voltage detected by the second controller 210 is less than 3.3V, the charging output interface is coupled with the charging input interface. In this way, the second controller 210 may automatically detect whether the charging output interface is coupled with the charging input interface and the number of the charging output interfaces coupled with the charging input interfaces.
  • the power adapter can be coupled with the charging input interfaces of the terminal via a charging line, which will not be elaborated here.
  • the second controller is coupled to the power supply module and the N charging output interfaces respectively, and when at least one of the N charging output interfaces is coupled to charging input interfaces of the terminal, the second controller determines the number of charging output interfaces coupled to the terminal and adjusts the charging current outputted from the power supply module to the terminal according to the number of charging output interfaces coupled to the terminal.
  • the power adapter supplies power for the terminal via the plurality of charging output interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of the single charging output interface, and thus solve the problem of quick charging.
  • Fig. 8 is a block diagram of a charging line according to embodiments of the present disclosure. As illustrated in Fig. 8 , the charging line includes a connecting line 210, M first interfaces, and N second interfaces.
  • Each of the M first interfaces is coupled with a first end of the connecting line 210, and the M first interfaces are arranged to match the charging input interfaces of the terminal.
  • Each of the N second interfaces is coupled with a second end of the connecting line 210, and the N second interfaces are arranged to match the charging output interfaces of the power adapter.
  • M and N are integers greater than 1.
  • the first interface 1 of the charging line may be coupled with the charging input interface 1, and the second interface 1 may be coupled with the charging output interface 1.
  • the charging current outputted from the power adapter to the terminal via the charging line may be one times the preset charging current.
  • the first interface 1 and the first interface 2 of the charging line may be coupled with the charging input interface 1 and the charging input interface 2 respectively, and the second interface 1 and the second interface 2 of the charging line may be coupled with the charging output interface 1 and the charging output interface 2 respectively.
  • the charging current outputted from the power adapter to the terminal via the charging line may be two times the preset charging current. Since the charging line has the plurality of first interfaces and the plurality of second interfaces, the power adapter may charge the terminal via the plurality of first interfaces and the plurality of second interfaces, such that the charging current may be enhanced, effectively solving the problem of being unable to enhance the charging current due to only one interface at each end of the charging line.
  • the charging line 300 may be a wire harness, the wire harness consisting of a plurality of single connecting lines, each single connecting line being coupled with one first interface and one second interface.
  • the charging line 300 may consist of one connecting line 310, one first interface, and one second interface, and when there is a need for quick charging, the power adapter can be coupled with the terminal via a plurality of charging lines.
  • each of the M first interfaces is grounded via a pull-down resistor
  • each of the N second interfaces is grounded via a pull-down resistor.
  • Each of the M first interfaces and N second interfaces may be a USB interface.
  • each of the M first interfaces, the N second interfaces, the charging input interfaces of the terminal, and the charging output interfaces of the power adapter may be a USB interface.
  • the charging output interface of the power adapter may be coupled with the preset power supply VCC (the voltage of which may be 3.3V) via the pull-up resistor Rs, and the second interface of the charging line may be grounded via the pull-down resistor Rx.
  • the power adapter may determine whether the charging output interface is coupled with the second interface by detecting the voltage at the voltage detection end (i.e., the voltage of the USB interface) in real time.
  • the charging output interface When the voltage of the USB interface detected by the power adapter is 3.3V, the charging output interface is not coupled with the second interface. As illustrated in Fig. 4b , when the voltage of the USB interface detected by the power adapter is less than 3.3V, the charging output interface is coupled with the second interface. In this way, the power adapter may automatically detect whether the charging output interface is coupled with the second interface and the number of the charging output interfaces coupled with the second interfaces.
  • the charging input interface of the terminal may be coupled with the preset power supply VCC (the voltage of which may be 3.3V) via the pull-up resistor Rs, and the first interface of the charging line may be grounded via the pull-down resistor Rx.
  • the terminal may determine whether the charging input interface is coupled with the first interface by detecting the voltage at the voltage detection end (i.e., the voltage of the USB interface) in real time. When the voltage of the USB interface detected by the terminal is 3.3V, the charging input interface is not coupled with the first interface. When the voltage of the USB interface detected by the terminal is less than 3.3V, the charging input interface is coupled with the first interface. In this way, the terminal may automatically detect whether the charging input interface is coupled with the first interface and the number of the charging input interfaces coupled with the first interfaces.
  • the power adapter and the terminal communicate with each other, to determine the number of charging output interfaces of the power adapter coupled to the terminal via the charging line. Finally, the charging current outputted from the power adapter to the terminal is adjusted according to the number of charging output interfaces coupled to the terminal, to realize the purpose of quick charging.
  • one end of the connecting line has M first interfaces
  • the other end of the connecting line has N second interfaces
  • the M first interfaces are arranged to match the charging input interfaces of the terminal
  • the N second interfaces are arranged to match the charging output interfaces of the power adapter, such that a plurality of charging output interfaces of a power adapter can be simultaneously coupled with a plurality of charging input interfaces of a terminal, and thus the power adapter can charge the terminal via the plurality of charging output interfaces and the plurality of charging input interfaces, which effectively solves a problem that, when each end of the charging line has one interface, it is unable to enhance the charging current due to the limited overcurrent capacity of the interface, and thus solves the problem of quick charging.
  • the terms such as “mounted,” “connected,” “coupled” and “fixed” should be understood in a broad sense, for example, may be in fixed connection, and may also be in detachable connection, or integrated into one; may be in mechanical connection, and may also be in electrical connection; may be in direct connection, and may also be connected via intermediate medium; may be intercommunication inside two elements or interactive relationship between two elements.

Abstract

Disclosed are a charging system, a terminal, a power adapter and a charging line. The charging system comprises: a terminal, wherein the terminal comprises a first controller and M charging input interfaces; and a power adapter, wherein the power adapter comprises a second controller and N charging output interfaces, when at least one of the N charging output interface is connected to the charging input interfaces of the terminal, the second controller and the first controller communicate with each other so as to judge the number of charging output interfaces, connected to the terminal, of the power adapter, and a charging current output to the terminal by the power adapter is adjusted according to the number of charging output interfaces, connected to the terminal, of the power adapter. By means of the system, the terminal is charged by means of multiple charging input interfaces and charging output interfaces, so that the problem that the charging current cannot be improved caused by the limited overcurrent capability of a single charging input interface and a single charging output interface can be effectively solved, thus solving the problem of quick charging.

Description

  • This application claims priority to Chinese patent application Serial No. 201610608768.6 filed by GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD. on July 28, 2016, and titled with "charging system, terminal, power adapter and charging line", the entire contents of which are incorporated herein by reference.
  • FIELD
  • The present disclosure relates to the field of charging technologies, and more particularly to a charging system, a terminal, a power adapter and a charging line.
  • BACKGROUND
  • Quick charging is a charging method in which a storage battery reaches or nearly reaches a fully charged state. A popular research topic focused by people is how to realize quick charging without damaging a performance and service life of the storage battery.
  • At present, quick charging of the storage battery is mainly realized by enhancing a charging current. However, limited to an overcurrent capacity of a charging input interface and a charging output interface of a charging device and a device to be charged, the quick charging of the storage battery is greatly affected.
  • SUMMARY
  • The present disclosure aims to solve one of technical problems in the related art to at least some extent.
  • For this, a first objective of the present disclosure is to provide a charging system, which, by charging a terminal via a plurality of charging input interfaces and a plurality of charging output interfaces, may effectively solve a problem of being unable to enhance a charging current due to a limited overcurrent capacity of a single charging input interface and a single charging output interface, and thus solve the problem of quick charging.
  • A second objective of the present disclosure is to provide a terminal.
  • A third objective of the present disclosure is to provide a power adapter.
  • A fourth objective of the present disclosure is to provide a charging line.
  • In order to achieve above objectives, a charging system provided by embodiments of a first aspect of the present disclosure includes: a terminal, including a first controller and M charging input interfaces, where M is an integer greater than 1; and a power adapter, including a second controller and N charging output interface, wherein, when at least one of the N charging output interfaces is coupled to the charging input interfaces of the terminal, the second controller and the first controller communicate with each other to determine a number of charging output interfaces of the power adapter coupled to the terminal, and a charging current outputted from the power adapter to the terminal is adjusted according to the number of charging output interfaces of the power adapter coupled to the terminal, where N is an integer greater than 1.
  • With the charging system according to embodiments of the present disclosure, the terminal includes the first controller and M charging input interfaces, the power adapter includes the second controller and N charging output interfaces, and when at least one of the N charging output interfaces is coupled to the charging input interfaces of the terminal, the second controller and the first controller communicate with each other to determine the number of charging output interfaces of the power adapter coupled to the terminal, and the charging current outputted from the power adapter to the terminal is adjusted according to the number of charging output interfaces of the power adapter coupled to the terminal. With the system, the terminal is charged via a plurality of charging input interfaces and a plurality of charging output interfaces, which effectively solves the problem of being unable to enhance a charging current due to a limited overcurrent capacity of a single charging input interface and a single charging output interface, and thus solve the problem of quick charging.
  • According to an embodiment of the present disclosure, the second controller is configured to determine the number of charging output interfaces of the power adapter coupled to the terminal, and to adjust the charging current outputted from the power adapter to the terminal according to the number of charging output interfaces of the power adapter coupled to the terminal.
  • According to an embodiment of the present disclosure, the first controller is configured to determine the number of charging output interfaces of the power adapter coupled to the terminal, and to adjust the charging current outputted from the power adapter to the terminal via the second controller according to the number of charging output interfaces of the power adapter coupled to the terminal.
  • According to an embodiment of the present disclosure, when the number of charging output interfaces of the power adapter coupled to the terminal is k, the charging current outputted from the power adapter to the terminal is adjusted to k times a preset charging current, where k is an integer greater than or equal to 1.
  • According to an embodiment of the present disclosure, the charging system further includes a charging line. A first end of the charging line includes M first interfaces matching the M charging input interfaces, a second end of the charging line includes N second interfaces matching the N charging output interfaces, and the charging output interface of the power adapter is coupled to the charging input interface of the terminal via the charging line.
  • According to an embodiment of the present disclosure, each of the M charging input interfaces is coupled to a preset power supply via a pull-up resistor, and each of the M first interfaces is grounded via a pull-down resistor; each of the N charging output interfaces is coupled to the preset power supply via the pull-up resistor, and each of the N second interfaces is grounded via the pull-down resistor, wherein the number of charging output interfaces of the power adapter coupled to the terminal is determined according to a voltage of each charging input interface and a voltage of each charging output interface.
  • According to an embodiment of the present disclosure, each of the M charging input interfaces, the M first interfaces, the N second interfaces, and the N charging output interfaces is a USB interface.
  • In order to achieve above objectives, a terminal provided by embodiments of a second aspect of the present disclosure includes: M charging input interfaces, where M is an integer greater than 1; a battery; and a first controller, coupled to the M charging input interfaces and the battery respectively, and configured to determine a number of charging output interfaces of a power adapter coupled to the charging input interfaces when at least one of N charging output interfaces of the power adapter is coupled to the charging input interfaces, and to adjust via the power adapter a charging current outputted from the power adapter to the battery according to the number of charging output interfaces of the power adapter coupled to the charging input interfaces, where N is an integer greater than 1.
  • With the terminal according to embodiments of the present disclosure, the first controller is coupled to the M charging input interfaces and the battery respectively, and when at least one of the N charging output interfaces of the power adapter is coupled to the charging input interfaces, the first controller determines the number of charging output interfaces of the power adapter coupled to the charging input interfaces, and adjusts via the power adapter, the charging current outputted from the power adapter to the battery according to the number of charging output interfaces of the power adapter coupled to the charging input interfaces. With the terminal, the battery is charged via the plurality of charging input interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of a single charging input interface, and thus solve the problem of quick charging.
  • According to an embodiment of the present disclosure, when the number of charging output interfaces of the power adapter coupled to the charging input interfaces is k, the first controller is configured to adjust via the power adapter, the charging current outputted from the power adapter to the battery to k times a preset charging current, where k is an integer greater than or equal to 1.
  • According to an embodiment of the present disclosure, each of the M charging input interfaces is coupled to a preset power supply via a pull-up resistor, wherein the first controller is configured to determine the number of charging output interfaces of the power adapter coupled to the charging input interfaces according to a voltage of each charging input interface.
  • According to an embodiment of the present disclosure, each of the M charging input interfaces is a USB interface.
  • In order to achieve above objectives, a power adapter provided by embodiments of a third aspect of the present disclosure includes: a power supply module; N charging output interfaces, where N is an integer greater than1; and a second controller, coupled to the power supply module and the N charging output interfaces respectively, and configured to determine a number of charging output interfaces coupled to a terminal when at least one of the N charging output interfaces is coupled to charging input interfaces of the terminal, and to adjust a charging current outputted from the power supply module to the terminal according to the number of charging output interfaces coupled to the terminal.
  • With the power adapter according to embodiments of the present disclosure, the second controller is coupled to the power supply module and the N charging output interfaces respectively, and when at least one of the N charging output interfaces is coupled to charging input interfaces of the terminal, the second controller determines the number of charging output interfaces coupled to the terminal and adjusts the charging current outputted from the power supply module to the terminal according to the number of charging output interfaces coupled to the terminal. The power adapter supplies power for the terminal via the plurality of charging output interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of the single charging output interface, and thus solve the problem of quick charging.
  • According to an embodiment of the present disclosure, when the number of charging output interfaces coupled to the terminal is k, the second controller is configured to adjust the charging current outputted from the power supply module to the terminal to k times a preset charging current, where k is an integer greater than or equal to 1.
  • According to an embodiment of the present disclosure, each of the N charging output interfaces is coupled to a preset power supply via a pull-up resistor, wherein, the second controller is configured to determine the number of charging output interfaces coupled to the terminal according to a voltage of each charging output interface.
  • According to an embodiment of the present disclosure, each of the N charging output interfaces is a USB interface.
  • In order to achieve above objectives, a charging line provided by embodiments of a fourth aspect of the present disclosure includes: a connecting line; M first interfaces, coupled with a first end of the connecting line, and arranged to match charging input interfaces of a terminal; and N second interfaces, coupled with a second end of the connecting line, and arranged to match charging output interfaces of a power adapter, where M and N are integers greater than 1.
  • With the charging line according to embodiments of the present disclosure, one end of the connecting line has M first interfaces, the other end of the connecting line has N second interfaces, and the M first interfaces are arranged to match the charging input interfaces of the terminal, and the N second interfaces are arranged to match the charging output interfaces of the power adapter, such that a plurality of charging output interfaces of a power adapter can be simultaneously coupled with a plurality of charging input interfaces of a terminal, and thus the power adapter can charge the terminal via the plurality of charging output interfaces and the plurality of charging input interfaces, which effectively solves a problem that, when each end of the charging line has one interface, it is unable to enhance the charging current due to the limited overcurrent capacity of the interface, and thus solves the problem of quick charging.
  • According to an embodiment of the present disclosure, each of the M first interfaces is grounded via a pull-down resistor, and each of the N second interfaces is grounded via the pull-down resistor.
  • According to an embodiment of the present disclosure, each of the M first interfaces and the N second interfaces is a USB interface.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • Fig. 1 is a block diagram of a charging system according to embodiments of the present disclosure.
    • Fig. 2 is a block diagram of a charging system accord to an embodiment of the present disclosure.
    • Fig. 3 is a block diagram of a charging system according to another embodiment of the present disclosure.
    • Fig. 4a and Fig. 4b are schematic diagrams of a charging output interface and a second interface according to an embodiment of the present disclosure.
    • Fig. 5 is a block diagram of a terminal according to embodiments of the present disclosure.
    • Fig. 6a and Fig. 6b are schematic diagrams of a charging input interface and a charging output interface according to an embodiment of the present disclosure.
    • Fig. 7 is a block diagram of a power adapter according to embodiments of the present disclosure.
    • Fig. 8 is a block diagram of a charging line according to embodiments of the present disclosure.
    EMBODIMENTS OF THE PRESENT DISCLOSURE
  • Embodiments of the present disclosure will be described in detail below. Examples of the embodiments are illustrated in drawings, in which the same or similar elements and the elements having same or similar functions are denoted by like reference numerals throughout the descriptions. The embodiments described herein with reference to drawings are explanatory, and used to explain the present disclosure. The embodiments shall not be construed to limit the present disclosure.
  • In the following, a charging system, a terminal, a power adapter and a charging line according to embodiments of the present disclosure will be described with reference to drawings.
  • Fig. 1 is a block diagram of a charging system according to embodiments of the present disclosure. As illustrated in Fig. 1, the charging system includes a terminal 100 and a power adapter 200.
  • The terminal 100 includes a first controller 110 and M charging input interfaces. The power adapter 200 includes a second controller 210 and N charging output interfaces. When at least one of the charging output interface is coupled to the charging input interface of the terminal 100, the second controller 210 and the first controller 110 communicate with each other to determine the number of charging output interfaces coupled to the terminal 100, and a charging current outputted from the power adapter 200 to the terminal 100 is adjusted according to the number of charging output interfaces of the power adapter 200, which are coupled to the terminal 100, where M and N are integers greater than 1.
  • In detail, quick charging of the terminal 100 can be achieved by enhancing the charging current outputted from the power adapter 200 to the terminal 100. However, when enhancing the charging current, it is necessary to consider whether both the charging output interface of the power adapter 200 and the charging input interface of the terminal 100 can satisfy the requirement of the charging current. In general, an overcurrent capacity of a single charging input interface and a single charging output interface (for example, a USB interface) is limited, and if this problem is not solved, it is difficult to enhance the charging current.
  • For this, in embodiments of the present disclosure, a plurality of charging input interfaces can be arranged on the terminal, and a plurality of charging output interfaces can be arranged on the power adapter 200. When there is a need for quick charging, the plurality of charging output interfaces of the terminal 100 can be coupled with the plurality of charging input interfaces of the power adapter 200, and then the charging current outputted from the power adapter 200 to the terminal 100 is adjusted according to the number of charging output interfaces of the power adapter 200, which are coupled to the terminal 100, such that the power adapter 200 may charge the terminal 100 via the plurality of interfaces, thus effectively enhancing the charging current, and achieving the purpose of quick charging.
  • According to an embodiment of the present disclosure, when the number of charging output interfaces of the power adapter 200, which are coupled to the terminal 100, is k, the charging current outputted from the power adapter 200 to the terminal 100 is adjusted to k times a preset charging current, where k is an integer greater than or equal to 1.
  • In detail, assume that each of the charging input interfaces and the charging output interfaces has the same overcurrent capacity, and the corresponding charging current is the preset charging current, then when the number of charging output interfaces of the power adapter 200 which are coupled to the terminal 100 is k, the charging current outputted from the power adapter 200 to the terminal can be enhanced to k time the preset charging current.
  • For example, when one charging input interface of the terminal 100 is coupled with one charging output interface of the power adapter 200, the charging current is 1 times the preset charging current; when two charging input interfaces of the terminal 100 are coupled with two charging output interfaces of the power adapter 200, the charging current is 2 times the preset charging current, each interface being corresponding to 1 times the preset charging current; and so on. With the system, the terminal is charged via the plurality of charging input interfaces and the plurality of charging output interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of a single charging output interface and a single charging input interface, and thus solve the problem of quick charging.
  • Further, in embodiments of the present disclosure, the number of charging output interfaces coupled to the terminal 100 may be determined by the first controller 110 or the second controller 210.
  • According to an embodiment of the present disclosure, the second controller 210 is configured to determine the number of charging output interfaces of the power adapter 200 coupled to the terminal 100, and to adjust the charging current outputted from the power adapter 200 to the terminal 100 according to the number of charging output interfaces of the power adapter 200 coupled to the terminal 100.
  • In detail, when the power adapter 200 enables the charging function, the second controller 210 can send a preset signal to respective charging output interfaces in sequence. If the second controller 210 receives a signal fed back from the first controller 110, it indicates that the corresponding charging output interface is coupled with the charging input interface of the terminal 100. The second controller 210 records the number of all the charging output interfaces coupled to the terminal 100, and adjusts the charging current according to the number of charging output interfaces.
  • According to another embodiment of the present disclosure, the first controller 110 is configured to determine the number of charging output interfaces of the power adapter 200 coupled to the terminal 100, and to adjust via the second controller 210, the charging current outputted from the power adapter 200 to the terminal 100 according to the number of charging output interfaces of the power adapter 200 coupled to the terminal 100.
  • In detail, when the terminal 100 enables the charging function, the first controller 110 can send a preset signal to respective charging input interfaces in sequence. If the first controller 110 receives a signal fed back from the second controller 210, it indicates that the corresponding charging input interface is coupled with the charging output interface of the power adapter 200. The first controller 110 records the number of all the charging output interfaces coupled to the terminal 100, and sends the number of charging output interfaces to the second controller 210, such that the second controller 210 adjusts the charging current according to the number of charging output interfaces.
  • According to an embodiment of the present disclosure, as illustrated in Fig. 2 and Fig. 3, the charging system further includes a charging line 300. A first end of the charging line 300 includes M first interfaces matching the M charging input interfaces. A second end of the charging line 300 includes N second interfaces matching the N charging output interfaces. The charging output interface of the power adapter 200 is coupled to the charging input interface of the terminal via the charging line 300.
  • In detail, as illustrated in Fig. 2, wherein there is no need for quick charging, the first interface 1 of the charging line 300 is coupled with the charging input interface 1, and the second interface 1 is coupled with the charging output interface 1. In this case, the charging current outputted from the power adapter 200 to the terminal 100 is one times the preset charging current.
  • As illustrated in Fig. 3, wherein there is a need for quick charging, the first interface 1 and the first interface 2 of the charging line 300 can be coupled with the charging input interface 1 and the charging input interface 2 respectively, and the second interface 1 and the second interface 2 of the charging line can be coupled with the charging output interface 1 and the charging output interface 2 respectively. In this case, the charging current outputted from the power adapter 200 to the terminal 100 is two times the preset charging current.
  • Each of the M charging input interfaces, the M first interfaces, the N second interfaces and the N charging output interfaces may be a USB interface.
  • Further, according to an embodiment of the present disclosure, each of the M charging input interfaces is coupled to a preset power supply via a pull-up resistor, and each of the M first interfaces is grounded via a pull-down resistor. Each of the N charging output interfaces is coupled to a preset power supply via a pull-up resistor, and each of the N second interfaces is grounded via a pull-down resistor. The number of charging output interfaces of the power adapter which are coupled to the terminal is determined according to a voltage of each charging input interface and a voltage of each charging output interface.
  • In detail, as illustrated in Fig. 4a, the charging output interface and the second interface may be a USB interface (VBUS is a power terminal, GND is a ground terminal, D+ and D- are data terminals). The charging output interface is coupled with the preset power supply VCC (the voltage of which may be 3.3V) via the pull-up resistor Rs, and the second interface is grounded via the pull-down resistor Rx. The second controller 210 determines whether the charging output interface is coupled with the second interface by detecting the voltage at the voltage detection end (i.e., the voltage of the USB interface) in real time. When the voltage of the USB interface detected by the second controller 210 is 3.3V, the charging output interface is not coupled with the second interface. As illustrated in Fig. 4b, when the voltage of the USB interface detected by the second controller 210 is less than 3.3V, the charging output interface is coupled with the second interface. In this way, the second controller 210 may automatically detect whether the charging output interface is coupled with the second interface and the number of the charging output interfaces coupled with the second interfaces.
  • Similarly, in the above way, the first controller 110 may also automatically detect whether the charging input interface is coupled with the first interface and the number of charging input interfaces coupled with the first interfaces. Then, the controller 110 and the second controller 210 communicate with each other, to determine the number of charging output interfaces of the power adapter 200 which are coupled to the terminal 100. For example, a minimum of the detected numbers can be used as the final number of charging output interfaces coupled to the terminal. The first controller 110 and the second controller 210 may also communicate with each other via the charging line 300, to determine the number of charging output interfaces coupled to the terminal, avoiding the wrong number of coupled charging output interfaces when interconnected with other devices.
  • It should be noted that, in embodiments of the present disclosure, the charging line 300 may be a wire harness, the wire harness consisting of a plurality of single connecting lines, each single connecting line being coupled with one first interface and one second interface. Or, the charging line 300 may consist of one connecting line, one first interface, and one second interface, and when there is a need for quick charging, the power adapter can be coupled with the terminal via a plurality of charging lines.
  • In conclusion, with the charging system according to embodiments of the present disclosure, the terminal includes the first controller and M charging input interfaces, the power adapter includes the second controller and N charging output interfaces, and when at least one of the N charging output interfaces is coupled to the charging input interfaces of the terminal, the second controller and the first controller communicate with each other to determine the number of charging output interfaces of the power adapter coupled to the terminal, and the charging current outputted from the power adapter to the terminal is adjusted according to the number of charging output interfaces of the power adapter coupled to the terminal. With the system, the terminal is charged via a plurality of charging input interfaces and a plurality of charging output interfaces, which effectively solves the problem of being unable to enhance a charging current due to a limited overcurrent capacity of a single charging input interface and a single charging output interface, and thus solve the problem of quick charging.
  • Fig. 5 is a block diagram of a terminal according to embodiments of the present disclosure. As illustrated in Fig. 5, the terminal 100 includes M charging input interfaces, a first controller 110 and a battery 120.
  • The first controller 110 is coupled with the M charging input interfaces and the battery 120 respectively. The first controller 110 is configured to determine a number of charging output interfaces of a power adapter coupled to the charging input interfaces at least one of N charging output interfaces of the power adapter is coupled to the charging input interfaces, and to adjust via the power adapter a charging current outputted from the power adapter to the battery 120 according to the number of charging output interfaces of the power adapter coupled to the charging input interfaces, where N is an integer greater than 1.
  • In detail, a plurality of charging input interfaces may be provided on the terminal 100. When there is a need for quick charging, the plurality of charging input interfaces may be coupled with a plurality of charging output interfaces of the power adapter. Then, the first controller 110 determines the number of charging output interfaces coupled to the charging input interfaces, and sends the number to the power adapter, such that the power adapter adjusts the charging current outputted to the battery 120 according to the number.
  • According to an embodiment of the present disclosure, when the number of charging output interfaces of the power adapter which are coupled to the charging input interfaces is k, the first controller 110 adjusts via the power adapter, the charging current outputted from the power adapter to the battery 120 to k times a preset charging current, where k is an integer greater than or equal to 1.
  • In detail, assume that each of the charging input interfaces and the charging output interfaces has the same overcurrent capacity, and the corresponding charging current is the preset charging current, then when the number of charging output interfaces of the power adapter which are coupled to the terminal is k, the charging current outputted from the power adapter to the battery 120 can be enhanced to k time the preset charging current.
  • For example, when one charging input interface of the terminal 100 is coupled with one charging output interface of the power adapter, the charging current is 1 times the preset charging current; when two charging input interfaces of the terminal 100 are coupled with two charging output interfaces of the power adapter, the charging current is 2 times the preset charging current, each interface being corresponding to 1 times the preset charging current; and so on. With the terminal, the battery is charged via the plurality of charging input interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of a single charging input interface, and thus solve the problem of quick charging.
  • According to an embodiment of the present disclosure, each of the M charging input interfaces is coupled to a preset power supply via a pull-up resistor, and the first controller 110 is configured to determine the number of charging output interfaces of the power adapter coupled to the charging input interfaces according to the voltage of each charging input interface. Each of the M charging input interfaces may be a USB interface.
  • In detail, as illustrated in Fig. 6a, each of the charging input interfaces and charging output interfaces may be a USB interface. The charging input interface of the terminal 100 is coupled with the preset power supply VCC (the voltage of which may be 3.3V) via the pull-up resistor Rs, and the charging output interface of the power adapter is grounded via the pull-down resistor Rx. The first controller 110 determines the number of charging output interfaces coupled with the charging input interfaces by detecting the voltage at the voltage detection end. When the voltage detected by the first controller 110 is 3.3V, the charging input interface is not coupled with the charging output interface. As illustrated in Fig. 6b, when the voltage detected by the first controller 110 is less than 3.3V, the charging input interface is coupled with the charging output interface. In this way, the first controller 110 may automatically detect whether the charging output interface is coupled with the charging input interface and the number of the charging output interfaces coupled with the charging input interfaces.
  • It can be understood that, in embodiments of the present disclosure, the power adapter can be coupled with the charging input interfaces of the terminal via a charging line, details of which can refer to Fig. 4a and Fig. 4b, which will not be elaborated here.
  • In actual implementation, the M charging input interfaces may be welded on a flexible circuit board, which is coupled to the first controller 110 via a board to board connector.
  • In addition, it should be noted that, with respect to details not disclosed in this embodiment, reference can be made to description in the charging system according to embodiments of the present disclosure, which will not be elaborated here.
  • With the terminal according to embodiments of the present disclosure, the first controller is coupled to the M charging input interfaces and the battery respectively, and when at least one of the N charging output interfaces of the power adapter is coupled to the charging input interfaces, the first controller determines the number of charging output interfaces of the power adapter coupled to the charging input interfaces, and adjusts via the power adapter, the charging current outputted from the power adapter to the battery according to the number of charging output interfaces of the power adapter coupled to the charging input interfaces. With the terminal, the battery is charged via the plurality of charging input interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of a single charging input interface, and thus solve the problem of quick charging.
  • Fig. 7 is a block diagram of a power adapter according to embodiments of the present disclosure. As illustrated in Fig. 7, the power adapter 200 includes N charging output interfaces, a second controller 210 and a power supply module 220.
  • The second controller 210 is coupled to power supply module 220 and the N charging output interfaces respectively. The second controller 210 is configured to determine a number of charging output interfaces coupled to a terminal when at least one of the N charging output interfaces is coupled to charging input interfaces of the terminal, and to adjust a charging current outputted from the power supply module 220 to the terminal according to the number of charging output interfaces coupled to the terminal, where N is an integer greater than 1.
  • In detail, a plurality of charging output interfaces may be provided on the power adapter 200. When there is a need for quick charging, the plurality of charging input interfaces of the terminal may be coupled with the plurality of charging output interfaces of the power adapter 200. Then, the second controller 210 determines the number of charging output interfaces coupled to the terminal, and adjusts the charging current outputted from the power supply module 220 to the terminal according to the number.
  • According to an embodiment of the present disclosure, when the number of charging output interfaces coupled to the terminal is k, the second controller 210 adjusts the charging current outputted from the power supply module 220 to the terminal to k times a preset charging current, where k is an integer greater than or equal to 1.
  • In detail, assume that each of the charging input interfaces and the charging output interfaces has the same overcurrent capacity, and the corresponding charging current is the preset charging current, then when the number of charging output interfaces coupled to the terminal is k, the charging current outputted from the power supply module 220 to the terminal can be enhanced to k time the preset charging current.
  • For example, when one charging input interface of the terminal is coupled with one charging output interface of the power adapter 200, the charging current is 1 times the preset charging current; when two charging input interfaces of the terminal are coupled with two charging output interfaces of the power adapter 200, the charging current is 2 times the preset charging current, each interface being corresponding to 1 times the preset charging current; and so on. The power adapter charges the terminal via the plurality of charging output interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of a single charging output interface, and thus solve the problem of quick charging.
  • According to an embodiment of the present disclosure, each of the N charging output interfaces is coupled to a preset power supply via a pull-up resistor, and the second controller 210 is configured to determine the number of charging output interfaces coupled to the terminal according to the voltage of each charging output interface. Each of the N charging output interfaces may be a USB interface.
  • In detail, each of the charging input interfaces and charging output interfaces may be a USB interface. The charging output interface of the power adapter 200 is coupled with the preset power supply VCC (the voltage of which may be 3.3V) via the pull-up resistor Rs, and the charging input interface of the terminal is grounded via the pull-down resistor Rx. The second controller 210 determines the number of charging output interfaces coupled with the charging input interfaces by detecting the voltage at the voltage detection end. When the voltage detected by the second controller 210 is 3.3V, the charging output interface is not coupled with the charging input interface. When the voltage detected by the second controller 210 is less than 3.3V, the charging output interface is coupled with the charging input interface. In this way, the second controller 210 may automatically detect whether the charging output interface is coupled with the charging input interface and the number of the charging output interfaces coupled with the charging input interfaces.
  • It can be understood that, in embodiments of the present disclosure, the power adapter can be coupled with the charging input interfaces of the terminal via a charging line, which will not be elaborated here.
  • In addition, it should be noted that, with respect to details not disclosed in this embodiment, reference can be made to description in the charging system according to embodiments of the present disclosure, which will not be elaborated here.
  • With the power adapter according to embodiments of the present disclosure, the second controller is coupled to the power supply module and the N charging output interfaces respectively, and when at least one of the N charging output interfaces is coupled to charging input interfaces of the terminal, the second controller determines the number of charging output interfaces coupled to the terminal and adjusts the charging current outputted from the power supply module to the terminal according to the number of charging output interfaces coupled to the terminal. The power adapter supplies power for the terminal via the plurality of charging output interfaces, which may effectively solve the problem of being unable to enhance the charging current due to the limited overcurrent capacity of the single charging output interface, and thus solve the problem of quick charging.
  • Fig. 8 is a block diagram of a charging line according to embodiments of the present disclosure. As illustrated in Fig. 8, the charging line includes a connecting line 210, M first interfaces, and N second interfaces.
  • Each of the M first interfaces is coupled with a first end of the connecting line 210, and the M first interfaces are arranged to match the charging input interfaces of the terminal. Each of the N second interfaces is coupled with a second end of the connecting line 210, and the N second interfaces are arranged to match the charging output interfaces of the power adapter. M and N are integers greater than 1.
  • In detail, as illustrated in Fig. 2, when the user does not require quick charging, the first interface 1 of the charging line may be coupled with the charging input interface 1, and the second interface 1 may be coupled with the charging output interface 1. In this case, the charging current outputted from the power adapter to the terminal via the charging line may be one times the preset charging current.
  • As illustrated in Fig. 3, when the user requires quick charging, the first interface 1 and the first interface 2 of the charging line may be coupled with the charging input interface 1 and the charging input interface 2 respectively, and the second interface 1 and the second interface 2 of the charging line may be coupled with the charging output interface 1 and the charging output interface 2 respectively. In this case, the charging current outputted from the power adapter to the terminal via the charging line may be two times the preset charging current. Since the charging line has the plurality of first interfaces and the plurality of second interfaces, the power adapter may charge the terminal via the plurality of first interfaces and the plurality of second interfaces, such that the charging current may be enhanced, effectively solving the problem of being unable to enhance the charging current due to only one interface at each end of the charging line.
  • It should be noted that, in embodiments of the present disclosure, the charging line 300 may be a wire harness, the wire harness consisting of a plurality of single connecting lines, each single connecting line being coupled with one first interface and one second interface. Or, the charging line 300 may consist of one connecting line 310, one first interface, and one second interface, and when there is a need for quick charging, the power adapter can be coupled with the terminal via a plurality of charging lines.
  • According to an embodiment of the present disclosure, each of the M first interfaces is grounded via a pull-down resistor, and each of the N second interfaces is grounded via a pull-down resistor. Each of the M first interfaces and N second interfaces may be a USB interface.
  • In detail, each of the M first interfaces, the N second interfaces, the charging input interfaces of the terminal, and the charging output interfaces of the power adapter may be a USB interface. As illustrated in Fig. 4a, the charging output interface of the power adapter may be coupled with the preset power supply VCC (the voltage of which may be 3.3V) via the pull-up resistor Rs, and the second interface of the charging line may be grounded via the pull-down resistor Rx. In this case, the power adapter may determine whether the charging output interface is coupled with the second interface by detecting the voltage at the voltage detection end (i.e., the voltage of the USB interface) in real time. When the voltage of the USB interface detected by the power adapter is 3.3V, the charging output interface is not coupled with the second interface. As illustrated in Fig. 4b, when the voltage of the USB interface detected by the power adapter is less than 3.3V, the charging output interface is coupled with the second interface. In this way, the power adapter may automatically detect whether the charging output interface is coupled with the second interface and the number of the charging output interfaces coupled with the second interfaces.
  • Similarly, the charging input interface of the terminal may be coupled with the preset power supply VCC (the voltage of which may be 3.3V) via the pull-up resistor Rs, and the first interface of the charging line may be grounded via the pull-down resistor Rx. In this case, the terminal may determine whether the charging input interface is coupled with the first interface by detecting the voltage at the voltage detection end (i.e., the voltage of the USB interface) in real time. When the voltage of the USB interface detected by the terminal is 3.3V, the charging input interface is not coupled with the first interface. When the voltage of the USB interface detected by the terminal is less than 3.3V, the charging input interface is coupled with the first interface. In this way, the terminal may automatically detect whether the charging input interface is coupled with the first interface and the number of the charging input interfaces coupled with the first interfaces.
  • Then, the power adapter and the terminal communicate with each other, to determine the number of charging output interfaces of the power adapter coupled to the terminal via the charging line. Finally, the charging current outputted from the power adapter to the terminal is adjusted according to the number of charging output interfaces coupled to the terminal, to realize the purpose of quick charging.
  • In addition, it should be noted that, for details not disclosed in this embodiment, reference may be made to description in the charging system according to embodiments of the present disclosure, which will not be elaborated here.
  • With the charging line according to embodiments of the present disclosure, one end of the connecting line has M first interfaces, the other end of the connecting line has N second interfaces, and the M first interfaces are arranged to match the charging input interfaces of the terminal, and the N second interfaces are arranged to match the charging output interfaces of the power adapter, such that a plurality of charging output interfaces of a power adapter can be simultaneously coupled with a plurality of charging input interfaces of a terminal, and thus the power adapter can charge the terminal via the plurality of charging output interfaces and the plurality of charging input interfaces, which effectively solves a problem that, when each end of the charging line has one interface, it is unable to enhance the charging current due to the limited overcurrent capacity of the interface, and thus solves the problem of quick charging.
  • It should be noted that, in the description of the present disclosure, terms such as "first" and "second" are used herein for purposes of description and are not intended to indicate or imply relative importance or imply the number of indicated technical features. Therefore, the feature defined with "first" or "second" implicitly or explicitly includes at least one the feature. In the description of the present disclosure, "a plurality of' refers to two or more unless otherwise specified.
  • In the description of the present disclosure, unless specified or limited otherwise, the terms such as "mounted," "connected," "coupled" and "fixed" should be understood in a broad sense, for example, may be in fixed connection, and may also be in detachable connection, or integrated into one; may be in mechanical connection, and may also be in electrical connection; may be in direct connection, and may also be connected via intermediate medium; may be intercommunication inside two elements or interactive relationship between two elements. Those skilled in the art may understand the particular meaning of the above terms in the present disclosure according to
  • Reference throughout this specification to "an embodiment," "some embodiments," "an example," "a specific example," or "some examples," means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the above phrases in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples. Moreover, without contradiction, those skilled in the art may combine different embodiments or examples described in the present disclosure or features in different embodiments or examples.
  • Although embodiments of the present disclosure have been described above, it would be appreciated by those skilled in the art that the above embodiments are exemplary and cannot be construed to limit the present disclosure, and those skilled in the art can make changes, alternatives, variants and modifications in the embodiments without departing from scope of the present disclosure.

Claims (18)

  1. A charging system, comprising:
    a terminal, comprising a first controller and M charging input interfaces, where M is an integer greater than 1;
    a power adapter, comprising a second controller and N charging output interfaces, wherein, when at least one of the N charging output interfaces is coupled to the charging input interfaces of the terminal, the second controller and the first controller communicate with each other to determine a number of charging output interfaces of the power adapter coupled to the terminal, and a charging current outputted from the power adapter to the terminal is adjusted according to the number of charging output interfaces of the power adapter coupled to the terminal, where N is an integer greater than 1.
  2. The charging system according to claim 1, wherein the second controller is configured to determine the number of charging output interfaces of the power adapter coupled to the terminal, and to adjust the charging current outputted from the power adapter to the terminal according to the number of charging output interfaces of the power adapter coupled to the terminal.
  3. The charging system according to claim 1, wherein the first controller is configured to determine the number of charging output interfaces of the power adapter coupled to the terminal, and to adjust the charging current outputted from the power adapter to the terminal via the second controller according to the number of charging output interfaces of the power adapter coupled to the terminal.
  4. The charging system according to any of claims 1-3, wherein, when the number of charging output interfaces of the power adapter coupled to the terminal is k, the charging current outputted from the power adapter to the terminal is adjusted to k times a preset charging current, where k is an integer greater than or equal to 1.
  5. The charging system according to claim 4, further comprising:
    a charging line, wherein a first end of the charging line comprises M first interfaces matching the M charging input interfaces, a second end of the charging line comprises N second interfaces matching the N charging output interfaces, and the charging output interface of the power adapter is coupled to the charging input interface of the terminal via the charging line.
  6. The charging system according to claim 5, wherein
    each of the M charging input interfaces is coupled to a preset power supply via a pull-up resistor, and each of the M first interfaces is grounded via a pull-down resistor;
    each of the N charging output interfaces is coupled to the preset power supply via the pull-up resistor, and each of the N second interfaces is grounded via the pull-down resistor, wherein
    the number of charging output interfaces of the power adapter coupled to the terminal is determined according to a voltage of each charging input interface and a voltage of each charging output interface.
  7. The charging system according to any of claims 1-6, wherein each of the M charging input interfaces, the M first interfaces, the N second interfaces, and the N charging output interfaces is a USB interface.
  8. A terminal, comprising:
    M charging input interfaces, where M is an integer greater than 1;
    a battery; and
    a first controller, coupled to the M charging input interfaces and the battery respectively, and configured to determine a number of charging output interfaces of a power adapter coupled to the charging input interfaces when at least one of N charging output interfaces of the power adapter is coupled to the charging input interfaces, and to adjust via the power adapter a charging current outputted from the power adapter to the battery according to the number of charging output interfaces of the power adapter coupled to the charging input interfaces, where N is an integer greater than 1.
  9. The terminal according to claim 8, wherein, when the number of charging output interfaces of the power adapter coupled to the charging input interfaces is k, the first controller is configured to adjust via the power adapter, the charging current outputted from the power adapter to the battery to k times a preset charging current, where k is an integer greater than or equal to 1.
  10. The terminal according to claim 8 or 9, wherein each of the M charging input interfaces is coupled to a preset power supply via a pull-up resistor,
    wherein the first controller is configured to determine the number of charging output interfaces of the power adapter coupled to the charging input interfaces according to a voltage of each charging input interface.
  11. The terminal according to claim 10, wherein each of the M charging input interfaces is a USB interface.
  12. A power adapter, comprising:
    a power supply module;
    N charging output interfaces, where N is an integer greater than 1; and
    a second controller, coupled to the power supply module and the N charging output interfaces respectively, and configured to determine a number of charging output interfaces coupled to a terminal when at least one of the N charging output interfaces is coupled to charging input interfaces of the terminal, and to adjust a charging current outputted from the power supply module to the terminal according to the number of charging output interfaces coupled to the terminal.
  13. The power adapter according to claim 12, wherein, when the number of charging output interfaces coupled to the terminal is k, the second controller is configured to adjust the charging current outputted from the power supply module to the terminal to k times a preset charging current, where k is an integer greater than or equal to 1.
  14. The power adapter according to claim 12 or 13, wherein, each of the N charging output interfaces is coupled to a preset power supply via a pull-up resistor,
    wherein, the second controller is configured to determine the number of charging output interfaces coupled to the terminal according to a voltage of each charging output interface.
  15. The power adapter according to claim 14, wherein, each of the N charging output interfaces is a USB interface.
  16. A charging line, comprising:
    a connecting line;
    M first interfaces, coupled with a first end of the connecting line, and arranged to match charging input interfaces of a terminal; and
    N second interfaces, coupled with a second end of the connecting line, and arranged to match charging output interfaces of a power adapter, where M and N are integers greater than 1.
  17. The charging line according to claim 16, wherein each of the M first interfaces is grounded via a pull-down resistor, and each of the N second interfaces is grounded via the pull-down resistor.
  18. The charging line according to claim 16, wherein each of the M first interfaces and the N second interfaces is a USB interface.
EP17833223.5A 2016-07-28 2017-03-30 Charging system, terminal, power adapter and charging line Withdrawn EP3490100A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610608768.6A CN106100084B (en) 2016-07-28 2016-07-28 Charging system, terminal, power supply adaptor and charging wire
PCT/CN2017/078884 WO2018018916A1 (en) 2016-07-28 2017-03-30 Charging system, terminal, power adapter and charging line

Publications (2)

Publication Number Publication Date
EP3490100A1 true EP3490100A1 (en) 2019-05-29
EP3490100A4 EP3490100A4 (en) 2019-07-24

Family

ID=57479897

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17833223.5A Withdrawn EP3490100A4 (en) 2016-07-28 2017-03-30 Charging system, terminal, power adapter and charging line

Country Status (4)

Country Link
US (2) US10910845B2 (en)
EP (1) EP3490100A4 (en)
CN (2) CN108565915A (en)
WO (1) WO2018018916A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565915A (en) * 2016-07-28 2018-09-21 Oppo广东移动通信有限公司 Charging system, terminal, power supply adaptor and charging wire
CN106374592A (en) * 2016-11-30 2017-02-01 深圳天珑无线科技有限公司 Terminal and charging method
CN108270253A (en) * 2016-12-30 2018-07-10 维沃移动通信有限公司 A kind of charging method and mobile terminal
CN113078696A (en) * 2020-01-03 2021-07-06 北京小米移动软件有限公司 Electronic device, charging method and device thereof, and readable storage medium
CN113009382B (en) * 2021-02-25 2022-10-18 上海商米科技集团股份有限公司 Custom interface monitoring method and device
CN114034979A (en) * 2021-11-12 2022-02-11 昆明理工大学 Alternating current transmission line distance measuring method and system

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218286A (en) * 1991-09-16 1993-06-08 Monarch Marking Systems, Inc. Multichannel battery charger
TW512232B (en) * 2001-05-08 2002-12-01 Prolific Technology Inc USB connection-detection circuitry and operation methods of the same
US7615965B2 (en) 2004-05-14 2009-11-10 O2Micro International Limited Power management system
US20080111522A1 (en) * 2006-11-15 2008-05-15 Motorola, Inc. Method and system for charging electronic devices
CN201113783Y (en) 2007-10-23 2008-09-10 黄子田 Power adapter possessing multiple USB interface
CN202737499U (en) * 2012-06-20 2013-02-13 北京壹人壹本信息科技有限公司 Portable electronic device
CN203151126U (en) * 2012-12-04 2013-08-21 江苏嘉钰新能源技术有限公司 Battery charger capable of charging multiple electric vehicles
CN203071364U (en) * 2013-02-01 2013-07-17 海林电脑科技(深圳)有限公司 Multifunctional data line
CN104079022B (en) * 2013-03-29 2017-06-27 联想(北京)有限公司 A kind of charging device and charging method
CN103219770B (en) 2013-04-24 2015-07-15 惠州Tcl移动通信有限公司 Mobile terminal with multi-port charging control function
CN103532187B (en) * 2013-09-29 2015-11-25 小米科技有限责任公司 Charger, charging wire, charging system and charging method
US10114401B2 (en) * 2013-11-18 2018-10-30 Infineon Technologies Ag System and method for a serial bus interface
KR20150089393A (en) * 2014-01-27 2015-08-05 삼성전자주식회사 Method for controlling a battery charge and an electronic device
US9711983B2 (en) * 2014-04-09 2017-07-18 Blackberry Limited Device, system and method for charging a battery
TWI536705B (en) * 2014-10-09 2016-06-01 勝德國際研發股份有限公司 Charging device
CN204131189U (en) * 2014-10-24 2015-01-28 摩米士科技(深圳)有限公司 The two-sided USB adapter of multiplex roles
CN105656092A (en) * 2014-11-12 2016-06-08 中兴通讯股份有限公司 Charging method and apparatus
CN204376478U (en) * 2015-01-29 2015-06-03 宝创企业股份有限公司 There is the portable power source device of quick-charge function
CN204669001U (en) * 2015-05-27 2015-09-23 深圳万思佳电器有限公司 Quick charge connector
CN104993182B (en) 2015-08-05 2018-01-09 青岛海信移动通信技术股份有限公司 A kind of mobile terminal, can directly charge source adapter and charging method
CN204886307U (en) * 2015-08-21 2015-12-16 昆山金鑫新能源科技有限公司 But many strings of charging circuit of lithium cell group of quick charge
CN205070534U (en) * 2015-10-29 2016-03-02 国网山东乐陵市供电公司 Multifunctional charging device of mobile phone
CN205406887U (en) * 2016-03-14 2016-07-27 重庆蓝岸通讯技术有限公司 Bull USB charging wire
CN108565915A (en) * 2016-07-28 2018-09-21 Oppo广东移动通信有限公司 Charging system, terminal, power supply adaptor and charging wire

Also Published As

Publication number Publication date
US20190296569A1 (en) 2019-09-26
US20190356150A1 (en) 2019-11-21
CN108565915A (en) 2018-09-21
EP3490100A4 (en) 2019-07-24
WO2018018916A1 (en) 2018-02-01
US10720779B2 (en) 2020-07-21
US10910845B2 (en) 2021-02-02
CN106100084B (en) 2018-05-29
CN106100084A (en) 2016-11-09

Similar Documents

Publication Publication Date Title
US10720779B2 (en) Quick charging system, terminal, power adapter and charging line
CN108718020B (en) Concentrator
CN106291210B (en) USB interface detector, USB interface detection method, USB connector and electronic equipment
CN106716389B (en) Method for fast USB charging, electronic device and charger device
CN105576727B (en) Method, device and system for quick charging
EP2985856A1 (en) Usb charging system with variable charging voltage, charger, and intelligent terminal
EP3200311B1 (en) Method and device for controlling charging and electronic device
US10241935B2 (en) Portable device, cable assembly, and USB system
CN103237189B (en) Electronic equipment, MHL connector, MHL system and connector detection method
KR20130122266A (en) System and apparatus and method for performing charging in host mode
CN101102119A (en) A charging detection circuit of appliance device and charging detection method
EP2387125A2 (en) Motherboard with rapid charging handheld multimedia device
CN110226258A (en) Battery pack and electric system including the battery pack
US9864714B2 (en) Electronic system for performing recharging and data communication
US20180097315A1 (en) Power adapter, terminal device, charging system, and charging method
CN106549459B (en) Determination method of charging voltage and mobile terminal
CN107579558B (en) Charge control method, charger, charging system and computer readable storage medium
CN103036276B (en) Charger, terminal, controller, system and charger recognition method
CN211017659U (en) USB connects converting circuit and connects converter
EP2383860B1 (en) Rapid charging apparatus
CN104638711A (en) Mobile equipment and charging system for same
CN204539366U (en) Electronic installation
CN107706977B (en) Charging current detection method and charging device
US20150185817A1 (en) Charging circuit for usb interface
CN106899061B (en) Mobile terminal, charging device and charging method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H02J0007020000

Ipc: H02J0007000000

A4 Supplementary search report drawn up and despatched

Effective date: 20190624

RIC1 Information provided on ipc code assigned before grant

Ipc: H02J 7/00 20060101AFI20190617BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210915

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20231114