WO2018016908A1 - Method for manufacturing hot-rolled coil, and method for shape-correction of hot-rolled coil - Google Patents

Method for manufacturing hot-rolled coil, and method for shape-correction of hot-rolled coil Download PDF

Info

Publication number
WO2018016908A1
WO2018016908A1 PCT/KR2017/007870 KR2017007870W WO2018016908A1 WO 2018016908 A1 WO2018016908 A1 WO 2018016908A1 KR 2017007870 W KR2017007870 W KR 2017007870W WO 2018016908 A1 WO2018016908 A1 WO 2018016908A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
hot rolled
rolled coil
less
hot
Prior art date
Application number
PCT/KR2017/007870
Other languages
French (fr)
Korean (ko)
Inventor
조승한
황지성
김태경
김현수
김형진
박명수
박영수
이기표
이승하
임종협
임준석
임희중
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to US16/319,254 priority Critical patent/US20190270127A1/en
Priority to DE112017003683.6T priority patent/DE112017003683T5/en
Priority to CN201780045377.0A priority patent/CN109477192B/en
Publication of WO2018016908A1 publication Critical patent/WO2018016908A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Disclosed is an invention related to a method for manufacturing a hot-rolled coil and a method for shape-correction of a hot-rolled coil. In a specific embodiment, the method for manufacturing a hot-rolled coil comprises: a step for reheating slab steel including 0.18-0.56 wt% of carbon (C), 0.1-0.5 wt% of silicon (Si), 0.7-6.5 wt% of manganese (Mn), more than 0 wt% and at most 0.02 wt% of phosphorus (P), more than 0 wt% and at most 0.02 wt% of sulfur (S), more than 0 wt% and at most 0.3 wt% of chromium (Cr), more than 0 wt% and at most 0.004 wt% of boron (B), and 0.01-0.04 wt% of titanium (Ti), with the remainder being iron (Fe) and inevitable impurities; a step for forming a hot-rolled sheet by hot-rolling the slab steel under the conditions of a final hot-rolling temperature of 850°C-950°C; and a step for winding at a winding temperature of 700°C or greater by cooling the hot-rolled sheet.

Description

열연 코일 제조방법 및 열연 코일의 형상 교정 방법 Hot rolled coil manufacturing method and shape correction method of hot rolled coil
본 발명은 열연 코일 제조방법 및 열연 코일의 형상 교정 방법에 관한 것이다. 보다 상세하게는 열연 코일 제조시, 자중에 의해 발생하는 형상 결함을 방지할 수 있는 형상 결함 방지용 열연 코일 제조방법 및 열연 코일의 형상 교정 방법에 관한 것이다.The present invention relates to a hot rolled coil manufacturing method and a shape correction method of a hot rolled coil. More particularly, the present invention relates to a method for manufacturing a hot rolled coil for preventing shape defects and a method for correcting a shape of a hot rolled coil, which can prevent shape defects caused by its own weight during the manufacture of a hot rolled coil.
최근 자동차 소재의 개발에 있어서 경량성 확보가 중요 인자로 꼽히고 있는데, 이는 기존 부품을 고강도재로 대체하여 최종 목표인 연비 향상을 꾀하기 위함이다. 이를 위하여 차량용 구조재로 사용되는 소재는 망간(Mn), 니켈(Ni), 크롬(Cr), 몰리브덴(Mo) 및 티타늄(Ti) 등의 합금 성분을 추가하여 성능(Performance) 향상을 구현하는 방향으로 개발되는 추세에 있으며, 냉연 및 열처리 공정 등을 통해 강재의 강도를 확보하여 적용하고 있다.Recently, securing light weight is considered as an important factor in the development of automotive materials, which is intended to improve fuel efficiency, which is the final goal by replacing existing components with high strength materials. To this end, the material used as a structural material for vehicles is a direction for improving performance by adding alloying elements such as manganese (Mn), nickel (Ni), chromium (Cr), molybdenum (Mo) and titanium (Ti). It is being developed and secured and applied to steel materials through cold rolling and heat treatment processes.
본 발명과 관련한 배경기술은 대한민국 공개특허공보 제1995-0016913호(1995.07.20. 공개, 발명의 명칭: 압연코일의 텔레스코프 교정장치)에 개시되어 있다.Background art related to the present invention is disclosed in Republic of Korea Patent Publication No. 1995-0016913 (published on July 20, 1995, the name of the invention: telescope calibration apparatus of a rolling coil).
본 발명의 일 실시예에 의하면, 열연 코일의 변형 방지 효과가 우수한 열연 코일 제조방법을 제공하는 것이다.According to an embodiment of the present invention, there is provided a hot rolled coil manufacturing method excellent in the deformation preventing effect of the hot rolled coil.
본 발명의 일 실시예에 의하면, 열연 코일의 재질 및 물성 저하를 방지할 수 있는 열연 코일의 형상 교정 방법을 제공하는 것이다.According to an embodiment of the present invention, it is to provide a method for straightening the shape of the hot rolled coil that can prevent the degradation of the material and physical properties of the hot rolled coil.
본 발명의 일 실시예에 의하면, 외력을 적용하여 형상 교정시 유발되는 열연 코일의 표면 결함을 방지할 수 있는 열연 코일의 형상 교정 방법을 제공하는 것이다.According to an embodiment of the present invention, it is to provide a method for straightening the shape of the hot rolled coil that can prevent the surface defects of the hot rolled coil caused by the shape correction by applying an external force.
본 발명의 일 실시예에 의하면, 경제성이 우수한 열연 코일의 형상 교정 방법을 제공하는 것이다.According to one embodiment of the present invention, there is provided a shape correction method of a hot rolled coil excellent in economy.
본 발명의 하나의 관점은 열연 코일 제조방법에 관한 것이다. 한 구체예에서 상기 열연 코일 제조방법은 탄소(C): 0.18~0.56 중량%, 실리콘(Si): 0.1~0.5 중량%, 망간(Mn): 0.7~6.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.02 중량% 이하, 크롬(Cr): 0 초과 0.3 중량% 이하, 보론(B): 0 초과 0.004 중량% 이하, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 슬라브 강을 재가열하는 단계; 상기 슬라브 강을 마무리 압연온도: 850℃~950℃ 조건으로 열간압연하여 열연 판재를 형성하는 단계; 및 상기 열연 판재를 냉각하여, 권취온도: 700℃ 이상에서 권취하는 단계;를 포함한다.One aspect of the invention relates to a method for manufacturing a hot rolled coil. In one embodiment, the hot rolled coil manufacturing method is carbon (C): 0.18 to 0.56% by weight, silicon (Si): 0.1 to 0.5% by weight, manganese (Mn): 0.7 to 6.5% by weight, phosphorus (P): greater than 0 0.02 wt% or less, sulfur (S): more than 0 and 0.02 wt% or less, chromium (Cr): more than 0 and 0.3 wt% or less, boron (B): more than 0 and 0.004 wt% or less, titanium (Ti): 0.01 to 0.04 weight Reheating the slab steel containing% and remaining iron (Fe) and other unavoidable impurities; Hot rolling the slab steel at a finish rolling temperature of 850 ° C. to 950 ° C. to form a hot rolled sheet; And cooling the hot rolled sheet to wind up at a winding temperature of 700 ° C. or higher.
한 구체예에서 상기 슬라브 강은, 탄소(C): 0.21~0.37 중량%, 실리콘(Si): 0.1~0.4 중량%, 망간(Mn): 1.1~1.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.02 중량% 이하, 크롬(Cr): 0.1~0.3 중량%, 보론(B): 0.001~0.004 중량%, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함할 수 있다.In one embodiment, the slab steel, carbon (C): 0.21 to 0.37% by weight, silicon (Si): 0.1 to 0.4% by weight, manganese (Mn): 1.1 to 1.5% by weight, phosphorus (P): greater than 0 0.02 Wt% or less, sulfur (S): more than 0 and 0.02 wt% or less, chromium (Cr): 0.1 to 0.3 wt%, boron (B): 0.001 to 0.004 wt%, titanium (Ti): 0.01 to 0.04 wt% and the balance Of iron (Fe) and other unavoidable impurities.
한 구체예에서 상기 슬라브 강은, 탄소(C): 0.18~0.25 중량%, 실리콘(Si): 0.3~0.5 중량%, 망간(Mn): 2~6.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.01 중량% 이하, 크롬(Cr): 0 초과 0.1 중량% 이하, 보론(B): 0 초과 0.001 중량% 이하, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함할 수 있다.In one embodiment, the slab steel, carbon (C): 0.18 to 0.25% by weight, silicon (Si): 0.3 to 0.5% by weight, manganese (Mn): 2 to 6.5% by weight, phosphorus (P): greater than 0 0.02 Wt% or less, sulfur (S): more than 0 and 0.01 wt% or less, chromium (Cr): more than 0 and 0.1 wt% or less, boron (B): more than 0 and 0.001 wt% or less, titanium (Ti): 0.01 to 0.04 wt% And residual amounts of iron (Fe) and other unavoidable impurities.
한 구체예에서 상기 슬라브 강은, 탄소(C): 0.5~0.56 중량%, 실리콘(Si): 0.1~0.3 중량%, 망간(Mn): 0.7~1 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.01 중량% 이하, 크롬(Cr): 0.1~0.3 중량%, 보론(B): 0 초과 0.001 중량% 이하, 티타늄(Ti): 0.01~0.02 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함할 수 있다.In one embodiment, the slab steel, carbon (C): 0.5 to 0.56% by weight, silicon (Si): 0.1 to 0.3% by weight, manganese (Mn): 0.7 to 1% by weight, phosphorus (P): greater than 0 0.02 % By weight or less, sulfur (S): more than 0 and 0.01% by weight or less, chromium (Cr): 0.1 to 0.3% by weight, boron (B): more than 0 and 0.001% by weight or less, titanium (Ti): 0.01 to 0.02% by weight and May contain residual amounts of iron (Fe) and other unavoidable impurities.
본 발명의 다른 관점은 열연 코일의 형상 교정 방법에 관한 것이다. 한 구체예에서 상기 열연 코일의 형상 교정 방법은 C-후크의 하단 행거에 열연코일을 안착시키는 단계; 상기 C-후크 상부에 구비된 외경 측정수단을 이용하여 상기 열연코일의 장경을 측정하는 단계; 상기 하단 행거에 구비된 구동 롤을 이용하여 상기 열연 코일의 장경이 상기 C-후크와 수직이 되도록 조절하는 단계; 및 상기 열연코일이 안착된 C-후크를 거치대에 배치하여 리프팅하여, 상기 열연코일의 형상을 자중에 의해 교정하는 단계;를 포함한다.Another aspect of the invention relates to a method for straightening the shape of a hot rolled coil. In one embodiment the shape correction method of the hot rolled coil comprises the steps of seating the hot rolled coil on the bottom hanger of the C-hook; Measuring the long diameter of the hot rolled coil by using an outer diameter measuring means provided on the C-hook; Adjusting the long diameter of the hot rolled coil to be perpendicular to the C-hook by using a driving roll provided in the lower hanger; And arranging and lifting the C-hook on which the hot rolled coil is mounted on a holder to correct the shape of the hot rolled coil by its own weight.
본 발명의 또다른 관점은 열연 코일의 형상 교정 방법에 관한 것이다. 한 구체예에서 상기 열연 코일의 형상 교정 방법은 C-후크의 하단 행거에 열연코일을 안착시키는 단계; 상기 C-후크 상부에 구비된 외경 측정수단을 이용하여 상기 열연코일의 장경을 측정하는 단계; 상기 하단 행거에 구비된 구동 롤을 이용하여 상기 열연 코일의 장경이 상기 C-후크와 수직이 되도록 조절하는 단계; 및 상기 열연코일이 안착된 C-후크를 거치대에 배치하여 리프팅하여, 상기 열연코일의 형상을 자중에 의해 교정하는 단계;를 포함하며, 상기 열연 코일은, 탄소(C): 0.18~0.56 중량%, 실리콘(Si): 0.1~0.5 중량%, 망간(Mn): 0.7~6.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.02 중량% 이하, 크롬(Cr): 0 초과 0.3 중량% 이하, 보론(B): 0 초과 0.004 중량% 이하, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 슬라브 강을 재가열하고; 상기 슬라브 강을 마무리 압연온도: 850℃~950℃ 조건으로 열간압연하여 열연 판재를 형성하고; 그리고 상기 열연 판재를 냉각하여, 권취온도: 700℃ 이상에서 권취하는 단계;를 포함하여 제조된다.Another aspect of the present invention relates to a method for straightening a shape of a hot rolled coil. In one embodiment the shape correction method of the hot rolled coil comprises the steps of seating the hot rolled coil on the bottom hanger of the C-hook; Measuring the long diameter of the hot rolled coil by using an outer diameter measuring means provided on the C-hook; Adjusting the long diameter of the hot rolled coil to be perpendicular to the C-hook by using a driving roll provided in the lower hanger; And arranging and lifting the C-hook on which the hot rolled coil is mounted on a holder, thereby correcting the shape of the hot rolled coil by its own weight. The hot rolled coil includes carbon (C): 0.18 to 0.56 wt% , Silicon (Si): 0.1-0.5% by weight, manganese (Mn): 0.7-6.5% by weight, phosphorus (P): more than 0 and 0.02% by weight or less, sulfur (S): more than 0 and 0.02% by weight or less, chromium (Cr ): Reheat the slab steel containing more than 0 and 0.3% by weight or less, boron (B): more than 0 and 0.004% by weight, titanium (Ti): 0.01 to 0.04% by weight and residual iron (Fe) and other unavoidable impurities ; Hot-rolling the slab steel at a finish rolling temperature of 850 ° C. to 950 ° C. to form a hot rolled sheet; And cooling the hot rolled sheet material and winding the coil at a winding temperature of 700 ° C. or higher.
한 구체예에서 상기 열연코일은, 탄소(C): 0.21~0.37 중량%, 실리콘(Si): 0.1~0.4 중량%, 망간(Mn): 1.1~1.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.02 중량% 이하, 크롬(Cr): 0.1~0.3 중량%, 보론(B): 0.001~0.004 중량%, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함할 수 있다.In one embodiment, the hot rolled coil is carbon (C): 0.21 to 0.37% by weight, silicon (Si): 0.1 to 0.4% by weight, manganese (Mn): 1.1 to 1.5% by weight, phosphorus (P): greater than 0 0.02 Wt% or less, sulfur (S): more than 0 and 0.02 wt% or less, chromium (Cr): 0.1 to 0.3 wt%, boron (B): 0.001 to 0.004 wt%, titanium (Ti): 0.01 to 0.04 wt% and the balance Of iron (Fe) and other unavoidable impurities.
한 구체예에서 상기 열연 판재를 냉각하여, 권취온도: 700℃~900℃에서 권취할 수 있다.In one embodiment, the hot rolled sheet may be cooled to be wound at a winding temperature of 700 ° C. to 900 ° C.
본 발명의 열연 코일 제조방법에 의해 제조된 열연 코일을 적용하여 형상 교정시, 열간 압연 후 냉각시 강재의 상변태를 지연하여 열연 코일의 재질 및 물성 저하를 방지하면서 열연 코일의 변형 방지 효과가 우수하며, 자중 및 중력에 의한 교정을 이용하여, 외력 교정에 의한 열연 코일의 스크래치 등의 표면 결함을 방지할 수 있으며, 교정 비용을 절감할 수 있어 경제성이 우수할 수 있다.By applying the hot rolled coil manufactured by the method of manufacturing a hot rolled coil of the present invention, when the shape is corrected, the phase transformation of the steel is delayed during the hot rolling and cooling, thereby preventing the deterioration of the material and the properties of the hot rolled coil, and excellent in preventing deformation of the hot rolled coil. By using self-gravity and gravity calibration, surface defects such as scratching of hot rolled coils by external force calibration can be prevented, and the cost of calibration can be reduced, so that economic efficiency can be excellent.
도 1은 본 발명의 한 구체예에 따른 열연코일 제조방법을 나타낸 것이다. 1 shows a method for manufacturing a hot rolled coil according to an embodiment of the present invention.
도 2는 본 발명의 한 구체예에 따른 열연 코일의 형상 교정 방법을 나타낸 것이다. Figure 2 shows a shape correction method of a hot rolled coil according to an embodiment of the present invention.
도 3은 본 발명의 한 구체예에 따른 열연 코일의 형상 교정 방법을 모식적으로 나타낸 것이다. 3 schematically illustrates a shape correction method of a hot rolled coil according to one embodiment of the present invention.
도 4의 (a)는 본 발명에 따른 일 실시예 열연 코일의 권취 직후 사진이며, 도 4의(b)는 상기 열연 코일의 공냉 후 사진이다.Figure 4 (a) is a photograph immediately after the winding of an embodiment hot rolled coil according to the present invention, Figure 4 (b) is a photograph after the air cooling of the hot rolled coil.
도 5의 (a)는 본 발명에 따른 다른 실시예 열연 코일의 권취 직후 사진이며, 도 5의 (b)는 상기 열연 코일의 공냉 후 사진이다.Figure 5 (a) is a photograph immediately after the winding of another embodiment hot rolled coil according to the present invention, Figure 5 (b) is a photograph after the air cooling of the hot rolled coil.
도 6의 (a)는 본 발명에 대한 비교예 열연 코일의 권취 직후 사진이며, 도 6의 (b)는 상기 열연 코일의 공냉 후 사진이다.FIG. 6A is a photograph immediately after winding up a comparative example hot rolled coil according to the present invention, and FIG. 6B is a photograph after air cooling of the hot rolled coil.
도 7은 본 발명에 따른 실시예 및 본 발명에 대한 비교예의 열연 코일 제조 및 형상 교정 시간 진행에 따른 열연 코일의 상변태 곡선을 비교한 그래프이다.Figure 7 is a graph comparing the phase transformation curve of the hot rolled coil according to the hot rolled coil manufacturing and shape correction time progress of the embodiment and the comparative example for the present invention.
이하, 본 발명을 상세히 설명한다. 이때, 본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.Hereinafter, the present invention will be described in detail. In this case, when it is determined that the detailed description of the related known technology or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로 그 정의는 본 발명을 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.The terms to be described below are terms defined in consideration of functions in the present invention, and may be changed according to intentions or customs of users or operators, and the definitions should be made based on the contents throughout the specification for describing the present invention.
열연코일 제조방법Hot rolled coil manufacturing method
본 발명의 하나의 관점은 열연코일 제조방법에 관한 것이다. 도 1은 본 발명의 한 구체예에 따른 열연코일 제조방법을 나타낸 것이다. 한 구체예에서 상기 열연코일 제조방법은 (S10) 슬라브 강 재가열 단계; (S20) 열간 압연단계; 및 (S30) 권취단계;를 포함한다. 좀 더 구체적으로 상기 열연코일 제조방법은 (S10) 탄소(C): 0.18~0.56 중량%, 실리콘(Si): 0.1~0.5 중량%, 망간(Mn): 0.7~6.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.02 중량% 이하, 크롬(Cr): 0 초과 0.3 중량% 이하, 보론(B): 0 초과 0.004 중량% 이하, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 슬라브 강을 재가열하는 단계; (S20) 상기 슬라브 강을 마무리 압연온도: 850℃~950℃ 조건으로 열간압연하여 열연 판재를 형성하는 단계; 및 (S30) 상기 열연 판재를 냉각하여, 권취온도: 700℃ 이상에서 권취하는 단계;를 포함한다.One aspect of the present invention relates to a hot rolled coil manufacturing method. 1 shows a method for manufacturing a hot rolled coil according to an embodiment of the present invention. In one embodiment the hot rolled coil manufacturing method (S10) slab steel reheating step; (S20) hot rolling step; And (S30) winding-up step. More specifically, the hot rolled coil manufacturing method is (S10) carbon (C): 0.18 to 0.56% by weight, silicon (Si): 0.1 to 0.5% by weight, manganese (Mn): 0.7 to 6.5% by weight, phosphorus (P) : More than 0 and 0.02% by weight or less, sulfur (S): more than 0 and 0.02% by weight or less, chromium (Cr): more than 0 and 0.3% by weight or less, boron (B): more than 0 and 0.004% by weight or less, titanium (Ti): 0.01 Reheating the slab steel containing -0.04 wt% and remaining iron (Fe) and other unavoidable impurities; (S20) hot rolling the slab steel at a finish rolling temperature: 850 ° C. to 950 ° C. to form a hot rolled sheet; And (S30) cooling the hot rolled sheet material and winding the coil at a winding temperature of 700 ° C. or higher.
이하, 본 발명에 따른 열연코일 제조방법을 단계별로 상세히 설명하도록 한다.Hereinafter, a method for manufacturing a hot rolled coil according to the present invention will be described in detail step by step.
(S10) 슬라브 강 재가열 단계(S10) slab steel reheating stage
상기 단계는 탄소(C): 0.18~0.56 중량%, 실리콘(Si): 0.1~0.5 중량%, 망간(Mn): 0.7~6.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.02 중량% 이하, 크롬(Cr): 0 초과 0.3 중량% 이하, 보론(B): 0 초과 0.004 중량% 이하, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 슬라브 강을 재가열하는 단계이다.The step is carbon (C): 0.18 to 0.56% by weight, silicon (Si): 0.1 to 0.5% by weight, manganese (Mn): 0.7 to 6.5% by weight, phosphorus (P): greater than 0 and 0.02% by weight or less, sulfur ( S): more than 0 and 0.02% by weight or less, chromium (Cr): more than 0 and 0.3% by weight or less, boron (B): more than 0 and 0.004% by weight or less, titanium (Ti): 0.01 to 0.04% by weight and the balance of iron (Fe) ) And other unavoidable impurities.
이하, 상기 슬라브 강에 포함되는 성분에 대하여 상세히 설명하도록 한다.Hereinafter, the components included in the slab steel will be described in detail.
탄소(C)Carbon (C)
탄소(C)는 강도를 확보하기 위하여 첨가된다. 상기 탄소는 상기 슬라브 강 전체중량에 대하여 0.18~0.56 중량% 포함된다. 상기 탄소의 함량이 0.18 중량% 미만일 경우에는 충분한 강도를 확보하는 데 어려움이 따를 수 있다. 반대로, 탄소의 함량이 0.56 중량%를 초과하는 경우에는 인성 저하가 발생할 수 있다.Carbon (C) is added to secure the strength. The carbon is included 0.18 to 0.56% by weight based on the total weight of the slab steel. If the carbon content is less than 0.18% by weight, it may be difficult to secure sufficient strength. In contrast, when the carbon content exceeds 0.56% by weight, toughness may occur.
실리콘(Si)Silicon (Si)
상기 실리콘(Si)은 강 중의 산소를 제거하기 위한 탈산제의 기능 및 고용강화를 위해 첨가된다. 한 구체예에서 상기 실리콘은 상기 슬라브 강 전체중량에 대하여 0.1~0.5 중량%로 포함된다. 상기 실리콘의 함량이 0.1 중량% 미만으로 포함되는 경우, 그 첨가 효과가 미미하며, 0.5 중량%를 초과할 경우 용접성을 떨어뜨리고 재가열 및 열간압연 시에 적스케일(red scale)이 생성되어 표면품질을 저하시키는 악영향을 끼칠 수 있다. 또한, 용접 후 도금성을 저해하는 악영향을 끼칠 수 있다. The silicon (Si) is added to enhance the function and solid solution of the deoxidizer to remove oxygen in the steel. In one embodiment the silicon is included in 0.1 to 0.5% by weight based on the total weight of the slab steel. When the silicon content is less than 0.1% by weight, the addition effect is insignificant, and when the content of the silicon is more than 0.5% by weight, the weldability is lowered and a red scale is generated during reheating and hot rolling to improve the surface quality. It can have a detrimental effect. In addition, it may adversely affect the plating property after welding.
망간(Mn)Manganese (Mn)
상기 망간(Mn)은 고용강화 원소로써 강의 경화능을 향상시켜 강도를 확보하는 데 효과적인 원소이다. 또한, 망간은 오스테나이트 안정화 원소로써, 페라이트 및 펄라이트 변태를 지연시켜 페라이트의 결정립 미세화에 기여한다.The manganese (Mn) is an element that is effective in securing strength by improving hardenability of steel as a solid solution strengthening element. In addition, manganese is an austenite stabilizing element, which delays ferrite and pearlite transformation and contributes to grain refinement of ferrite.
한 구체예에서 상기 망간은 상기 슬라브 강 전체중량에 대하여 0.7~6.5 중량%로 포함된다. 상기 망간의 함량이 0.7 중량% 미만으로 포함되는 경우 고용강화 효과가 미미할 수 있다. 반대로, 상기 망간의 함량이 6.5 중량%를 초과할 경우에는 용접성이 크게 저하된다. 아울러, MnS 개재물 생성 및 중심 편석(center segregation) 발생에 의하여 강판의 연성을 크게 저하시키는 문제점이 있다.In one embodiment the manganese is included 0.7 to 6.5% by weight relative to the total weight of the slab steel. When the content of the manganese is included in less than 0.7% by weight may have a solid solution strengthening effect. On the contrary, when the manganese content exceeds 6.5% by weight, weldability is greatly reduced. In addition, there is a problem of greatly reducing the ductility of the steel sheet by the generation of MnS inclusions and the generation of center segregation.
인(P)Phosphorus (P)
상기 인(P)은 시멘타이트 형성을 억제하고, 강도를 증가시키기 위해 첨가된다. 다만, 인은 용접성을 악화시키고, 슬라브 중심 편석(slab center segregation)에 의해 최종 재질 편차를 발생시키는 원인이 된다. 따라서 본 발명에서는 상기 인(P)의 함량을 전체 중량의 0 초과 0.02 중량% 이하로 제한한다. The phosphorus (P) is added to inhibit cementite formation and increase strength. However, phosphorus deteriorates weldability and causes a final material deviation by slab center segregation. Therefore, in the present invention, the content of phosphorus (P) is limited to more than 0 and 0.02% by weight or less of the total weight.
황(S)Sulfur (S)
상기 황(S)은 강의 인성 및 용접성을 저해하고, 망간과 결합하여 MnS 비금속 개재물을 형성함으로써 강의 가공 중 크랙을 발생시키는 원소이다. 따라서 황(S)의 함량은 상기 슬라브 강 전체중량에 대하여 0 초과 0.02 중량% 이하로 제한한다.Sulfur (S) is an element that inhibits the toughness and weldability of the steel, and combines with manganese to form MnS non-metallic inclusions to generate cracks during processing of the steel. Therefore, the content of sulfur (S) is limited to more than 0 and 0.02% by weight or less based on the total weight of the slab steel.
크롬(Cr)Chrome (Cr)
상기 크롬(Cr)은 상기 강재의 소입성 및 강도를 향상시키는 목적으로 첨가된다. 한 구체예에서 상기 크롬은 상기 슬라브 강 전체중량에 대하여 0 초과 0.3 중량% 이하로 포함된다. 상기 크롬을 0.3 중량%를 초과하여 포함시 상기 열연 코일의 인성이 저하될 수 있다.The chromium (Cr) is added for the purpose of improving the hardenability and strength of the steel. In one embodiment, the chromium is included in more than 0 0.3% by weight based on the total weight of the slab steel. When the chromium is included in an amount of more than 0.3 wt%, the toughness of the hot rolled coil may decrease.
보론(B)Boron (B)
상기 보론(B)은 고가의 소입성 원소인 몰리브덴을 대체하여 소입성을 보상하는 목적으로 첨가되며, 오스테나이트 결정립 성장 온도 증가로 결정립 미세화 효과를 가진다.The boron (B) is added for the purpose of compensating quenchability by replacing molybdenum, which is an expensive quenchable element, and has a grain refinement effect by increasing austenite grain growth temperature.
한 구체예에서 상기 보론은 상기 슬라브 강 전체중량에 대하여 0 초과 0.004 중량% 이하로 포함된다. 상기 보론을 0.004 중량%를 초과하여 포함시 연신율 열위 위험성이 증가할 수 있다.In one embodiment the boron is greater than 0 and less than 0.004% by weight based on the total weight of the slab steel. Including the boron in excess of 0.004% by weight may increase the risk of inferior elongation.
티타늄(Ti)Titanium (Ti)
상기 티타늄(Ti)은 석출물 형성에 의한 소입성 강화 및 재질 상향 목적으로 첨가된다. 또한, 고온에서 Ti(C,N) 등의 석출상을 성형하여, 오스테나이트 결정립 미세화에 효과적으로 기여한다.The titanium (Ti) is added for the purpose of strengthening the hardenability by forming precipitates and improving materials. In addition, by forming a precipitated phase such as Ti (C, N) at a high temperature, it effectively contributes to the austenite grain refinement.
한 구체예에서 상기 티타늄은 상기 슬라브 강 전체중량에 대하여 0.01~0.04 중량% 포함된다. 상기 티타늄을 0.01 중량% 미만으로 포함시 첨가 효과가 미미하며, 0.04 중량%를 초과하여 포함시, 연주 불량이 발생하며, 열연 코일의 물성을 확보하기 어렵고, 열연 코일 표면에 크랙이 발생할 수 있다.In one embodiment, the titanium is included 0.01 to 0.04% by weight based on the total weight of the slab steel. When the titanium is included in less than 0.01% by weight, the addition effect is insignificant, when it contains more than 0.04% by weight, poor performance occurs, it is difficult to secure the properties of the hot rolled coil, cracks may occur on the surface of the hot rolled coil.
상기 성분 이외의 나머지는 실질적으로 철(Fe)로 이루어진다. 여기서, 나머지가 실질적으로 철(Fe)로 이루어진다는 것은, 본 발명의 작용 효과를 방해하지 않는 한, 불가피한 불순물을 비롯하여, 다른 미량원소를 함유하는 것이 본 발명의 범위에 포함될 수 있다는 것을 의미한다.The remainder other than the above components consists essentially of iron (Fe). Here, the remainder substantially made of iron (Fe) means that it may be included in the scope of the present invention to include other trace elements, including inevitable impurities, as long as the action effect of the present invention is not impeded.
한 구체예에서 상기 슬라브 강은, 중탄소계 열연 코일에 적용될 수 있다. 예를 들면 상기 슬라브 강은, 탄소(C): 0.21~0.37 중량%, 실리콘(Si): 0.1~0.4 중량%, 망간(Mn): 1.1~1.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.02 중량% 이하, 크롬(Cr): 0.1~0.3 중량%, 보론(B): 0.001~0.004 중량%, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함할 수 있다.In one embodiment, the slab steel may be applied to a medium carbon-based hot rolled coil. For example, the slab steel, carbon (C): 0.21 to 0.37% by weight, silicon (Si): 0.1 to 0.4% by weight, manganese (Mn): 1.1 to 1.5% by weight, phosphorus (P): greater than 0 0.02 weight % Or less, sulfur (S): more than 0 and 0.02% by weight or less, chromium (Cr): 0.1 to 0.3% by weight, boron (B): 0.001 to 0.004% by weight, titanium (Ti): 0.01 to 0.04% by weight and residual amount Iron and other unavoidable impurities.
다른 구체예에서 상기 슬라브 강은, 고망간계 열연 코일에 적용될 수 있다. 예를 들면 상기 슬라브 강은, 탄소(C): 0.18~0.25 중량%, 실리콘(Si): 0.3~0.5 중량%, 망간(Mn): 2~6.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.01 중량% 이하, 크롬(Cr): 0 초과 0.1 중량% 이하, 보론(B): 0 초과 0.001 중량% 이하, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함할 수 있다.In another embodiment the slab steel may be applied to high manganese hot rolled coils. For example, the slab steel, carbon (C): 0.18 to 0.25% by weight, silicon (Si): 0.3 to 0.5% by weight, manganese (Mn): 2 to 6.5% by weight, phosphorus (P): greater than 0 0.02 weight % Or less, sulfur (S): more than 0 and 0.01 wt% or less, chromium (Cr): more than 0 and 0.1 wt% or less, boron (B): more than 0 and 0.001 wt% or less, titanium (Ti): 0.01 to 0.04 wt% and May contain residual amounts of iron (Fe) and other unavoidable impurities.
또 다른 구체예에서 상기 슬라브 강은, 고탄소계 열연 코일에 적용될 수 있다. 예를 들면 상기 슬라브 강은, 탄소(C): 0.5~0.56 중량%, 실리콘(Si): 0.1~0.3 중량%, 망간(Mn): 0.7~1 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.01 중량% 이하, 크롬(Cr): 0.1~0.3 중량%, 보론(B): 0 초과 0.001 중량% 이하, 티타늄(Ti): 0.01~0.02 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함할 수 있다.In another embodiment, the slab steel may be applied to a high carbon hot rolled coil. For example, the slab steel, carbon (C): 0.5 to 0.56% by weight, silicon (Si): 0.1 to 0.3% by weight, manganese (Mn): 0.7 to 1% by weight, phosphorus (P): greater than 0 0.02 weight % Or less, sulfur (S): more than 0 and 0.01% by weight or less, chromium (Cr): 0.1 to 0.3% by weight, boron (B): more than 0 and 0.001% by weight or less, titanium (Ti): 0.01 to 0.02% by weight and residual amount Of iron (Fe) and other unavoidable impurities.
한 구체예에서 상기 슬라브 강은 슬래브 재가열 온도(Slab Reheating Temperature, SRT): 1,150℃~1,250℃에서 가열할 수 있다. 상기 슬라브 재가열 온도에서, 합금원소 성분의 균질화 효과가 우수할 수 있다.In one embodiment, the slab steel may be heated at slab reheating temperature (SRT): 1,150 ℃ ~ 1,250 ℃. At the slab reheating temperature, the homogenizing effect of the alloying elements may be excellent.
(S20) 열간 압연단계(S20) hot rolling step
상기 단계는 상기 슬라브 강을 마무리 압연온도: 850℃~950℃ 조건으로 열간압연하여 열연 판재를 형성하는 단계이다. 상기 마무리 압연온도에서 열간 압연시, 상기 열연 코일의 강성 및 성형성이 동시에 우수하며, 권취시 작업성이 우수하고, 열연 코일의 찌그러짐을 방지하는 효과가 우수할 수 있다.The step is a step of hot rolling the slab steel at the finish rolling temperature: 850 ℃ ~ 950 ℃ condition to form a hot rolled sheet material. When hot rolling at the finish rolling temperature, the stiffness and formability of the hot rolled coil can be excellent at the same time, the workability at the time of winding, can be excellent in preventing the distortion of the hot rolled coil.
(S30) 권취단계(S30) winding step
상기 단계는 상기 열연 판재를 냉각하여, 권취온도: 700℃ 이상에서 권취하는 단계이다. 한 구체예에서 상기 열연 판재를, 상기 권취온도 조건까지 냉각하여 권취할 수 있다. 한 구체예에서 상기 냉각은, 냉각수를 주수하지 않고 공랭을 이용하여 실시할 수 있다. 상기 조건으로 냉각시, 열연 코일의 짱구 결함 발생을 효과적으로 감소시킬 수 있다. 여기서, 짱구 결함이란, 열연 코일의 형상 찌그러짐 결함을 의미할 수 있다. 구체적으로, 짱구 결함은, 권취된 열연 코일에 발생하는 형상 결함 중에서, 상기 열연 코일이 중력 방향으로 찌그러져서, 상기 코일의 내외경이 진원이 아닌 타원으로 변화한 형상 변형 결함을 지칭할 수 있다.The step is the step of cooling the hot rolled sheet, the winding temperature: 700 ℃ or more. In one embodiment, the hot rolled sheet may be cooled by winding up to the winding temperature condition. In one embodiment, the cooling can be carried out using air cooling without pouring cooling water. When cooling under the above conditions, occurrence of duckbill defects in the hot rolled coil can be effectively reduced. Here, the duckbill defect may mean a shape distortion defect of the hot rolled coil. Specifically, the duckbill defect may refer to a shape deformation defect in which the hot rolled coil is crushed in the direction of gravity, among the shape defects occurring in the wound hot rolled coil, so that the inner and outer diameters of the coil change to an ellipse rather than a round shape.
본 발명의 합금 성분을 포함하는 판재를 열간 압연 한 후에, 상변태가 시작하는 온도 이상에서 권취가 완료되도록 냉각 제어를 수행할 수 있다. 상기 권취온도 조건에서 권취시, 페라이트 상변태가 권취 후 일정 시간 이후에 시작되기 때문에, 권취 후 코일의 서냉효과(공냉)로 인하여 상변태가 완료되는 시간이 급증하여 형상 변형의 방지에 유리하게 작용할 수 있다. 즉, 본 발명의 일 실시 예에서는, 권취 후에, 상기 페라이트 상변태가 발생하는 시점을 가능한한 지연시키는 공정 조건을 제시할 수 있다.After hot rolling the plate containing the alloying component of the present invention, cooling control can be carried out so that the winding is completed above the temperature at which the phase transformation starts. When winding up at the winding temperature conditions, since the ferrite phase transformation starts after a certain time after the winding, due to the slow cooling effect (air cooling) of the coil after winding up, the time of phase transformation is rapidly increased, which may advantageously prevent the deformation. . That is, in one embodiment of the present invention, after winding, the process conditions for delaying the time when the ferrite phase transformation occurs as possible can be presented.
상기 열연 판재를 권취 온도: 700℃ 미만에서 권취하는 경우, 냉각 과정에서 상기 열연 판재의 상변태가 진행되며, 열연 코일 형성시 추가적인 상변태가 발생하여 코일 부피가 팽창하고, 이후 온도가 내려가면서 열연 코일이 수축하여 자중에 의해 형상이 타원형으로 변형됨으로써, 상기 짱구 결함이 발생할 수 있다. 한 구체예에서 상기 열연 판재를 냉각하여, 권취온도: 700℃~900℃에서 권취할 수 있다. 예를 들면, 권취온도: 730℃~820℃에서 권취할 수 있다. 상기 제조된 열연 코일은 페라이트(ferrite) 및 베이나이트(bainite) 미세조직을 포함할 수 있다.When the hot rolled sheet is wound at a coiling temperature of less than 700 ° C., the phase transformation of the hot rolled sheet proceeds during the cooling process, and additional phase transformation occurs when the hot rolled coil is formed, thereby expanding the coil volume, and then decreasing the temperature as the hot rolled coil is By contracting and deforming the shape into an elliptical shape due to its own weight, the duckbill defect may occur. In one embodiment, the hot rolled sheet may be cooled to be wound at a winding temperature of 700 ° C. to 900 ° C. For example, winding temperature: It can wind up at 730 degreeC-820 degreeC. The manufactured hot rolled coil may include ferrite and bainite microstructures.
열연코일의 형상 교정 방법Shape correction method of hot rolled coil
본 발명의 다른 관점은 열연코일의 형상 교정 방법에 관한 것이다. 도 2는 본 발명의 한 구체예에 따른 열연 코일의 형상 교정 방법을 나타낸 것이다. 상기 도 2를 참조하면, 상기 열연코일의 형상 교정 방법은 (S101) 열연코일 안착 단계; (S102) 열연코일 장경 측정단계; (S103) 열연코일 위치 조정 단계; 및 (S104) 리프팅 단계;를 포함한다.Another aspect of the invention relates to a method for straightening the shape of a hot rolled coil. Figure 2 shows a shape correction method of a hot rolled coil according to an embodiment of the present invention. Referring to Figure 2, the shape correction method of the hot rolled coil (S101) hot rolled coil seating step; (S102) hot rolled coil long diameter measuring step; (S103) hot rolled coil position adjustment step; And (S104) lifting step.
도 3은 본 발명의 한 구체예에 따른 열연 코일의 형상 교정 방법을 모식적으로 나타낸 것이다. 상기 도 3을 참조하면, 상기 열연코일의 형상 교정 방법은 (S101) C-후크의 하단 행거에 열연코일을 안착시키는 단계; (S102) 상기 C-후크 상부에 구비된 외경 측정수단을 이용하여 상기 열연코일의 장경을 측정하는 단계; (S103) 상기 하단 행거에 구비된 구동 롤을 이용하여 상기 열연 코일의 장경이 상기 C-후크와 수직이 되도록 조절하는 단계; 및 (S104) 상기 열연코일이 안착된 C-후크를 거치대에 배치하여 리프팅하여, 상기 열연코일의 형상을 자중에 의해 교정하는 단계;를 포함한다.3 schematically illustrates a shape correction method of a hot rolled coil according to one embodiment of the present invention. Referring to FIG. 3, the shape correction method of the hot rolled coil may include: mounting the hot rolled coil on a bottom hanger of the C-hook; (S102) measuring the long diameter of the hot rolled coil using the outer diameter measuring means provided on the upper portion of the C-hook; (S103) adjusting the long diameter of the hot rolled coil to be perpendicular to the C-hook by using the driving roll provided in the lower hanger; And (S104) arranging and lifting the C-hook on which the hot rolled coil is mounted on a holder, thereby correcting the shape of the hot rolled coil by its own weight.
예를 들면, 상기 도 3(a)와 같이 C-후크(200)의 하단 행거(201)에 열연코일(100)을 안착시키고, 도 3(b)와 같이 C-후크 상부(202)에 구비된 외경 측정수단(210)을 이용하여 열연 코일(100)의 장경을 측정한다. 그 다음에, 상기 도 3(c)와 같이 하단 행거(201)에 구비된 구동 롤(220)을 이용하여, 열연 코일(100)의 장경이, C-후크와 수직이 되도록 조절하고, 도 3(e)와 같이 열연코일이 안착된 C-후크(200)를 거치대(300)에 배치하고 리프팅하여, 도 3(f)와 같이 타원형으로 찌그러진 열연코일의 형상을 자중에 의해 원형으로 교정할 수 있다.For example, the hot rolled coil 100 is seated on the lower hanger 201 of the C-hook 200 as shown in FIG. 3 (a), and is provided on the upper part of the C-hook 202 as shown in FIG. 3 (b). The long diameter of the hot rolled coil 100 is measured using the outer diameter measuring means 210. Next, using the driving roll 220 provided in the lower hanger 201 as shown in FIG. 3 (c), the long diameter of the hot rolled coil 100 is adjusted to be perpendicular to the C-hook, and FIG. 3. By placing and lifting the C-hook 200 on which the hot rolled coil is seated, as shown in (e), on the holder 300, the shape of the hot rolled coil crushed in an elliptical shape as shown in FIG. have.
상기 열연 코일은, 탄소(C): 0.18~0.56 중량%, 실리콘(Si): 0.1~0.5 중량%, 망간(Mn): 0.7~6.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.02 중량% 이하, 크롬(Cr): 0 초과 0.3 중량% 이하, 보론(B): 0 초과 0.004 중량% 이하, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 슬라브 강을 재가열하고; 상기 슬라브 강을 마무리 압연온도: 850℃~950℃ 조건으로 열간압연하여 열연 판재를 형성하고; 그리고 상기 열연 판재를 냉각하여, 권취온도: 700℃ 이상에서 권취하는 단계;를 포함하여 제조된다. 한 구체예에서 상기 열연 코일은 열연 판재를 냉각하여, 권취온도 700℃~900℃에서 권취하여 제조될 수 있다. 상기 제조된 열연 코일은 페라이트(ferrite) 및 베이나이트(bainite) 미세조직을 포함할 수 있다.The hot rolled coil is carbon (C): 0.18 to 0.56% by weight, silicon (Si): 0.1 to 0.5% by weight, manganese (Mn): 0.7 to 6.5% by weight, phosphorus (P): more than 0 and 0.02% by weight or less, Sulfur (S): more than 0 and 0.02 wt% or less, Chromium (Cr): more than 0 and 0.3 wt% or less, boron (B): more than 0 and 0.004 wt% or less, titanium (Ti): 0.01 to 0.04 wt% and the balance of iron Reheating the slab steel containing (Fe) and other unavoidable impurities; Hot-rolling the slab steel at a finish rolling temperature of 850 ° C. to 950 ° C. to form a hot rolled sheet; And cooling the hot rolled sheet material and winding the coil at a winding temperature of 700 ° C. or higher. In one embodiment, the hot rolled coil may be manufactured by cooling the hot rolled sheet and wound at a coiling temperature of 700 ° C. to 900 ° C. The manufactured hot rolled coil may include ferrite and bainite microstructures.
상기 열연 코일 제조방법은, 전술한 열연 코일 제조방법과 동일한 슬라브 강을 사용하여 실시할 수 있으므로, 이에 대한 상세한 설명은 생략하도록 한다.Since the hot rolled coil manufacturing method may be performed using the same slab steel as the hot rolled coil manufacturing method described above, a detailed description thereof will be omitted.
한 구체예에서 상기 열연 코일은, 중탄소계 열연재일 수 있다. 탄소(C): 0.21~0.37 중량%, 실리콘(Si): 0.1~0.4 중량%, 망간(Mn): 1.1~1.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.02 중량% 이하, 크롬(Cr): 0.1~0.3 중량%, 보론(B): 0.001~0.004 중량%, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함할 수 있다.In one embodiment, the hot rolled coil may be a medium carbon-based hot rolled material. Carbon (C): 0.21 to 0.37 wt%, Silicon (Si): 0.1 to 0.4 wt%, Manganese (Mn): 1.1 to 1.5 wt%, Phosphorus (P): more than 0 and 0.02 wt% or less, Sulfur (S): More than 0 and 0.02% by weight or less, chromium (Cr): 0.1 to 0.3% by weight, boron (B): 0.001 to 0.004% by weight, titanium (Ti): 0.01 to 0.04% by weight and the balance of iron (Fe) and other unavoidable impurities It may include.
다른 구체예에서 상기 열연 코일은, 고망간계 열연재일 수 있다. 탄소(C): 0.18~0.25 중량%, 실리콘(Si): 0.3~0.5 중량%, 망간(Mn): 2~6.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.01 중량% 이하, 크롬(Cr): 0 초과 0.1 중량% 이하, 보론(B): 0 초과 0.001 중량% 이하, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe과 기타 불가피한 불순물을 포함할 수 있다.In another embodiment, the hot rolled coil may be a high manganese-based hot rolled material. Carbon (C): 0.18 to 0.25 wt%, Silicon (Si): 0.3 to 0.5 wt%, Manganese (Mn): 2 to 6.5 wt%, Phosphorus (P): more than 0 and 0.02 wt% or less, Sulfur (S): Greater than 0 and 0.01% by weight or less, chromium (Cr): greater than 0 and 0.1% by weight or less, boron (B): greater than 0 and 0.001% by weight or less, titanium (Ti): 0.01 to 0.04% by weight and the balance of iron (Fe and other unavoidable It may contain impurities.
또 다른 구체예에서 상기 열연 코일은, 고탄소계 열연재일 수 있다. 탄소(C): 0.5~0.56 중량%, 실리콘(Si): 0.1~0.3 중량%, 망간(Mn): 0.7~1 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.01 중량% 이하, 크롬(Cr): 0.1~0.3 중량%, 보론(B): 0 초과 0.001 중량% 이하, 티타늄(Ti): 0.01~0.02 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함할 수 있다.In another embodiment, the hot rolled coil may be a high carbon based hot rolled material. Carbon (C): 0.5-0.56 wt%, Silicon (Si): 0.1-0.3 wt%, Manganese (Mn): 0.7-1 wt%, Phosphorus (P): more than 0 and 0.02 wt% or less, Sulfur (S): More than 0 and 0.01% by weight or less, chromium (Cr): 0.1 to 0.3% by weight, boron (B): more than 0 and 0.001% by weight or less, titanium (Ti): 0.01 to 0.02% by weight and the balance of iron (Fe) and other unavoidable It may contain impurities.
본 발명의 열연 코일 제조방법에 의해 제조된 열연 코일을 적용하여 형상 교정시, 열간 압연 후 냉각시 강재의 상변태를 지연하여 열연 코일의 재질 및 물성 저하를 방지하면서 열연 코일의 변형 방지 효과가 우수하며, 자중 및 중력에 의한 교정을 이용하여, 외력 교정에 의한 열연 코일의 스크래치 등의 표면 결함을 방지할 수 있으며, 기존 외력에 의한 교정 설비를 배재하여, 교정 비용을 절감할 수 있어 경제성이 우수할 수 있다.By applying the hot rolled coil manufactured by the method of manufacturing a hot rolled coil of the present invention, when the shape is corrected, the phase transformation of the steel is delayed during the hot rolling and cooling, thereby preventing the deterioration of the material and the properties of the hot rolled coil, and excellent in preventing deformation of the hot rolled coil. By using self-gravity and gravity calibration, it is possible to prevent surface defects such as scratching of hot rolled coils by external force calibration, and to reduce calibration costs by excluding calibration equipment by external force. Can be.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
실시예 및 비교예Examples and Comparative Examples
실시예 1Example 1
중탄소계 소재로서, 탄소(C): 0.23 중량%, 실리콘(Si): 0.2 중량%, 망간(Mn): 1.2 중량%, 인(P): 0.015 중량%, 황(S): 0.01 중량%, 크롬(Cr): 0.2 중량%, 보론(B): 0.003 중량%, 티타늄(Ti): 0.02 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 슬라브 강을 1200℃에서 재가열하고, 상기 슬라브 강을 마무리 압연온도: 880℃에서 열간압연하여, 열연 판재를 형성하였다. 그 다음에, 상기 열연 판재를 냉각하여, 권취온도: 700℃에서 권취하여 열연 코일을 제조하였다.As a medium carbon-based material, carbon (C): 0.23 wt%, silicon (Si): 0.2 wt%, manganese (Mn): 1.2 wt%, phosphorus (P): 0.015 wt%, sulfur (S): 0.01 wt% , Reheating the slab steel at 1200 ° C. comprising chromium (Cr): 0.2% by weight, boron (B): 0.003% by weight, titanium (Ti): 0.02% by weight and residual iron (Fe) and other unavoidable impurities, The slab steel was hot rolled at a finish rolling temperature of 880 ° C. to form a hot rolled sheet. Then, the hot rolled sheet was cooled and wound at a coiling temperature of 700 ° C. to produce a hot rolled coil.
실시예 2Example 2
고망간계 소재로서, 탄소(C): 0.2 중량%, 실리콘(Si): 0.4 중량%, 망간(Mn): 6 중량%, 인(P): 0.015 중량%, 황(S): 0.01 중량%, 크롬(Cr): 0.05 중량%, 보론(B): 0.001 중량%, 티타늄(Ti): 0.02 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 슬라브 강을 1200℃에서 재가열하고, 상기 슬라브 강을 마무리 압연온도: 940℃에서 열간압연하여, 열연 판재를 형성하였다. 그 다음에, 상기 열연 판재를 냉각하여, 권취온도: 700℃에서 권취하여 열연 코일을 제조하였다.As a high manganese-based material, carbon (C): 0.2 wt%, silicon (Si): 0.4 wt%, manganese (Mn): 6 wt%, phosphorus (P): 0.015 wt%, sulfur (S): 0.01 wt% , Reheating the slab steel at 1200 ° C. containing 0.05% by weight of chromium (Cr), 0.001% by weight of boron (B), 0.02% by weight of titanium (Ti) and the balance of iron (Fe) and other unavoidable impurities The slab steel was hot rolled at a finish rolling temperature of 940 ° C. to form a hot rolled sheet. Then, the hot rolled sheet was cooled and wound at a coiling temperature of 700 ° C. to produce a hot rolled coil.
실시예 3Example 3
고탄소계 소재로서, 탄소(C): 0.55 중량%, 실리콘(Si): 0.2 중량%, 망간(Mn): 0.8 중량%, 인(P): 0.015 중량%, 황(S): 0.01 중량%, 크롬(Cr): 0.2 중량%, 보론(B): 0.001 중량%, 티타늄(Ti): 0.01 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 슬라브 강을 1200℃에서 재가열하고, 상기 슬라브 강을 마무리 압연온도: 890℃에서 열간압연하여, 열연 판재를 형성하였다. 그 다음에, 상기 열연 판재를 냉각하여, 권취온도: 730℃에서 권취하여 열연 코일을 제조하였다.As a high carbon material, carbon (C): 0.55% by weight, silicon (Si): 0.2% by weight, manganese (Mn): 0.8% by weight, phosphorus (P): 0.015% by weight, sulfur (S): 0.01% by weight, Reheating the slab steel containing chromium (Cr): 0.2% by weight, boron (B): 0.001% by weight, titanium (Ti): 0.01% by weight and residual iron (Fe) and other unavoidable impurities at 1200 ° C., The slab steel was hot rolled at a finish rolling temperature of 890 ° C. to form a hot rolled sheet. Then, the hot rolled sheet was cooled and wound at a coiling temperature of 730 ° C. to produce a hot rolled coil.
비교예 1Comparative Example 1
열연 판재를 권취온도: 560℃에서 권취한 것을 제외하고, 실시예 1과 동일한 방법으로 열연 코일을 제조하였다.A hot rolled coil was manufactured in the same manner as in Example 1 except that the hot rolled sheet was wound at a winding temperature of 560 ° C.
비교예 2Comparative Example 2
열연 판재를 권취온도: 600℃에서 권취한 것을 제외하고, 실시예 1과 동일한 방법으로 열연 코일을 제조하였다.A hot rolled coil was manufactured in the same manner as in Example 1, except that the hot rolled sheet was wound at a winding temperature of 600 ° C.
비교예 3Comparative Example 3
열연 판재를 권취온도: 620℃에서 권취한 것을 제외하고, 실시예 1과 동일한 방법으로 열연 코일을 제조하였다.A hot rolled coil was manufactured in the same manner as in Example 1, except that the hot rolled sheet was wound at a winding temperature of 620 ° C.
비교예 4Comparative Example 4
열연 판재를 권취온도: 650℃에서 권취한 것을 제외하고, 실시예 1과 동일한 방법으로 열연 코일을 제조하였다.;A hot rolled coil was manufactured in the same manner as in Example 1 except that the hot rolled sheet was wound at a winding temperature of 650 ° C .;
도 4의 (a)는 본 발명에 따른 실시예 1 열연 코일의 권취 직후 사진이며, 도 4의 (b)는 상기 열연 코일의 공냉 후 사진이고, 도 5의 (a)는 본 발명에 따른 실시예 1 열연 코일의 권취 직후 사진이며, 도 5의 (b)는 상기 열연 코일의 공냉 후 사진이며, 도 6의 (a)는 본 발명에 대한 비교예 열연 코일의 권취 직후 사진이며, 도 6의 (b)는 상기 열연 코일의 공냉 후 사진이다. 도 4의 (a) 및 (b)를 참조하면, 실시예 1은 열연 코일의 권취 직후에는 짱구 결함이 관찰되지 않으나, 공냉을 거치면서, 짱구 결함이 관찰되었다. 하지만, 비교예의 경우보다 짱구 결함의 정도가 작은 것을 확인할 수 있었다. 도 5의 (a) 및 (b)를 참조하면, 실시예 2는 열연 코일의 권취 직후 및 공냉 후에 각각 짱구 결함이 관찰되지 않았다. 도 6의 (a) 및 (b)를 참조하면, 비교예는 열연 코일의 권취 직후에 짱구 결함이 관찰되었으며, 공냉이 진행되면서 짱구 결함의 정도가 심해짐을 확인할 수 있었다.Figure 4 (a) is a photograph immediately after the winding of the first embodiment hot rolled coil according to the present invention, Figure 4 (b) is a photograph after the air cooling of the hot rolled coil, Figure 5 (a) is implemented according to the present invention Example 1 is a picture immediately after the winding of the hot rolled coil, FIG. 5B is a picture after the air cooling of the hot rolled coil, and FIG. 6A is a picture immediately after the winding of the comparative example hot rolled coil according to the present invention. (b) is a photograph after air cooling of the hot rolled coil. Referring to FIGS. 4A and 4B, in Example 1, a duckbill defect was not observed immediately after winding of the hot rolled coil, but during the air cooling, a duckbill defect was observed. However, it was confirmed that the degree of duckbill defects is smaller than that of the comparative example. Referring to FIGS. 5A and 5B, in Example 2, a duckbill defect was not observed immediately after winding of the hot rolled coil and after air cooling, respectively. Referring to (a) and (b) of FIG. 6, in the comparative example, the duckbill defect was observed immediately after the coiling of the hot rolled coil, and the degree of the duckbill defect was increased as the air cooling progressed.
열연코일 형상 교정Hot rolled coil shape correction
상기 실시예 1~3 및 비교예 1~4의 열연 코일에 대하여, 형상 교정을 실시하였다. C-후크의 하단 행거에 열연코일을 안착시키고, 상기 C-후크 상부에 구비된 외경 측정수단을 이용하여 상기 열연코일의 장경을 측정하였다. 그 다음에, 상기 하단 행거에 구비된 구동 롤을 이용하여 상기 열연 코일의 장경이 상기 C-후크와 수직이 되도록 조절하고, 상기 열연코일이 안착된 C-후크를 거치대에 배치하여 리프팅하여, 상기 열연코일의 형상을 자중에 의해 교정하였다.Shape correction was performed about the hot rolled coils of the said Examples 1-3 and Comparative Examples 1-4. The hot rolled coil was seated on the bottom hanger of the C-hook, and the long diameter of the hot rolled coil was measured by using an outer diameter measuring means provided at the upper part of the C-hook. Subsequently, by using the driving roll provided on the lower hanger, the long diameter of the hot rolled coil is adjusted to be perpendicular to the C-hook, and the C-hook on which the hot rolled coil is seated is placed on a holder and lifted, The shape of the hot rolled coil was corrected by its own weight.
상기 실시예 1~3 및 비교예 1~4에 대하여, 코일 내경 및 상기 형상 교정 후 짱구 결함 개선 여부를 관찰하여 그 결과를 하기 표 1에 나타내었다.For Examples 1 to 3 and Comparative Examples 1 to 4, the inner diameter of the coil and whether or not the duckbill defect was improved after the shape correction were observed, and the results are shown in Table 1 below.
구분division 권취온도 [℃]Coiling temperature [℃] 코일 내경 [mm]Coil Inner Diameter [mm] 형상 교정에 의한 짱구 결함 교정여부Whether or not correcting duckbill defects by shape correction
실시예 1Example 1 700700 740740 교정correction
실시예 2Example 2 730730 760760 교정correction
실시예 3Example 3 730730 740740 교정correction
비교예 1Comparative Example 1 560560 700700 미교정Uncalibrated
비교예 2Comparative Example 2 600600 710710 미교정Uncalibrated
비교예 3Comparative Example 3 620620 680680 미교정Uncalibrated
비교예 4Comparative Example 4 650650 720720 미교정Uncalibrated
상기 도 1을 참조하면, 상기 실시예 1~3의 경우, 교정 이후 짱구 결함이 발생하지 않았으나, 본 발명의 권취온도를 벗어난 비교예 1~4의 경우, 교정 이후에도 코일의 짱구 결함이 제대로 교정되지 않음을 알 수 있었다. Referring to FIG. 1, in the case of Examples 1 to 3, the duckbill defect did not occur after the calibration, but in Comparative Examples 1 to 4 outside the winding temperature of the present invention, the duckbill defect of the coil was not properly corrected even after the calibration. It was found out.
도 7은 상기 실시예 1 및 비교예 1의 열연 코일 제조 및 형상 교정 시간 진행에 따른, 열연 코일의 상변태 곡선을 비교한 그래프이다. 상기 도 7을 참조하면, 본 발명의 실시예 1은, 특정 합금 성분계를 적용하며, 상변태 온도 이상의 온도(700℃)에서 권취를 실시하여, 페라이트로의 상변태가, 권취 하여 열연 코일을 제조한 이후, 일정 시간이 경과된 이후에 진행되기 때문에, 권취 후 코일의 서냉효과(공냉)으로 인해 상변태가 완료되는 시간이 급증하여, 형상 교정에 유리함을 알 수 있었다. 반면에, 열연 판재 상변태 온도 이하에서 권취된 비교예 1의 경우, 상기 실시예 1보다 페라이트 상변태가 일찍 발생하여, 본 발명의 상변태 시작 시간의 확보가 어려워, 형상 교정에 불리함을 알 수 있었다. 7 is a graph comparing the phase transformation curves of the hot rolled coils according to the production of the hot rolled coils of Example 1 and Comparative Example 1 and the progress of shape correction time. Referring to FIG. 7, in Example 1 of the present invention, after applying a specific alloy component system and winding at a temperature (700 ° C.) or more above a phase transformation temperature, the phase transformation into ferrite is wound up to manufacture a hot rolled coil. Since the process proceeds after a certain time has elapsed, the time required for phase transformation to increase due to the slow cooling effect (air cooling) of the coil after winding was found to be advantageous for shape correction. On the other hand, in the case of Comparative Example 1 wound below the hot-rolled sheet phase transformation temperature, the ferrite phase transformation occurs earlier than Example 1, it was difficult to secure the phase transformation start time of the present invention, it was found that it is disadvantageous in shape correction.
또한, 본 발명의 열연 코일 제조 및 형상 교정방법에 의하여, 열연 코일의 짱구 발생을 개선함으로써, 후공정인 정정 공정에서 짱구코일에 의해 기인한 내권부 절사, 작업시간 지연, 설비 파손 등과 같은 추가 작업을 저감함으로써 작업능률 상승, 소재의 품질향상, 스크랩(Scrap)으로 처리되는 불량품의 발생비율 감소 등의 효과를 얻을 수 있었다.In addition, according to the method of manufacturing and shape correction of the hot rolled coil of the present invention, by improving the generation of the duckbill of the hot rolled coil, further work such as internal cut-off, work time delay, equipment damage, etc. caused by the duckbill coil in the post-correction correction process By reducing the efficiency, the efficiency of the work, the quality of the material, and the scrapping rate of the scraped products were reduced.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (9)

  1. 탄소(C): 0.18~0.56 중량%, 실리콘(Si): 0.1~0.5 중량%, 망간(Mn): 0.7~6.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.02 중량% 이하, 크롬(Cr): 0 초과 0.3 중량% 이하, 보론(B): 0 초과 0.004 중량% 이하, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 슬라브 강을 재가열하는 단계;Carbon (C): 0.18 to 0.56% by weight, Silicon (Si): 0.1 to 0.5% by weight, manganese (Mn): 0.7 to 6.5% by weight, phosphorus (P): greater than 0 and 0.02% by weight or less, sulfur (S): More than 0 and 0.02% by weight or less, chromium (Cr): more than 0 and 0.3% by weight or less, boron (B): more than 0 and 0.004% by weight or less, titanium (Ti): 0.01 to 0.04% by weight and the remaining iron (Fe) and others Reheating the slab steel containing unavoidable impurities;
    상기 슬라브 강을 마무리 압연온도: 850℃~950℃ 조건으로 열간압연하여 열연 판재를 형성하는 단계; 및Hot rolling the slab steel at a finish rolling temperature of 850 ° C. to 950 ° C. to form a hot rolled sheet; And
    상기 열연 판재를 냉각하여, 권취온도: 700℃ 이상에서 권취하는 단계;를 포함하는 것을 특징으로 하는 열연코일 제조방법.Cooling the hot rolled sheet, winding temperature: winding at 700 ℃ or more; hot rolled coil manufacturing method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 슬라브 강은, 탄소(C): 0.21~0.37 중량%, 실리콘(Si): 0.1~0.4 중량%, 망간(Mn): 1.1~1.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.02 중량% 이하, 크롬(Cr): 0.1~0.3 중량%, 보론(B): 0.001~0.004 중량%, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 것을 특징으로 하는 열연코일 제조방법.The slab steel, carbon (C): 0.21 to 0.37% by weight, silicon (Si): 0.1 to 0.4% by weight, manganese (Mn): 1.1 to 1.5% by weight, phosphorus (P): more than 0 and 0.02% by weight or less, Sulfur (S): more than 0 and 0.02% by weight or less, Chromium (Cr): 0.1 to 0.3% by weight, boron (B): 0.001 to 0.004% by weight, titanium (Ti): 0.01 to 0.04% by weight and the balance of iron (Fe) ) And other unavoidable impurities.
  3. 제1항에 있어서, The method of claim 1,
    상기 슬라브 강은, 탄소(C): 0.18~0.25 중량%, 실리콘(Si): 0.3~0.5 중량%, 망간(Mn): 2~6.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.01 중량% 이하, 크롬(Cr): 0 초과 0.1 중량% 이하, 보론(B): 0 초과 0.001 중량% 이하, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 것을 특징으로 하는 열연코일 제조방법.The slab steel, carbon (C): 0.18 to 0.25% by weight, silicon (Si): 0.3 to 0.5% by weight, manganese (Mn): 2 to 6.5% by weight, phosphorus (P): more than 0 and 0.02% by weight or less, Sulfur (S): more than 0 and 0.01 wt% or less, Chromium (Cr): more than 0 and 0.1 wt% or less, boron (B): more than 0 and 0.001 wt% or less, titanium (Ti): 0.01 to 0.04 wt% and the balance of iron A method for producing a hot rolled coil, comprising (Fe) and other unavoidable impurities.
  4. 제1항에 있어서, The method of claim 1,
    상기 슬라브 강은, 탄소(C): 0.5~0.56 중량%, 실리콘(Si): 0.1~0.3 중량%, 망간(Mn): 0.7~1 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.01 중량% 이하, 크롬(Cr): 0.1~0.3 중량%, 보론(B): 0 초과 0.001 중량% 이하, 티타늄(Ti): 0.01~0.02 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 것을 특징으로 하는 열연코일 제조방법.The slab steel, carbon (C): 0.5 to 0.56% by weight, silicon (Si): 0.1 to 0.3% by weight, manganese (Mn): 0.7 to 1% by weight, phosphorus (P): more than 0 and 0.02% by weight or less, Sulfur (S): more than 0 and 0.01 wt% or less, Chromium (Cr): 0.1 to 0.3 wt% and boron (B): more than 0 and 0.001 wt% or less, titanium (Ti): 0.01 to 0.02 wt% and the balance of iron ( Fe) and other inevitable impurities containing hot rolled coil manufacturing method.
  5. 제1항에 있어서,The method of claim 1,
    상기 열연 판재를 냉각하여, 권취온도 700℃~900℃에서 권취하는 것을 특징으로 하는 열연코일 제조방법. Cooling the hot rolled sheet material, the hot rolled coil manufacturing method characterized in that the winding temperature at 700 ℃ ~ 900 ℃.
  6. C-후크의 하단 행거에 열연코일을 안착시키는 단계;Placing the hot rolled coil in the bottom hanger of the C-hook;
    상기 C-후크 상부에 구비된 외경 측정수단을 이용하여 상기 열연코일의 장경을 측정하는 단계;Measuring the long diameter of the hot rolled coil by using an outer diameter measuring means provided on the C-hook;
    상기 하단 행거에 구비된 구동 롤을 이용하여 상기 열연 코일의 장경이 상기 C-후크와 수직이 되도록 조절하는 단계; 및Adjusting the long diameter of the hot rolled coil to be perpendicular to the C-hook by using a driving roll provided in the lower hanger; And
    상기 열연코일이 안착된 C-후크를 거치대에 배치하여 리프팅하여, 상기 열연코일의 형상을 자중에 의해 교정하는 단계;를 포함하는And arranging and lifting the C-hook on which the hot rolled coil is seated on a holder, thereby correcting the shape of the hot rolled coil by its own weight.
    열연코일의 형상 교정 방법.Shape correction method of hot rolled coil.
  7. C-후크의 하단 행거에 열연코일을 안착시키는 단계;Placing the hot rolled coil in the bottom hanger of the C-hook;
    상기 C-후크 상부에 구비된 외경 측정수단을 이용하여 상기 열연코일의 장경을 측정하는 단계;Measuring the long diameter of the hot rolled coil by using an outer diameter measuring means provided on the C-hook;
    상기 하단 행거에 구비된 구동 롤을 이용하여 상기 열연 코일의 장경이 상기 C-후크와 수직이 되도록 조절하는 단계; 및Adjusting the long diameter of the hot rolled coil to be perpendicular to the C-hook by using a driving roll provided in the lower hanger; And
    상기 열연코일이 안착된 C-후크를 거치대에 배치하여 리프팅하여, 상기 열연코일의 형상을 자중에 의해 교정하는 단계;를 포함하며,And arranging and lifting the C-hook on which the hot rolled coil is mounted on a holder, thereby correcting the shape of the hot rolled coil by its own weight.
    상기 열연 코일은, 탄소(C): 0.18~0.56 중량%, 실리콘(Si): 0.1~0.5 중량%, 망간(Mn): 0.7~6.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.02 중량% 이하, 크롬(Cr): 0 초과 0.3 중량% 이하, 보론(B): 0 초과 0.004 중량% 이하, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 슬라브 강을 재가열하고;The hot rolled coil is carbon (C): 0.18 to 0.56% by weight, silicon (Si): 0.1 to 0.5% by weight, manganese (Mn): 0.7 to 6.5% by weight, phosphorus (P): more than 0 and 0.02% by weight or less, Sulfur (S): more than 0 and 0.02 wt% or less, Chromium (Cr): more than 0 and 0.3 wt% or less, boron (B): more than 0 and 0.004 wt% or less, titanium (Ti): 0.01 to 0.04 wt% and the balance of iron Reheating the slab steel containing (Fe) and other unavoidable impurities;
    상기 슬라브 강을 마무리 압연온도: 850℃~950℃ 조건으로 열간압연하여 열연 판재를 형성하고; 그리고Hot-rolling the slab steel at a finish rolling temperature of 850 ° C. to 950 ° C. to form a hot rolled sheet; And
    상기 열연 판재를 냉각하여, 권취온도: 700℃ 이상에서 권취하는 단계;를 포함하여 제조되는 것을 특징으로 하는 열연코일의 형상 교정 방법.Cooling the hot rolled sheet, winding temperature: winding at 700 ℃ or more; shape correction method of the hot rolled coil characterized in that it is produced.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 열연코일은, 탄소(C): 0.21~0.37 중량%, 실리콘(Si): 0.1~0.4 중량%, 망간(Mn): 1.1~1.5 중량%, 인(P): 0 초과 0.02 중량% 이하, 황(S): 0 초과 0.02 중량% 이하, 크롬(Cr): 0.1~0.3 중량%, 보론(B): 0.001~0.004 중량%, 티타늄(Ti): 0.01~0.04 중량% 및 잔량의 철(Fe)과 기타 불가피한 불순물을 포함하는 것을 특징으로 하는 열연코일의 형상 교정 방법.The hot rolled coil is carbon (C): 0.21 to 0.37% by weight, silicon (Si): 0.1 to 0.4% by weight, manganese (Mn): 1.1 to 1.5% by weight, phosphorus (P): greater than 0 and 0.02% by weight or less, Sulfur (S): more than 0 and 0.02% by weight or less, Chromium (Cr): 0.1 to 0.3% by weight, boron (B): 0.001 to 0.004% by weight, titanium (Ti): 0.01 to 0.04% by weight and the balance of iron (Fe) ) And other unavoidable impurities.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 열연 판재를 냉각하여, 권취온도: 700℃~900℃에서 권취하는 것을 특징으로 하는 열연코일의 형상 교정 방법.The hot rolled sheet is cooled and wound at a winding temperature of 700 ° C to 900 ° C.
PCT/KR2017/007870 2016-07-22 2017-07-21 Method for manufacturing hot-rolled coil, and method for shape-correction of hot-rolled coil WO2018016908A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/319,254 US20190270127A1 (en) 2016-07-22 2017-07-21 Method for manufacturing hot-rolled coil, and method for shape-correction of hot-rolled coil
DE112017003683.6T DE112017003683T5 (en) 2016-07-22 2017-07-21 METHOD FOR MANUFACTURING A HOT-ROLLED SPOOL AND METHOD FOR FORM CORRECTING A HOT-ROLLED SPOOL
CN201780045377.0A CN109477192B (en) 2016-07-22 2017-07-21 Method for producing a hot-rolled coil and method for shape correction of a hot-rolled coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0093096 2016-07-22
KR1020160093096A KR101787275B1 (en) 2016-07-22 2016-07-22 Manufacturing method for hot rolled coil and method for correcting shape of hot rolled coil

Publications (1)

Publication Number Publication Date
WO2018016908A1 true WO2018016908A1 (en) 2018-01-25

Family

ID=60298328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007870 WO2018016908A1 (en) 2016-07-22 2017-07-21 Method for manufacturing hot-rolled coil, and method for shape-correction of hot-rolled coil

Country Status (5)

Country Link
US (1) US20190270127A1 (en)
KR (1) KR101787275B1 (en)
CN (1) CN109477192B (en)
DE (1) DE112017003683T5 (en)
WO (1) WO2018016908A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011872B (en) * 2022-05-08 2023-06-16 江阴兴澄合金材料有限公司 Manufacturing method of cold drawn round steel bar for high-dimensional-stability hydraulic valve core

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0924419A (en) * 1995-07-13 1997-01-28 Nippon Steel Metal Prod Co Ltd Coil transfer carriage in uncoiler equipment
JP2005279762A (en) * 2004-03-30 2005-10-13 Jfe Steel Kk Method and apparatus for measuring coil outside diameter
JP2011240354A (en) * 2010-05-17 2011-12-01 Nippon Steel Corp Method for manufacturing hot-rolled coil
KR20140041930A (en) * 2010-03-19 2014-04-04 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet having excellent cold working properties and hardening properties, and method for producing same
JP2016089235A (en) * 2014-11-07 2016-05-23 Jfeスチール株式会社 Hot rolled steel sheet for cold rolled steel sheet or for hot-dip galvanized steel sheet and method of producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026495A (en) * 1976-02-02 1977-05-31 Aluminum Company Of America Rotating tubing payoff system
KR950010215B1 (en) 1993-12-27 1995-09-12 포항종합제철주식회사 Proofreading device for telescope of rolling coil
KR100782754B1 (en) * 2006-07-11 2007-12-05 주식회사 포스코 An apparatus for changing c-hook direction of wire-rod coil
CN202667319U (en) * 2012-06-15 2013-01-16 鞍钢股份有限公司 Flattening-and-rolling prevention carrier roller device
CN105728496B (en) * 2016-03-11 2017-12-29 攀钢集团西昌钢钒有限公司 A kind of redemption restorative procedure for the flat volume defect of Thin Specs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0924419A (en) * 1995-07-13 1997-01-28 Nippon Steel Metal Prod Co Ltd Coil transfer carriage in uncoiler equipment
JP2005279762A (en) * 2004-03-30 2005-10-13 Jfe Steel Kk Method and apparatus for measuring coil outside diameter
KR20140041930A (en) * 2010-03-19 2014-04-04 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet having excellent cold working properties and hardening properties, and method for producing same
JP2011240354A (en) * 2010-05-17 2011-12-01 Nippon Steel Corp Method for manufacturing hot-rolled coil
JP2016089235A (en) * 2014-11-07 2016-05-23 Jfeスチール株式会社 Hot rolled steel sheet for cold rolled steel sheet or for hot-dip galvanized steel sheet and method of producing the same

Also Published As

Publication number Publication date
KR101787275B1 (en) 2017-10-19
DE112017003683T5 (en) 2019-04-04
US20190270127A1 (en) 2019-09-05
CN109477192A (en) 2019-03-15
CN109477192B (en) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2016099191A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
WO2018117712A1 (en) High manganese steel having superior low-temperature toughness and yield strength and manufacturing method
WO2009145563A2 (en) Ultra high strength steel sheet with an excellent heat treatment property for hot press forming, quenched member, and manufacturing method for same
WO2017222159A1 (en) High-strength cold-rolled steel sheet with excellent workability and manufacturing method therefor
WO2018110853A1 (en) High strength dual phase steel having excellent low temperature range burring properties, and method for producing same
WO2010074370A1 (en) High-strength elongation steel sheet, hot-rolled steel sheet, cold-rolled steel sheet, zinc-coated steel sheet, and method for manufacturing alloyed zinc-coated steel sheet
WO2017082684A1 (en) Wire having excellent cold forgeability and manufacturing method therefor
WO2017082687A1 (en) Microalloyed wire having excellent cold workability and manufacturing method therefor
WO2015099222A1 (en) Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same
WO2018117646A1 (en) Thick steel sheet having excellent cryogenic impact toughness and manufacturing method therefor
WO2018117450A1 (en) Sour-resistant heavy-walled steel material having excellent low-temperature toughness and post-heat treatment characteristics and method for manufacturing same
WO2016111388A1 (en) Super high strength plated steel sheet having tensile strength of 1300 mpa or more, and manufacturing method therefor
WO2018117700A1 (en) High-strength high-toughness thick steel sheet and manufacturing method therefor
WO2012043984A2 (en) Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
WO2009145562A2 (en) High-strength steel sheet with excellent ductility and crackless edge portion, hot-dip galvanized steel sheet, and manufacturing method thereof
WO2016104883A1 (en) Ferritic stainless steel material having superb ductility and method for producing same
WO2021085800A1 (en) Austenitic stainless steel having increased yield ratio and manufacturing method thereof
WO2021010599A2 (en) Austenitic stainless steel having improved strength, and method for manufacturing same
WO2018016908A1 (en) Method for manufacturing hot-rolled coil, and method for shape-correction of hot-rolled coil
WO2018084685A1 (en) Ultrahigh-strength steel sheet having excellent yield ratio, and manufacturing method therefor
WO2013154254A1 (en) High carbon hot rolled steel sheet having excellent uniformity and method for manufacturing same
WO2017051997A1 (en) Molded body manufacturing method
WO2020060051A1 (en) Hot rolled and unannealed ferritic stainless steel sheet having excellent impact toughness, and manufacturing method therefor
WO2019088552A1 (en) Ultra-high strength cold-rolled steel sheet having excellent cold rolling property, and method for manufacturing same
WO2019125018A1 (en) Ultrahigh strength cold-rolled steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831380

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17831380

Country of ref document: EP

Kind code of ref document: A1