WO2018018675A1 - 一种裸眼3d透镜显示设备及其制作方法 - Google Patents

一种裸眼3d透镜显示设备及其制作方法 Download PDF

Info

Publication number
WO2018018675A1
WO2018018675A1 PCT/CN2016/095812 CN2016095812W WO2018018675A1 WO 2018018675 A1 WO2018018675 A1 WO 2018018675A1 CN 2016095812 W CN2016095812 W CN 2016095812W WO 2018018675 A1 WO2018018675 A1 WO 2018018675A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic shielding
lens
frame
display
naked
Prior art date
Application number
PCT/CN2016/095812
Other languages
English (en)
French (fr)
Inventor
宋江江
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/324,485 priority Critical patent/US10288978B2/en
Publication of WO2018018675A1 publication Critical patent/WO2018018675A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/094Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect based on magnetophoretic effect

Definitions

  • the invention belongs to the field of stereoscopic display, and in particular relates to a naked eye 3D stereoscopic display technology.
  • 3D display technology In recent years, with the continuous popularization of intelligent display products and the intensification of competition, 3D display technology has developed rapidly and has made great progress. The actual products are becoming more and more thin and thin, and they are greatly concerned by technical researchers in the 3D field. At the same time, with the innovation of display technology, display technology is undergoing a transition from plane to stereo. However, naked-eye 3D stereoscopic display technology in stereoscopic display technology has become a new development trend in the display field, and more and more display products are beginning to integrate naked eyes. 3D stereo display technology. When the human eye sees the actual object, because there is a slight gap between the two eyes, the object looks at the stereoscopic state, and our so-called 3D display technology is the object that is seen from the display device.
  • the stereoscopic effect of the actual object, the naked eye 3D also utilizes the parallax characteristic of both eyes, but the technical means is adopted to allow the display device to naturally project two different effects images to the left and right eyes without the viewer having to wear an auxiliary device separately. Get realistic stereoscopic images with space and depth.
  • the current naked-eye 3D stereoscopic display technology is: coating a colloid on a substrate, pressing a lens to form a convex lens-shaped lens A2, and attaching the lens A2 to the display A1 to form a naked-eye 3D lens.
  • the disadvantage of the 3D lens is that Can be in 3D display, and can not be switched between 3D display and 2D display, and the production process is complicated, the production cost is high, and the degree of intelligence is low, which is not conducive to the development of stereo display, and the product quality is not good.
  • the present application provides a naked eye 3D lens display device and a method of fabricating the same.
  • a naked eye 3D lens display device includes a display screen and a 3D lens
  • the 3D lens comprises two layers of electromagnetic shielding films, a plurality of electrically controlled magnetic poles, a frame and a support column, a liquid medium and a plurality of transparent magnetic particles;
  • the two electromagnetic shielding films are oppositely disposed, and the plurality of electrically controlled magnetic poles are respectively disposed on opposite inner walls of the two electromagnetic shielding films; the frame and the supporting column are disposed between the two electromagnetic shielding films, and the frame and the supporting column and the two layers of electromagnetic
  • the shielding film constitutes a closed space; the liquid medium is distributed in the closed space; the plurality of transparent magnetic particles are all located in the liquid medium in the closed space; when the plurality of transparent magnetic particles are arranged in an arc shape, the 3D display, the plurality of transparent magnetic particles When the arrangement is uniform in the same direction, it is a 2D display; the display screen is fixed on the outer wall of any one of the electromagnetic shielding films.
  • one layer of the electromagnetic shielding film has a thickness of 0.1 mm to 0.3 mm, and the other layer of the electromagnetic shielding film has a thickness of 0.1 mm to 0.3 mm, and the two layers of the electromagnetic shielding film are transparent.
  • the rate is above 95%.
  • the transparent magnetic particles of the present invention are spheres, and the outer diameter of the spheres is from 90 nm to 110 nm.
  • the height of the frame and the support post of the present invention is 15 ⁇ m to 25 ⁇ m, wherein the height refers to the width of the frame and the support post in a direction perpendicular to the plane of the electromagnetic shielding film.
  • the frame and the support column and the two-layer electromagnetic shielding film of the invention constitute a plurality of closed spaces.
  • the display screen of the present invention may be an OLED display.
  • the display screen of the present invention can also be a liquid crystal display.
  • the method for manufacturing a naked-eye 3D lens display device comprises the following specific manufacturing process: the manufacturing step is as follows: respectively, a plurality of electronically controlled magnetic poles are arranged on the two layers of electromagnetic shielding films;
  • Step 2 placing a frame and a support column on an electromagnetic shielding film with a plurality of electrically controlled magnetic poles
  • Step 3 pouring a liquid medium containing transparent magnetic particles inside the frame
  • the frame and the support column are paired with another electromagnetic shielding film with a plurality of electrically controlled magnetic poles, and the 3D lens is completed after the group is completed;
  • Step 5 The 3D lens and the display screen are paired.
  • the invention controls the strength of the electronically controlled magnetic pole by controlling the current of the plurality of electronically controlled magnetic poles to form a concave-convex magnetic field, so that the plurality of transparent magnetic particles exhibit different arrangement manners in the liquid medium along the direction of the magnetic field line, when more
  • the naked-eye 3D lens display when the transparent magnetic particles are arranged in a curved manner in a liquid medium
  • the device is a 3D display, and when the arrangement of the plurality of transparent magnetic particles in the liquid medium is uniform and the same direction, the naked-eye 3D lens display device is a 2D display.
  • the beneficial effect of the present invention is that the naked-eye 3D lens display device can perform random switching between the 3D display and the 2D display; the use of the electromagnetic shielding film eliminates the influence of the external magnetic field on the electronically controlled magnetic pole, and the electromagnetic shielding film is transparent.
  • the light rate is above 95%, so the naked eye 3D lens has excellent display effect; the thickness of the electromagnetic shielding film is 0.1 mm to 0.3 mm, and the height of the frame and the support column is 15 ⁇ m to 25 ⁇ m, so the naked eye 3D lens
  • the display device is thin and light overall, low in cost and high in intelligence, which is more conducive to the development of stereoscopic display.
  • the present invention is applicable to a stereoscopic display product.
  • A1 is a display screen and A2 is a lens;
  • FIG. 2 is a schematic structural view of a naked-eye 3D lens display device according to a first embodiment
  • FIG. 3 is a schematic structural view showing a plurality of electrically controlled magnetic poles disposed on an electromagnetic shielding film in a fourth embodiment or a fifth embodiment;
  • FIG. 4 is a schematic structural view showing a frame and a support column disposed on an electromagnetic shielding film with a plurality of electrically controlled magnetic poles according to Embodiment 4 or Embodiment 5;
  • FIG. 5 is a schematic structural view showing a liquid medium containing transparent magnetic particles in a frame inside a fourth embodiment or a fifth embodiment
  • FIG. 6 is a schematic structural view showing a pair of electromagnetic shielding films with a plurality of electrically controlled magnetic poles in a fourth embodiment or a fifth embodiment.
  • a naked-eye 3D lens display device includes a display screen 1 and a 3D lens;
  • the 3D lens comprises two layers of electromagnetic shielding film 2, a plurality of electrically controlled magnetic poles 3, a frame and a support column 4, a liquid medium 5 and a plurality of transparent magnetic particles 6;
  • the two layers of the electromagnetic shielding film 2 are oppositely disposed, and the two layers of the electromagnetic shielding film 2 are both used for eliminating the influence of the external magnetic field on the magnetic field formed by the electrically controlled magnetic pole 3;
  • a plurality of electrically controlled magnetic poles 3 are respectively disposed on opposite inner walls of the two electromagnetic shielding films 2; a plurality of electrically controlled magnetic poles 3 are used to form a magnetic field to control the arrangement of the plurality of transparent magnetic particles 6 in the liquid medium 5;
  • the frame and the support column 4 are disposed between the two layers of the electromagnetic shielding film 2, and the frame and the support column 4 and the two layers of the electromagnetic shielding film 2 constitute a closed space; the frame and the support column 4 are used for restricting the flow of the liquid medium 5;
  • the liquid medium 5 is distributed in the closed space; the plurality of transparent magnetic particles 6 are all located in the liquid medium 5 in the closed space;
  • the display screen 1 is fixed to the outer wall of any one of the electromagnetic shielding films 2.
  • the thickness of the two layers of the electromagnetic shielding film 2 is 0.2 mm; the transparent magnetic particles 6 are spheres having a diameter of 100 nm, and the transparent magnetic particles 6 are composed of silicon dioxide, iron, boron or ruthenium; the frame and the support column
  • the height of 4 is 20 ⁇ m, wherein the height refers to the amplitude of the frame and the support column 4 in a direction perpendicular to the plane of the electromagnetic shielding film;
  • the display screen 1 is an OLED display screen.
  • Embodiment 2 A naked-eye 3D lens display device according to this embodiment includes a display screen 1 and a 3D lens;
  • the 3D lens comprises two layers of electromagnetic shielding film 2, a plurality of electrically controlled magnetic poles 3, a frame and a support column 4, a liquid medium 5 and a plurality of transparent magnetic particles 6;
  • the two layers of the electromagnetic shielding film 2 are oppositely disposed, and the two layers of the electromagnetic shielding film 2 are both used for eliminating the influence of the external magnetic field on the magnetic field formed by the electrically controlled magnetic pole 3;
  • a plurality of electrically controlled magnetic poles 3 are respectively disposed on opposite inner walls of the two electromagnetic shielding films 2; a plurality of electrically controlled magnetic poles 3 are used to form a magnetic field to control the arrangement of the plurality of transparent magnetic particles 6 in the liquid medium 5;
  • the frame and the support column 4 are disposed between the two layers of the electromagnetic shielding film 2, and the frame and the support column 4 and the two layers of the electromagnetic shielding film 2 constitute a closed space; the frame and the support column 4 are used for restricting the flow of the liquid medium 5;
  • the liquid medium 5 is distributed in the closed space; the plurality of transparent magnetic particles 6 are all located in the liquid medium 5 in the closed space;
  • the display screen 1 is fixed to the outer wall of any one of the electromagnetic shielding films 2.
  • the thickness of the two layers of the electromagnetic shielding film 2 is 0.2 mm;
  • the transparent magnetic particles 6 are spheres having a diameter of 100 nm, and the transparent magnetic particles 6 are composed of silicon dioxide, iron, boron or ruthenium;
  • the height of the support post 4 is 20 ⁇ m, wherein the height refers to the amplitude of the frame and the support post 4 in a direction perpendicular to the plane of the electromagnetic shielding film;
  • the display screen 1 is a liquid crystal display.
  • Embodiment 3 A naked-eye 3D lens display device according to this embodiment includes a display screen 1 and a 3D lens;
  • the 3D lens comprises two layers of electromagnetic shielding film 2, a plurality of electrically controlled magnetic poles 3, a frame and a support column 4, a liquid medium 5 and a plurality of transparent magnetic particles 6;
  • the two layers of the electromagnetic shielding film 2 are oppositely disposed, and the two layers of the electromagnetic shielding film 2 are both used for eliminating the influence of the external magnetic field on the magnetic field formed by the electrically controlled magnetic pole 3;
  • a plurality of electrically controlled magnetic poles 3 are respectively disposed on opposite inner walls of the two electromagnetic shielding films 2; a plurality of electrically controlled magnetic poles 3 are used to form a magnetic field to control the arrangement of the plurality of transparent magnetic particles 6 in the liquid medium 5;
  • the frame and the support column 4 are disposed between the two layers of the electromagnetic shielding film 2, and the frame and the support column 4 and the two layers of the electromagnetic shielding film 2 constitute a closed space; the frame and the support column 4 are used for restricting the flow of the liquid medium 5;
  • the liquid medium 5 is distributed in the closed space; the plurality of transparent magnetic particles 6 are all located in the liquid medium 5 in the closed space;
  • the display screen 1 is fixed to the outer wall of any one of the electromagnetic shielding films 2.
  • the thickness of the two layers of the electromagnetic shielding film 2 is 0.2 mm;
  • the transparent magnetic particles 6 are ellipsoids, and the longest axis of the ellipsoid is 100 nm, and the transparent magnetic particles 6 are made of silicon dioxide, iron, Boron or bismuth composition;
  • the height of the frame and the support post 4 is 20 ⁇ m, wherein the height refers to the width of the frame and the support post 4 in a direction perpendicular to the plane of the electromagnetic shielding film.
  • the present embodiment is described with reference to FIG. 3 to FIG. 6.
  • the present embodiment is a method for manufacturing a naked-eye 3D lens display device according to one or two embodiments:
  • a layer of electromagnetic shielding film 2 having a thickness of 0.2 mm is placed on a horizontal surface, and a plurality of electrically controlled magnetic poles 3 are disposed on the upper surface of the electromagnetic shielding film 2; likewise, another layer of electromagnetic shielding film having a thickness of 0.2 mm is provided. 2 is also placed on the horizontal surface, and a plurality of electrically controlled magnetic poles 3 are disposed on the upper surface of the electromagnetic shielding film 2; the transmittance requirements for the two layers of the electromagnetic shielding film 2 are all above 95%, so as to ensure that the final display effect is not affected. ;
  • a frame and a support column 4 are disposed on the electromagnetic shielding film 2 with a plurality of electrically controlled magnetic poles 3, wherein the frame and the support column 4 comprise a frame and a plurality of support columns, and the frame is disposed on the electromagnetic shielding film 2
  • the height of the frame is 20 ⁇ m, wherein the height refers to the width of the frame and the support column 4 in a direction perpendicular to the plane of the electromagnetic shielding film, and the frame is used to restrict the flow of the liquid medium 5, and the plurality of support columns Provided within the edge of the electromagnetic shielding film 2, the height of each of the plurality of support columns is 20 ⁇ m, and the plurality of support columns The distance for controlling the two layers of the electromagnetic shielding film 2;
  • the liquid medium 5 containing the transparent magnetic particles 6 is poured inside the frame; in order not to affect the final display effect, the liquid medium 5 also uses a liquid insulating material having a light transmittance of 95% or more; the transparent magnetic particles 6 are made to have an outer diameter of a 100 nm sphere, the transparent magnetic particles 6 are made of silicon dioxide, iron, boron or ruthenium;
  • the frame and the support post 4 are paired with another electromagnetic shielding film 2 with a plurality of electrically controlled magnetic poles 3; the electromagnetic shielding film 2 with a plurality of electrically controlled magnetic poles 3 of another layer on the horizontal surface is already
  • the frame of the liquid medium 5 containing the transparent magnetic particles 6 and the support column 4 are fixed to ensure that the electrically controlled magnetic pole 3 is located inside the liquid medium 5.
  • the two layers of the electromagnetic shielding film 2 and the frame and the support column 4 form a closed space, which is transparent.
  • the liquid medium 5 of the magnetic particles 6 is filled with a closed space; after the group is finished, the two layers of the electromagnetic shielding film 2 are used to eliminate the influence of the external magnetic field on the magnetic field formed by the electrically controlled magnetic pole 3;
  • the 3D lens is paired with the display screen 1; the glass substrate of the display screen 1 is fixed on the outer wall of any one of the electromagnetic shielding films 2.
  • the present embodiment is described in detail with reference to FIG. 3 to FIG. 6 .
  • the present embodiment is a method for manufacturing a naked-eye 3D lens display device according to the third embodiment:
  • an electromagnetic shielding film 2 having a thickness of 0.2 mm in the two-layer electromagnetic shielding film 2 is placed on a horizontal surface, and a plurality of electrically controlled magnetic poles 3 are disposed on the upper surface of the electromagnetic shielding film 2; likewise, another A layer of electromagnetic shielding film 2 having a thickness of 0.2 mm is also placed on a horizontal surface, and a plurality of electrically controlled magnetic poles 3 are disposed on the upper surface of the electromagnetic shielding film 2; the transmittance requirements for the two layers of the electromagnetic shielding film 2 are both 95%. Above, to ensure that the final display effect is not affected;
  • a frame and a support column 4 are disposed on the electromagnetic shielding film 2 with a plurality of electrically controlled magnetic poles 3, wherein the frame and the support column 4 comprise a frame and a plurality of support columns, and the frame is disposed on the electromagnetic shielding film 2
  • the height of the frame is 20 ⁇ m, wherein the height refers to the width of the frame and the support column 4 in a direction perpendicular to the plane of the electromagnetic shielding film;
  • the frame is used to restrict the flow of the liquid medium 5, and the plurality of support columns Provided within the edge of the electromagnetic shielding film 2, the height of each of the plurality of support columns is 20 ⁇ m, and the plurality of support columns are used to control the distance between the two electromagnetic shielding films 2;
  • the liquid medium 5 containing the transparent magnetic particles 6 is poured inside the frame; in order not to affect the final display effect, the liquid medium 5 also uses a liquid insulating material having a light transmittance of 95% or more; the transparent magnetic particles 6 are made into the longest axis. As a 100 nm ellipsoid, the transparent magnetic particles 6 are made of silicon dioxide, iron, boron or ruthenium;
  • the frame and the support post 4 are paired with another electromagnetic shielding film 2 having a plurality of electrically controlled magnetic poles 3
  • the electromagnetic shielding film 2 with a plurality of electrically controlled magnetic poles 3 on the horizontal surface is fixed to the frame and the support column 4 which has been filled with the liquid medium 5 containing the transparent magnetic particles 6 to ensure that the electrically controlled magnetic pole 3 is located in the liquid Inside the medium 5, at the same time, the two layers of electromagnetic shielding film 2 and the frame and the supporting column 4 constitute a closed space, and the liquid medium 5 containing the transparent magnetic particles 6 fills the closed space; after the group is completed, the 3D lens is fabricated, and the two layers of electromagnetic shielding film are completed. 2 is used to eliminate the influence of external magnetic field on the magnetic field formed by the electronically controlled magnetic pole 3;
  • the 3D lens is paired with the display screen 1; the glass substrate of the display screen 1 is fixed on the outer wall of any one of the electromagnetic shielding films 2.

Abstract

一种裸眼3D透镜显示设备及其制作方法。属于立体显示领域,特别涉及一种裸眼3D立体显示技术。为了解决显示屏(1)上的透镜不能进行3D显示与2D显示的相互切换,提供一种适用于作为立体显示产品的裸眼3D透镜显示设备,其中,两层电磁屏蔽膜(2)相对设置,边框及支撑柱(4)设置在两层电磁屏蔽膜(2)之间,并且,边框及支撑柱(4)和两层电磁屏蔽膜(2)组成封闭空间;多个电控磁极(3)分别设置在两层电磁屏蔽膜(2)相对的内壁上;液体介质(5)分布于封闭空间内;多个透明磁性粒子(6)均位于封闭空间内的液体介质(5)中;显示屏(1)固定在任意一层电磁屏蔽膜(2)的外壁上。有益效果是裸眼3D透镜显示设备能够在3D显示和2D显示之间进行随意切换,显示效果极佳,轻薄,成本低。

Description

一种裸眼3D透镜显示设备及其制作方法
相关申请的交叉引用
本申请要求享有于2016年7月27日提交的名称为“一种裸眼3D透镜显示设备及其制作方法”的中国专利申请CN201610600503.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明属于立体显示领域,特别涉及一种裸眼3D立体显示技术。
背景技术
近年来,随着智能显示产品的不断普及和竞争的加剧,3D显示技术迅速发展,并且得到了长足的进步,现实产品越来越往轻薄化发展,受到3D领域技术研究人员的极大关注,同时,伴随着显示技术的革新,显示技术正在经历从平面到立体的过渡,然而立体显示技术中的裸眼3D立体显示技术已经成为显示领域新的发展趋势,越来越多的显示产品开始整合裸眼3D立体显示技术。人眼在看到实际物体时,由于两眼视距有一个细微的差距,导致我们看物体呈现立体状态,而我们所谓的3D显示技术就是让人从显示设备上看到的被拍摄的物体呈现实际物体的立体感,裸眼3D同样是利用两眼具有视差的特性,但是是利用技术手段让显示设备自然投射出两种不同效果的画面给左右眼,而无需观看者另行佩戴辅助装置,即可获得具有空间、深度的逼真立体影像。
现行的裸眼3D立体显示技术为:在底层基板上涂布胶体,通过模具压制形成凸透镜形状的透镜A2,将透镜A2贴合到显示屏A1上,形成裸眼3D透镜,该3D透镜的弊端在于只能处于3D显示,而不能在3D显示和2D显示之间进行随意切换,并且,生产过程复杂,生产成本高,智能化程度低,不利于立体显示的发展,产品质量不佳。
发明内容
针对上述现有技术中的问题,本申请提出一种裸眼3D透镜显示设备及该裸眼3D透镜显示设备的制作方法。
本发明所述的一种裸眼3D透镜显示设备包括显示屏和3D透镜;
3D透镜包括两层电磁屏蔽膜、多个电控磁极、边框及支撑柱、液体介质和多个透明磁性粒子;
两层电磁屏蔽膜相对设置,多个电控磁极分别设置在两层电磁屏蔽膜相对的内壁上;边框及支撑柱设置在两层电磁屏蔽膜之间,并且,边框及支撑柱和两层电磁屏蔽膜组成封闭空间;液体介质分布于封闭空间内;多个透明磁性粒子均位于封闭空间内的液体介质中;多个透明磁性粒子排布为弧形时,为3D显示,多个透明磁性粒子排布为均匀同向时,为2D显示;显示屏固定在任意一层电磁屏蔽膜的外壁上。
本发明所述两层电磁屏蔽膜中,一层电磁屏蔽膜的厚度为0.1mm~0.3mm,另一层电磁屏蔽膜的厚度为0.1mm~0.3mm,并且,两层电磁屏蔽膜的透光率均在95%以上。
本发明的透明磁性粒子为球体,且球体的外径为90nm~110nm。
本发明的边框及支撑柱的高度为15μm~25μm,其中高度指所述边框及支撑柱在垂直于所述电磁屏蔽膜的平面的方向上的幅度。
本发明的边框及支撑柱和两层电磁屏蔽膜组成多个封闭空间。
本发明的显示屏可以为OLED显示屏。
本发明的显示屏还可以为液晶显示屏。
本发明所述的一种裸眼3D透镜显示设备的制作方法包括以下具体制作过程:制作步骤一、分别在两层电磁屏蔽膜上设置多个电控磁极;
制作步骤二、在一层带有多个电控磁极的电磁屏蔽膜上设置边框及支撑柱;
制作步骤三、在边框内部灌注含有透明磁性粒子的液体介质;
制作步骤四、边框及支撑柱与另一层带有多个电控磁极的电磁屏蔽膜进行对组,对组后完成对3D透镜的制作;
制作步骤五、3D透镜与显示屏进行对组。
本发明通过对多个电控磁极的电流控制,控制电控磁极的强弱,形成凹凸状磁场,使多个透明磁性粒子在液体介质中顺着磁场线方向呈现不同的排布方式,当多个透明磁性粒子在液体介质呈现的排布方式为弧形时,该裸眼3D透镜显示 设备为3D显示,当多个透明磁性粒子在液体介质呈现的排布方式为均匀同向时,该裸眼3D透镜显示设备为2D显示。因此,本发明的有益效果是该裸眼3D透镜显示设备能够在3D显示和2D显示之间进行随意切换;电磁屏蔽膜的使用,消除了外界磁场对电控磁极的影响,由于电磁屏蔽膜的透光率均在95%以上,所以该裸眼3D透镜的显示效果极佳;电磁屏蔽膜的厚度在0.1mm~0.3mm,并且,边框及支撑柱的高度为15μm~25μm,因此,该裸眼3D透镜显示设备整体上轻薄,成本低,智能化程度高,更有利于立体显示的发展。
本发明适用于作为立体显示产品。
上述技术特征可以各种适合的方式组合或由等效的技术特征来替代,只要能够达到本发明的目的。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1为背景技术中现有的裸眼3D透镜的结构示意图;其中,A1为显示屏,A2为透镜;
图2显示了具体实施方式一所述的一种裸眼3D透镜显示设备的结构示意图;
图3显示了具体实施方式四或具体实施方式五中在电磁屏蔽膜上设置多个电控磁极的结构示意图;
图4显示了具体实施方式四或具体实施方式五中在带有多个电控磁极的电磁屏蔽膜上设置边框及支撑柱的结构示意图;
图5显示了具体实施方式四或具体实施方式五中在边框内部灌注含有透明磁性粒子的液体介质的结构示意图;
图6显示了具体实施方式四或具体实施方式五中将两层带有多个电控磁极的电磁屏蔽膜进行对组的结构示意图。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例。
具体实施方式
下面将结合附图对本发明作进一步说明。
具体实施方式一:结合图2说明本实施方式,本实施方式所述的一种裸眼3D透镜显示设备包括显示屏1和3D透镜;
3D透镜包括两层电磁屏蔽膜2、多个电控磁极3、边框及支撑柱4、液体介质5和多个透明磁性粒子6;
两层电磁屏蔽膜2相对设置,两层电磁屏蔽膜2均用于消除外界磁场对电控磁极3形成的磁场产生影响;
多个电控磁极3分别设置在两层电磁屏蔽膜2相对的内壁上;多个电控磁极3用于形成磁场以控制多个透明磁性粒子6在液体介质5中的排布方式;
边框及支撑柱4设置在两层电磁屏蔽膜2之间,并且,边框及支撑柱4和两层电磁屏蔽膜2组成封闭空间;边框及支撑柱4用于限制液体介质5流动;
液体介质5分布于封闭空间内;多个透明磁性粒子6均位于封闭空间内的液体介质5中;
显示屏1固定在任意一层电磁屏蔽膜2的外壁上。
在本实施方式中,两层电磁屏蔽膜2的厚度均为0.2mm;透明磁性粒子6为直径100nm的球体,并且透明磁性粒子6由二氧化硅、铁、硼或钕组成;边框及支撑柱4的高度为20μm,其中高度指所述边框及支撑柱4在垂直于所述电磁屏蔽膜的平面的方向上的幅度;显示屏1为OLED显示屏。
具体实施方式二:本实施方式所述的一种裸眼3D透镜显示设备包括显示屏1和3D透镜;
3D透镜包括两层电磁屏蔽膜2、多个电控磁极3、边框及支撑柱4、液体介质5和多个透明磁性粒子6;
两层电磁屏蔽膜2相对设置,两层电磁屏蔽膜2均用于消除外界磁场对电控磁极3形成的磁场产生影响;
多个电控磁极3分别设置在两层电磁屏蔽膜2相对的内壁上;多个电控磁极3用于形成磁场以控制多个透明磁性粒子6在液体介质5中的排布方式;
边框及支撑柱4设置在两层电磁屏蔽膜2之间,并且,边框及支撑柱4和两层电磁屏蔽膜2组成封闭空间;边框及支撑柱4用于限制液体介质5流动;
液体介质5分布于封闭空间内;多个透明磁性粒子6均位于封闭空间内的液体介质5中;
显示屏1固定在任意一层电磁屏蔽膜2的外壁上。
在本实施方式中,两层电磁屏蔽膜2的厚度均为0.2mm;透明磁性粒子6为直径100nm的球体,并且透明磁性粒子6由二氧化硅、铁、硼或钕组成;边框及 支撑柱4的高度为20μm,其中高度指所述边框及支撑柱4在垂直于所述电磁屏蔽膜的平面的方向上的幅度;显示屏1为液晶显示屏。
具体实施方式三:本实施方式所述的一种裸眼3D透镜显示设备包括显示屏1和3D透镜;
3D透镜包括两层电磁屏蔽膜2、多个电控磁极3、边框及支撑柱4、液体介质5和多个透明磁性粒子6;
两层电磁屏蔽膜2相对设置,两层电磁屏蔽膜2均用于消除外界磁场对电控磁极3形成的磁场产生影响;
多个电控磁极3分别设置在两层电磁屏蔽膜2相对的内壁上;多个电控磁极3用于形成磁场以控制多个透明磁性粒子6在液体介质5中的排布方式;
边框及支撑柱4设置在两层电磁屏蔽膜2之间,并且,边框及支撑柱4和两层电磁屏蔽膜2组成封闭空间;边框及支撑柱4用于限制液体介质5流动;
液体介质5分布于封闭空间内;多个透明磁性粒子6均位于封闭空间内的液体介质5中;
显示屏1固定在任意一层电磁屏蔽膜2的外壁上。
在本实施方式中,两层电磁屏蔽膜2的厚度均为0.2mm;透明磁性粒子6为椭球体,并且,该椭球体的最长轴为100nm,透明磁性粒子6由二氧化硅、铁、硼或钕组成;边框及支撑柱4的高度为20μm,其中高度指所述边框及支撑柱4在垂直于所述电磁屏蔽膜的平面的方向上的幅度。
具体实施方式四:结合图3到图6说明本实施方式,本实施方式是基于具体实施方式一或二所述的一种裸眼3D透镜显示设备的制作方法:
首先,将一层厚度为0.2mm的电磁屏蔽膜2置于水平面上,将多个电控磁极3设置在电磁屏蔽膜2的上表面;同样,将另一层厚度为0.2mm的电磁屏蔽膜2也置于水平面上,将多个电控磁极3设置在电磁屏蔽膜2的上表面;对于两层电磁屏蔽膜2的透光率要求均在95%以上,以保证不影响最终的显示效果;
其次,在一层带有多个电控磁极3的电磁屏蔽膜2上设置边框及支撑柱4,其中,边框及支撑柱4包括边框和多个支撑柱,边框设置在该层电磁屏蔽膜2的四周边缘处,边框的高度为20μm,其中高度指所述边框及支撑柱4在垂直于所述电磁屏蔽膜的平面的方向上的幅度,边框用于限制液体介质5流动,多个支撑柱设置在电磁屏蔽膜2的边缘以内,多个支撑柱的高度均为20μm,多个支撑柱 用于控制两层电磁屏蔽膜2的距离;
再次,在边框内部灌注含有透明磁性粒子6的液体介质5;为了不影响最终的显示效果,液体介质5也选用透光率在95%以上的液体绝缘材料;透明磁性粒子6制成外径为100nm的球体,透明磁性粒子6选用二氧化硅、铁、硼或钕制成;
然后,边框及支撑柱4与另一层带有多个电控磁极3的电磁屏蔽膜2进行对组;将水平面上的另一层带有多个电控磁极3的电磁屏蔽膜2与已经灌注含有透明磁性粒子6的液体介质5的边框及支撑柱4进行固定,保证电控磁极3位于液体介质5内部,同时,两层电磁屏蔽膜2和边框及支撑柱4组成封闭空间,含有透明磁性粒子6的液体介质5充满封闭空间;对组后完成对3D透镜的制作,两层电磁屏蔽膜2均用于消除外界磁场对电控磁极3形成的磁场产生影响;
最后,3D透镜与显示屏1进行对组;将显示屏1的玻璃基板固定在任意一层电磁屏蔽膜2的外壁上。
具体实施方式五:结合图3到图6说明本实施方式,本实施方式是基于具体实施方式三所述的一种裸眼3D透镜显示设备的制作方法:
首先,将所述两层电磁屏蔽膜2中的一层厚度为0.2mm的电磁屏蔽膜2置于水平面上,将多个电控磁极3设置在电磁屏蔽膜2的上表面;同样,将另一层厚度为0.2mm的电磁屏蔽膜2也置于水平面上,将多个电控磁极3设置在电磁屏蔽膜2的上表面;对于两层电磁屏蔽膜2的透光率要求均在95%以上,以保证不影响最终的显示效果;
其次,在一层带有多个电控磁极3的电磁屏蔽膜2上设置边框及支撑柱4,其中,边框及支撑柱4包括边框和多个支撑柱,边框设置在该层电磁屏蔽膜2的四周边缘处,边框的高度为20μm,其中高度指所述边框及支撑柱4在垂直于所述电磁屏蔽膜的平面的方向上的幅度;边框用于限制液体介质5流动,多个支撑柱设置在电磁屏蔽膜2的边缘以内,多个支撑柱的高度均为20μm,多个支撑柱用于控制两层电磁屏蔽膜2的距离;
再次,在边框内部灌注含有透明磁性粒子6的液体介质5;为了不影响最终的显示效果,液体介质5也选用透光率在95%以上的液体绝缘材料;透明磁性粒子6制成最长轴为100nm的椭球体,透明磁性粒子6选用二氧化硅、铁、硼或钕制成;
然后,边框及支撑柱4与另一层带有多个电控磁极3的电磁屏蔽膜2进行对 组;将水平面上的另一层带有多个电控磁极3的电磁屏蔽膜2与已经灌注含有透明磁性粒子6的液体介质5的边框及支撑柱4进行固定,保证电控磁极3位于液体介质5内部,同时,两层电磁屏蔽膜2和边框及支撑柱4组成封闭空间,含有透明磁性粒子6的液体介质5充满封闭空间;对组后完成对3D透镜的制作,两层电磁屏蔽膜2均用于消除外界磁场对电控磁极3形成的磁场产生影响;
最后,3D透镜与显示屏1进行对组;将显示屏1的玻璃基板固定在任意一层电磁屏蔽膜2的外壁上。
虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实施例仅仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其他所述实施例中。

Claims (8)

  1. 一种裸眼3D透镜显示设备,包括显示屏(1)和3D透镜;其中,3D透镜包括两层电磁屏蔽膜(2)、多个电控磁极(3)、边框及支撑柱(4)、液体介质(5)和多个透明磁性粒子(6);
    两层电磁屏蔽膜(2)相对设置,多个电控磁极(3)分别设置在两层电磁屏蔽膜(2)相对的内壁上;边框及支撑柱(4)设置在两层电磁屏蔽膜(2)之间,并且,边框及支撑柱(4)和两层电磁屏蔽膜(2)组成封闭空间;液体介质(5)分布于封闭空间内;
    多个透明磁性粒子(6)均位于封闭空间内的液体介质(5)中;多个透明磁性粒子(6)排布为弧形时,为3D显示,多个透明磁性粒子(6)排布为均匀同向时,为2D显示;
    显示屏(1)固定在任意一层电磁屏蔽膜(2)的外壁上。
  2. 根据权利要求1所述的一种裸眼3D透镜显示设备,其中,所述两层电磁屏蔽膜(2)中,一层电磁屏蔽膜(2)的厚度为0.1mm~0.3mm,另一层电磁屏蔽膜(2)的厚度为0.1mm~0.3mm,并且,两层电磁屏蔽膜(2)的透光率均在95%以上。
  3. 根据权利要求1所述的一种裸眼3D透镜显示设备,其中,透明磁性粒子(6)为球体,且球体的直径为100nm。
  4. 根据权利要求1所述的一种裸眼3D透镜显示设备,其中,边框及支撑柱(4)的高度为15μm~25μm,其中高度指所述边框及支撑柱(4)在垂直于所述电磁屏蔽膜的平面的方向上的幅度。
  5. 根据权利要求1所述的一种裸眼3D透镜显示设备,其中,边框及支撑柱(4)和两层电磁屏蔽膜(2)组成多个封闭空间。
  6. 根据权利要求1所述的一种裸眼3D透镜显示设备,其中,显示屏(1)为OLED显示屏。
  7. 根据权利要求1所述的一种裸眼3D透镜显示设备,其中,显示屏(1)为液晶显示屏。
  8. 一种裸眼3D透镜显示设备的制作方法,
    所述裸眼3D透镜显示设备包括显示屏(1)和3D透镜;其中,3D透镜包括 两层电磁屏蔽膜(2)、多个电控磁极(3)、边框及支撑柱(4)、液体介质(5)和多个透明磁性粒子(6);
    两层电磁屏蔽膜(2)相对设置,多个电控磁极(3)分别设置在两层电磁屏蔽膜(2)相对的内壁上;边框及支撑柱(4)设置在两层电磁屏蔽膜(2)之间,并且,边框及支撑柱(4)和两层电磁屏蔽膜(2)组成封闭空间;液体介质(5)分布于封闭空间内;
    多个透明磁性粒子(6)均位于封闭空间内的液体介质(5)中;多个透明磁性粒子(6)排布为弧形时,为3D显示,多个透明磁性粒子(6)排布为均匀同向时,为2D显示;
    显示屏(1)固定在任意一层电磁屏蔽膜(2)的外壁上,
    其中,所述制作方法包括以下具体制作过程:
    制作步骤一、分别在两层电磁屏蔽膜(2)上设置多个电控磁极(3);
    制作步骤二、在一层带有多个电控磁极(3)的电磁屏蔽膜(2)上设置边框及支撑柱(4);
    制作步骤三、在边框内部灌注含有透明磁性粒子(6)的液体介质(5);
    制作步骤四、边框及支撑柱(4)与另一层带有多个电控磁极(3)的电磁屏蔽膜(2)进行对组,对组后完成对3D透镜的制作;
    制作步骤五、3D透镜与显示屏(1)进行对组。
PCT/CN2016/095812 2016-07-27 2016-08-18 一种裸眼3d透镜显示设备及其制作方法 WO2018018675A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/324,485 US10288978B2 (en) 2016-07-27 2016-08-18 Naked-eye 3D lens display device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610600503.1 2016-07-27
CN201610600503.1A CN106019762B (zh) 2016-07-27 2016-07-27 一种裸眼3d透镜显示设备及其制作方法

Publications (1)

Publication Number Publication Date
WO2018018675A1 true WO2018018675A1 (zh) 2018-02-01

Family

ID=57114290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095812 WO2018018675A1 (zh) 2016-07-27 2016-08-18 一种裸眼3d透镜显示设备及其制作方法

Country Status (3)

Country Link
US (1) US10288978B2 (zh)
CN (1) CN106019762B (zh)
WO (1) WO2018018675A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154683A (zh) * 2016-08-31 2016-11-23 京东方科技集团股份有限公司 一种液晶棱镜及其制作方法、显示装置
CN106842600A (zh) * 2017-04-12 2017-06-13 武汉华星光电技术有限公司 一种裸眼透镜及显示装置
CN110764273B (zh) * 2019-10-31 2022-08-19 京东方科技集团股份有限公司 透镜模块、显示装置及显示方法
CN111948833A (zh) * 2020-08-14 2020-11-17 Tcl华星光电技术有限公司 三维立体显示装置及制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400492B1 (en) * 1999-06-11 2002-06-04 Ricoh Company Limited Electrophoretic display liquid, and electrophoretic display medium, method and device using the liquid
CN102640044A (zh) * 2009-12-02 2012-08-15 纳诺布雷克株式会社 利用电磁泳动的显示方法和装置
US20130148075A1 (en) * 2011-12-13 2013-06-13 Chia-Rong Sheu Liquid crystal lens and manufacturing method thereof
CN103294225A (zh) * 2013-06-09 2013-09-11 深圳超多维光电子有限公司 立体显示设备、指点设备、立体显示系统及其操作方法
CN104749825A (zh) * 2015-04-16 2015-07-01 京东方科技集团股份有限公司 一种液晶盒及其制作方法、显示装置
CN105334645A (zh) * 2014-07-21 2016-02-17 联胜(中国)科技有限公司 2d/3d转换装置及其驱动方法、显示器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793293B2 (ja) 2007-03-16 2011-10-12 日産自動車株式会社 炭化珪素半導体装置及びその製造方法
CN102640035B (zh) * 2009-09-14 2017-01-04 王晓光 裸眼3d立体图像还原显示方法
CN102315264A (zh) 2010-07-09 2012-01-11 苏州东微半导体有限公司 一种使用球形沟槽的功率器件及其制造方法
CN102376715B (zh) 2010-08-11 2014-03-12 中国科学院微电子研究所 一种无电容型动态随机访问存储器结构及其制备方法
CN102244099B (zh) 2011-06-23 2013-04-17 西安电子科技大学 外延沟道的SiCIEMOSFET器件及制备方法
CN103926748B (zh) * 2013-06-28 2016-12-07 天马微电子股份有限公司 液晶透镜及其制作方法、立体显示装置及其制作方法
CN103558724B (zh) * 2013-11-15 2015-02-11 京东方科技集团股份有限公司 一种液晶棱镜及其制作方法、显示装置
CN103823307B (zh) * 2014-02-14 2016-08-17 京东方科技集团股份有限公司 真三维立体成像装置和显示装置
CN104966735A (zh) 2015-05-26 2015-10-07 株洲南车时代电气股份有限公司 一种碳化硅mosfet器件及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400492B1 (en) * 1999-06-11 2002-06-04 Ricoh Company Limited Electrophoretic display liquid, and electrophoretic display medium, method and device using the liquid
CN102640044A (zh) * 2009-12-02 2012-08-15 纳诺布雷克株式会社 利用电磁泳动的显示方法和装置
US20130148075A1 (en) * 2011-12-13 2013-06-13 Chia-Rong Sheu Liquid crystal lens and manufacturing method thereof
CN103294225A (zh) * 2013-06-09 2013-09-11 深圳超多维光电子有限公司 立体显示设备、指点设备、立体显示系统及其操作方法
CN105334645A (zh) * 2014-07-21 2016-02-17 联胜(中国)科技有限公司 2d/3d转换装置及其驱动方法、显示器
CN104749825A (zh) * 2015-04-16 2015-07-01 京东方科技集团股份有限公司 一种液晶盒及其制作方法、显示装置

Also Published As

Publication number Publication date
CN106019762B (zh) 2019-05-07
US10288978B2 (en) 2019-05-14
US20180180966A1 (en) 2018-06-28
CN106019762A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
WO2018018675A1 (zh) 一种裸眼3d透镜显示设备及其制作方法
US8502953B2 (en) Liquid crystal lens electrically driven and stereoscopic display device using the same
US20110205342A1 (en) Electrically-driven liquid crystal lens and stereoscopic display using the same
CN102314014B (zh) 可切换三维转换器件、其制造方法和立体图像显示装置
CN103034012B (zh) 3d显示模组、液晶透镜及其制备方法
CN105700268A (zh) 液晶透镜及3d显示装置
WO2015070585A1 (zh) 液晶棱镜及其制作方法、显示装置
TWI624695B (zh) 軟性液晶透鏡陣列
CN102279485B (zh) 用于手机显示屏系统的光栅液晶
CN105700167B (zh) 3d显示装置
CN103913879B (zh) 液晶透镜、立体显示装置和该液晶透镜的形成方法
CN204009309U (zh) 裸眼3d立体显示装置
CN203287666U (zh) 一种液晶透镜及应用该液晶透镜的立体显示装置
CN203858434U (zh) 液晶透镜、立体显示装置
US20160033781A1 (en) Stereoscopic display device and cell-aligning packaging method of the same
CN102213861B (zh) 一种3d眼镜镜片
WO2018040755A1 (zh) 一种液晶棱镜及其制作方法、显示装置
CN104020625A (zh) 3d分光器及立体显示装置
US9784981B2 (en) Liquid crystal display device and liquid crystal display module thereof
CN204009310U (zh) 3d分光器及立体显示装置
CN105467715B (zh) 液晶透镜面板和三维显示装置
CN204009311U (zh) 液晶透镜阵列及立体显示装置
CN202956573U (zh) 3d显示模组及液晶透镜
CN102253525B (zh) 一种立体影像显示系统的亮度调节方法
CN103076705A (zh) 一种基于偏振控制的电控可调焦液晶透镜及阵列

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15324485

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910254

Country of ref document: EP

Kind code of ref document: A1