WO2018016759A1 - Device for measuring optical wavelength - Google Patents

Device for measuring optical wavelength Download PDF

Info

Publication number
WO2018016759A1
WO2018016759A1 PCT/KR2017/006786 KR2017006786W WO2018016759A1 WO 2018016759 A1 WO2018016759 A1 WO 2018016759A1 KR 2017006786 W KR2017006786 W KR 2017006786W WO 2018016759 A1 WO2018016759 A1 WO 2018016759A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
channel
signal
channel filter
Prior art date
Application number
PCT/KR2017/006786
Other languages
French (fr)
Korean (ko)
Inventor
김만식
Original Assignee
김만식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김만식 filed Critical 김만식
Publication of WO2018016759A1 publication Critical patent/WO2018016759A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J9/0246Measuring optical wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0249Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods with modulation

Definitions

  • the present invention relates to an optical wavelength measuring apparatus, and more particularly, to an apparatus for measuring an optical wavelength transmitted in an optical path of an optical communication network in which a plurality of optical wavelengths are muxed by a wavelength division multiplexing method.
  • DWDM supports O-bands (1260-1360 nm, 100 nm), E-bands (1360-1460 nm, bandwidth 100 nm), S-bands (1460-1530 nm, bandwidth 70 nm), and L-bands (1565-1). It can be used in various wavelength bands such as 1625 nm, 60 nm bandwidth) and U-band (1625 ⁇ 1675 nm, 50 nm bandwidth). Thus, wavelength division is a very effective communication method for increasing data transmission capacity.
  • wavelength division multiplexing has the advantage of economical transmission of large amounts of data, since multiple optical signals share one optical fiber, if the wavelength of an optical transmitter laser applied to wavelength division multiplexing is outside the allowable range of the allocated channel, It may cause data transmission error. Therefore, in order to install, maintain, and repair the wavelength division multiplexing, it is essential to measure the wavelength of the optical signal as well as the intensity (light output) of the optical signal.
  • CWDM optical transmitters which are cheaper than expensive DWDM optical transmitters, are not equipped with a sensing element that measures the wavelength of the laser or a device capable of compensating for wavelength displacement.
  • the wavelength of the optical signal can be changed. Therefore, the information about the exact wavelength of the optical signal transmitted in the channel currently in operation is very important to secure the reliability of the communication network.
  • An optical spectrum analyzer may be used to obtain wavelength information of a transmitted optical signal.
  • the optical spectrum analyzer has a wavelength resolution of 0.02 nm, which enables highly accurate measurement but is bulky, heavy, and expensive. There is this. As a result, optical spectrum analyzers are not suitable for use outdoors when performing fiber laying / maintenance / maintenance work.
  • FIG. 1 is a configuration diagram of an optical unit of an optical wavelength power meter shown in Patent 10-0820947.
  • an optical signal including a plurality of channels passes through a collimator lens 20 and a channel filter 31 to be incident on the photodetector 40, and a stepping motor 33 is a channel filter 31. While rotating the rotating plate 32 is attached to measure the light intensity for each channel of the optical signal including a plurality of channels.
  • This method can measure the optical intensity of each channel when the input optical signal is within the range of the channel, but cannot distinguish whether the wavelength of the input optical signal is at the center of the channel or at the edge of the channel. The disadvantage is that it does not provide accurate information.
  • FIG. 2 is a diagram illustrating the channel configuration and the characteristics of the channel filter of the CWDM band.
  • the CWDM has a center wavelength separated by 20 nm from 1270 nm to 1610 nm, and each channel band may have 20 nm.
  • the channel filter 31 may pass a 7 nm band (for example, a 1483 nm to 1497 nm band when the center frequency is 1490 nm) on both sides of the center wavelength.
  • the interval between CWDM channels is 20 nm as the interval d ⁇ ch between the center wavelengths ⁇ c of neighboring channels.
  • An object of the present invention to solve the above-mentioned problems is not only to measure the optical intensity of each channel in wavelength multiplexed optical communication, but also to measure how far the optical signal of each channel is from the center wavelength of the channel and even It is to provide a measuring instrument that can measure the light wavelength and light intensity even if it is out of range.
  • the optical wavelength measuring device for achieving the above object is an optical input unit for inputting an optical signal including a plurality of optical wavelengths and converting the optical signal into parallel light using a lens, the optical signal output from the optical input unit A channel filter for filtering, a rotating plate to which the channel filter is attached,
  • a signal processor may extract an optical wavelength value based on an angle and the electrical signal, and a display unit may display an optical wavelength value extracted by the signal processing circuit.
  • the electrical signal may be an analog signal proportional to the intensity of the optical signal passing through the channel filter, and the signal processor may extract the intensity of the optical signal based on the electrical signal.
  • the channel filter may be attached in parallel with a tangent in the rotation direction of the rotating plate so that an angle at which the optical signal is incident on the channel filter may change according to the rotation of the motor.
  • the signal processor may be configured to display the optical signal based on a rotation angle of the motor at a point where the electrical signal changes from a high point higher than a preset reference value to a low point that is smaller than the preset reference value or the electric signal changes from a low point to a high point. It is possible to extract the optical wavelength value contained in, calculate the displacement of the transmission band of the channel filter according to the rotation angle of the motor, and extract the optical wavelength value included in the optical signal based on the displacement. When calculating the displacement of the transmission band of the channel filter, it may be calculated based on the right edge wavelength or the left edge wavelength of the transmission band.
  • the optical wavelength measuring device receives a light source generator capable of generating a light source for calibration, a driver for driving the light source generator, and light output from the light source generator, and transmits light having a specific narrow band wavelength among inputs having a wide wavelength line width.
  • a light source generator capable of generating a light source for calibration
  • a driver for driving the light source generator
  • light output from the light source generator and transmits light having a specific narrow band wavelength among inputs having a wide wavelength line width.
  • an in-line 50G DWDM filter for reflecting the other optical signals of the remaining wavelengths
  • the optical input unit has two input ports, and the first input port receives an external optical signal for measurement. 2
  • the input port may receive a calibration optical signal through which the optical signal generated by the light source generator passes through the in-line 50G DWDM filter.
  • the plurality of channel filters are classified into two groups, the first group is composed of a plurality of CWDM channel filters and the second group is composed of a plurality of DWDM channel filters, or the first group is a plurality of 50G DWDM.
  • Channel filters for the second group and the second group is composed of a plurality of channel filters for 100G DWDM, or the first group is composed of a plurality of channel filters for C-band DWDM and the second group is a plurality of L-band DWDM
  • the channel filters may be configured.
  • the present invention it is possible to precisely measure the wavelength of the received optical signal and to measure the output of the optical signal, thereby providing accurate information on the wavelength value of the optical signal in the wavelength multiplex optical communication system. It can be checked and it can facilitate the maintenance and repair of the optical network.
  • FIG. 1 is a configuration diagram of an optical unit of an optical wavelength power meter shown in Patent 10-0820947.
  • FIG. 2 is a diagram illustrating the channel configuration and the characteristics of the channel filter of the CWDM band.
  • 3 is a diagram illustrating a change in wavelength to be filtered according to a change in incident angle.
  • FIG. 7 illustrates that the optical signal 414 enters the center of the channel filter 422 at the incident angle of 0 degrees when the wavelength is measured while rotating one channel filter, without causing loss of the optical signal 414.
  • FIG. 2 is a diagram for calculating rotation angles 720 and 721 capable of rotating the channel filter 422 as much as possible.
  • FIG. 8 illustrates that when the wavelength is measured while rotating one channel filter, when the optical signal 414 is incident from the center of the channel filter 422 at the incident angle of 0 degrees, the optical signal 414 is not generated.
  • 3 is a diagram for calculating a rotation angle 820 that can rotate the channel filter 422 as much as possible.
  • FIG. 9 is another embodiment of the present invention for varying the angle of incidence, in which a beam of light signal 414 incident on channel filter 422 is made to make the maximum angle of incidence larger so that a larger wavelength shift occurs than in the method of FIG. It is a figure which shows the method of inclining itself and injecting into a filter.
  • FIG. 10 is a diagram illustrating an example in which a transmission band wavelength of the channel filter 422 is changed by changing the incident angle ⁇ according to the rotation angle ⁇ of the motor when the motor 425 is rotated.
  • FIG. 11 is a diagram for describing a method of measuring a wavelength of an input optical signal according to an exemplary embodiment.
  • FIG. 13 is a diagram showing an embodiment in which 100 GHz DWDM is applied to a C-band (1530 to 1565 nm, bandwidth 35 nm) wavelength band.
  • FIG. 15 is a diagram illustrating a configuration of an optical wavelength measuring device optical part for 100 GHz DWDM C-band according to an embodiment of the present invention.
  • FIG. 16 is a view showing the configuration of an optical wavelength measuring instrument optical unit for a 100 GHz DWDM C-band having a light source for wavelength calibration according to another embodiment of the present invention.
  • FIG. 18 is a diagram illustrating a wavelength band defined in a communication standard (E-PON, G-PON, GE-PON, 10G-PON, NG-PON2) of the optical subscriber network that is currently standardized.
  • E-PON, G-PON, GE-PON, 10G-PON, NG-PON2 a communication standard of the optical subscriber network that is currently standardized.
  • portion When a portion is referred to as being “above” another portion, it may be just above the other portion or may be accompanied by another portion in between. In contrast, when a part is mentioned as “directly above” another part, no other part is involved between them.
  • first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
  • the thin film filter may change the wavelength to be filtered according to the change of the light incident angle.
  • the value of the changed wavelength has the following relationship.
  • ⁇ o is the center wavelength of the filter when the light incident angle is 0 degrees
  • represents the incident angle
  • n eff represents the effective refractive index of the thin film filter.
  • FIG. 3 shows the change in wavelength 310 filtered by the thin film filter and the specific incident angle when the incident angle increases from 0 to 14 degrees in the thin film filter having a central wavelength of 1550 nm and an effective refractive index of 2.0 when the incident angle is 0 degrees.
  • the amount of change 320 of the wavelength to be filtered is shown when the incident angle is further changed by one degree.
  • the wavelength filtered by about 6 nm may be changed. If the incident angle is controlled to be 10 degrees in a filter designed to have a center wavelength of 1550 nm at an incident angle of 0 degrees, the center wavelength to be filtered is changed from 1550 nm to 1544 nm.
  • the wavelength of about ⁇ 1.2 nm is displaced.
  • the characteristic wavelength of the filter decreases from 1544 nm to 1542.8 nm.
  • FIG. 4 is a diagram illustrating a configuration of an optical wavelength meter according to an exemplary embodiment of the present invention.
  • an optical wavelength measuring device receives an optical signal including a plurality of optical wavelengths and transmits the optical signal by converting the optical signal into parallel light by using a lens.
  • the optical unit 420 for analyzing the wavelength and the output of the optical signal received through the 410 to convert the electrical signal into an electrical signal, the control unit 430 for controlling the rotation angle of the motor 425 in the optical unit 420, the control unit ( 430 generates a rotation angle control signal and performs A / D conversion of the output of the optical unit 420, and extracts the optical wavelength value and the light output from the rotation angle and A / D converted output waveform and the magnitude of the output signal.
  • the signal processing circuit unit 440 and the display unit 450 for displaying the measured wavelength and the light output.
  • the optical input unit 410 is a module for receiving an optical signal transmitted through an optical cable, and may have an interface for receiving an optical signal from the optical cable.
  • the light input unit 410 may include a lens 411 for making the received light signal into parallel light.
  • the optical unit 420 includes a channel filter 422 and a channel filter 422 for filtering an optical signal for each channel, and are controlled by the rotating plate 424 and the control unit 430 which are rotated by the start of the motor 425. It may include a motor 425 for rotating the rotating plate 424 and a photo detector 423 for converting the optical signal passed through the channel filter into an electrical signal.
  • FIG. 5 is a view showing the structure of the optical unit of the optical wavelength meter according to another embodiment of the present invention.
  • the optical unit 420 is coupled to the motor 425 and the motor shaft 426 to rotate the rotating plate 424 according to the control signal of the control unit 430 by the rotation of the motor shaft 426.
  • Rotating plate 424 having a circular or regular polygonal shape that rotates together, a channel filter 422 attached to an outer circumference of the rotating plate 424, and a photo detector 423 for converting an optical signal passing through the channel filter into an electrical signal. Can be.
  • the rotating plate 424 may attach the channel filter 422 to the outer circumference, and may have a '-' shape in order to allow the photodetector 423 to detect the optical signal passing through the channel filter 422. Can be. That is, the center of the rotating plate 424 may be coupled to the motor shaft 426, and the radial end portion of the rotating plate 424 may include a protrusion 427 protruding in a direction opposite to the motor shaft 426. A plurality of channel filters 422 may be attached to the outer circumference of the protrusion 427, and the protrusions may face toward the center of the rotating plate 424 below the channel filter 422 so that an optical signal passing through the channel filter 422 may pass. The hole 428 may be drilled.
  • a plurality of channel filters 422 may be attached to the circumference of the rotating plate 424.
  • Each channel filter may be designed to have a different filtering center wavelength. That is, in the case of the CWDM channel filter, the channel filter may be designed such that the center wavelength has a 20 nm interval between 1270 nm and 1610 nm.
  • a reference may be set to 0 degrees when the channel filter having a center wavelength of 1270 nm is aligned with the light input unit 410 and the photo detector 423. Then, the channel filter having a center wavelength of 1290 nm may be positioned at 22.5 degrees, and the channel filter having a center wavelength of 1310 nm may be positioned at 45 degrees. In addition, a channel filter having a center wavelength of 1610 nm may be positioned at 337.5 degrees. Accordingly, by applying the plurality of channel filters 422 having different center frequencies to be filtered by rotating the rotating plate 422, various wavelengths included in the optical signal may be measured.
  • the light input unit 410 may arrange the parallel light outside the rotating plate 424 so that the parallel light may be incident on the channel filter 422 from the outside of the rotating plate 424, and the photo detector 423 may move the channel filter 422.
  • the optical signal may be disposed to face the optical input unit 410 below the protrusion 427 of the rotating plate 424 so as to detect the optical signal that has passed.
  • the photo detector 423 may be disposed outside the rotating plate, and the light input unit 410 may be disposed below the protrusion of the rotating plate to transmit the optical signal to the channel filter 422 through the hole 428.
  • the optical signal 413 to be measured is transformed into parallel light while passing through the lens 411 of the optical input unit 410.
  • the optical signal 414 transformed into parallel light is incident on one of the channel filters 422.
  • the channel filter to which the optical signal 414 is incident may be selected by manipulating the motor 425 under the control of the signal processor 440 and the controller 430.
  • 16 channel filters 422 are attached to the rotating plate 424 as described above, when the rotation angle of the motor 425 is rotated at intervals of 22.5 degrees, one channel filter 422a is selected from the 16 filters.
  • the incident angle of the optical signal 414 incident on the selected channel filter 422a may be changed.
  • the transmission band of the channel filter 422a selected by Equation 1 is changed, and the wavelength included in the optical signal 414 according to the changed transmission band. And light output can be measured.
  • FIG. 6 is a view showing the structure of the optical unit of the optical wavelength meter according to another embodiment of the present invention.
  • the rotating plate 424b may be a circular or regular polygonal plate having no protrusion having a center connected to the motor shaft 426.
  • the channel filter 422 may be attached perpendicularly to the surface of the rotating plate at the end of the rotating plate 424b.
  • the channel filters 422 may be disposed such that the direction in which the optical signal 414 is incident is from the outer circumference of the rotating plate 424b to the center or the circumferential direction of the rotating plate 424b.
  • 7 to 9 are views for explaining the change in the incident angle and the transmission band of the channel filter by the rotation of the motor 425 of FIG. 5 or 6.
  • FIG. 7 illustrates that the optical signal 414 enters the center of the channel filter 422 at the incident angle of 0 degrees when the wavelength is measured while rotating one channel filter, without causing loss of the optical signal 414.
  • FIG. 2 is a diagram for calculating rotation angles 720 and 721 capable of rotating the channel filter 422 as much as possible.
  • the maximum rotation angle 720 may be calculated using Equation 3 by the size of the channel filter and the radius of the rotating plate to which the channel filter is attached.
  • L is the horizontal length 730 of the channel filter, which may be the length in the circumferential direction of the rotating plate 424
  • D is the beam diameter of the optical signal 414
  • R is the rotational center of the rotating plate 424.
  • the distance to the bottom surface of the channel filter 422, t represents the thickness 731 of the channel filter.
  • FIG. 8 illustrates that when the wavelength is measured while rotating one channel filter, when the optical signal 414 is incident from the center of the channel filter 422 at the incident angle of 0 degrees, the optical signal 414 is not generated.
  • 3 is a diagram for calculating a rotation angle 820 that can rotate the channel filter 422 as much as possible.
  • the maximum rotation angle ⁇ max may be determined as follows by the size of the filter and the radius of the rotating plate to which the filter is attached.
  • L represents the horizontal length 730 of the channel filter, which may be the length of the circumferential direction of the rotating plate 424
  • X represents the offset 830 between the filter center and the input center of the optical signal 145.
  • D denotes the beam diameter of the optical signal 414
  • R denotes the distance from the center of rotation of the rotating plate 424 to the bottom of the channel filter 422
  • t denotes the thickness 731 of the channel filter.
  • the offset 830 X should be smaller than (L-D) / 2 so that no loss of input light occurs.
  • the center wavelength ⁇ o 1550 nm and the effective refractive index n eff
  • the wavelength displacement 840 is 0 nm to -5.9 nm.
  • FIG. 9 is another embodiment of the present invention for changing the angle of incidence, the beam of the optical signal 414 incident on the channel filter 422 to make the maximum angle of incidence larger so that a larger wavelength shift occurs than the method of FIG. It is a figure which shows the method of inclining itself and injecting into a filter.
  • the maximum incident angle in this case can be calculated using [Equation 5].
  • the incident angle ( ⁇ ) can vary from +2 degrees to 12.1 degrees.
  • the center wavelength ⁇ o 1550 nm and the effective refractive index n eff
  • the wavelength displacement 940 is -0.24 nm to -8.5 nm.
  • the reflection loss characteristic of the wavelength meter may be better.
  • Table 1 is a table comparing the ranges of wavelength shifts that can be obtained by the method shown in FIGS. 7, 8, and 9 for the same channel filter and the same incident light.
  • the maximum variable wavelength range can be increased by about four times by giving an offset to the incident position of the optical signal or giving an inclination slope.
  • parameter unit 7 8 9 Channel filter Length (L) mm 2.0 2.0 2.0 Thickness (t) mm 1.0 1.0 1.0 1.0 1.0 1.0 Effective refractive index (n eff ) - 2.0000 2.0000 2.0000 Light signal wavelength mm 1550.0 1550.0 1550.0 Beam diameter mm 0.3 0.3 0.3 offset mm 0.0 0.55 0.55 inclination deg. 0.0 0.0 2.0 Tumbler diameter mm 7.0 7.0 7.0 angle of incidence at least deg. 0.0 0.0 2.0 maximum deg. 6.1 10.1 12.1 range deg. 6.1 10.1 10.1 Wavelength displacement at least nm 0.00 0.00 -0.24 maximum nm -2.19 -5.94 -8.51 range nm 2.19 5.94 8.27
  • the wavelength change relation of Equation 1 is based on a channel filter having an effective refractive index of 2.0, but is not limited to a channel filter having an effective refractive index of 2.0.
  • the effective refractive index is determined by the refractive indices of the dielectrics used for the lamination. According to Equation 1, when the effective refractive index decreases by 5%, the wavelength shift increases by 11%.
  • the conventional optical wavelength power meter as shown in FIG. 1 does not have the same effect as the present invention.
  • the wavelength value cannot be measured.
  • the signal processor 440 controls the motor 425 to rotate the rotating plate 424 to detect an electric signal coming from the photo detector 423 to precisely detect an optical wavelength included in the optical signal. It can be measured.
  • FIG. 10 is a diagram illustrating an example in which a transmission band wavelength of the channel filter 422 is changed by changing the incident angle ⁇ according to the rotation angle ⁇ of the motor when the motor 425 is rotated.
  • the method proposed in the present invention for measuring the optical wavelength included in the input optical signal uses the wavelength of the left edge 1020 of the transmission band of the channel filter ⁇ LE and the wavelength of the right edge 1010 ⁇ RE . .
  • the rotation angle ⁇ of the motor is set to be perpendicular to the optical signal 414 to which each channel filter 422 is incident, that is, the incident angle ⁇ of the optical signal 414 is zero.
  • the channel filter 422 can pass only the wavelength of the designed band at the designed center wavelength ⁇ C.
  • the left edge wavelength ⁇ LE may be ⁇ c-7 nm
  • the right edge wavelength ⁇ RE may be ⁇ c + 7nm. That is, when the center wavelength ⁇ C is 1550 nm, the left edge wavelength ⁇ LE may be 1543 nm, and the right edge wavelength ⁇ RE may be 1557 nm. Then, the right edge 1010 wavelength ⁇ RE and the left edge 1020 wavelength ⁇ LE of the transmission band of the channel filter when the motor 425 is rotated at each rotation interval d ⁇ are calculated.
  • the rotating plate 424 rotates in the same manner, and the channel filter 422 attached to the circumference of the rotating plate 424 also rotates by d ⁇ .
  • the incident angle ⁇ at which the optical signal 414 is incident on the channel filter 422 becomes d ⁇ .
  • the wavelength band through which the channel filter 422 can pass is changed as described with reference to FIGS. 7 to 9.
  • the left edge wavelength ⁇ REi and the left edge wavelength ⁇ LEi are changed accordingly. This change can be calculated using Equation 1.
  • N channel filters are attached to the rotating plate 424, and for each channel filter, when N incidence angles (0, d ⁇ , 2d ⁇ , ..., (M-1) d ⁇ ) are calculated, a total of NxM You can get the data set for calibration.
  • ⁇ k is a value between 0 and 360 degrees as an angular position of the motor
  • ⁇ j has a value of 0 to (M-1) d ⁇ as an angle of incidence of an optical signal to the filter.
  • d ⁇ j Is the wavelength shift value due to the change in the incident angle
  • d ⁇ REj is the displacement value of the wavelength at the right edge 1010
  • d ⁇ LEj is the displacement value of the wavelength at the left edge 1020.
  • the calibration data can have values as shown in Table 2 below.
  • the calibration data may be stored in a nonvolatile memory included in the signal processor 440 of FIG. 4 and used for wavelength measurement.
  • FIG. 11 is a diagram for describing a method of measuring a wavelength of an input optical signal according to an exemplary embodiment.
  • the signal processor 440 may measure the wavelength included in the input optical signal by observing the output of the photodetector 423.
  • FIG. 11 assumes a case where an optical wavelength 1100 corresponding to a band of a specific channel filter is included in the optical signal 414. If the optical wavelength 1100 falls within the transmission band 1110 of the specific channel filter, the optical wavelength 1100 passes through the channel filter and is transmitted to the photo detector 425. The photodetector 425 may generate an electrical signal corresponding to the intensity of the optical wavelength to be reached and transmit the generated electrical signal to the signal processor 440.
  • the present invention uses the electrical output signal of the port detector 425 for precise wavelength measurement.
  • the transmission band 1110 of the specific channel filter when the incident angle is 0 may be changed by rotating the rotating plate 424 and the channel filter 422 under the control of the signal processor 440.
  • the incident angle becomes d ⁇
  • the transmission band of the channel filter may be changed to 1120.
  • the incident angle becomes 2d ⁇
  • the transmission band of the channel filter becomes 1130.
  • Continuously rotating by d ⁇ further increases the angle of incidence and thus the transmission band of the channel filter continues to move to the lower side, whereby the incident light wavelength 1100 becomes the right edge of the channel filter transmission band 1140 when the incident angle becomes a ⁇ d ⁇ . Is caught.
  • FIG. 11 shows that the incident light wavelength 1100 becomes the right edge of the channel filter transmission band 1140 when the incident angle becomes a ⁇ d ⁇ . Is caught.
  • the output of the photodetector 425 is high. If the value is maintained, but moved once more by d ⁇ , the optical wavelength 1100 is out of the channel filter transmission band and cannot pass through the channel filter. As a result, the output of the photodetector 425 is hardly output. Since the optical wavelength 1100 does not exist in the channel filter transmission band, even if it is continuously moved by d ⁇ and reaches the maximum rotation angle in one channel filter, the output of the photodetector 425 does not come out.
  • the signal processor 440 may measure the precise wavelength of the optical wavelength 1100 input using the number of d ⁇ shifted from the high point to the low point of the photodetector 425 and the pre-calculated calibration data. Can be.
  • the output of the photodetector 425 is k when the output of the photodetector 425 is high and the rotation angle is increased by 0.5 degrees (d ⁇ ).
  • the high point and the low point of the electric signal may be a high point if the value is larger than this based on a predetermined value, and a low point if the value is smaller than this value.
  • FIG. 12 is a view for explaining a method of measuring a wavelength of an input optical signal according to another embodiment of the present invention.
  • the transmission band 1210 of the specific channel filter when the incident angle is 0 may be changed by rotating the rotating plate 424 and the channel filter 422 under the control of the signal processor 440.
  • the transmission band of the channel filter may be changed to 1220.
  • the incident angle becomes 2d ⁇ and the transmission band of the channel filter becomes 1230. Continuously rotating by d ⁇ further increases the angle of incidence and thus the transmission band of the channel filter continues to move to the lower side, whereby the incident light wavelength 1100 becomes the left edge of the channel filter transmission band 1240 when the incident angle becomes b ⁇ d ⁇ . Is caught. As shown in FIG.
  • the output of the photodetector 425 is If the rotation angle is b ⁇ d ⁇ (1250) by moving it one more time by d ⁇ , the optical wavelength 1200 enters the channel filter transmission band and passes through the channel filter. As a result, the photodetector 425 The output of) will show a high value. Afterwards, the optical wavelength 1200 remains in the channel filter transmission band until the maximum rotation angle in one channel filter is continued by d ⁇ , so that the output of the photodetector 425 maintains a high value.
  • the signal processor 440 may measure the precise wavelength of the optical wavelength 1200 input using the number of d ⁇ moved from the low point to the high point of the photodetector 425 and the pre-calculated calibration data. Can be.
  • the signal processor 440 uses the following Equation 6 and the output of the photodetector 425 as shown in the example of FIG. 12.
  • Equation 7 When the low point is changed to the high point, Equation 7 below can be applied to obtain an optical wavelength included in the input optical signal.
  • ⁇ (i) is the measured wavelength value of the i-th channel
  • ⁇ RE (i), ⁇ LE (i), d ⁇ REj and d ⁇ LEj are obtained from the pre-calculated calibration data, where i and j may be obtained based on channel information and rotation angle information at the time when the output of the photodetector 425 changes from a high point to a low point or from a low point to a high point.
  • the measurement of the light output of each channel is calculated by using the following equation (8) by dividing the photodetector output signal of FIG. 11 or 12 at the incident angle position and dividing by the previously measured Responsivity R value of the photodetector 425. can do.
  • I (i) is an output value of the photodetector 425 acquired at the incident angle position.
  • the middle position of the section in which the photodetector 425 outputs a high signal is selected as the incident angle position for acquiring the light output.
  • the left and right values of the middle position may be averaged.
  • ⁇ measure 1030 a range of measurable wavelength
  • ⁇ ambiguity 1040 a wavelength region in which the wavelength cannot be measured.
  • Measurement range and the measurement impossible region is a minimum angle of incidence ( ⁇ min) wavelength displacement (d ⁇ min), the maximum incident angle ( ⁇ max) wavelength displacement of the channel filter (d ⁇ max) in the channel and the channel of the for a single channel filter It is determined by the interval (dS channel ), and can be obtained using Equations 9 to 13.
  • ⁇ (0), ⁇ ( ⁇ min ) and ⁇ ( ⁇ max ) are the transmission bands of the channel filter at the incident angle of 0 degrees, the minimum incident angle, and the maximum incident angle, respectively, and ⁇ c is the center wavelength.
  • the area where the wavelength obtained from Equation 13 cannot be measured may occur when the maximum wavelength shift (d ⁇ max ) is smaller than the transmission bandwidth (d ⁇ RE + d ⁇ LE ), in which case only the input optical signal is within ⁇ ambiguity Able to know.
  • wavelength cuff d ⁇ -0.24nm--8.5nm as shown in the example of FIG.
  • the bandwidth of the channel filter when the incident angle is 0 degrees is not the same on the left and right sides of the channel center wavelength, and the longer wavelength is wider, the range of wavelengths that can be measured using the channel filter is larger than the bandwidth of the channel filter.
  • the technique of the present invention can be applied to DWDM networks as well as CWDM.
  • FIG. 13 is a diagram illustrating an embodiment in which 100 GHz DWDM is applied to a C-band (1530 to 1565 nm and a bandwidth of 35 nm).
  • DWDM technology as well as the C-band shown in Figure 13 can be applied to O-band, E-band, S-band, L-band, U-band.
  • the maximum wavelength displacement is 9.5 nm
  • the wavelength displacement (d ⁇ / d ⁇ ) per degree is ⁇ 1.18 nm / deg, so that the rotation step d ⁇ is 0.05 degrees or less to obtain a wavelength resolution of 0.05 nm.
  • FIG. 15 is a diagram illustrating a configuration of an optical wavelength measuring device optical part for 100 GHz DWDM C-band according to an embodiment of the present invention.
  • a 50 GHz DWDM channel filter 429 having a transmission bandwidth of about 0.2 nm is applied, and the DWDM channel filter 429 may apply a channel filter having a transmission bandwidth of 0.2 nm or less.
  • the DWDM channel filter 429 may be a filter having a narrow transmission band having a transmission band of 0.2 nm.
  • FIG. 15 illustrates the measurement of the wavelength and the light output of the 100G DWDM optical signal by applying the 50G DWDM channel filter
  • the optical output may be measured even when the input signal is the 50G DWDM optical signal.
  • the wavelength cannot be measured, and only the optical output value of each channel can be measured.
  • the L-band 50G DWDM channel filters may be attached instead of the C-band 50G DWDM channel filter 429.
  • 7 DWDM channel filters may be attached to the rotating plate of FIG. 15 and additional CWDM channel filters 422 may be attached to the circumference of the remaining rotating plate to use DWDM / CWDM for common use, or L-band DWDM channel filters may be attached to the L- band DWDM channel filter. Can be used for both band / C-band.
  • 16 is a configuration diagram of an optical unit according to another embodiment in which the wavelength and the light output of the C-band 100 GHz DWDM optical signal are measured.
  • the lens 411 may receive two optical signals 413 and 413a.
  • the optical signal 413 is input from the outside as an optical signal to be measured that includes a plurality of optical wavelengths
  • the optical signal 413a is an optical signal for wavelength calibration of the measuring instrument, which can be generated within the measuring apparatus presented in the present invention.
  • the optical input unit 410 may include two input ports, and the first input port may receive an external optical signal to be measured, and the second input port may receive a calibration optical signal and transmit the same to the lens 411. have.
  • FIG. 17 is a diagram illustrating an embodiment of generating a calibration optical signal 413a.
  • the optical wavelength meter may include a calibration light source (for example, a 1550 nm SLD or 1550 nm LED) in addition to the configuration shown in FIG. 4.
  • a light source generator 1720 capable of generating a light source, a driver 1710 driving the light source generator 1720, and light 1721 outputted from the light source generator to receive a light having a specific narrow band from among inputs having a wide wavelength line width.
  • the optical signal 1731 transmitted through the in-line 50G DWDM filter 1730 may be input to the second input port of the optical input unit 410 to become an input optical signal 413a of the lens 411.
  • the in-line 50G DWDM filter 1730 has a transmission bandwidth of 0.2 nm and the center wavelength is 1529.1633 nm (frequency 196.05 THz) defined by the 50G DWDM standard
  • the light transmitted through the in-line 50G DWDM filter 1730 is obtained.
  • the wavelength spectrum is shaped like 1731a, and the center wavelength at this time is also 1529.1633 nm.
  • the optical signal 1731 transmitted through the in-line 50G DWDM filter 1730 becomes an input optical signal 413a of the lens 411 and may be incident to the channel filter attached to the rotating plate.
  • a specific channel filter among the two channel filters is positioned at a specific rotation angle ⁇ , the output signal of the photodetector may be maximized.
  • the calibration light source may use a wavelength stabilized light source for 50G DWDM. In this case, the calibration light source does not need to have a separate in-line 50G DWDM filter, and an output port of the 50G DWDM wavelength stabilized light source is input to the lens 411. May be connected directly to port 413a.
  • FIG. 18 is a diagram illustrating a wavelength band defined by a communication standard (E-PON, G-PON, GE-PON, 10G-PON, and NG-PON2) of a standardized optical subscriber network.
  • a communication standard E-PON, G-PON, GE-PON, 10G-PON, and NG-PON2
  • the optical wavelength measuring instrument according to the present invention can attach a plurality of filters and change the angle of incidence of individual filters, it can be equipped with various kinds of filters having transmission bands suitable for various communication standards, The light output can be measured.
  • the configuration of the filter for measuring the light output of all the channels shown in FIG. 16 is as follows.
  • the 11 filters are divided into three groups, each group consisting of one broadband filter, three CWDM filters, and seven DWDM filters.
  • the DWDM filter may apply a filter having a bandwidth of 200 GHz, 100 GHz, 50 GHz, or 50 GHz or less.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

The present invention relates to a device for measuring an optical wavelength and, more particularly, to a device for measuring an optical wavelength transmitted through an optical line of an optical communication network in which a plurality of optical wavelengths are muxed by a wavelength division multiplexing method. The disclosed device for measuring an optical wavelength may comprise: an optical input unit for receiving an optical signal including a plurality of optical wavelengths and outputting the optical signal as parallel light by means of a lens; a channel filter for filtering the optical signal outputted from the optical input unit; a rotating plate attached to the channel filter; a motor for rotating the rotating plate; a photodetector for converting the optical signal having passed through the channel filter into an electric signal and outputting the electric signal; a control unit for controlling a rotation angle of the motor; a signal processing unit for generating a rotation angle control signal for the control unit and extracting a light wavelength value on the basis of the rotation angle and the electric signal; and a display unit for displaying an optical wavelength value extracted from the signal processing circuit unit. According to the present invention, it is possible to check the quality and reliability of an optical communication system and facilitate the maintenance process of the optical communication network by providing accurate information on the wavelength value of the optical signal in a wavelength multiplexed optical communication system since it is possible to precisely measure the wavelength of the received optical signal and measure the output of the optical signal.

Description

광파장 측정기Light wavelength meter
본 발명은 광파장 측정기에 관한 것으로 더욱 상세하게는 파장분할 다중화 방식으로 복수의 광파장이 먹싱(muxing)되는 광통신망의 광선로에서 전송되는 광파장을 측정하는 장치에 관한 것이다.The present invention relates to an optical wavelength measuring apparatus, and more particularly, to an apparatus for measuring an optical wavelength transmitted in an optical path of an optical communication network in which a plurality of optical wavelengths are muxed by a wavelength division multiplexing method.
파장분할다중 광통신은 한 가닥의 광섬유에 복수의 광파장 신호를 동시에 전송하는 방식이기 때문에 광케이블의 추가 증설 없이 기존에 설치된 광케이블을 그대로 사용하면서도 많은 데이터를 전송할 수 있는 기술이다. 시간분할방식보다 매우 경제적인 방식이기에 현재의 광통신망은 대부분 파장분할다중 방식이 적용되고 있다.The wavelength division multiplex optical communication is a method of transmitting a plurality of optical wavelength signals simultaneously to one strand of optical fiber, so it is a technology that can transmit a lot of data while using an existing optical cable without additional expansion of the optical cable. Because of the more economical method than the time division method, the wavelength division multiplexing method is applied to most optical communication networks.
파장분할다중 방식은 크게 두 가지로 분류할 수 있다. 저밀도 파장분할다중 방식(Coarse Wavelength Division Multiplexing: 이하 CWDM라 칭함)은 파장 1270nm부터 1610nm범위의 대역을 20nm간격으로 파장을 분할하여 최대 18개 채널의 광신호를 전송할 수 있으며, 고밀도 파장분할 다중방식(Dense Wavelength Division Multiplexing: 이하 DWDM라 칭함)은 1530nm~1565nm 대역(C-band)을 100GHz(대략 0.8nm), 또는 50GHz(대략 0.4nm) 간격으로 분할하여 80개의 채널 신호를 전송할 수 있다. C-밴드 외에도 DWDM은 O-밴드(1260~1360 nm, 100nm), E-밴드(1360~1460 nm, 대역폭 100nm), S-밴드(1460~1530 nm, 대역폭 70nm), L-밴드(1565~1625 nm, 대역폭 60nm), U-밴드 (1625~1675 nm, 대역폭 50nm) 등의 다양한 파장 대역에서 사용할 수 있어, 파장분할 방식은 데이터 전송용량을 증가시키는 데 아주 효과적인 통신방식이라 할 수 있다.Wavelength division multiplexing can be classified into two types. Coarse Wavelength Division Multiplexing (hereinafter referred to as CWDM) can transmit optical signals of up to 18 channels by dividing the wavelength at 20nm intervals in the band range from 1270nm to 1610nm. Dense Wavelength Division Multiplexing (hereinafter referred to as DWDM) may transmit 80 channel signals by dividing the C band from 1530 nm to 1565 nm at 100 GHz (approximately 0.8 nm) or 50 GHz (approximately 0.4 nm). In addition to the C-band, DWDM supports O-bands (1260-1360 nm, 100 nm), E-bands (1360-1460 nm, bandwidth 100 nm), S-bands (1460-1530 nm, bandwidth 70 nm), and L-bands (1565-1). It can be used in various wavelength bands such as 1625 nm, 60 nm bandwidth) and U-band (1625 ~ 1675 nm, 50 nm bandwidth). Thus, wavelength division is a very effective communication method for increasing data transmission capacity.
파장분할 다중방식은 대용량 데이터를 경제적으로 전송할 수 있는 장점이 있지만 복수 개의 광신호가 하나의 광섬유를 공유하기 때문에, 파장분할 다중방식에 적용되는 광송신기 레이저의 파장이 할당된 채널의 허용 범위를 벗어나면 데이터의 전송오류를 유발할 수 있다. 그러므로 파장분할 다중방식을 포설하거나 유지하고 보수하기 위해서는 광신호의 세기(광출력)뿐만 아니라 광신호의 파장을 측정하는 일이 필수적이다.Although wavelength division multiplexing has the advantage of economical transmission of large amounts of data, since multiple optical signals share one optical fiber, if the wavelength of an optical transmitter laser applied to wavelength division multiplexing is outside the allowable range of the allocated channel, It may cause data transmission error. Therefore, in order to install, maintain, and repair the wavelength division multiplexing, it is essential to measure the wavelength of the optical signal as well as the intensity (light output) of the optical signal.
특히, 고가의 DWDM용 광송신기보다 저렴한 CWDM용 광송신기는 광송신기 내부에 레이저의 파장을 측정하는 센싱 소자나 파장 변위를 보상할 수 있는 장치가 별도로 구비되어 있지 않기 때문에 주변의 온도 변화에 의해서 송신하는 광신호의 파장이 변화될 수 있다. 따라서 현재 운용 중인 채널에서 전송되는 광신호의 정확한 파장에 대한 정보는 통신망의 신뢰성을 확보하기 위해서 매우 중요한 요소이다.In particular, CWDM optical transmitters, which are cheaper than expensive DWDM optical transmitters, are not equipped with a sensing element that measures the wavelength of the laser or a device capable of compensating for wavelength displacement. The wavelength of the optical signal can be changed. Therefore, the information about the exact wavelength of the optical signal transmitted in the channel currently in operation is very important to secure the reliability of the communication network.
전송되는 광신호의 파장 정보를 획득하기 위하여 광 스펙트럼 분석기(optical spectrum analyzer: OSA)가 사용될 수 있는데, 광 스펙트럼 분석기는 파장 분해능이 0.02nm로 매우 정밀한 측정이 가능하지만 부피가 크고 무거우며 고가인 단점이 있다. 그래서 광 스펙트럼 분석기는 광케이블 포설/유지/보수 작업을 실시하는 야외에서는 사용하기에는 적합하지 못하다.An optical spectrum analyzer (OSA) may be used to obtain wavelength information of a transmitted optical signal. The optical spectrum analyzer has a wavelength resolution of 0.02 nm, which enables highly accurate measurement but is bulky, heavy, and expensive. There is this. As a result, optical spectrum analyzers are not suitable for use outdoors when performing fiber laying / maintenance / maintenance work.
휴대가 가능한 CWDM 광통신망용 종래의 파장측정 기술로는 등록특허 10-1089182와 등록특허 10-0820947 등이 있으나 이러한 광파장 파워 측정기들은 광 송신기의 광 파장이 정해진 파장 채널 대역 안에 있는 경우에는 광출력의 측정이 가능하지만 광 파장이 채널 대역의 중앙에 있는지 또는 가장자리에 있는지 구별할 수 없는 문제점을 가지고 있다. Conventional wavelength measurement technologies for portable CWDM optical communication networks include Patents 10-1089182 and Patents 10-0820947, but such optical wavelength power meters measure optical power when the optical wavelength of the optical transmitter is within a predetermined wavelength channel band. This is possible but has the problem of not distinguishing whether the optical wavelength is at the center or the edge of the channel band.
도 1은 등록특허 10-0820947에서 제시한 광파장 파워 측정기의 광학부의 구성도이다.  1 is a configuration diagram of an optical unit of an optical wavelength power meter shown in Patent 10-0820947.
도 1을 참조하면, 복수의 채널을 포함한 광신호가 콜리메이터 렌즈(20)와 채널 필터(31)을 통과하여 포토디텍터(40)에 입사되며, 스텝모터(stepping motor; 33)가 채널필터(31)가 부착된 회전판(32)을 회전시켜 가면서 복수의 채널을 포함한 광신호의 채널별 광세기를 측정하게 된다. 이 방법은 상기의 입력 광신호가 채널의 범위 안에 있는 경우에는 채널별 광세기는 측정할 수는 있지만 입력 광신호의 파장이 채널의 중앙에 있는지 또는 채널의 가장자리에 있는지를 구별할 수 없어서 파장에 대한 정확한 정보를 제공하지 못하는 단점이 있다.   Referring to FIG. 1, an optical signal including a plurality of channels passes through a collimator lens 20 and a channel filter 31 to be incident on the photodetector 40, and a stepping motor 33 is a channel filter 31. While rotating the rotating plate 32 is attached to measure the light intensity for each channel of the optical signal including a plurality of channels. This method can measure the optical intensity of each channel when the input optical signal is within the range of the channel, but cannot distinguish whether the wavelength of the input optical signal is at the center of the channel or at the edge of the channel. The disadvantage is that it does not provide accurate information.
도 2는 CWDM 대역의 채널 구성 및 채널 필터의 특성을 도시한 도면이다.  2 is a diagram illustrating the channel configuration and the characteristics of the channel filter of the CWDM band.
도 2에 도시된 바처럼 CWDM은 중심파장이 1270nm에서 1610nm까지 20nm 간격으로 떨어져 있고, 각각의 채널대역은 20nm를 가질 수 있다. 그리고 채널필터(31)는 중심파장을 중심으로 양쪽으로 7nm의 대역(일 예로서 중심주파수가 1490nm이면 1483nm에서 1497nm의 대역)을 통과시킬 수 있다. 전술한 종래 기술의 단점을 도 2를 이용하여 좀 더 설명하면, CWDM 채널 간의 간격은 이웃한 채널의 중심파장(λc) 사이의 간격 (dλch)으로서 20nm이다. 각각의 채널필터들의 대역폭은 λc ± 7nm인 경우, 채널과 채널 사이에 채널갭이 존재할 수 있는데, 좌우로 각각 3nm 도합 6nm가 채널 간에 존재하게 된다. 종래의 휴대용 광파장 파워 측정기는 도 2의 두 개의 광 파장(22 또는 23)- 즉 주변환경을 포함하는 다양한 요인에 의하여 광송신기에서 전송되는 광파장이 정확한 중심파장인 1490nm가 아닌 1491nm(22) 또는 1496nm(23)가 되더라도 모두 채널대역폭 안에 있으므로, 해당 채널로 광신호가 전송되는 것을 확인하는 광출력만을 측정할 수 있고, 광 파장이 중심 파장에서 얼마나 벗어나 있는지는 알 수 없다. 즉, 종래의 휴대용 광파장 파워 측정기는 광 파장(22)과 광 파장(23)을 구별할 수 없어 정확한 파장값을 특정할 수 없다는 문제점이 있다.As shown in FIG. 2, the CWDM has a center wavelength separated by 20 nm from 1270 nm to 1610 nm, and each channel band may have 20 nm. The channel filter 31 may pass a 7 nm band (for example, a 1483 nm to 1497 nm band when the center frequency is 1490 nm) on both sides of the center wavelength. The above-described disadvantages of the prior art will be further described with reference to FIG. 2, and the interval between CWDM channels is 20 nm as the interval dλ ch between the center wavelengths λc of neighboring channels. When the bandwidth of each channel filter is λc ± 7nm, there may be a channel gap between the channel and the channel, and a total of 3 nm and 6 nm of left and right channels exist between the channels, respectively. 2. Description of the Related Art [0002] Conventional portable optical power meter measures 1491nm (22) or 1496nm in the two optical wavelengths 22 or 23 of FIG. Even if the value is 23, all of them are within the channel bandwidth, so only the light output for confirming that the optical signal is transmitted to the corresponding channel can be measured, and it is not known how far the optical wavelength is from the center wavelength. That is, the conventional portable optical wavelength power meter has a problem in that it is not possible to distinguish between the optical wavelength 22 and the optical wavelength 23, so that the exact wavelength value cannot be specified.
전술한 문제점을 해결하기 위한 본 발명의 목적은 파장다중화 광통신에서 각각의 채널별 광세기를 측정할 수 있을 뿐만 아니라 각 채널의 광신호가 채널의 중심파장에서 얼마나 벗어나 있는지를 측정할 수 있으며 심지어 채널의 범위를 벗어난 경우에도 광파장과 광세기를 측정할 수 있는 측정기를 제공하는 것이다.An object of the present invention to solve the above-mentioned problems is not only to measure the optical intensity of each channel in wavelength multiplexed optical communication, but also to measure how far the optical signal of each channel is from the center wavelength of the channel and even It is to provide a measuring instrument that can measure the light wavelength and light intensity even if it is out of range.
전술한 목적을 달성하기 위한 본 발명에 따른 광파장 측정기는 복수의 광파장을 포함하는 광신호가 입력되며 렌즈를 이용하여 상기 광신호를 평행광으로 만들어 출력하는 광입력부, 상기 광입력부에서 출력되는 광신호를 필터링하는 채널필터, 상기 채널필터가 부착되는 회전판,The optical wavelength measuring device according to the present invention for achieving the above object is an optical input unit for inputting an optical signal including a plurality of optical wavelengths and converting the optical signal into parallel light using a lens, the optical signal output from the optical input unit A channel filter for filtering, a rotating plate to which the channel filter is attached,
상기 회전판을 회전시키는 모터, 상기 채널필터를 통과한 광신호를 전기신호로 변환하여 출력하는 포토디텍터, 상기 모터의 회전각을 제어하는 제어부, 상기 제어부를 위한 회전각도 제어신호를 생성하고, 상기 회전각도와 상기 전기신호를 바탕으로 광파장값을 추출하는 신호처리부, 및 상기 신호처리회로부에서 추출한 광파장값을 표시하는 디스플레이부를 포함할 수 있다. 여기서 상기 전기신호는 상기 채널필터를 통과한 광신호의 세기에 비례하는 아날로그 신호이고, 상기 신호처리부는 상기 전기신호를 바탕으로 광신호의 세기를 추출할 수 있다.A motor for rotating the rotating plate, a photo detector for converting an optical signal passing through the channel filter into an electrical signal, and outputting the electric signal, a controller for controlling the rotation angle of the motor, and generating a rotation angle control signal for the controller, and the rotation A signal processor may extract an optical wavelength value based on an angle and the electrical signal, and a display unit may display an optical wavelength value extracted by the signal processing circuit. The electrical signal may be an analog signal proportional to the intensity of the optical signal passing through the channel filter, and the signal processor may extract the intensity of the optical signal based on the electrical signal.
그리고 상기 채널필터는 상기 회전판의 회전방향의 접선과 나란하게 부착하여, 상기 모터의 회전에 따라서 상기 광신호가 상기 채널필터에 입사하는 각도가 변화할 수 있다.The channel filter may be attached in parallel with a tangent in the rotation direction of the rotating plate so that an angle at which the optical signal is incident on the channel filter may change according to the rotation of the motor.
이에 더하여 상기 신호처리부는 상기 전기신호가 미리 설정된 기준값보다 큰 고점에서 미리 설정된 상기 기준값도다 작은 저점으로 변하는 지점 또는 상기 전기신호가 저점에서 고점으로 변하는 지점에서의 모터의 회전각도를 바탕으로 상기 광신호에 포함되어 있는 광파장값을 추출할 수 있고, 상기 모터의 회전각도에 따른 상기 채널필터의 투과대역의 변위를 계산하고, 상기 변위를 바탕으로 상기 광신호에 포함되어 있는 광파장값을 추출할 수 있으며, 상기 채널필터의 투과대역의 변위를 계산시, 상기 투과대역의 오른쪽 모서리 파장 또는 왼쪽 모서리 파장을 기준으로 계산할 수 있다. In addition, the signal processor may be configured to display the optical signal based on a rotation angle of the motor at a point where the electrical signal changes from a high point higher than a preset reference value to a low point that is smaller than the preset reference value or the electric signal changes from a low point to a high point. It is possible to extract the optical wavelength value contained in, calculate the displacement of the transmission band of the channel filter according to the rotation angle of the motor, and extract the optical wavelength value included in the optical signal based on the displacement. When calculating the displacement of the transmission band of the channel filter, it may be calculated based on the right edge wavelength or the left edge wavelength of the transmission band.
상기 포토디텍터가 상기 광입력부에서 방출한 광신호를 채널필터를 통해 수신할 수 있도록 하기 위하여 상기 광입력부, 상기 채널필터, 및 상기 포토디텍터가 상기 회전판의 중심과 원주를 연결하는 일직선과 평행한 직선상에 배치되고, 상기 광입력부와 상기 포토디텍터 사이에 상기 채널필터가 배치될 수 있다.In order to enable the photodetector to receive the optical signal emitted from the optical input unit through a channel filter, the optical input unit, the channel filter, and the photo detector are a straight line parallel to a straight line connecting the center and the circumference of the rotating plate. The channel filter may be disposed on and between the light input unit and the photo detector.
그리고 상기 광입력부에서 출력되는 광신호가 상기 채널필터의 중심으로 입력되거나, 상기 채널필터의 중심에서 어긋나게 입력되거나, 또는 상기 채널필터의 중심에서 어긋나게 입력되는 동시에 상기 채널필터의 법선과 각을 이루면서 입력될 수 있다.The optical signal output from the optical input unit may be input to the center of the channel filter, may be input off the center of the channel filter, or may be input off the center of the channel filter, and may be input at an angle to the normal of the channel filter. Can be.
또한, 상기 채널필터로 측정할 수 있는 파장범위가 상기 채널필터의 대역폭보다 크도록 하기 위하여 상기 채널필터의 대역폭이 입사각 0도에서 채널 중심파장으로부터 단파장쪽으로는 좁고 장파장쪽으로 넓게 할 수 있다.In addition, in order that the wavelength range that can be measured by the channel filter is greater than the bandwidth of the channel filter, the bandwidth of the channel filter may be narrower from the channel center wavelength to the shorter wavelength and wider to the longer wavelength at the incident angle of 0 degrees.
이에 더하여 광파장 측정기는 캘리브레이션용 광원을 생성할 수 있는 광원생성기, 상기 광원생성기를 구동시키는 구동부, 및 상기 광원생성기로부터 출력되는 광을 수신하여 넓은 파장 선폭의 입력 중에서 특정한 좁은 대역의 파장의 광은 투과시키고 그 외 나머지 파장의 광신호는 반사시키는 in-line 50G DWDM 필터를 더 포함하고, 상기 광입력부는 2개의 입력 포트를 구비하고, 제1 입력포트는 측정을 위한 외부 광신호를 입력받고, 제2 입력포트는 상기 광원생성기에서 생성된 광신호가 in-line 50G DWDM 필터를 통과한 캘리브레이션용 광신호를 입력받을 수 있다.In addition, the optical wavelength measuring device receives a light source generator capable of generating a light source for calibration, a driver for driving the light source generator, and light output from the light source generator, and transmits light having a specific narrow band wavelength among inputs having a wide wavelength line width. And an in-line 50G DWDM filter for reflecting the other optical signals of the remaining wavelengths, wherein the optical input unit has two input ports, and the first input port receives an external optical signal for measurement. 2 The input port may receive a calibration optical signal through which the optical signal generated by the light source generator passes through the in-line 50G DWDM filter.
그리고 다양한 채널 특성을 가지는 광파장 측정기를 만들 수 있도록 하기 위하여 복수의 채널필터가 상기 회전판에 부착되고, 상기 복수의 채널필터는 1개 이상의 그룹으로 분류될 수 있고, 동일한 그룹에 속하는 채널필터들은 동일한 대역폭을 갖는 필터로 구성되며, 서로 다른 그룹에 속하는 채널필터 간에는 투과대역이 상이할 수 있다. 좀 더 자세하게는, 상기 복수의 채널필터는 1개의 그룹으로 분류되고, 복수의 50G DWDM용 채널필터들로 구성되거나 복수의 100G DWDM용 채널필터들로 구성될 수 있다.A plurality of channel filters may be attached to the rotating plate to make an optical wavelength measuring instrument having various channel characteristics, and the plurality of channel filters may be classified into one or more groups, and channel filters belonging to the same group may have the same bandwidth. It is composed of a filter having a transmission band between the channel filters belonging to different groups may be different. In more detail, the plurality of channel filters may be classified into one group, and may include a plurality of 50G DWDM channel filters or a plurality of 100G DWDM channel filters.
상기 복수의 채널필터는 2개의 그룹으로 분류되고, 제1그룹은 복수의 CWDM용 채널필터들로 구성되고 제2그룹은 복수의 DWDM용 채널필터들로 구성되거나, 제1그룹은 복수의 50G DWDM용 채널필터들로 구성되고 제2그룹은 복수의 100G DWDM용 채널필터들로 구성되거나, 제1그룹은 복수의 C-밴드 DWDM용 채널필터들로 구성되고 제2그룹은 복수의 L-밴드 DWDM용 채널필터들로 구성될 수 있다.The plurality of channel filters are classified into two groups, the first group is composed of a plurality of CWDM channel filters and the second group is composed of a plurality of DWDM channel filters, or the first group is a plurality of 50G DWDM. Channel filters for the second group and the second group is composed of a plurality of channel filters for 100G DWDM, or the first group is composed of a plurality of channel filters for C-band DWDM and the second group is a plurality of L-band DWDM The channel filters may be configured.
이와 다르게 상기 복수의 채널필터들의 구성이 표준화되어 있는 광가입자망의 통신 규격인 E-PON, G-PON, GE-PON, 10G-PON, 및 NG-PON2에서 제시한 파장대역에 따른 투과대역을 갖는 CWDM 채널필터, 광대역필터, 및 200GHz, 100GHz, 50GHz, 50GHz이하의 투과대역을 갖는 DWDM 채널필터로 조합될 수도 있다.In contrast, the transmission bands according to the wavelength bands proposed by E-PON, G-PON, GE-PON, 10G-PON, and NG-PON2, which are communication standards of the optical subscriber network, in which the configuration of the plurality of channel filters is standardized. And a CWDM channel filter having a CWDM channel filter, a broadband filter, and a DWDM channel filter having transmission bands of 200 GHz, 100 GHz, 50 GHz, and 50 GHz or less.
본 발명에 의하면, 수신한 광신호 파장의 정밀한 측정이 가능하고, 또한 광신호의 출력 측정이 가능한 바 파장다중방식 광통신시스템에서 광신호의 파장값에 대한 정확한 정보를 제공함으로서 광통신시스템의 품질과 신뢰성을 점검할 수 있으며 광통신망의 유지, 보수 과정을 용이하게 할 수 있다.According to the present invention, it is possible to precisely measure the wavelength of the received optical signal and to measure the output of the optical signal, thereby providing accurate information on the wavelength value of the optical signal in the wavelength multiplex optical communication system. It can be checked and it can facilitate the maintenance and repair of the optical network.
도 1은 등록특허 10-0820947에서 제시한 광파장 파워 측정기의 광학부의 구성도이다.1 is a configuration diagram of an optical unit of an optical wavelength power meter shown in Patent 10-0820947.
도 2는 CWDM 대역의 채널 구성 및 채널 필터의 특성을 도시한 도면이다.2 is a diagram illustrating the channel configuration and the characteristics of the channel filter of the CWDM band.
도 3은 입사각의 변화에 따른 필터링되는 파장의 변화를 도시한 도면이다.3 is a diagram illustrating a change in wavelength to be filtered according to a change in incident angle.
도 4는 본 발명의 일 실시 예에 따른 광파장 측정기의 구성도를 도시한 도면이다.4 is a diagram illustrating a configuration of an optical wavelength meter according to an exemplary embodiment of the present invention.
도 5는 본 발명의 다른 일실시 예에 따른 광파장측정기의 광학부 구조를 도시한 도면이다.5 is a view showing the structure of the optical unit of the optical wavelength meter according to another embodiment of the present invention.
도 6은 본 발명의 또 다른 일실시 예에 따른 광파장측정기의 광학부 구조를 도시한 도면이다.6 is a view showing the structure of the optical unit of the optical wavelength meter according to another embodiment of the present invention.
도 7 은 한 개의 채널필터를 회전시키면서 파장을 측정할 때, 입사각 0도에서 광신호(414)가 채널필터(422)의 정중앙으로 입사할 경우, 광신호(414)의 손실을 발생시키지 않으면서, 채널필터(422)를 최대한 회전시킬 수 있는 회전각(720, 721)을 계산하기 위한 도면이다.FIG. 7 illustrates that the optical signal 414 enters the center of the channel filter 422 at the incident angle of 0 degrees when the wavelength is measured while rotating one channel filter, without causing loss of the optical signal 414. FIG. 2 is a diagram for calculating rotation angles 720 and 721 capable of rotating the channel filter 422 as much as possible.
도 8은 한 개의 채널필터를 회전시키면서 파장을 측정할 때, 입사각 0도에서 광신호(414)가 채널필터(422)의 정중앙에서 벗어나서 입사할 경우, 광신호(414)의 손실을 발생시키지 않으면서, 채널필터(422)를 최대한 회전시킬 수 있는 회전각(820)을 계산하기 위한 도면이다.FIG. 8 illustrates that when the wavelength is measured while rotating one channel filter, when the optical signal 414 is incident from the center of the channel filter 422 at the incident angle of 0 degrees, the optical signal 414 is not generated. 3 is a diagram for calculating a rotation angle 820 that can rotate the channel filter 422 as much as possible.
도 9는 입사각을 변화시키는 본 발명의 또 다른 실시예로서, 도 8의 방법보다 더 큰 파장 변위가 발생하도록 최대입사각을 좀 더 크게 하고자 채널필터(422)에 입사하는 광신호(414)의 빔 자체를 기울여서 필터에 입사시키는 방법을 도시한 도면이다.FIG. 9 is another embodiment of the present invention for varying the angle of incidence, in which a beam of light signal 414 incident on channel filter 422 is made to make the maximum angle of incidence larger so that a larger wavelength shift occurs than in the method of FIG. It is a figure which shows the method of inclining itself and injecting into a filter.
도 10은 모터(425)를 회전시킬 때, 모터의 회전각(θ) 에 따라서 입사각(φ)이 변하여 채널필터(422)의 투과대역 파장이 변경되는 일예를 도시한 도면이다.FIG. 10 is a diagram illustrating an example in which a transmission band wavelength of the channel filter 422 is changed by changing the incident angle φ according to the rotation angle θ of the motor when the motor 425 is rotated.
도 11은 본 발명의 일실시 예에 따른 입력되는 광신호의 파장을 측정하는 방법을 설명하기 위한 도면이다.FIG. 11 is a diagram for describing a method of measuring a wavelength of an input optical signal according to an exemplary embodiment.
도 12는 본 발명의 또 다른 일실시 예에 따른 입력되는 광신호의 파장을 측정하는 방법을 설명하기 위한 도면이다.12 is a view for explaining a method of measuring a wavelength of an input optical signal according to another embodiment of the present invention.
도 13은 C-밴드(1530~1565 nm, 대역폭 35nm) 파장 대역에 100GHz DWDM을 적용한 일실시 예를 도시한 도면이다.FIG. 13 is a diagram showing an embodiment in which 100 GHz DWDM is applied to a C-band (1530 to 1565 nm, bandwidth 35 nm) wavelength band.
도 14는 λo = 1570nm, neff = 1.5764인 DWDM 필터의 입사각과 파장변위의 관계식을 그래프로 도시한 도면이다. FIG. 14 is a graph showing a relationship between an incident angle and a wavelength displacement of a DWDM filter having λ o = 1570 nm and n eff = 1.5764.
도 15는 본 발명의 일실시 예에 따른 100GHz DWDM C-밴드용 광파장측정기 광학부의 구성을 나타낸 도면이다.FIG. 15 is a diagram illustrating a configuration of an optical wavelength measuring device optical part for 100 GHz DWDM C-band according to an embodiment of the present invention.
도 16은 본 발명의 또 다른 실시 예에 따른 파장 캘리브레이션용 광원을 구비한 100GHz DWDM C-밴드용 광파장측정기 광학부의 구성을 나타낸 도면이다.FIG. 16 is a view showing the configuration of an optical wavelength measuring instrument optical unit for a 100 GHz DWDM C-band having a light source for wavelength calibration according to another embodiment of the present invention.
도 17은 캘리브레이션용 광신호(413a)를 생성하는 일 실시 예를 도시한 도면이다.FIG. 17 illustrates an embodiment of generating a calibration optical signal 413a.
도 18은 현재 표준화되어 있는 광가입자망의 통신 규격(E-PON, G-PON, GE-PON, 10G-PON, NG-PON2)에서 정의한 파장 대역을 도시한 도면이다.FIG. 18 is a diagram illustrating a wavelength band defined in a communication standard (E-PON, G-PON, GE-PON, 10G-PON, NG-PON2) of the optical subscriber network that is currently standardized.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.In order to clearly describe the present invention, parts irrelevant to the description are omitted, and like reference numerals designate like elements throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우 뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.  Throughout the specification, when a part is "connected" to another part, this includes not only "directly connected" but also "electrically connected" with another element in between. . In addition, when a part is said to "include" a certain component, this means that it may further include other components, except to exclude other components unless otherwise stated.
어느 부분이 다른 부분의 "위에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 수반되지 않는다.  When a portion is referred to as being "above" another portion, it may be just above the other portion or may be accompanied by another portion in between. In contrast, when a part is mentioned as "directly above" another part, no other part is involved between them.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.  Terms such as first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
여기서 사용되는 전문 용어는 단지 특정 실시 예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.  The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite. As used herein, the meaning of "comprising" embodies a particular characteristic, region, integer, step, operation, element and / or component, and the presence of other characteristics, region, integer, step, operation, element and / or component It does not exclude the addition.
"아래", "위" 등의 상대적인 공간을 나타내는 용어는 도면에서 도시된 한 부분의 다른 부분에 대한 관계를 보다 쉽게 설명하기 위해 사용될 수 있다. 이러한 용어들은 도면에서 의도한 의미와 함께 사용 중인 장치의 다른 의미나 동작을 포함하도록 의도된다. 예를 들면, 도면 중의 장치를 뒤집으면, 다른 부분들의 "아래"에 있는 것으로 설명된 어느 부분들은 다른 부분들의 "위"에 있는 것으로 설명된다. 따라서 "아래"라는 예시적인 용어는 위와 아래 방향을 전부 포함한다. 장치는 90˚ 회전 또는 다른 각도로 회전할 수 있고, 상대적인 공간을 나타내는 용어도 이에 따라서 해석된다.  Terms indicating relative space such as "below" and "above" may be used to more easily explain the relationship of one part to another part shown in the drawings. These terms are intended to include other meanings or operations of the device in use with the meanings intended in the figures. For example, if the device in the figure is reversed, any parts described as being "below" of the other parts are described as being "above" the other parts. Thus, the exemplary term "below" encompasses both up and down directions. The device can be rotated 90 degrees or at other angles, the terms representing relative space being interpreted accordingly.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련 기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.  Unless defined otherwise, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Commonly defined terms used are additionally interpreted to have a meaning consistent with the related technical literature and the presently disclosed contents, and are not interpreted in an ideal or very formal sense unless defined.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다.본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.  DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
일반적으로 박막 필터는 광 입사각의 변화에 따라서 필터링(filtering)되는 파장이 변경될 수 있다. 변경된 파장의 값은 아래와 같은 관계식을 갖는다. In general, the thin film filter may change the wavelength to be filtered according to the change of the light incident angle. The value of the changed wavelength has the following relationship.
Figure PCTKR2017006786-appb-M000001
Figure PCTKR2017006786-appb-M000001
여기서, λo는 광 입사각이 0도 일 때의 필터의 중심 파장이고, φ는 입사각을 나타내며, neff 는 박막필터의 유효굴절률을 나타낸다.Λ o is the center wavelength of the filter when the light incident angle is 0 degrees, φ represents the incident angle, and n eff represents the effective refractive index of the thin film filter.
또한, 입사각 φ에서 입사각도가 1도 변화할 때의 필터링되는 파장의 변화는 [수학식 2]의 관계식을 갖는다.In addition, the change of the wavelength to be filtered when the incident angle changes by 1 degree at the incident angle φ has a relational expression of [Equation 2].
Figure PCTKR2017006786-appb-M000002
Figure PCTKR2017006786-appb-M000002
도 3은 입사각의 변화에 따른 필터링되는 파장의 변화를 도시한 도면이다.3 is a diagram illustrating a change in wavelength to be filtered according to a change in incident angle.
도 3은 입사각이 0도 일 때의 중심파장이 1550nm이고 유효굴절률이 2.0인 박막필터에서 입사각이 0도에서 14도까지 증가할 때, 박막필터에서 필터링되는 파장의 변화량(310)과 특정 입사각에서 입사각이 1도 더 변하는 경우에 필터링되는 파장의 변화량(320)을 도시하고 있다. 도 3을 참조하면, 광의 박막필터에 대한 입사각을 0도에서 10도로 변화시키면 약 6nm 정도 필터링되는 파장이 변경됨을 알 수 있다. 입사각이 0도에서 중심파장이 1550nm를 갖도록 설계된 필터에서 입사각이 10도가 되도록 제어하면 필터링되는 중심파장은 1550nm에서 1544nm로 변경되게 된다. 또한, 도 3을 참조하면, 입사각이 10도에서 1도 더 변하면 약 -1.2nm 파장이 변위한다. 즉 10도에서 11도로 입사각이 변하면 필터의 특성파장은 1544nm에서 1542.8nm가 감소하게 된다.FIG. 3 shows the change in wavelength 310 filtered by the thin film filter and the specific incident angle when the incident angle increases from 0 to 14 degrees in the thin film filter having a central wavelength of 1550 nm and an effective refractive index of 2.0 when the incident angle is 0 degrees. The amount of change 320 of the wavelength to be filtered is shown when the incident angle is further changed by one degree. Referring to FIG. 3, when the incident angle of the light filter is changed from 0 degrees to 10 degrees, the wavelength filtered by about 6 nm may be changed. If the incident angle is controlled to be 10 degrees in a filter designed to have a center wavelength of 1550 nm at an incident angle of 0 degrees, the center wavelength to be filtered is changed from 1550 nm to 1544 nm. In addition, referring to FIG. 3, when the incident angle is further changed from 10 degrees to 1 degree, the wavelength of about −1.2 nm is displaced. In other words, when the incident angle changes from 10 degrees to 11 degrees, the characteristic wavelength of the filter decreases from 1544 nm to 1542.8 nm.
도 4는 본 발명의 일 실시 예에 따른 광파장 측정기의 구성도를 도시한 도면이다.4 is a diagram illustrating a configuration of an optical wavelength meter according to an exemplary embodiment of the present invention.
도 4를 참조하면, 본 발명의 일 실시 예에 따른 광파장 측정기는 복수의 광파장을 포함하는 광신호가 입력되며 렌즈를 이용하여 상기 광신호를 평행광으로 만들어 전달하는 광입력부(410), 광입력부(410)를 통하여 들어오는 광신호의 파장 및 출력을 분석하여 전기신호로 변환하여 전송하는 광학부(420), 광학부(420) 내의 모터(425)의 회전각를 제어하는 제어부(430), 상기 제어부(430)를 위한 회전각도 제어신호를 생성하고 광학부(420)의 출력을 A/D변환하고, 회전각도와 A/D변환된 출력파형과 출력신호의 크기로 부터 광파장값과 광출력을 추출하는 신호처리회로부(440) 및 측정된 파장과 광출력을 표시하는 디스플레이부(450)로 구성될 수 있다. Referring to FIG. 4, an optical wavelength measuring device according to an embodiment of the present invention receives an optical signal including a plurality of optical wavelengths and transmits the optical signal by converting the optical signal into parallel light by using a lens. The optical unit 420 for analyzing the wavelength and the output of the optical signal received through the 410 to convert the electrical signal into an electrical signal, the control unit 430 for controlling the rotation angle of the motor 425 in the optical unit 420, the control unit ( 430 generates a rotation angle control signal and performs A / D conversion of the output of the optical unit 420, and extracts the optical wavelength value and the light output from the rotation angle and A / D converted output waveform and the magnitude of the output signal. The signal processing circuit unit 440 and the display unit 450 for displaying the measured wavelength and the light output.
광입력부(410)는 광케이블을 통해 전달되는 광신호를 수신하는 모듈로서, 광케이블로부터 광신호를 수신할 수 있는 인터페이스를 구비할 수 있다. 또한, 광입력부(410)는 수신한 광신호를 평행광으로 만들어주는 렌즈(411)를 구비할 수 있다. 그리고 광학부(420)는 광신호를 채널별로 필터링하는 채널필터(422), 채널필터(422)가 부착되어 있고 모터(425)의 기동에 의하여 회전하는 회전판(424), 제어부(430)의 제어를 받아 회전판(424)을 회전시키는 모터(425) 및 채널필터를 통과한 광신호를 전기신호로 변환하는 포토디텍터(423)를 포함할 수 있다.   The optical input unit 410 is a module for receiving an optical signal transmitted through an optical cable, and may have an interface for receiving an optical signal from the optical cable. In addition, the light input unit 410 may include a lens 411 for making the received light signal into parallel light. The optical unit 420 includes a channel filter 422 and a channel filter 422 for filtering an optical signal for each channel, and are controlled by the rotating plate 424 and the control unit 430 which are rotated by the start of the motor 425. It may include a motor 425 for rotating the rotating plate 424 and a photo detector 423 for converting the optical signal passed through the channel filter into an electrical signal.
도 5는 본 발명의 다른 일실시 예에 따른 광파장측정기의 광학부 구조를 도시한 도면이다.5 is a view showing the structure of the optical unit of the optical wavelength meter according to another embodiment of the present invention.
도 5를 참조하면, 광학부(420)는 제어부(430)의 제어신호에 따라 회전판(424)를 회전시키는 모터(425), 모터축(426)에 결합하여 모터축(426)의 회전에 의하여 같이 회전하는 원형 또는 정다각형 형태의 회전판(424), 회전판(424)의 외측 원주에 부착되는 채널필터(422) 및 채널필터를 통과한 광신호를 전기신호로 변환하는 포토디텍터(423)를 포함할 수 있다.5, the optical unit 420 is coupled to the motor 425 and the motor shaft 426 to rotate the rotating plate 424 according to the control signal of the control unit 430 by the rotation of the motor shaft 426. Rotating plate 424 having a circular or regular polygonal shape that rotates together, a channel filter 422 attached to an outer circumference of the rotating plate 424, and a photo detector 423 for converting an optical signal passing through the channel filter into an electrical signal. Can be.
회전판(424)은 채널필터(422)를 외측 원주에 부착할 수 있고, 채널 필터(422)를 통과한 광신호를 포토디텍터(423)가 감지할 수 있도록 하기 위하여 ‘ㄷ’형태의 형상을 가질 수 있다. 즉 회전판(424)의 중심은 모터축(426)과 결합되고, 회전판(424)의 방사상 끝 부분은 모터축(426) 반대 방향으로 돌출된 돌출부(427)를 구비할 수 있다. 돌출부(427)의 외측 원주에는 복수 개의 채널필터(422)가 부착될 수 있으며 돌출부는 채널필터(422)를 통과한 광신호가 지나갈 수 있도록 채널필터(422)의 하방에 회전판(424)의 중심 쪽으로 구멍(428)이 뚫려 있을 수 있다. The rotating plate 424 may attach the channel filter 422 to the outer circumference, and may have a '-' shape in order to allow the photodetector 423 to detect the optical signal passing through the channel filter 422. Can be. That is, the center of the rotating plate 424 may be coupled to the motor shaft 426, and the radial end portion of the rotating plate 424 may include a protrusion 427 protruding in a direction opposite to the motor shaft 426. A plurality of channel filters 422 may be attached to the outer circumference of the protrusion 427, and the protrusions may face toward the center of the rotating plate 424 below the channel filter 422 so that an optical signal passing through the channel filter 422 may pass. The hole 428 may be drilled.
도 5에 도시된 것처럼 복수 개의 채널필터(422)가 회전판(424)의 원주에 부착될 수 있다. 각각의 채널필터는 서로 다른 필터링 중심파장을 가지도록 설계될 수 있다. 즉 CWDM용 채널 필터의 경우에는 중심파장이 1270nm에서 1610nm 사이에 20nm의 간격을 가지도록 채널필터가 설계될 수 있다. 복수 개의 채널필터(422)들은 서로 등 간격으로 회전판(424)의 원주에 부착될 수 있다. 일 예로서 16개의 CWDM 채널필터가 부착되는 경우에는 서로 간에 360/16=22.5도의 간격을 가지고 회전판(424)에 부착될 수 있다. 또한, 회전각에 대한 기준을 두어 특정 채널필터가 위치하는 각을 명시적으로 지정할 수도 있다. 일 예로서 16개의 CWDM 채널필터가 부착되는 경우, 중심파장이 1270nm인 채널필터가 광입력부(410) 및 포토디텍터(423)와 일직선상에 놓인 경우를 0도로 기준을 설정할 수 있다. 그러면 중심파장이 1290nm인 채널필터는 22.5도에 위치할 수 있고, 중심파장이 1310nm인 채널필터는 45도 위치할 수 있다. 그리고 중심파장이 1610nm인 채널필터는 337.5도에 위치할 수 있다. 이에 따라 회전판(422)을 회전시켜 필터링되는 중심주파수가 다른 복수 개의 채널필터(422)들을 적용시킴으로 광신호에 포함되어 있는 다양한 파장들을 측정할 수 있다. As shown in FIG. 5, a plurality of channel filters 422 may be attached to the circumference of the rotating plate 424. Each channel filter may be designed to have a different filtering center wavelength. That is, in the case of the CWDM channel filter, the channel filter may be designed such that the center wavelength has a 20 nm interval between 1270 nm and 1610 nm. The plurality of channel filters 422 may be attached to the circumference of the rotating plate 424 at equal intervals. As an example, when 16 CWDM channel filters are attached to each other, the CW plates may be attached to the rotating plate 424 with a spacing of 360/16 = 22.5 degrees. In addition, it is also possible to explicitly specify the angle at which a particular channel filter is located by making reference to the rotation angle. As an example, when 16 CWDM channel filters are attached, a reference may be set to 0 degrees when the channel filter having a center wavelength of 1270 nm is aligned with the light input unit 410 and the photo detector 423. Then, the channel filter having a center wavelength of 1290 nm may be positioned at 22.5 degrees, and the channel filter having a center wavelength of 1310 nm may be positioned at 45 degrees. In addition, a channel filter having a center wavelength of 1610 nm may be positioned at 337.5 degrees. Accordingly, by applying the plurality of channel filters 422 having different center frequencies to be filtered by rotating the rotating plate 422, various wavelengths included in the optical signal may be measured.
광입력부(410)는 평행광을 회전판(424)의 외측에서 채널필터(422)에 입사할 수 있도록 회전판(424)의 외측에 배치할 수 있고, 포토디텍터(423)는 채널필터(422)를 통과한 광신호를 검지할 수 있도록 회전판(424)의 돌출부(427) 아래쪽에 광입력부(410)와 마주 볼 수 있도록 배치될 수 있다. 이와 반대로 포토디텍터(423)가 회전판의 외부에 배치되고, 광입력부(410)가 회전판의 돌출부 하방에 배치되어 구멍(428)을 통해 채널필터(422)로 광신호를 전달할 수도 있다. The light input unit 410 may arrange the parallel light outside the rotating plate 424 so that the parallel light may be incident on the channel filter 422 from the outside of the rotating plate 424, and the photo detector 423 may move the channel filter 422. The optical signal may be disposed to face the optical input unit 410 below the protrusion 427 of the rotating plate 424 so as to detect the optical signal that has passed. On the contrary, the photo detector 423 may be disposed outside the rotating plate, and the light input unit 410 may be disposed below the protrusion of the rotating plate to transmit the optical signal to the channel filter 422 through the hole 428.
측정하고자하는 광신호(413)는 광입력부(410)의 렌즈(411)를 지나면서 평행광으로 변형된다. 평행광으로 변형된 광신호(414)는 복수의 채널필터(422)중 하나로 입사된다. 광신호(414)가 입사되는 채널필터는 신호처리부(440) 및 제어부(430)의 제어에 의하여 모터(425)를 조작함으로써 선택될 수 있다. 일예로서, 전술한 예처럼 회전판(424)에 16개의 채널필터(422)가 부착되어 있는 경우, 모터(425)의 회전각을 22.5도 간격으로 회전시키면 16개 필터 중에서 특정한 한 개의 채널필터(422a)를 선택할 수 있다. 입사되는 광신호(414) 중에서 선택된 채널필터(422a)의 투과대역 범위 안에 있는 광파장만이 선택된 채널필터(422a)를 통과하게 되고 포토디텍터(423)로 입력될 수 있다. The optical signal 413 to be measured is transformed into parallel light while passing through the lens 411 of the optical input unit 410. The optical signal 414 transformed into parallel light is incident on one of the channel filters 422. The channel filter to which the optical signal 414 is incident may be selected by manipulating the motor 425 under the control of the signal processor 440 and the controller 430. As an example, when 16 channel filters 422 are attached to the rotating plate 424 as described above, when the rotation angle of the motor 425 is rotated at intervals of 22.5 degrees, one channel filter 422a is selected from the 16 filters. ) Can be selected. Only light wavelengths within the transmission band range of the selected channel filter 422a among the incident optical signals 414 may pass through the selected channel filter 422a and may be input to the photodetector 423.
이에 더하여 모터(425)의 회전각을 22.5도보다 작게 하면, 선택된 채널필터(422a)에 입사하는 광신호(414)의 입사각도를 변화시킬 수 있다. 입력되는 광신호(414)의 입사각도를 변화시키면 전술한 [수학식 1]에 의하여 선택된 채널필터(422a)의 투과대역이 변경되고, 변화된 투과대역에 따라 광신호(414)에 포함되어 있는 파장과 광출력을 측정할 수 있다.In addition, when the rotation angle of the motor 425 is smaller than 22.5 degrees, the incident angle of the optical signal 414 incident on the selected channel filter 422a may be changed. When the incident angle of the input optical signal 414 is changed, the transmission band of the channel filter 422a selected by Equation 1 is changed, and the wavelength included in the optical signal 414 according to the changed transmission band. And light output can be measured.
도 6은 본 발명의 또 다른 일실시 예에 따른 광파장측정기의 광학부 구조를 도시한 도면이다.6 is a view showing the structure of the optical unit of the optical wavelength meter according to another embodiment of the present invention.
도 6을 참조하면, 도 5의 경우와는 다르게 회전판(424b)은 중심이 모터축(426)과 연결되는 돌출부가 없는 원형 또는 정다각형의 판일 수 있다. 물론 도 5에서 제시한 회전판(424) 형태를 사용할 수도 있다. 채널필터(422)는 회전판(424b)의 끝에 회전판의 면에 수직으로 부착될 수 있다. 이때 광신호(414)가 입사되는 방향이 회전판(424b)의 원주 외측에서 중심으로 또는 회전판(424b)의 원주방향으로 되도록 채널필터(422)들을 배치할 수 있다. 복수 개의 채널필터(422)들은 서로 등 간격으로 회전판(424)의 끝에 부착될 수 있다. 일예로서 16개의 CWDM 채널필터가 부착되는 경우에는 서로 간에 360/16=22.5도의 간격을 가지고 회전판(424)의 끝에 부착될 수 있다.Referring to FIG. 6, unlike the case of FIG. 5, the rotating plate 424b may be a circular or regular polygonal plate having no protrusion having a center connected to the motor shaft 426. Of course, it is also possible to use the shape of the rotating plate 424 shown in FIG. The channel filter 422 may be attached perpendicularly to the surface of the rotating plate at the end of the rotating plate 424b. In this case, the channel filters 422 may be disposed such that the direction in which the optical signal 414 is incident is from the outer circumference of the rotating plate 424b to the center or the circumferential direction of the rotating plate 424b. The plurality of channel filters 422 may be attached to the ends of the rotating plate 424 at equal intervals. For example, when 16 CWDM channel filters are attached, they may be attached to the ends of the rotating plate 424 with a spacing of 360/16 = 22.5 degrees from each other.
도 7 내지 도 9는 도 5 또는 도 6의 모터(425) 회전에 의한 입사각 변화와 채널필터의 투과대역 변경을 설명하기 위한 도면이다.7 to 9 are views for explaining the change in the incident angle and the transmission band of the channel filter by the rotation of the motor 425 of FIG. 5 or 6.
전술한 바처럼 일 예로서 16개의 CWDM 채널필터가 회전판에 부착된 경우 모터(425)의 회전각을 22.5도로 변경하면 중심파장이 다른 채널필터가 선택된다. 하지만 모터(425)의 회전각을 22.5도보다 작게 하여 회전시키면, 동일한 채널 필터에 대하여 입력되는 광신호(414)의 입사각(입사광선과 채널필터 표면의 법선 사이의 각)을 변경시킬 수 있다. As described above, when 16 CWDM channel filters are attached to the rotating plate, for example, when the rotation angle of the motor 425 is changed to 22.5 degrees, channel filters having different center wavelengths are selected. However, when the rotation angle of the motor 425 is rotated smaller than 22.5 degrees, the incident angle (angle between the incident light and the normal of the surface of the channel filter) input to the same channel filter can be changed.
도 7 은 한 개의 채널필터를 회전시키면서 파장을 측정할 때, 입사각 0도에서 광신호(414)가 채널필터(422)의 정중앙으로 입사할 경우, 광신호(414)의 손실을 발생시키지 않으면서, 채널필터(422)를 최대한 회전시킬 수 있는 회전각(720, 721)을 계산하기 위한 도면이다. 최대회전각도(720)는 채널필터의 크기와 채널필터가 부착된 회전판의 반경에 의해서 [수학식 3]을 이용하여 계산될 수 있다.FIG. 7 illustrates that the optical signal 414 enters the center of the channel filter 422 at the incident angle of 0 degrees when the wavelength is measured while rotating one channel filter, without causing loss of the optical signal 414. FIG. 2 is a diagram for calculating rotation angles 720 and 721 capable of rotating the channel filter 422 as much as possible. The maximum rotation angle 720 may be calculated using Equation 3 by the size of the channel filter and the radius of the rotating plate to which the channel filter is attached.
Figure PCTKR2017006786-appb-M000003
Figure PCTKR2017006786-appb-M000003
여기서 L은 채널필터의 가로 길이(730)-회전판(424)의 원주방향으로의 길이일 수 있다-를 나타내고, D는 광신호(414)의 빔직경, R은 회전판(424)의 회전 중심에서 채널필터(422) 밑면까지의 거리, t는 채널필터의 두께(731)를 나타낸다. L=2.0mm, D=0.3mm, R=7mm, t=1mm인 경우, [수학식 3]에 의하여 최대 회전각(θmax)는 약 6.1도가 되고, 도 7을 참조하면, 최대입사각(φmax)은 최대 회전각과 동일하므로 약 6.1도가 된다. 그러므로 측정가능한 입사각의 범위는 φ = -6.1 ~ +6.1 도이다. 그리고 [수학식 1]에 의하면 중심파장 λo = 1550nm, 유효굴절률 neff = 2.0 인 채널필터의 경우 파장의 변위(740)는 0nm ~ -2.2nm 가 된다. Where L is the horizontal length 730 of the channel filter, which may be the length in the circumferential direction of the rotating plate 424, D is the beam diameter of the optical signal 414, and R is the rotational center of the rotating plate 424. The distance to the bottom surface of the channel filter 422, t represents the thickness 731 of the channel filter. In the case of L = 2.0mm, D = 0.3mm, R = 7mm, t = 1mm, the maximum rotation angle θ max is about 6.1 degrees according to [Equation 3], and referring to FIG. 7, the maximum incident angle φ max ) is about 6.1 degrees since it is equal to the maximum rotation angle. Therefore, the range of measurable incidence angles is φ = −6.1 to +6.1 degrees. According to Equation 1, in the case of a channel filter having a center wavelength λ o = 1550 nm and an effective refractive index n eff = 2.0, the wavelength displacement 740 is 0 nm to -2.2 nm.
도 8은 한 개의 채널필터를 회전시키면서 파장을 측정할 때, 입사각 0도에서 광신호(414)가 채널필터(422)의 정중앙에서 벗어나서 입사할 경우, 광신호(414)의 손실을 발생시키지 않으면서, 채널필터(422)를 최대한 회전시킬 수 있는 회전각(820)을 계산하기 위한 도면이다.FIG. 8 illustrates that when the wavelength is measured while rotating one channel filter, when the optical signal 414 is incident from the center of the channel filter 422 at the incident angle of 0 degrees, the optical signal 414 is not generated. 3 is a diagram for calculating a rotation angle 820 that can rotate the channel filter 422 as much as possible.
도 8을 참조하면, 최대회전각(θmax)는 필터의 크기와 필터가 부착된 회전판의 반경에 의해서 아래와 같이 결정될 수 있다.Referring to FIG. 8, the maximum rotation angle θ max may be determined as follows by the size of the filter and the radius of the rotating plate to which the filter is attached.
Figure PCTKR2017006786-appb-M000004
Figure PCTKR2017006786-appb-M000004
여기서 L은 채널필터의 가로 길이(730)-회전판(424)의 원주방향으로의 길이일 수 있다-를 나타내고, X는 광신호(145)의 입력 중심과 필터 중앙 사이의 오프셋(830)을 나타내며, D는 광신호(414)의 빔직경, R은 회전판(424)의 회전 중심에서 채널필터(422) 밑면까지의 거리, t는 채널필터의 두께(731)를 나타낸다. 여기서 오프셋(830) X는 (L-D)/2 보다 작은 값이어야 입력광의 손실이 발생하지 않는다.  Where L represents the horizontal length 730 of the channel filter, which may be the length of the circumferential direction of the rotating plate 424, and X represents the offset 830 between the filter center and the input center of the optical signal 145. D denotes the beam diameter of the optical signal 414, R denotes the distance from the center of rotation of the rotating plate 424 to the bottom of the channel filter 422, and t denotes the thickness 731 of the channel filter. In this case, the offset 830 X should be smaller than (L-D) / 2 so that no loss of input light occurs.
상기 [수학식 4]에 의하면 L=2.0mm, D=0.3mm, R=7mm, t=1mm인 경우, 오프셋 X를 0.55mm로 설정하면 최대회전각(820)은 10.1도가 될 수 있다. 그리고 도 8을 참조하면, 최대입사각 (φmax)은 최대회전각과 동일하게 약 10.1도일 수 있다. 그러면 측정가능한 입사각의 범위는 φ = 0 ~ +10.1 도가 될 수 있다. [수학식 1]에 의하면 중심파장 λo = 1550nm, 유효굴절률 neff = 2.0인 채널필터의 경우 파장의 변위(840)는 0nm ~ -5.9nm 가 된다. According to Equation 4, when L = 2.0mm, D = 0.3mm, R = 7mm, t = 1mm, when the offset X is set to 0.55mm, the maximum rotation angle 820 may be 10.1 degrees. 8, the maximum incident angle φ max may be about 10.1 degrees in the same manner as the maximum rotation angle. The range of measurable incidence angles can then be in the range φ = 0 to +10.1 degrees. According to Equation 1, the center wavelength λ o = 1550 nm and the effective refractive index n eff In the case of a channel filter of = 2.0, the wavelength displacement 840 is 0 nm to -5.9 nm.
도 9는 입사각을 변화시키는 본 발명의 또 다른 실시 예로서, 도 8의 방법보다 더 큰 파장 변위가 발생하도록 최대입사각을 좀 더 크게 하고자 채널필터(422)에 입사하는 광신호(414)의 빔 자체를 기울여서 필터에 입사시키는 방법을 도시한 도면이다. 이 경우의 최대입사각은 [수학식 5]를 이용하여 계산할 수 있다.  9 is another embodiment of the present invention for changing the angle of incidence, the beam of the optical signal 414 incident on the channel filter 422 to make the maximum angle of incidence larger so that a larger wavelength shift occurs than the method of FIG. It is a figure which shows the method of inclining itself and injecting into a filter. The maximum incident angle in this case can be calculated using [Equation 5].
Figure PCTKR2017006786-appb-M000005
Figure PCTKR2017006786-appb-M000005
여기서 ψ는 광신호(414)의 기울어진 각도(930)이고, 이 경우에 측정 가능한 최소 입사각은 영이 아니고 ψ가 된다.Where? Is the tilt angle 930 of the optical signal 414, in which case the minimum measurable angle of incidence is not zero but?.
전술한 예와 같은 조건(L=2.0mm, D=0.3mm, R=7mm, t=1mm, X=0.55mm)인 경우, 광신호(414)의 빔을 2도 정도 기울여서 입사시킨다면, 입사각(φ)은 +2도에서 12.1도 범위까지 변화시킬 수 있다. [수학식 1]에 의하면 중심파장 λo = 1550nm, 유효굴절률 neff = 2.0인 채널필터의 경우 파장의 변위(940)는 -0.24nm ~ -8.5nm 가 된다. Under the same conditions as in the above example (L = 2.0mm, D = 0.3mm, R = 7mm, t = 1mm, X = 0.55mm), when the beam of the optical signal 414 is inclined by about 2 degrees, the incident angle ( φ) can vary from +2 degrees to 12.1 degrees. According to Equation 1, the center wavelength λ o = 1550 nm and the effective refractive index n eff In the case of a channel filter of = 2.0, the wavelength displacement 940 is -0.24 nm to -8.5 nm.
도 9의 실시 예에서는 입사되는 광신호(414)가 채널필터면에서 반사되어 기울임 각 ψ의 2배 만큼 어긋난 방향으로 입사부로 되돌아가기 때문에 파장 측정기의 반사손실 특성이 더 좋다는 장점도 가질 수 있다.  In the embodiment of FIG. 9, since the incident optical signal 414 is reflected from the channel filter surface and returns to the incident part in a direction shifted by twice the tilt angle ψ, the reflection loss characteristic of the wavelength meter may be better.
[표 1]은 동일한 채널필터와 동일한 입사광에 대하여 도 7, 8, 및 9에서 제시한 방법으로 얻을 수 있는 파장변위의 범위를 비교한 테이블이다.   Table 1 is a table comparing the ranges of wavelength shifts that can be obtained by the method shown in FIGS. 7, 8, and 9 for the same channel filter and the same incident light.
[표 1]에서 보이는 바와 같이 광신호 입사위치에 대한 오프셋을 주거나 입사 기울기를 줌으로써 최대 가변파장 범위를 4배정도 크게 할 수 있는 효과를 얻을 수 있다.   As shown in [Table 1], the maximum variable wavelength range can be increased by about four times by giving an offset to the incident position of the optical signal or giving an inclination slope.
파라미터 parameter 단위unit 도 77 도 8 8 도 99
채널필터Channel filter 길이(L)Length (L) mmmm 2.02.0 2.02.0 2.02.0
두께(t)Thickness (t) mmmm 1.01.0 1.01.0 1.01.0
유효굴절률(neff)Effective refractive index (n eff ) -- 2.00002.0000 2.00002.0000 2.00002.0000
광신호Light signal 파장wavelength mmmm 1550.01550.0 1550.01550.0 1550.01550.0
빔 직경Beam diameter mmmm 0.30.3 0.30.3 0.30.3
오프셋offset mmmm 0.00.0 0.550.55 0.550.55
기울기inclination deg.deg. 0.00.0 0.00.0 2.02.0
회전판Tumbler 직경diameter mmmm 7.07.0 7.07.0 7.07.0
입사각angle of incidence 최소at least deg.deg. 0.00.0 0.00.0 2.02.0
최대maximum deg.deg. 6.16.1 10.110.1 12.112.1
범위range deg.deg. 6.16.1 10.110.1 10.110.1
파장 변위Wavelength displacement 최소at least nmnm 0.000.00 0.000.00 -0.24-0.24
최대maximum nmnm -2.19-2.19 -5.94-5.94 -8.51-8.51
범위range nmnm 2.192.19 5.945.94 8.278.27
전술한 실시 예에서는 [수학식1]의 파장 변경 관계식에서 유효굴절률 값이 2.0 인 채널 필터를 기준으로 기술하지만 유효굴절률이 2.0인 채널 필터에 국한되지 않는다. 일반적으로 다층박막을 적층하여 채널 필터를 설계 혹은 제작할 때, 유효굴절률은 적층에 사용한 유전체들의 굴절률에 의하여 결정된다. [수학식 1]에 의하면 유효 굴절률이 5% 작아지면 파장 변위는 11% 증가한다.In the above-described embodiment, the wavelength change relation of Equation 1 is based on a channel filter having an effective refractive index of 2.0, but is not limited to a channel filter having an effective refractive index of 2.0. In general, when designing or fabricating a channel filter by stacking multilayer thin films, the effective refractive index is determined by the refractive indices of the dielectrics used for the lamination. According to Equation 1, when the effective refractive index decreases by 5%, the wavelength shift increases by 11%.
참고로 도 1과 같은 종래의 광파장 파워 측정기는 스텝 모터(33)가 회전을 해도 입력되는 광신호와 채널필터간의 입사각이 변하지 않기 때문에, 본 발명과 같은 효과가 나타나지 않으며 그에 따라서 입력되는 광신호의 파장값을 측정할 수 없다.  For reference, since the incident angle between the input optical signal and the channel filter does not change even when the stepper motor 33 rotates, the conventional optical wavelength power meter as shown in FIG. 1 does not have the same effect as the present invention. The wavelength value cannot be measured.
다시 도 4를 참조하면, 신호처리부(440)는 모터(425)를 제어하여 회전판(424)를 회전시키면서 포토디텍서(423)에서 들어오는 전기신호를 검측하여 광신호에 포함되어 있는 광파장을 정밀하게 측정할 수 있다.  Referring back to FIG. 4, the signal processor 440 controls the motor 425 to rotate the rotating plate 424 to detect an electric signal coming from the photo detector 423 to precisely detect an optical wavelength included in the optical signal. It can be measured.
이하 도 10 내지 도 12를 참조하여 본 발명에 의하여 신호처리부(440)에서 수행하는 파장 측정방법을 설명한다.  Hereinafter, a wavelength measuring method performed by the signal processor 440 according to the present invention will be described with reference to FIGS. 10 to 12.
도 10은 모터(425)를 회전시킬 때, 모터의 회전각(θ) 에 따라서 입사각(φ)이 변하여 채널필터(422)의 투과대역 파장이 변경되는 일예를 도시한 도면이다.  FIG. 10 is a diagram illustrating an example in which a transmission band wavelength of the channel filter 422 is changed by changing the incident angle φ according to the rotation angle θ of the motor when the motor 425 is rotated.
입력되는 광신호에 포함되어 있는 광파장을 측정하기 위한 본 발명에서 제시하는 방법은 채널필터의 투과대역의 왼쪽 모서리(1020) 파장(λLE)과 오른 쪽 모서리(1010) 파장(λRE)을 이용한다. 도 10을 참조하면, 모터의 회전각(θ)이 각 채널필터(422)가 입사되는 광신호(414)와 수직이 되도록 설정되는 경우, 즉, 광신호(414)의 입사각(φ)이 0이 되도록 설정된 경우, 채널필터(422)는 설계된 중심파장(λC)에서 설계된 대역만큼의 파장만 통과시킬 수 있다. 일예로서 채널필터가 λc ± 7nm의 파장만을 통과시키도록 설계된 경우, 왼쪽 모서리 파장(λLE)은 λc - 7nm 가 되고, 오른쪽 모서리 파장(λRE)은 λc + 7nm가 될 수 있다. 즉, 중심파장(λC)이 1550nm인 경우에 왼쪽 모서리 파장(λLE)은 1543nm가 될 수 있고, 오른쪽 모서리 파장(λRE)은 1557nm가 될 수 있다. 그리고 모터(425)를 회전간격 dθ마다 회전시킬 때의 채널필터의 투과대역의 오른쪽 모서리(1010) 파장(λRE)과 왼쪽 모서리(1020)파장(λLE)을 계산한다. 모터(425)를 dθ만큼 회전시키면 회전판(424)도 동일하게 회전하게 되고, 마찬가지로 회전판(424)의 원주에 부착된 채널필터(422)도 dθ만큼 회전하게 된다. 이에 의해 광신호(414)가 채널필터(422)에 입사되는 입사각(φ)는 dθ가 된다. 입사각이 0에서 dθ로 변하면 도 7 내지 도 9에서 설명한 것처럼 채널필터(422)가 통과시킬 수 있는 파장대역이 변하게 된다. 도 10에 도시한 것처럼 일반적으로 왼쪽으로 이동하게 되고 그에 따라 오른쪽 모서리 파장(λREi)과 왼쪽 모서리파장(λLEi)이 변하게 된다. 이러한 변경은 [수학식 1]을 이용하여 계산할 수 있다. N개의 채널필터가 회전판(424)에 부착되어 있고, 각각의 채널필터에 대하여 M개의 입사각(0, dθ, 2dθ, ..., (M-1)dθ)에 대하여 계산하면 아래와 같이 총 NxM개의 켈리브레이션용 데이터 집합을 얻을 수 있다.The method proposed in the present invention for measuring the optical wavelength included in the input optical signal uses the wavelength of the left edge 1020 of the transmission band of the channel filter λ LE and the wavelength of the right edge 1010 λ RE . . Referring to FIG. 10, when the rotation angle θ of the motor is set to be perpendicular to the optical signal 414 to which each channel filter 422 is incident, that is, the incident angle φ of the optical signal 414 is zero. When set to be, the channel filter 422 can pass only the wavelength of the designed band at the designed center wavelength λ C. As an example, when the channel filter is designed to pass only a wavelength of λc ± 7nm, the left edge wavelength λ LE may be λc-7 nm, and the right edge wavelength λ RE may be λc + 7nm. That is, when the center wavelength λ C is 1550 nm, the left edge wavelength λ LE may be 1543 nm, and the right edge wavelength λ RE may be 1557 nm. Then, the right edge 1010 wavelength λ RE and the left edge 1020 wavelength λ LE of the transmission band of the channel filter when the motor 425 is rotated at each rotation interval dθ are calculated. When the motor 425 is rotated by dθ, the rotating plate 424 rotates in the same manner, and the channel filter 422 attached to the circumference of the rotating plate 424 also rotates by dθ. As a result, the incident angle φ at which the optical signal 414 is incident on the channel filter 422 becomes dθ. When the incident angle is changed from 0 to dθ, the wavelength band through which the channel filter 422 can pass is changed as described with reference to FIGS. 7 to 9. In general, as shown in FIG. 10, the left edge wavelength λ REi and the left edge wavelength λ LEi are changed accordingly. This change can be calculated using Equation 1. N channel filters are attached to the rotating plate 424, and for each channel filter, when N incidence angles (0, dθ, 2dθ, ..., (M-1) dθ) are calculated, a total of NxM You can get the data set for calibration.
데이터(k) = θk, φj, λLE(i), λRE(i),dλLEj, dλREj Data k = θ k , φ j , λ LE (i), λ RE (i), dλ LEj , dλ REj
여기서 i = 1~N인 정수이고 j는 1~M인 정수이고 k는 1~N×M정수이다. θk는 모터의 각도 위치로 0~360도의 사이의 값이고, φj 는 필터에 대한 광신호의 입사각으로 0~(M-1)dθ의 값을 갖는다. dλj 는 입사각 변화에 의한 파장 변위 값으로 dλREj는 오른쪽 모서리(1010)에서의 파장의 변위값이고, dλLEj는 왼쪽 모서리(1020)에서의 파장의 변위값이다. Where i = 1 to N, j is 1 to M, and k is 1 to N x M. θ k is a value between 0 and 360 degrees as an angular position of the motor, and φ j has a value of 0 to (M-1) dθ as an angle of incidence of an optical signal to the filter. dλ j Is the wavelength shift value due to the change in the incident angle, dλ REj is the displacement value of the wavelength at the right edge 1010, and dλ LEj is the displacement value of the wavelength at the left edge 1020.
일 예로서 채널필터의 개수가 16개이고, dθ는 0.5도이고 20개의 입사각에 대하여 계산한다고 하면 총 켈리브레이션용 데이터는 16×20=320개가 된다. 즉, 계산하고자 하는 입사각의 수가 많아질수록, 채널필터의 개수가 많아질수록 켈리브레이션용 데이터의 양도 많아질 수 있다. 반면에 측정할 수 있는 파장의 정밀도는 더욱 높아질 수 있다. 이런 조건하에서 켈리브레이션용 데이터는 다음 [표 2]와 같은 값을 가질 수 있다.As an example, if the number of channel filters is 16, dθ is 0.5 degrees, and the calculation is performed for 20 incident angles, the total calibration data is 16 × 20 = 320. That is, as the number of incident angles to be calculated and the number of channel filters increases, the amount of calibration data may also increase. On the other hand, the measurable precision of the wavelength can be even higher. Under these conditions, the calibration data can have values as shown in Table 2 below.
kk ii jj θk θ k φj φ j λLE(i)λ LE (i) λRE(i)λ RE (i) LEj LEj REj REj
1One 1One 1One 00 00 1263nm1263 nm 1277nm1277 nm 0nm0nm 0nm0nm
22 1One 22 0.50.5 0.50.5 1263nm1263 nm 1277nm1277 nm -0.012nm-0.012nm -0.012nm-0.012nm
...... ...... ...... ...... ...... ...... ...... ...... ......
2020 1One 2020 1010 1010 1263nm1263 nm 1277nm1277 nm -4.796nm-4.796 nm -4.796nm-4.796 nm
2121 22 1One 22.522.5 00 1283nm1283 nm 1297nm1297 nm 0nm0nm 0nm0nm
2222 22 22 2323 0.50.5 1283nm1283 nm 1297nm1297 nm -0.012nm-0.012nm -0.012nm-0.012nm
...... ...... ...... ...... ...... ...... ...... ...... ......
3030 22 1010 27.527.5 55 1283nm1283 nm 1297nm1297 nm -1.225nm-1.225nm -1.225nm-1.225nm
...... ...... ...... ...... ...... ...... ...... ...... ......
4040 22 2020 32.532.5 1010 1283nm1283 nm 1297nm1297 nm -4.871nm-4.871nm -4.871nm-4.871nm
...... ...... ...... ...... ...... ...... ...... ...... ......
...... ...... ...... ...... ...... ...... ...... ...... ......
301301 1616 1One 337.5337.5 00 1603nm1603 nm 1617nm1617 nm 0nm0nm 0nm0nm
302302 1616 22 338338 0.50.5 1603nm1603 nm 1617nm1617 nm -0.015nm-0.015nm -0.015nm-0.015nm
...... ...... ...... ...... ...... ...... ...... ...... ......
320320 1616 2020 347.5347.5 1010 1603nm1603 nm 1617nm1617 nm -6.080nm-6.080nm -6.080nm-6.080nm
상기 켈리브레이션용 데이터는 도 4의 신호처리부(440)에 구비되어 있는 비휘발성 메모리에 저장하여, 파장 측정에 활용될 수 있다. The calibration data may be stored in a nonvolatile memory included in the signal processor 440 of FIG. 4 and used for wavelength measurement.
도 11은 본 발명의 일실시 예에 따른 입력되는 광신호의 파장을 측정하는 방법을 설명하기 위한 도면이다.FIG. 11 is a diagram for describing a method of measuring a wavelength of an input optical signal according to an exemplary embodiment.
도 11을 참조하면, 파장이 알려지지 않은 입력 광신호가 파장 측정기에 입사될 때, 포토디텍터(423)의 출력을 관측함으로서 신호처리부(440)는 입력 광신호에 포함되어 있는 파장을 측정할 수 있다. 도 11은 특정 채널필터의 대역 내에 해당하는 광파장(1100)이 광신호(414)에 포함되어 있는 경우를 상정한 것이다. 광파장(1100)이 특정 채널필터의 투과대역(1110) 내에 해당하면 이 광파장(1100)은 채널필터를 투과하고 포토디텍터(425)에 전달된다. 포토디텍더(425)는 도달할 광파장의 세기에 해당하는 전기신호를 생성하여 신호처리부(440)로 전달할 수 있다. 종래의 광파장 검출기의 경우에는 포토디텍더(425)에서 방출하는 전기신호를 보고 특정 채널에 해당하는 광파장이 존재함만을 확인할 수 있을 뿐 실제 전송되는 광파장의 정밀한 파장을 알 수는 없다. 본원 발명은 정밀한 파장 측정을 위하여 포터디텍터(425)의 전기출력신호를 이용한다.Referring to FIG. 11, when an input optical signal having an unknown wavelength is incident on a wavelength detector, the signal processor 440 may measure the wavelength included in the input optical signal by observing the output of the photodetector 423. FIG. 11 assumes a case where an optical wavelength 1100 corresponding to a band of a specific channel filter is included in the optical signal 414. If the optical wavelength 1100 falls within the transmission band 1110 of the specific channel filter, the optical wavelength 1100 passes through the channel filter and is transmitted to the photo detector 425. The photodetector 425 may generate an electrical signal corresponding to the intensity of the optical wavelength to be reached and transmit the generated electrical signal to the signal processor 440. In the case of the conventional optical wavelength detector, it is possible to confirm only the existence of the optical wavelength corresponding to a specific channel by looking at the electric signal emitted from the photodetector 425, but cannot know the precise wavelength of the optical wavelength actually transmitted. The present invention uses the electrical output signal of the port detector 425 for precise wavelength measurement.
도 11에서 보듯이 입사각이 0인 경우의 특정 채널필터의 투과대역(1110)은 신호처리부(440)에 의한 제어에 의하여 회전판(424) 및 채널필터(422)를 회전시킴으로써 변이가 될 수 있다. 도11의 일 예에서 dθ만큼 회전시키면 입사각이 dθ가 되어 채널필터의 투과대역이 1120으로 변경될 수 있다. 다시 dθ만큼 더 회전시키면 입사각이 2dθ가 되고 채널필터의 투과대역이 1130이 된다. 계속적으로 dθ만큼 더 회전시키면 입사각이 계속 커지고 그에 따라 채널필터의 투과대역이 계속 낮은 쪽으로 이동하여 입사각이 a×dθ가 되는 경우에 입사되는 광파장(1100)이 채널필터 투과대역(1140)의 오른쪽 모서리에 걸리게 된다. 도 11에 도시된 것처럼 모터(425) 또는 채널필터(422)의 회전각이 a×dθ(1150)까지는 광파장(1100)이 채널필터의 투과대역 내에 존재하게 되므로 포토디텍터(425)의 출력이 높은 값을 유지하게 되나 dθ만큼 한 번 더 이동을 시키면 광파장(1100)이 채널필터 투과대역을 벗어나게 되어 채널필터를 투과할 수 없게 되고 그 결과로 포토디텍터(425)의 출력이 거의 나오지 않게 된다. 이후 계속 dθ만큼씩 이동시켜 한 채널필터 내에서의 최대 회전각까지 가더라도 광파장(1100)이 채널필터 투과대역 내에 존재하지 않게 되므로 포토디텍터(425)의 출력이 나오지 않게 된다. As shown in FIG. 11, the transmission band 1110 of the specific channel filter when the incident angle is 0 may be changed by rotating the rotating plate 424 and the channel filter 422 under the control of the signal processor 440. In the example of FIG. 11, when the angle is rotated by dθ, the incident angle becomes dθ, and thus the transmission band of the channel filter may be changed to 1120. If it rotates further by dθ, the incident angle becomes 2dθ and the transmission band of the channel filter becomes 1130. Continuously rotating by dθ further increases the angle of incidence and thus the transmission band of the channel filter continues to move to the lower side, whereby the incident light wavelength 1100 becomes the right edge of the channel filter transmission band 1140 when the incident angle becomes a × dθ. Is caught. As shown in FIG. 11, since the optical wavelength 1100 is present in the transmission band of the channel filter until the rotation angle of the motor 425 or the channel filter 422 is a × dθ 1150, the output of the photodetector 425 is high. If the value is maintained, but moved once more by dθ, the optical wavelength 1100 is out of the channel filter transmission band and cannot pass through the channel filter. As a result, the output of the photodetector 425 is hardly output. Since the optical wavelength 1100 does not exist in the channel filter transmission band, even if it is continuously moved by dθ and reaches the maximum rotation angle in one channel filter, the output of the photodetector 425 does not come out.
그러므로 신호처리부(440)는 포토디텍터(425)의 출력이 고점에서 저점으로 떨어질 때까지 움직인 dθ의 횟수와 상기 미리 계산해 놓은 켈리브레이션용 데이터를 이용하여 입력되는 광파장(1100)의 정밀한 파장을 측정할 수 있다. 일 예로서 특정 광신호에 대하여 상기 켈리브레이션용 데이터의 k=21인 경우에 포토디텍터(425)의 출력이 고점이고 0.5도(dθ)씩 회전각을 증가시켰을 때에 포토디텍터(425)의 출력이 k=30인 경우에 마지막으로 고점이 되고 k=31인 경우에 저점이 되었다고 하면 신호처리부(440)는 k=30에서의 λRE(i) 값과 dλREj 값을 이용하여 입력된 광신호에 포함된 광파장이 1297-1.225 = 1295.775nm임을 측정할 수 있다. 여기에서 전기신호의 고점과 저점은 미리 설정된 특정값을 기준으로 이보다 큰 경우에는 고점으로 이보다 작은 경우에는 저점으로 할 수 있다.Therefore, the signal processor 440 may measure the precise wavelength of the optical wavelength 1100 input using the number of dθ shifted from the high point to the low point of the photodetector 425 and the pre-calculated calibration data. Can be. As an example, when k = 21 of the calibration data for a specific optical signal, the output of the photodetector 425 is k when the output of the photodetector 425 is high and the rotation angle is increased by 0.5 degrees (dθ). In the case of = 30, when the last high point is reached and k = 31 is the low point, the signal processor 440 determines the value of λ RE (i) and dλ REj at k = 30. By using the value it can be measured that the optical wavelength included in the input optical signal is 1297-1.225 = 1295.775 nm. Here, the high point and the low point of the electric signal may be a high point if the value is larger than this based on a predetermined value, and a low point if the value is smaller than this value.
도 12는 본 발명의 또 다른 일실시 예에 따른 입력되는 광신호의 파장을 측정하는 방법을 설명하기 위한 도면이다.  12 is a view for explaining a method of measuring a wavelength of an input optical signal according to another embodiment of the present invention.
도 12를 참조하면, 입력되는 광신호에 포함되는 광파장이 원 채널의 중심파장에서 너무 벗어나서 처음 입사각이 0인 경우에 포토디텍터(425)의 출력이 아주 낮게 나오게된다. 이 경우 종래의 방식은 채널을 인식할 수 없게 되고 오류로 판단할 수 있지만 실제로 광파장에 어떤 일이 발생했는지는 알 수 없다. 반면에 본원 발명은 입사각이 0인 경우의 특정 채널필터의 투과대역(1210)은 신호처리부(440)에 의한 제어에 의하여 회전판(424) 및 채널필터(422)를 회전시킴으로써 변이가 될 수 있다. 도12의 일예에서 dθ만큼 회전시키면 입사각이 dθ가 되어 채널필터의 투과대역이 1220으로 변경될 수 있다. 다시 dθ만큼 더 회전시키면 입사각이 2dθ가 되고 채널필터의 투과대역이 1230이 된다. 계속적으로 dθ만큼 더 회전시키면 입사각이 계속 커지고 그에 따라 채널필터의 투과대역이 계속 낮은 쪽으로 이동하여 입사각이 b×dθ가 되는 경우에 입사되는 광파장(1100)이 채널필터 투과대역(1240)의 왼쪽 모서리에 걸리게 된다. 도 12에 도시된 것처럼 모터(425) 또는 채널필터(422)의 회전각이 b×dθ(1250) 이전까지는 광파장(1200)이 채널필터의 투과대역 밖에 존재하게 되므로 포토디텍터(425)의 출력이 낮은 값을 유지하게 되나 dθ만큼 한 번 더 이동을 시켜 회전각이 b×dθ(1250)가 되면 광파장(1200)이 채널필터 투과대역 내에 들어가게 되어 채널필터를 투과하게 되고 그 결과로 포토디텍터(425)의 출력에 높은 값이 나오게 된다. 이후 계속 dθ만큼씩 이동시켜 한 채널필터 내에서의 최대 회전각까지 광파장(1200)이 채널필터 투과대역 내에 존재하게 되므로 포토디텍터(425)의 출력은 높은 값을 유지하게 된다.   Referring to FIG. 12, when the optical wavelength included in the input optical signal is too far from the center wavelength of the original channel, the output of the photodetector 425 is very low when the first incident angle is zero. In this case, the conventional method can not recognize the channel and can be determined as an error, but it is not known what actually happened to the optical wavelength. On the other hand, in the present invention, the transmission band 1210 of the specific channel filter when the incident angle is 0 may be changed by rotating the rotating plate 424 and the channel filter 422 under the control of the signal processor 440. In the example of FIG. 12, when the angle is rotated by dθ, the incident angle becomes dθ, and the transmission band of the channel filter may be changed to 1220. If it rotates further by dθ, the incident angle becomes 2dθ and the transmission band of the channel filter becomes 1230. Continuously rotating by dθ further increases the angle of incidence and thus the transmission band of the channel filter continues to move to the lower side, whereby the incident light wavelength 1100 becomes the left edge of the channel filter transmission band 1240 when the incident angle becomes b × dθ. Is caught. As shown in FIG. 12, since the optical wavelength 1200 is outside the transmission band of the channel filter until the rotation angle of the motor 425 or the channel filter 422 is b × dθ 1250, the output of the photodetector 425 is If the rotation angle is b × dθ (1250) by moving it one more time by dθ, the optical wavelength 1200 enters the channel filter transmission band and passes through the channel filter. As a result, the photodetector 425 The output of) will show a high value. Afterwards, the optical wavelength 1200 remains in the channel filter transmission band until the maximum rotation angle in one channel filter is continued by dθ, so that the output of the photodetector 425 maintains a high value.
그러므로 신호처리부(440)는 포토디텍터(425)의 출력이 저점에서 고점으로 떨어질 때까지 움직인 dθ의 횟수와 상기 미리 계산해 놓은 켈리브레이션용 데이터를 이용하여 입력되는 광파장(1200)의 정밀한 파장을 측정할 수 있다. 일 예로서 특정 광신호에 대하여 상기 켈리브레이션용 데이터의 k=21인 경우에 포토디텍터(425)의 출력이 저점이고 0.5도(dθ)씩 회전각을 증가시켰을 때에 포토디텍터(425)의 출력이 k=30인 경우에 최조 고점이 되었다고 하면 신호처리부(440)는 k=30에서의 λLE(i) 값과 dλLEj 값을 이용하여 입력된 광신호에 포함된 광파장이 1283-1.225 = 1281.775nm임을 측정할 수 있다.Therefore, the signal processor 440 may measure the precise wavelength of the optical wavelength 1200 input using the number of dθ moved from the low point to the high point of the photodetector 425 and the pre-calculated calibration data. Can be. As an example, when k = 21 of the calibration data for a specific optical signal, the output of the photo detector 425 is k when the output of the photo detector 425 is low and the rotation angle is increased by 0.5 degrees (dθ). If the highest point is reached in the case of = 30, the signal processor 440 determines the value of λ LE (i) and dλ LEj at k = 30. By using the value it can be measured that the optical wavelength included in the input optical signal is 1283-1.225 = 1281.775 nm.
요약하면, 신호처리부(440)는 도 11의 예와 같이 포토디텍터(425)의 출력이 고점에서 저점으로 변하면 하기 [수학식 6]을 사용하고 도 12의 예와 같이 포토디텍터(425)의 출력이 저점에서 고점으로 변하면 하기 [수학식 7]을 적용하여 입력된 광신호에 포함되어 있는 광파장을 구할 수 있다.  In summary, when the output of the photodetector 425 changes from the high point to the low point as shown in the example of FIG. 11, the signal processor 440 uses the following Equation 6 and the output of the photodetector 425 as shown in the example of FIG. 12. When the low point is changed to the high point, Equation 7 below can be applied to obtain an optical wavelength included in the input optical signal.
Figure PCTKR2017006786-appb-M000006
Figure PCTKR2017006786-appb-M000006
Figure PCTKR2017006786-appb-M000007
Figure PCTKR2017006786-appb-M000007
여기서 λ(i)는 i번째 채널의 측정된 파장값이고, λRE(i), λLE(i), dλREj 및 dλLEj 는 상기 미리 계산된 켈리브레이션용 데이터로부터 구할 수 있는데, 여기서, i와 j는 포토디텍터(425)의 출력이 고점에서 저점으로 또는 저점에서 고점으로 변하는 시점의 채널 정보와 회전각 정보를 바탕으로 구할 수 있다.Where λ (i) is the measured wavelength value of the i-th channel, and λ RE (i), λ LE (i), dλ REj and dλ LEj are obtained from the pre-calculated calibration data, where i and j may be obtained based on channel information and rotation angle information at the time when the output of the photodetector 425 changes from a high point to a low point or from a low point to a high point.
한편, 각 채널의 광출력의 측정은 도 11 또는 도 12의 포토디텍터 출력신호를 입사각 위치에서 취득하고 미리 측정된 포토디텍터(425)의 Responsivity R 값으로 나누어 다음 [수학식 8]을 이용하여 산출할 수 있다. On the other hand, the measurement of the light output of each channel is calculated by using the following equation (8) by dividing the photodetector output signal of FIG. 11 or 12 at the incident angle position and dividing by the previously measured Responsivity R value of the photodetector 425. can do.
Figure PCTKR2017006786-appb-M000008
Figure PCTKR2017006786-appb-M000008
여기서 I(i)는 입사각 위치에서 획득한 포토디텍터(425)의 출력값이다. 본 실시 예에서는 광출력을 취득하는 입사각 위치를 포토디텍터(425)가 높은 신호가 출력되는 구간의 중간 위치를 선택하였으나 중간위치 좌우의 값을 평균하여 적용할 수도 있다.I (i) is an output value of the photodetector 425 acquired at the incident angle position. In the present exemplary embodiment, the middle position of the section in which the photodetector 425 outputs a high signal is selected as the incident angle position for acquiring the light output. However, the left and right values of the middle position may be averaged.
도 10 내지 도 12의 파장측정방법을 적용하여 파장을 측정하는 경우에, 측정 가능한 파장의 범위(λmeasure;1030)와 파장을 측정할 수 없는 파장영역(λambiguity;1040)이 존재할 수 있다. 측정 가능한 범위와 측정 불가능한 영역은 한 개의 채널 필터에 대한 최소입사각(φmin)에서의 파장변위(dλmin), 최대입사각 (φmax) 에서 채널필터의 파장변위(dλmax)와 채널과 채널의 간격(dSchannel)의해서 결정되며, [수학식 9] 내지 [수학식 13]을 이용하여 구할 수 있다.In the case of measuring the wavelength by applying the wavelength measuring method of FIGS. 10 to 12, there may exist a range of measurable wavelength (λ measure 1030) and a wavelength region (λ ambiguity ) 1040 in which the wavelength cannot be measured. Measurement range and the measurement impossible region is a minimum angle of incidence (φ min) wavelength displacement (dλ min), the maximum incident angle (φ max) wavelength displacement of the channel filter (dλ max) in the channel and the channel of the for a single channel filter It is determined by the interval (dS channel ), and can be obtained using Equations 9 to 13.
Figure PCTKR2017006786-appb-M000009
Figure PCTKR2017006786-appb-M000009
Figure PCTKR2017006786-appb-M000010
Figure PCTKR2017006786-appb-M000010
Figure PCTKR2017006786-appb-M000011
Figure PCTKR2017006786-appb-M000011
Figure PCTKR2017006786-appb-M000012
Figure PCTKR2017006786-appb-M000012
Figure PCTKR2017006786-appb-M000013
Figure PCTKR2017006786-appb-M000013
여기서 λ(0), λ(φmin)와 λ(φmax)는 각각 입사각 0도에서, 최소입사각에서, 최대입사각에서의 상기 채널 필터의 투과대역이고, λc는 중심파장이다. [수학식13]에서 구한 파장을 측정할 수 없는 영역은 최대파장시프트(dλmax)가 투과대역폭(dλRE + dλLE )보다 작은 경우에 발생할 수 있고 이때는 입력되는 광신호가 λambiguity안에 있다는 것만을 알 수 있다.Where λ (0), λ (φ min ) and λ (φ max ) are the transmission bands of the channel filter at the incident angle of 0 degrees, the minimum incident angle, and the maximum incident angle, respectively, and λc is the center wavelength. The area where the wavelength obtained from Equation 13 cannot be measured may occur when the maximum wavelength shift (dλ max ) is smaller than the transmission bandwidth (dλ RE + dλ LE ), in which case only the input optical signal is within λ ambiguity Able to know.
CWDM 채널 필터 18개를 사용하여서 λc - 7.5nm ~ λc + 7.5nm 범위의 파장을 측정하고자 한다면 도 9의 예와 같이 φ = +2 ~ 12.1 도, 파장시트프 dλ= -0.24nm ~ -8.5nm 인 경우,dλmin = -0.24nm와 dλmax = -8.5nm를 [수학식 10] 내지 [수학식 12]에 의하여 dλLE = -8.5nm + 7.5 = -1.0nm이고 dλRE = 7.5nm + 0.24nm = 7.74nm 이다. 즉 입사각이 0도에서 λc + 1.0nm ~ λc + 7.74nm 인 채널필터를 적용하면 λc - 7.5nm ~ λc + 7.5nm 범위의 모든 파장을 측정할 수 있다. If you want to measure the wavelength of λc-7.5nm ~ λc + 7.5nm using 18 CWDM channel filters, φ = +2 ~ 12.1 degrees, wavelength cuff dλ = -0.24nm--8.5nm as shown in the example of FIG. When dλ min = -0.24nm and dλ max = -8.5nm, dλ LE = -8.5nm + 7.5 = -1.0nm according to Equations 10 to 12 and dλ RE = 7.5nm + 0.24 nm = 7.74 nm. That is, by applying a channel filter having an angle of incidence of λc + 1.0nm to λc + 7.74nm at 0 degrees, all wavelengths in the range of λc-7.5nm to λc + 7.5nm can be measured.
또한, 모터의 최소회전간격이 dθ라면 파장 분해능은 하기 [수학식 14]로부터 구할 수 있는데 dθ= 0.3도와 최대입사각 12.1도를 대입하면 파장 분해능은 약 0.5nm가 된다. In addition, if the minimum rotation interval of the motor is dθ, the wavelength resolution can be obtained from Equation (14) below. Substituting dθ = 0.3 and the maximum incident angle of 12.1 degrees, the wavelength resolution becomes about 0.5 nm.
Figure PCTKR2017006786-appb-M000014
Figure PCTKR2017006786-appb-M000014
그리고 입사각이 0도일 때의 채널필터의 대역폭이 채널 중심파장을 중심으로 좌우가 동일하지 아니하고 장파장쪽이 더 넓다면, 이러한 채널필터를 이용하여 측정할 수 있는 파장의 범위는 채널필터의 대역폭보다 클 수 있다. 일 예로서 만약 CWDM 채널필터 18개를 사용하여서 λc-9nm ~ λc+9nm 범위의 파장을 측정하고자 한다면 도 9의 예와 같이 φ = +2 ~ 12.1도, 파장변위 dλ= -0.24nm ~ -8.5nm인 경우, dλmin = -0.24nm와 dλmax = -8.5nm를 [수학식 10] 내지 [수학식 12]에 의하여 dλLE = -8.5nm + 9nm = +0.5nm이고 dλRE = 9nm + 0.24nm = 9.24nm이다. 즉 입사각 0도에서 λc - 0.5nm ~ λc + 9.25nm인 채널필터를 적용하면 λc - 9nm ~ λc + 9nm 범위의 모든 파장을 측정할 수 있다. 즉, 이 실시 예에서는 채널필터의 대역폭은 9.75nm인 반면에 측정할 수 있는 대역의 범위는 18nm가 된다. 단 이 경우에는 [수학식 13]에 의하여 입력되는 광의 파장이 λc-0.5- 0.24 ~ λc+9.24-8.5, 즉, λc - 0.74 ~ λc + 0.74의 λambiguity 범위에 있으면 단지 광출력만을 측정할 수 있다. If the bandwidth of the channel filter when the incident angle is 0 degrees is not the same on the left and right sides of the channel center wavelength, and the longer wavelength is wider, the range of wavelengths that can be measured using the channel filter is larger than the bandwidth of the channel filter. Can be. For example, if 18 CWDM channel filters are used to measure wavelengths in the range of λc-9nm to λc + 9nm, φ = +2 to 12.1 degrees and wavelength displacement dλ = -0.24nm to -8.5 as shown in FIG. In the case of nm, dλ min = -0.24nm and dλ max = -8.5nm, and dλ LE = -8.5nm + 9nm = + 0.5nm according to Equations 10 to 12 and dλ RE = 9nm + 0.24 nm = 9.24 nm. That is, by applying a channel filter having λc-0.5nm to λc + 9.25nm at an incident angle of 0 degrees, all wavelengths in the range of λc-9nm to λc + 9nm can be measured. That is, in this embodiment, the bandwidth of the channel filter is 9.75 nm while the range of the band that can be measured is 18 nm. In this case, only the light output can be measured if the wavelength of the light input by [Equation 13] is within the range of λc-0.5- 0.24 to λc + 9.24-8.5, that is, λ ambiguity of λc-0.74 to λc + 0.74. have.
본 발명의 기술은 CWDM 뿐만 아니라 DWDM망에서도 적용이 가능하다.   The technique of the present invention can be applied to DWDM networks as well as CWDM.
도 13은 C-밴드(1530~1565 nm, 대역폭 35nm)에 100GHz DWDM을 적용한 일실시 예를 도시한 도면이다.  FIG. 13 is a diagram illustrating an embodiment in which 100 GHz DWDM is applied to a C-band (1530 to 1565 nm and a bandwidth of 35 nm).
도 13에서 제시된 C-밴드뿐만 아니라 DWDM 기술은 O-밴드, E-밴드, S-밴드, L-밴드, U-밴드에도 적용될 수 있다.  DWDM technology as well as the C-band shown in Figure 13 can be applied to O-band, E-band, S-band, L-band, U-band.
도 14는 λo = 1570nm, neff = 1.5764인 DWDM 필터의 입사각과 파장변위의 관계식을 그래프로 도시한 도면이다. FIG. 14 is a graph showing a relationship between an incident angle and a wavelength displacement of a DWDM filter having λ o = 1570 nm and n eff = 1.5764.
도 14를 참조하면, 입사각이 10도인 경우, 최대 파장변위는 9.5nm이고, 1도당 파장 변위(dλ/dφ)는 -1.18nm/deg 이므로 파장 분해능 0.05nm를 얻기 위해서 회전 스텝 dθ는 0.05도 이하 이어야 한다.   Referring to FIG. 14, when the incident angle is 10 degrees, the maximum wavelength displacement is 9.5 nm, and the wavelength displacement (dλ / dφ) per degree is −1.18 nm / deg, so that the rotation step dθ is 0.05 degrees or less to obtain a wavelength resolution of 0.05 nm. Should be
도 15는 본 발명의 일실시 예에 따른 100GHz DWDM C-밴드용 광파장측정기 광학부의 구성을 나타낸 도면이다.   FIG. 15 is a diagram illustrating a configuration of an optical wavelength measuring device optical part for 100 GHz DWDM C-band according to an embodiment of the present invention.
도 15의 예에서는 투과대역폭이 0.2nm 정도인 50GHz DWDM용 채널필터(429)를 적용한 실시 예이고, DWDM 채널필터(429)는 투과대역폭이 0.2nm 이하인 채널필터를 적용할 수도 있다. 본 실시 예에서는 DWDM 채널필터(429)의 가로길이 L=2.0mm, 두께 t =1mm, 유효굴절률 = 1.5764, 입력 광신호의 빔 직경=0.3mm, 입력 광신호의 오프셋 X = 0.55mm, 입력 광신호의 기울어진 각 ψ= 2도인 경우, 1개의 필터의 입사각도 범위 φ = 2도 ~ 12.1도이며 그에 따른 파장변위 dλ = -0.38 ~ -13.89nm를 얻을 수 있다. 그러므로 C-밴드의 전체 대역폭 35nm 범위의 파장을 측정하기 위한 DWDM 채널필터의 개수는 최소 4개이며 본 실시 예에서는 최대입사각을 8도까지만 유효한 측정값으로 사용하기 위하여 DWDM 채널필터(429)를 7개 사용한다. 그러므로 투과 중심파장이 각각 6nm정도 떨어져 있는 50GHz DWDM 채널필터 7개로 C-밴드 전체 채널(채널 총 개수=35nm/0.8nm = 45개)에 대하여 광파장 및 광출력을 측정할 수 있다. 도 14를 참조하면, 입사각이 8도이면 1도당 파장변위가 1.53nm이므로 0.02nm 간격으로 필터 투과대역을 변위시키기 위하여 최소회전각도(dθ)가 0.03도인 모터를 적용할 수 있다. 또한, 상기 DWDM 채널필터(429) 투과대역이 0.2nm인 좁은 투과대역의 필터를 적용할 수도 있다.   In the example of FIG. 15, a 50 GHz DWDM channel filter 429 having a transmission bandwidth of about 0.2 nm is applied, and the DWDM channel filter 429 may apply a channel filter having a transmission bandwidth of 0.2 nm or less. In the present embodiment, the DWDM channel filter 429 has a horizontal length L = 2.0 mm, a thickness t = 1 mm, an effective refractive index = 1.5764, a beam diameter of an input optical signal = 0.3 mm, an offset of an input optical signal X = 0.55 mm, and an input light. When the inclination angle ψ = 2 degrees of the signal, the incidence angle range of one filter φ = 2 degrees to 12.1 degrees and the wavelength displacement dλ = -0.38 to -13.89 nm can be obtained. Therefore, the number of DWDM channel filters for measuring wavelengths in the entire 35-band range of the C-band is at least four. In this embodiment, the DWDM channel filter 429 is used to use the maximum incident angle as an effective measurement value of only 8 degrees. Use dogs. Therefore, optical wavelength and light output can be measured for all C-band channels (total number of channels = 35nm / 0.8nm = 45) with seven 50GHz DWDM channel filters with transmission center wavelengths separated by 6nm. Referring to FIG. 14, when the incident angle is 8 degrees, since the wavelength displacement per degree is 1.53 nm, a motor having a minimum rotation angle dθ of 0.03 degrees may be applied to shift the filter transmission band at intervals of 0.02 nm. In addition, the DWDM channel filter 429 may be a filter having a narrow transmission band having a transmission band of 0.2 nm.
도 15의 실시 예는 50G DWDM 채널필터를 적용하여 100G DWDM광신호의 파장과 광출력을 측정하는 것을 설명하고 있지만, 입력신호가 50G DWDM 광신호인 경우에도 광출력의 측정이 가능하다. 단, 50G DWDM 광신호의 경우에는 파장은 측정할 수 없고 채널별 광출력값만을 측정할 수 있다. Although the embodiment of FIG. 15 illustrates the measurement of the wavelength and the light output of the 100G DWDM optical signal by applying the 50G DWDM channel filter, the optical output may be measured even when the input signal is the 50G DWDM optical signal. However, in the case of 50G DWDM optical signal, the wavelength cannot be measured, and only the optical output value of each channel can be measured.
도 15와 같은 방법으로 L-밴드 DWDM 광신호의 파장과 광출력을 측정하고자 한다면 C-밴드 50G DWDM 채널필터 (429) 대신에 L-밴드 50G DWDM 채널필터들을 부착하면 된다. If the wavelength and light output of the L-band DWDM optical signal are to be measured in the same manner as in FIG. 15, the L-band 50G DWDM channel filters may be attached instead of the C-band 50G DWDM channel filter 429.
또한, 도 15의 회전판에 DWDM 채널필터 7개를 붙이고 남는 회전판의 측면 둘레에 CWDM 채널 필터(422)를 추가로 붙여서 DWDM/CWDM 공용으로 사용할 수 있으며 또는 L-밴드 DWDM 채널필터를 부착하여 L-밴드/C-밴드 공용으로 사용할 수 있다.  In addition, 7 DWDM channel filters may be attached to the rotating plate of FIG. 15 and additional CWDM channel filters 422 may be attached to the circumference of the remaining rotating plate to use DWDM / CWDM for common use, or L-band DWDM channel filters may be attached to the L- band DWDM channel filter. Can be used for both band / C-band.
도 16은 C-밴드 100GHz DWDM 광신호의 파장과 광출력을 측정하는 또 다른 실시예의 광학부의 구성도이다.   16 is a configuration diagram of an optical unit according to another embodiment in which the wavelength and the light output of the C-band 100 GHz DWDM optical signal are measured.
도 16을 참조하면, 본실시 예에 따른 렌즈(411)는 2개의 광신호(413, 413a)를 입력받을 수 있다. 광신호(413)는 복수의 광파장을 포함하는 측정하고자 하는 광신호로서 외부에서 입력되고, 광신호(413a)는 측정기의 자체 파장 켈리브레이션용 광신호로, 본 발명에서 제시한 측정기 내에서 생성할 수 있다. 즉, 광입력부(410)는 2개의 입력포트를 구비하고, 제1 입력포트는 측정하고자 하는 외부 광신호를 입력받고, 제2 입력포트는 켈리브레이션용 광신호를 입력받아 렌즈(411)로 전송할 수 있다. Referring to FIG. 16, the lens 411 according to the present exemplary embodiment may receive two optical signals 413 and 413a. The optical signal 413 is input from the outside as an optical signal to be measured that includes a plurality of optical wavelengths, and the optical signal 413a is an optical signal for wavelength calibration of the measuring instrument, which can be generated within the measuring apparatus presented in the present invention. have. That is, the optical input unit 410 may include two input ports, and the first input port may receive an external optical signal to be measured, and the second input port may receive a calibration optical signal and transmit the same to the lens 411. have.
도 17은 켈리브레이션용 광신호(413a)를 생성하는 일 실시 예를 도시한 도면이다.  FIG. 17 is a diagram illustrating an embodiment of generating a calibration optical signal 413a.
도 17을 참조하면, 파장 켈리브레이션(calibration)용 광신호(413a)를 발생시키기 위하여, 본 발명에서 제시하는 광파장 측정기는 도 4에서 제시한 구성에 더하여 켈리브레이션용 광원(예를 들어 1550nm SLD 또는 1550nm LED)을 생성할 수 있는 광원생성기(1720), 상기 광원생성기(1720)를 구동시키는 구동부(1710), 상기 광원생성기로부터 출력되는 광(1721)을 수신하여 넓은 파장 선폭의 입력 중에서 특정한 좁은 대역의 파장의 광은 투과시키고 그 외 나머지 파장의 광신호는 또 다른 출력포트(1732)로 반사시키는 in-line 50G DWDM 필터(1730)를 더 포함할 수 있다. in-line 50G DWDM 필터(1730)를 투과한 광신호(1731)는 광입력부(410)의 제2입력포트로 입력되어 상기 렌즈(411)의 입력 광신호(413a)가 될 수 있다.   Referring to FIG. 17, in order to generate an optical signal 413a for wavelength calibration, the optical wavelength meter according to the present invention may include a calibration light source (for example, a 1550 nm SLD or 1550 nm LED) in addition to the configuration shown in FIG. 4. A light source generator 1720 capable of generating a light source, a driver 1710 driving the light source generator 1720, and light 1721 outputted from the light source generator to receive a light having a specific narrow band from among inputs having a wide wavelength line width. May further include an in-line 50G DWDM filter 1730 that transmits light and reflects an optical signal of the remaining wavelength to another output port 1732. The optical signal 1731 transmitted through the in-line 50G DWDM filter 1730 may be input to the second input port of the optical input unit 410 to become an input optical signal 413a of the lens 411.
도 17에서 in-line 50G DWDM 필터(1730)가 투과대역폭이 0.2nm이고 중심파장이 50G DWDM 규격에서 정의한 1529.1633 nm(주파수 196.05THz)인 경우, in-line 50G DWDM 필터(1730)를 투과한 광의 파장 스펙트럼은 1731a와 같은 모양이며, 이때의 중심파장 역시 1529.1633nm이다. 그리고 in-line 50G DWDM 필터(1730)를 투과한 광신호(1731)는 렌즈(411)의 입력 광신호(413a)가 되어 회전판에 부착된 채널필터로 입사될 수 있고, 모터가 회전함에 따라서 7개의 채널 필터 중에 특정한 채널 필터가 특정한 회전각(θ)에 위치하게 될 때, 포토디텍터의 출력신호는 최대가 될 수 있다. 그러므로 모터의 특정 회전각을 미리 측정하여 둔다면 모터의 회전각 절대위치를 확인하고자 하는 경우에 도 17과 같은 구성으로 켈리브레이션을 수행할 수 있으며, 만약 이 켈리브레이션 회전각 위치에서 포토디텍터의 출력값이 없으면, 모터 기능에 오류가 있거나 광학부에 이상이 있다고 판정할 수 있다. 상기 켈리브레이션 광원은 50G DWDM용 파장 안정화 광원을 사용하여도 무방하며, 이 경우에는 별도의 in-line 50G DWDM 필터를 구비하지 않아도 되며, 50G DWDM 파장 안정화 광원의 출력 포트가 상기 렌즈(411)의 입력 포트(413a)에 직접 연결될 수 있다.  In FIG. 17, when the in-line 50G DWDM filter 1730 has a transmission bandwidth of 0.2 nm and the center wavelength is 1529.1633 nm (frequency 196.05 THz) defined by the 50G DWDM standard, the light transmitted through the in-line 50G DWDM filter 1730 is obtained. The wavelength spectrum is shaped like 1731a, and the center wavelength at this time is also 1529.1633 nm. The optical signal 1731 transmitted through the in-line 50G DWDM filter 1730 becomes an input optical signal 413a of the lens 411 and may be incident to the channel filter attached to the rotating plate. When a specific channel filter among the two channel filters is positioned at a specific rotation angle θ, the output signal of the photodetector may be maximized. Therefore, if the specific rotation angle of the motor is measured in advance, in order to check the absolute rotation angle of the motor, calibration can be performed with the configuration as shown in FIG. 17. If there is no output value of the photodetector at this calibration rotation angle position, It may be determined that there is an error in the motor function or an error in the optical unit. The calibration light source may use a wavelength stabilized light source for 50G DWDM. In this case, the calibration light source does not need to have a separate in-line 50G DWDM filter, and an output port of the 50G DWDM wavelength stabilized light source is input to the lens 411. May be connected directly to port 413a.
이처럼 광파장 측정기에서 켈리브레이션용 광신호를 생성하여 입력시킴으로써 자체적으로 광파장 측정기를 켈리브레이션할 수 있는 기능을 수행할 수 있다.   As such, by generating and inputting an optical signal for calibration in the optical wavelength meter, it is possible to perform the function of calibrating the optical wavelength meter by itself.
도 18는 현재 표준화되어 있는 광가입자망의 통신 규격(E-PON, G-PON, GE-PON, 10G-PON, NG-PON2)에서 정의한 파장 대역 도시한 도면이다. 본 발명에 의한 광파장 측정기는 다수의 필터를 부착할 수 있고 개별 필터의 입사각을 변화시킬 수 있기 때문에 여러 종류의 통신 규격에 적합한 투과대역을 갖는 다양한 종류의 필터를 동시에 구비할 수 있으며, 각 채널의 광출력을 측정할 수 있다. 도 16에 도시한 모든 채널의 광출력을 측정하기 위한 필터의 구성은 다음과 같다. 1570nm CWDM 채널필터 1개, 1310nm CWDM 채널필터 1개, 1490nm CWDM 채널필터 1개, 1260~1360nm 밴드 패스필터 1개, 1550~1560nm 대역의 파장과 광출력을 측정하기 위한 DWDM필터 2개, 1580nm DWDM 채널필터 1개, 1602nm DWDM 필터 1개, 1524~144nm대역의 파장과 광출력을 측정하기 위한 DWDM 필터 3개로, 총 11개 필터로 구성된다. 11개의 필터는 3개의 그룹으로 나누면 각 그룹은 광대역필터 1개, CWDM필터 3개, DWDM필터 7개로 구성된다. 여기에서 DWDM필터는 200GHz, 100GHz, 50GHz, 또는 50GHz이하의 대역폭을 갖는 필터를 적용할 수도 있다.  FIG. 18 is a diagram illustrating a wavelength band defined by a communication standard (E-PON, G-PON, GE-PON, 10G-PON, and NG-PON2) of a standardized optical subscriber network. Since the optical wavelength measuring instrument according to the present invention can attach a plurality of filters and change the angle of incidence of individual filters, it can be equipped with various kinds of filters having transmission bands suitable for various communication standards, The light output can be measured. The configuration of the filter for measuring the light output of all the channels shown in FIG. 16 is as follows. 1 1570 nm CWDM channel filter, 1 1310 nm CWDM channel filter, 1 1490 nm CWDM channel filter, 1 1260-1360 nm band pass filter, 2 DWDM filters for measuring wavelength and light output in the 1550-1560 nm band, 1580 nm DWDM One channel filter, one 1602nm DWDM filter, and three DWDM filters for measuring wavelength and light output in the 1524 ~ 144nm band. The 11 filters are divided into three groups, each group consisting of one broadband filter, three CWDM filters, and seven DWDM filters. Here, the DWDM filter may apply a filter having a bandwidth of 200 GHz, 100 GHz, 50 GHz, or 50 GHz or less.
본 발명이 속하는 기술 분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있으므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.  As those skilled in the art to which the present invention pertains may implement the present invention in other specific forms without changing the technical spirit or essential features, the embodiments described above are intended to be illustrative in all respects and should not be considered as limiting. Should be. The scope of the present invention is shown by the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. .

Claims (19)

  1. 복수의 광파장을 포함하는 광신호가 입력되며 렌즈를 이용하여 상기 광신호를 평행광으로 만들어 출력하는 광입력부;An optical input unit for inputting an optical signal including a plurality of optical wavelengths and outputting the optical signal into parallel light using a lens;
    상기 광입력부에서 출력되는 광신호를 필터링하는 채널필터;A channel filter for filtering the optical signal output from the optical input unit;
    상기 채널필터가 부착되는 회전판;A rotating plate to which the channel filter is attached;
    상기 회전판을 회전시키는 모터;A motor for rotating the rotating plate;
    상기 채널필터를 통과한 광신호를 전기신호로 변환하여 출력하는 포토디텍터;A photo detector converting the optical signal passing through the channel filter into an electrical signal and outputting the electrical signal;
    상기 모터의 회전각을 제어하는 제어부;A control unit controlling a rotation angle of the motor;
    상기 제어부를 위한 회전각도 제어신호를 생성하고, 상기 회전각도와 상기 전기신호를 바탕으로 광파장값을 추출하는 신호처리부; 및A signal processor for generating a rotation angle control signal for the controller and extracting an optical wavelength value based on the rotation angle and the electrical signal; And
    상기 신호처리부에서 추출한 광파장값을 표시하는 디스플레이부; 를 포함하는,A display unit displaying the light wavelength value extracted by the signal processor; Including,
    광파장 측정기. Optical wavelength meter.
  2. 제 1항에 있어서,The method of claim 1,
    상기 전기신호는 상기 채널필터를 통과한 광신호의 세기에 비례하는 아날로그 신호이고,The electrical signal is an analog signal proportional to the intensity of the optical signal passing through the channel filter,
    상기 신호처리부는 상기 전기신호를 바탕으로 광신호의 세기를 추출하는,The signal processor extracts the intensity of the optical signal based on the electrical signal,
    광파장 측정기.Optical wavelength meter.
  3. 제 1항에 있어서,The method of claim 1,
    상기 채널필터는 상기 회전판의 회전방향의 접선과 나란하게 부착하여, 상기 모터의 회전에 따라서 상기 광신호가 상기 채널필터에 입사하는 각도가 변화하는 것을 특징으로 하는 광파장 측정기.The channel filter is attached in parallel with the tangent in the rotational direction of the rotating plate, the angle of incidence of the optical signal incident on the channel filter changes according to the rotation of the motor.
  4. 제 3항에 있어서, 상기 신호처리부는, The method of claim 3, wherein the signal processing unit,
    상기 전기신호가 미리 설정된 기준값보다 큰 고점에서 미리 설정된 상기 기준값보다 작은 저점으로 변하는 지점 또는 상기 전기신호가 저점에서 고점으로 변하는 지점에서의 모터의 회전각도를 바탕으로 상기 광신호에 포함되어 있는 광파장값을 추출하는,An optical wavelength value included in the optical signal based on a rotation angle of the motor at a point where the electric signal changes from a high point higher than a preset reference value to a low point smaller than the preset reference value or the electric signal changes from a low point to a high point Extracting,
    광파장 측정기.Optical wavelength meter.
  5. 제 4항에 있어서, 상기 신호처리부는, The method of claim 4, wherein the signal processing unit,
    상기 모터의 회전각도에 따른 상기 채널필터의 투과대역의 변위를 계산하고, 상기 변위를 바탕으로 상기 광신호에 포함되어 있는 광파장값을 추출하는,Calculating a displacement of the transmission band of the channel filter according to the rotation angle of the motor, and extracting an optical wavelength value included in the optical signal based on the displacement;
    광파장 측정기.Optical wavelength meter.
  6. 제 5항에 있어서, 상기 신호처리부는, The method of claim 5, wherein the signal processing unit,
    상기 채널필터의 투과대역의 변위를 계산시, 상기 투과대역의 오른쪽 모서리 파장 또는 왼쪽 모서리 파장을 기준으로 계산하는, When calculating the displacement of the transmission band of the channel filter, the calculation based on the right edge wavelength or left edge wavelength of the transmission band,
    광파장 측정기.Optical wavelength meter.
  7. 제 3항에 있어서,The method of claim 3, wherein
    상기 광입력부, 상기 채널필터, 및 상기 포토디텍터가 상기 회전판의 중심과 원주를 연결하는 일직선과 평행한 직선상에 배치되고, The optical input unit, the channel filter, and the photo detector are disposed on a straight line parallel to a straight line connecting the center and the circumference of the rotating plate,
    상기 광입력부와 상기 포토디텍터 사이에 상기 채널필터가 배치되는,The channel filter is disposed between the optical input unit and the photo detector.
    광파장 측정기.Optical wavelength meter.
  8. 제 3항에 있어서,The method of claim 3, wherein
    상기 광입력부에서 출력되는 광신호가 상기 채널필터의 중심으로 입력되는,The optical signal output from the optical input unit is input to the center of the channel filter,
    광파장 측정기.Optical wavelength meter.
  9. 제 3항에 있어서,The method of claim 3, wherein
    상기 광입력부에서 출력되는 광신호가 상기 채널필터의 중심에서 어긋나게 입력되는,The optical signal output from the optical input unit is input offset from the center of the channel filter,
    광파장 측정기.Optical wavelength meter.
  10. 제 3항에 있어서,The method of claim 3, wherein
    상기 광입력부에서 출력되는 광신호가 상기 채널필터의 중심에서 어긋나게 입력되는 동시에 상기 채널필터의 법선과 각을 이루면서 입력되는,The optical signal output from the optical input unit is input while being offset from the center of the channel filter and at an angle to the normal of the channel filter,
    광파장 측정기. Optical wavelength meter.
  11. 제 3항에 있어서,The method of claim 3, wherein
    상기 채널필터로 측정할 수 있는 파장범위가 상기 채널필터의 대역폭보다 크도록 하기 위하여 상기 채널필터의 대역폭이 입사각 0도에서 채널 중심파장으로부터 단파장쪽으로는 좁고 장파장쪽으로 넓은,In order that the wavelength range that can be measured by the channel filter is larger than the bandwidth of the channel filter, the bandwidth of the channel filter is narrow from the channel center wavelength to the short wavelength and wide toward the long wavelength at the incident angle of 0 degrees.
    광파장 측정기.Optical wavelength meter.
  12. 제 1항에 있어서, The method of claim 1,
    켈리브레이션용 광원을 생성할 수 있는 광원생성기;A light source generator capable of generating a light source for calibration;
    상기 광원생성기를 구동시키는 구동부; 및A driving unit for driving the light source generator; And
    상기 광원생성기로부터 출력되는 광을 수신하여 넓은 파장 선폭의 입력 중에서 특정한 좁은 대역의 파장의 광은 투과시키고 그 외 나머지 파장의 광신호는 반사시키는 in-line 50G DWDM 필터를 더 포함하고,It further comprises an in-line 50G DWDM filter for receiving the light output from the light source generator to transmit the light of a specific narrow band of the input of a wide wavelength line width and to reflect the optical signal of the other wavelengths,
    상기 광입력부는 2개의 입력 포트를 구비하고, 제1 입력포트는 측정을 위한 외부 광신호를 입력받고, 제2 입력포트는 상기 광원생성기에서 생성된 광신호가 in-line 50G DWDM 필터를 통과한 켈리브레이션용 광신호를 입력받는, The optical input unit includes two input ports, the first input port receives an external optical signal for measurement, and the second input port is a calibration in which an optical signal generated by the light source generator passes through an in-line 50G DWDM filter. Receive the optical signal for
    광파장 측정기.Optical wavelength meter.
  13. 제 1항 내지 제 12항중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 12,
    복수의 채널필터가 상기 회전판에 부착되고,A plurality of channel filters are attached to the rotating plate,
    상기 복수의 채널필터는 1개 이상의 그룹으로 분류될 수 있고,The plurality of channel filters may be classified into one or more groups.
    동일한 그룹에 속하는 채널필터들은 동일한 대역폭을 갖는 필터로 구성되며, 그룹 상호간에는 투과대역폭이 상이하거나 파장 대역이 상이한 것을 특징으로 하는,Channel filters belonging to the same group are composed of filters having the same bandwidth, characterized in that the transmission bandwidth is different or the wavelength band is different between the groups,
    광파장 측정기. Optical wavelength meter.
  14. 제 13항에 있어서,The method of claim 13,
    상기 복수의 채널필터는 1개의 그룹으로 분류되고,The plurality of channel filters are classified into one group,
    제1그룹은 복수의 50G DWDM용 채널필터들로 구성되는,The first group is composed of a plurality of channel filters for 50G DWDM,
    광파장 측정기.Optical wavelength meter.
  15. 제 13항에 있어서,The method of claim 13,
    상기 복수의 채널필터는 1개의 그룹으로 분류되고,The plurality of channel filters are classified into one group,
    제1그룹은 복수의 100G DWDM용 채널필터들로 구성되는,The first group is composed of a plurality of channel filters for 100G DWDM,
    광파장 측정기.Optical wavelength meter.
  16. 제 13항에 있어서,The method of claim 13,
    상기 복수의 채널필터는 2개의 그룹으로 분류되고,The plurality of channel filters are classified into two groups.
    제1그룹은 복수의 CWDM용 채널필터들로 구성되고,The first group is composed of a plurality of CWDM channel filters,
    제2그룹은 복수의 DWDM용 채널필터들로 구성되는,The second group is composed of a plurality of channel filters for DWDM,
    광파장 측정기.Optical wavelength meter.
  17. 제 13항에 있어서,The method of claim 13,
    상기 복수의 채널필터는 2개의 그룹으로 분류되고,The plurality of channel filters are classified into two groups.
    제1그룹은 복수의 50G DWDM용 채널필터들로 구성되고,The first group is composed of a plurality of channel filters for 50G DWDM,
    제2그룹은 복수의 100G DWDM용 채널필터들로 구성되는,The second group is composed of a plurality of channel filters for 100G DWDM,
    광파장 측정기.Optical wavelength meter.
  18. 제 13항에 있어서,The method of claim 13,
    상기 복수의 채널필터는 2개의 그룹으로 분류되고,The plurality of channel filters are classified into two groups.
    제1그룹은 복수의 C-밴드 DWDM용 채널필터들로 구성되고,The first group is composed of a plurality of channel filters for C-band DWDM,
    제2그룹은 복수의 L-밴드 DWDM용 채널필터들로 구성되는,The second group is composed of a plurality of channel filters for L-band DWDM,
    광파장 측정기.Optical wavelength meter.
  19. 제 13항에 있어서,The method of claim 13,
    상기 복수의 채널필터는 표준화되어 있는 광가입자망의 통신 규격인 E-PON, G-PON, GE-PON, 10G-PON, 및 NG-PON2에서 제시한 파장 대역에 따른 투과대역을 갖는 CWDM 채널필터, 광대역필터, 및 200GHz, 100GHz, 50GHz, 50GHz이하의 투과대역을 갖는 DWDM 채널필터의 조합인 것을 특징으로 하는,The plurality of channel filters are CWDM channel filters having transmission bands according to the wavelength bands proposed by E-PON, G-PON, GE-PON, 10G-PON, and NG-PON2, which are standardized optical subscriber networks. , A wideband filter, and a DWDM channel filter having a transmission band of 200 GHz, 100 GHz, 50 GHz, and 50 GHz or less.
    광파장 측정기.Optical wavelength meter.
PCT/KR2017/006786 2016-07-18 2017-06-27 Device for measuring optical wavelength WO2018016759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0090852 2016-07-18
KR1020160090852A KR101879038B1 (en) 2016-07-18 2016-07-18 Optical Channel Wavelength Measurement Device

Publications (1)

Publication Number Publication Date
WO2018016759A1 true WO2018016759A1 (en) 2018-01-25

Family

ID=60992556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006786 WO2018016759A1 (en) 2016-07-18 2017-06-27 Device for measuring optical wavelength

Country Status (2)

Country Link
KR (1) KR101879038B1 (en)
WO (1) WO2018016759A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980068713A (en) * 1997-02-22 1998-10-26 김광호 Tuning filter unit for optical communication
JP3098235B2 (en) * 1998-08-04 2000-10-16 日本電信電話株式会社 Wavelength demultiplexer, optical spectrum analyzer and optical bandpass filter
US6858834B2 (en) * 2000-10-18 2005-02-22 Fibera, Inc. Light wavelength meter
KR100820947B1 (en) * 2006-07-06 2008-04-10 (주)한틀시스템 Wavelength Power Meter
KR20130131039A (en) * 2012-05-23 2013-12-03 주식회사 피피아이 Wavelength power meter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089182B1 (en) 2011-05-11 2011-12-02 주식회사 피피아이 Optical wavelength power meter
JP5646555B2 (en) * 2012-07-19 2014-12-24 浜松ホトニクス株式会社 Photodetection device and photodetection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980068713A (en) * 1997-02-22 1998-10-26 김광호 Tuning filter unit for optical communication
JP3098235B2 (en) * 1998-08-04 2000-10-16 日本電信電話株式会社 Wavelength demultiplexer, optical spectrum analyzer and optical bandpass filter
US6858834B2 (en) * 2000-10-18 2005-02-22 Fibera, Inc. Light wavelength meter
KR100820947B1 (en) * 2006-07-06 2008-04-10 (주)한틀시스템 Wavelength Power Meter
KR20130131039A (en) * 2012-05-23 2013-12-03 주식회사 피피아이 Wavelength power meter

Also Published As

Publication number Publication date
KR20180009211A (en) 2018-01-26
KR101879038B1 (en) 2018-07-16

Similar Documents

Publication Publication Date Title
US6785002B2 (en) Variable filter-based optical spectrometer
US6788408B2 (en) Wavelength monitoring system
US6680472B1 (en) Device for measuring of optical wavelengths
US7852475B2 (en) Scanning spectrometer with multiple photodetectors
JP2009523248A (en) Optical signal measurement system
US20060215960A1 (en) Optical demultiplexing device and optical monitoring device
KR101539472B1 (en) Color distribution measuring optical system, color distribution measuring device, and color distribution measuring method
CN1278131A (en) Wavelength-division multiplex arrangement equied with array wave-guide grating for alignment of waveguide, and alignment arrangement therefor
CN1138163C (en) Array waveguide grating assembly and apparatus for monitoring light signals using same
WO2018236132A1 (en) Optical wavelength channel analyzer
KR100833254B1 (en) Apparatus for detecting wavelength and neasuring optical power
US7272276B2 (en) Optical performance monitor
WO2018016759A1 (en) Device for measuring optical wavelength
US20090091759A1 (en) Multiple Wavelength Optical Analyzer Device
US6661945B2 (en) Multi-band wavelength dispersive device for use in dense wavelength division multiplexing (DWDM) networks
US6690468B1 (en) Arrangement for simultaneous analysis of several optical lines
JP2000180270A (en) Physical value measuring system
WO2018079914A1 (en) Wavelength locking structure of tunable laser and wavelength locking method of tunable laser
US6925215B2 (en) Optical channel monitoring chip
WO2022181935A1 (en) Reflected optical wavelength scanning device provided with silicon photonic interrogator
CN116865854B (en) Wavelength detection device capable of being integrated on photon integrated chip
US20070110356A1 (en) Wavelength Monitoring System
JP2000283843A (en) Wavelength measuring instrument
JP2002267532A (en) Spectroscope
JP2004279142A (en) Optical channel monitoring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831232

Country of ref document: EP

Kind code of ref document: A1