WO2018018113A1 - Method for producing spilanthol and analogues, thus produced spilanthol and analogues - Google Patents

Method for producing spilanthol and analogues, thus produced spilanthol and analogues Download PDF

Info

Publication number
WO2018018113A1
WO2018018113A1 PCT/BR2017/000085 BR2017000085W WO2018018113A1 WO 2018018113 A1 WO2018018113 A1 WO 2018018113A1 BR 2017000085 W BR2017000085 W BR 2017000085W WO 2018018113 A1 WO2018018113 A1 WO 2018018113A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
spilanthol
ranges
oxidation
hours
Prior art date
Application number
PCT/BR2017/000085
Other languages
French (fr)
Portuguese (pt)
Inventor
Julio Cesar PASTRE
Isabella Gonçalves ALONSO
Original Assignee
Universidade Estadual De Campinas - Unicamp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual De Campinas - Unicamp filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2018018113A1 publication Critical patent/WO2018018113A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/34Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
    • C07C233/35Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/38Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton

Definitions

  • the invention described herein is in the field of chemistry / chemical engineering, particularly applied to the field of organic synthesis, and describes processes for obtaining spilanthol as well as spilanthol thus obtained.
  • Spilanthes acmella is a plant in South America, mainly in northern Brazil, commonly known as jarabu.
  • the extract of this plant is widely used in the treatment of toothaches and throat and is also used in cooking *
  • Spilanthol - N-isobutyl-2E, 6Z, SE-decatrenamide has the structural formula (1) below and is an alkylamide present in Spilanthes acmella and some other trees around the world and is primarily responsible for its effects. biological activities.
  • Spilanthes acmella extract is also used. in the cosmetics and food industry. Despite being the major constituent, other compounds present may generate responses that are not necessarily due to spilanthol.
  • Document SP2236489 discloses some synthetic routes for obtaining spilanthol, all of which lead to a lower purity product and utilize a greater number of steps.
  • US20140227200 discloses a long process for obtaining spilanthol which comprises 7 steps wherein the product obtained is of low purity (79) and in. whereas the presence of other isomers is indicated, however, such isomers are not quantified.
  • U52012G 116116 discloses a process for obtaining very long spilanthol which comprises 9 steps, wherein the final product obtained is a mixture of isomers with a maximum spilantol purity of 76.5%,
  • an objective of this invention is to develop a new and shorter synthetic route to obtain the spilanthol and its analogues, being inexpensive and efficient, leading to a finer product when compared to the routes used by the prior art.
  • the processes comprise the following steps: (1) synthesis of the phosphonate ester; (2) Sonogashira reaction; (3) triple bond serial reduction; (4) oxidation of alcohol to its aldehyde; and (5) Horner-Wadsworth-SSmmons (HWE) reaction: obtaining a final product, spilanthol and the like, with. higher purity.
  • HWE Horner-Wadsworth-SSmmons
  • the present invention relates to the processes for obtaining spilanthol as well as the spilanthol thus obtained.
  • Step B) ⁇ Sonogashira Reaction: [26] Then, to obtain the desired diene portion (E, Z), a palladium and copper catalyzed Sonogashira reaction was performed, followed by a diastereosseous triple bond semi-reduction.
  • Sonogas 1a cross coupling is used to form a C-C bond between a terminal alkyne, preferably pent-4-yn-1-ol, and an axyl or alkenyl halide. It is usually catalyzed by palladium and copper,
  • the best condition for the Sonogashira reaction is achieved using DF as solvent, DIPA as base, as a catalyst at room temperature for 2 h with the addition of 10 mol% PPlv? and as alkenyl halide 1-bromoprop-1-ene (12) was used as a mixture of isomers (60: 0 E / Z), as such compound has. much lower cost than pure E-isomer. Under these reaction conditions the highest isomerization is obtained: leading to the exclusive formation of the product with the desired E geometry.
  • the process of obtaining in its preferred embodiment comprises a batch process.
  • the synthesis of the phosphonate ester (3) is carried out by coupling reaction of isobutyamine (6) and carboxylic acid (20) with DCC (or EDC ⁇ and catalytic DMAP, yielding 91% yield.
  • phosphonate ester synthesis (3) was performed in dieloromethane as a solvent and at room temperature for 12 hours.
  • Alcohol (11) was obtained by a Sonogashira reaction between vinyl halide (12) and alkyne (13) in DMF using palladium catalyst, a copper oil catalyst and a base.
  • Vinyl halide (12) may have tran geometry or a mixture of isomers, vinyl iodide may also be used as a replacement for vinyl bromide.
  • Palladium catalyst may be chosen from the group consisting of any palladium (0) source or which causes the formation of palladium (0) in the reaction medium, such as: PMPPhs), Pd (PPhi) 2 C1 2 , Pd (OAc ⁇ 2 , Pd (dba) 2 , Pd (TFA) 2, PdCla, Pd (acac) 2f , and Pd (PPh 3 ) 4 is preferred. or Pd (PPh 3 j 2 CI- 2 . Even more preferably, Pd (PPhj) is used.
  • the use of the catalyst is optional and can be chosen from any copper I source, complexed or not, such as: Cul, CuBr, CuCl, Cu ? O, CuBr. DM5, CuBr.Ph 3 P, etc.
  • Cul is used.
  • the reaction time may range from 1 to 20 hours, preferably from 2 to 5 hours and the temperature may range from 20 ° C to 150 ° C. Preferably between 25 ° C and 60 ° C.
  • any organic solvent may be used, for example alcohols, ethers, nitriias, arias, sulfoxides, halides, preferably tetrahydrofuran.
  • THF acid dimethylformam
  • DMF acid dimethylformam
  • DMA dimethylacetaroide
  • DSO benzonitrile
  • THF trifluoroacetonitrile
  • DMF dimethyl sulfoxide
  • Any organic and inorganic bases may be used, for example carbonates ⁇ K ⁇ C CC, ajCOs, Cs ⁇ C & ) , hydroxides (NaOH, ⁇ , Ca (OH ⁇ 2) , or primary, secondary or tertiary amines ⁇ di isoprapylamine - DIPA, piperidine, triethylamine (Et 3 ), diisopropylethylamine
  • DIPEA tetramethylguanidine
  • MG tetramethylguanidine
  • diet.ilam.ine tetramethylguanidine
  • pyrrolidine tetramethylguanidine
  • DI A tetramethylguanidine
  • PP ⁇ 1 3 or any phosphine can be used as the excess ligand.
  • (6) -oct-6-en-4-yn-1-ol (11) was obtained in 55% yield by reaction between vinyl bromide (12) and alkyne-1-ol-1-ol (13) in DMF, using 5 mole% PdPPIV as catalyst, 15 mole% Cul as co-catalyst, 10 mole% PPh 3 and diiscpropylamine (DIPA) as base, 2h reaction and tempera environment.
  • DIPA diiscpropylamine
  • T SC1 is optional and the reaction time may vary between 1 and 60 hours, preferably between 5 and 20 hours, and the temperature poete range between 20 ° C and 60 Q C and preferenciai temperatures between 25 ° C and 40 ° C.
  • Step D Oxidation of Alcohol to Aldehyde
  • Any methodology for oxidizing primary alcohol to aldehyde may be used, for example DMSO-activated oxidation (Swern, Parikh-Doering, Pfitzner-Mof " att), chromium reagent oxidation (Collins, PCC and PDC reagent). ), hypervalent iodine oxidation (Dess-Martin periodinane), among others, preferably Swern oxidation or PCC.
  • the reaction time may range from 1 to 5 hours, preferably from 1 to 3 : hours and the temperature may range from 0 ° C to 60 ° C, preferably from 0 ° C to 25 ° C.
  • Any organic solvent may be used, for example ethers (THF, ethyl ether, dioxane), alcohols (methanol, ethanol), nitriles (acetonitrile), aroids (DMF, DMA), chlorinated solvents (chloroform, dichloromethane ), among others, preferably THF is used.
  • ethers ethyl ether, dioxane
  • alcohols methanol, ethanol
  • nitriles acetonitrile
  • aroids DMF, DMA
  • chlorinated solvents chloroform, dichloromethane
  • Any base may be used, for example: t-BuO, NaH, n-BuLI, NaHMDS, LiHMDS, KHMDS, LDA, DBU, NaOH, OH, among others, preferably NaH is used.
  • Variations may be used using lithium chloride (LiCl) and zinc triflate (ZnOTf 3 ).
  • the Horner-Wads reaction ortho- Emmons (HWE) between (4Z, 6E) -octa-4,6-dia (2) and the phosphonate ester (3) use THF LEATHER solvent and Nafi as the base at a reaction time of 90 minutes. 63% yield was obtained for both steps (oxidation and HWE).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Steroid Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to methods for producing spilanthol and spilanthol analogues, as well as the resultant spilanthol 1 and analogues thereof. Spilanthol and spilanthol analogues according to the present invention exhibit high purity, besides being produced by a method with a reduced number of steps.

Description

PROCESSO DE OB ENÇÃO DO ESPILANTOL E ANÁLOGOS, ESPILANTOL EOBSCRIPTION PROCESS OF SPILANTOL AND ANALOGS, SPILANTOL AND
LQGQS OBTIDOS  LQGQS OBTAINED
Campo da inve ção  Field of Invention
[1] A invenção ora descrita se insere no campo da química / engenharia química, particularmente aplicada à área d síntese orgânica, e descreve processos de obtenção do espilantol, bem como o espilantol assim obtidos.  [1] The invention described herein is in the field of chemistry / chemical engineering, particularly applied to the field of organic synthesis, and describes processes for obtaining spilanthol as well as spilanthol thus obtained.
Fundamentos da ±nw&nção : ± nw Fundamentals:
[2] A Spilanthes acmella é uma planta existente na América do Sul, principalmente no norte do Brasil, comumente conhecida como jarabu. 0 extraio dessa planta é amplamente utilizado no tratamento de dores de dente e .garganta, além de ser empregado na culinária* [2] Spilanthes acmella is a plant in South America, mainly in northern Brazil, commonly known as jarabu. The extract of this plant is widely used in the treatment of toothaches and throat and is also used in cooking *
[3] O espilantol - N~isobutil-2E, 6Z, SE-decatríenamída apresenta a fórmula estrutural (1) abaixo e é uma alquilamida presente na Spilanthes acmella e em algumas outras árvores ao redor do mundo, sendo considerado o principal responsável pelas suas ativídades biológicas.
Figure imgf000002_0001
[3] Spilanthol - N-isobutyl-2E, 6Z, SE-decatrenamide has the structural formula (1) below and is an alkylamide present in Spilanthes acmella and some other trees around the world and is primarily responsible for its effects. biological activities.
Figure imgf000002_0001
Fórmula (1}  Formula (1}
[4] A maioria dos estudos para avaliação das ativídades biológicas do espilantol conhecidas pelo estado da técnica foi realizada com o extrato bruto das plantas que o contém, sendo as ativídades mais comumente relatadas: analgésica, antinociceptiva , antioxidante, anti- inflamatória, antifúngica, antí alaríal, bacteriostática e larvicida contra mosquitos, como o aedes aegypti.  [4] Most studies on the evaluation of spilanthol biological activities known by the state of the art were carried out with the crude extract of the plants containing it, with the most commonly reported activities being analgesic, antinociceptive, antioxidant, anti-inflammatory, antifungal, alarial, bacteriostatic and larvicidal against mosquitoes such as aedes aegypti.
[5] O extrato de Spilanthes acmella é utilizado também na indústria de cosméticos e alimentícia. Apesar de ser o principal constituinte, outros compostos presentes podem gerar respostas que nao são, necessariamente., devido ao espilantol . [5] Spilanthes acmella extract is also used. in the cosmetics and food industry. Despite being the major constituent, other compounds present may generate responses that are not necessarily due to spilanthol.
[6] Em 1903/ Gerber, E. (Arch. Pharm. Í einhei ) . 1903, 241, 270) nomeou de espilantol como o principal componente do extrato bruto da Spilanthes Olereceae. Em 1927, Asano e Kanemat.su (ϊ. J. Pharm. Soe. Japan 1927, 47, 521- 525} isolaram o espilantol peia primeira vez da espécie Spilanthes Acmella. Em 1963, Crombie et al. (J. Chem. Soe. 1963, Mo. 949, 4970-4976) sintetizaram pela primeira vez a (2E, 6.Ζ·, BE.)•••N-isobutil-decatrienamidâ e comprovaram a estrutura do espilantol. [6] In 1903 / Gerber, E. (Arch. Pharm. Einhei Í). 1903, 241, 270) named spilanthol as the main component of the crude extract of Spilanthes Olereceae. In 1927, Asano and Kanemat.su (J. Pharm. Soc. Japan 1927, 47, 521-525) isolated spilanthol for the first time from the species Spilanthes Acmella. In 1963 Crombie et al. (J. Chem. Soc. 1963, Mo. 949, 4970-4976) first synthesized (2E, 6.Ζ ·, BE.) ••• N-isobutyl-decatrienamidâ and proved the structure of spilanthol.
[7] Por ser utilizado em diversas áreas e de grande dificuldade de isolamento, esse composto tem um valor cornerc.1.ai elev do .  [7] Because it is used in a variety of areas and is very difficult to insulate, this compound has a high value.
[8] Desse modo, a síntese orgânica fornece uma boa alternativa para produzir o espilantol de forma mais barata e também para a exploração das atividades biológicas de seus nálogos .  [8] Thus, organic synthesis provides a good alternative for producing spilanthol more cheaply and also for exploiting the biological activities of its analogues.
Estado da Técnica:  State of the Art:
[9] Alguns documentos do estado da técnica descrevera a obtenção do espilantol e análogos do mesmo. No entanto, nenhum deles se .assemelha à invenção aqui proposta.  [9] Some prior art documents had described obtaining spilanthol and its analogues. However, none of them resemble the invention proposed herein.
[10] Além da síntese proposta por Crombie et al. , outros processos de obtenção foram descritos no estado da técnica, porém apresentaram baixos rendimentos globais ou grande número de etapas, além d não descreverem pureza do composto formado e se outros isômeros foram obtidos.  [10] In addition to the synthesis proposed by Crombie et al. , other obtaining processes have been described in the state of the art, but have low overall yields or large number of steps, and do not describe purity of the formed compound and whether other isomers were obtained.
[11] Mais recentemente, uma série de pedidos de patente sobre a obtenção do espilantol foi depositada pela Takasago International Corporation, a saber, WO 2009/091040., US2010/0184863, US2011/0105773, WO2011/007807 e[11] Most recently, a series of patent applications on obtaining spilanthol was filed by Takasago International Corporation, namely WO 2009/091040., US2010 / 0184863, US2011 / 0105773, WO2011 / 007807 and
U32012/Q116116. U32012 / Q116116.
[12] h rota sintética descrita no pedido de patente US2012/D116116 leva à obtenção do espilantol em nove etapas com 30% de rendimento global, obtendo um produto com pureza de 96,8%. Porém, esse produto é composto por 3 isômeros, sendo apenas 79% de espilantol.  [12] The synthetic route described in US2012 / D116116 leads to nine-step spilanthol yielding 30% overall yield, yielding a product of 96.8% purity. However, this product is composed of 3 isomers, being only 79% spilanthol.
[13] O document SP2236489 revela algumas rotas sintéticas para obtenção do espilantol, todas as quais levam a u produto de menor pureza e utilizam um maior número de etapas .  [13] Document SP2236489 discloses some synthetic routes for obtaining spilanthol, all of which lead to a lower purity product and utilize a greater number of steps.
[14] C documento US20140227200 revela um processo longo para a obtenção de espilantol, a qual compreende 7 etapas, em que o produto obtido possui baixa pureza (79 ) e em. que a presença de outros isômeros é indicada, entretanto, tais ísômeros não são quantificados.  [14] US20140227200 discloses a long process for obtaining spilanthol which comprises 7 steps wherein the product obtained is of low purity (79) and in. whereas the presence of other isomers is indicated, however, such isomers are not quantified.
[15] 0 documento U52012G 116116 revela um processo para a obtenção de espilantol muito longo, a qual compreende 9 etapas, em que o produto final obtido é uma mistura de isômeros, com uma pureza máxima de espilantol de 76,5 %,  [15] U52012G 116116 discloses a process for obtaining very long spilanthol which comprises 9 steps, wherein the final product obtained is a mixture of isomers with a maximum spilantol purity of 76.5%,
[16] Em vista desses documentos, são notáveis as vantagens técnicas alcançadas com os processos de obtenção do espilantol e seus análogos da presente invenção, que possibilita a obtenção de espilantol e derivados do mesmo com. maior pureza, em um processo com um menor número de eta a s .  [16] In view of these documents, the technical advantages achieved with the processes for obtaining spilantol and its analogs of the present invention, which make it possible to obtain spilantol and derivatives thereof, are noted. higher purity in a process with a smaller number of eta to s.
[17] Portanto:, um objetivo desta invenção é desenvolver uma rota sintética nova e mais curta para a obtenção do espilantol e seus análogos, sendo esta barata e eficiente, levando a um produto finai de maior pureza quando comparada com as rotas utilizadas pelo estado da técnica. [17] Therefore, an objective of this invention is to develop a new and shorter synthetic route to obtain the spilanthol and its analogues, being inexpensive and efficient, leading to a finer product when compared to the routes used by the prior art.
Breve descrição da nvenção :  Brief description of the invention:
[18] A invenção aqui proposta descreve processos de obtenção do espilantol, bem como o espilantol assim obtidos.  [18] The invention proposed herein describes processes for obtaining spilanthol as well as spilanthol thus obtained.
[19.1 Os processos compreendem as seguintes etapas: (1) síntese do éster fosfonato; (2) reação de Sonogashira ; (3) serai-redução da ligação tripla; (4) oxidação do álcool ao respectivo aldeído; e (5) reação de Horner-Wadsworth-íSmmons (HWE): , obtendo um produto final, espilantol e análogos, com. maior pureza. [19 . The processes comprise the following steps: (1) synthesis of the phosphonate ester; (2) Sonogashira reaction; (3) triple bond serial reduction; (4) oxidation of alcohol to its aldehyde; and (5) Horner-Wadsworth-SSmmons (HWE) reaction: obtaining a final product, spilanthol and the like, with. higher purity.
Breve descrição das figuras :  Brief description of the figures:
[20] Para obter uma total e completa visualização do ob eto desta invenção, são apresentadas as figuras as quais se faz referências, conforme se segue.  [20] For a complete and complete view of the object of this invention, reference figures are given as follows.
Figura 1 - Síntese total do espilantol (1) . Figure 1 - Total synthesis of spilanthol (1).
Figura 2 - Síntese do éster fosfonato (3) . Figure 2 - Synthesis of phosphonate ester (3).
Figura 3 - Expansão dos espectros de RMN de IH do álcool (11a e ílb) .  Figure 3 - Expansion of the 1 H NMR spectra of alcohol (11a and 1b).
Figura 4 - Semi-Redução. Z-seletiva do (E) -oct-6~én-4-in-l-ol Figure 4 - Semi-Reduction. (E) -oct-6 ~ én-4-in-l-ol Z-selective
(11) para formação do {AZ, 6£)--octa-4, 6-dien-l-ol (7) . (11) for formation of {AZ, 6 ') - octa-4,6-dien-1-ol (7).
Figura 5 - Oxidação de S ern e oiefinação de HWE.  Figure 5 - Sern oxidation and HWE definition.
Figura 6 - Rota pa a obtenção do ( 2 E, SE) -N-isobuti 1deca~2. r 8 - dien-b-enamida (21) a partir do
Figure imgf000005_0001
-occ-6-en-4~in~l-ol (11) .
Figure 6 - Route to obtain (2 E, SE) -N-isobutyldec ~ 2. r 8 - dien-b-enamide (21) from the
Figure imgf000005_0001
-occ-6-en-4-yn - 1-ol (11).
Figura 7 - Espectro de RMN de !H do espilantol (1) . Figure 7 - 1 H NMR Spectrum . H of spilanthol (1).
Figura 8 - Espectro de RMN de i5C do espilantol (1) . Figure 8 - NMR Spectrum espilantol i5 C (1).
Figura 9 - Espectro de RMN de Hl do (2E, BE)—A;-- i sobutiideca- Figure 9 - 1 H NMR Spectrum of (2E, BE) —A;
2, 8~dien-6~enaraída (21) . 2,8-dien-6-enamide (21).
Figura 10 - Espectro de RMN de 13C do ( 2E, BE) -ft?-isobutildeca- , 8-o!ien~6~enaittida (21) . Figure 10 - 13 C NMR Spectrum of (2E, BE) -ft'-isobutyldeca- , 80-enen-6-enaittida (21).
Descrição detalhada da invenção Detailed Description of the Invention
[21] Ά presente invenção se refere aos processos de obtenção do espilantol, bem como o espilantol assim obtido.  [21] The present invention relates to the processes for obtaining spilanthol as well as the spilanthol thus obtained.
[22] Os processos compreendem as etapas de (Figura 1) : [22] The processes comprise the steps of (Figure 1):
A) síntese do éster fosfonato (3) ; A) phosphonate ester synthesis (3);
B) reação de Sonogashira;  B) Sonogashira reaction;
C) redução da. ligação tripla;  C) reduction of. triple bond;
D) oxidação do álcool ao respectivo aldeído; e  D) alcohol oxidation to the respective aldehyde; and
E) reação de Horner-Wadsworth-'Emmons (HWE) .  E) Horner-Wadsworth-'Emmons (HWE) reaction.
Processo de obtenção d espílanto1 Process of obtaining d espílanto1
Etapa A) - Síntese do éster fosfonato (3)  Step A) - Phosphonate Ester Synthesis (3)
[23] 0 processo de obtenção do espilantol (11 é iniciado péla obtenção do fragmento do fosfonato (3), que contém a funcionalidade N-isobut ilamid .  [23] The process for obtaining spilanthol (11 is initiated by obtaining the phosphonate fragment (3), which contains the N-isobutylamid functionality).
[24] Em. uma primeira rota (Figura 2) foi realizada uma reação para a formação da antida (4) , conforme processo já conhecido do estado da técnica, utilizando cloreto de cloroacetila (5) e í sobutilam.ina (6) e obtendo um rendimento de 84%, seguida de uma reação de Michaelis-Arbuzov com trietilfosfitc formando o fosfonato (3) quantitativamente. Uma alternativa para a obtenção desse composto é o acoplamento da isobut ilamina (6) e o ácido carboxilico (20) foi realizado conforme processo já conhecido do estado da técnica .  [24] On. A first route (Figure 2) was carried out a reaction for antide formation (4), according to a process known from the state of the art, using chloroacetyl chloride (5) and overutilization (6) and obtaining a yield of 84%. %, followed by a Michaelis-Arbuzov reaction with triethylphosphide forming the phosphonate (3) quantitatively. An alternative to obtain this compound is the coupling of isobutylamine (6) and the carboxylic acid (20) was made according to a process known in the prior art.
[25] Esta rota leva à formação da fosfonoacetamida (3) em apenas uma etapa e com 91% de rendimento, e não utiliza trietilfosfíto., um reagente tóxico, controlado e de difícil acesso . [25] This route leads to the formation of phosphonoacetamide ( 3) in one step and with 91% yield and does not use triethylphosphite., A toxic, controlled and difficult to access reagent.
Etapa B) ■■ Reação de Sonogashira : [26] Eni seguida, para se obter a porção diênica (E,Z) desejada, foi feita uma reação de Sonogashira catalisada por paládio e cobre, seguida de uma semi -redução diastereosseietíva da ligação tripla. Step B) ■■ Sonogashira Reaction: [26] Then, to obtain the desired diene portion (E, Z), a palladium and copper catalyzed Sonogashira reaction was performed, followed by a diastereosseous triple bond semi-reduction.
[27] O acoplamento cruzado de Sonogas ira é utilizado para formar uma ligação C-C entre um alcino terminal, preferencialmente pent-4-in-l-ol , e um haleto de axila ou alquenila. Normalmente, é catalisada por paládio e cobre,  [27] Sonogas 1a cross coupling is used to form a C-C bond between a terminal alkyne, preferably pent-4-yn-1-ol, and an axyl or alkenyl halide. It is usually catalyzed by palladium and copper,
[28] Diversos parâmetros podem ser alterados na reação de Sonogasbira, tais como o catalisador e sua quantidade, a base, a temperatura, o: tempo reacional e o solvente. [28] Several parameters can be changed in response Sonogasbira such as the catalyst and its amount, the base, the temperature, the: reaction time and solvent.
[29] Em ama modalidade preferida desta invenção, a melhor condição para a reação de Sonogashira ê alcançada utilizando D F como solvente, DIPA como base,
Figure imgf000007_0001
como catalisador, temperatura ambiente par 2 h, com a adição de 10 % em mol de PPlv? e como haleto de alquenila foi utilizado o 1-bromoprop-l-eno (12) como uma mistura de isômeros (60: 0 E/Z), uma vez que esse composto tem. um custo muito inferior em relação ao isômero E puro. Nessas condições reacion is ê obtida a raaior isomerização: levando a formação exclusiva do produto com a geometria E desejada.
[29] In a preferred embodiment of this invention, the best condition for the Sonogashira reaction is achieved using DF as solvent, DIPA as base,
Figure imgf000007_0001
as a catalyst at room temperature for 2 h with the addition of 10 mol% PPlv? and as alkenyl halide 1-bromoprop-1-ene (12) was used as a mixture of isomers (60: 0 E / Z), as such compound has. much lower cost than pure E-isomer. Under these reaction conditions the highest isomerization is obtained: leading to the exclusive formation of the product with the desired E geometry.
[30] Na Figura 4, são mostrados alguns exemplos de expansão dos espectros de RMN de :lK obtidos pela reação. Essa região foi utilizada para calcular a proporção E/2 obtida na reação. Os sinais entre 6,11 e 6,02 ppm representam o hidrogénio na posição 7 do isômero E (dg, J-15, e 6,8 Hz), enquanto os picos entre 5,94 e 5,84 ppm representam o hidrogénio na posição 7 para o isômero Z (dq, J-10,8 e 6,8 Hz) - O hidrogénio na posição 6 dos dois isômeros se encontra na região entre 5,49 e 5,42 ppm, ficando sobreposto quando há a presença de ambos os compostos. Com esses dados,- foi concluído que .o espectro A representa uma reação com leve excesso de formação do produto Z, enquanto o espectro B representa uma maior formação do isôme o E. Já o espectro C, mostra a formação quase que exclusiva do isômero E. [30] In Figure 4, some examples are shown of expansion of the NMR spectra: K L obtained from the reaction. This region was used to calculate the E / 2 ratio obtained in the reaction. Signals between 6.11 and 6.02 ppm represent hydrogen at position 7 of the E isomer (dg, J-15, and 6.8 Hz), while peaks between 5.94 and 5.84 ppm represent hydrogen at position 7 for Z isomer (dq, J-10.8 and 6.8 Hz ) - Hydrogen at position 6 of the two isomers is in the region between 5.49 and 5.42 ppm, overlapping when Both compounds are present. With these data, it was concluded that the spectrum A represents a reaction with slight excess formation of product Z, while the spectrum B represents a higher formation of the isomer E. The spectrum C shows the almost exclusive formation of the isomer. AND.
Etapa C) - Redução da ligação tripla; Step C) - Triple bond reduction;
[31] Em. seguida, foi realizada a semi-redução da ligação tripla.  [31] On. Then, triple bond semi-reduction was performed.
[32] Foi utilizada uma amálgama de Zn (Cu/Ag) para reduzir o alcino obtido anteriormente, levando a formação da ligação dupla com geometria Z desejada. Inicialmente, foram reproduzidas as condições propostas por Hansen et al. , que para o mesmo substrato obteve 86% de rendimento e 9.0 min, porém os resultados relatados não se mostraram reprodutíveis .  [32] An amalgam of Zn (Cu / Ag) was used to reduce the previously obtained alkyne, leading to formation of the desired double bond with Z geometry. Initially, the conditions proposed by Hansen et al. , which obtained 86% yield and 9.0 min for the same substrate, but the reported results were not reproducible.
[33] Foi observada conversão total do álcool (j?) ~oct- 6-en~4-ín-l-ol (11) após 18 h de reação e rendimento de 54% (Figura 5) .  [33] Total conversion of alcohol (β) -oct-6-en-4-β-ol (11) was observed after 18 h of reaction and 54% yield (Figure 5).
[34] Etapas D) e E ) - oxidação do álcool {AZ, 6£>-octa- 4, 6-díen-l-ol (7) ao aldeído (42, 6..E) -octa~ , ê-dienal (2) e reação de Horner-Wadsworth-Emmons (HWE) :  [34] Steps D) and E) - oxidation of the alcohol (AZ, 6β-octa-4,6-dimen-1-ol (7) to the aldehyde (42,6.E) -octa-, (2) and Horner-Wadsworth-Emmons (HWE) reaction:
[35] A etapa seguinte corresponde à oxidação do álcool (7) para o respectivo aldeído (2).  [35] The next step is the oxidation of alcohol (7) to its aldehyde (2).
[36] Pode ser utilizado qualquer metodologia par oxidação de álcool primário a aldeído, preferencialmente oxidação de Swern ou usando-se reagentes cie cromo tais como PCC ou PDC. Devido à instabilidade e volatilidade do aldeído não foi possível isolá-lo.  [36] Any methodology for oxidation of primary alcohol to aldehyde, preferably Swern oxidation or using chromium reagents such as PCC or PDC may be used. Due to the instability and volatility of the aldehyde it was not possible to isolate it.
[37] Assim, a rota seguiu utilizando a oxidação de Swern. e usando-se imediatamente o bruto reacional na reação cie Horner- ads orth-E mons . As duas etapas levaram a formação do espíiantol (1) com 631 de rendimento (Figura 6) . [37] Thus, the route continued using Swern oxidation. and immediately using the reaction crude in the reaction Horner-ads orth-E mons. The two steps led to the formation of spiantol (1) with 631 yield (Figure 6).
[38] Sendo assim, a melhor condição para o processo de obtenção total do espíiantol (1) (Figura 1) possui 5 etapas e um rendimento global de 17%, ao utilizar o haleto de vinila como uma mistura 60:40 E/Z e 25% quando foi utilizado o material co geometria E, levando ao produto com alta pureza quando comparado às sínteses descritas no estado da técnica .  [38] Therefore, the best condition for the process of obtaining total spiiantol (1) (Figure 1) has 5 steps and an overall yield of 17% when using vinyl halide as a 60:40 E / Z mixture. and 25% when the material with geometry E was used, leading to the product with high purity when compared to the syntheses described in the state of the art.
[39] O processo de obtenção em sua modalidade preferencial compreende um processo em batelada.  [39] The process of obtaining in its preferred embodiment comprises a batch process.
[40] Etapa ] Síntes d éster fosfonato (3)  [40] Step] Phosphonate Ester Synthesis (3)
[41] Preferencialmente, a síntese do éster fosfonato (3) é realizada através da reação de acoplamento de isobutiiamina (6) e ácido carboxíiico (20) com DCC (ou EDC } e DMAP catalítico, obtendo 91 % de rendimento.  [41] Preferably, the synthesis of the phosphonate ester (3) is carried out by coupling reaction of isobutyamine (6) and carboxylic acid (20) with DCC (or EDC} and catalytic DMAP, yielding 91% yield.
[42] Em uma modalidade preferencial, a síntese de éster fosfonato (3) foi realizada era dielorometa.no como solvente e em temperatura ambiente por 12 horas.  [42] In a preferred embodiment, phosphonate ester synthesis (3) was performed in dieloromethane as a solvent and at room temperature for 12 hours.
Etapa B) Reação de Sonogashira Step B) Sonogashira Reaction
[43] 0 álcool (11) foi obtido por meio de uma reação de Sonogashira entre o haleto de vinila (12) e o alcino (13), em DMF, utilizando catalisador de paládio, um eo-catalisador de cobre e uma base.  [43] Alcohol (11) was obtained by a Sonogashira reaction between vinyl halide (12) and alkyne (13) in DMF using palladium catalyst, a copper oil catalyst and a base.
[44] 0 haleto de vinila (12) pode possuir geometria tran ou ser uma mistura de isomeros, pode também ser utilizado iodeto de vinila como substituição para o brometo de vinila.  [44] Vinyl halide (12) may have tran geometry or a mixture of isomers, vinyl iodide may also be used as a replacement for vinyl bromide.
[45] O catalisador de paládio pode ser escolhido do grupo que consiste em qualquer fonte de paládio (0) ou que leve a formação de paládio (0) no meio reaoional, tais como: PMPPhs) , Pd(PPhi) 2C12, Pd(OAc}2, Pd(dba)2, Pd (TFA) 2, PdCla, Pd(acac)2f entre outros, sendo preferencial o uso de Pd(PPh3) 4 ou Pd (PPh3j 2CI-2. Ainda mais preferencialmente,. Pd(PPhj) é utilizado . [45] Palladium catalyst may be chosen from the group consisting of any palladium (0) source or which causes the formation of palladium (0) in the reaction medium, such as: PMPPhs), Pd (PPhi) 2 C1 2 , Pd (OAc} 2 , Pd (dba) 2 , Pd (TFA) 2, PdCla, Pd (acac) 2f , and Pd (PPh 3 ) 4 is preferred. or Pd (PPh 3 j 2 CI- 2 . Even more preferably, Pd (PPhj) is used.
[46] O uso do co~catalisador é opcional e pode ser escolhido de qualquer fonte de cobre I, complexado ou não, como por exemplo: Cul, CuBr, CuCl, Cu?0, CuBr. DM5, CuBr.Ph3P, etc Preferencialmente, Cul é utilizado. [46] The use of the catalyst is optional and can be chosen from any copper I source, complexed or not, such as: Cul, CuBr, CuCl, Cu ? O, CuBr. DM5, CuBr.Ph 3 P, etc. Preferably, Cul is used.
[47] O tempo reacional pod variar entre 1 e 20 horas, ais preferencialmente entre 2 e 5 horas e a temperatura pode variar entre 20 °C e 150 °C. Preferencialmente entre 25 °C e 60 °C.  [47] The reaction time may range from 1 to 20 hours, preferably from 2 to 5 hours and the temperature may range from 20 ° C to 150 ° C. Preferably between 25 ° C and 60 ° C.
[48] Como solvente pode ser utilizado qualquer solvente orgânico, por exemplo, álcoois, éteres, nitriias, arai as, sulfóxidos, haletos , preferencialmente, tetrahidrofurano [48] As solvent, any organic solvent may be used, for example alcohols, ethers, nitriias, arias, sulfoxides, halides, preferably tetrahydrofuran.
(TKF), dimetiiforma ida (DMF), éter etílico, metanol, acetonitriia, etanol, dimetilacetaroida (DMA), benzonitrila , tricloroacetonitrila, dimetilsulfóxido (D .SO) , clorofórmio, diclorometanoy entre outros, mais preferencialmente THF e DMF são utilizados. (TKF), acid dimethylformam (DMF), ethyl ether, methanol, acetonitrile, ethanol, dimethylacetaroide (DMA), benzonitrile, trichloroacetonitrile, dimethyl sulfoxide (DSO), chloroform, dichloromethane, among others, most preferably THF and DMF.
[49] Podem, ser utilizadas quaisquer bases orgânicas e inorgânicas, por exemplo, carbonatos {K^CC , ajCOs, Cs^C& ) , hidróxidos (NaOH, ΚΟΉ, Ca(OH}2; ou aminas primárias, secundárias ou terciárias { di isoprapi lamina - DIPA, piperidina, tr ietilamina (Et3 ) , diisopropiletilarnina[49] Any organic and inorganic bases may be used, for example carbonates {K ^C CC, ajCOs, Cs ^C & ) , hydroxides (NaOH, ΚΟΉ, Ca (OH} 2) , or primary, secondary or tertiary amines {di isoprapylamine - DIPA, piperidine, triethylamine (Et 3 ), diisopropylethylamine
( DIPEA) , tetrametilguanidina ( MG) , diet.ilam.ina, pirrolidina, entre outras, prefe encialmente DI A e piperidin · (DIPEA), tetramethylguanidine (MG), diet.ilam.ine, pyrrolidine, among others, preferably DI A and piperidin ·
[50] Opcionalmente, PPÍ13 ou qualquer fosfina pode ser utilizado como excesso de ligante. [51] Em u a modalidade preferencial, o (£) -oct~6.-en-4- in-l-ol (11) foi obtido com 55 % de rendimento por meio da reação entre brometo de vinila (12) e o alcino per_t~ -in~l- ol (13) em DMF, utilizando 5 mel % de PdíPPIV como catalisador, 15 ol % de Cul como co-catalisador, 10 ol % de PPh3 e diiscpropilamina (DIPA) como base, tempo de reação de 2h e tempera ura ambiente. [50] Optionally, PPÍ1 3 or any phosphine can be used as the excess ligand. [51] In a preferred embodiment (6) -oct-6-en-4-yn-1-ol (11) was obtained in 55% yield by reaction between vinyl bromide (12) and alkyne-1-ol-1-ol (13) in DMF, using 5 mole% PdPPIV as catalyst, 15 mole% Cul as co-catalyst, 10 mole% PPh 3 and diiscpropylamine (DIPA) as base, 2h reaction and tempera environment.
Etapa C) : Semi-redução da 1 igação trip1a Step C): Semi-reduction of the 1 trip1a connection
[52] A seguir, é realizada uma semi-reduçao Z~selet.iva, onde zinco em pó foi reagido com acetato de cobre (Cu (OAc) 2 e nitrato de prata (AgNO; ) para a formação de amálgama. 0 álcool ( E) -oct~ β--en-4~in- 1~o1 (11) em presença da amálgama em u a solução de água e metanol é reduzido levando à formação do (AZ, 6E) -octa-4 , 6-dien~l-ol (7). [52] Next, a selective Z-half reduction is performed, where zinc powder was reacted with copper acetate (Cu (OAc) 2 and silver nitrate (AgNO;)) for amalgam formation. (E) -oct-β-en-4-in-1-o1 (11) in the presence of amalgam in a water and methanol solution is reduced leading to the formation of (AZ, 6E) -octa-4,6 dien-1-ol (7).
[53] Pode ser utilizada qualquer metodologia que leve semi-redução Z-seletiva, como por exemplo, utilizando o catalisador de Lindlar.  [53] Any methodology that leads to Z-selective semi-reduction may be used, such as using the Lindlar catalyst.
[54] A adição de T SC1 é opcional e o tempo reacional pode variar entre 1 e 60 horas, preferencialmente, entre 5 e 20 horas, e a temperatura poete variar entre 20 °C e 60 PC, sendo preferenciai temperaturas entre 25 °C e 40 °C. [54] The addition of T SC1 is optional and the reaction time may vary between 1 and 60 hours, preferably between 5 and 20 hours, and the temperature poete range between 20 ° C and 60 Q C and preferenciai temperatures between 25 ° C and 40 ° C.
[55] Em uma modalidade preferencial, foi utilizada uma redução com amálgama de Zn (Cu/Ag), com adição de MSC1, e com uma mistura metanol/água (1:1; v/v) como solvente, temperatura ambiente, durante 18 oras, obtendo o álcool (4Z, 6E} -octa-4, 6-díen-X-ol (7) em 54% de rendimento.  [55] In a preferred embodiment, a reduction with Zn amalgam (Cu / Ag), with addition of MSCl, and with a methanol / water (1: 1; v / v) mixture as solvent at room temperature was used. 18 hours, obtaining (4Z, 6E} -octa-4,6-dien-X-ol (7) alcohol in 54% yield.
Etapa D) : oxidação do álcool ao respectivo aldeído Step D): Oxidation of Alcohol to Aldehyde
[56] Em seguida foi realizada a oxidação do álcool {4Z, 6E) -octa-4, β-dien-l-ol (7) para o aldeído (4Z,6E) -octa- 4 , 6- ienal (2) . [57] Pode ser utilizada qualquer metodologia para oxidação de álcool primário em aldeído, por exemplo, oxidação atívada por DMSO (Swern, Parikh-Doering, Pfitzner-Mof" att) , oxidação com reagentes de cromo (reagente de Collíns, PCC e PDC) , oxidação com iodo hípervalente (periodinana de Dess- Martin) , entre outras, preferencialmente, oxidação de Swern ou PCC. [56] Oxidation of the alcohol (4Z, 6E) -octa-4, β-dien-1-ol (7) was then oxidized to the aldehyde (4Z, 6E) -octa-4,6-yenal (2) . [57] Any methodology for oxidizing primary alcohol to aldehyde may be used, for example DMSO-activated oxidation (Swern, Parikh-Doering, Pfitzner-Mof " att), chromium reagent oxidation (Collins, PCC and PDC reagent). ), hypervalent iodine oxidation (Dess-Martin periodinane), among others, preferably Swern oxidation or PCC.
[58] A metodologia utilizada para oxidação foi a oxidação de Swern, e devido à volatilidade e instabilidade do aldeído (4Z,€E) -oc a-4 , 6-díenal (2), ele não foi isolado, porém é possível realizar seu isolamento.  [58] The methodology used for oxidation was Swern oxidation, and due to the volatility and instability of aldehyde (4Z, € E) -oc a-4,6-dienal (2), it was not isolated, but it is possible to perform your isolation.
Etapa E )j_ Reação de Horner~¾adsworth-Ei;imons ( ;H E) Step E) j Hornad-Δadsworth-Ei; imons (; H E) reaction
[59] Nesta última etapa, o aldeído (4Z? 6E) -octa-4 f 6■■ dienal (2) em presença do éster fosfonato (3) e uma base leva à formação de espilantol (1). [59] In this last step, the aldehyde (4Z? 6E) octahydro-dienal 4 F 6 ■■ (2) in the presence of the phosphonate ester (3) and a base leads to the formation of espilantol (1).
[60] O tempo reacional pode variar entre 1 e 5 horas, sendo preferencial entre 1 e 3: horas e a temperatura pode variar entre 0 °C e 60 °C, preferencialmente entre 0 °C e 25 °C. [60] The reaction time may range from 1 to 5 hours, preferably from 1 to 3 : hours and the temperature may range from 0 ° C to 60 ° C, preferably from 0 ° C to 25 ° C.
[61] Pode ser utilizado qualquer solvente orgânico, por exemplo, éteres (THF,. éter etílico, díoxano) , álcoois (metanol, etanol), nitrilas (acetonit iia) , aroidas (DMF, DMA), solventes clorados (clorofórmio, díclorometano) , entre outros, preferencialmente, THF é utilizado.  [61] Any organic solvent may be used, for example ethers (THF, ethyl ether, dioxane), alcohols (methanol, ethanol), nitriles (acetonitrile), aroids (DMF, DMA), chlorinated solvents (chloroform, dichloromethane ), among others, preferably THF is used.
[62] Qualquer base pode ser utilizada, com por exemplo: t-BuO , NaH , n-BuLÍ, NaHMDS, LiHMDS, KHMDS , LDA, DBU, NaOH, OH, entre outras, p eferencialmente, NaH é utilizado.  [62] Any base may be used, for example: t-BuO, NaH, n-BuLI, NaHMDS, LiHMDS, KHMDS, LDA, DBU, NaOH, OH, among others, preferably NaH is used.
[63] É possível usar as variações utilizando cloreto de lítio (LiCl) e triflato de zinco (ZnOTf3) . [63] Variations may be used using lithium chloride (LiCl) and zinc triflate (ZnOTf 3 ).
[64] Preferencialmente, a reação de Horner-Wads ortír- Emmons (HWE) entre o (4Z, 6E) ~octa~4 , 6-díen.al (2) e o éster fosfonato (3) utiliza THF COIRO solvente e Nafí como base, em um tempo reacíonal de 90 minutos . Foi obtido 63% de rendimento para as duas etapas (oxidação e HWE) . [64] Preferably, the Horner-Wads reaction ortho- Emmons (HWE) between (4Z, 6E) -octa-4,6-dia (2) and the phosphonate ester (3) use THF LEATHER solvent and Nafi as the base at a reaction time of 90 minutes. 63% yield was obtained for both steps (oxidation and HWE).
[651 A partir do brometo de vinila com geometria exclusivamente trans foi realizada a reação de Sonogashira com alcino pent-4-in-l-ol (13 , utilizando píperídina como base. Foram utilizadas: as condições mais brandas possíveis (temperatura ambiente, 1 h, 5 mol% de Pd<PPh3) * & 15 mol% de Cul) , obtendo 81% d rendimento. Isso leva a um rendimento global de 25% para a obtenção do espilantol (1) . [651 From vinyl bromide with exclusively trans geometry the Sonogashira reaction with pent-4-in-1-ol alkyne (13, using piperidine as a base) was performed. The mildest possible conditions (room temperature, h, 5 mol% Pd (PPh 3 ) * & 15 mol% Cul), obtaining 81% d yield. This leads to an overall yield of 25% for obtaining spilanthol (1).
Síntese dos análogos de espilantol Synthesis of spilanthol analogs
[66] 0 análogo acetilênico {2E, SE) -W-isobutilde.ca-«2ír 8- dien-6-enamida (21) foi sintetizado em 4 etapas., como descrito anteriormente, com rendimento global de 23%. h modificação realizada foi a substituição da dupla ligação Z por u a. tripla. [66] 2 E {0 acetylenic analogue IF) -N-isobutilde.ca- '2 i R 8 dien-6-enamide (21) was synthesized in 4 steps. As described above, with an overall yield of 23%. The modification made was the substitution of the double bond Z for a. triple
[67] Estudos indicam que o espilantol apresenta diversas atividades biológicas, como por exemplo, atívidade anti -inflamatória, portanto, o desenvolvimento de uma rota sintética que viabilize a obtenção de grandes quantidades desse compost com alta pureza é de extrema importância para o estudo de suas propriedades, já que a maior parte dos ensaios do estado da técnica são feitos com o extrato bruto.  [67] Studies indicate that spilanthol has a variety of biological activities, such as anti-inflammatory activity, so the development of a synthetic route that enables large quantities of this compost to be obtained with high purity is of utmost importance for the study of its properties, since most state of the art tests are made with crude extract.
[68] Neste pedido de patente foi possível desenvolver uma rota sintética para o espilantol com. apenas 5 etapas, chegando a um produto de alta pureza (>98% HPLC) e sem a presença de outros isôraeros (>95:5% por PME de :lH) . Quando utilizado o brometo de vínila (12) com. a dupla ligação com geometria E, o rendimento global foi de 25%. Da mesma forma, quando se utiliza o brometo de víníia (12'}, que consiste na mistura de isômeros (E/Z 60:40) e possui um valor comerciai bem inferior, foi possível obter o espilantol com a mesma pureza e com rendimento global de 171. [68] In this patent application it was possible to develop a synthetic route for spilanthol with. only 5 steps, reaching a high purity product (> 98% HPLC) and without the presence of other isomers (> 95: 5% by PME of : 1 H). When vinyl bromide (12) with. For double bonding with geometry E, the overall yield was 25%. Similarly, when using vinous bromide (12 ' }, consisting of the mixture of isomers (E / Z 60:40) and having a much lower commercial value, it was possible to obtain spilanthol of the same purity and overall yield of 171.
1691 O espilantol obtido possui a seguinte caracterização : Óleo transparente /amarelado Rf 0,31 (SíQ3, hexanos/EtOAc 70:30). BMN ¾ {Ct>Cl3, 600 MBz) 5 (ppm) : 6,82 (dt, J « 15,3, 6,6 Hz, 1 H) , 6,28 íãááq, J « 14,7, 11,1, 1,5 Hz, 1 H) , 5,96 (dd, J = 10,9 Hz, 1 H) , 5,80 (dt, J ==· 15,2, 1,5 Hz, 1 R) , 5,69 ídq, J « 14,1, 6,8 Hz, 1 H) , 5,59 (si., 1 H), 5,25 (dt, J - 10,5:, 7,4 Hz, 1 H) , 3,14 (dd, J - 6,8 Hz, 1 H), 2,31 (dt, J = 7,4 Hz, 2 H! , 2,25 (dtd, J * 6,6,1691 The obtained spilanthol has the following characterization: Transparent / yellowish oil R f 0.31 (SiQ 3 , hexanes / EtOAc 70:30). NMR ¾ {Ct> Cl 3, 600 MBZ) 5 (ppm): 6.82 (dt, J "15.3, 6.6 Hz, 1 H), 6.28 íãááq, J" 14.7, 11, 1.5 Hz, 1 H), 5.96 (dd, J = 10.9 Hz, 1 H), 5.80 (dt, J = 15.2, 1.5 Hz, 1 R) , 5.69 (q, 14.1, 6.8 Hz, 1H), 5.59 (bs, 1H), 5.25 (dt, J = 10.5: 7.4 Hz, 1 H), 3.14 (dd, J = 6.8 Hz, 1 H), 2.31 (dt, J = 7.4 Hz, 2 H !, 2.25 (dtd, J * 6.6,
1.3 Hz, 2 H), 1, 75 - 1,83 (rn, 4 H) , 0,92 ppm (d, J - 6,8 Hz, 6 H) . RMN 13C (CDCls, 151MHz) δ (ppm): 166,0 (C) , 143,4 (CH) ., 129,9 (CH) , 129,4 (CH) , 127,6 (CK) , 126,6 (CH) , 124,1 (CH) , 46, 8 ÍC¾>, 32,0 (C¾) , 28,5 (CH) , 26,3 (CH2) , 20,1 (C¾) , 1.8,2 (C¾) .IV (AT , enr1) 3280, 2957, 2927, 2870, 1668, 1627, 1545, 1235, 1159, 978, 944, 818, 618. Pureza 98%. HKMS [Ci4¾3NO+H3+ calculado 222, 1852, observado 222, 1846. 1.3 Hz, 2 H), 1.75 - 1.83 (m, 4 H), 0.92 ppm (d, J = 6.8 Hz, 6 H). 13 C NMR (CDCl3, 151MHz) δ (ppm): 166.0 (C), 143.4 (CH) . , 129.9 (CH), 129.4 (CH), 127.6 (CK), 126.6 (CH), 124.1 (CH), 46.8 C ;, 32.0 (C¾), 28 0.5 (CH), 26.3 (CH 2 ), 20.1 (C¾), 1.8.2 (C¾) .IV (AT, enr 1 ) 3280, 2957, 2927, 2870, 1668, 1627, 1545, 1235 , 1159, 978, 944, 818, 618. Purity 98%. HKMS [C 14 -3 NO + H 3 + calcd 222, 1852, observed 222, 1846.
[70] A rota desenvolvida possibilita obtenção em larga escala por processo em. batelada, permitindo a obtenção de material para diversos ensaios biológicos. Com pequenas alterações no processo inicialmente proposto, foi possível sintetizar o (2E, 8E) -N-isobutildeea~2, 8~dien-6-enamida (21), ura análogo nâo-natural do espilantol.  [70] The developed route makes it possible to obtain large scale by process in. batch, allowing material to be obtained for various biological assays. With minor changes in the initially proposed process, it was possible to synthesize (2E, 8E) -N-isobutyldeea-2,8-dien-6-enamide (21), an unnatural analog of spilanthol.
[71] O análogo {2E, BB) -N-isobutildeca-2, 8-dien-6- enamida: (21) obtido possui a seguinte caracterização: Sólido laranja. P.F. 91,4 - 95,6 °C. Rf 0,36 (SiC¾, hexanos /EtOAc 70:30) . m ¾ (CDCls, 600 MHz) δ (ppm): 6,84 (dt, J « 15,2,[71] The analog (2E, BB) -N-isobutyldeca-2,8-dien-6-enamide: (21) obtained has the following characterization: Orange solid. Mp 91.4 - 95.6 ° C. R f 0.36 (SiC¾, hexanes / EtOAc 70:30). m ¾ (CDCls, 600 MHz) δ (ppm): 6.84 (dt, J "15.2,
6.4 Hr, 1 H) , 6,05 (dq, = 15,6, 6,8 Hz, 1 H) , 5,84 (d, J - 15,4 Hz, 1 H), 5,64 (si., 1 ti) , 5,44 (dq, J = 15, 8:, 1,8 Hz, 1 H; , 3,15 (dd, J = 6,4 Hz, 2 H) , 2,36 - 2,45 (m, 4 H) , 1, 76 - 1, 84 (m, 1 H), 1,74 (dd, J * 6,8, 1,7 Hz, 3 H) , 0.92 ppm (d, J = 6, 6 Hz, 6 fl) . B N 13C (CDCI3 , 151 MHz) δ (ppm) : 165,8 (Ct, 142,3 (CH) , 138,6 (CH) , 124,6 (CH) , 110,8 (CH) , 86,7 (C) , 80,1 (C), 46,9 (CH- ) > 31,3 (CH2) , 28,5 (CH) , 20,1 (CH3), 18,5 (CH2), 18,4 (C¾) . IV (ATR, cm"15 3291, 2959, 2914, 2870, 1666, 1625, 1545, 1334, 1236, 1220, 950, 650. Pureza 95%. HRMS [Ci4H2iNO+H] ( calculado 220,1696, observado 220, 1710. 6.4 Hr, 1 H), 6.05 (dq, = 15.6, 6.8 Hz, 1 H), 5.84 (d, J - 15.4 Hz, 1 H), 5.64 (bs, 1 ti), 5.44 (dq, J = 15.8 : 1.8 Hz, 1 H; 3.15 (dd, J = 6.4 Hz, 2 H), 2.36 - 2.45 (m, 4 H), 1.76 - 1.84 (m, 1 H), 1.74 (dd, J * 6.8, 1.7 Hz, 3 H), 0.92 ppm (d, J = 6.6 Hz, 6 fl) BN 13 C (CDCl 3, 151 MHz) δ (ppm): 165.8 (Ct, 142.3 (CH ), 138.6 (CH), 124.6 (CH), 110.8 (CH), 86.7 (C), 80.1 (C), 46.9 (CH-) > 31.3 (CH 2 ), 28.5 (CH), 20.1 (CH 3 ), 18.5 (CH 2 ), 18.4 (C¾) IR (ATR, cm- 1 3291, 2959, 2914, 2870, 1666 , 1625, 1545, 1334, 1236, 1220, 950, 650. Purity 95% HRMS [C 14 H 2 iNO + H] ( calculated 220.1696, observed 220, 1710.

Claims

REIVINDICAÇÕES
1. Processo de obtenção do espilantol, caracterizado por compreender as etapas de::  1. Process for obtaining spilanthol, comprising the steps of:
(1) síntese do éster fosfonato a partir da reação de acoplamento da ísobutilamina e de um ácido carboxílíco com DCC ou EDC e DMAP catalítico, utilizando díclorometâno como solvente e temperatura variável de 0 a 40 °C, preferencialmente 25 °C  (1) synthesis of the phosphonate ester from the coupling reaction of isobutylamine and a carboxylic acid with DCC or EDC and catalytic DMAP using dichloromethane as solvent and temperature ranging from 0 to 40 ° C, preferably 25 ° C
(2) reação de Sonogashira entre o 1 -bromopropene. ou 1- íodopropene e o pent--4~in~l~ol em solvente, utilizando catalisador de paládio, co-catalisador de cobre e uma base para obtenção do álcool, em que o tempo reacional varia de 1 a 20 horas e a temperatura varia de 20 °C a 150 °C  (2) Sonogashira reaction between 1-bromopropene. or 1-iodopropene and pent-4-yn-1-ol in solvent using palladium catalyst, copper cocatalyst and an alcohol base, wherein the reaction time ranges from 1 to 20 hours and temperature ranges from 20 ° C to 150 ° C
(3) semi-redução Z-seletiva, em que o tempo reacional varia de 1 a 60 horas e a temperatura varia de 2.Θ °C a 60  (3) Z-selective semi-reduction, in which the reaction time ranges from 1 to 60 hours and the temperature ranges from 2. ° C to 60 ° C.
(4): oxidação do álcool ao respectivo aldeído, pode ser utilizada qualquer metodologia para oxidação de álcool primário, como por exemplo, oxidação atívada por DMSO (Swern,. Parikh-Doering, Pfítzner-Moffatt ) , oxidação com reagentes de cromo (reagente de Collins, PCC e PDC) , oxidação cora iodo hiperv lente (periodinana de Dess-Martin) , entre outras, preferencialmente, oxidação de S er ou PCC. (4): oxidation of alcohol to its aldehyde, any methodology for primary alcohol oxidation may be used, such as DMSO-activated oxidation (Swern, Parikh-Doering, Pfítzner-Moffatt), chromium reagent oxidation (reagent). Collins, PCC and PDC), hyperventilating iodine oxidation (Dess-Martin periodinane), among others, preferably ser or PCC oxidation.
(5) reação de Horner-Wads o th-Emmons (H E) , em que o tempo reacional varia de 1 a 5 horas e a temperatura varia de 0 °C a 60 °C.  (5) Horner-Wads or th-Emmons (H E) reaction, wherein the reaction time ranges from 1 to 5 hours and the temperature ranges from 0 ° C to 60 ° C.
2. Processo, de acordo com a reivindicação 1, caracterizado pelo fato- de que, na etapa i 2 ) , o haleto de viníla apresenta geometria trans ou ser uma mistura de isômeros, em que o haleto de vinila é seiecíonado dentre brometo de vínila e iodeto de vinila. Process according to claim 1, characterized in that, in step i 2), the vinyl halide has trans geometry or is a mixture of isomers, wherein the vinyl halide is known to be among vinyl bromide and vinyl iodide.
3. Processo, de acordo com a reivindicação í, caracterizado pelo fato de que, na etapa (2) , o alcino é o pent-4—in-l~ol .  Process according to Claim 1, characterized in that, in step (2), the alkyne is pent-4-in-1-ol.
4. Processo, de acordo core a reivindicação 1, caracterizado pelo fato de que, na etapa (?.} , o catalisador de paládio é selecionado a partir do grupo que compreende PdíFPh3) 4, Pd{PPh-3)2€ls, Pd(0Ac)2, Pd(dba)2, Pd(TFA)2, PdCl2, Pd(acac);, preferencialmente Pd(PPh3} 4 ou Pd (PPh2) 2C12, mais preferencialmente d(PPh3) . Process according to claim 1, characterized in that, in step (?), The palladium catalyst is selected from the group comprising PdIPFPh 3 ) 4, Pd {PPh- 3 ) 2 € 1. s , Pd (0Ac) 2 , Pd (dba) 2 , Pd (TFA) 2 , PdCl 2 , Pd (acac) ; preferably Pd (PPh 3 } 4 or Pd (PPh 2 ) 2 C1 2 , more preferably d (PPh3).
5. Processo, de acordo com a reivindicação 1, caracterizado pelo fato de que, na etapa (2), o co- catalisador é opcional e escolhido de uma fonte de cobre (I) selecionada a partir do grupo que consiste era Cul, CuBr, CuCl, Cu20, preferencialmente Cul. Process according to Claim 1, characterized in that, in step (2), the cocatalyst is optional and chosen from a copper source (I) selected from the group consisting of Cul, CuBr , CuCl, Cu 20 , preferably Cul.
6. Processo./ de acordo co a reivindicação 1, caracterizado pelo fato de que, na etapa (2), o tempo reacional varia, preferencialmente, entre 2 e 5 horas e a temperatura varia, preferencialmente, entre 25 °C e 60 °C< ./ 6. Process according co claim 1, characterized in that, in step (2), the reaction time varies preferably between 2 and 5 hours and the temperature varies preferably between 25 ° C and 60 ° C <
7. Processo, de acordo com a reivindicação 1, caracterizado pelo fato de que, na etapa (2), o solvente é um solvente orgânico selecionado do grupo que consiste em álcoois, éteres, nitri las, preferencialmente tetrahidrofura.no ÍTB.F} ., dimet.ilformamida (DMF) , éter etílico, metanol, acetonitrila, etanol, dimetilacecaraida { DMA) , benzonitrila , tricloroacetonitrila, di etilsulfóxido (DMSO) , clorofórmio, diclorometano, mais preferencialmente THF ou DMF, mais preferencialmente DMF. Process according to Claim 1, characterized in that, in step (2), the solvent is an organic solvent selected from the group consisting of alcohols, ethers, nitriles, preferably tetrahydrofuran. ., dimethylformamide (DMF), ethyl ether, methanol, acetonitrile, ethanol, dimethylacecaraide (DMA), benzonitrile, trichloroacetonitrile, diethylsulfoxide (DMSO), chloroform, dichloromethane, more preferably THF or DMF.
8. Processo1, de acordo com a reivindicação 1, caracterizado pelo fato de que, na etapa (2) , a base é selecionada do grupo que consiste em carbonatos, tais como KC03, Na2C03, CS2CO3; hidróxidos, tais como NaOH, KOH; ou aminas primárias, secundária e terciárias, tais como- DIPA,, piperidina, trietilamina, diisopropiletilamina ÍDIPEA) , tetrametilguanidina (TMG) , dietilamina, pirrolidína, preferencialmente DIPA ou iperidina. Process 1 according to claim 1, characterized in that in step (2) the base is selected from the group consisting of carbonates such as KCO 3 , Na 2 CO 3 , CS 2 CO 3 ; hydroxides such as NaOH, KOH; or primary, secondary and tertiary amines such as DIPA, piperidine, triethylamine, diisopropylethylamine (DIPEA), tetramethylguanidine (TMG), diethylamine, pyrrolidine, preferably DIPA or iperidine.
9. Processo, de acordo com a reivindicação 1, caracterizado pelo fato de, na etapa (3), opcionalmente uti1izar TM$Cl .  Process according to Claim 1, characterized in that, in step (3), optionally uses TM $ Cl.
10. Processo, de acordo com a reivindicação 1, caracter!zado pelo fato de que, na etapa (3), o tempo reacional varia, preferencialmente, entre 5 e 20 horas, e a temperatura varia, preferencialmente, entre 25 °C e 40 °C.  Process according to Claim 1, characterized in that, in step (3), the reaction time preferably ranges from 5 to 20 hours, and the temperature preferably ranges from 25 ° C to 40 ° C.
11. Processo, de acordo com a reivindicação 1, caracterizado pelo fato de que, na etapa (5) , o solvente é um solvente orgânico selecíonado do grupo que consiste m éteres tais como THF, éter etílico, dioxano; álcoois, tais corno meta o1 , etanol ; ni ri 1as , ta1 corno acetoní ri1a ; amiclas, tais como DMF, DMA e solventes clorados, tais como clorofórmio-, diclorometano) ; preferencialmente THF.  Process according to Claim 1, characterized in that, in step (5), the solvent is a selected organic solvent from the group consisting of ethers such as THF, ethyl ether, dioxane; alcohols, such as meta-1, ethanol; ni ri 1as, such as acetonitrile; amylas such as DMF, DMA and chlorinated solvents such as chloroform-, dichloromethane); preferably THF.
12. Processo, de acordo com a reivindicação 1, caracterizado pelo fato de que, na etapa (5), a base é selecionada do grupo que consiste em t-BuOK, NaH, n~BnLí, NaHMDS, LiHMDS , KHMDS , LDA, DBU, NaOH, KDH, p efereuciaimente aH .  Process according to Claim 1, characterized in that, in step (5), the base is selected from the group consisting of t-BuOK, NaH, n-BnLi, NaHMDS, LiHMDS, KHMDS, LDA, DBU, NaOH, KDH, preferably aH.
13. Processo, de acordo com a reivindicação 1, caracterigado pelo fato de que, na etapa (5), o tempo reacional varia, preferencialmente, entre 1 e 3 horas, e a temperatura varia., preferencialmente entre 0 °C e 25 °C.  Process according to Claim 1, characterized in that, in step (5), the reaction time preferably ranges from 1 to 3 hours and the temperature preferably ranges from 0 ° C to 25 ° C. Ç.
14. Processo, de acordo com a reivindicação 1, caracterizado pelo fato de que o processo ocorra preferencialmente em batelada. Process according to claim 1, characterized by the fact that the process takes place preferably in batch.
15. Espilantol earacter1gado por ser obtido de acordo com o processo definido nas reivindicações 1 a 12 e apresentar pureza, superior a 98% por análise de HPLC e sem a presença de outros isômeros superior a 95:5% por RMN de  Spilanthol is characterized in that it is obtained according to the process defined in claims 1 to 12 and has a purity of greater than 98% by HPLC analysis and no other isomers of greater than 95: 5% by NMR.
16. Processo de obtenção de análogos de espilantol caracterizado por ser realizado conforme definido nas reivindicações 1 a 12, em que alternativamente, as etapas (4) e (5) ocorrem antes da etapa (3), e em que a dupla ligação Z é substituída por uma ligação tripla. A process for obtaining spilanthol analogs which is carried out as defined in claims 1 to 12, wherein alternatively steps (4) and (5) occur prior to step (3), and wherein the double bond Z is replaced by a triple bond.
17. Processo, de acordo com a reivindicação 16, caracterizado pelo fato de que, na etapa (1), o acoplamento entre o ácido carboxíííco e a isobutí lamina é realizado com EDC e DMAP., utilizando cloreto de metila como solvente, durante 18 horas em temperatura ambiente.  Process according to Claim 16, characterized in that, in step (1), the coupling between carboxylic acid and isobutylamine is carried out with EDC and DMAP using methyl chloride as solvent for 18 minutes. hours at room temperature.
18. Processo, de acordo com a reivindicação 16, caracterizado pelo fato de que, na etapa (5), a base é Na.H, o solvente é THF, o tempo reacional é de 90 minutos e a tempe atura varia de 0 °C - temperatura ambiente,  Process according to claim 16, characterized in that in step (5) the base is Na.H, the solvent is THF, the reaction time is 90 minutes and the temperature ranges from 0 °. C - room temperature,
19. Análogos de espilantol (21) caracterizado por ter a a nomenclatura oficial IUPAC (2E, 8E) -M-isobutildeca-2 , 8- dien~6~enamída, ser obtido a partir do processo descrito nas reivindicações d 16 a 18 e ter as seguinte características: Sólido laranja; P. P . 91,4 - 95, 6 °C. R/ 0/36 (Si02, hexanos/EtOAc 70:30) ; R N ¾ (CDCl3 , 600 MHz) ô (pp j : 6,84 ídt, J - 15,2, 6,4 Hz, 1 H) , 6,05 (dq, J « 15,6, 6,8 Hz, 1 H) , 5,84 (d, J « 15,4 Hz, 1 H) , 5,64 (si., 1 H ) , 5,44 (dq, J « 15,8, 1,8 Hz, 1 H), 3,15 (dd, J = 6, Hz, 2 H) , 2, 36 - 2,45 (m, 4 H), 1, 76 - 1,84 (m, 1 H) r 1,74 (dd, J ~ 6,8, 1,7 Hz, 3 H} , 0 -92 ppm (d, J = 6·, 6 Hz, 6 H) ; ΈΟΜ. 13C (CDC13, 151Spilanthol analogs (21), characterized in that they have the official nomenclature IUPAC (2E, 8E) -M-isobutyldeca-2,8-dien-6-enamide, be obtained from the process described in claims d 16 to 18 and have the following characteristics: orange solid; P. P. 91.4 - 95.6 ° C. R / 0/36 (SiO 2 , hexanes / EtOAc 70:30); NMR (CDCl 3, 600 MHz) δ (pp j: 6.84 idt, J = 15.2, 6.4 Hz, 1H), 6.05 (dq, J = 15.6, 6.8 Hz, 1H), 5.84 (d, J '15.4 Hz, 1 H), 5.64 (bs., 1 H), 5.44 (dq, J "15.8, 1.8 Hz, 1 H), 3.15 (dd, J = 6, Hz, 2 H), 2.36 - 2.45 (m, 4 H), 1 76 to 1.84 (m, 1 H) r 1.74 (dd, J-6.8, 1.7 Hz, 3 H}, 0 -92 ppm ( d, J = 6 ·, 6 Hz, 6 H); 13 C (CDCl 3 , 151
MHs) ô (ppm): 165,8 (C) , 142,3 (CR), 138,6 (CH), 124,6 (Cfí) , 110,8 (CH), 86,7 (C) , 80,1 C) , 46,9 (CH2) , 31,3 (C¾) , 28,5 (CK), 20,1 (CH.3) , 18,5 (CH2) , 18,4 (C¾) ; IV { AT ,· cm"1) 3291, 2959, 2914, 2870, 1666, 1625, 1545, 1334, 1236, 1220, 950, 650; Puresa 95¾; HRMS [CL4H NO÷H] * calculado 220, 1696, observado 220,1710. MHs) δ (ppm): 165.8 (C), 142.3 (CR), 138.6 (CH), 124.6 (C11), 110.8 (CH), 86.7 (C), 80 , 1 C), 46.9 (CH 2 ), 31.3 (C¾), 28.5 (CK), 20.1 (CH.3), 18.5 (CH 2 ), 18.4 (C¾) ; IR (AT, cm- 1 ) 3291, 2959, 2914, 2870, 1666, 1625, 1545, 1334, 1236, 1220, 950, 650; Puresa 95¾ HRMS [C L4 H NO ÷ H] * calculated 220, 1696 , observed 220.1710.
PCT/BR2017/000085 2016-07-29 2017-07-28 Method for producing spilanthol and analogues, thus produced spilanthol and analogues WO2018018113A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102016017871-1A BR102016017871B1 (en) 2016-07-29 2016-07-29 PROCESS FOR OBTAINING SPILANTHOL AND ANALOGS, SPILANTHOL AND ANALOGS OBTAINED
BRBR1020160178711 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018018113A1 true WO2018018113A1 (en) 2018-02-01

Family

ID=61015189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2017/000085 WO2018018113A1 (en) 2016-07-29 2017-07-28 Method for producing spilanthol and analogues, thus produced spilanthol and analogues

Country Status (2)

Country Link
BR (1) BR102016017871B1 (en)
WO (1) WO2018018113A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100184863A1 (en) * 2008-01-18 2010-07-22 Takasago International Corporation Synthetic spilanthol and use thereof
US20120116116A1 (en) * 2009-07-14 2012-05-10 Takasago International Corporation Method for manufacturing spilanthol and intermediate manufacturing product therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100184863A1 (en) * 2008-01-18 2010-07-22 Takasago International Corporation Synthetic spilanthol and use thereof
US20120116116A1 (en) * 2009-07-14 2012-05-10 Takasago International Corporation Method for manufacturing spilanthol and intermediate manufacturing product therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CROMBIE, L. ET AL.: "Amides of Vegetable Origin. Part. X.* The Stereochemistry and Synthesis of Affinin.", J. CHEM. SOC., 1963, pages 4970 - 4976, XP055044368 *
CROMBIE, L. ET AL.: "Synthesis of N-isobutyldeca- trans-2,cis-6,trans-8- and -trans-2,cis-6,cis-8-trienamide", CHEMISTRY AND INDUSTRY, 1962, pages 983 - 984, XP008151301 *
MATOVICK, N. J. ET AL.: "Polyunsaturated Alkyl Amides from Echinacea : Synthesis of Diynes, Enynes, and Dienes", J. ORG. CHEM., vol. 76, 2011, pages 4467 - 4481, XP055458274 *

Also Published As

Publication number Publication date
BR102016017871A2 (en) 2018-02-27
BR102016017871B1 (en) 2023-03-21

Similar Documents

Publication Publication Date Title
EP2868647B1 (en) Method for producing (E)-2-isopropyl-5-methyl-2,4-hexadienyl acetate
CN107417505A (en) α halo tetramethyl-ring hexanones and its with(2,3,4,4 tetramethyl-ring amyl groups)The preparation method of methyl carboxylic acids ester
DK142765B (en) Process for the preparation of optically active esters of chrysanthemic acid.
EP0003708A1 (en) Process for the stereoselective synthesis of sexual pheromones and the pheromones so obtained
JP2007538065A (en) Method for producing indenol ester or ether
EP3505506B1 (en) Method for producing 3,7-dimethyl-7-octenol and method for producing 3,7-dimethyl-7-octenyl carboxylate compound
WO2018018113A1 (en) Method for producing spilanthol and analogues, thus produced spilanthol and analogues
Hansen et al. A facile formal synthesis of volicitin
CN114716487B (en) Furanodiester compound and preparation method and application thereof
EP3214063B1 (en) Terminal conjugated trienal acetal compound and method for producing terminal conjugated trienal compound using the same
BRPI0805227B1 (en) Method for the preparation of (e3, z5) -3,5-alkadienyl acetate
JP6702623B2 (en) Method for preparing compounds such as 3-arylbutanal useful in the synthesis of medetomidine
US4517382A (en) 1-Formyl-tri- and tetramethyl-cyclohex-1-en-3-one oximes
JP6249937B2 (en) Process for producing 1- (2-acyloxyethyl) cyclopropyl sulfonate compound and 4-alkyl-3-methylenebutyl carboxylate
Lochyński et al. Synthesis and odour characteristics of new derivatives from the carane system
CN110105311B (en) Synthetic method of sex pheromone intermediate of fall webworm
CN109790111A (en) The method for being used to prepare dihydrolipoic acid
JPS6334127B2 (en)
CA1155455A (en) Intermediates in the preparation of cyclopropanecarboxylate esters and process for their manufacture
CN103880705B (en) Dioxime ionone as well as preparation method and application thereof
KR100935016B1 (en) Process for preparing 1-2-hydroxyphenylbuta-2-en-1-one and croman-4-one
RU2582619C1 (en) Method for producing (4e, 6z) -hexadeca-4,6-dien-1-ol
EP4101833A1 (en) Processes for preparing a (1,2-dimethyl-3-methylenecyclopentyl)acetate compound and (1,2-dimethyl-3-methylenecyclopentyl)acetaldehyde
WO2021182422A1 (en) Compound producing method, and compound
JP2008120759A (en) METHOD FOR PRODUCING beta-DIKETONE COMPOUND HAVING ETHER GROUP

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833118

Country of ref document: EP

Kind code of ref document: A1