WO2018018509A1 - 传输数据的方法、网络设备和终端设备 - Google Patents

传输数据的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2018018509A1
WO2018018509A1 PCT/CN2016/092101 CN2016092101W WO2018018509A1 WO 2018018509 A1 WO2018018509 A1 WO 2018018509A1 CN 2016092101 W CN2016092101 W CN 2016092101W WO 2018018509 A1 WO2018018509 A1 WO 2018018509A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
frequency band
network device
parameter set
basic parameter
Prior art date
Application number
PCT/CN2016/092101
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to KR1020187036662A priority Critical patent/KR20190034156A/ko
Priority to US16/310,417 priority patent/US11128513B2/en
Priority to CN202110187063.2A priority patent/CN113162743B/zh
Priority to CN201680087135.3A priority patent/CN109417781B/zh
Priority to EP16910090.6A priority patent/EP3457775A4/en
Priority to PCT/CN2016/092101 priority patent/WO2018018509A1/zh
Priority to JP2018567924A priority patent/JP7005536B2/ja
Priority to TW106122115A priority patent/TWI753922B/zh
Publication of WO2018018509A1 publication Critical patent/WO2018018509A1/zh
Priority to JP2021043974A priority patent/JP2021101570A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the field of communications, and more particularly to a method of transmitting data, a network device, and a terminal device.
  • UE User Equipment
  • FDM Frequency Division Multiplex
  • different frequency domain resources can be allocated for data transmission based on different basic parameter sets.
  • LTE Long Term Evolution
  • 5G terminals can also support data transmission based on different basic parameter sets, such as subcarriers of current 5G systems.
  • the bandwidth can be 15*2 n Hz (n is a non-negative integer).
  • Data transmission based on different basic parameter sets can be located on different bands, but this will reduce the flexibility of 5G systems. Reusing different basic parameter sets can bring maximum flexibility to 5G systems, but when multiplexing When different basic parameter sets are used, mutual interference may occur between transmission processes of data transmission based on different basic parameter sets.
  • the embodiments of the present invention provide a method for transmitting data, a terminal device, and a network device, which avoid mutual interference generated between data transmissions based on different basic parameter sets.
  • a method of transmitting data comprising: determining, by a network device, a base parameter set for transmitting the data, and determining a target frequency band for transmitting the data, the target frequency band including for transmitting Transmitting a transmission band and a guard band of the data; the network device transmitting configuration information to the terminal device, the configuration information including information of the basic parameter set and the target frequency band; and the network device according to the basic parameter set Receiving, by the terminal device, the data sent by the terminal device or transmitting the data to the terminal device.
  • the method according to the embodiment of the present invention avoids mutual interference generated between data transmissions based on different basic parameter sets by setting a guard band in a transmission resource configured for the terminal device.
  • the high frequency end and the low frequency end of the guard band are respectively adjacent to a transmission frequency band used for data transmitted based on different basic parameter sets, and the terminal device does not transmit and receive the data on the guard band.
  • the information of the target frequency band includes a start position and an end position of the target frequency band, a bandwidth of the guard frequency band, and a position of the guard frequency band in the target frequency band.
  • the information of the target frequency band includes a start position and an end position of the target frequency band, and a start position and an end position of the guard band.
  • the location of the guard band in the target band includes the guard band being located at a low frequency end and/or a high frequency end of the target band.
  • the bandwidth of the guard band is an integer multiple of the minimum subcarrier spacing supported by the network device.
  • the configuration information further includes a filtering manner corresponding to the basic parameter set
  • the method further includes: determining, by the network device The filtering method corresponding to the basic parameter set.
  • the filtering method includes at least one of the following: a type of a baseband filter, a parameter of the baseband filter, a filtered waveform used, and a parameter of the filtered waveform.
  • the base parameter set includes subcarrier spacing.
  • the network device determines a basic parameter set for transmitting the data, including: determining, by the network device, the basic parameter set for transmitting the data from a predefined plurality of basic parameter sets .
  • a network device which can be used to perform various processes performed by a network device in the method for transmitting data in the foregoing first aspect and various implementations.
  • the network device includes a determining module for determining a base parameter set for transmitting the data, and determining a target frequency band for transmitting the data, the target frequency band including a transmission frequency band and protection for transmitting the data a transmission module, configured to send, to the terminal device, the configuration information determined by the determining module, where the configuration information includes information about the basic parameter set and the target frequency band; and the transmission module is further configured to: According to the basic parameter set determined by the determining module, Receiving the data sent by the terminal device on the transmission frequency band determined by the determining module or transmitting the data to the terminal device.
  • a network device which can be used to perform the various processes performed by the terminal device in the method for transmitting data in the foregoing first aspect and various implementations.
  • the network device includes a processor for determining a base parameter set for transmitting the data, and determining a target frequency band for transmitting the data, the target frequency band including a transmission frequency band and protection for transmitting the data a frequency band; a transceiver, configured to send, to the terminal device, the configuration information determined by the determining module, where the configuration information includes information about the basic parameter set and the target frequency band; and the transceiver is further configured to: Receiving, according to the basic parameter set determined by the determining module, the data sent by the terminal device on the transmission frequency band determined by the determining module, or sending the data to the terminal device.
  • a fourth aspect provides a method for transmitting data, including: receiving, by a terminal device, configuration information sent by a network device, where the configuration information includes information of a basic parameter set and a target frequency band for transmitting the data, the target frequency band Included in the transmission band and the guard band for transmitting the data; the terminal device transmitting the data to the network device on the transmission band or receiving the message sent by the network device according to the basic parameter set data.
  • the method according to the embodiment of the present invention avoids mutual interference generated between data transmissions based on different basic parameter sets by setting a guard band in a transmission resource.
  • the high frequency end and the low frequency end of the guard band are respectively adjacent to a transmission frequency band used for data transmitted based on different basic parameter sets, and the terminal device does not transmit and receive the data on the guard band.
  • the information of the target frequency band includes a start position and an end position of the target frequency band, a bandwidth of the guard frequency band, and a position of the guard frequency band in the target frequency band.
  • the information of the target frequency band includes a start position and an end position of the target frequency band, and a start position and an end position of the guard band.
  • the location of the guard band in the target band includes the guard band being located at a low frequency end and/or a high frequency end of the target band.
  • the bandwidth of the guard band is an integer multiple of the minimum subcarrier spacing supported by the network device.
  • the configuration information further includes filtering corresponding to the basic parameter set.
  • the method the terminal device, according to the basic parameter set, sending the data to the network device or receiving the data sent by the network device, including: the terminal device according to the filtering And processing the data, and sending the processed data to the network device on the target frequency band according to the basic parameter set; or the terminal device receiving the according to the basic parameter set The data sent by the network device, and processing the received data according to the filtering manner.
  • the filtering method includes at least one of the following: a type of a baseband filter, a parameter of the baseband filter, a filtered waveform used, and a parameter of the filtered waveform.
  • the base parameter set includes subcarrier spacing.
  • a terminal device which can be used to perform the processes performed by the terminal device in the method for transmitting data in the foregoing fourth aspect and various implementation manners.
  • the terminal device includes a transmission module, configured to: receive configuration information sent by the network device, where the configuration information includes information about a basic parameter set and a target frequency band for transmitting the data, where the target frequency band includes a transmission band and a guard band; according to the basic parameter set, transmitting the data to the network device or receiving the data sent by the network device on the transmission band.
  • a terminal device which can be used to perform the processes performed by the terminal device in the method for transmitting data in the foregoing fourth aspect and various implementation manners.
  • the terminal device includes a transceiver, configured to: receive configuration information sent by the network device, where the configuration information includes information about a basic parameter set and a target frequency band for transmitting the data, where the target frequency band includes a transmission band and a guard band of data; according to the basic parameter set, transmitting the data to the network device or receiving the data sent by the network device on the transmission band.
  • a seventh aspect provides a method for transmitting data, including: determining, by a network device, a basic parameter set for transmitting the data, a transmission frequency band for transmitting the data, and a filtering manner corresponding to the basic parameter set; The network device sends configuration information to the terminal device, where the configuration information includes the basic parameter set, the transmission frequency band, and the filtering mode; and the network device receives the transmission frequency band according to the basic parameter set.
  • the data sent by the terminal device or the data is sent to the terminal device.
  • the filtering method includes at least one of the following: a type of a baseband filter, a parameter of the baseband filter, a filtered waveform used, and a parameter of the filtered waveform.
  • the base parameter set includes subcarrier spacing.
  • the network device determines a basic parameter set for transmitting the data, including: determining, by the network device, the basic parameter set for transmitting the data from a predefined plurality of basic parameter sets .
  • a network device which can be used to perform various processes performed by a network device in the method for transmitting data in the foregoing seventh aspect and various implementation manners.
  • the network device includes: a determining module, configured to determine a basic parameter set for transmitting the data, a transmission frequency band for transmitting the data, and a filtering mode corresponding to the basic parameter set; and a transmission module, configured to the terminal
  • the device sends configuration information, where the configuration information includes the basic parameter set, the transmission frequency band, and the filtering mode; the transmission module is further configured to receive, according to the basic parameter set, the said transmission frequency band
  • the data sent by the terminal device or the data is sent to the terminal device.
  • a network device which can be used to perform the processes performed by the terminal device in the method for transmitting data in the foregoing seventh aspect and various implementation manners.
  • the network device includes: a processor, configured to determine a basic parameter set for transmitting the data, a transmission frequency band for transmitting the data, and a filtering manner corresponding to the basic parameter set; and a transceiver for The terminal device sends configuration information, where the configuration information includes the basic parameter set, the transmission frequency band, and the filtering mode; the transceiver is further configured to receive, according to the basic parameter set, the transmission frequency band The data sent by the terminal device or the data is sent to the terminal device.
  • a tenth aspect provides a method for transmitting data, including: receiving, by a terminal device, configuration information sent by a network device, where the configuration information includes a basic parameter set for transmitting the data, and a transmission frequency band for transmitting the data. a filtering method corresponding to the basic parameter set; the terminal device processes the data according to the filtering manner, and sends the processing to the network device on the target frequency band according to the basic parameter set And the terminal device receives the data sent by the network device according to the basic parameter set, and processes the received data according to the filtering manner.
  • the filtering method includes at least one of the following: a type of a baseband filter, a parameter of the baseband filter, a filtered waveform used, and a parameter of the filtered waveform.
  • the base parameter set includes subcarrier spacing.
  • a terminal device which can be used to perform the processes performed by the terminal device in the method for transmitting data in the foregoing tenth aspect and various implementation manners.
  • the terminal device includes a transmission module, configured to: receive configuration information sent by the network device, where the configuration information includes a basic parameter set for transmitting the data, a transmission frequency band for transmitting the data, and the basic parameter set Corresponding filtering manner; processing the data according to the filtering manner, and sending the processed data to the network device on the target frequency band according to the basic parameter set; or according to the basic parameter Receiving, receiving the data sent by the network device, and processing the received data according to the filtering manner.
  • a terminal device which can be used to perform the processes performed by the terminal device in the method for transmitting data in the foregoing tenth aspect and various implementation manners.
  • the terminal device includes a transceiver, configured to: receive configuration information sent by the network device, where the configuration information includes a basic parameter set for transmitting the data, a transmission frequency band for transmitting the data, and the basic parameter And corresponding to the filtering manner; processing the data according to the filtering manner, and sending the processed data to the network device on the target frequency band according to the basic parameter set; or according to the basis a parameter set, receiving the data sent by the network device, and processing the received data according to the filtering manner.
  • a computer readable storage medium in a thirteenth aspect, storing a program causing a network device to perform the first aspect described above, and any of the various implementations thereof The method of transmitting data.
  • a computer readable storage medium storing a program causing the terminal device to perform the fourth aspect described above, and any of the various implementations thereof The method of transmitting data.
  • a computer readable storage medium storing a program causing a network device to perform the seventh aspect described above, and any of the various implementations thereof The method of transmitting data.
  • a computer readable storage medium storing a program causing the terminal device to perform the above tenth aspect, and any of the various implementations thereof The method of transmitting data.
  • FIG. 1 is a schematic diagram of an application scenario of the present invention.
  • FIG. 2 is a flow interaction diagram of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of data transmission based on different basic parameter sets without a guard band and a guard band.
  • FIG. 4 is a flow interaction diagram of a method of transmitting data according to another embodiment of the present invention.
  • FIG. 5 is a flow diagram of a process for transmitting data according to an embodiment of the present invention.
  • FIG. 6 is a flow diagram of a process for transmitting data according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a network device according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a network device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 11 is a structural block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • FIG. 13 is a structural block diagram of a network device according to another embodiment of the present invention.
  • FIG. 14 is a structural block diagram of a network device according to another embodiment of the present invention.
  • Figure 15 is a schematic structural view of a system chip according to another embodiment of the present invention.
  • Figure 16 is a block diagram showing the structure of a terminal device according to another embodiment of the present invention.
  • Figure 17 is a block diagram showing the structure of a terminal device according to another embodiment of the present invention.
  • Figure 18 is a schematic structural view of a system chip according to another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the terminal device in the embodiment of the present invention may also be referred to as a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and a user terminal.
  • UE User Equipment
  • terminal wireless communication device, user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SIP") phone, a Wireless Local Loop (WLL) station, or a personal digital assistant (Personal Digital Assistant, Referred to as "PDA”), a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, or a future evolved public land mobile communication network ( Terminal devices in the Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the network device in the embodiment of the present invention may be a device for communicating with a terminal device, where the network device may be a base station (Base Transceiver Station, or "BTS”) in GSM or CDMA, or may be a base station in a WCDMA system.
  • the NodeB (abbreviated as “NB”) may also be an evolved base station (Evolutional NodeB, hereinafter referred to as “eNB or eNodeB”) in the LTE system, or may be a cloud radio access network (CRAN) scenario.
  • eNB evolved base station
  • CRAN cloud radio access network
  • the underlying wireless controller, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network.
  • the communication system in FIG. 1 may include a network device 10 and a terminal device 20.
  • the network device 10 is configured to provide communication services for the terminal device 20 and access the core network.
  • the terminal device 20 accesses the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 10, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal device 20 and the network device 10.
  • Embodiments of the present invention can schedule data transmission based on different basic parameter sets by using different DCI formats, and can Improve the flexibility of control signaling design.
  • FIG. 2 shows a flow interaction diagram of a method of transmitting data in accordance with an embodiment of the present invention.
  • Network device 10 and terminal device 20 are shown in FIG.
  • the specific process of transmitting data includes:
  • the network device 10 determines a base parameter set and a target frequency band for transmitting the data.
  • the target frequency band includes a transmission frequency band and a protection frequency band for transmitting the data, and the terminal device 20 does not transmit the data on the protection frequency band.
  • the high frequency end and the low frequency end of the guard band are respectively adjacent to the transmission band used for data transmitted based on different basic parameter sets, and the terminal device does not transmit and receive the 5G signal in this area.
  • the guard tone/guard subcarrier is inserted between the two adjacent frequency bands, and the terminal device does not transmit data on the guard band, so that the guard band can be used to isolate data transmission based on different basic parameter sets.
  • Frequency band when signals transmitted based on different basic parameter sets are adjacent in the frequency domain, that is, when FDM is used for multiplexing, The guard tone/guard subcarrier is inserted between the two adjacent frequency bands, and the terminal device does not transmit data on the guard band, so that the guard band can be used to isolate data transmission based on different basic parameter sets.
  • Figure 3 shows a schematic diagram of data transmission based on different sets of basic parameters without a guard band and the presence of a guard band.
  • FIG. 3 when there is no guard band, when data of different basic parameter sets is used to transmit on adjacent frequency bands, mutual interference is easily generated.
  • data transmission is performed on two adjacent frequency bands.
  • the subcarrier spacing used is 30 kHz and 15 kHz, respectively, in the transmission of data using the two seed carrier intervals on the two adjacent frequency bands, different subcarriers are used on the adjacent two frequency bands. Interference occurred while transmitting data at intervals.
  • a guard band for example, as shown in FIG.
  • the subcarrier spacing used for data transmitted on two different frequency bands is 30 kHz and 15 kHz, respectively, and the data transmission is performed using the two seed carrier intervals on the two frequency bands, respectively.
  • the two frequency bands occupied by the data transmitted by using different basic parameter sets are separated by the guard frequency band, and no data transmission is performed on the guard frequency band, so that mutual interference between different subcarrier intervals is not generated,
  • FIG. 3 The guard band shown in (b) has a bandwidth of 60 kHz.
  • the method according to the embodiment of the present invention avoids mutual interference generated between data transmissions based on different basic parameter sets by setting a guard band in a transmission resource configured for the terminal device.
  • the information of the target frequency band includes a start location and a termination location of the target frequency band, a location of the protection frequency band in the target frequency band, and a bandwidth of the protection frequency band.
  • the configuration information to be sent needs to include a basic parameter set for transmitting the data and information for transmitting the target frequency band of the data, where
  • the location of the target frequency band for transmitting the data may be represented by a start position and a termination position of the target frequency band, where the target frequency band defined by the start position and the end position includes the guard band, and the information of the target band further includes the The position of the guard band in the target band.
  • the location of the guard band in the target frequency band includes a low frequency end or a high frequency end of the target frequency band, or includes a low frequency end and a high frequency end of the target frequency band.
  • the network device 10 can allocate the frequency domain resources used by the uplink and downlink transmissions to the terminal device 20 according to the four positional relationships between the protection band and the target frequency band. That is, the guard band is located at the low frequency end of the target band; the guard band is located at the high frequency end of the target band; the guard band is simultaneously located at the high frequency end and the low frequency end of the target band; and there is no guard band at both ends of the target band.
  • the guard band may be set in the target frequency band.
  • a frequency parameter if a base parameter set used for data transmitted on the transmission band is adjacent to a low frequency end of the target frequency band
  • the basic parameter set used for the data transmitted in the frequency band is the same, and the basic parameter set used for the data transmitted on the transmission frequency band and the basic parameter used for the data transmitted on the frequency band adjacent to the high frequency end of the target frequency band are used.
  • the set is the same, then there can be no guard bands between two adjacent bands.
  • the information of the target frequency band includes the position of the guard band in the target frequency band, that is, the positional relationship used by the guard band is one of the above four positional relationships.
  • the information of the guard band may also include a start position and an end position of the target band, and a start position and a stop position of the guard band.
  • the guard band formed by the start position and the end position of the guard band may be located at a low frequency end and/or a high frequency end of the target band. If the guard band is simultaneously located at the low frequency end and the high frequency end of the target frequency band, the target frequency band
  • the information should include both the starting and ending positions of the portion of the guard band at the low frequency end and the starting and ending positions of the portion of the guard band at the high frequency end.
  • the bandwidth of the guard band is an integer multiple of the minimum subcarrier spacing supported by the network device 10.
  • the information of the target frequency band further includes a bandwidth of the guard band. Since different basic parameter sets are supported on the same carrier in the 5G system, the bandwidth of the guard band should cover the frequency band used for data transmission based on the base parameter set. Therefore, the network device 10 determines the bandwidth of the guard band in units of the minimum carrier spacing supported by the network device 10. For example, as shown in FIG. 3, the communication system supports two seed carrier intervals of 15 kHz and 30 kHz. When determining the bandwidth of the guard band, the network device 10 should use 15 kHz as a basic unit, that is, the bandwidth of the guard band. It should be an integer multiple of 15 kHz and less than the bandwidth of the target band.
  • the start and stop positions of the portion of the guard band at the low frequency end and the portion of the guard band at the high frequency end should both be an integer multiple of 15 kHz.
  • the information of the target frequency band may also include a start position and an end position of the target frequency band, and a start position and a stop position of the guard band.
  • the basic parameter set includes a subcarrier spacing.
  • the subcarrier spacing refers to a frequency interval between adjacent subcarriers, for example, 15 kHz, 60 kHz, and the like.
  • the parameters in the basic parameter set include, but are not limited to, subcarrier spacing, for example, the basic parameter set included in the configuration information sent by the network device 10 to the terminal device 20, and may also include other parameters, such as the number of subcarriers under a specific bandwidth, and physical The number of subcarriers in the Physical Resource Block ("PRB"), the length of the Orthogonal Frequency Division Multiplexing (“OFDM”) symbol, and the Fourier transform used to generate the OFDM signal, such as Fast Fu The Fourier Transform (“FFT”) or the inverse Fourier transform, such as the Inverse Fast Fourier Transform (“IFFT”), the number of OFDM symbols in the transmission time interval TTI, The number of TTIs included in a certain length of time and the length of the signal prefix, and the like.
  • PRB Physical Resource Block
  • OFDM Orthogonal Frequency Division Multiplexing
  • the basic parameter set and the target frequency band determined by the network device 10 for transmitting the data are exemplified below. It is assumed that the network device 10 configures the transmission resources for transmitting uplink data for the terminal device 20 and the terminal device 30, respectively. The network device 10 is configured by the terminal device 20 for transmitting uplink data.
  • the subcarrier spacing is 60 kHz
  • the subcarrier spacing configured for the terminal device 30 for transmitting uplink data is 30 kHz
  • the starting position and termination of the target frequency band configured by the network device 10 for transmitting the uplink data by the terminal device 20 The positions are 1800 kHz and 1860 kHz, respectively, and the start position and the end position of the target band configured by the network device 10 for transmitting the uplink data by the terminal device 30 are 1860 kHz and 2000 kHz, respectively. Since the subcarrier spacing used by the terminal device 20 is different from the subcarrier spacing used by the terminal device 30, and the terminal device 20 is used to transmit the high frequency end of the frequency band of its uplink data, the terminal device 30 is used to transmit its uplink data.
  • the low frequency ends of the frequency bands are adjacent between each other, and therefore, the network device 10 can set a guard band at the high frequency end of the target band configured for the terminal device 20, or a guard band at the low frequency end of the target band configured for the terminal device 30.
  • the bandwidth of the guard band is an integer multiple of 30 kHz.
  • the guard band configured by the network device 10 for the terminal device 20 may be located at the high frequency end of the target frequency band configured for it, and the bandwidth of the guard band may be, for example, 30 kHz, that is, the start position and the end position of the guard band are 1830 kHz and 1860 kHz; for example, the guard band configured by the network device 10 for the terminal device 30 may be located at a low frequency end of the target frequency band configured for the same, and the bandwidth of the guard band may be, for example, 60 kHz, that is, the start position and the end position of the guard band are respectively 1860kHz and 1920kHz.
  • the transmission band for transmitting the data in the target frequency band may be continuous or discontinuous. There is no part of the frequency band in the target frequency band for transmitting the data and not belonging to the guard band, and it can be used for transmission of other data and the like. The invention is not limited thereto.
  • the network device 10 sends configuration information to the terminal device 20.
  • the configuration information includes the basic parameter set and information of the target frequency band.
  • the network device 10 transmits configuration information including the basic parameter set and the target frequency band to the terminal device 20, so that the terminal device 20 according to the The configuration information is used by the network device 10 to perform the data transmission on the frequency band for transmitting the data in the target frequency band using the basic parameter set.
  • the terminal device 20 receives the configuration information sent by the network device 10.
  • the network device 10 sends the configuration information to the terminal device 20.
  • the terminal device 20 may be based on the basic parameter set in the configuration information on the frequency band indicated by the configuration information. And data transmission with the network device 10.
  • the configuration information may further include a filtering manner corresponding to the basic parameter set.
  • the terminal device 20 may filter the received or to be transmitted data according to the filtering manner indicated by the configuration information.
  • the method further includes: the network device 10 determining the filtering mode corresponding to the basic parameter set.
  • the filtering method comprises at least one of the following: a type of a baseband filter (which may be simply referred to as a "filter”), a parameter of the baseband filter, a filtered waveform used, and parameters of the filtered waveform. .
  • FIG. 4 shows a flow interaction diagram of a method of data transmission in accordance with another embodiment of the present invention.
  • Network device 10 and terminal device 20 are shown in FIG.
  • the specific process of transmitting data includes:
  • the network device 10 determines a basic parameter set for transmitting the data, a transmission frequency band for transmitting the data, and a filtering manner corresponding to the basic parameter set.
  • the network device 10 may according to the basic parameter set, A suitable filtering method, such as a filter type and/or a waveform, corresponding to the base parameter set is configured for the terminal device 20 to reduce mutual interference between data transmissions based on different sets of basic parameters.
  • the type of the filter and the waveform may be predetermined in the system.
  • the filtering method may include at least one of the following: a type of a baseband filter, a parameter of the baseband filter, a filtered waveform used, and a parameter of the filtered waveform.
  • the network device 10 configures the base device 20 with a basic parameter set and a transmission frequency band for transmitting the data, and further configures, for the terminal device 20, a filtering manner corresponding to the basic parameter set for filtering the data.
  • Data using different basic parameter sets can be used with different filters when filtering, or the same filter can be used for the filter but the parameters used when using the filter are different, or different filter waveforms, or the same filter waveform, can be used. Different parameters.
  • a common waveform used in conjunction with an Orthogonal Frequency Division Multiplexing (“OFDM") signal is w-OFDM (windowing OFDM), f-OFDM (filtered OFDM).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the window function listed in the above equation can also be understood as a time domain filter, and N is a filter parameter.
  • the sub-carrier spacing configured by the network device 10 for transmitting the uplink data is 60 kHz
  • the filtering waveform is w-OFDM
  • the transmission frequency band is 1800 kHz-1830 kHz.
  • the terminal device 30 is configured to transmit downlink data.
  • the subcarrier spacing is 30 kHz
  • the filtered waveform is f-OFDM
  • the transmission band is 1920 kHz-2000 kHz.
  • the terminal device 20 processes the uplink data to be sent according to the w-OFDM waveform, and uses the subcarrier spacing of 30 kHz to transmit the network device to the network device at a frequency band of 1800 kHz to 1830 kHz.
  • the 10 sends the uplink data.
  • the terminal device 30 transmits the configuration information for the network device 10 according to the subcarrier spacing of 30 kHz
  • the receiving network device 10 transmits the downlink data in the frequency band 1920 kHz-2000 kHz, and receives the downlink data according to the f-OFDM waveform pair. This data is processed.
  • the network device 10 may determine a basic parameter set for transmitting the data, a transmission frequency band for transmitting the data, and a filtering manner corresponding to the basic parameter set, and the network device 10 may further A guard band adjacent to the transmission band is determined. Wherein one end of the guard band is adjacent to the transmission band, and the terminal device 20 is not allowed to transmit the data on the guard band to isolate the transmission band for transmitting the data, and the other end of the guard band The transmission band of the neighbor.
  • the network device 10 transmits configuration information to the terminal device 20.
  • the configuration information includes a basic parameter set for transmitting the data, a transmission frequency band for transmitting the data, and a filtering manner corresponding to the basic parameter set.
  • the network device 10 determines a basic parameter set for transmitting the data, a transmission frequency band for transmitting the data, and a filtering mode corresponding to the basic parameter set, and then The device 20 sends configuration information including the transmission frequency band for transmitting the data, the basic parameter set, and the filtering mode, so that the terminal device 20 filters the data according to the configuration information, and uses the filtering method.
  • a set of basic parameters on which the data is transmitted with the network device 10.
  • the configuration information may further include information about a guard band adjacent to the transmission band.
  • the information of the guard band may include a positional relationship between the guard band and the transmission band, And the bandwidth of the guard band.
  • the positional relationship between the guard band and the transmission band may include the guard band being adjacent to a low frequency end of the transmission band and/or the guard band being adjacent to a high frequency end of the transmission band.
  • the terminal device 20 receives the configuration information sent by the network device 10.
  • the network device 10 sends configuration information to the terminal device 20.
  • the terminal device 20 may filter the data according to the filtering manner, and according to the basis in the configuration information.
  • the parameter set performs transmission of the data with the network device 10 on the frequency band indicated by the configuration information.
  • the network device 10 sends the data to the terminal device 20 according to the configuration information.
  • the network device 10 may transmit the data to the terminal device 20 on a frequency band for transmitting the data in the target frequency band according to the parameter in the basic parameter set.
  • the terminal device 20 receives the data sent by the network device 10 according to the configuration information.
  • the terminal device 20 receives the data sent by the network device 10 on a frequency band for transmitting the data in the target frequency band according to the parameter in the basic parameter set.
  • the method further includes 431.
  • the terminal device 20 processes the received data according to the filtering manner.
  • the terminal device 20 performs filtering processing on the received data according to a filtering manner indicated in the configuration information transmitted by the network device 10, for example, a suitable baseband filter type or a filtered waveform.
  • FIG. 6 is a flow interaction diagram of a method of transmitting data according to another embodiment of the present invention.
  • the terminal device 20 sends the data to the network device 10 according to the configuration information.
  • the terminal device 20 may transmit the data to the network device 10 on a frequency band for transmitting the data in the target frequency band according to the parameter in the basic parameter set.
  • the network device 10 receives the data sent by the terminal device 20 according to the configuration information.
  • the network device 10 receives the data sent by the terminal device 20 on the frequency band for transmitting the data in the target frequency band according to the parameter in the basic parameter set.
  • the method further includes 432.
  • the terminal device 20 processes the data according to the filtering manner.
  • the terminal device 20 performs filtering processing on the data to be sent according to a filtering manner indicated in the configuration information sent by the network device 10, for example, a suitable baseband filter type or a filter waveform, and sends the processed data to the network device. .
  • the data transmitted between the current terminal device 20 and the network device 10 may include uplink data or downlink data. If the transmitted data is downlink data, the network device 10 sends the data to the terminal device 20, and the configuration information is used. After the network device 10 transmits the downlink data to the terminal device 20, the terminal device 20 correctly receives the downlink data sent by the network device 10 according to the configuration information, that is, performs 411 and 421; if the data is transmitted, The uplink data, the terminal device 20 sends the data to the network device 30, the configuration information is configuration information for scheduling uplink data, the terminal device 20 sends uplink data to the network device 10 according to the configuration information, and the network device 10 receives the terminal device. The uplink data sent by 20 is executed 412 and 422.
  • the data transmission between the network device 10 and the terminal device 20 in the embodiment of the present invention may include the transmission of the service data, and may also include the transmission of the control signaling, which is not limited herein.
  • the method according to the embodiment of the present invention avoids mutual interference generated between data transmissions based on different basic parameter sets by configuring a guard band or a filtering manner corresponding to a basic parameter set.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the method of transmitting data according to an embodiment of the present invention has been described in detail above, and a network device and a terminal device according to an embodiment of the present invention will be described below. It should be understood that the network device and the terminal device in the embodiments of the present invention may perform various methods in the foregoing embodiments of the present invention, that is, the specific working processes of the following various devices, and may refer to the corresponding processes in the foregoing method embodiments.
  • FIG. 7 shows a schematic block diagram of a network device 700 in accordance with an embodiment of the present invention.
  • the network device 700 includes a determining module 701 and a transmitting module 702.
  • a determining module 701 configured to determine a basic parameter set for transmitting the data, and determining a target frequency band for transmitting the data, where the target frequency band includes a transmission frequency band and a protection frequency band for transmitting the data;
  • the transmission module 702 is configured to send, to the terminal device, the configuration information that is determined by the determining module 701, where the configuration information includes information about the basic parameter set and the target frequency band;
  • the transmission module 702 is further configured to: according to the basic parameter set determined by the determining module 701, receive the data sent by the terminal device on the transmission frequency band determined by the determining module 701 or to the The terminal device transmits the data.
  • the network device in the embodiment of the present invention avoids mutual interference generated between data transmissions based on different basic parameter sets by setting a guard band in a transmission resource configured for the terminal device.
  • the information of the target frequency band includes a start location and a termination location of the target frequency band, a bandwidth of the protection frequency band, and a location of the protection frequency band in the target frequency band.
  • the information of the target frequency band includes a start position and an end position of the target frequency band, and a start position and an end position of the guard band.
  • the location of the guard band in the target frequency band includes: the guard band is located at a low frequency end and/or a high frequency end of the target frequency band.
  • the bandwidth of the guard band is an integer multiple of a minimum subcarrier spacing supported by the network device.
  • the configuration information further includes a filtering manner corresponding to the basic parameter set
  • the determining module 701 is further configured to: determine the basic The filtering method corresponding to the parameter set.
  • the filtering method comprises at least one of the following: a type of a baseband filter, a parameter of the baseband filter, a filtered waveform used, and a parameter of the filtered waveform.
  • the basic parameter set includes a subcarrier spacing.
  • the determining module 701 is specifically configured to: determine, according to a predefined plurality of basic parameter sets, the basic parameter set used to transmit the data.
  • network device 800 can include a processor 810, a transceiver 820, and a memory 830.
  • the transceiver 820 can include a receiver 821 and a transmitter 822.
  • the memory 830 can be used to store related information such as a basic parameter set, a guard band, and a filtering mode, and can also be used to store codes and the like executed by the processor 810.
  • the various components in network device 800 are coupled together by a bus system 840, which in addition to the data bus includes a power bus, a control bus, a status signal bus, and the like.
  • the processor 810 is specifically configured to: determine a basic parameter set for transmitting the data, and determine a target frequency band for transmitting the data, where the target frequency band includes a transmission frequency band and a protection frequency band for transmitting the data.
  • the transceiver 820 is configured to: send, to the terminal device, the configuration information determined by the determining module, where the configuration information includes information about the basic parameter set and the target frequency band; and determining according to the determining module And the basic parameter set, the data sent by the terminal device is received on the transmission frequency band determined by the determining module, or the data is sent to the terminal device.
  • the information of the target frequency band includes a start location and a termination location of the target frequency band, a bandwidth of the protection frequency band, and a location of the protection frequency band in the target frequency band.
  • the information of the target frequency band includes a start position and an end position of the target frequency band, and a start position and an end position of the guard band.
  • the location of the guard band in the target frequency band includes: the guard band is located at a low frequency end and/or a high frequency end of the target frequency band.
  • the bandwidth of the guard band is an integer multiple of a minimum subcarrier spacing supported by the network device.
  • the configuration information further includes a filtering manner corresponding to the basic parameter set
  • the processor 810 is further configured to: determine The filtering method corresponding to the basic parameter set.
  • the filtering method comprises at least one of the following: a type of a baseband filter, a parameter of the baseband filter, a filtered waveform used, and a parameter of the filtered waveform.
  • the basic parameter set includes a subcarrier spacing.
  • the processor 810 is specifically configured to: determine, according to a predefined plurality of basic parameter sets, the basic parameter set for transmitting the data.
  • FIG. 9 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 900 of FIG. 9 includes an input interface 901, an output interface 902, at least one processor 903, and a memory 904.
  • the input interface 901, the output interface 902, the processor 903, and the memory 904 are connected by a bus 905.
  • the processor 903 is configured to execute code in the memory 904, and when the code is executed, the processor 903 implements the method performed by the network device 10 of FIGS. 2-6.
  • the network device 700 shown in FIG. 7 or the network device 800 shown in FIG. 8 or the system chip 900 shown in FIG. 9 can implement the implementations implemented by the network device 10 in the foregoing method embodiments of FIGS. 2 to 6. In order to avoid duplication, we will not repeat them here.
  • FIG. 10 shows a schematic block diagram of a terminal device 1000 according to an embodiment of the present invention.
  • the terminal device 1000 includes a transmission module 1001 for:
  • the configuration information includes information for transmitting a basic parameter set of the data and a target frequency band, where the target frequency band includes a transmission frequency band and a protection frequency band for transmitting the data;
  • the terminal device avoids mutual interference generated between data transmissions based on different basic parameter sets by transmitting the guard band set in the resource.
  • the information of the target frequency band includes a start location and a termination location of the target frequency band, a bandwidth of the protection frequency band, and a location of the protection frequency band in the target frequency band.
  • the information of the target frequency band includes a start position and an end position of the target frequency band, and a start position and an end position of the guard band.
  • the location of the guard band in the target frequency band includes: the guard band is located at a low frequency end and/or a high frequency end of the target frequency band.
  • the bandwidth of the guard band is an integer multiple of a minimum subcarrier spacing supported by the network device.
  • the configuration information further includes a filtering manner corresponding to the basic parameter set, where the transmitting module 1001 is specifically configured to: process the data according to the filtering manner, and according to the basic parameter set, Transmitting the processed data to the network device on the target frequency band; or receiving the data sent by the network device according to the basic parameter set, and receiving the received according to the filtering manner The data is processed.
  • the transmitting module 1001 is specifically configured to: process the data according to the filtering manner, and according to the basic parameter set, Transmitting the processed data to the network device on the target frequency band; or receiving the data sent by the network device according to the basic parameter set, and receiving the received according to the filtering manner The data is processed.
  • the filtering method comprises at least one of the following: a type of a baseband filter, a parameter of the baseband filter, a filtered waveform used, and a parameter of the filtered waveform.
  • the basic parameter set includes a subcarrier spacing.
  • the transmission module 1001 can be implemented by a transceiver.
  • the terminal device 1100 may include a processor 1110, a transceiver 1120, and a memory 1130.
  • the transceiver 1120 can include a receiver 1121 and a transmitter 1122.
  • the memory 1130 can be used to store related information such as basic parameters and filtering modes, and can also be used to store codes and the like executed by the processor 1110.
  • the various components in the terminal device 1100 are coupled together by a bus system 1140.
  • the bus system 1140 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the transceiver 1120 is configured to: receive configuration information sent by the network device, where the configuration information includes information about a basic parameter set and a target frequency band for transmitting the data, where the target frequency band includes, for transmitting, the data. a transmission band and a guard band; according to the basic parameter set, transmitting the data to the network device or receiving the data sent by the network device on the transmission band.
  • the information of the target frequency band includes a start location and a termination location of the target frequency band, a bandwidth of the protection frequency band, and a location of the protection frequency band in the target frequency band.
  • the information of the target frequency band includes a start position and an end position of the target frequency band, and a start position and an end position of the guard band.
  • the location of the guard band in the target frequency band includes: the guard band is located at a low frequency end and/or a high frequency end of the target frequency band.
  • the bandwidth of the guard band is an integer multiple of a minimum subcarrier spacing supported by the network device.
  • the configuration information further includes a filtering manner corresponding to the basic parameter set, where the transceiver 1120 is specifically configured to: process the data according to the filtering manner, and according to the basic parameter set Transmitting the processed data to the network device on the target frequency band; or receiving the data sent by the network device according to the basic parameter set, and receiving the received information according to the filtering manner The data is processed.
  • the transceiver 1120 is specifically configured to: process the data according to the filtering manner, and according to the basic parameter set Transmitting the processed data to the network device on the target frequency band; or receiving the data sent by the network device according to the basic parameter set, and receiving the received information according to the filtering manner The data is processed.
  • the filtering method comprises at least one of the following: a type of a baseband filter, a parameter of the baseband filter, a filtered waveform used, and a parameter of the filtered waveform.
  • the basic parameter set includes a subcarrier spacing.
  • FIG. 12 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 1200 of FIG. 12 includes an input interface 1201, an output interface 1202, at least one processor 1203, and a memory 1204.
  • the input interface 1201, the output interface 1202, the processor 1203, and the memory 1204 are connected by a bus 1205.
  • the processor 1203 is configured to execute code in the memory 1204, and when the code is executed, the processor 1203 implements the method performed by the terminal device 20 in FIGS. 2 to 6.
  • the terminal device 1000 shown in FIG. 10 or the terminal device 1100 shown in FIG. 11 or the system chip 1200 shown in FIG. 12 can implement the foregoing method in the embodiment of FIG. 2 to FIG. In order to avoid duplication, the various processes are not repeated here.
  • FIG. 13 shows a schematic block diagram of a network device 1300 according to another embodiment of the present invention.
  • the network device 1300 includes a determining module 1301 and a transmitting module 1302.
  • a determining module 1301, configured to determine a basic parameter set for transmitting the data, a transmission frequency band for transmitting the data, and a filtering manner corresponding to the basic parameter set;
  • the transmitting module 1302 is configured to: send configuration information to the terminal device, where the configuration information includes the basic parameter set, the transmission frequency band, and the filtering manner; and receiving, according to the basic parameter set, the transmission frequency band The data sent by the terminal device or the data is sent to the terminal device.
  • the filtering method comprises at least one of the following: a type of a baseband filter, a parameter of the baseband filter, a filtered waveform used, and a parameter of the filtered waveform.
  • the basic parameter set includes a subcarrier spacing.
  • the determining module 1301 is specifically configured to: determine, according to a predefined plurality of basic parameter sets, the basic parameter set for transmitting the data.
  • network device 1400 can include a processor 1410, a transceiver 1420, and a memory 1430.
  • the transceiver 1420 can include a receiver 1421 and a transmitter 1422.
  • the memory 1430 can be used to store related information such as a basic parameter set, a guard band, and a filtering mode, and can also be used to store codes and the like executed by the processor 1410.
  • the various components in network device 1400 are coupled together by a bus system 1440, which in addition to the data bus includes a power bus, a control bus, a status signal bus, and the like.
  • the processor 1410 is specifically configured to: determine a basic parameter set for transmitting the data, a transmission frequency band for transmitting the data, and a filtering manner corresponding to the basic parameter set; and the transceiver 1420 is configured to: The terminal device sends configuration information, where the configuration information includes the basic parameter set, the transmission frequency band, and the filtering mode; and receiving, according to the basic parameter set, the data sent by the terminal device on the transmission frequency band. Or sending the data to the terminal device.
  • the filtering method comprises at least one of the following: a type of a baseband filter, a parameter of the baseband filter, a filtered waveform used, and a parameter of the filtered waveform.
  • the basic parameter set includes a subcarrier spacing.
  • the processor 1410 is specifically configured to: determine, according to a predefined plurality of basic parameter sets, the basic parameter set used to transmit the data.
  • FIG. 15 is a schematic block diagram of a system chip in accordance with an embodiment of the present invention.
  • the system chip 1500 of FIG. 15 includes an input interface 1501, an output interface 1502, at least one processor 1503, and a memory 1504.
  • the input interface 1501, the output interface 1502, the processor 1503, and the memory 1504 are connected by a bus 1505.
  • the processor 1503 is configured to execute code in the memory 1504, and when the code is executed, the processor 1503 implements the method performed by the network device 10 of FIGS. 2-6.
  • the network device 1300 shown in FIG. 13 or the network device 1400 shown in FIG. 14 or the system chip 1500 shown in FIG. 15 can implement the various processes implemented by the network device 10 in the foregoing method embodiments of FIG. 2 to FIG. Repeat, no longer repeat them here.
  • FIG. 16 shows a schematic block diagram of a terminal device 1600 according to another embodiment of the present invention.
  • the terminal device 1600 includes a transmission module 1601 for:
  • the configuration information includes a basic parameter set for transmitting the data, a transmission frequency band for transmitting the data, and a filtering manner corresponding to the basic parameter set;
  • the filtering method comprises at least one of the following: a type of a baseband filter, a parameter of the baseband filter, a filtered waveform used, and a parameter of the filtered waveform.
  • the basic parameter set includes a subcarrier spacing.
  • the transmission module 1601 can be implemented by a transceiver.
  • the terminal device 1700 can include a processor 1710, a transceiver 1720, and a memory 1730.
  • the transceiver 1720 can include a receiver 1721 and a transmitter 1722.
  • the memory 1730 can be used to store related information such as a basic parameter set and a filtering mode, and can also be used to store codes and the like executed by the processor 1710.
  • the various components in the network device 1700 are coupled together by a bus system 1740, wherein the bus system 1740 includes a power bus and control in addition to the data bus. Line and status signal bus, etc.
  • the transceiver 1720 is configured to: receive configuration information sent by the network device, where the configuration information includes a basic parameter set for transmitting the data, a transmission frequency band for transmitting the data, and corresponding to the basic parameter set. And filtering the data according to the filtering manner, and sending the processed data to the network device on the target frequency band according to the basic parameter set; or according to the basic parameter set Receiving the data sent by the network device, and processing the received data according to the filtering manner.
  • the filtering method comprises at least one of the following: a type of a baseband filter, a parameter of the baseband filter, a filtered waveform used, and a parameter of the filtered waveform.
  • the basic parameter set includes a subcarrier spacing.
  • Figure 18 is a schematic structural diagram of a system chip of an embodiment of the present invention.
  • the system chip 1800 of FIG. 18 includes an input interface 1801, an output interface 1802, at least one processor 1803, and a memory 1804.
  • the input interface 1801, the output interface 1802, the processor 1803, and the memory 1804 are connected by a bus 1805.
  • the processor 1803 is configured to execute code in the memory 1804, and when the code is executed, the processor 1803 implements the method performed by the terminal device 20 in FIGS. 2 to 6.
  • the terminal device 1600 shown in FIG. 16 or the terminal device 1700 shown in FIG. 17 or the system chip 1800 shown in FIG. 18 can implement the various processes implemented by the terminal device 20 in the foregoing method embodiments of FIG. 2 to FIG. Repeat, no longer repeat them here.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor ("DSP"), an application specific integrated circuit (ASIC), or a field programmable gate array (Field Programmable Gate Array). , referred to as "FPGA” or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory, a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, etc. Mature storage media. The storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory (ROM), a programmable read only memory (PROM), or an erasable programmable read only memory (Erasable PROM). , referred to as "EPROM”), electrically erasable programmable read only memory (“EEPROM”) or flash memory.
  • the volatile memory may be a Random Access Memory (“RAM”), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous DRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected to dynamic random access memory
  • DR RAM Direct Rambus RAM
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种传输数据的方法、网络设备和终端设备。该方法包括:网络设备确定用于传输所述数据的基础参数集,并确定用于传输所述数据的目标频带,所述目标频带包括用于传输所述数据的传输频带和保护频带;所述网络设备向所述终端设备发送配置信息,所述配置信息包括所述基础参数集和所述目标频带的信息;所述网络设备根据所述基础参数集,在所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。因此,本发明所述的方法、网络设备和终端设备,通过在传输资源中设置保护频带,避免了基于不同基础参数集的数据传输之间产生的相互干扰。

Description

传输数据的方法、网络设备和终端设备 技术领域
本发明涉及通信领域,并且更具体地,涉及一种传输数据的方法、网络设备和终端设备。
背景技术
在第五代移动通信技术(5G)技术中,用户设备(User Equipment,简称“UE”)可以在一个载波内支持多种不同的基础参数集(numerology)。这些不同的基础参数集可以通过频分复用(Frequency Division Multiplex,简称“FDM”)的方式进行复用。在同一个传输时间间隔(Transmission Time Interval,简称“TTI”)中,不同的频域资源可以分配给基于不同基础参数集的数据传输使用。例如对于长期演进(Long Term Evolution,简称“LTE”)系统而言,子载波(subcarrier)带宽是15kHz,符号(symbol)宽度是1/14ms。而5G通信系统和4G通信系统最大的不同之处就在于5G系统可以支持基于不同基础参数集的数据传输,5G的终端也可以支持基于不同基础参数集的数据传输,例如目前5G系统的子载波带宽可以是15*2n Hz(n为非负整数)。
基于不同基础参数集的数据传输可以位于不同的频带(band)上,但是这样会降低5G系统的灵活性,复用不同的基础参数集可以为5G系统带来最大的灵活性,但是当复用不同的基础参数集时,基于不同基础参数集的数据传输的传输过程之间,可能会产生相互干扰。
发明内容
本发明实施例提供了一种传输数据的方法、终端设备和网络设备,避免了基于不同基础参数集的数据传输之间产生的相互干扰。
第一方面,提供了一种传输数据的方法,包括:网络设备确定用于传输所述数据的基础参数集,并确定用于传输所述数据的目标频带,所述目标频带包括用于传输所述数据的传输频带和保护频带;所述网络设备向所述终端设备发送配置信息,所述配置信息包括所述基础参数集和所述目标频带的信息;所述网络设备根据所述基础参数集,在所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
因此,本发明实施例所述的方法,通过在为终端设备配置的传输资源中设置保护频带,避免了基于不同基础参数集的数据传输之间产生的相互干扰。
其中,该保护频带的高频端和低频端分别与基于不同基础参数集传输的数据所使用的传输频带相邻,该终端设备不会在该保护频带上发送和接收所述数据。
作为另一个实施例,所述目标频带的信息包括所述目标频带的起始位置和终止位置、所述保护频带的带宽和所述保护频带在所述目标频带中的位置。
作为另一个实施例,所述目标频带的信息包括所述目标频带的起始位置和终止位置,以及所述保护频带的起始位置和终止位置。
作为另一个实施例,所述保护频带在所述目标频带中的位置包括:所述保护频带位于所述目标频带的低频端和/或高频端。
作为另一个实施例,所述保护频带的带宽为所述网络设备所支持的最小子载波间隔的整数倍。
作为另一个实施例,所述配置信息还包括与所述基础参数集对应的滤波方式,所述网络设备向所述终端设备发送配置信息之前,所述方法还包括:所述网络设备确定与所述基础参数集对应的所述滤波方式。
作为另一个实施例,所述滤波方式包括以下中的至少一种:基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
作为另一个实施例,所述基础参数集包括子载波间隔。
作为另一个实施例,所述网络设备确定用于传输所述数据的基础参数集,包括:所述网络设备从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
第二方面,提供了一种网络设备,该网络设备可以用于执行前述第一方面及各种实现方式中的用于传输数据的方法中由网络设备执行的各个过程。该网络设备包括:确定模块,用于确定用于传输所述数据的基础参数集,并确定用于传输所述数据的目标频带,所述目标频带包括用于传输所述数据的传输频带和保护频带;传输模块,用于向所述终端设备发送所述确定模块确定的所述配置信息,所述配置信息包括所述基础参数集和所述目标频带的信息;所述传输模块还用于,根据所述确定模块确定的所述基础参数集,在所 述确定模块确定的所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
第三方面,提供了一种网络设备,该网络设备可以用于执行前述第一方面及各种实现方式中的用于传输数据的方法中由终端设备执行的各个过程。该网络设备包括:处理器,用于确定用于传输所述数据的基础参数集,并确定用于传输所述数据的目标频带,所述目标频带包括用于传输所述数据的传输频带和保护频带;收发信机,用于向所述终端设备发送所述确定模块确定的所述配置信息,所述配置信息包括所述基础参数集和所述目标频带的信息;收发信机还用于,根据所述确定模块确定的所述基础参数集,在所述确定模块确定的所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
第四方面,提供了一种传输数据的方法,包括:终端设备接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集和目标频带的信息,所述目标频带包括用于传输所述数据的传输频带和保护频带;所述终端设备根据所述基础参数集,在所述传输频带上向所述网络设备发送所述数据或者接收所述网络设备发送的所述数据。
因此,本发明实施例所述的方法,通过在传输资源中设置保护频带,避免了基于不同基础参数集的数据传输之间产生的相互干扰。
其中,该保护频带的高频端和低频端分别与基于不同基础参数集传输的数据所使用的传输频带相邻,该终端设备不会在该保护频带上发送和接收该数据。
作为另一个实施例,所述目标频带的信息包括所述目标频带的起始位置和终止位置、所述保护频带的带宽和所述保护频带在所述目标频带中的位置。
作为另一个实施例,所述目标频带的信息包括所述目标频带的起始位置和终止位置,以及所述保护频带的起始位置和终止位置。
作为另一个实施例,所述保护频带在所述目标频带中的位置包括:所述保护频带位于所述目标频带的低频端和/或高频端。
作为另一个实施例,所述保护频带的带宽为所述网络设备所支持的最小子载波间隔的整数倍。
作为另一个实施例,所述配置信息还包括与所述基础参数集对应的滤波 方式,所述终端设备根据所述基础参数集,在所述传输频带上向所述网络设备发送所述数据或者接收所述网络设备发送的所述数据,包括:所述终端设备根据所述滤波方式对所述数据进行处理,并根据所述基础参数集,在所述目标频带上向所述网络设备发送处理后的所述数据;或者所述终端设备根据所述基础参数集,接收所述网络设备发送的所述数据,并根据所述滤波方式对接收到的所述数据进行处理。
作为另一个实施例,所述滤波方式包括以下中的至少一种:基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
作为另一个实施例,所述基础参数集包括子载波间隔。
第五方面,提供了一种终端设备,该终端设备可以用于执行前述第四方面及各种实现方式中的用于传输数据的方法中由终端设备执行的各个过程。该终端设备包括传输模块,用于:接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集和目标频带的信息,所述目标频带包括用于传输所述数据的传输频带和保护频带;根据所述基础参数集,在所述传输频带上向所述网络设备发送所述数据或者接收所述网络设备发送的所述数据。
第六方面,提供了一种终端设备,该终端设备可以用于执行前述第四方面及各种实现方式中的用于传输数据的方法中由终端设备执行的各个过程。该终端设备包括收发信机,用于:接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集和目标频带的信息,所述目标频带包括用于传输所述数据的传输频带和保护频带;根据所述基础参数集,在所述传输频带上向所述网络设备发送所述数据或者接收所述网络设备发送的所述数据。
第七方面,提供了一种传输数据的方法,包括:网络设备确定用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;所述网络设备向终端设备发送配置信息,所述配置信息包括所述基础参数集、所述传输频带和所述滤波方式;所述网络设备根据所述基础参数集,在所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
因此,通过对基于不同基础参数集传输的数据使用不同的滤波方式进行处理,可以减小基于不同基础参数集的数据传输之间产生的相互干扰。
作为另一个实施例,所述滤波方式包括以下中的至少一种:基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
作为另一个实施例,所述基础参数集包括子载波间隔。
作为另一个实施例,所述网络设备确定用于传输所述数据的基础参数集,包括:所述网络设备从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
第八方面,提供了一种网络设备,该网络设备可以用于执行前述第七方面及各种实现方式中的用于传输数据的方法中由网络设备执行的各个过程。该网络设备包括:确定模块,用于确定用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;传输模块,用于向终端设备发送配置信息,所述配置信息包括所述基础参数集、所述传输频带和所述滤波方式;所述传输模块还用于,根据所述基础参数集,在所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
第九方面,提供了一种网络设备,该网络设备可以用于执行前述第七方面及各种实现方式中的用于传输数据的方法中由终端设备执行的各个过程。该网络设备包括:处理器,用于确定用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;收发信机,用于向终端设备发送配置信息,所述配置信息包括所述基础参数集、所述传输频带和所述滤波方式;所述收发信机还用于,根据所述基础参数集,在所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
第十方面,提供了一种传输数据的方法,包括:终端设备接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;所述终端设备根据所述滤波方式对所述数据进行处理,并根据所述基础参数集,在所述目标频带上向所述网络设备发送处理后的所述数据;或者所述终端设备根据所述基础参数集,接收所述网络设备发送的所述数据,并根据所述滤波方式对接收到的所述数据进行处理。
因此,通过对基于不同基础参数集传输的数据使用不同的滤波方式进行处理,可以减小基于不同基础参数集的数据传输之间产生的相互干扰。
作为另一个实施例,所述滤波方式包括以下中的至少一种:基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
作为另一个实施例,所述基础参数集包括子载波间隔。
第十一方面,提供了一种终端设备,该终端设备可以用于执行前述第十方面及各种实现方式中的用于传输数据的方法中由终端设备执行的各个过程。该终端设备包括传输模块,用于:接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;根据所述滤波方式对所述数据进行处理,并根据所述基础参数集,在所述目标频带上向所述网络设备发送处理后的所述数据;或者根据所述基础参数集,接收所述网络设备发送的所述数据,并根据所述滤波方式对接收到的所述数据进行处理。
第十二方面,提供了一种终端设备,该端设备可以用于执行前述第十方面及各种实现方式中的用于传输数据的方法中由终端设备执行的各个过程。该终端设备包括收发信机,用于:接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;根据所述滤波方式对所述数据进行处理,并根据所述基础参数集,在所述目标频带上向所述网络设备发送处理后的所述数据;或者根据所述基础参数集,接收所述网络设备发送的所述数据,并根据所述滤波方式对接收到的所述数据进行处理。
第十三方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第一方面,及其各种实现方式中的任一种用于传输数据的方法。
第十四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第四方面,及其各种实现方式中的任一种用于传输数据的方法。
第十五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第七方面,及其各种实现方式中的任一种用于传输数据的方法。
第十六方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第十方面,及其各种实现方式中的任一种用于传输数据的方法。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个应用场景的示意图。
图2是本发明实施例的传输数据的方法的流程交互图。
图3是没有保护频带和存在保护频带时基于不同基础参数集的数据传输的示意图。
图4是本发明另一实施例的传输数据的方法的流程交互图。
图5是本发明实施例的传输数据的方法的流程交互图。
图6是本发明实施例的传输数据的方法的流程交互图。
图7是本发明实施例的网络设备的结构框图。
图8是本发明实施例的网络设备的结构框图。
图9本发明实施例的系统芯片的示意性结构图。
图10是本发明实施例的终端设备的结构框图。
图11是本发明实施例的终端设备的结构框图。
图12本发明实施例的系统芯片的示意性结构图。
图13是本发明另一实施例的网络设备的结构框图。
图14是本发明另一实施例的网络设备的结构框图。
图15本发明另一实施例的系统芯片的示意性结构图。
图16是本发明另一实施例的终端设备的结构框图。
图17是本发明另一实施例的终端设备的结构框图。
图18本发明另一实施例的系统芯片的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称“GSM”)系统、码分多址(Code Division Multiple Access,简称“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称“GPRS”)、长期演进(Long Term Evolution,简称“LTE”)系统、通用移动通信系统(Universal Mobile Telecommunication System,简称“UMTS”)、等目前的通信系统,以及,尤其应用于未来的5G系统。
本发明实施例中的终端设备也可以指用户设备(User Equipment,简称“UE”)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称“SIP”)电话、无线本地环路(Wireless Local Loop,简称“WLL”)站、个人数字处理(Personal Digital Assistant,简称“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,简称“PLMN”)中的终端设备等。
本发明实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,简称“BTS”),也可以是WCDMA系统中的基站(NodeB,简称“NB”),还可以是LTE系统中的演进型基站(Evolutional NodeB,简称“eNB或eNodeB”),还可以是云无线接入网络(Cloud Radio Access Network,简称“CRAN”)场景下的无线控制器,或该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或未来演进的PLMN网络中的网络设备等。
图1是本发明一个应用场景的示意图。图1中的通信系统可以包括网络设备10和终端设备20。网络设备10用于为终端设备20提供通信服务并接入核心网,终端设备20通过搜索网络设备10发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端设备20与网络设备10之间的蜂窝链路进行的上/下行传输。本发明实施例通过使用不同的DCI格式对基于不同基础参数集的数据传输进行调度,能够 提高控制信令设计的灵活性。
图2示出了根据本发明实施例的传输数据的方法的流程交互图。图2中示出了网络设备10和终端设备20。如图2所示,该传输数据的具体流程包括:
210,网络设备10确定用于传输所述数据的基础参数集和目标频带。
其中,该目标频带包括用于传输该数据的传输频带和保护频带,终端设备20不在所述保护频带上传输所述数据。该保护频带的高频端和低频端分别与基于不同基础参数集传输的数据所使用的传输频带相邻,终端设备不会在此区域内发送和接收5G信号。
具体而言,为了防止使用不同基础参数集的数据的传输过程之间相互干扰,当基于不同基础参数集传输的信号在频域上相邻时,即采用FDM的方式进行复用时,可以在原本相邻的两个频带之间插入该保护频带(guard tone/guard subcarrier),终端设备在该保护频带上不传输数据,使该保护频带能够用于隔离基于不同基础参数集的数据传输所使用的频带。
举例来说,图3示出了没有保护频带和存在保护频带时基于不同基础参数集的数据传输的示意图。以图3为例,当没有保护频带时,使用不同基础参数集的数据的在相邻频带上传输时,很容易产生相互干扰,例如图3所示,在两个相邻频带上进行数据传输时所使用的子载波间隔(subcarrier spacing)分别为30kHz和15kHz时,在这两个相邻的频带上分别使用这两种子载波间隔的数据的传输过程中,相邻两频带上使用不同子载波间隔传输数据时出现了干扰。但是存在保护频带时,例如图3所示,在两个不同频带上传输的数据所使用的子载波间隔分别为30kHz和15kHz,在这两个频带上分别使用这两种子载波间隔的进行数据传输的过程中,使用不同基础参数集传输的数据所占用的这两个频带被保护频带间隔开,该保护频带上不进行数据传输,从而不会产生不同子载波间隔之间的相互干扰,图3(b)中所示的保护频带的带宽为60kHz。
因此,本发明实施例所述的方法,通过在为终端设备配置的传输资源中设置保护频带,避免了基于不同基础参数集的数据传输之间产生的相互干扰。
可选地,所述目标频带的信息包括所述目标频带的起始位置和终止位置、所述保护频带在所述目标频带中的位置和所述保护频带的带宽。
具体地,网络设备10在为终端设备20配置上下行传输的资源时,发送的配置信息中需要包括用于传输该数据的基础参数集和用于传输该数据的目标频带的信息,其中,用于传输该数据的目标频带的位置可以用该目标频带的起始位置和终止位置来表示,该起始位置和终止位置所限定的目标频带中包括该保护频带,该目标频带的信息还包括该保护频带在该目标频带中所占的位置。
可选地,所述保护频带在所述目标频带中的位置包括所述目标频带的低频端或高频端,或者包括所述目标频带的低频端和高频端。
具体地,网络设备10可以按照下述保护频带与目标频带之间的四种位置关系,为终端设备20分配上下行传输所使用的频域资源。即:保护频带位于目标频带的低频端;保护频带位于目标频带的高频端;保护频带同时位于目标频带的高频端和低频端;目标频带的两端都没有保护频带。
其中,如果该传输频带上传输的数据所使用的基础参数集,与和该目标频带的低频端相邻的频带上传输的数据所使用的基础参数集不同,那么保护频带可以设置于目标频带的低频端;如果该传输频带上传输的数据所使用的基础参数集,与和该目标频带的高频端相邻的频带上传输的数据所使用的基础参数集不同,那么保护频带可以设置于目标频带的高频端;如果该传输频带上传输的数据所使用的基础参数集,与和该目标频带的低频端相邻的频带上传输的数据所使用的基础参数集不同,且该传输频带上传输的数据所使用的基础参数集,与和该目标频带的高频端相邻的频带上传输的数据所使用的基础参数集也不同,那么保护频带可以同时设置于目标频带的低频端和高频端;如果该传输频带上传输的数据所使用的基础参数集,与和该目标频带的低频端相邻的频带上传输的数据所使用的基础参数集相同,且该传输频带上传输的数据所使用的基础参数集,与和该目标频带的高频端相邻的频带上传输的数据所使用的基础参数集相同,那么两个相邻频带之间可以没有保护频带。该目标频带的信息包括该保护频带在该目标频带中的位置,即包括该保护频带所使用的位置关系是上述四种位置关系中的哪一种。
应理解,该保护频带的信息中,也可以包括所述目标频带的起始位置和终止位置、以及所述保护频带的起始位置和终止位置。其中,该保护频带的起始位置和终止位置所形成的该保护频带可以位于目标频带的低频端和/或高频端。如果该保护频带同时位于目标频带的低频端和高频端,该目标频带 的信息中应同时包括位于低频端的那部分保护频带的起止位置,和位于高频端的那部分保护频带的起止位置。
可选地,所述保护频带的带宽为所述网络设备10所支持的最小子载波间隔的整数倍。
具体地,该目标频带的信息中还包括该保护频带的带宽。由于5G系统中同一载波上支持不同的基础参数集,因此该保护频带的带宽要能覆盖基于不用基础参数集的数据传输所使用的频带。所以网络设备10在确定该保护频带的带宽时,要以网络设备10所支持的最小的载波间隔为单位。以图3所示为例,该通信系统支持内15kHz和30kHz这两种子载波间隔,网络设备10在确定该保护频带的带宽时,应以15kHz作为基本单位,也就是说,该保护频带的带宽应为15kHz的整数倍且小于目标频带的带宽。如果该保护频带同时位于目标频带的低频端和高频端,那么位于低频端的那部分保护频带的起止位置和位于高频端的那部分保护频带的带宽都应为15kHz的整数倍。
应理解,网络设备10向终端设备20发送的配置信息中,该目标频带的信息也可以包括该目标频带的起始位置和终止位置,以及保护频带的起始位置和终止位置。
可选地,所述基础参数集包括子载波间隔。
其中,子载波间隔指相邻子载波之间的频率间隔,例如15kHz、60kHz等。该基础参数集中的参数这里包括但不限于子载波间隔,例如网络设备10向终端设备20发送的配置信息中包括的基础参数集中,也可以包括其他参数,例如特定带宽下的子载波数目、物理资源块(Physical ResourceBlock,简称“PRB”)中的子载波数、正交频分复用(Orthogonal FrequencyDivision Multiplexing,简称“OFDM”)符号的长度、用于生成OFDM信号的傅里叶变换例如快速傅里叶变换(Fast Fourier Transform,简称“FFT”)或傅里叶逆变换例如快速逆傅里叶变换(Inverse Fast Fourier Transform,简称“IFFT”)的点数、传输时间间隔TTI中的OFDM符号数、特定时间长度内包含的TTI的个数和信号前缀的长度等。
下面举例说明网络设备10确定的用于传输所述数据的基础参数集和目标频带。假设网络设备10分别为终端设备20和终端设备30配置用于传输上行数据的传输资源。网络设备10为终端设备20配置的用于传输上行数据 的子载波间隔为60kHz,为终端设备30配置的用于传输上行数据的子载波间隔为30kHz,且网络设备10为终端设备20配置的用于传输该上行数据的目标频带的起始位置和终止位置分别为1800kHz和1860kHz,网络设备10为终端设备30配置的用于传输该上行数据的目标频带的起始位置和终止位置分别为1860kHz和2000kHz。由于终端设备20所使用的子载波间隔和终端设备30所使用的子载波间隔不相同,且终端设备20用于传输其上行数据的频带的高频端,与终端设备30用于传输其上行数据的频带的低频端之间相邻,因此,网络设备10可以在为终端设备20配置的目标频带的高频端设置保护频带,或者在为终端设备30配置的目标频带的低频端设置保护频带。假设通信系统中所支持的最小的子载波间隔为30kHz,那么该保护频带的带宽为30kHz的整数倍。例如网络设备10为终端设备20配置的保护频带可以位于为其配置的目标频带的高频端,且保护频带的带宽例如可以为30kHz,即该保护频带的起始位置和终止位置分别为1830kHz和1860kHz;又例如网络设备10为终端设备30配置的保护频带可以位于为其配置的目标频带的低频端,且保护频带的带宽例如可以为60kHz,即该保护频带的起始位置和终止位置分别为1860kHz和1920kHz。
应理解,该目标频带中的用于传输该数据的传输频带,可以是连续的,也可以是不连续的。该目标频带中没有用于传输该数据且不属于保护频带的那部分频带资源,可以用于其它数据的传输等。本发明对此不做限定。
220,网络设备10向终端设备20发送配置信息。
其中,该配置信息包括该基础参数集和该目标频带的信息。
具体而言,网络设备10确定好了用于传输所述数据的基础参数集和目标频带后,向终端设备20发送包括该基础参数集和该目标频带的配置信息,以使得终端设备20根据该配置信息,使用该基础参数集,在该目标频带中的用于传输该数据的频带上,与网络设备10进行该数据传输。
230,终端设备20接收网络设备10发送的配置信息。
具体而言,网络设备10向终端设备20发送配置信息,终端设备20接收到该网络设备10发送的该配置信息后,可以根据该配置信息中的基础参数集,在该配置信息指示的频带上,与网络设备10进行数据传输。
可选地,该配置信息还可以包括与所述基础参数集对应的滤波方式。
具体地,如果该配置信息中还包括与该基础参数集对应的滤波方式,那 么终端设备20可以根据该配置信息指示的滤波方式,对接收到的或者待发送的数据进行滤波。
这时,网络设备10向终端设备20发送配置信息之前,即执行220前,该方法还包括:网络设备10确定与所述基础参数集对应的所述滤波方式。
可选地,该滤波方式包括以下中的至少一种:基带滤波器(可以简称为“滤波器”)的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
图4示出了根据本发明另一实施例的数据传输的方法的流程交互图。图4中示出了网络设备10和终端设备20。如图4所示,该传输数据的具体流程包括:
310,网络设备10确定用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式。
具体而言,如果基于不同基础参数集进行传输的数据所使用的频带相邻时,为了防止在频分复用时不同基础参数集之间产生的干扰,网络设备10可以根据该基础参数集,为终端设备20配置与该基础参数集对应的合适的滤波方式,例如滤波器(filter)类型和/或波形(waveform),以减少基于不同基础参数集的数据传输之间产生的相互干扰。其中,该滤波器的类型和该波形可以是系统中预先规定好的。
因此,通过对基于不同基础参数集传输的数据使用不同的滤波方式进行处理,可以减小基于不同基础参数集的数据传输之间产生的相互干扰。
可选地,该滤波方式可以包括以下中的至少一种:基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
具体地,网络设备10为终端设备20配置用于传输该数据的基础参数集和传输频带,还为终端设备20配置与该基础参数集对应的用于对该数据进行滤波的滤波方式。使用不同基础参数集的数据在进行滤波时可以使用不同的滤波器,也可以使滤波器用同一种滤波器但是使用该滤波器时所用的参数不同,或者使用不同的滤波波形,或者同一种滤波波形的不同参数。
在5G系统中,基于不同的基础参数集传输的数据,在基带处理过程中,可能需要与不同的波形或滤波器配合使用。例如,常见的与正交频分复用(Orthogonal Frequency Division Multiplexing,简称“OFDM”)信号配合使用的波形有w-OFDM(windowing OFDM),f-OFDM(filtered OFDM)。以 w-OFDM为例,OFDM信号产生后在时域上要乘以一个窗函数,譬如常用的升余弦窗w(n)=0.5{1-cos[2*pi*n/(N-1)]},其中,n为时域采样时间,N为可配置的参数,上式所列窗函数也可以理解为一个时域的滤波器,N为滤波器参数。
举例来说,网络设备10为终端设备20配置的用于传输上行数据的子载波间隔为60kHz、滤波波形为w-OFDM、传输频带为1800kHz-1830kHz,为终端设备30配置的用于传输下行数据的子载波间隔为30kHz、滤波波形为f-OFDM、传输频带为1920kHz-2000kHz。那么,终端设备20根据网络设备10为其发送的配置信息后,终端设备20根据w-OFDM波形对待发送的上行数据进行处理,并使用30kHz的子载波间隔,在频带1800kHz-1830kHz上向网络设备10发送该上行数据。而终端设备30根据网络设备10为其发送的配置信息后,终端设备30根据30kHz的子载波间隔,在频带1920kHz-2000kHz上接收网络设备10发送该下行数据,并根据f-OFDM波形对接收到的该数据进行处理。
可选地,在310中,网络设备10可以确定用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式,网络设备10还可以确定与该传输频带相邻的保护频带。其中,该保护频带的一端与该传输频带相邻,且该保护频带上不允许终端设备20传输所述数据,以隔离用于传输该数据的该传输频带,和与该保护频带的另一端相邻的传输频带。
320,网络设备10向终端设备20发送配置信息。
其中,该配置信息包括用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式。
具体而言,网络设备10确定用于传输所述数据的用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式后,向终端设备20发送包括用于传输该数据的该传输频带、该基础参数集、和该滤波方式的配置信息,以使得终端设备20根据该配置信息,使用该滤波方式对该数据进行滤波,并使用该基础参数集,在该传输频带上,与网络设备10进行该数据的传输。
可选地,所述配置信息中还可以包括与该传输频带相邻的保护频带的信息。其中,该保护频带的信息可以包括该保护频带和该传输频带的位置关系, 以及该保护频带的带宽。该保护频带和该传输频带的位置关系可以包括:该保护频带与该传输频带的低频端相邻和/或该保护频带与该传输频带的高频端相邻。
330,终端设备20接收网络设备10发送的配置信息。
具体而言,网络设备10向终端设备20发送配置信息,终端设备20接收到该网络设备10发送的该配置信息后,可以根据该滤波方式对该数据进行滤波,并根据该配置信息中的基础参数集,在该配置信息指示的频带上,与网络设备10进行该数据的传输。
可选地,根据图2和图4所示的传输数据的方法,如图5所示的本发明另一实施例的传输数据的方法,在230或330之后,该方法还可以包括411和421。
411,网络设备10根据该配置信息,向终端设备20发送该数据。
具体地,网络设备10可以根据该基础参数集中的参数,在该目标频带中的用于传输该数据的频带上,向终端设备20发送该数据。
421,终端设备20根据该配置信息,接收网络设备10发送的该数据。
具体地,终端设备20根据该基础参数集中的参数,在该目标频带中的用于传输该数据的频带上,接收网络设备10发送的该数据。
如果该配置信息中还包括与该基础参数集对应的滤波方式,在421之后,该方法还包括431。
431,终端设备20根据该滤波方式对接收到的该数据进行处理。
具体地,终端设备20根据网络设备10发送的配置信息中所指示的滤波方式例如合适的基带滤波器类型或滤波波形,对接收到的该数据进行滤波处理。
可选地,411和421还可以分别由图6中所示的412和422替代,图6是本发明另一实施例的传输数据的方法的流程交互图。
412,终端设备20根据该配置信息,向网络设备10发送该数据。
具体地,终端设备20可以根据该基础参数集中的参数,在该目标频带中的用于传输该数据的频带上,向网络设备10发送该数据。
422,网络设备10根据该配置信息,接收终端设备20发送的该数据。
具体地,网络设备10根据该基础参数集中的参数,在该目标频带中的用于传输该数据的频带上,接收终端设备20发送的该数据。
如果该配置信息中还包括与该基础参数集对应的滤波方式,在421之前,该方法还包括432。
432,终端设备20根据该滤波方式对该数据进行处理。
具体地,终端设备20根据网络设备10发送的配置信息中所指示的滤波方式例如合适的基带滤波器类型或滤波波形,对待发送的该数据进行滤波处理,并向网络设备发送处理后的该数据。
应理解,当前终端设备20与网络设备10之间传输的该数据可以包括上行数据或下行数据,如果传输的该数据是下行数据,网络设备10向终端设备20发送该数据,该配置信息为用于调度下行数据的配置信息,网络设备10向终端设备20发送下行数据后,终端设备20根据该配置信息,正确接收网络设备10发送的该下行数据,即执行411和421;如果传输的该数据是上行数据,终端设备20向网络设备30发送该数据,该配置信息为用于调度上行数据的配置信息,终端设备20根据该配置信息,向网络设备10发送上行数据,网络设备10接收终端设备20发送的该上行数据,即执行412和422。
还应理解,本发明实施例中的网络设备10与终端设备20之间的该数据传输可以包括业务数据的传输,也可以包括控制信令的传输,这里不做限定。
因此,本发明实施例所述的方法,通过配置保护频带,或者配置与基础参数集对应的滤波方式,避免了基于不同基础参数集的数据传输之间产生的相互干扰。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文详细描述了根据本发明实施例的传输数据的方法,下面将描述根据本发明实施例的网络设备和终端设备。应理解,本发明实施例的网络设备和终端设备可以执行前述本发明实施例的各种方法,即以下各种设备的具体工作过程,可以参考前述方法实施例中的对应过程。
图7示出了本发明实施例的网络设备700的示意性框图。如图7所示,该网络设备700包括:确定模块701和传输模块702。
确定模块701,用于确定用于传输所述数据的基础参数集,并确定用于传输所述数据的目标频带,所述目标频带包括用于传输所述数据的传输频带和保护频带;
传输模块702,用于向所述终端设备发送所述确定模块701确定的所述配置信息,所述配置信息包括所述基础参数集和所述目标频带的信息;
所述传输模块702还用于,根据所述确定模块701确定的所述基础参数集,在所述确定模块701确定的所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
因此,本发明实施例所述的网络设备,通过在为终端设备配置的传输资源中设置保护频带,避免了基于不同基础参数集的数据传输之间产生的相互干扰。
可选地,所述目标频带的信息包括所述目标频带的起始位置和终止位置、所述保护频带的带宽和所述保护频带在所述目标频带中的位置。
可选地,所述目标频带的信息包括所述目标频带的起始位置和终止位置,以及所述保护频带的起始位置和终止位置。
可选地,所述保护频带在所述目标频带中的位置包括:所述保护频带位于所述目标频带的低频端和/或高频端。
可选地,所述保护频带的带宽为所述网络设备所支持的最小子载波间隔的整数倍。
可选地,所述配置信息还包括与所述基础参数集对应的滤波方式,所述传输模块702向所述终端设备发送配置信息之前,所述确定模块701还用于:确定与所述基础参数集对应的所述滤波方式。
可选地,所述滤波方式包括以下中的至少一种:基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
可选地,所述基础参数集包括子载波间隔。
可选地,所述确定模块701具体用于:从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
应注意,本发明实施例中,确定模块701可以由处理器实现,传输模块702可以由收发信机实现。如图8所示,网络设备800可以包括处理器810、收发信机820和存储器830。其中,收发信机820可以包括接收器821和发送器822,存储器830可以用于存储基础参数集、保护频带和滤波方式等的相关信息,还可以用于存储处理器810执行的代码等。网络设备800中的各个组件通过总线系统840耦合在一起,其中总线系统840除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。
其中,处理器810具体用于:确定用于传输所述数据的基础参数集,并确定用于传输所述数据的目标频带,所述目标频带包括用于传输所述数据的传输频带和保护频带;收发信机820用于:向所述终端设备发送所述确定模块确定的所述配置信息,所述配置信息包括所述基础参数集和所述目标频带的信息;根据所述确定模块确定的所述基础参数集,在所述确定模块确定的所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
可选地,所述目标频带的信息包括所述目标频带的起始位置和终止位置、所述保护频带的带宽和所述保护频带在所述目标频带中的位置。
可选地,所述目标频带的信息包括所述目标频带的起始位置和终止位置,以及所述保护频带的起始位置和终止位置。
可选地,所述保护频带在所述目标频带中的位置包括:所述保护频带位于所述目标频带的低频端和/或高频端。
可选地,所述保护频带的带宽为所述网络设备所支持的最小子载波间隔的整数倍。
可选地,所述配置信息还包括与所述基础参数集对应的滤波方式,所述收发信机820向所述终端设备发送配置信息之前,所述处理器810还用于:确定与所述基础参数集对应的所述滤波方式。
可选地,所述滤波方式包括以下中的至少一种:基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
可选地,所述基础参数集包括子载波间隔。
可选地,所述处理器810具体用于:从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
图9是本发明实施例的系统芯片的一个示意性结构图。图9的系统芯片900包括输入接口901、输出接口902、至少一个处理器903、存储器904,所述输入接口901、输出接口902、所述处理器903以及存储器904之间通过总线905相连,所述处理器903用于执行所述存储器904中的代码,当所述代码被执行时,所述处理器903实现图2至图6中网络设备10执行的方法。
图7所示的网络设备700或图8所示的网络设备800或图9所示的系统芯片900能够实现前述图2至图6方法实施例中由网络设备10所实现的各 个过程,为避免重复,这里不再赘述。
图10示出了本发明实施例的终端设备1000的示意性框图。如图10所示,该终端设备1000包括传输模块1001,用于:
接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集和目标频带的信息,所述目标频带包括用于传输所述数据的传输频带和保护频带;
根据所述基础参数集,在所述传输频带上向所述网络设备发送所述数据或者接收所述网络设备发送的所述数据。
因此,本发明实施例所述的终端设备,通过传输资源中设置的保护频带,避免了基于不同基础参数集的数据传输之间产生的相互干扰。
可选地,所述目标频带的信息包括所述目标频带的起始位置和终止位置、所述保护频带的带宽和所述保护频带在所述目标频带中的位置。
可选地,所述目标频带的信息包括所述目标频带的起始位置和终止位置,以及所述保护频带的起始位置和终止位置。
可选地,所述保护频带在所述目标频带中的位置包括:所述保护频带位于所述目标频带的低频端和/或高频端。
可选地,所述保护频带的带宽为所述网络设备所支持的最小子载波间隔的整数倍。
可选地,所述配置信息还包括与所述基础参数集对应的滤波方式,所述传输模块1001具体用于:根据所述滤波方式对所述数据进行处理,并根据所述基础参数集,在所述目标频带上向所述网络设备发送处理后的所述数据;或者根据所述基础参数集,接收所述网络设备发送的所述数据,并根据所述滤波方式对接收到的所述数据进行处理。
可选地,所述滤波方式包括以下中的至少一种:基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
可选地,所述基础参数集包括子载波间隔。
应注意,本发明实施例中,传输模块1001可以由收发信机实现。如图11所示,终端设备1100可以包括处理器1110、收发信机1120和存储器1130。其中,收发信机1120可以包括接收器1121和发送器1122,存储器1130可以用于存储基础参数和滤波方式等的相关信息,还可以用于存储处理器1110执行的代码等。终端设备1100中的各个组件通过总线系统1140耦合在一起, 其中总线系统1140除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。
其中,收发信机1120用于:接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集和目标频带的信息,所述目标频带包括用于传输所述数据的传输频带和保护频带;根据所述基础参数集,在所述传输频带上向所述网络设备发送所述数据或者接收所述网络设备发送的所述数据。
可选地,所述目标频带的信息包括所述目标频带的起始位置和终止位置、所述保护频带的带宽和所述保护频带在所述目标频带中的位置。
可选地,所述目标频带的信息包括所述目标频带的起始位置和终止位置,以及所述保护频带的起始位置和终止位置。
可选地,所述保护频带在所述目标频带中的位置包括:所述保护频带位于所述目标频带的低频端和/或高频端。
可选地,所述保护频带的带宽为所述网络设备所支持的最小子载波间隔的整数倍。
可选地,所述配置信息还包括与所述基础参数集对应的滤波方式,所述收发信机1120具体用于:根据所述滤波方式对所述数据进行处理,并根据所述基础参数集,在所述目标频带上向所述网络设备发送处理后的所述数据;或者根据所述基础参数集,接收所述网络设备发送的所述数据,并根据所述滤波方式对接收到的所述数据进行处理。
可选地,所述滤波方式包括以下中的至少一种:基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
可选地,所述基础参数集包括子载波间隔。
图12是本发明实施例的系统芯片的一个示意性结构图。图12的系统芯片1200包括输入接口1201、输出接口1202、至少一个处理器1203、存储器1204,所述输入接口1201、输出接口1202、所述处理器1203以及存储器1204之间通过总线1205相连,所述处理器1203用于执行所述存储器1204中的代码,当所述代码被执行时,所述处理器1203实现图2至图6中终端设备20执行的方法。
图10所示的终端设备1000或图11所示的终端设备1100或图12所示的系统芯片1200能够实现前述图2至图6方法实施例中由终端设备20所实 现的各个过程,为避免重复,这里不再赘述。
图13示出了本发明另一实施例的网络设备1300的示意性框图。如图13所示,该网络设备1300包括:确定模块1301和传输模块1302。
确定模块1301,用于确定用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;
传输模块1302用于:向终端设备发送配置信息,所述配置信息包括所述基础参数集、所述传输频带和所述滤波方式;根据所述基础参数集,在所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
因此,通过对基于不同基础参数集传输的数据使用不同的滤波方式进行处理,可以减小基于不同基础参数集的数据传输之间产生的相互干扰。
可选地,所述滤波方式包括以下中的至少一种:基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
可选地,所述基础参数集包括子载波间隔。
可选地,所述确定模块1301具体用于:从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
应注意,本发明实施例中,确定模块1301可以由处理器实现,传输模块1302可以由收发信机实现。如图14所示,网络设备1400可以包括处理器1410、收发信机1420和存储器1430。其中,收发信机1420可以包括接收器1421和发送器1422,存储器1430可以用于存储基础参数集、保护频带和滤波方式等的相关信息,还可以用于存储处理器1410执行的代码等。网络设备1400中的各个组件通过总线系统1440耦合在一起,其中总线系统1440除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。
其中,处理器1410具体用于:确定用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;收发信机1420用于:向终端设备发送配置信息,所述配置信息包括所述基础参数集、所述传输频带和所述滤波方式;根据所述基础参数集,在所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
可选地,所述滤波方式包括以下中的至少一种:基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
可选地,所述基础参数集包括子载波间隔。
可选地,所述处理器1410具体用于:从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
图15是本发明实施例的系统芯片的一个示意性结构图。图15的系统芯片1500包括输入接口1501、输出接口1502、至少一个处理器1503、存储器1504,所述输入接口1501、输出接口1502、所述处理器1503以及存储器1504之间通过总线1505相连,所述处理器1503用于执行所述存储器1504中的代码,当所述代码被执行时,所述处理器1503实现图2至图6中网络设备10执行的方法。
图13所示的网络设备1300或图14所示的网络设备1400或图15所示的系统芯片1500能够实现前述图2至图6方法实施例中由网络设备10所实现的各个过程,为避免重复,这里不再赘述。
图16示出了本发明另一实施例的终端设备1600的示意性框图。如图16所示,该终端设备1600包括传输模块1601,用于:
接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;
根据所述滤波方式对所述数据进行处理,并根据所述基础参数集,在所述目标频带上向所述网络设备发送处理后的所述数据;或者
根据所述基础参数集,接收所述网络设备发送的所述数据,并根据所述滤波方式对接收到的所述数据进行处理。
因此,通过对基于不同基础参数集传输的数据使用不同的滤波方式进行处理,可以减小基于不同基础参数集的数据传输之间产生的相互干扰。
可选地,所述滤波方式包括以下中的至少一种:基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
可选地,所述基础参数集包括子载波间隔。
应注意,本发明实施例中,传输模块1601可以由收发信机实现。如图17所示,终端设备1700可以包括处理器1710、收发信机1720和存储器1730。其中,收发信机1720可以包括接收器1721和发送器1722,存储器1730可以用于存储基础参数集和滤波方式等的相关信息,还可以用于存储处理器1710执行的代码等。网络设备1700中的各个组件通过总线系统1740耦合在一起,其中总线系统1740除包括数据总线之外,还包括电源总线、控制总 线和状态信号总线等。
其中,收发信机1720用于:接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;根据所述滤波方式对所述数据进行处理,并根据所述基础参数集,在所述目标频带上向所述网络设备发送处理后的所述数据;或者根据所述基础参数集,接收所述网络设备发送的所述数据,并根据所述滤波方式对接收到的所述数据进行处理。
可选地,所述滤波方式包括以下中的至少一种:基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
可选地,所述基础参数集包括子载波间隔。
图18是本发明实施例的系统芯片的一个示意性结构图。图18的系统芯片1800包括输入接口1801、输出接口1802、至少一个处理器1803、存储器1804,所述输入接口1801、输出接口1802、所述处理器1803以及存储器1804之间通过总线1805相连,所述处理器1803用于执行所述存储器1804中的代码,当所述代码被执行时,所述处理器1803实现图2至图6中终端设备20执行的方法。
图16所示的终端设备1600或图17所示的终端设备1700或图18所示的系统芯片1800能够实现前述图2至图6方法实施例中由终端设备20所实现的各个过程,为避免重复,这里不再赘述。
可以理解,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,简称“DSP”)、专用集成电路(Application Specific Integrated Circuit,简称“ASIC”)、现成可编程门阵列(Field Programmable Gate Array,简称“FPGA”)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域 成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称“ROM”)、可编程只读存储器(Programmable ROM,简称“PROM”)、可擦除可编程只读存储器(Erasable PROM,简称“EPROM”)、电可擦除可编程只读存储器(Electrically EPROM,简称“EEPROM”)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称“RAM”),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称“SRAM”)、动态随机存取存储器(Dynamic RAM,简称“DRAM”)、同步动态随机存取存储器(Synchronous DRAM,简称“SDRAM”)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称“DDR SDRAM”)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称“ESDRAM”)、同步连接动态随机存取存储器(Synchlink DRAM,简称“SLDRAM”)和直接内存总线随机存取存储器(Direct Rambus RAM,简称“DR RAM”)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称“ROM”)、随机存取存储器(Random Access Memory,简称“RAM”)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (48)

  1. 一种传输数据的方法,其特征在于,包括:
    网络设备确定用于传输所述数据的基础参数集,并确定用于传输所述数据的目标频带,所述目标频带包括用于传输所述数据的传输频带和保护频带;
    所述网络设备向所述终端设备发送配置信息,所述配置信息包括所述基础参数集和所述目标频带的信息;
    所述网络设备根据所述基础参数集,在所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
  2. 根据权利要求1所述的方法,其特征在于,所述目标频带的信息包括所述目标频带的起始位置和终止位置、所述保护频带的带宽和所述保护频带在所述目标频带中的位置。
  3. 根据权利要求1所述的方法,其特征在于,所述目标频带的信息包括所述目标频带的起始位置和终止位置,以及所述保护频带的起始位置和终止位置。
  4. 根据权利要求2或3所述的方法,其特征在于,所述保护频带在所述目标频带中的位置包括:所述保护频带位于所述目标频带的低频端和/或高频端。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述保护频带的带宽为所述网络设备所支持的最小子载波间隔的整数倍。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述配置信息还包括与所述基础参数集对应的滤波方式,所述网络设备向所述终端设备发送配置信息之前,所述方法还包括:
    所述网络设备确定与所述基础参数集对应的所述滤波方式。
  7. 根据权利要求6所述的方法,其特征在于,所述滤波方式包括以下中的至少一种:
    基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述基础参数集包括子载波间隔。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述网络 设备确定用于传输所述数据的基础参数集,包括:
    所述网络设备从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
  10. 一种传输数据的方法,其特征在于,包括:
    终端设备接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集和目标频带的信息,所述目标频带包括用于传输所述数据的传输频带和保护频带;
    所述终端设备根据所述基础参数集,在所述传输频带上向所述网络设备发送所述数据或者接收所述网络设备发送的所述数据。
  11. 根据权利要求10所述的方法,其特征在于,所述目标频带的信息包括所述目标频带的起始位置和终止位置、所述保护频带的带宽和所述保护频带在所述目标频带中的位置。
  12. 根据权利要求10所述的方法,其特征在于,所述目标频带的信息包括所述目标频带的起始位置和终止位置,以及所述保护频带的起始位置和终止位置。
  13. 根据权利要求11或12所述的方法,其特征在于,所述保护频带在所述目标频带中的位置包括:所述保护频带位于所述目标频带的低频端和/或高频端。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述保护频带的带宽为所述网络设备所支持的最小子载波间隔的整数倍。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述配置信息还包括与所述基础参数集对应的滤波方式,所述终端设备根据所述基础参数集,在所述传输频带上向所述网络设备发送所述数据或者接收所述网络设备发送的所述数据,包括:
    所述终端设备根据所述滤波方式对所述数据进行处理,并根据所述基础参数集,在所述目标频带上向所述网络设备发送处理后的所述数据;或者
    所述终端设备根据所述基础参数集,接收所述网络设备发送的所述数据,并根据所述滤波方式对接收到的所述数据进行处理。
  16. 根据权利要求15所述的方法,其特征在于,所述滤波方式包括以下中的至少一种:
    基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述 滤波波形的参数。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述基础参数集包括子载波间隔。
  18. 一种传输数据的方法,其特征在于,包括:
    网络设备确定用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;
    所述网络设备向终端设备发送配置信息,所述配置信息包括所述基础参数集、所述传输频带和所述滤波方式;
    所述网络设备根据所述基础参数集,在所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
  19. 根据权利要求18所述的方法,其特征在于,所述滤波方式包括以下中的至少一种:
    基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
  20. 根据权利要18或19所述的方法,其特征在于,所述基础参数集包括子载波间隔。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述网络设备确定用于传输所述数据的基础参数集,包括:
    所述网络设备从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
  22. 一种传输数据的方法,其特征在于,包括:
    终端设备接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;
    所述终端设备根据所述滤波方式对所述数据进行处理,并根据所述基础参数集,在所述目标频带上向所述网络设备发送处理后的所述数据;或者
    所述终端设备根据所述基础参数集,接收所述网络设备发送的所述数据,并根据所述滤波方式对接收到的所述数据进行处理。
  23. 根据权利要求22所述的方法,其特征在于,所述滤波方式包括以下中的至少一种:
    基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述 滤波波形的参数。
  24. 根据权利要求22或23所述的方法,其特征在于,所述基础参数集包括子载波间隔。
  25. 一种网络设备,其特征在于,包括:
    确定模块,用于确定用于传输所述数据的基础参数集,并确定用于传输所述数据的目标频带,所述目标频带包括用于传输所述数据的传输频带和保护频带;
    传输模块,用于向所述终端设备发送所述确定模块确定的所述配置信息,所述配置信息包括所述基础参数集和所述目标频带的信息;
    所述传输模块还用于,根据所述确定模块确定的所述基础参数集,在所述确定模块确定的所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
  26. 根据权利要求25所述的网络设备,其特征在于,所述目标频带的信息包括所述目标频带的起始位置和终止位置、所述保护频带的带宽和所述保护频带在所述目标频带中的位置。
  27. 根据权利要求25所述的网络设备,其特征在于,所述目标频带的信息包括所述目标频带的起始位置和终止位置,以及所述保护频带的起始位置和终止位置。
  28. 根据权利要求26或27所述的网络设备,其特征在于,其特征在于,所述保护频带在所述目标频带中的位置包括:所述保护频带位于所述目标频带的低频端和/或高频端。
  29. 根据权利要求25至28中任一项所述的网络设备,其特征在于,所述保护频带的带宽为所述网络设备所支持的最小子载波间隔的整数倍。
  30. 根据权利要求25至29中任一项所述的网络设备,其特征在于,所述配置信息还包括与所述基础参数集对应的滤波方式,所述传输模块向所述终端设备发送配置信息之前,所述确定模块还用于:
    确定与所述基础参数集对应的所述滤波方式。
  31. 根据权利要求30所述的网络设备,其特征在于,所述滤波方式包括以下中的至少一种:
    基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
  32. 根据权利要求25至31中任一项所述的网络设备,其特征在于,所述基础参数集包括子载波间隔。
  33. 根据权利要求25至32中任一项所述的网络设备,其特征在于,所述确定模块具体用于:
    从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
  34. 一种终端设备,其特征在于,包括:
    传输模块,用于接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集和目标频带的信息,所述目标频带包括用于传输所述数据的传输频带和保护频带;
    所述传输模块还用于,根据所述基础参数集,在所述传输频带上向所述网络设备发送所述数据或者接收所述网络设备发送的所述数据。
  35. 根据权利要求34所述的终端设备,其特征在于,所述目标频带的信息包括所述目标频带的起始位置和终止位置、所述保护频带的带宽和所述保护频带在所述目标频带中的位置。
  36. 根据权利要求34所述的终端设备,其特征在于,所述目标频带的信息包括所述目标频带的起始位置和终止位置,以及所述保护频带的起始位置和终止位置。
  37. 根据权利要求35或36所述的终端设备,其特征在于,所述保护频带在所述目标频带中的位置包括:所述保护频带位于所述目标频带的低频端和/或高频端。
  38. 根据权利要求34至37中任一项所述的终端设备,其特征在于,所述保护频带的带宽为所述网络设备所支持的最小子载波间隔的整数倍。
  39. 根据权利要求34至38中任一项所述的终端设备,其特征在于,所述配置信息还包括与所述基础参数集对应的滤波方式,所述传输模块具体用于:
    根据所述滤波方式对所述数据进行处理,并根据所述基础参数集,在所述目标频带上向所述网络设备发送处理后的所述数据;或者
    根据所述基础参数集,接收所述网络设备发送的所述数据,并根据所述滤波方式对接收到的所述数据进行处理。
  40. 根据权利要求39所述的终端设备,其特征在于,所述滤波方式包 括以下中的至少一种:
    基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
  41. 根据权利要求34至40中任一项所述的终端设备,其特征在于,所述基础参数集包括子载波间隔。
  42. 一种网络设备,其特征在于,包括:
    确定模块,用于确定用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;
    传输模块,用于向终端设备发送配置信息,所述配置信息包括所述基础参数集、所述传输频带和所述滤波方式;
    所述传输模块还用于,根据所述基础参数集,在所述传输频带上接收所述终端设备发送的所述数据或者向所述终端设备发送所述数据。
  43. 根据权利要求42所述的网络设备,其特征在于,所述滤波方式包括以下中的至少一种:
    基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
  44. 根据权利要求42或43所述的网络设备,其特征在于,所述基础参数集包括子载波间隔。
  45. 根据权利要求42至44中任一项所述的网络设备,其特征在于,所述确定模块具体用于:
    从预定义的多个基础参数集中确定用于传输所述数据的所述基础参数集。
  46. 一种终端设备,其特征在于,包括:
    传输模块,用于接收网络设备发送的配置信息,所述配置信息包括用于传输所述数据的基础参数集、用于传输所述数据的传输频带和与所述基础参数集对应的滤波方式;
    所述传输模块还用于,根据所述滤波方式对所述数据进行处理,并根据所述基础参数集,在所述目标频带上向所述网络设备发送处理后的所述数据;或者
    根据所述基础参数集,接收所述网络设备发送的所述数据,并根据所述滤波方式对接收到的所述数据进行处理。
  47. 根据权利要求46所述的终端设备,其特征在于,所述滤波方式包括以下中的至少一种:
    基带滤波器的类型、所述基带滤波器的参数、所使用的滤波波形和所述滤波波形的参数。
  48. 根据权利要求46或47所述的终端设备,其特征在于,所述基础参数集包括子载波间隔。
PCT/CN2016/092101 2016-07-28 2016-07-28 传输数据的方法、网络设备和终端设备 WO2018018509A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020187036662A KR20190034156A (ko) 2016-07-28 2016-07-28 데이터를 전송하는 방법, 네트워크 장치와 단말 장치
US16/310,417 US11128513B2 (en) 2016-07-28 2016-07-28 Data transmission method, network equipment, and terminal equipment
CN202110187063.2A CN113162743B (zh) 2016-07-28 2016-07-28 传输数据的方法、网络设备、终端设备和可读存储介质
CN201680087135.3A CN109417781B (zh) 2016-07-28 2016-07-28 传输数据的方法、网络设备、终端设备和可读存储介质
EP16910090.6A EP3457775A4 (en) 2016-07-28 2016-07-28 DATA TRANSMISSION PROCESS, NETWORK EQUIPMENT AND DEVICE EQUIPMENT
PCT/CN2016/092101 WO2018018509A1 (zh) 2016-07-28 2016-07-28 传输数据的方法、网络设备和终端设备
JP2018567924A JP7005536B2 (ja) 2016-07-28 2016-07-28 データ伝送方法、ネットワーク装置及び端末装置
TW106122115A TWI753922B (zh) 2016-07-28 2017-06-30 傳輸數據的方法、網絡設備和終端設備
JP2021043974A JP2021101570A (ja) 2016-07-28 2021-03-17 データ伝送方法、ネットワーク装置及び端末装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/092101 WO2018018509A1 (zh) 2016-07-28 2016-07-28 传输数据的方法、网络设备和终端设备

Publications (1)

Publication Number Publication Date
WO2018018509A1 true WO2018018509A1 (zh) 2018-02-01

Family

ID=61015715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092101 WO2018018509A1 (zh) 2016-07-28 2016-07-28 传输数据的方法、网络设备和终端设备

Country Status (7)

Country Link
US (1) US11128513B2 (zh)
EP (1) EP3457775A4 (zh)
JP (2) JP7005536B2 (zh)
KR (1) KR20190034156A (zh)
CN (2) CN109417781B (zh)
TW (1) TWI753922B (zh)
WO (1) WO2018018509A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112449429B (zh) * 2019-09-05 2023-11-21 成都华为技术有限公司 信号传输方法及通信装置
CN114268781A (zh) * 2021-12-23 2022-04-01 南京木马牛智能科技有限公司 一种基于vr反馈的传感器信号处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473619A (zh) * 2006-06-21 2009-07-01 高通股份有限公司 无线资源分配方法及装置
CN101895335A (zh) * 2005-01-06 2010-11-24 富士通株式会社 无线通信系统及其发送和接收装置、无线通信方法
US20110218007A1 (en) * 2010-03-08 2011-09-08 Fujitsu Limited Base station device and method for allocating communication band
CN102238692A (zh) * 2010-05-03 2011-11-09 英特尔公司 配置载波聚合中的分量载波
CN103220796A (zh) * 2012-01-21 2013-07-24 电信科学技术研究院 一种下行数据传输方法及其设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9031006B2 (en) * 2008-03-13 2015-05-12 Samsung Electronics Co., Ltd Apparatus and method for using guard band as data subcarrier in communication system supporting frequency overlay
KR101496896B1 (ko) * 2009-02-16 2015-02-27 삼성전자주식회사 대역 확장성을 지원하는 셀룰러 무선통신시스템에서 보호대역이 구성된 하향링크 신호의 송수신 방법 및 장치
US9001908B2 (en) * 2010-07-01 2015-04-07 Marvell World Trade Ltd. Orthogonal frequency division multiplexing (OFDM) symbol formats for a wireless local area network (WLAN)
KR101156667B1 (ko) * 2011-12-06 2012-06-14 주식회사 에이디알에프코리아 통신 시스템의 필터 계수 설정 방법
EP2991238B1 (en) 2013-04-25 2022-11-23 Huawei Technologies Co., Ltd. Method and device for transmitting signal
EP2879425B1 (en) 2013-11-28 2016-01-06 NTT Docomo, Inc. Macro-cell assisted small cell discovery and resource activation
US10772092B2 (en) * 2013-12-23 2020-09-08 Qualcomm Incorporated Mixed numerology OFDM design
KR102131654B1 (ko) 2014-08-25 2020-07-08 주식회사 윌러스표준기술연구소 무선 통신 방법 및 이를 이용한 무선 통신 단말
US9854580B2 (en) * 2014-09-04 2017-12-26 Qualcomm, Incorporated Efficient resource allocation
EP3029901A1 (en) * 2014-12-02 2016-06-08 Alcatel Lucent A method for allocation of physical layer parameters of a signal, and a base station transceiver and a user terminal therefor
US9860099B1 (en) * 2015-02-18 2018-01-02 Newracom, Inc. Support of frequency diversity mode for block code based transmission in OFDMA
PL3618342T3 (pl) 2016-05-13 2021-05-31 Telefonaktiebolaget Lm Ericsson (Publ) System wielu nośnych podrzędnych z wieloma oznaczeniami liczbowymi

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895335A (zh) * 2005-01-06 2010-11-24 富士通株式会社 无线通信系统及其发送和接收装置、无线通信方法
CN101473619A (zh) * 2006-06-21 2009-07-01 高通股份有限公司 无线资源分配方法及装置
US20110218007A1 (en) * 2010-03-08 2011-09-08 Fujitsu Limited Base station device and method for allocating communication band
CN102238692A (zh) * 2010-05-03 2011-11-09 英特尔公司 配置载波聚合中的分量载波
CN103220796A (zh) * 2012-01-21 2013-07-24 电信科学技术研究院 一种下行数据传输方法及其设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3457775A4 *

Also Published As

Publication number Publication date
KR20190034156A (ko) 2019-04-01
US20190334753A1 (en) 2019-10-31
CN113162743A (zh) 2021-07-23
JP2021101570A (ja) 2021-07-08
CN109417781A (zh) 2019-03-01
JP7005536B2 (ja) 2022-01-21
CN109417781B (zh) 2021-03-05
JP2019530993A (ja) 2019-10-24
EP3457775A1 (en) 2019-03-20
CN113162743B (zh) 2023-04-18
EP3457775A4 (en) 2019-07-10
US11128513B2 (en) 2021-09-21
TWI753922B (zh) 2022-02-01
TW201804774A (zh) 2018-02-01

Similar Documents

Publication Publication Date Title
KR102287734B1 (ko) 자원 할당 방법, 사용자 장비 및 네트워크 기기
EP3934356B1 (en) Data transmission method, terminal device, and network device
TWI765931B (zh) 傳輸資訊的方法、終端設備和網路設備
US11343835B2 (en) Method for transmitting data, terminal device and network device
US20210160852A1 (en) Resource configuration method and terminal device
TWI784959B (zh) 傳輸數據的方法、終端設備和網絡設備
TWI762531B (zh) 資源映射的方法和通訊設備
US11516835B2 (en) Data transmission method, terminal device and network device
JP2021101570A (ja) データ伝送方法、ネットワーク装置及び端末装置
TWI797098B (zh) 傳輸信息的方法、網絡設備和終端設備
WO2020000299A1 (zh) 调度资源的方法、终端设备和网络设备
WO2019051788A1 (zh) 用于传输数据的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036662

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016910090

Country of ref document: EP

Effective date: 20181213

ENP Entry into the national phase

Ref document number: 2018567924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE