WO2018016878A1 - Heat-resistant cast steel for turbocharger turbine housing, requiring less tungsten, and turbocharger turbine housing using same - Google Patents

Heat-resistant cast steel for turbocharger turbine housing, requiring less tungsten, and turbocharger turbine housing using same Download PDF

Info

Publication number
WO2018016878A1
WO2018016878A1 PCT/KR2017/007781 KR2017007781W WO2018016878A1 WO 2018016878 A1 WO2018016878 A1 WO 2018016878A1 KR 2017007781 W KR2017007781 W KR 2017007781W WO 2018016878 A1 WO2018016878 A1 WO 2018016878A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
cast steel
resistant cast
weight
turbine housing
Prior art date
Application number
PCT/KR2017/007781
Other languages
French (fr)
Korean (ko)
Inventor
김형준
김기용
장성식
이성학
정승문
Original Assignee
(주)계양정밀
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)계양정밀, 포항공과대학교 산학협력단 filed Critical (주)계양정밀
Publication of WO2018016878A1 publication Critical patent/WO2018016878A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00

Definitions

  • the present invention relates to a heat resistant cast steel for tungsten reduction type turbocharger turbine housing having excellent physical properties at high temperature, and a turbocharger turbine housing manufactured using the same.
  • the turbocharger improves the output of the engine by compressing and supplying more air into the cylinder of the engine.
  • the turbocharger rotates a turbine wheel in a turbine housing using exhaust gas emitted from the engine. It is made of a structure that is supplied to the engine by rotating a compressor wheel (compressor wheel) in the compressor housing (compressor housing) for transmitting the rotational force generated during the rotation of the turbine wheel to compress the air of the atmosphere.
  • Turbine housing surrounding the turbine wheel is in constant contact with the exhaust gas of 800 °C ⁇ 900 °C discharged from the engine is subjected to a very high thermal shock depending on the engine output turbine housing requires a high thermal durability.
  • the material used for the turbine housing of the vehicle is made of high heat resistant austenitic stainless steel, but in the case of the high heat resistant austenitic stainless steel, at least 2.5% by weight of expensive tungsten (W) and nickel ( Ni) is used in a large amount of about 19 to 22% by weight and additionally contains molybdenum (Mo), there is a problem that the cost is expensive and the commercial viability is greatly reduced.
  • the present invention has been proposed to solve this problem, and an object thereof is to provide a heat-resistant cast steel and a turbocharger turbine housing manufactured using the same, which has high durability at a high temperature while adding a high cost of tungsten to a minimum.
  • An object of the present invention is to provide a heat-resistant cast steel for tungsten reduction turbocharger turbine housing, the heat-resistant cast steel of the present invention is 0.40 ⁇ 0.50% by weight of carbon (C), 1.0 ⁇ 2.0% by weight of silicon (Si), manganese (Mn) ) 1.0 to 2.0 wt%, nickel (Ni) 9.0 to 12.0 wt%, chromium (Cr) 21 to 24 wt%, niobium (Nb) 1.0 to 2.5 wt%, tungsten (W) 0.5 to 2.2 wt%, phosphorus (P ) 0.045 wt% or less, sulfur (S) 0.05 to 0.18 wt% and the balance iron (Fe).
  • the heat-resistant cast steel of the present invention is 0.42 to 0.48 wt% carbon, 1.25 to 1.75 wt% silicon, 1.2 to 1.8 wt% manganese, 9.5 to 11.5 wt% nickel, chromium 21.5 to 23.5 wt% , Niobium 1.0 to 2.2 wt%, tungsten 0.7 to 2.1 wt%, phosphorus 0.040 wt% or less, sulfur 0.10 to 0.18 wt% and the balance iron.
  • the heat-resistant cast steel of the present invention is one selected from molybdenum (Mo) and aluminum (Al) in addition to the carbon, silicon, manganese, nickel, chromium, niobium, tungsten, phosphorus, sulfur and iron. It may further include the above.
  • the heat-resistant cast steel of the present invention may include niobium in an amount of 1.2 to 2.2% by weight.
  • the heat-resistant cast steel of the present invention may comprise 0.8 to 2.2% by weight of tungsten.
  • the heat-resistant cast steel of the present invention may have a tensile strength of 180 ⁇ 210 Mpa at 900 °C, measured according to the ASTM E8 rod test standard.
  • the heat-resistant cast steel of the present invention may have a yield strength of 150 ⁇ 180 Mpa at 900 °C, measured according to the ASTM E8 rod test standard.
  • the heat-resistant cast steel of the present invention may have an elongation of 25.0 to 32.0% at 900 ° C., measured according to ASTM E8 rod test standard.
  • the heat-resistant cast steel of the present invention is (0.70 ⁇ 1.00) ⁇ 10 3 (Number of when measured by Thermo-Mechanical Fatigue testing (TMF) based on ASTM E 2368 test standard) cycles to failure).
  • Another object of the present invention is to provide a turbocharger turbine housing manufactured using the various types of heat-resistant cast steel described above.
  • the turbocharger with improved mechanical durability and heat fatigue life at the required high temperature (up to 950 ° C) while adding a high cost tungsten to a minimum
  • the housing can be manufactured.
  • Example 1 is a cross-sectional view of the specimen prepared in Example 1.
  • Figure 2 is a graph showing the results of room temperature tensile test according to Examples 1 to 2 and Comparative Examples 1 to 2 of the present invention.
  • Figure 3 is a graph showing the high temperature tensile test results according to Examples 1 and 2 and Comparative Examples 1 and 2 of the present invention.
  • FIG. 5 is a graph illustrating a strain rate of each alloy as a heat fatigue life evaluation result according to Examples 1 to 2 and Comparative Example 1 of the present invention.
  • Example 6 is a graph showing thermal fatigue life values as a result of thermal fatigue life evaluation according to Examples 1 to 2 and Comparative Example 1 of the present invention.
  • Heat-resistant cast steel of the present invention minimizes the content of tungsten, while having a physical property that can replace the existing high heat-resistant austenitic stainless steel, which is a material used in the turbine housing of the current vehicle, and excellent heat-resistant cast steel (or stainless steel) will be.
  • the heat-resistant cast steel of the present invention is an austenitic heat-resistant cast steel, carbon (C), silicon (Si), manganese (Mn), nickel (Ni), chromium (Cr), niobium (Nb), tungsten ( W), phosphorus (P), sulfur (S) and iron (Fe), and the heat-resistant cast steel of the present invention is excellent in tensile strength and elongation at high temperatures of 800 °C ⁇ 950 °C Ideal for turbocharged turbine housings operating in high temperature environments.
  • the carbon (C) is known to be a strong austenite stabilizing element, and is also strengthened in a matrix structure and plays an important role in maintaining the strength of the heat-resistant cast steel at high temperatures.
  • a carbide (Carbide) by combining with a carbide former (Carbide former), such as chromium (Cr), niobium (Nb), it improves the castability of the liquid phase and the high temperature strength.
  • Heat-resistant cast steel of the present invention may include carbon of 0.40 to 0.50% by weight, preferably 0.42 to 0.48% by weight, more preferably 0.43 to 0.47% by weight of the total weight of the heat-resistant cast steel.
  • the carbon content is less than 0.40% by weight of the total weight of the heat-resistant cast steel, there may be a problem in that the carbon does not effectively exhibit the function of contributing to high temperature strength through the formation of strong carbides and strengthening solid solution in the austenitic matrix structure. If the content exceeds 0.50% by weight, strong carbides may be excessively formed and become brittle, and such carbides may be used as a starting point and propagation site of fracture under a thermodynamic fatigue environment, thereby reducing the high temperature properties of the cast steel.
  • Silicon (Si) has the effect of improving the high temperature oxidation resistance, and serves as a deoxidizer in the melt (melt) of the alloy. Silicon improves oxidation resistance by playing a role in preventing oxidation by chromium (Cr). Silica particles formed by silicon are precipitated under the film formed on the surface of the alloy by chromium to assist in the formation of the passivation film, and to suppress the unnecessary escape of chromium ions. In particular, this effect of silicon is further enhanced at high temperatures.
  • Heat-resistant cast steel of the present invention may include silicon in the total weight of the heat-resistant cast steel 1.0 to 2.0% by weight, preferably 1.25 to 1.75% by weight, if the silicon content is less than 1.0% by weight of the total weight of the heat-resistant cast steel chromium ion
  • the anti-oxidation effect can be greatly reduced, and if the silicon content exceeds 2.0% by weight, the high temperature creep resistance is lowered, and as a ferrite stabilizing element, the austenite matrix may be unstable. It is good to contain in the range.
  • Heat-resistant cast steel of the present invention includes a manganese content of 1.0 to 2.0% by weight, preferably 1.2 to 1.8% by weight, more preferably 1.35 to 1.7% by weight of the total weight of the heat-resistant cast steel, wherein the content of manganese is heat-resistant cast steel If less than 1.0% by weight of the total weight may cause a problem that the effect according to the manganese content is insignificant, and if it exceeds 2.0% by weight may lower the oxidation resistance and creep strength rather preferably contained within the above range .
  • Nickel (Ni) is a strong austenite stabilizing element and is generally added in an amount of at least 9% by weight to austenitic stainless steel (STS). When nickel is added to stainless steel, the alloy has excellent performance in terms of corrosion resistance and high temperature stabilization along with increased toughness and ductility.
  • the heat-resistant cast steel of the present invention includes nickel in the total weight of the heat-resistant cast steel is 9.0 to 12.0% by weight, preferably 9.5 to 11.5% by weight, more preferably 10.0 to 11.0% by weight, wherein the nickel content is heat-resistant If less than 9.0% by weight of the total weight of the cast steel may not secure the proper tensile strength and yield strength at high temperatures, when exceeding 12.0% by weight is excellent mechanical properties at high temperatures, but there is a problem that the thermal fatigue life is poor There is a number.
  • Chromium (Cr) is one of the key elements for the oxidation resistance, corrosion resistance of the heat-resistant cast steel, Cr on the surface of the heat-resistant cast steel 2 O 3 It forms a stable passivation film in the form and serves as a ferrite stabilizing element to improve oxidation resistance and corrosion resistance at high temperatures.
  • Heat-resistant cast steel of the present invention may include 21 to 24% by weight, preferably 21.5 to 23.5% by weight, more preferably 21.5 to 23.0% by weight of the total weight of the heat-resistant cast steel, wherein the total weight of the heat-resistant cast steel If the heavy chromium content is less than 21% by weight, it may not secure high temperature corrosion resistance and oxidation resistance, and if it exceeds 24% by weight, the ferrite phase may be formed and a large amount of carbide may be formed unnecessarily, so it is used within the above range. Good to do.
  • Niobium (Nb) combines with carbon (C) to form carbides that do not decompose at high temperatures, which is effective in improving high temperature strength and high temperature creep sexixtance.
  • Cr chromium
  • carbon are combined to inhibit the formation of chromium-carbide (Cr-carbide), thereby improving oxidation resistance.
  • Niobium carbide is formed in the eutectic form to improve the castability, it is effective in the production of complex castings, such as automotive exhaust systems.
  • Heat-resistant cast steel of the present invention may include niobium content of 1.0 to 2.5% by weight, preferably 1.0 to 2.2% by weight, preferably 1.2 to 1.8% by weight of the total weight of the heat-resistant cast steel, niobium content of the total weight of heat-resistant cast steel If the amount is less than 1.0 wt%, there may be a problem that the mechanical properties and thermal fatigue life stability at high temperatures are inferior, and when it is used more than 2.5 wt%, a large amount of niobium carbide is formed at the cell boundary, and thus the heat resistant cast steel may be easily broken. It can be brittle and can rather reduce the strength and ductility.
  • thermo-mechanical fatigue life is required and properties such as proper toughness strength are required.
  • tungsten (W) is an element having a strengthening effect of tensile strength and yield strength at high temperature by being dissolved in a matrix of heat-resistant cast steel. As the tungsten content increases, the tensile property tends to be improved, but the tungsten content increases. There is a problem that the improvement in tensile properties and thermo-mechanical fatigue life are not in proportion to each other.
  • the heat-resistant cast steel of the present invention is 0.5 to 2.2% by weight, preferably 0.7 to 2.1% by weight, more preferably 0.95 to 2.05% by weight of the total weight of the heat-resistant cast steel It may include.
  • the tungsten content is less than 0.5% by weight, it may not be possible to secure an appropriate tensile strength and yield strength at high temperature.
  • the tungsten exceeds 2.2% by weight, it can be combined with carbon to form carbides in the form of M2C, M7C3, and the heat resistant cast steel of the present invention is required as a turbocharger turbine housing even if it contains only about 2.2% by weight of tungsten. It is uneconomical to use tungsten, which is an expensive element, any longer, because it can satisfy the physical properties.
  • Heat-resistant cast steel of the present invention may contain phosphorus (P) 0.045% by weight or less, preferably 0.04% by weight or less, more preferably 0.01 to 0.04% by weight, it is possible to completely remove the phosphorus component, Performing an ancillary process to remove this completely is undesirable from an economical point of view, and in the case of containing phosphorus at 0.045% by weight or less, it is possible to secure the physical properties to be obtained as a turbocharger turbine housing material. If it exceeds 0.045% by weight segregation in the heat-resistant cast steel may occur, it is preferable to include phosphorus in the above range.
  • Sulfur (S) of the heat-resistant cast steel of the present invention forms a sulfide (sulfide) such as MnS in the heat-resistant cast steel to improve the workability of the heat-resistant cast steel
  • the content of sulfur is 0.05 ⁇ 0.18 weight of the total weight of the heat-resistant cast steel %, Preferably from 0.10 to 0.18% by weight, more preferably from 0.12 to 0.17% by weight, wherein if the sulfur content is less than 0.05% by weight, it may not be possible to secure the workability of the heat-resistant cast steel, sulfur
  • the content is more than 0.18% by weight, it is preferable to include the sulfide in the above range because too much sulfide may occur and thus lower the overall physical properties of the heat resistant cast steel.
  • Heat-resistant cast steel of the present invention is carbon (C), silicon (Si), manganese (Mn), nickel (Ni), chromium (Cr), niobium (Nb), tungsten (W), phosphorus (P), sulfur (S) And in addition to iron (Fe) may include inevitable impurities during the manufacturing process, these impurities may be present in a very small amount of less than 1ppm, it is preferable that there are no impurities other than the above components.
  • Heat-resistant cast steel of the present invention having the composition described above may have a tensile strength of 180 ⁇ 210 Mpa, preferably a tensile strength of 182 ⁇ 205 Mpa at 900 °C measured according to the ASTM E8 rod test standard.
  • the heat-resistant cast steel of the present invention may have a yield strength of 150 ⁇ 180 Mpa, preferably 152 ⁇ 175 Mpa at 900 °C, measured according to the ASTM E8 rod test standard.
  • the heat-resistant cast steel of the present invention may have an elongation of 25.0 to 32%, preferably 25.0 to 31.0% at 900 ° C., measured according to ASTM E8 rod test standard.
  • the turbocharger housing Since the turbocharger housing is in direct contact with the exhaust gas of the vehicle, the turbocharger housing should be able to maintain physical properties under high temperature environmental conditions of 800 ° C. to 900 ° C.
  • the heat-resistant cast steel of the present invention may be used under 900 ° C. to 950 ° C. It has excellent mechanical properties and is suitable for use as a turbocharger housing material.
  • the heat-resistant cast steel of the present invention is a thermal fatigue of (0.70 ⁇ 1.00) ⁇ 10 3 N (Number of cycles to failure) when measuring thermal-mechanical fatigue testing (TMF) based on ASTM E 2368 test standard It is possible to have a lifetime value, preferably a thermal fatigue life value of (0.75 to 0.95) ⁇ 10 3 N, and more preferably a thermal fatigue life value of (0.80 to 0.92) ⁇ 10 3 N.
  • TMF thermal-mechanical fatigue testing
  • a rod-like specimen having a composition as shown in Table 2 was prepared.
  • the specimen is a rod-shaped specimen in the form according to the rod test standard in ASTM E8, the specifications are shown in Table 1 below.
  • Length of reduced section (A) Diameter (D) Gage length (G) Radius of filet (R) 1.25 0.250? 0.005 1.0? 0.005 3/16
  • Example 1 0.45 1.5 1.5 0.04 0.15 10 22 1.5 One - - Total weight% of heat-resistant cast steel Example 2 0.45 1.5 1.5 0.04 0.15 10 22 1.5 2 - - Example 3 0.45 1.5 1.5 0.04 0.15 10 22 1.5 1.5 - - Example 4 0.47 1.7 1.3 0.035 0.12 11 20 1.65 1.8 - - Example 5 0.45 1.5 1.5 0.04 0.15 10 22 1.5 2 One - Example 6 0.45 1.5 1.5 0.04 0.15 10 22 1.5 2 One One Comparative Example 1 0.45 1.5 1.5 0.04 0.15 10 22 1.5 3 - - Comparative Example 2 0.44 1.17 0.69 0.04 0.14 9.8 20.1 1.22 2.53 - - Comparative Example 3 0.45 1.5 1.5 0.04 0.20 10 22 1.5 2 - - Comparative Example 4 0.45 1.5 1.5 0.04 0.15 10 22 0.7 2 - - Comparative Example 5 0.45 1.5 1.5 0.04 0.15 10 22 2.7 2 - - Comparative Example 6 0.45 1.5 1.5 0.04 0.15 1
  • Yield strength, tensile strength and elongation were respectively measured at room temperature (about 25 ° C.) and high temperature (900 ° C.) according to ASTM E8, using the rod-shaped specimens prepared in Examples and Comparative Examples, respectively. Table 3 shows.
  • Examples 1 and 2 and Comparative Examples 1 and 2 specimens show Examples 1 and 2 and Comparative Examples 1 and 2 specimens as a result of tensile strength measurement at room temperature and high temperature.
  • Schaeffler Diagram of Examples 1 to 2 and Comparative Examples 1 to 2 are shown in FIG. 4.
  • Example 1 393 635 7.9 156 185 30.3
  • Example 2 405 639 7.7 172 203 25.3
  • Example 3 498 636 7.9 167 197 28.2
  • Example 4 389 645 7.7 176 205 26.0
  • Example 5 394 638 7.8 161 187 29.6
  • Example 6 641 8.0 154 192 30.6 Comparative Example 1 388 647 7.5 170 205 31.4 Comparative Example 2 365 548 7.0 149 177 30.0 Comparative Example 3 390 628 7.5 135 173 24.2
  • Comparative Example 4 392 640 7.9 151 188 30.5 Comparative Example 5 375 622 7.6 138 166 26.8 Comparative Example 6 409 642 7.6 183 218 25.5
  • Example 5 when comparing Example 5, Example 6, and Example 1 with the addition of molybdenum and / or aluminum, the mechanical properties are improved due to the additional use of these components, but the composition of Examples 1 to 4 Since the mechanical properties for the turbocharger turbine housing are satisfied, it was confirmed that there is no need to add expensive molybdenum and / or aluminum.
  • Examples 1, 2, and 1 may increase the austenite stability compared to Comparative Example 2, thereby increasing the yield strength and tensile strength at high temperature. .
  • Comparative Example 4 having a niobium content of less than 1.0 wt%, there was no significant difference in mechanical properties when compared to Example 1, but in Comparative Example 5 having a niobium content of more than 2.5 wt%, it was compared with Example 1. Rather, tensile strength and elongation tended to decrease.
  • TMF Thermo mechanical fatigue TEST
  • Example 1 (0.81 to 0.83) x 10 3 N
  • Example 2 (0.80 to 0.82) x 10 3 N
  • Example 3 (0.82 to 0.84)
  • Example 4 (0.78-0.80) ⁇ 10 3 N
  • Example 5 (0.79 ⁇ 0.81) ⁇ 10 3 N
  • Example 6 (0.80 to 0.82) x 10 3 N Comparative Example 1 (0.48-0.50) ⁇ 10 3 N Comparative Example 2 (0.59-0.61) x 10 3 N Comparative Example 4 (0.67 ⁇ 0.69) ⁇ 10 3 N Comparative Example 6 (0.54-0.56) x 10 3 N
  • Comparative Example 2 Comparative Example 4 and Comparative Example 6 also showed a result of having a low thermal fatigue life value, compared to excellent mechanical properties at high temperatures.
  • the heat-resistant cast steel of the present invention reduced the tungsten content compared to the existing heat-resistant cast steel through the above examples and experimental examples, not only increase the yield strength, tensile strength and elongation at high temperature by increasing austenite stability, but also high temperature As a result of the excellent thermal fatigue life stability in the system, it was found that it is suitable for application as a turbocharger turbine housing material operating under high temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

The present invention relates to heat-resistant cast steel for a turbocharger turbine housing and to a turbocharger turbine housing using same, the heat-resistant cast steel for a turbocharger turbine housing comprising 0.40-0.50 wt% of carbon (C), 1.0-2.0 wt% of silicon (Si), 1.0-2.0 wt% of manganese (Mn), 9.0-12.0 wt% of nickel (Ni), 21-24 wt% of chromium (Cr), 1.0-2.5 wt% of niobium (Nb), 0.5-2.2 wt% of tungsten (W), 0.045 wt% or less of phosphorus (P), and 0.05-0.18 wt% of sulfur (S), with the remainder being iron (Fe), the heat-resistant cast steel allowing for the production of a turbocharger turbine housing requiring the addition of high-cost tungsten as little as possible and yet having improved thermal fatigue life and mechanical durability at high temperatures.

Description

텅스텐 저감형 터보차저 터빈하우징용 내열주강 및 이를 이용한 터보차저 터빈하우징Heat-resistant cast steel for tungsten-reduced turbocharged turbine housings and turbocharged turbine housings using the same
본 발명은 고온에서 물성이 우수한 텅스텐 저감형 터보차저 터빈하우징용 내열주강 및 이를 이용하여 제조된 터보차저 터빈하우징에 관한 것이다. The present invention relates to a heat resistant cast steel for tungsten reduction type turbocharger turbine housing having excellent physical properties at high temperature, and a turbocharger turbine housing manufactured using the same.
터보차저는 엔진의 실린더 내부로 보다 많은 공기를 압축하여 공급함으로써 엔진의 출력을 향상시키는 것으로, 엔진에서 배출되는 배기가스를 이용하여 터빈하우징(turbine housing) 내의 터빈휠(turbine wheel)을 회전시키며, 터빈휠의 회전시 발생되는 회전력을 전달하여 대기의 공기를 압축시키는 압축기 하우징(compressor housing) 내의 압축기휠(compressor wheel)을 회전시켜 엔진으로 공급하는 구조로 이루어진다. The turbocharger improves the output of the engine by compressing and supplying more air into the cylinder of the engine. The turbocharger rotates a turbine wheel in a turbine housing using exhaust gas emitted from the engine. It is made of a structure that is supplied to the engine by rotating a compressor wheel (compressor wheel) in the compressor housing (compressor housing) for transmitting the rotational force generated during the rotation of the turbine wheel to compress the air of the atmosphere.
이러한 터빈휠을 감싸는 터빈하우징은 엔진에서 배출되는 800℃~900℃의 배기가스와 지속적으로 접촉하게 되므로 엔진의 출력에 따라 대단히 높은 열충격을 받게 되므로 터빈하우징은 높은 열적 내구성을 필요로 한다. Turbine housing surrounding the turbine wheel is in constant contact with the exhaust gas of 800 ℃ ~ 900 ℃ discharged from the engine is subjected to a very high thermal shock depending on the engine output turbine housing requires a high thermal durability.
현재 차량의 터빈하우징에 사용되는 재질은 고내열 오스테나이트계 스테인리스강(heat resistant stainless steel)등이 사용되고 있으나, 고내열 오스테나이트계 스테인리스강의 경우 고가의 텅스텐(W)을 2.5 중량% 이상, 니켈(Ni)을 19 ~ 22 중량% 정도 다량 사용하고, 추가적으로 몰리브덴(Mo) 등을 함유하고 있어서, 원가가 비싸서 상업성이 크게 떨어지는 문제가 있다.At present, the material used for the turbine housing of the vehicle is made of high heat resistant austenitic stainless steel, but in the case of the high heat resistant austenitic stainless steel, at least 2.5% by weight of expensive tungsten (W) and nickel ( Ni) is used in a large amount of about 19 to 22% by weight and additionally contains molybdenum (Mo), there is a problem that the cost is expensive and the commercial viability is greatly reduced.
상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as the background art are only for the purpose of improving the understanding of the background of the present invention, and should not be taken as acknowledging that they correspond to the related art already known to those skilled in the art.
본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로, 고비용의 텅스텐을 최소한도로 첨가하면서도 필요한 고온에서의 내구성이 향상된 내열주강 및 이를 이용하여 제조된 터보차저 터빈하우징을 제공하는데 그 목적이 있다.The present invention has been proposed to solve this problem, and an object thereof is to provide a heat-resistant cast steel and a turbocharger turbine housing manufactured using the same, which has high durability at a high temperature while adding a high cost of tungsten to a minimum.
본 발명의 목적은 텅스텐 저감형 터보차저 터빈하우징용 내열주강을 제공하는데 있으며, 본 발명의 상기 내열주강은 탄소(C) 0.40 ~ 0.50 중량%, 규소(Si) 1.0 ~ 2.0 중량%, 망간(Mn) 1.0 ~ 2.0 중량%, 니켈(Ni) 9.0 ~ 12.0 중량%, 크롬(Cr) 21 ~ 24 중량%, 니오븀(Nb) 1.0 ~ 2.5 중량%, 텅스텐(W) 0.5 ~ 2.2 중량%, 인(P) 0.045 중량% 이하, 황(S) 0.05 ~ 0.18 중량% 및 잔부의 철(Fe)을 포함한다.An object of the present invention is to provide a heat-resistant cast steel for tungsten reduction turbocharger turbine housing, the heat-resistant cast steel of the present invention is 0.40 ~ 0.50% by weight of carbon (C), 1.0 ~ 2.0% by weight of silicon (Si), manganese (Mn) ) 1.0 to 2.0 wt%, nickel (Ni) 9.0 to 12.0 wt%, chromium (Cr) 21 to 24 wt%, niobium (Nb) 1.0 to 2.5 wt%, tungsten (W) 0.5 to 2.2 wt%, phosphorus (P ) 0.045 wt% or less, sulfur (S) 0.05 to 0.18 wt% and the balance iron (Fe).
본 발명의 바람직한 일실시예에 따르면, 본 발명의 내열주강은 탄소 0.42 ~ 0.48 중량%, 규소 1.25 ~ 1.75 중량%, 망간 1.2 ~ 1.8 중량%, 니켈 9.5 ~ 11.5 중량%, 크롬 21.5 ~ 23.5 중량%, 니오븀 1.0 ~ 2.2 중량%, 텅스텐 0.7 ~ 2.1 중량%, 인 0.040 중량% 이하, 황 0.10 ~ 0.18 중량% 및 잔부의 철을 포함할 수도 있다. According to a preferred embodiment of the present invention, the heat-resistant cast steel of the present invention is 0.42 to 0.48 wt% carbon, 1.25 to 1.75 wt% silicon, 1.2 to 1.8 wt% manganese, 9.5 to 11.5 wt% nickel, chromium 21.5 to 23.5 wt% , Niobium 1.0 to 2.2 wt%, tungsten 0.7 to 2.1 wt%, phosphorus 0.040 wt% or less, sulfur 0.10 to 0.18 wt% and the balance iron.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 내열주강은 상기 탄소, 규소, 망간, 니켈, 크롬, 니오븀, 텅스텐, 인, 황 및 철 외에 몰리브덴(Mo) 및 알루미늄(Al) 중에서 선택된 1종 이상을 더 포함할 수도 있다.According to a preferred embodiment of the present invention, the heat-resistant cast steel of the present invention is one selected from molybdenum (Mo) and aluminum (Al) in addition to the carbon, silicon, manganese, nickel, chromium, niobium, tungsten, phosphorus, sulfur and iron. It may further include the above.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 내열주강은 니오븀을 1.2 ~ 2.2 중량%로 포함할 수도 있다. According to a preferred embodiment of the present invention, the heat-resistant cast steel of the present invention may include niobium in an amount of 1.2 to 2.2% by weight.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 내열주강은 텅스텐을 0.8 ~ 2.2 중량%로 포함할 수도 있다. According to a preferred embodiment of the present invention, the heat-resistant cast steel of the present invention may comprise 0.8 to 2.2% by weight of tungsten.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 내열주강은 ASTM E8 봉상 시험규격에 의거하여 측정시, 900℃에서 인장강도 180 ~ 210 Mpa를 가질 수 있다.According to a preferred embodiment of the present invention, the heat-resistant cast steel of the present invention may have a tensile strength of 180 ~ 210 Mpa at 900 ℃, measured according to the ASTM E8 rod test standard.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 내열주강은 ASTM E8 봉상 시험규격에 의거하여 측정시, 900℃에서 항복강도 150 ~ 180 Mpa를 가질 수 있다. According to a preferred embodiment of the present invention, the heat-resistant cast steel of the present invention may have a yield strength of 150 ~ 180 Mpa at 900 ℃, measured according to the ASTM E8 rod test standard.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 내열주강은 ASTM E8 봉상 시험규격에 의거하여 측정시, 900℃에서 연신율이 25.0 ~ 32.0%일 수 있다.According to a preferred embodiment of the present invention, the heat-resistant cast steel of the present invention may have an elongation of 25.0 to 32.0% at 900 ° C., measured according to ASTM E8 rod test standard.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 내열주강은 ASTM E 2368시험 규격에 의거하여 열피로시험(Thermo-Mechanical Fatigue testing, TMF) 측정시, (0.70 ~ 1.00)× 103 (Number of cycles to failure)의 열피로 수명 값을 가질 수 있다.According to a preferred embodiment of the present invention, the heat-resistant cast steel of the present invention is (0.70 ~ 1.00) × 10 3 (Number of when measured by Thermo-Mechanical Fatigue testing (TMF) based on ASTM E 2368 test standard) cycles to failure).
본 발명의 다른 목적은 앞서 설명한 다양한 형태의 내열주강을 이용하여 제조한 터보차저 터빈하우징을 제공하는데 있다.Another object of the present invention is to provide a turbocharger turbine housing manufactured using the various types of heat-resistant cast steel described above.
상술한 바와 같은 본 발명의 내열주강 및 이를 이용하여 제조된 터보차저하우징에 따르면, 고비용의 텅스텐을 최소한도로 첨가하면서도 필요한 고온(최대 950℃)에서의 기계적 내구성이 향상 및 열피로 수명이 향상된 터보차저 하우징의 제조가 가능해진다.According to the heat-resistant cast steel of the present invention as described above and the turbocharged housing manufactured using the same, the turbocharger with improved mechanical durability and heat fatigue life at the required high temperature (up to 950 ° C) while adding a high cost tungsten to a minimum The housing can be manufactured.
도 1은 실시예 1에서 제조한 시편의 단면도이다.1 is a cross-sectional view of the specimen prepared in Example 1.
도 2는 본 발명의 실시예 1 ~ 2 및 비교예 1 ~ 2에 따른 상온 인장시험결과를 나타낸 그래프이다. Figure 2 is a graph showing the results of room temperature tensile test according to Examples 1 to 2 and Comparative Examples 1 to 2 of the present invention.
도 3은 본 발명의 실시예 1 ~ 2 및 비교예 1 ~ 2에 따른 고온 인장시험결과를 나타낸 그래프이다. Figure 3 is a graph showing the high temperature tensile test results according to Examples 1 and 2 and Comparative Examples 1 and 2 of the present invention.
도 4는 본 발명의 실시예 1 ~ 2 및 비교예 1 ~ 2에 따른 쉐플러선도(Schaeffler Diagram)이다. 4 is a Schaeffler Diagram according to Examples 1 to 2 and Comparative Examples 1 to 2 of the present invention.
도 5는 본 발명의 실시예 1 ~ 2 및 비교예 1에 따른 열피로 수명 평가 결과로서, 합금별 변형률을 측정한 그래프이다.FIG. 5 is a graph illustrating a strain rate of each alloy as a heat fatigue life evaluation result according to Examples 1 to 2 and Comparative Example 1 of the present invention.
도 6은 본 발명의 실시예 1 ~ 2 및 비교예 1에 따른 열피로 수명 평가 결과로서, 열피로 수명값을 측정한 그래프이다.6 is a graph showing thermal fatigue life values as a result of thermal fatigue life evaluation according to Examples 1 to 2 and Comparative Example 1 of the present invention.
이하에서는 본 발명을 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 내열주강은 텅스텐 함량을 최소화시키면서도 현재 차량의 터빈하우징에 사용되는 재질인 기존 고내열 오스테나이트계 스테인리스강을 대체할 수 있는 물성을 가지면서도 경제성이 우수한 내열주강(또는 스테인리스강)에 관한 것이다.Heat-resistant cast steel of the present invention minimizes the content of tungsten, while having a physical property that can replace the existing high heat-resistant austenitic stainless steel, which is a material used in the turbine housing of the current vehicle, and excellent heat-resistant cast steel (or stainless steel) will be.
이러한, 본 발명의 내열주강은 오스테나이트(austenite)계 내열주강으로서, 탄소(C), 규소(Si), 망간(Mn), 니켈(Ni), 크롬(Cr), 니오븀(Nb), 텅스텐(W), 인(P), 황(S) 및 철(Fe)을 포함하며, 이러한 본 발명의 내열주강은 고온에서 인장강도(tensile strength) 및 연신율(elongation)이 우수하여 800℃ ~ 950℃의 고온 환경에서 작동되는 터보차저 터빈하우징에 매우 적합하다. The heat-resistant cast steel of the present invention is an austenitic heat-resistant cast steel, carbon (C), silicon (Si), manganese (Mn), nickel (Ni), chromium (Cr), niobium (Nb), tungsten ( W), phosphorus (P), sulfur (S) and iron (Fe), and the heat-resistant cast steel of the present invention is excellent in tensile strength and elongation at high temperatures of 800 ℃ ~ 950 ℃ Ideal for turbocharged turbine housings operating in high temperature environments.
본 발명의 내열주강 성분 중 상기 탄소(C)는 강력한 오스테나이트(austenite) 안정화 원소로 알려져 있으며, 또한 기지조직에 고용 강화되어 고온에서의 내열주강의 강도 유지에 중요한 역할을 한다. 그 외에도 크롬(Cr), 니오븀(Nb) 등과 같은 탄화물 생성원소(Carbide former)와 결합하여 탄화물(Carbide)를 형성함으로써, 액상의 주조성을 향상시키고 고온강도를 향상시킨다. 본 발명의 내열주강은 내열주강 전체 중량 중 탄소를 0.40 ~ 0.50 중량%로, 바람직하게는 0.42 ~ 0.48 중량%로, 더욱 바람직하게는 0.43 ~ 0.47 중량%로 포함할 수 있다. 이때, 탄소의 함량이 내열주강 전체 중량 중 0.40 중량% 미만이면 강한 탄화물의 형성과 오스테나이트 기지 조직 내에서 고용강화를 통해 고온 강도에 기여하는 탄소의 기능을 효과적으로 발휘되지 않는 문제점이 있을 수 있고, 0.50 중량%를 초과하면 강한 탄화물이 과다하게 형성되어 오히려 취성을 띄게 될 수 있으며, 이러한 탄화물이 열기계적 피로 환경 하에서 파단의 개시, 전파 장소로 사용되어 주강의 고온 물성이 감소하는 문제점이 있다.Among the heat-resistant cast steel components of the present invention, the carbon (C) is known to be a strong austenite stabilizing element, and is also strengthened in a matrix structure and plays an important role in maintaining the strength of the heat-resistant cast steel at high temperatures. In addition, by forming a carbide (Carbide) by combining with a carbide former (Carbide former), such as chromium (Cr), niobium (Nb), it improves the castability of the liquid phase and the high temperature strength. Heat-resistant cast steel of the present invention may include carbon of 0.40 to 0.50% by weight, preferably 0.42 to 0.48% by weight, more preferably 0.43 to 0.47% by weight of the total weight of the heat-resistant cast steel. In this case, if the carbon content is less than 0.40% by weight of the total weight of the heat-resistant cast steel, there may be a problem in that the carbon does not effectively exhibit the function of contributing to high temperature strength through the formation of strong carbides and strengthening solid solution in the austenitic matrix structure. If the content exceeds 0.50% by weight, strong carbides may be excessively formed and become brittle, and such carbides may be used as a starting point and propagation site of fracture under a thermodynamic fatigue environment, thereby reducing the high temperature properties of the cast steel.
규소(Si)는 고온 내산화성을 향상시키는 효과가 있으며, 합금의 용융(melt)내의 환원제(deoxidizer) 역할을 한다. 규소는 크롬(Cr)에 의한 산화방지를 도와주는 역할을 함으로써 내산화성을 향상시킨다. 규소에 의해 형성되는 실리카(Silica) 입자들은 크롬에 의해 합금 표면에 형성하는 피막 아래에 석출되어 부동태 피막의 형성을 돕고, 크롬 이온이 불필요하게 빠져나가는 것을 억제한다. 특히 규소의 이러한 효과는 고온에서 더욱 강화된다. 본 발명의 내열주강은 내열주강 전체 중량 중 규소를 1.0 ~ 2.0 중량%, 바람직하게는 1.25 ~ 1.75 중량%로 포함할 수 있는데, 규소의 함량이 내열주강 전체 중량 중 1.0 중량% 미만이면 크롬 이온에 의한 산화방지 효과가 크게 저감될 수 있고, 규소 함량이 2.0 중량%를 초과하면 고온 크립 저항성을 낮추고, 페라이트(ferrite) 안정화 원소로써, 오스테나이트(austenite) 기지 조직을 불안정하는 문제가 있을 수 있으므로 상기 범위 내로 함유하는 것이 좋다. Silicon (Si) has the effect of improving the high temperature oxidation resistance, and serves as a deoxidizer in the melt (melt) of the alloy. Silicon improves oxidation resistance by playing a role in preventing oxidation by chromium (Cr). Silica particles formed by silicon are precipitated under the film formed on the surface of the alloy by chromium to assist in the formation of the passivation film, and to suppress the unnecessary escape of chromium ions. In particular, this effect of silicon is further enhanced at high temperatures. Heat-resistant cast steel of the present invention may include silicon in the total weight of the heat-resistant cast steel 1.0 to 2.0% by weight, preferably 1.25 to 1.75% by weight, if the silicon content is less than 1.0% by weight of the total weight of the heat-resistant cast steel chromium ion The anti-oxidation effect can be greatly reduced, and if the silicon content exceeds 2.0% by weight, the high temperature creep resistance is lowered, and as a ferrite stabilizing element, the austenite matrix may be unstable. It is good to contain in the range.
내열주강 전체 중량 중 망간(Mn)은 오스테나이트(austenite) 안정화 원소로 작용하며, 규소(Si)와 함께 용융(melt) 내에서 환원제(deoxidizer) 역할을 한다. 본 발명의 내열주강은 내열주강 전체 중량 중 망간 함량이 1.0 ~ 2.0 중량%, 바람직하게는 1.2 ~ 1.8 중량%, 더욱 바람직하게는 1.35 ~ 1.7 중량%로 포함하는데, 이때, 망간의 함량이 내열주강 전체 중량 중 1.0 중량% 미만이면 망간 함량에 따른 효과가 미미해지는 문제가 생길 수 있고, 2.0 중량%를 초과하면 오히려 내산화성 및 크립 강도(creep strength)를 저하시킬 수 있으므로 상기 범위 내로 함유하는 것이 좋다. Manganese (Mn) in the total weight of the heat-resistant cast steel acts as an austenite stabilizing element, and acts as a deoxidizer in the melt (melt) with silicon (Si). Heat-resistant cast steel of the present invention includes a manganese content of 1.0 to 2.0% by weight, preferably 1.2 to 1.8% by weight, more preferably 1.35 to 1.7% by weight of the total weight of the heat-resistant cast steel, wherein the content of manganese is heat-resistant cast steel If less than 1.0% by weight of the total weight may cause a problem that the effect according to the manganese content is insignificant, and if it exceeds 2.0% by weight may lower the oxidation resistance and creep strength rather preferably contained within the above range .
니켈(Ni)은 강한 오스테나이트(austenite) 안정화 원소로써, 일반적으로 오스테나이트(austenite)계 스테인리스강(stainless steel, STS)에 9 중량% 이상 다량 첨가되고 있다. 니켈이 스테인리스강에 첨가될 경우 인성과 연성의 증가와 함께 내부식성, 고온 안정화 측면에서 합금의 성능을 다방면에서 우수하게 한다. 이에 반해 본 발명의 내열주강은 내열주강 전체 중량 중 니켈 함량이 9.0 ~ 12.0 중량%, 바람직하게는 9.5 ~ 11.5 중량%, 더욱 바람직하게는 10.0 ~ 11.0 중량%로 포함하는데, 이때, 니켈 함량이 내열주강 전체 중량 중 9.0 중량% 미만이면 고온에서의 적정 인장강도 및 항복강도를 확보하지 못할 수 있고, 12.0 중량%를 초과하면 고온에서의 기계적 물성을 우수해지지만, 열피로 수명 안정성이 떨어지는 문제가 있을 수이 있다.Nickel (Ni) is a strong austenite stabilizing element and is generally added in an amount of at least 9% by weight to austenitic stainless steel (STS). When nickel is added to stainless steel, the alloy has excellent performance in terms of corrosion resistance and high temperature stabilization along with increased toughness and ductility. In contrast, the heat-resistant cast steel of the present invention includes nickel in the total weight of the heat-resistant cast steel is 9.0 to 12.0% by weight, preferably 9.5 to 11.5% by weight, more preferably 10.0 to 11.0% by weight, wherein the nickel content is heat-resistant If less than 9.0% by weight of the total weight of the cast steel may not secure the proper tensile strength and yield strength at high temperatures, when exceeding 12.0% by weight is excellent mechanical properties at high temperatures, but there is a problem that the thermal fatigue life is poor There is a number.
크롬(Cr)은 내열주강의 내산화성, 내식성 향상을 위한 핵심적인 원소 중 하나로서, 내열주강의 표면에 Cr2O3 형태의 안정한 부동태 피막을 형성하여 고온에서의 내산화성 및 내식성을 향상시키는 페라이트 안정화 원소 역할을 한다. 본 발명의 내열주강은 내열주강 전체 중량 중 크롬 함량이 21 ~ 24 중량%, 바람직하게는 21.5 ~ 23.5 중량%, 더욱 바람직하게는 21.5 ~ 23.0 중량%로 포함할 수 있는데, 이때, 내열주강 전체 중량 중 크롬 함량이 21 중량% 미만이면 고온 내식성, 내산화성을 확보하지 못할 수 있고, 24 중량%를 초과하면 페라이트상을 형성시킬 수 있고, 다량의 탄화물을 불필요하게 형성할 수 있으므로, 상기 범위 내로 사용하는 것이 좋다.Chromium (Cr) is one of the key elements for the oxidation resistance, corrosion resistance of the heat-resistant cast steel, Cr on the surface of the heat-resistant cast steel 2 O 3 It forms a stable passivation film in the form and serves as a ferrite stabilizing element to improve oxidation resistance and corrosion resistance at high temperatures. Heat-resistant cast steel of the present invention may include 21 to 24% by weight, preferably 21.5 to 23.5% by weight, more preferably 21.5 to 23.0% by weight of the total weight of the heat-resistant cast steel, wherein the total weight of the heat-resistant cast steel If the heavy chromium content is less than 21% by weight, it may not secure high temperature corrosion resistance and oxidation resistance, and if it exceeds 24% by weight, the ferrite phase may be formed and a large amount of carbide may be formed unnecessarily, so it is used within the above range. Good to do.
니오븀(Nb)은 탄소(C)와 결합하여 고온에서 분해되지 않는 탄화물을 형성하며, 이로 인해 고온 강도 및 고온 크립 저항성(creep sexixtance) 향상에 효과가 있다. 또한 크롬(Cr)과 탄소가 결합하여 크롬-탄화물(Cr-carbide)의 형성을 억제함으로써 내산화성을 향상시키는 역할을 한다. 니오븀 탄화물은 공융(eutectic) 형태로 형성되어 주조성을 향상시키므로, 자동차 배기계와 같은 복잡한 형태의 주조물 제작에 효과적이다. 본 발명의 내열주강은 내열주강 전체 중량 중 니오븀 함량이 1.0 ~ 2.5 중량%, 바람직하게는 1.0 ~ 2.2 중량%, 바람직하게는 1.2 ~ 1.8 중량%로 포함할 수 있는데, 내열주강 전체 중량 중 니오븀 함량이 1.0 중량% 미만이면 고온에서의 기계적 물성 및 열피로 수명 안정성이 떨어지는 문제가 있을 수 있고, 2.5 중량%를 초과하여 사용하면 셀(Cell) 경계에 다량의 니오븀 탄화물이 형성되어 내열주강이 깨지기 쉬울 수 있고(brittle), 강도와 연성을 오히려 저하시킬 수 있다.Niobium (Nb) combines with carbon (C) to form carbides that do not decompose at high temperatures, which is effective in improving high temperature strength and high temperature creep sexixtance. In addition, chromium (Cr) and carbon are combined to inhibit the formation of chromium-carbide (Cr-carbide), thereby improving oxidation resistance. Niobium carbide is formed in the eutectic form to improve the castability, it is effective in the production of complex castings, such as automotive exhaust systems. Heat-resistant cast steel of the present invention may include niobium content of 1.0 to 2.5% by weight, preferably 1.0 to 2.2% by weight, preferably 1.2 to 1.8% by weight of the total weight of the heat-resistant cast steel, niobium content of the total weight of heat-resistant cast steel If the amount is less than 1.0 wt%, there may be a problem that the mechanical properties and thermal fatigue life stability at high temperatures are inferior, and when it is used more than 2.5 wt%, a large amount of niobium carbide is formed at the cell boundary, and thus the heat resistant cast steel may be easily broken. It can be brittle and can rather reduce the strength and ductility.
터보차저 터빈하우징용 내열주강의 경우, 터보차저의 구동이 고온에서의 열피로 및 진동이 발생되는 환경 조건 하에서 구동되는 바, 우수한 열-기계적 피로수명 확보와 함께 적정 인강강도 등의 물성이 요구된다. 그런데, 텅스텐(W)은 내열주강의 기지조직에 고용되어 고온에서의 인장강도 및 항복강도 강화 효과를 가지는 원소로써, 텅스텐 함량이 증가할수록 인장특성은 향상되는 경향이 있으나, 텅스텐 함량이 증가와 함께 인장특성 및 열-기계적 피로수명이 향상이 서로 비례관계에 있지 않는 문제가 있다. 따라서, 적정 양으로 텅스텐 함량을 조절하는 것이 유리하며, 본 발명의 내열주강은 내열주강 전체 중량 중 0.5 ~ 2.2 중량%, 바람직하게는 0.7 ~ 2.1 중량%, 더욱 바람직하게는 0.95 ~ 2.05 중량%로 포함할 수 있다. 이때, 텅스텐 함량이 0.5 중량% 미만이면 고온에서의 적정 인장강도 및 항복강도를 확보하지 못할 수 있다. 그리고, 텅스텐 2.2 중량% 초과하면 탄소와 결합하여 M2C, M7C3 와 같은 형태의 탄화물을 형성할 수 있고, 또한, 본 발명의 내열주강은 텅스텐을 2.2 중량% 정도만으로 포함하여도 터보차저 터빈하우징으로서 요구되는 물성을 만족시킬 수 있는 바, 고가의 원소인 텅스텐을 더 이상 사용하는 것은 비경제적이다. In the case of heat-resistant cast steel for turbocharged turbine housings, the turbocharger is driven under environmental conditions in which thermal fatigue and vibration occur at high temperatures. Therefore, excellent thermo-mechanical fatigue life is required and properties such as proper toughness strength are required. . By the way, tungsten (W) is an element having a strengthening effect of tensile strength and yield strength at high temperature by being dissolved in a matrix of heat-resistant cast steel. As the tungsten content increases, the tensile property tends to be improved, but the tungsten content increases. There is a problem that the improvement in tensile properties and thermo-mechanical fatigue life are not in proportion to each other. Therefore, it is advantageous to control the tungsten content in an appropriate amount, the heat-resistant cast steel of the present invention is 0.5 to 2.2% by weight, preferably 0.7 to 2.1% by weight, more preferably 0.95 to 2.05% by weight of the total weight of the heat-resistant cast steel It may include. At this time, when the tungsten content is less than 0.5% by weight, it may not be possible to secure an appropriate tensile strength and yield strength at high temperature. And, if the tungsten exceeds 2.2% by weight, it can be combined with carbon to form carbides in the form of M2C, M7C3, and the heat resistant cast steel of the present invention is required as a turbocharger turbine housing even if it contains only about 2.2% by weight of tungsten. It is uneconomical to use tungsten, which is an expensive element, any longer, because it can satisfy the physical properties.
본 발명의 내열주강은 인(P)을 0.045 중량% 이하, 바람직하게는 0.04 중량% 이하, 더욱 바람직하게는 0.01 ~ 0.04 중량%로 포함할 수 있으며, 인 성분을 완전하게 제거하는 것은 가능하나, 이를 완전하게 제거하기 위한 부수적인 공정을 수행하는 것은 경제성 측면에서 바람직하지 않고, 0.045 중량% 이하로 인을 포함하는 경우, 터보차저 터빈하우징 소재로서 얻고자 하는 물성을 확보할 수 있으므로, 인 함량이 0.045 중량%를 초과하면 내열주강 내 편석(segregation)이 발생할 수 있으므로, 상기 범위 내로 인을 포함하는 것이 좋다.Heat-resistant cast steel of the present invention may contain phosphorus (P) 0.045% by weight or less, preferably 0.04% by weight or less, more preferably 0.01 to 0.04% by weight, it is possible to completely remove the phosphorus component, Performing an ancillary process to remove this completely is undesirable from an economical point of view, and in the case of containing phosphorus at 0.045% by weight or less, it is possible to secure the physical properties to be obtained as a turbocharger turbine housing material. If it exceeds 0.045% by weight segregation in the heat-resistant cast steel may occur, it is preferable to include phosphorus in the above range.
본 발명의 내열주강 성분 중 황(S)은 내열주강 내에서 MnS와 같은 황화물(sulfide)를 형성하여 내열주강의 가공성을 향상시키는 역할을 하며, 상기 황의 함량은 내열주강 전체 중량 중 0.05 ~ 0.18 중량%로, 바람직하게는 0.10 ~ 0.18 중량%로, 더욱 바람직하게는 0.12 ~ 0.17 중량%로 포함할 수 있으며, 이때, 황 함량이 0.05 중량% 미만이면 내열주강의 가공성을 확보하지 못할 수 있고, 황 함량이 0.18 중량%를 초과하는 경우, 상기 황화물이 너무 많이 발생하여 내열주강의 전반적인 물성을 오히려 떨어뜨릴 수 있으므로 상기 범위 내로 포함하는 것이 좋다.Sulfur (S) of the heat-resistant cast steel of the present invention forms a sulfide (sulfide) such as MnS in the heat-resistant cast steel to improve the workability of the heat-resistant cast steel, the content of sulfur is 0.05 ~ 0.18 weight of the total weight of the heat-resistant cast steel %, Preferably from 0.10 to 0.18% by weight, more preferably from 0.12 to 0.17% by weight, wherein if the sulfur content is less than 0.05% by weight, it may not be possible to secure the workability of the heat-resistant cast steel, sulfur When the content is more than 0.18% by weight, it is preferable to include the sulfide in the above range because too much sulfide may occur and thus lower the overall physical properties of the heat resistant cast steel.
본 발명의 내열주강은 탄소(C), 규소(Si), 망간(Mn), 니켈(Ni), 크롬(Cr), 니오븀(Nb), 텅스텐(W), 인(P), 황(S) 및 철(Fe) 외에 제조 과정 중 불가피한 불순물을 포함할 수도 있으나, 이들 불순물은 1ppm 미만의 극소량으로 존재할 수 있으나, 상기 성분들 외의 불순물이 없는 것이 좋다.Heat-resistant cast steel of the present invention is carbon (C), silicon (Si), manganese (Mn), nickel (Ni), chromium (Cr), niobium (Nb), tungsten (W), phosphorus (P), sulfur (S) And in addition to iron (Fe) may include inevitable impurities during the manufacturing process, these impurities may be present in a very small amount of less than 1ppm, it is preferable that there are no impurities other than the above components.
앞서 설명한 조성을 가지는 본 발명의 내열주강은 ASTM E8 봉상 시험규격에 의거하여 측정시, 900℃에서 인장강도 180 ~ 210 Mpa, 바람직하게는 인장강도 182 ~ 205 Mpa를 가질 수 있다. Heat-resistant cast steel of the present invention having the composition described above may have a tensile strength of 180 ~ 210 Mpa, preferably a tensile strength of 182 ~ 205 Mpa at 900 ℃ measured according to the ASTM E8 rod test standard.
또한, 본 발명의 내열주강은 ASTM E8 봉상 시험규격에 의거하여 측정시, 900℃에서 항복강도 150 ~ 180 Mpa, 바람직하게는 152 ~ 175 Mpa를 가질 수 있다.In addition, the heat-resistant cast steel of the present invention may have a yield strength of 150 ~ 180 Mpa, preferably 152 ~ 175 Mpa at 900 ℃, measured according to the ASTM E8 rod test standard.
또한, 본 발명의 내열주강은 ASTM E8 봉상 시험규격에 의거하여 측정시, 900℃에서 연신율 25.0 ~ 32%, 바람직하게는 25.0 ~ 31.0%를 가질 수 있다.In addition, the heat-resistant cast steel of the present invention may have an elongation of 25.0 to 32%, preferably 25.0 to 31.0% at 900 ° C., measured according to ASTM E8 rod test standard.
터보차저 하우징은 차량의 배기가스와 직접 맞닿기 때문에, 터보차저 하우징은 800℃ ~ 900℃의 고온 환경 조건 하에서 물성을 유지시킬 수 있어야 하는데, 본 발명의 내열주강은 경우 900℃ ~ 950℃ 하에서도 우수한 기계적 물성을 확보할 수 있는 바, 터보차저 하우징 소재로 사용하기에 적합하다.Since the turbocharger housing is in direct contact with the exhaust gas of the vehicle, the turbocharger housing should be able to maintain physical properties under high temperature environmental conditions of 800 ° C. to 900 ° C. The heat-resistant cast steel of the present invention may be used under 900 ° C. to 950 ° C. It has excellent mechanical properties and is suitable for use as a turbocharger housing material.
또한, 본 발명의 내열주강은 ASTM E 2368 시험 규격에 의거하여 열피로시험(Thermo-Mechanical Fatigue testing, TMF) 측정시, (0.70 ~ 1.00)× 103 N(Number of cycles to failure)의 열피로 수명 값을, 바람직하게는 (0.75 ~ 0.95)× 103 N의 열피로 수명 값을, 더욱 바람직하게는 (0.80 ~ 0.92)× 103 N의 열피로 수명 값을 가질 수 있는 바, 우수한 고온 수명 안정성을 확보한 터보차저 하우징을 제공할 수 있다.In addition, the heat-resistant cast steel of the present invention is a thermal fatigue of (0.70 ~ 1.00) × 10 3 N (Number of cycles to failure) when measuring thermal-mechanical fatigue testing (TMF) based on ASTM E 2368 test standard It is possible to have a lifetime value, preferably a thermal fatigue life value of (0.75 to 0.95) × 10 3 N, and more preferably a thermal fatigue life value of (0.80 to 0.92) × 10 3 N. The turbocharger housing which ensured stability can be provided.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예(example) 및 실험예를 제시한다. 다만, 하기의 실시예 및 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실시예 및 실험예에 의해 한정되는 것은 아니다.Hereinafter, preferred examples and experimental examples are presented to help understand the present invention. However, the following examples and examples are merely to aid the understanding of the present invention, the present invention is not limited by the following examples and experimental examples.
[실시예]EXAMPLE
실시예Example 1 One
(주)캐스텍코리아에 의뢰하여, 하기 표 2와 같은 조성을 가지는 봉상의 시편을 제조하였다. 이때, 상기 시편은 ASTM E8 내 봉상 시험 규격에 따른 형태의 봉상 시편이며, 규격은 하기 표 1과 같다.Requested by Castek Korea Co., Ltd., a rod-like specimen having a composition as shown in Table 2 was prepared. At this time, the specimen is a rod-shaped specimen in the form according to the rod test standard in ASTM E8, the specifications are shown in Table 1 below.
평행부 길이(Length of reduced section, A)Length of reduced section (A) 지름(diameter, D)Diameter (D) 표점거리(gage length, G)Gage length (G) 어깨부의 반지름(radius of filet, R)Radius of filet (R)
1.251.25 0.250?0.0050.250? 0.005 1.0?0.0051.0? 0.005 3/163/16
실시예Example 2 ~  2 to 실시예Example 6 및  6 and 비교예Comparative example 1 ~ 6 1 to 6
(주)캐스텍코리아 등의 주조업체에 의뢰하여, 상기 실시예 1과 동일한 형태의 봉상 시편을 제조하여 실시예 2 ~ 실시예 6 및 비교예 1 ~ 6을 각각 실시하였으며, 제조한 봉상시편의 조성은 하기 표 2와 같다. Requested by a casting company such as Castec Korea Co., Ltd., the rod-shaped specimens of the same form as in Example 1 were prepared, and Examples 2 to 6 and Comparative Examples 1 to 6 were carried out, respectively. Is shown in Table 2 below.
구분division CC SiSi MnMn PP SS NiNi CrCr NbNb WW MoMo AlAl FeFe
실시예1Example 1 0.450.45 1.51.5 1.51.5 0.040.04 0.150.15 1010 2222 1.51.5 1One -- -- 내열주강 전체 중량% 중나머지잔량Total weight% of heat-resistant cast steel
실시예2Example 2 0.450.45 1.51.5 1.51.5 0.040.04 0.150.15 1010 2222 1.51.5 22 -- --
실시예3Example 3 0.450.45 1.51.5 1.51.5 0.040.04 0.150.15 1010 2222 1.51.5 1.51.5 -- --
실시예4Example 4 0.470.47 1.71.7 1.31.3 0.0350.035 0.120.12 1111 2020 1.651.65 1.81.8 -- --
실시예5Example 5 0.450.45 1.51.5 1.51.5 0.040.04 0.150.15 1010 2222 1.51.5 22 1One --
실시예6Example 6 0.450.45 1.51.5 1.51.5 0.040.04 0.150.15 1010 2222 1.51.5 22 1One 1One
비교예1Comparative Example 1 0.450.45 1.51.5 1.51.5 0.040.04 0.150.15 1010 2222 1.51.5 33 -- --
비교예2Comparative Example 2 0.440.44 1.171.17 0.690.69 0.040.04 0.140.14 9.89.8 20.120.1 1.221.22 2.532.53 -- --
비교예3Comparative Example 3 0.450.45 1.51.5 1.51.5 0.040.04 0.200.20 1010 2222 1.51.5 22 -- --
비교예4Comparative Example 4 0.450.45 1.51.5 1.51.5 0.040.04 0.150.15 1010 2222 0.70.7 22 -- --
비교예5Comparative Example 5 0.450.45 1.51.5 1.51.5 0.040.04 0.150.15 1010 2222 2.72.7 22 -- --
비교예6Comparative Example 6 0.450.45 1.51.5 1.51.5 0.040.04 0.150.15 12.512.5 2222 1.51.5 1One -- --
실험예Experimental Example 1 : 기계적 물성 측정 실험 1: Mechanical property measurement experiment
실시예 및 비교예에서 제조한 봉상시편 각각을 이용하여 ASTM E8에 따라 상온(room temperature, 약 25℃)과 고온(900℃)에서 항복강도, 인장강도 및 연신율을 각각 측정하였고, 그 결과를 하기 표 3에 나타내었다.Yield strength, tensile strength and elongation were respectively measured at room temperature (about 25 ° C.) and high temperature (900 ° C.) according to ASTM E8, using the rod-shaped specimens prepared in Examples and Comparative Examples, respectively. Table 3 shows.
그리고, 도 2 및 도 3에는 실시예 1 ~ 2 및 비교예 1 ~ 2 시편은 상온 및 고온에서 측정한 인장강도 측정 결과 그래프를 나타내었다. 또한, 실시예 1 ~ 2 및 비교예 1 ~ 2 시편의 쉐플러선도(Schaeffler Diagram)를 도 4에 나타내었다.2 and 3 show Examples 1 and 2 and Comparative Examples 1 and 2 specimens as a result of tensile strength measurement at room temperature and high temperature. In addition, Schaeffler Diagram of Examples 1 to 2 and Comparative Examples 1 to 2 are shown in FIG. 4.
구분division 상온Room temperature 900℃900 ℃
항복강도(MPa)Yield strength (MPa) 인장강도(MPa)Tensile Strength (MPa) 연신율(%)Elongation (%) 항복강도(MPa)Yield strength (MPa) 인장강도(MPa)Tensile Strength (MPa) 연신율(%)Elongation (%)
실시예 1Example 1 393393 635635 7.97.9 156156 185185 30.330.3
실시예 2Example 2 405405 639639 7.77.7 172172 203203 25.325.3
실시예 3Example 3 398398 636636 7.97.9 167167 197197 28.228.2
실시예 4Example 4 389389 645645 7.77.7 176176 205205 26.026.0
실시예 5Example 5 394394 638638 7.87.8 161161 187187 29.629.6
실시예 6Example 6 392392 641641 8.08.0 154154 192192 30.630.6
비교예 1Comparative Example 1 388388 647647 7.57.5 170170 205205 31.431.4
비교예 2Comparative Example 2 365365 548548 7.07.0 149149 177177 30.030.0
비교예 3Comparative Example 3 390390 628628 7.57.5 135135 173173 24.224.2
비교예 4Comparative Example 4 392392 640640 7.97.9 151151 188188 30.530.5
비교예 5Comparative Example 5 375375 622622 7.67.6 138138 166166 26.826.8
비교예 6Comparative Example 6 409409 642642 7.67.6 183183 218218 25.525.5
상기 표 3을 살펴보면, 실시예 1 ~ 6의 시편의 경우, 상업적으로 판매되고 있는 내열주강을 사용한 비교예 2와 비교할 때, 고온에서의 기계적 물성이 상대적으로 더 우수한 결과를 보였다. Looking at the Table 3, in the case of the specimens of Examples 1 to 6, compared with Comparative Example 2 using a commercially available heat-resistant cast steel, the mechanical properties at a high temperature showed relatively better results.
또한, 몰리브덴 및/또는 알루미늄을 추가 사용한 실시예 5 및 실시예 6과 실시예 1을 서로 비교해 볼 때, 이들 성분의 추가 사용으로 인해 기계적 물성이 좋아 지는 경우도 있으나, 실시예 1 ~ 4의 조성이 터보차저 터빈하우징으로 사용되기 위한 기계적 물성을 만족하므로 굳이 값 비싼 몰리브덴 및/또는 알루미늄 등을 추가할 필요가 없어도 됨을 확인할 수 있었다.In addition, when comparing Example 5, Example 6, and Example 1 with the addition of molybdenum and / or aluminum, the mechanical properties are improved due to the additional use of these components, but the composition of Examples 1 to 4 Since the mechanical properties for the turbocharger turbine housing are satisfied, it was confirmed that there is no need to add expensive molybdenum and / or aluminum.
그리고, 텅스텐은 2.2 중량%를 초과하여 사용한 비교예 1 및 니켈을 12 중량% 초과하여 사용한 비교예 6의 경우, 실시예 1과 비교할 때, 전반적으로 우수한 기계적 물성을 보였다. 실시예에 따른 쉐플러선도인 도 4를 참조하면 실시예 1, 실시예 2 및 비교예 1은 비교예 2에 비하여 오스테나이트 안정도를 증가시켜 고온에서 항복강도 및 인장강도를 증가시킨 것을 확인할 수 있다. And, in the case of Comparative Example 1 used in excess of 2.2% by weight and Comparative Example 6 used in excess of 12% by weight of nickel, compared with Example 1, the overall excellent mechanical properties. Referring to FIG. 4, which is a Schaeffler diagram according to an embodiment, Examples 1, 2, and 1 may increase the austenite stability compared to Comparative Example 2, thereby increasing the yield strength and tensile strength at high temperature. .
또한, 황을 0.18 중량% 초과한 비교예 3의 경우, 실시예 1과 비교할 때, 고온에서의 기계적 물성이 전반적으로 떨어지는 결과를 보였다.In addition, in the case of Comparative Example 3 in which sulfur was more than 0.18% by weight, compared with Example 1, overall mechanical properties at high temperatures were inferior.
또한, 니오븀 함량을 1.0 중량% 미만인 비교예 4의 경우, 실시예 1과 비교할 때, 기계적 물성 차이가 크게 없었으나, 니오븀 함량이 2.5 중량%를 초과한 비교예5의 경우, 실시예 1과 비교할 때, 오히려 인장강도 및 연신율이 감소하는 경향을 보였다.In addition, in Comparative Example 4 having a niobium content of less than 1.0 wt%, there was no significant difference in mechanical properties when compared to Example 1, but in Comparative Example 5 having a niobium content of more than 2.5 wt%, it was compared with Example 1. Rather, tensile strength and elongation tended to decrease.
실험예Experimental Example 2 :  2 : 열피로Heat fatigue 수명( life span( ThermoThermo -Mechanical Fatigue testing, Mechanical Fatigue testing, TMFTMF ) 측정 ) Measure
터보차저의 자동차 엔진의 매니폴드에 부착되어 고온의 배기가스 온도를 직접 견뎌야 하며 실린더 내의 연소에 의한 엔진 진동까지 견뎌야 하는 가혹한 환경에 장착되는 부품이다. 이러한 조건과 유사한 시험이 TMF(Thermo mechanical fatigue TEST) 시험이며, 터보차저의 내구성 시험 중 하나인 반복적인 열충격 시험과 유사한 형태의 TMF 시험은 터빈하우징 소재의 열피로 수명을 평가하는데 최적의 시험법이다. Attached to the manifold of a turbocharger's automotive engine, it is a component that is mounted in a harsh environment that must withstand high exhaust gas temperatures directly and withstand engine vibration caused by combustion in the cylinder. A similar test to this condition is the Thermo mechanical fatigue TEST (TMF) test. The TMF test, which is similar to the repeated thermal shock test, one of the turbocharger durability tests, is the best method for evaluating the thermal fatigue life of turbine housing materials. .
이에, 상기 실시예 1 ~ 실시예 6, 비교예 1 ~ 비교예 2, 비교예 4 및 비교예 6의 봉상시편과 동일한 조성의 Y-블록(Y-block)을 제조한 후, 이들 각각을 이용하여 ASTM E 2368 방법에 의거하여 TMF 측정을 수행하였고, 그 결과를 하기 표 4에 나타내었다.Thus, after preparing the Y-block (Y-block) of the same composition as the rod-shaped specimens of Examples 1 to 6, Comparative Examples 1 to 2, Comparative Example 4 and Comparative Example 6, each of them was used TMF measurement was performed according to the ASTM E 2368 method, and the results are shown in Table 4 below.
그리고, 실시예 1 ~ 2 및 비교예 1에 대한 측정 결과로서, 변형률 측정 결과를 도 5에 나타내었다. 이때, 기울기가 클수록 변형률이 커서 열피로 수명이 좋지 않은 것이다.And as a measurement result about Examples 1-2 and Comparative Example 1, the strain measurement result is shown in FIG. In this case, the larger the slope, the larger the strain, the poor the fatigue life.
또한, 실시예 1 ~ 2 및 비교예 1에 대한 열피로 수명 값 측정 결과를 도 6에 나타내었다.In addition, the thermal fatigue life value measurement results for Examples 1 and 2 and Comparative Example 1 are shown in FIG.
구분division 열피로 수명 값(N, Number of cycles to failure)N, number of cycles to failure
실시예 1Example 1 (0.81 ~ 0.83)× 103 N (0.81 to 0.83) x 10 3 N
실시예 2Example 2 (0.80 ~ 0.82)× 103 N(0.80 to 0.82) x 10 3 N
실시예 3Example 3 (0.82 ~ 0.84)× 103 N(0.82 to 0.84) x 10 3 N
실시예 4Example 4 (0.78 ~ 0.80)× 103 N(0.78-0.80) × 10 3 N
실시예 5Example 5 (0.79 ~ 0.81)× 103 N(0.79 ~ 0.81) × 10 3 N
실시예 6Example 6 (0.80 ~ 0.82)× 103 N(0.80 to 0.82) x 10 3 N
비교예 1Comparative Example 1 (0.48 ~ 0.50)× 103 N(0.48-0.50) × 10 3 N
비교예 2Comparative Example 2 (0.59 ~ 0.61)× 103 N(0.59-0.61) x 10 3 N
비교예 4Comparative Example 4 (0.67 ~ 0.69)× 103 N(0.67 ~ 0.69) × 10 3 N
비교예 6Comparative Example 6 (0.54 ~ 0.56)× 103 N(0.54-0.56) x 10 3 N
상기 표 4의 측정 결과를 살펴보면, 실시예 1 ~ 실시예 6의 경우, 열피로 수명 값이 0.78×103 N 이상으로 매우 우수한 열피로 수명 안정성을 가지는 결과를 보였다.Looking at the measurement results of Table 4, in Examples 1 to 6, the thermal fatigue life value was 0.78 × 10 3 N or more showed a very good thermal fatigue life stability.
이에 반해, 텅스텐을 2.2 중량% 초과한 비교예 1의 경우, 고온에서의 기계적 물성이 우수하였으나, 열피로 수명 선도 값이 (0.48~0.50)× 103 N으로 실시예와 비교할 때, 열피로 수명 안정성이 크게 떨어지는 결과를 보였다.On the contrary, in the case of Comparative Example 1 in which the tungsten content exceeded 2.2 wt%, the mechanical properties at high temperature were excellent, but the thermal fatigue life leading value was (0.48 to 0.50) × 10 3 N. Stability was greatly reduced.
또한, 비교예 2, 비교예 4 및 비교예 6의 경우 역시, 고온에서의 기계적 물성이 우수한 것에 비해, 낮은 열피로 수명 값을 가지는 결과를 보였다.In addition, Comparative Example 2, Comparative Example 4 and Comparative Example 6 also showed a result of having a low thermal fatigue life value, compared to excellent mechanical properties at high temperatures.
상기 실시예 및 실험예를 통하여 본 발명의 내열주강이 기존 내열주강에 비해 텅스텐 함량을 저감시켰음에도 불구하고, 오스테나이트 안정도를 증가시켜 고온에서 항복강도, 인장강도 및 연신율을 증가시킬 뿐만 아니라, 고온에서의 우수한 열피로 수명 안정성을 확보하고 있는 바, 고온 하에서 작동하는 터보차저 터빈하우징 소재로 적용하기에 적합함을 확인할 수 있었다.Although the heat-resistant cast steel of the present invention reduced the tungsten content compared to the existing heat-resistant cast steel through the above examples and experimental examples, not only increase the yield strength, tensile strength and elongation at high temperature by increasing austenite stability, but also high temperature As a result of the excellent thermal fatigue life stability in the system, it was found that it is suitable for application as a turbocharger turbine housing material operating under high temperature.

Claims (7)

  1. 탄소(C) 0.40 ~ 0.50 중량%, 규소(Si) 1.0 ~ 2.0 중량%, 망간(Mn) 1.0 ~ 2.0 중량%, 니켈(Ni) 9.0 ~ 12.0 중량%, 크롬(Cr) 21 ~ 24 중량%, 니오븀(Nb) 1.0 ~ 2.5 중량%, 텅스텐(W) 0.5 ~ 2.2 중량%, 인(P) 0.045 중량% 이하, 황(S) 0.05 ~ 0.18 중량% 및 잔부의 철(Fe)을 포함하는 것을 특징으로 하는 텅스텐 저감형 터보차저 터빈하우징용 내열주강.0.40 to 0.50 wt% of carbon (C), 1.0 to 2.0 wt% of silicon (Si), 1.0 to 2.0 wt% of manganese (Mn), 9.0 to 12.0 wt% of nickel (Ni), 21 to 24 wt% of chromium (Cr), Niobium (Nb) 1.0 to 2.5% by weight, tungsten (W) 0.5 to 2.2% by weight, phosphorus (P) 0.045% by weight or less, sulfur (S) 0.05 to 0.18% by weight and the balance iron (Fe) Heat-resistant cast steel for tungsten reduction type turbocharger turbine housing.
  2. 제1항에 있어서, 탄소 0.42 ~ 0.48 중량%, 규소 1.25 ~ 1.75 중량%, 망간 1.2 ~ 1.8 중량%, 니켈 9.5 ~ 11.5 중량%, 크롬 21.5 ~ 23.5 중량%, 니오븀 1.0 ~ 2.2 중량%, 텅스텐 0.7 ~ 2.1 중량%, 인 0.040 중량% 이하, 황 0.10 ~ 0.18 중량% 및 잔부의 철을 포함하는 것을 특징으로 하는 텅스텐 저감형 터보차저 터빈하우징용 내열주강.According to claim 1, 0.42 to 0.48% carbon, 1.25 to 1.75% silicon, 1.2 to 1.8% manganese, 9.5 to 11.5% nickel, chromium 21.5-23.5%, niobium 1.0 to 2.2%, tungsten 0.7 ~ 2.1% by weight, phosphorus 0.040% by weight, sulfur 0.10 ~ 0.18% by weight, and the remainder of iron, heat-resistant cast steel for a tungsten reduced turbocharger turbine housing.
  3. 제1항에 있어서, 몰리브덴(Mo) 및 알루미늄(Al) 중에서 선택된 1종 이상을 더 포함하는 것을 특징으로 하는 텅스텐 저감형 터보차저 터빈하우징용 내열주강.The heat-resistant cast steel for tungsten reduction type turbocharger turbine housing according to claim 1, further comprising at least one selected from molybdenum (Mo) and aluminum (Al).
  4. 제1항에 있어서, ASTM E8 봉상 시험규격에 의거하여 측정시, 900℃에서 인장강도 180 ~ 210 Mpa인 것을 특징으로 하는 텅스텐 저감형 터보차저 터빈하우징용 내열주강.The heat-resistant cast steel for tungsten reduced turbocharger turbine housing according to claim 1, wherein the tensile strength is 180 to 210 Mpa at 900 ° C as measured according to the ASTM E8 rod test standard.
  5. 제1항에 있어서, ASTM E8 봉상 시험규격에 의거하여 측정시, 900℃에서 항복강도 150 ~ 180 Mpa인 것을 특징으로 하는 텅스텐 저감형 터보차저 터빈하우징용 내열주강.The heat-resistant cast steel for tungsten reduced turbocharger turbine housing according to claim 1, characterized in that the yield strength is 150 to 180 Mpa at 900 ° C, measured according to ASTM E8 rod test standard.
  6. 제1항에 있어서, ASTM E8 봉상 시험규격에 의거하여 측정시, ASTM E 2368 시험 규격에 의거하여 열피로시험(Thermo-Mechanical Fatigue testing, TMF) 측정시, (0.70 ~ 1.00)× 103 (Number of cycles to failure)의 열피로 수명 값을 가지는 것을 특징으로 하는 텅스텐 저감형 터보차저 터빈하우징용 내열주강.The method according to claim 1, which is measured according to ASTM E8 rod test standard and when measured by Thermo-Mechanical Fatigue testing (TMF) according to ASTM E 2368 test standard, (0.70 to 1.00) × 10 3 (Number Heat-resistant cast steel for tungsten-reduced turbocharger turbine housings, characterized by a thermal fatigue life value of cycles to failure).
  7. 제1항의 터보차저 터빈하우징용 내열주강을 포함하는 터보차저 터빈하우징.Turbocharger turbine housing comprising a heat-resistant cast steel for turbocharger turbine housing of claim 1.
PCT/KR2017/007781 2016-07-22 2017-07-19 Heat-resistant cast steel for turbocharger turbine housing, requiring less tungsten, and turbocharger turbine housing using same WO2018016878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160093523A KR20180010814A (en) 2016-07-22 2016-07-22 Heat-resisting cast steel saving tungsten for turbine housing of turbocharger and turbine housing for turbocharger using the same
KR10-2016-0093523 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018016878A1 true WO2018016878A1 (en) 2018-01-25

Family

ID=60992338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007781 WO2018016878A1 (en) 2016-07-22 2017-07-19 Heat-resistant cast steel for turbocharger turbine housing, requiring less tungsten, and turbocharger turbine housing using same

Country Status (2)

Country Link
KR (1) KR20180010814A (en)
WO (1) WO2018016878A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117428153A (en) * 2023-10-13 2024-01-23 江阴宏创动能科技有限公司 High-strength high-temperature oxidation-resistant grate bar and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167655A (en) * 2000-09-25 2002-06-11 Daido Steel Co Ltd Stainless cast steel having excellent heat resistance and machinability
KR20020046988A (en) * 2000-12-14 2002-06-21 매리 제이 캘라한 Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility
WO2010150795A1 (en) * 2009-06-24 2010-12-29 日立金属株式会社 Heat-resistant steel for engine valve having excellent high-temperature strength
JP2011219801A (en) * 2010-04-07 2011-11-04 Toyota Motor Corp Austenitic heat-resistant cast steel
KR101593336B1 (en) * 2014-12-24 2016-02-11 주식회사 포스코 Austenitic Stainless Steel Having Excellent Corrosion Resistant And High Temperature Properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167655A (en) * 2000-09-25 2002-06-11 Daido Steel Co Ltd Stainless cast steel having excellent heat resistance and machinability
KR20020046988A (en) * 2000-12-14 2002-06-21 매리 제이 캘라한 Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility
WO2010150795A1 (en) * 2009-06-24 2010-12-29 日立金属株式会社 Heat-resistant steel for engine valve having excellent high-temperature strength
JP2011219801A (en) * 2010-04-07 2011-11-04 Toyota Motor Corp Austenitic heat-resistant cast steel
KR101593336B1 (en) * 2014-12-24 2016-02-11 주식회사 포스코 Austenitic Stainless Steel Having Excellent Corrosion Resistant And High Temperature Properties

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNG, S. ET AL.: "Effects of Tungsten and Molybdenum on High-Temperature Tensile Properties of Five Heat-Resistant Austenitic Stainless Steels", MATERIALS SCIENCE & ENGINEERING A, vol. 656, 22 February 2016 (2016-02-22), pages 190 - 199, XP029403520, Retrieved from the Internet <URL:https://doi.org/10.1016/j.msea.2016.01.022> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117428153A (en) * 2023-10-13 2024-01-23 江阴宏创动能科技有限公司 High-strength high-temperature oxidation-resistant grate bar and preparation method thereof

Also Published As

Publication number Publication date
KR20180010814A (en) 2018-01-31

Similar Documents

Publication Publication Date Title
US7153373B2 (en) Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility
EP2377960B2 (en) Spheroidal graphite cast iron
JP5806468B2 (en) Austenitic ductile cast iron
WO2018097604A1 (en) Austenitic steel with excellent high-temperature strength
US8540932B2 (en) Ferritic spheroidal graphite cast iron
JPWO2005007914A1 (en) Austenitic heat-resistant spheroidal graphite cast iron
EP0668367A1 (en) Heat-resistant, austenitic cast steel and exhaust equipment member made thereof
WO2016117731A1 (en) Austenitic heat-resistant cast steel and turbine housing for turbocharger using the same
WO2018016878A1 (en) Heat-resistant cast steel for turbocharger turbine housing, requiring less tungsten, and turbocharger turbine housing using same
US8454764B2 (en) Ni-25 heat-resistant nodular graphite cast iron for use in exhaust systems
JP2542753B2 (en) Austenitic heat-resistant cast steel exhaust system parts with excellent high-temperature strength
WO2015126083A1 (en) Spheroidal graphite cast-iron for engine exhaust system component
WO2015137627A1 (en) Heat-resistant spherical graphite cast iron, method for producing same and engine exhaust system comprising same
KR101845761B1 (en) Ferritic spheroidal cast iron for exhaust system
WO2019022460A1 (en) Austenite steel having excellent high-temperature strength
EP0109040B1 (en) Heat-resisting spheroidal graphite cast iron
WO2019107699A1 (en) Austenite steel having room-temperature and high-temperature strength through chromium (cr) reduction
JP3874133B2 (en) Wear-resistant steel
JP4213901B2 (en) Low thermal expansion casting alloy having excellent hardness and strength at room temperature and low cracking susceptibility during casting, and method for producing the same
JPH0686642B2 (en) Heat resistant spheroidal graphite cast iron
KR101438825B1 (en) Ferritic nodular cast iron
KR20120012176A (en) Spherical graphite cast iron
KR20160066574A (en) Heat resistant cast steel having superior high temperature strength and oxidation resistant
KR102135185B1 (en) Austenitic steel excellent in room temperature strength and high temperature strength
KR20070028809A (en) Composition of ferritic ductile cast iron for engine&#39;s exhaust manifold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831351

Country of ref document: EP

Kind code of ref document: A1