WO2018018647A1 - System, with drainage device, for protecting against acid rain - Google Patents

System, with drainage device, for protecting against acid rain Download PDF

Info

Publication number
WO2018018647A1
WO2018018647A1 PCT/CN2016/092448 CN2016092448W WO2018018647A1 WO 2018018647 A1 WO2018018647 A1 WO 2018018647A1 CN 2016092448 W CN2016092448 W CN 2016092448W WO 2018018647 A1 WO2018018647 A1 WO 2018018647A1
Authority
WO
WIPO (PCT)
Prior art keywords
rainwater
module
telescopic
canopy
motor
Prior art date
Application number
PCT/CN2016/092448
Other languages
French (fr)
Chinese (zh)
Inventor
黄方元
崔翠翠
Original Assignee
黄方元
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄方元 filed Critical 黄方元
Priority to PCT/CN2016/092448 priority Critical patent/WO2018018647A1/en
Publication of WO2018018647A1 publication Critical patent/WO2018018647A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/02Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/02Methods or installations for obtaining or collecting drinking water or tap water from rain-water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/108Rainwater harvesting

Definitions

  • the invention relates to the technical field of plant protection devices, in particular to an acid rain protection system with a drain device for avoiding acid rain in potted plants.
  • the official name of acid rain is acid deposition. It refers to rain with a pH of less than 5.6. Plants usually have a high dependence on soil acidity and alkalinity and nutrients, especially potted plants. In the acid rain, the nutrients potassium, sodium, calcium and magnesium in the soil will be released and will be leached with the rain. Therefore, acid rain will cause a large amount of nutrients in the soil to be leached, resulting in serious shortage of nutrients in the soil, which will make the soil poor, which will lead to abnormal plant growth and even death.
  • an object of the present invention to provide an acid rain protection system capable of identifying acid rain and preventing acid rain from contacting potted plants and their soil.
  • the present invention adopts the following technical solutions:
  • An acid rain protection system with a drainage device including a rainwater collector, a rainwater monitor, Telescopic bracket, motor and canopy;
  • the rainwater monitor is connected to the motor; the side wall of the rain collector for collecting rainwater is provided with a sump; the rainwater collector is provided with a drain valve;
  • the rainwater monitor is configured to detect a characteristic value of rainwater in the rainwater collector, and send a control signal to the motor after generating the control signal according to the characteristic value;
  • the telescopic bracket is connected to the motor, and the telescopic bracket is driven to open after the control signal received by the motor is an opening signal; the rain canopy is fixed on the telescopic bracket; when the telescopic bracket is opened, the canopy is opened When the telescopic bracket is closed, the canopy is closed;
  • the telescopic bracket includes a slide rail, a slider, a first telescopic assembly, a second telescopic assembly, and a transverse rod;
  • the sliding rail is provided with a sliding slot;
  • the slider is installed in the sliding slot, and the sliding block and the motor pass a chain connection;
  • the first telescopic assembly is coupled to the slider and the transverse bar, the first telescopic assembly is switched between an extended state and a contracted state according to a state of the slider;
  • the transverse rod is fixed;
  • the telescopic state of the second telescopic assembly is synchronized with the telescopic state of the first telescopic assembly;
  • the first telescopic assembly includes at least one set of telescopic rods; each of the telescopic rod sets includes two telescopic rods disposed at an intersection, and a rotating shaft is disposed at an intersection position, and the rotating shaft passes through the two telescopic rods at the same time, so that the two telescopic rods The rod can be rotated with the shaft.
  • the rainwater collector comprises a funnel-shaped rain collector and a rainwater container; the rainwater container is installed at an outlet of the rain collector.
  • the rainwater container is provided with a receiving cavity and a water discharge port, and the receiving cavity is connected with the water discharge port; the drain valve is disposed at the water discharge port; and the rain canopy is made of flexible plastic.
  • the rainwater monitor comprises a first acquisition module, a second acquisition module, and a meter Calculation module, judgment module and control module;
  • the first collection module generates an electromotive force after contacting the rainwater, and sends the electromotive force to the calculation module;
  • the second collection module is configured to detect a temperature value and a refractive index of the monitored rainwater, and send the temperature value and the refractive index to the calculation module;
  • the calculating module calculates the PH value of the rainwater according to the received electromotive force, the temperature value and the refractive index, and sends the PH value to the control module;
  • the control module generates a control signal according to the magnitude of the PH value and sends the control signal to the motor.
  • the calculation module calculates the PH value of the rainwater by using the following formula:
  • E is the electromotive force
  • E 0 is a constant
  • E 2 and E 1 are the potentials of the first acquisition module
  • PH 2 and PH 1 are the PH values of the first acquisition module
  • T is the temperature of the rainwater
  • R is the refractive index of the rainwater
  • ln ⁇ (H+) is the pH value of rainwater.
  • the first collection module and the second collection module are installed in the rainwater collector.
  • control module includes a receiving module, a determining module, a signal generating module, and a sending module;
  • the receiving module is configured to receive a PH value sent by the computing module
  • the determining module is configured to determine whether the PH value received by the receiving module is less than 5.6;
  • the signal generating module is configured to generate an open signal when the result of the determining by the determining module is YES;
  • the transmitting module is configured to send the open signal to a motor.
  • the motor is started after receiving the opening signal, driving the telescopic bracket to open, thereby opening the canopy.
  • the acid rain protection system with drainage device of the invention can collect rainwater through the rainwater collector, and then collect the rainwater collected by the rainwater monitor, and control the work of the motor according to the detection result, if the acid rain is detected
  • the motor can be controlled to open the telescopic bracket and the canopy, and the acid rain is blocked by the canopy to protect the soil and plants under the canopy.
  • the drain valve can be used to drain rainwater from the rainwater collector after the pH value is detected for the next pH value detection.
  • the sump is opened on the side wall of the rain collector for collecting rainwater, and the rainwater container can be introduced into the rainwater container through the sump, thereby further increasing the speed of collecting rainwater from the rainwater container.
  • FIG. 1 is a schematic structural view of an acid rain protection system with a drain device according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the installation of a rain canopy and a telescopic bracket according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a rainwater collector according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of a rainwater monitor in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a first acquisition module according to an embodiment of the present invention.
  • the present invention relates to an acid rain protection system with a drain, including a rainwater collector 1, a rainwater monitor 2, a telescopic support 3, a motor 4, and a canopy 5.
  • the rainwater monitor 2 is connected to the motor 4.
  • the rainwater monitor 2 is for detecting a characteristic value of rainwater in the rainwater collector 1, and transmits a control signal to the motor 4 after generating a control signal based on the characteristic value.
  • the characteristic value includes a temperature value of rain water, a refractive index or a pH value, and the like.
  • the control signal may be a signal that controls the motor 4 to start and/or control the motor 4 to turn off.
  • the motor 4 performs a corresponding operation after receiving the control signal.
  • the motor 4 when the motor 4 receives the start control signal, the motor 4 performs a start-up operation, that is, starts working to open the telescopic bracket 3.
  • the telescopic bracket 3 is connected to the motor 4, and the telescopic bracket 3 is controlled to switch between an open state and a collapsed state by the motor 4.
  • the canopy 5 is fixed to the telescopic bracket 3 on.
  • the telescopic stand 3 When the telescopic stand 3 is opened, the canopy 4 is opened.
  • the telescopic support 3 When the telescopic support 3 is gathered, the canopy 5 is gathered.
  • the canopy 5 is used to block rain.
  • a control signal for starting the motor 4 is sent to cause the motor 4 to work to open the telescopic bracket 3, thereby opening the canopy 5 to avoid acid rain and rain canopy 5
  • the soil and plants are in contact with each other to achieve the effect of protecting plants and soil.
  • the rain, 5 is made of flexible plastic. Therefore, the canopy 5 can be opened and contracted simultaneously with the opening and contraction of the telescopic bracket 3.
  • the rainwater collector 1 defines a receiving chamber 10 for collecting rainwater.
  • a portion of the rainwater monitor 2 is inserted into the accommodating chamber 10.
  • at least the rainwater component detected by the rainwater monitor 2 can be inserted into the accommodating chamber 10.
  • the rainwater collector 1 is placed outdoors when it is necessary to detect whether there is acid rain. Since the rainwater collector 1 is for collecting rainwater that naturally falls, the accommodating chamber 10 is open toward the sky so that rainwater falls into the accommodating chamber 10.
  • the rainwater monitor 3 is used to accommodate the characteristic value of rainwater in the cavity 10.
  • a portion of the first acquisition module 2 is inserted into the receiving cavity 10. The rainwater is collected through the accommodating chamber 10 so that the rainwater monitor 2 is better in contact with the rainwater, thereby improving the detection efficiency.
  • the rainwater collector 1 includes a funnel-shaped rain collector 11 and a rainwater container 12, and the rainwater container 12 is fixed to a lower end of the rain collector 11.
  • the sump 110 is opened on the side wall of the rain collector 11 for collecting rainwater.
  • the sump 110 is opened on the inner wall of the rain collector 11.
  • the rain collector 11 is used to collect rainwater and introduce the collected rainwater into the rainwater container 12.
  • the rainwater monitor 3 is specifically used to detect the characteristic value of the rainwater in the rainwater container 12.
  • the rainwater container 12 defines a receiving cavity 10 and an inlet (in the figure) Not shown), the accommodating chamber 10 is in communication with the inlet; the inlet of the rainwater container 12 is in communication with the outlet of the funnel-shaped rain collector 11, and the rainwater collected by the sump 11 sequentially passes through the outlet of the sump 11, the rainwater container 12 The inlet enters the accommodating chamber 10, and a portion of the first collection module 2 is inserted into the accommodating chamber 10.
  • a drain valve 13 is mounted on the rainwater container 12; the drain valve 13 can be used to discharge the rainwater in the rainwater collector 1 after the primary PH value is detected, so as to perform the next PH value detection.
  • the rainwater collector 1 further has a water discharge port (not shown), and the accommodation chamber 10 is in communication with the water discharge port.
  • the drain valve 13 includes a water pipe 131 and a valve 132.
  • the water pipe 131 is disposed in the water outlet, such that one end of the water pipe 131 may protrude outside the rainwater collector 1 .
  • the valve 132 is detachably mounted on the water pipe and protrudes from the end of the rain collector 1 outside. When the rainwater in the rainwater collector 1 needs to be discharged, the valve 132 can be removed from the water pipe 131.
  • the valve 132 can be configured as an electronic valve.
  • the rainwater monitor 2 sends a control signal to activate the motor 4, a signal to open the valve 132 is simultaneously sent to open the valve 132.
  • the valve 132 is closed.
  • the rainwater monitor 2 includes a first acquisition module 21, a second acquisition module 22, a calculation module 23, and a control module 24.
  • the first collection module 21 generates an electromotive force after contacting the rainwater, and sends the electromotive force to the calculation module 23.
  • the first acquisition module 21 includes a measurement electrode and a reference electrode, the measurement electrode being an electrode selective for hydrogen ions. Therefore, when the first collection module 21 is inserted into the rainwater to be measured, a corresponding electromotive force can be generated according to the pH of the rainwater.
  • the calculation module 23 and the control module 24 can be combined into a part of the module of the single chip microcomputer.
  • the second collection module 22 can be a temperature sensor and Refractometer.
  • the first collection module 21 includes a protective shell 211 and a first detecting body 212 and a second detecting body 213 installed in the protective casing 211 .
  • a cavity for mounting the first detecting body 212 and the second detecting body 213 is opened in the protective casing 211.
  • the first detecting body 212 includes a first housing 2121, a first detecting solution 2122, and a first electrode lead 2123.
  • the first housing 2121 is hollow inside.
  • the first detecting liquid 2122 is received in the first housing 2121.
  • One end of the first electrode lead 2123 is immersed in the first detecting solution 2122, and the other end passes through the first housing 2121 and the protective case 211 in sequence and is connected to the calculation module 23.
  • the first detecting body 212 is not in contact with the rain water to be detected during the measurement; and the second detecting body 213 is in contact with the rain water to be detected.
  • the second detecting body 213 includes a second housing 2131, a second detecting solution 2132, and a second electrode lead 2133.
  • the second housing 2131 is hollow inside.
  • the second detecting liquid 2132 is received in the second housing 2131.
  • One end of the second electrode lead 2133 is immersed in the second detecting solution 2132, and the other end passes through the second housing 2131 and the protective case 211 in sequence and is connected to the calculation module 23.
  • the first housing 2121 and the second housing 2131 are each made of glass.
  • the first detection solution 2122 and the second detection solution 2132 are both potassium chloride solutions having a concentration of about 3 mol/L, wherein the first detection solution 2122 occupies about 1 ⁇ 9-1 ⁇ 51 of the internal space of the first housing 2121.
  • the second detection solution 2132 occupies about 1 ⁇ 9-1 ⁇ 51 of the internal space of the second casing 2131.
  • the first electrode lead 2123 and the second electrode lead 2133 may be silver chloride.
  • the second collection module 22 is configured to detect a temperature value and a refractive index of the monitored rainwater, and send the temperature value and the refractive index to the calculation module 23.
  • the calculation module 23 is connected according to The collected electromotive force, temperature value, and refractive index are used to calculate the pH of the rainwater and sent to the control module 24.
  • the control module 24 generates a control signal according to the magnitude of the PH value and transmits the control signal to the motor 4.
  • the second collection module 22 can be a refractometer or refractometer.
  • the calculation module 23 can be a calculator, and the calculation module 23 calculates the PH value of the rainwater by using the following formula (1)(2):
  • E is an electromotive force
  • E 0 is less than or equal to an E constant
  • E 2 and E 1 are potentials of the first detection solution 2122 and the second detection solution 2132 in the first acquisition module 21, respectively
  • PH 2 and PH 1 are The pH of the first detection solution 2122 and the second detection solution 2132 in the acquisition module 21
  • T is the temperature of the rainwater
  • R is the refractive index of the rainwater
  • ln ⁇ (H + ) is the pH value of the rainwater.
  • the accuracy of the rainwater monitor 2 can be effectively improved by collecting the temperature value and the refractive index of the rainwater by setting the second collection module 22 in the rainwater monitor 2.
  • lgR represents the logarithm of base 10
  • ln ⁇ (H + ) represents the logarithm of e.
  • the first collection module 21 and the second collection module 22 are installed in the rainwater collector 1 . Specifically, the first collection module 21 and the second collection module 22 are installed in the accommodating cavity 10 to be in contact with the rainwater to be tested.
  • the control module 24 includes a receiving module 241, a determining module 242, a signal generating module 243, and a sending module 244.
  • the receiving module 241 is configured to receive the PH value sent by the computing module 23.
  • the determining module 242 is configured to determine whether the PH value received by the receiving module 241 is less than 5.6. If yes, the rainwater is acid rain, and the canopy needs to be opened, otherwise No need to open the canopy.
  • the signal generating module 243 is configured to generate an open signal according to the result of the determining module determining 242 being YES.
  • the transmitting module 244 is configured to send the open signal to the motor 4.
  • the motor 4 is activated after receiving the opening signal to drive the telescopic bracket 3 to open, thereby opening the canopy 5.
  • the rainwater can be blocked by the open canopy 5 to prevent rainwater from coming into contact with the plants.
  • the telescopic bracket 3 includes a slide rail 31, a slider 32, a first telescopic assembly 33, a second telescopic assembly 34, and a transverse rod 35.
  • a sliding slot 310 is defined on the sliding rail 31.
  • the slider 32 is mounted in a chute 310 that is coupled to the motor 4 by a chain. Since the canopy 5 is made of a flexible plastic having a waterproof effect, the canopy 5 can be supported by two telescopic components to prevent excessive accumulation of rain on the canopy 5, thereby effectively improving the durability of the canopy 5.
  • the slider 32 can be driven by the motor 5 to slide on the chute 310.
  • the transverse bar 35 is arranged in parallel with the slide rail 31.
  • the first telescopic assembly 33 is coupled to both the slider 32 and the transverse bar 35.
  • the first telescopic assembly 33 is switched between an extended state and a contracted state according to the state of the slider 32.
  • the expansion and contraction state of the first telescopic assembly 33 is described when the slider 32 is two.
  • the first telescopic assembly 33 is fully opened.
  • the linear distance between the transverse rod 35 and the slide rail 31 is the largest; when the linear distance between the two sliders 32 is gradually increased, the first telescopic assembly 33 is gradually folded, and the transverse rod 35 and the slide rail are at this time.
  • the distance between 31 is gradually shortened.
  • the second telescopic assembly 34 is fixed to the slide rail 31 and the transverse rod 35.
  • the first telescopic assembly 33 includes at least one set of telescopic rods; each of the telescopic rod sets includes two first telescopic rods 331 disposed at an intersection, and a rotating shaft 332 is disposed at an intersecting position.
  • the rotating shaft 332 passes through the two first telescopic rods 331 at the same time, so that the two first telescopic rods 331 can rotate with the rotating shaft 332.
  • the angle between the two first telescopic rods 331 is changed, and the first telescopic assembly 33 is elongated and shortened.
  • the telescopic rod set is two sets, each telescopic rod set includes four first telescopic rods 331 , and two first telescopic rods 331 disposed in a pair are a pair, and the two pairs of first telescopic rods 331 are mutually Handover.
  • the telescopic state of the second telescopic assembly 34 is synchronized with the telescopic state of the first telescopic assembly 33.
  • the second telescopic assembly 34 includes two second telescopic rods 341, each of the second telescopic rods 341 includes at least two hollow tubes 3411, and the two hollow tubes 3411 have different diameters, and the small diameter hollow tubes 3411 can be inserted in the In the large-diameter hollow tube 3411, when there is external force pushing and pulling, the small-diameter hollow tube 3411 can be extended or retracted in the large-diameter hollow tube 3411, thereby realizing the elongation of the second telescopic rod 341. shorten.
  • each of the second telescopic rods 341 includes three hollow tubes 3411.
  • the acid rain protection system with the drainage device of the present invention can collect the rainwater through the rainwater collector 1, and then detect the collected rainwater through the rainwater monitor 2, and control the work of the motor 4 according to the detection result. If the detected acid rain can control the motor 4 to start, the telescopic support 3 and the canopy 5 are opened, and the acid rain is blocked by the canopy 5 to achieve the effect of protecting the soil and plants under the canopy 5.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Public Health (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Environmental Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Disclosed is a system, with a drainage device, for protecting against acid rain, the protection system comprising a rainwater collector (1), a rainwater-monitoring meter (2), a telescopic support (3), an electric motor (4) and a canopy (5). The rainwater-monitoring meter (2) is connected to the electric motor (4). The rainwater collector (1) is provided with a water escape valve (13). The rainwater-monitoring meter (2) is used for detecting a characteristic value of rainwater in the rainwater collector (1), and sending a control signal to the electric motor (4) after the control signal is generated according to the characteristic value. The electric motor (4) performs corresponding operations after receiving the control signal. The telescopic support (3) is connected to the electric motor (4). The canopy (5) is fixed to the telescopic support (3). When the telescopic support (3) opens, the canopy (5) opens therewith; and when the telescopic support (3) closes, the canopy (5) closes therewith. The system, with a drainage device, for protecting against acid rain can control the start of the electric motor (4) so as to open the telescopic support (3) and the canopy (5) after acid rain is detected, and block the acid rain by means of the canopy (5), thus achieving the effect of protecting soil and plants under the canopy (5).

Description

带排水装置的酸雨防护系统Acid rain protection system with drain 技术领域Technical field
本发明涉及植物保护装置技术领域,具体涉及避免盆栽遭受酸雨的带排水装置的酸雨防护系统。The invention relates to the technical field of plant protection devices, in particular to an acid rain protection system with a drain device for avoiding acid rain in potted plants.
背景技术Background technique
酸雨正式的名称是为酸性沉降.是指pH值小于5.6的雨。植物通常对土壤的酸碱程度及营养成分依赖较高,尤其盆栽类植物。而在酸雨会导致土壤中的营养元素钾、钠、钙、镁会释放出来,并随着雨水被淋溶掉。所以酸雨会使土壤中大量的营养元素被淋失,造成土壤中营养元素的严重不足,从而使土壤变得贫瘠,因此会导致植物生长异常甚至死亡。The official name of acid rain is acid deposition. It refers to rain with a pH of less than 5.6. Plants usually have a high dependence on soil acidity and alkalinity and nutrients, especially potted plants. In the acid rain, the nutrients potassium, sodium, calcium and magnesium in the soil will be released and will be leached with the rain. Therefore, acid rain will cause a large amount of nutrients in the soil to be leached, resulting in serious shortage of nutrients in the soil, which will make the soil poor, which will lead to abnormal plant growth and even death.
因此为了减少酸雨对植物及土壤的影响,有必要防止植物与酸雨接触。Therefore, in order to reduce the effects of acid rain on plants and soil, it is necessary to prevent plants from coming into contact with acid rain.
发明内容Summary of the invention
针对现有技术的不足,本发明的目的在于提供一种能识别酸雨,并且能防止酸雨接触盆栽植物及其土壤的带排水装置的酸雨防护系统。In view of the deficiencies of the prior art, it is an object of the present invention to provide an acid rain protection system capable of identifying acid rain and preventing acid rain from contacting potted plants and their soil.
为实现上述目的,本发明通过采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种带排水装置的酸雨防护系统,包括雨水采集器、雨水监控仪、 伸缩支架、电机及雨棚;An acid rain protection system with a drainage device, including a rainwater collector, a rainwater monitor, Telescopic bracket, motor and canopy;
所述雨水监控仪与电机连接;所述集雨器用于收集雨水的侧壁上开设有集水槽;所述雨水采集器上设置有泄水阀;The rainwater monitor is connected to the motor; the side wall of the rain collector for collecting rainwater is provided with a sump; the rainwater collector is provided with a drain valve;
所述雨水监控仪用于检测雨水采集器中雨水的特征值,并在根据该特征值生成控制信号之后将控制信号发送至电机;The rainwater monitor is configured to detect a characteristic value of rainwater in the rainwater collector, and send a control signal to the motor after generating the control signal according to the characteristic value;
所述伸缩支架与电机连接,当所述电机接收的所述控制信号为打开信号之后驱动所述伸缩支架打开;所述雨棚固定在伸缩支架上;当伸缩支架打开时,雨棚随之打开;当伸缩支架收拢时,雨棚随之收拢;The telescopic bracket is connected to the motor, and the telescopic bracket is driven to open after the control signal received by the motor is an opening signal; the rain canopy is fixed on the telescopic bracket; when the telescopic bracket is opened, the canopy is opened When the telescopic bracket is closed, the canopy is closed;
所述伸缩支架包括滑轨、滑块、第一伸缩组件、第二伸缩组件及横向杆;所述滑轨上开设有滑槽;所述滑块安装在滑槽内,该滑块与电机通过链条连接;所述第一伸缩组件与滑块及横向杆均连接,该第一伸缩组件根据滑块的状态在伸长状态与收缩状态之间切换;所述第二伸缩组件与所述滑轨及横向杆固接;所述第二伸缩组件的伸缩状态与第一伸缩组件的伸缩状态同步;The telescopic bracket includes a slide rail, a slider, a first telescopic assembly, a second telescopic assembly, and a transverse rod; the sliding rail is provided with a sliding slot; the slider is installed in the sliding slot, and the sliding block and the motor pass a chain connection; the first telescopic assembly is coupled to the slider and the transverse bar, the first telescopic assembly is switched between an extended state and a contracted state according to a state of the slider; the second telescopic assembly and the sliding rail And the transverse rod is fixed; the telescopic state of the second telescopic assembly is synchronized with the telescopic state of the first telescopic assembly;
所述第一伸缩组件包括至少一组伸缩杆组;各伸缩杆组包括两个交叉设置的伸缩杆,并在交叉的位置设置有转轴,该转轴同时穿过两个伸缩杆,使得两个伸缩杆能以该转轴进行旋转。The first telescopic assembly includes at least one set of telescopic rods; each of the telescopic rod sets includes two telescopic rods disposed at an intersection, and a rotating shaft is disposed at an intersection position, and the rotating shaft passes through the two telescopic rods at the same time, so that the two telescopic rods The rod can be rotated with the shaft.
优选地,所述雨水采集器包括漏斗形的集雨器及雨水容器;所述雨水容器安装于集雨器的出口处。Preferably, the rainwater collector comprises a funnel-shaped rain collector and a rainwater container; the rainwater container is installed at an outlet of the rain collector.
优选地,所述雨水容器开设有一容纳腔及泄水口,该容纳腔与泄水口连通;所述泄水阀穿设于泄水口;所述雨棚由柔性的塑料制成。Preferably, the rainwater container is provided with a receiving cavity and a water discharge port, and the receiving cavity is connected with the water discharge port; the drain valve is disposed at the water discharge port; and the rain canopy is made of flexible plastic.
优选地,所述雨水监控仪包括第一采集模块、第二采集模块、计 算模块、判断模块及控制模块;Preferably, the rainwater monitor comprises a first acquisition module, a second acquisition module, and a meter Calculation module, judgment module and control module;
所述第一采集模块与雨水接触后产生电动势,并将该电动势发送至计算模块;The first collection module generates an electromotive force after contacting the rainwater, and sends the electromotive force to the calculation module;
所述第二采集模块用于检测被监控雨水的温度值和折射率,并将该温度值和折射率发送至计算模块;The second collection module is configured to detect a temperature value and a refractive index of the monitored rainwater, and send the temperature value and the refractive index to the calculation module;
所述计算模块根据接收的电动势、温度值以及折射率计算雨水的PH值,并发送至控制模块;The calculating module calculates the PH value of the rainwater according to the received electromotive force, the temperature value and the refractive index, and sends the PH value to the control module;
所述控制模块根据PH值的大小生成控制信号,并将控制信号发送至电机。The control module generates a control signal according to the magnitude of the PH value and sends the control signal to the motor.
优选地,所述计算模块采用如下公式计算雨水的PH值:Preferably, the calculation module calculates the PH value of the rainwater by using the following formula:
Figure PCTCN2016092448-appb-000001
Figure PCTCN2016092448-appb-000001
Figure PCTCN2016092448-appb-000002
Figure PCTCN2016092448-appb-000002
其中:E为电动势;E0为常数;E2与E1为第一采集模块的电位,PH2与PH1为第一采集模块的PH值;T为雨水的温度,R为雨水的折射率,lnα(H+)为雨水的PH值。Where: E is the electromotive force; E 0 is a constant; E 2 and E 1 are the potentials of the first acquisition module, PH 2 and PH 1 are the PH values of the first acquisition module; T is the temperature of the rainwater, and R is the refractive index of the rainwater , lnα(H+) is the pH value of rainwater.
优选地,所述第一采集模块及第二采集模块安装于雨水采集器内。Preferably, the first collection module and the second collection module are installed in the rainwater collector.
优选地,所述控制模块包括接收模块、判断模块、信号生成模块及发送模块;Preferably, the control module includes a receiving module, a determining module, a signal generating module, and a sending module;
所述接收模块用于接收计算模块发出的PH值;The receiving module is configured to receive a PH value sent by the computing module;
所述判断模块用于判断接收模块接收的PH值是否小于5.6; The determining module is configured to determine whether the PH value received by the receiving module is less than 5.6;
所述信号生成模块用于根据所述判断模块判断的结果为是时,生成打开信号;The signal generating module is configured to generate an open signal when the result of the determining by the determining module is YES;
所述发送模块用于将所述打开信号发送至电机。The transmitting module is configured to send the open signal to a motor.
优选地,所述电机在接收到所述打开信号之后启动,驱动所述伸缩支架打开,进而将雨棚打开。Preferably, the motor is started after receiving the opening signal, driving the telescopic bracket to open, thereby opening the canopy.
本发明的有益效果:The beneficial effects of the invention:
本发明的带排水装置的酸雨防护系统可通过雨水采集器对雨水进行采集,然后通过雨水监控仪对采集的雨水进行检测,并根据检测的结果控制电机的工作进,若检测的到的是酸雨可控制电机启动将伸缩支架及雨棚打开,通过雨棚对酸雨进行阻挡达到防护雨棚下方土壤及植物的效果。通过在雨水采集器上设置泄水阀,该泄水阀可用于当一次PH值检测完毕之后,将雨水采集器内的雨水排出,以便进行下一次PH值检测。并且通过集雨器用于采集雨水的侧壁上开设集水槽,通过集水槽能更快的雨水导入雨水容器内,进一步提高雨水容器采集雨水的速度。The acid rain protection system with drainage device of the invention can collect rainwater through the rainwater collector, and then collect the rainwater collected by the rainwater monitor, and control the work of the motor according to the detection result, if the acid rain is detected The motor can be controlled to open the telescopic bracket and the canopy, and the acid rain is blocked by the canopy to protect the soil and plants under the canopy. By providing a drain valve on the rainwater collector, the drain valve can be used to drain rainwater from the rainwater collector after the pH value is detected for the next pH value detection. The sump is opened on the side wall of the rain collector for collecting rainwater, and the rainwater container can be introduced into the rainwater container through the sump, thereby further increasing the speed of collecting rainwater from the rainwater container.
附图说明DRAWINGS
图1为本发明的实施例中一种带排水装置的酸雨防护系统结构示意图;1 is a schematic structural view of an acid rain protection system with a drain device according to an embodiment of the present invention;
图2为本发明的实施例中雨棚与伸缩支架的安装示意图;、2 is a schematic view showing the installation of a rain canopy and a telescopic bracket according to an embodiment of the present invention;
图3为本发明的实施例中一种雨水采集器的结构示意图;3 is a schematic structural view of a rainwater collector according to an embodiment of the present invention;
图4为本发明的实施例中雨水监控仪的模块图; 4 is a block diagram of a rainwater monitor in an embodiment of the present invention;
图5为本发明的实施例中一种第一采集模块示意图。FIG. 5 is a schematic diagram of a first acquisition module according to an embodiment of the present invention.
图中:1、雨水采集器;10、容纳腔;13、泄水阀;131、水管;132、阀门;2、雨水监控仪;21、第一采集模块;211、保护壳;212、第一检测体;2121、第一壳体;2122、第一检测溶液;2123、第一电极导线;213、第二检测体;2131、第二壳体;2132、第二检测溶液;2133、第二电极导线;22、第二采集模块;23、计算模块;24、控制模块;241、接收模块;242、判断模块;243、信号生成模块;244、发送模块;3、伸缩支架;31、滑轨;310、滑槽;32、滑块;33、第一伸缩组件;331、第一伸缩杆;332、转轴;34、第二伸缩组件;341、第二伸缩杆;3411、空心管;35、横向杆;4、电机;5、雨棚。In the figure: 1, rainwater collector; 10, housing cavity; 13, drain valve; 131, water pipe; 132, valve; 2, rain water monitor; 21, first acquisition module; 211, protective shell; a detecting body; 2121, a first housing; 2122, a first detecting solution; 2123, a first electrode lead; 213, a second detecting body; 2131, a second housing; 2132, a second detecting solution; 2133, a second electrode Wire; 22, second acquisition module; 23, calculation module; 24, control module; 241, receiving module; 242, judgment module; 243, signal generation module; 244, transmission module; 3, telescopic support; 31, slide rail; 310, chute; 32, slider; 33, first telescopic assembly; 331, first telescopic rod; 332, shaft; 34, second telescopic assembly; 341, second telescopic rod; 3411, hollow tube; Rod; 4, motor; 5, canopy.
具体实施方式detailed description
下面,结合附图以及具体实施方式,对本发明做进一步描述:The present invention will be further described below in conjunction with the drawings and specific embodiments.
参照图1与图2,本发明涉及一种带排水装置的酸雨防护系统,包括雨水采集器1、雨水监控仪2、伸缩支架3、电机4及雨棚5。所述雨水监控仪2与电机4连接。所述雨水监控仪2用于检测雨水采集器1中雨水的特征值,并在根据该特征值生成控制信号之后将控制信号发送至电机4。该特征值包括雨水的温度值、折射率或PH值等。所述控制信号可为控制电机4启动和/或控制电机4关闭的信号。所述电机4在接收所述控制信号之后执行相应的操作。例如电机4在接收到启动控制信号时,该电机4执行启动操作,即开始工作将伸缩支架3打开。所述伸缩支架3与电机4连接,该伸缩支架3通过电机4控制在打开状态与收拢状态之间切换。所述雨棚5固定在伸缩支架3 上。当伸缩支架3打开时,雨棚4随之打开。当伸缩支架3收拢时,雨棚5随之收拢。所述雨棚5用于遮挡雨。通常情况下,当所述雨水监控仪2检测到雨水为酸雨时,发送启动电机4的控制信号,促使电机4工作将伸缩支架3打开,从而使得将雨棚5打开,避免酸雨与雨棚5下的土壤及植物接触,从而实现保护植物及土壤的效果。所述雨,5由柔性的塑料制成。所以雨棚5可以随着伸缩支架3的打开与收缩而同步打开、收缩。Referring to Figures 1 and 2, the present invention relates to an acid rain protection system with a drain, including a rainwater collector 1, a rainwater monitor 2, a telescopic support 3, a motor 4, and a canopy 5. The rainwater monitor 2 is connected to the motor 4. The rainwater monitor 2 is for detecting a characteristic value of rainwater in the rainwater collector 1, and transmits a control signal to the motor 4 after generating a control signal based on the characteristic value. The characteristic value includes a temperature value of rain water, a refractive index or a pH value, and the like. The control signal may be a signal that controls the motor 4 to start and/or control the motor 4 to turn off. The motor 4 performs a corresponding operation after receiving the control signal. For example, when the motor 4 receives the start control signal, the motor 4 performs a start-up operation, that is, starts working to open the telescopic bracket 3. The telescopic bracket 3 is connected to the motor 4, and the telescopic bracket 3 is controlled to switch between an open state and a collapsed state by the motor 4. The canopy 5 is fixed to the telescopic bracket 3 on. When the telescopic stand 3 is opened, the canopy 4 is opened. When the telescopic support 3 is gathered, the canopy 5 is gathered. The canopy 5 is used to block rain. Normally, when the rainwater monitor 2 detects that the rainwater is acid rain, a control signal for starting the motor 4 is sent to cause the motor 4 to work to open the telescopic bracket 3, thereby opening the canopy 5 to avoid acid rain and rain canopy 5 The soil and plants are in contact with each other to achieve the effect of protecting plants and soil. The rain, 5 is made of flexible plastic. Therefore, the canopy 5 can be opened and contracted simultaneously with the opening and contraction of the telescopic bracket 3.
参照图3,所述雨水采集器1开设有一容纳腔10,该容纳腔10用于收集雨水。所述雨水监控仪2的部分穿插在该容纳腔10内。具体地,至少可将雨水监控仪2检测的雨水部件穿插在容纳腔10内。当需要检测是否有酸雨的情况下,该雨水采集器1放置于户外。由于雨水采集器1是用于采集自然落下的雨水,因此容纳腔10朝向天空的方向是开口的,以便雨水落入容纳腔10内。具体的所述雨水监控仪3用于容纳腔10中雨水的特征值。所述第一采集模块2的部分穿插在该容纳腔10内。通过容纳腔10对雨水进行收集,以便雨水监控仪2更好地与雨水接触,提高检测效率。Referring to Figure 3, the rainwater collector 1 defines a receiving chamber 10 for collecting rainwater. A portion of the rainwater monitor 2 is inserted into the accommodating chamber 10. Specifically, at least the rainwater component detected by the rainwater monitor 2 can be inserted into the accommodating chamber 10. The rainwater collector 1 is placed outdoors when it is necessary to detect whether there is acid rain. Since the rainwater collector 1 is for collecting rainwater that naturally falls, the accommodating chamber 10 is open toward the sky so that rainwater falls into the accommodating chamber 10. Specifically, the rainwater monitor 3 is used to accommodate the characteristic value of rainwater in the cavity 10. A portion of the first acquisition module 2 is inserted into the receiving cavity 10. The rainwater is collected through the accommodating chamber 10 so that the rainwater monitor 2 is better in contact with the rainwater, thereby improving the detection efficiency.
参照图3,所述雨水采集器1包括漏斗形的集雨器11及雨水容器12,所述雨水容器12固定于集雨器11的下端。所述集雨器11用于收集雨水的侧壁上开设有集水槽110。例如,所述集水槽110开设集雨器11内壁上。在该集雨器11用于收集雨水,并将其收集的雨水导入雨水容器12内。具体的所述雨水监控仪3用于检测雨水容器12中雨水的特征值。所述雨水容器12开设有一容纳腔10及进口(图中 未示出),该容纳腔10与进口连通;雨水容器12的进口与漏斗形的集雨器11出口连通,集雨器11收集的雨水依次通过该集雨器11的出口、雨水容器12的进口进入所述容纳腔10内,所述第一采集模块2的部分穿插在该容纳腔10内。Referring to FIG. 3, the rainwater collector 1 includes a funnel-shaped rain collector 11 and a rainwater container 12, and the rainwater container 12 is fixed to a lower end of the rain collector 11. The sump 110 is opened on the side wall of the rain collector 11 for collecting rainwater. For example, the sump 110 is opened on the inner wall of the rain collector 11. The rain collector 11 is used to collect rainwater and introduce the collected rainwater into the rainwater container 12. The rainwater monitor 3 is specifically used to detect the characteristic value of the rainwater in the rainwater container 12. The rainwater container 12 defines a receiving cavity 10 and an inlet (in the figure) Not shown), the accommodating chamber 10 is in communication with the inlet; the inlet of the rainwater container 12 is in communication with the outlet of the funnel-shaped rain collector 11, and the rainwater collected by the sump 11 sequentially passes through the outlet of the sump 11, the rainwater container 12 The inlet enters the accommodating chamber 10, and a portion of the first collection module 2 is inserted into the accommodating chamber 10.
所述雨水容器12上安装有一泄水阀13;该泄水阀13可用于当一次PH值检测完毕之后,将雨水采集器1内的雨水排出,以便进行下一次PH值检测。所述雨水采集器1还开设泄水口(图未示),该容纳腔10与泄水口连通。所述泄水阀13包括水管131及阀门132。所述水管131穿设于泄水口内,如此该水管131的一端可伸出于雨水采集器1外侧。所述阀门132以可拆卸的方式安装于水管上伸出于雨水采集器1外侧的端部上。当需要将雨水采集器1内的雨水排出时,将阀门132从水管131上取下即可。或者也可将所述阀门132设置为电子阀门,当雨水监控仪2发送启动电机4的控制信号时,同时发送打开阀门132的信号将阀门132打开。当雨水采集器1内的雨水排完时,将阀门132关闭即可。A drain valve 13 is mounted on the rainwater container 12; the drain valve 13 can be used to discharge the rainwater in the rainwater collector 1 after the primary PH value is detected, so as to perform the next PH value detection. The rainwater collector 1 further has a water discharge port (not shown), and the accommodation chamber 10 is in communication with the water discharge port. The drain valve 13 includes a water pipe 131 and a valve 132. The water pipe 131 is disposed in the water outlet, such that one end of the water pipe 131 may protrude outside the rainwater collector 1 . The valve 132 is detachably mounted on the water pipe and protrudes from the end of the rain collector 1 outside. When the rainwater in the rainwater collector 1 needs to be discharged, the valve 132 can be removed from the water pipe 131. Alternatively, the valve 132 can be configured as an electronic valve. When the rainwater monitor 2 sends a control signal to activate the motor 4, a signal to open the valve 132 is simultaneously sent to open the valve 132. When the rainwater in the rainwater collector 1 is exhausted, the valve 132 is closed.
参照图4,所述雨水监控仪2包括第一采集模块21、第二采集模块22、计算模块23及控制模块24。所述第一采集模块21与雨水接触后产生电动势,并将该电动势发送至计算模块23。第一采集模块21包括测量电极与参比电极,所述测量电极是对氢离子具有选择性的电极。因此当将该第一采集模块21插入待测雨水中时,可根据雨水酸碱度而产生相应的电动势。所述计算模块23及控制模块24可组合为单片机的一部分模块。所述第二采集模块22可为温度传感器及 折光仪。Referring to FIG. 4, the rainwater monitor 2 includes a first acquisition module 21, a second acquisition module 22, a calculation module 23, and a control module 24. The first collection module 21 generates an electromotive force after contacting the rainwater, and sends the electromotive force to the calculation module 23. The first acquisition module 21 includes a measurement electrode and a reference electrode, the measurement electrode being an electrode selective for hydrogen ions. Therefore, when the first collection module 21 is inserted into the rainwater to be measured, a corresponding electromotive force can be generated according to the pH of the rainwater. The calculation module 23 and the control module 24 can be combined into a part of the module of the single chip microcomputer. The second collection module 22 can be a temperature sensor and Refractometer.
参照图5,所述第一采集模块21包括保护壳211、以及安装于保护壳211内的第一检测体212与第二检测体213。所述保护壳211内开设有用于安装所述第一检测体212与第二检测体213的空腔。所述第一检测体212包括第一壳体2121、第一检测溶液2122及第一电极导线2123。所述第一壳体2121内部中空。所述第一检测液2122容置于第一壳体2121内。第一电极导线2123的一端浸没在第一检测溶液2122内,另一端依次穿过第一壳体2121及保护壳211并与计算模块23连接。在测量过程中所述第一检测体212不与待检测的雨水接触;而第二检测体213与待检测的雨水接触。Referring to FIG. 5 , the first collection module 21 includes a protective shell 211 and a first detecting body 212 and a second detecting body 213 installed in the protective casing 211 . A cavity for mounting the first detecting body 212 and the second detecting body 213 is opened in the protective casing 211. The first detecting body 212 includes a first housing 2121, a first detecting solution 2122, and a first electrode lead 2123. The first housing 2121 is hollow inside. The first detecting liquid 2122 is received in the first housing 2121. One end of the first electrode lead 2123 is immersed in the first detecting solution 2122, and the other end passes through the first housing 2121 and the protective case 211 in sequence and is connected to the calculation module 23. The first detecting body 212 is not in contact with the rain water to be detected during the measurement; and the second detecting body 213 is in contact with the rain water to be detected.
所述第二检测体213包括第二壳体2131、第二检测溶液2132及第二电极导线2133。所述第二壳体2131内部中空。所述第二检测液2132容置于第二壳体2131内。第二电极导线2133的一端浸没在第二检测溶液2132内,另一端依次穿过第二壳体2131及保护壳211并与计算模块23连接。The second detecting body 213 includes a second housing 2131, a second detecting solution 2132, and a second electrode lead 2133. The second housing 2131 is hollow inside. The second detecting liquid 2132 is received in the second housing 2131. One end of the second electrode lead 2133 is immersed in the second detecting solution 2132, and the other end passes through the second housing 2131 and the protective case 211 in sequence and is connected to the calculation module 23.
第一壳体2121及第二壳体2131均由玻璃制成。所述第一检测溶液2122与第二检测溶液2132均为浓度为3mol/L左右的氯化钾溶液,其中第一检测溶液2122占第一壳体2121内部空间的1\9-1\51左右;第二检测溶液2132占第二壳体2131内部空间的1\9-1\51左右。所述第一电极导线2123及第二电极导线2133可为氯化银。The first housing 2121 and the second housing 2131 are each made of glass. The first detection solution 2122 and the second detection solution 2132 are both potassium chloride solutions having a concentration of about 3 mol/L, wherein the first detection solution 2122 occupies about 1\9-1\51 of the internal space of the first housing 2121. The second detection solution 2132 occupies about 1\9-1\51 of the internal space of the second casing 2131. The first electrode lead 2123 and the second electrode lead 2133 may be silver chloride.
所述第二采集模块22用于检测被监控雨水的温度值和折射率,并将该温度值和折射率发送至计算模块23。所述计算模块23根据接 收的电动势、温度值以及折射率计算雨水的PH值,并发送至控制模块24。所述控制模块24根据PH值的大小生成控制信号,并将控制信号发送至电机4。所述第二采集模块22可为折射仪又称折光仪。The second collection module 22 is configured to detect a temperature value and a refractive index of the monitored rainwater, and send the temperature value and the refractive index to the calculation module 23. The calculation module 23 is connected according to The collected electromotive force, temperature value, and refractive index are used to calculate the pH of the rainwater and sent to the control module 24. The control module 24 generates a control signal according to the magnitude of the PH value and transmits the control signal to the motor 4. The second collection module 22 can be a refractometer or refractometer.
所述计算模块23可为计算器,该计算模块23采用如下公式(1)(2)计算雨水的PH值:The calculation module 23 can be a calculator, and the calculation module 23 calculates the PH value of the rainwater by using the following formula (1)(2):
Figure PCTCN2016092448-appb-000003
Figure PCTCN2016092448-appb-000003
Figure PCTCN2016092448-appb-000004
Figure PCTCN2016092448-appb-000004
其中:E为电动势;E0可为小于或等于E常数;E2与E1分别为第一采集模块21内第一检测溶液2122及第二检测溶液2132的电位,PH2与PH1为第一采集模块21内第一检测溶液2122及第二检测溶液2132的PH值;T为雨水的温度,R为雨水的折射率;lnα(H+)为雨水的PH值。通过在雨水监控仪2中设置第二采集模块22来采集雨水的温度值与折射率可有效的提高雨水监控仪2检测的精确度。lgR表示以10为底的对数,lnα(H+)表示以e为底的对数。Wherein: E is an electromotive force; E 0 is less than or equal to an E constant; and E 2 and E 1 are potentials of the first detection solution 2122 and the second detection solution 2132 in the first acquisition module 21, respectively, and PH 2 and PH 1 are The pH of the first detection solution 2122 and the second detection solution 2132 in the acquisition module 21; T is the temperature of the rainwater, R is the refractive index of the rainwater; and lnα(H + ) is the pH value of the rainwater. The accuracy of the rainwater monitor 2 can be effectively improved by collecting the temperature value and the refractive index of the rainwater by setting the second collection module 22 in the rainwater monitor 2. lgR represents the logarithm of base 10, and lnα(H + ) represents the logarithm of e.
所述第一采集模块21及第二采集模块22安装于雨水采集器1内。具体地,该第一采集模块21及第二采集模块22安装于所述容纳腔10内,以便与待测雨水接触。The first collection module 21 and the second collection module 22 are installed in the rainwater collector 1 . Specifically, the first collection module 21 and the second collection module 22 are installed in the accommodating cavity 10 to be in contact with the rainwater to be tested.
所述控制模块24包括接收模块241、判断模块242、信号生成模块243及发送模块244。所述接收模块241用于接收计算模块23发出的PH值。所述判断模块242用于判断接收模块241接收的PH值是否小于5.6,若是则说明该雨水为酸雨,需要将雨棚打开,否则可以 不用打开雨棚。所述信号生成模块243用于根据所述判断模块判断242的结果为是时,生成打开信号。所述发送模块244用于将所述打开信号发送至电机4。The control module 24 includes a receiving module 241, a determining module 242, a signal generating module 243, and a sending module 244. The receiving module 241 is configured to receive the PH value sent by the computing module 23. The determining module 242 is configured to determine whether the PH value received by the receiving module 241 is less than 5.6. If yes, the rainwater is acid rain, and the canopy needs to be opened, otherwise No need to open the canopy. The signal generating module 243 is configured to generate an open signal according to the result of the determining module determining 242 being YES. The transmitting module 244 is configured to send the open signal to the motor 4.
所述电机4在接收到所述打开信号之后启动,驱动所述伸缩支架3打开,进而将雨棚5打开。当雨棚5下具有植物时,可通过打开状态的雨棚5对雨水进行阻隔,防止雨水与植物接触。The motor 4 is activated after receiving the opening signal to drive the telescopic bracket 3 to open, thereby opening the canopy 5. When there is a plant under the canopy 5, the rainwater can be blocked by the open canopy 5 to prevent rainwater from coming into contact with the plants.
所述伸缩支架3包括滑轨31、滑块32、第一伸缩组件33、第二伸缩组件34及横向杆35。所述滑轨31上开设有滑槽310。所述滑块32安装在滑槽310内,该滑块32与电机4通过链条连接。由于雨棚5为具有防水效果的柔性塑料制成,可通过两个伸缩组件来支撑雨棚5,避免雨水过多的堆积在雨棚5上,从而可有效提高雨棚5的耐用性。可通过电机5驱动滑块32在滑槽310滑动。所述横向杆35与滑轨31平行设置。所述第一伸缩组件33与滑块32及横向杆35均连接,该第一伸缩组件33根据滑块32的状态在伸长状态与收缩状态之间切换。以所述滑块32为两个时对第一伸缩组件33的伸缩状态进行描述,当两个滑块32相互靠近至相互接触的状态下,该第一伸缩组件33呈完全打开状态,此时横向杆35与滑轨31之间的直线距离最大;当两个所述滑块32之间的直线距离逐渐增大时,该第一伸缩组件33实现逐渐收拢,此时横向杆35与滑轨31之间的距离逐渐缩短。所述第二伸缩组件34与所述滑轨31及横向杆35固接。The telescopic bracket 3 includes a slide rail 31, a slider 32, a first telescopic assembly 33, a second telescopic assembly 34, and a transverse rod 35. A sliding slot 310 is defined on the sliding rail 31. The slider 32 is mounted in a chute 310 that is coupled to the motor 4 by a chain. Since the canopy 5 is made of a flexible plastic having a waterproof effect, the canopy 5 can be supported by two telescopic components to prevent excessive accumulation of rain on the canopy 5, thereby effectively improving the durability of the canopy 5. The slider 32 can be driven by the motor 5 to slide on the chute 310. The transverse bar 35 is arranged in parallel with the slide rail 31. The first telescopic assembly 33 is coupled to both the slider 32 and the transverse bar 35. The first telescopic assembly 33 is switched between an extended state and a contracted state according to the state of the slider 32. The expansion and contraction state of the first telescopic assembly 33 is described when the slider 32 is two. When the two sliders 32 are close to each other, the first telescopic assembly 33 is fully opened. The linear distance between the transverse rod 35 and the slide rail 31 is the largest; when the linear distance between the two sliders 32 is gradually increased, the first telescopic assembly 33 is gradually folded, and the transverse rod 35 and the slide rail are at this time. The distance between 31 is gradually shortened. The second telescopic assembly 34 is fixed to the slide rail 31 and the transverse rod 35.
所述第一伸缩组件33包括至少一组伸缩杆组;各伸缩杆组包括两个交叉设置的第一伸缩杆331,并在交叉的位置设置有转轴332, 该转轴332同时穿过两个第一伸缩杆331,使得两个第一伸缩杆331能以该转轴332进行旋转。当两个第一伸缩杆331在以转轴332为中心转动时,使得两个第一伸缩杆331之间的夹角发生变化,实现第一伸缩组件33伸长与缩短。结合图1,所述伸缩杆组为两组,各伸缩杆组包括四个的第一伸缩杆331,交叉设置的两个第一伸缩杆331为一对,该两对第一伸缩杆331相互交接。The first telescopic assembly 33 includes at least one set of telescopic rods; each of the telescopic rod sets includes two first telescopic rods 331 disposed at an intersection, and a rotating shaft 332 is disposed at an intersecting position. The rotating shaft 332 passes through the two first telescopic rods 331 at the same time, so that the two first telescopic rods 331 can rotate with the rotating shaft 332. When the two first telescopic rods 331 are rotated about the rotation shaft 332, the angle between the two first telescopic rods 331 is changed, and the first telescopic assembly 33 is elongated and shortened. With reference to FIG. 1 , the telescopic rod set is two sets, each telescopic rod set includes four first telescopic rods 331 , and two first telescopic rods 331 disposed in a pair are a pair, and the two pairs of first telescopic rods 331 are mutually Handover.
所述第二伸缩组件34的伸缩状态与第一伸缩组件33的伸缩状态同步。所述第二伸缩组件34包括两个第二伸缩杆341,每个第二伸缩杆341包括至少两个空心管3411,且两个空心管3411直径不相同,直径小的空心管3411可穿插在大直径空心管3411内,当存在外力推拉的情况下,可实现小直径的空心管3411在大直径的空心管3411内做伸出或者缩进的操作,从而实现第二伸缩杆341伸长与缩短。图1中,每个第二伸缩杆341包括三个空心管3411。The telescopic state of the second telescopic assembly 34 is synchronized with the telescopic state of the first telescopic assembly 33. The second telescopic assembly 34 includes two second telescopic rods 341, each of the second telescopic rods 341 includes at least two hollow tubes 3411, and the two hollow tubes 3411 have different diameters, and the small diameter hollow tubes 3411 can be inserted in the In the large-diameter hollow tube 3411, when there is external force pushing and pulling, the small-diameter hollow tube 3411 can be extended or retracted in the large-diameter hollow tube 3411, thereby realizing the elongation of the second telescopic rod 341. shorten. In Fig. 1, each of the second telescopic rods 341 includes three hollow tubes 3411.
综上,本发明的带排水装置的酸雨防护系统可通过雨水采集器1对雨水进行采集,然后通过雨水监控仪2对采集的雨水进行检测,并根据检测的结果来控制电机4的工作进,若检测的到的是酸雨可控制电机4启动将伸缩支架3及雨棚5打开,通过雨棚5对酸雨进行阻挡达到防护雨棚5下方土壤及植物的效果。In summary, the acid rain protection system with the drainage device of the present invention can collect the rainwater through the rainwater collector 1, and then detect the collected rainwater through the rainwater monitor 2, and control the work of the motor 4 according to the detection result. If the detected acid rain can control the motor 4 to start, the telescopic support 3 and the canopy 5 are opened, and the acid rain is blocked by the canopy 5 to achieve the effect of protecting the soil and plants under the canopy 5.
对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。 Various other changes and modifications may be made by those skilled in the art in light of the above-described technical solutions and concepts, and all such changes and modifications are intended to fall within the scope of the appended claims.

Claims (8)

  1. 一种带排水装置的酸雨防护系统,其特征在于:包括雨水采集器、雨水监控仪、伸缩支架、电机及雨棚;An acid rain protection system with a drainage device, comprising: a rainwater collector, a rainwater monitor, a telescopic bracket, a motor and a canopy;
    所述雨水监控仪与电机连接;所述集雨器用于收集雨水的侧壁上开设有集水槽;所述雨水采集器上设置有泄水阀;The rainwater monitor is connected to the motor; the side wall of the rain collector for collecting rainwater is provided with a sump; the rainwater collector is provided with a drain valve;
    所述雨水监控仪用于检测雨水采集器中雨水的特征值,并在根据该特征值生成控制信号之后将控制信号发送至电机;The rainwater monitor is configured to detect a characteristic value of rainwater in the rainwater collector, and send a control signal to the motor after generating the control signal according to the characteristic value;
    所述伸缩支架与电机连接,当所述电机接收的所述控制信号为打开信号之后驱动所述伸缩支架打开;所述雨棚固定在伸缩支架上;当伸缩支架打开时,雨棚随之打开;当伸缩支架收拢时,雨棚随之收拢;The telescopic bracket is connected to the motor, and the telescopic bracket is driven to open after the control signal received by the motor is an opening signal; the rain canopy is fixed on the telescopic bracket; when the telescopic bracket is opened, the canopy is opened When the telescopic bracket is closed, the canopy is closed;
    所述伸缩支架包括滑轨、滑块、第一伸缩组件、第二伸缩组件及横向杆;所述滑轨上开设有滑槽;所述滑块安装在滑槽内,该滑块与电机通过链条连接;所述第一伸缩组件与滑块及横向杆均连接,该第一伸缩组件根据滑块的状态在伸长状态与收缩状态之间切换;所述第二伸缩组件与所述滑轨及横向杆固接;所述第二伸缩组件的伸缩状态与第一伸缩组件的伸缩状态同步;The telescopic bracket includes a slide rail, a slider, a first telescopic assembly, a second telescopic assembly, and a transverse rod; the sliding rail is provided with a sliding slot; the slider is installed in the sliding slot, and the sliding block and the motor pass a chain connection; the first telescopic assembly is coupled to the slider and the transverse bar, the first telescopic assembly is switched between an extended state and a contracted state according to a state of the slider; the second telescopic assembly and the sliding rail And the transverse rod is fixed; the telescopic state of the second telescopic assembly is synchronized with the telescopic state of the first telescopic assembly;
    所述第一伸缩组件包括至少一组伸缩杆组;各伸缩杆组包括两个交叉设置的伸缩杆,并在交叉的位置设置有转轴,该转轴同时穿过两个伸缩杆,使得两个伸缩杆能以该转轴进行旋转。The first telescopic assembly includes at least one set of telescopic rods; each of the telescopic rod sets includes two telescopic rods disposed at an intersection, and a rotating shaft is disposed at an intersection position, and the rotating shaft passes through the two telescopic rods at the same time, so that the two telescopic rods The rod can be rotated with the shaft.
  2. 根据权利要求1所述的带排水装置的酸雨防护系统,其特征在于:所述雨水采集器包括漏斗形的集雨器及雨水容器;所述雨水容器安装于集雨器的出口处。The acid rain protection system with drain device according to claim 1, wherein the rainwater collector comprises a funnel-shaped rain collector and a rainwater container; the rainwater container is installed at an outlet of the rain collector.
  3. 根据权利要求2所述的带排水装置的酸雨防护系统,其特征 在于:所述雨水容器开设有一容纳腔及泄水口,该容纳腔与泄水口连通;所述泄水阀穿设于泄水口;所述雨棚由柔性的塑料制成。The acid rain protection system with a drain device according to claim 2, characterized in that The rainwater container is provided with a receiving cavity and a water discharge port, and the receiving cavity is connected with the water discharge port; the drain valve is disposed at the water discharge port; and the rain canopy is made of flexible plastic.
  4. 根据权利要求1-3任一项所述的带排水装置的酸雨防护系统,其特征在于:所述雨水监控仪包括第一采集模块、第二采集模块、计算模块、判断模块及控制模块;The acid rain protection system with a drain device according to any one of claims 1 to 3, wherein the rainwater monitor comprises a first acquisition module, a second acquisition module, a calculation module, a determination module and a control module;
    所述第一采集模块与雨水接触后产生电动势,并将该电动势发送至计算模块;The first collection module generates an electromotive force after contacting the rainwater, and sends the electromotive force to the calculation module;
    所述第二采集模块用于检测被监控雨水的温度值和折射率,并将该温度值和折射率发送至计算模块;The second collection module is configured to detect a temperature value and a refractive index of the monitored rainwater, and send the temperature value and the refractive index to the calculation module;
    所述计算模块根据接收的电动势、温度值以及折射率计算雨水的PH值,并发送至控制模块;The calculating module calculates the PH value of the rainwater according to the received electromotive force, the temperature value and the refractive index, and sends the PH value to the control module;
    所述控制模块根据PH值的大小生成控制信号,并将控制信号发送至电机。The control module generates a control signal according to the magnitude of the PH value and sends the control signal to the motor.
  5. 根据权利要求4所述的带排水装置的酸雨防护系统,其特征在于:所述计算模块采用如下公式计算雨水的PH值:The acid rain protection system with a drain device according to claim 4, wherein the calculation module calculates the PH value of the rainwater by using the following formula:
    Figure PCTCN2016092448-appb-100001
    Figure PCTCN2016092448-appb-100001
    Figure PCTCN2016092448-appb-100002
    Figure PCTCN2016092448-appb-100002
    其中:E为电动势;E0为常数;E2与E1为第一采集模块的电位,PH2与PH1为第一采集模块的PH值;T为雨水的温度,R为雨水的折射率,lnα(H+)为雨水的PH值。Where: E is the electromotive force; E 0 is a constant; E 2 and E 1 are the potentials of the first acquisition module, PH 2 and PH 1 are the PH values of the first acquisition module; T is the temperature of the rainwater, and R is the refractive index of the rainwater , lnα(H+) is the pH value of rainwater.
  6. 根据权利要求5所述的带排水装置的酸雨防护系统,其特征 在于:所述第一采集模块及第二采集模块安装于雨水采集器内。The acid rain protection system with drainage device according to claim 5, characterized in that The first collection module and the second collection module are installed in the rainwater collector.
  7. 根据权利要求5所述的带排水装置的酸雨防护系统,其特征在于:所述控制模块包括接收模块、判断模块、信号生成模块及发送模块;The acid rain protection system with a drain device according to claim 5, wherein the control module comprises a receiving module, a determining module, a signal generating module and a transmitting module;
    所述接收模块用于接收计算模块发出的PH值;The receiving module is configured to receive a PH value sent by the computing module;
    所述判断模块用于判断接收模块接收的PH值是否小于5.6;The determining module is configured to determine whether the PH value received by the receiving module is less than 5.6;
    所述信号生成模块用于根据所述判断模块判断的结果为是时,生成打开信号;The signal generating module is configured to generate an open signal when the result of the determining by the determining module is YES;
    所述发送模块用于将所述打开信号发送至电机。The transmitting module is configured to send the open signal to a motor.
  8. 根据权利要求7所述的带排水装置的酸雨防护系统,其特征在于:所述电机在接收到所述打开信号之后启动,驱动所述伸缩支架打开,进而将雨棚打开。 The acid rain protection system with drain device according to claim 7, wherein the motor is started after receiving the opening signal, driving the telescopic bracket to open, and then opening the canopy.
PCT/CN2016/092448 2016-07-29 2016-07-29 System, with drainage device, for protecting against acid rain WO2018018647A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092448 WO2018018647A1 (en) 2016-07-29 2016-07-29 System, with drainage device, for protecting against acid rain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092448 WO2018018647A1 (en) 2016-07-29 2016-07-29 System, with drainage device, for protecting against acid rain

Publications (1)

Publication Number Publication Date
WO2018018647A1 true WO2018018647A1 (en) 2018-02-01

Family

ID=61015705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092448 WO2018018647A1 (en) 2016-07-29 2016-07-29 System, with drainage device, for protecting against acid rain

Country Status (1)

Country Link
WO (1) WO2018018647A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110230336A (en) * 2019-07-16 2019-09-13 合肥流荇蓝色农业有限公司 A kind of rain collector in fish and vegetable symbiotic system
CN110794100A (en) * 2018-08-02 2020-02-14 青岛海尔洗衣机有限公司 Water quality detection device and control method thereof
CN112649253A (en) * 2021-01-15 2021-04-13 马永成 Acid rain collector for ecological environment detection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090023218A1 (en) * 2003-02-28 2009-01-22 Basf Corporation Test method for determining etch performance of coated substrate
CN202305455U (en) * 2011-11-01 2012-07-04 宇星科技发展(深圳)有限公司 Automatic acid rain monitor
CN203934427U (en) * 2014-07-26 2014-11-12 姜巍斌 Planting environment acid rain protector
CN106171686A (en) * 2016-07-29 2016-12-07 黄方元 Acid rain guard system with drainage arrangement
CN106258667A (en) * 2016-07-29 2017-01-04 黄方元 Acid rain guard system with rain trap

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090023218A1 (en) * 2003-02-28 2009-01-22 Basf Corporation Test method for determining etch performance of coated substrate
CN202305455U (en) * 2011-11-01 2012-07-04 宇星科技发展(深圳)有限公司 Automatic acid rain monitor
CN203934427U (en) * 2014-07-26 2014-11-12 姜巍斌 Planting environment acid rain protector
CN106171686A (en) * 2016-07-29 2016-12-07 黄方元 Acid rain guard system with drainage arrangement
CN106258667A (en) * 2016-07-29 2017-01-04 黄方元 Acid rain guard system with rain trap

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794100A (en) * 2018-08-02 2020-02-14 青岛海尔洗衣机有限公司 Water quality detection device and control method thereof
CN110230336A (en) * 2019-07-16 2019-09-13 合肥流荇蓝色农业有限公司 A kind of rain collector in fish and vegetable symbiotic system
CN112649253A (en) * 2021-01-15 2021-04-13 马永成 Acid rain collector for ecological environment detection
CN112649253B (en) * 2021-01-15 2023-08-18 湖南怀德检测技术有限公司 Acid rain collector for ecological environment detection

Similar Documents

Publication Publication Date Title
WO2018018647A1 (en) System, with drainage device, for protecting against acid rain
CN106643531B (en) Portable crop plant height measuring device and method
WO2018018645A1 (en) System, with water collection groove, for protecting against acid rain
WO2018018648A1 (en) Acid rain protection system with rain collector
WO2018018643A1 (en) Acid rain protection system with drainage valve
WO2018018642A1 (en) Acid rain protection system with rain collector
CN110672383A (en) Negative pressure water absorption type automatic sampler
CN106018001A (en) Acid rain protection system with rain collector
WO2018018644A1 (en) System, with rain trap, for protecting against acid rain
CN108535341A (en) A kind of continuous on-line monitoring equipment of surrounding air fluoride concentration and method
WO2018018646A1 (en) System for protecting against acid rain
CN108037546B (en) Building outer wall rainfall detection device
CN106020071A (en) Rainwater-collector-contained acid rain protecting system
CN106234090A (en) Acid rain preventer with drain valve
CN106134869A (en) Band catchment brush acid rain guard system
CN106105913A (en) It is easy to the acid rain preventer opened
CN206005375U (en) Acid rain guard system
CN115494125A (en) Trunk moisture distribution monitoring device and method
CN106069407A (en) Acid rain guard system
CN210719298U (en) Trunk diameter flow automatic measuring device
CN106105911A (en) Band catchment brush acid rain guard system
CN206005374U (en) Acid rain guard system with water leg
CN106258667A (en) Acid rain guard system with rain trap
CN106258670A (en) The quickly acid rain preventer of polywater
CN106234089A (en) Acid rain guard system with rain trap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16910227

Country of ref document: EP

Kind code of ref document: A1