WO2018016668A1 - Three-dimensional printer including molding plate origin adjustment device - Google Patents

Three-dimensional printer including molding plate origin adjustment device Download PDF

Info

Publication number
WO2018016668A1
WO2018016668A1 PCT/KR2016/008237 KR2016008237W WO2018016668A1 WO 2018016668 A1 WO2018016668 A1 WO 2018016668A1 KR 2016008237 W KR2016008237 W KR 2016008237W WO 2018016668 A1 WO2018016668 A1 WO 2018016668A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding plate
origin
dimensional structure
control unit
force sensor
Prior art date
Application number
PCT/KR2016/008237
Other languages
French (fr)
Korean (ko)
Inventor
서준석
Original Assignee
주식회사 큐비콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 큐비콘 filed Critical 주식회사 큐비콘
Publication of WO2018016668A1 publication Critical patent/WO2018016668A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing

Definitions

  • the present invention relates to a three-dimensional printer having a molding plate origin adjustment device, and more particularly, to a three-dimensional printer having a molding plate origin adjustment device that can accurately move the molding plate to the start position when outputting the three-dimensional structure. It is about.
  • SRI StepoLithography Apparatus
  • SLS Laser Beam Selective Laser Sintering
  • FDM Field Deposition Modeling
  • the DLP projector irradiates light to the lower part of the storage tank of the transparent material in which the photocurable resin is stored, and the photocurable resin in the light irradiated area is cured and 3 It will form the dimensional structure. That is, as light is irradiated in a form corresponding to the cross-sectional shape of the three-dimensional structure, the three-dimensional structure may be printed by a method in which the cured portions are stacked in multiple layers as the molding plate is raised.
  • the molding plate in order to start the output of the three-dimensional structure, the molding plate must be moved to the position, that is, the origin, in contact with the bottom surface of the reservoir, and the user manually It is difficult to check the contact between the molding plate and the storage tank when moving to the origin, and when the output starts when the molding plate and the storage tank are not properly contacted, defects may occur in the shape of the three-dimensional structure to be molded. There is a problem that the output stability of the structure is lowered.
  • the present invention has been proposed to solve the above problems, by providing an autoleveling function that can automatically find the origin using a precision force sensor, it is possible to print high-quality three-dimensional structure because the output is started at the exact origin
  • the present invention provides a three-dimensional printer with a molding plate origin adjustment device.
  • the resin storage unit for storing the photocurable resin, the lower portion of the transparent material;
  • a light source for irradiating light to the resin storage unit;
  • An upright support formed vertically;
  • a horizontal support cantilevered up and down along the upright support;
  • a driving unit for elevating the horizontal support in the vertical direction;
  • a molding plate coupled to the horizontal support and disposed to ascend and descend above the resin storage unit, and having a three-dimensional structure formed thereon;
  • a force sensor for measuring a force applied to the horizontal support;
  • a control unit controlling the light source and the driving unit corresponding to the molding area of the three-dimensional structure, wherein the control unit includes the molding plate according to the force measured by the force sensor at the start of output of the three-dimensional structure.
  • the driving unit is controlled to be disposed at the origin.
  • the horizontal support the front flow portion which is a housing that is coupled to the molding plate flows;
  • a rear fixing part that is a housing coupled to and fixed to the upright support, wherein the force sensor generates an electric signal corresponding to the force applied to the front flow part and outputs the generated electric signal to the controller.
  • the force sensor one end is fixed in the front flow portion, the other end is fixed in the rear fixed portion, the beam-like structure that is deformed by the contact force;
  • a piezoresistive layer configured to detect deformation of the beam structure to generate the electrical signal.
  • the controller may determine whether the molding plate is mounted based on the electrical signal.
  • the controller may determine whether the three-dimensional structure attached to the molding plate is separated by the electrical signal.
  • control unit the first step of raising the molding plate to the top at the start of the output of the three-dimensional structure, the second lowering the molding plate to a predetermined point that is lower than the top and above the origin;
  • the driving unit may be divided into a third step of lowering the molding plate to the origin, and the descending speed of the second step may exceed the descending speed of the third step.
  • control unit may control the driving unit such that the molding plate intermittently descends by a predetermined height according to a step-down descending method.
  • Embodiments of the disclosed technology can have the effect of including the following advantages.
  • the embodiments of the disclosed technology are not meant to include all of them, and thus the scope of the disclosed technology should not be understood as being limited thereto.
  • the three-dimensional printer with the molding plate origin adjustment device provides an autoleveling function to automatically find the origin by using a precision force sensor, thereby reducing the inconvenience of the user having to manually move the molding plate.
  • the output of the three-dimensional structure is started on the molding plate is automatically adjusted to the exact origin, there is an effect that the quality of the printed three-dimensional structure is improved.
  • FIG. 1 and 2 is a view showing a three-dimensional printer with a molding plate origin adjustment device according to an embodiment of the present invention.
  • 3 and 4 is a view showing a horizontal support and a force sensor of a three-dimensional printer with a molding plate homing device according to an embodiment of the present invention.
  • Figure 5 is a flow chart showing the operation of the three-dimensional printer with a molding plate origin adjustment apparatus according to an embodiment of the present invention.
  • first component may be named a second component
  • second component may also be named a first component
  • each step may occur differently from the stated order unless the context clearly dictates the specific order. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
  • the light source 200 may include a light source 200, an upright support 300, a horizontal support 400, a driver 500, a molding plate 600, a force sensor 700, and a controller 800.
  • the resin storage unit (VAT) 100 stores a photocurable resin that is a liquid material for forming a three-dimensional structure, for example, an acrylic resin, a castable resin, and the like, and stores a lower portion of the transparent material. Equipped.
  • the lower part of the transparent material of the resin storage part 100 may be a material having excellent releasability with the three-dimensional structure, light transmittance and durability of the light emitted from the light source 200.
  • the resin storage unit 100 provides a space where the photocurable resin is cured by the light irradiated from the light source 200.
  • the light source 200 irradiates the light which hardens photocurable resin to the lower part of the resin storage part 100.
  • the light source 200 receives a split image from the controller 800, for example, an image by a G code file generated from an STL (STereoLithography) file or an OBJ file by slicing software, and received the received image. It may be a DLP projector for irradiating light corresponding to the image.
  • the upright support 300 is formed vertically to provide a path for lifting and lowering the molding plate 600 attached to the horizontal support 400.
  • the horizontal supporter 400 is coupled to the upright supporter 300 so as to be raised and lowered along the upright supporter 300, and has one end supported by the upright supporter 300 so that the long axis is maintained in the horizontal direction. Have.
  • the molding plate 600 is connected to the other end of the horizontal support 400.
  • the driver 500 provides power to the horizontal supporter 400 to rise and fall along the upright supporter 300 under the control of the controller 800.
  • a screw thread is formed on the upright support 300, and one end coupled to the upright support 300 of the horizontal support 400 includes a structure (not shown) for converting a rotational movement into a linear movement, and includes a driving unit ( According to the forward and reverse rotation of the motor (not shown) in the 500, the horizontal support member 400 may rise and fall, but is not limited thereto.
  • Molding plate 600 is coupled to the horizontal support 400 is disposed so as to rise or fall above the resin storage unit 100, the lower portion of the three-dimensional structure is formed by curing the photo-curable resin in the resin storage unit 100 Will be supported.
  • the force sensor 700 measures the force applied to the horizontal support, and outputs the measured value to the controller 800.
  • the force sensor 700 is preferably a high-precision force sensor capable of supporting a weight of about 10 kg, but is not limited thereto.
  • the controller 800 controls the light source 200 and the driver 500 to correspond to the molding area of the 3D structure. That is, the controller 800 receives a control code such as a G code reflecting the cross-sectional image of the three-dimensional structure from a personal computer (PC) or a USB memory having a calculation function, and receives the resin storage unit 100 from the light source 200. The shape of the light irradiated to the lower part of the) is controlled. In addition, the controller 800 drives the 500 to gradually raise the molding plate 600 in a direction parallel to the long axis of the upright support 300 in order to solidify the three-dimensional structure formed by stacking the cross-sectional divided images for each layer. Will be controlled. In this case, the controller 800 may include a function of generating a control code such as a G code by slicing the STL file or the OBJ file, but is not limited thereto.
  • a control code such as a G code reflecting the cross-sectional image of the three-dimensional structure from a personal computer (PC) or a USB
  • the controller 800 controls the driving unit 500 to arrange the molding plate 600 at the origin A according to the force detected by the force sensor 700 at the start of output of the 3D structure.
  • the origin (A) means the initial output position of the three-dimensional printer
  • the molding plate 600 is a position in contact with the bottom of the resin storage unit 100.
  • 3 and 4 is a view showing a horizontal support 400 and a force sensor 700 of the three-dimensional printer with a molding plate origin adjustment device according to an embodiment of the present invention, as described below.
  • the horizontal supporter 400 may include a front flow part 410 and a rear fixing part 420 which are housings separated from each other.
  • the front flow part 410 is a housing which is coupled to the molding plate 600 and flows, and may include a screw structure for coupling with the molding plate 600, but is not limited thereto. At this time, the front flow portion 410 is separated while forming a predetermined spaced space with the rear fixing portion 420 so that the molding plate 600 is able to flow under the force when the molding plate 600 contacts the bottom of the resin storage unit 100. Can be.
  • the rear fixing part 420 is a housing coupled to and fixed to the upright support 300, and is formed by a force acting in the opposite direction to the bottom when the molding plate 600 contacts the bottom of the resin storage part 100. Even when the front flow portion 410 flows, the fixed state may be maintained.
  • the force sensor 700 generates an electric signal corresponding to the force applied to the front flow unit 410, and outputs the generated electric signal to the controller 800.
  • the force sensor 700 may include a beam structure 710 and a piezoresistive layer 720.
  • the beam-shaped structure 710 is fixed at one end of the front flow portion 410 and the other end of the beam structure 420, and may be deformed by contact force. That is, the beam structure 710 is a connection structure of the front flow part 410 and the rear fixing part 420 separated from each other, and at the same time, the molding plate 600 contacts the bottom of the resin storage part 100 so as to provide a front structure. As the eastern portion 410 rises, one end may be deformed.
  • the beam type structure 710 may be provided with a screw structure for coupling with the front flow portion 410 and a screw structure for coupling with the rear fixing portion 420, but is not limited thereto.
  • the piezoresistive layer 720 detects deformation of the beam structure 710 to generate an electrical signal, and controls the electrical signal generated through a predetermined wire (not shown) connected to the controller 800, for example. You can output
  • the beam structure 710 may have a predetermined hole in the vicinity of the piezoresistive layer 720 in order to be easily deformed by the force transmitted through the molding plate 600.
  • the controller 800 may receive an electric signal from the piezoresistive layer 720, and calculate a force applied to the front flow part 410 according to the input electric signal.
  • the controller 800 may determine whether the molding plate 600 is in contact with the bottom of the resin storage part 100 according to the calculated value, and the molding plate 600 may have a front flow part 410. ), The output attached to the molding plate 600 during the output of the three-dimensional structure can be determined. That is, in the beam structure 710, the portion coupled with the front flow portion 410 may be deformed in the direction of gravity acceleration, and the molding plate 600 is mounted to the front flow portion 410 so that the three-dimensional structure is formed on the molding plate.
  • Figure 5 is a flow chart showing the operation of the three-dimensional printer with a molding plate origin adjustment apparatus according to an embodiment of the present invention, with reference to Figures 1 to 5 three-dimensional with a molding plate origin adjustment apparatus of the present invention. The operation of the printer will be described below.
  • the controller 800 may apply to a value output from the current force sensor 700, that is, an electrical signal generated by the piezoresistive layer 720.
  • the calculated value is stored (S100).
  • the controller 800 detects information by the rotation of the motor in the driving unit 500 and the like, so that the horizontal support 400 coupled with the molding plate 600 is positioned on the top of the upright support 300. It is determined whether or not (S200).
  • the controller 800 controls the driving unit 500 to control the molding plate 600. Raise the horizontal support 400 coupled to the top (S300).
  • the controller 800 controls the driving unit 500 to control the molding plate 600.
  • the combined horizontal supporter 400 is lowered to the first position B, which is a predetermined point that is lower than the uppermost part and above the origin (S400).
  • the controller 800 may receive an electric signal generated from the piezoresistive layer 720 and determine whether a force applied to the force sensor 700 is in a normal range (S500).
  • control unit 800 determines that the force applied to the force sensor 700 is not in the normal range, immediately stops the lowering operation of the horizontal support 400 coupled with the molding plate 600, and performs operation error processing. It is made (S600).
  • the control unit 800 determines that the force applied to the force sensor 700 is not the normal range, the beam-type structure fixed in the front flow part 410 is not coupled to the horizontal plate 400 by the molding plate 600.
  • the control unit 800 can determine that the abnormality is applied to the force sensor 700 Loss of force may include both an abnormal state that can be determined according to the magnitude and direction of the force.
  • the driving unit 500 is controlled to be coupled with the molding plate 600 stopped at the first position B.
  • FIG. The horizontal support 400 is lowered to the origin A (S700).
  • the control unit 800 when lowering the horizontal support 400 coupled to the molding plate 600 to the first position (B) at the top, at a relatively high speed, the horizontal support coupled to the molding plate 600 ( When the 400 is lowered from the first position B to the origin A, it is lowered at a relatively slow speed, thereby increasing the operation speed and increasing the precision of the origin arrangement.
  • the control unit 800 may control the driving unit 500.
  • the control unit 800 intermittently lowers the horizontal supporter 400 by about 20 ⁇ m, and an electrical signal input from the force sensor 700 is applied between each drop.
  • a predetermined value that is, a value corresponding to the bottom of the molding plate 600 may be determined.
  • control unit 800 determines that the bottom of the molding plate 600 does not reach the origin A by the electric signal input from the force sensor 700 (S900)
  • the control unit 800 includes the horizontal support 400. While descending in a stepwise manner, each operation is performed again to check whether the electric signal input from the force sensor 700 is a preset value.
  • the controller 800 determines that the bottom of the molding plate 600 has reached the origin A by the electric signal input from the force sensor 700, the controller 800 controls the drive unit 500.
  • the movement of the horizontal support member 400 is stopped, and the light source 200, the driver 500, and the like are controlled to start the output operation of the 3D structure at the position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

The present invention relates to a three-dimensional printer including a molding plate origin adjustment device capable of accurately moving a molding plate to a starting point when a three-dimensional structure is outputted, and comprises: a resin storage unit which stores a photocurable resin and of which the lower part is made of a transparent material; a light source for emitting light at the lower part of the resin storage unit; an upright supporter formed to be vertical; a horizontal supporter cantilever-supported so as to be elevatable along the upright supporter; a driving unit for elevating the horizontal supporter in a vertical direction; the molding plate coupled to the horizontal supporter and disposed so as to be elevated above the resin storage unit, wherein a three-dimensional structure is molded at the lower part thereof; a force sensor for measuring the force applied to the horizontal supporter; and a control unit for controlling the light source and the driving unit in correspondence to a molding area of the three-dimensional structure, wherein the control unit controls the driving unit such that the molding plate is disposed at an origin, according to the force measured by the force sensor when output of the three-dimensional structure starts.

Description

조형 플레이트 원점조절 장치를 구비한 3차원 프린터3D printer with molding plate homing device
본 발명은 조형 플레이트 원점조절 장치를 구비한 3차원 프린터에 관한 것으로, 더욱 자세하게는, 3차원 구조물 출력시 조형 플레이트를 시작 위치로 정확히 이동시킬 수 있는 조형 플레이트 원점조절 장치를 구비한 3차원 프린터에 관한 것이다.The present invention relates to a three-dimensional printer having a molding plate origin adjustment device, and more particularly, to a three-dimensional printer having a molding plate origin adjustment device that can accurately move the molding plate to the start position when outputting the three-dimensional structure. It is about.
3차원 프린팅 방식에는, 광경화성 수지에 레이저 광을 주사하여 주사된 부분이 경화되는 원리를 이용한 SLA(StereoLithography Apparatus) 방식, SLA 방식에서 광경화성 수지 대신에 기능성 고분자 또는 금속분말을 사용하며 레이저 광선을 주사하여 고결시켜 성형하는 원리를 이용한 SLS(Selective Laser Sintering) 방식, 필라멘트를 압출하여 구조물을 적층하는 FDM(Fused Deposition Modeling) 방식, 광경화성 수지가 저장된 저장조의 하부로 광을 조사하여 부분적으로 경화되는 원리를 이용한 DLP(Digital Light Processing) 방식 등이 있다.In the three-dimensional printing method, SRI (StereoLithography Apparatus) method using the principle that the scanned part is cured by scanning the laser light on the photocurable resin, functional polymer or metal powder is used instead of the photocurable resin in the SLA method, and the laser beam Selective Laser Sintering (SLS) method using the principle of scanning, solidifying and molding, FDM (Fused Deposition Modeling) method of stacking structures by extruding filaments, and partially curing by irradiating light to the lower part of the reservoir where the photocurable resin is stored. DLP (Digital Light Processing) method using the principle.
이 중, DLP 방식의 3차원 프린터의 경우, 광경화성 수지가 저장된 투명 소재의 저장조의 하부로 DLP 프로젝터가 광을 조사하고, 광이 조사된 영역에 있는 광경화성 수지가 경화되어 조형 플레이트 하부에 3차원 구조물의 형태를 형성하게 된다. 즉, 3차원 구조물의 단면 형상에 대응하는 형태로 광이 조사되어 조형 플레이트가 상승함에 따라 경화된 부분이 다층으로 적층되는 방식에 의해 3차원 구조물이 프린팅 될 수 있다.Among these, in the case of the 3D printer of the DLP method, the DLP projector irradiates light to the lower part of the storage tank of the transparent material in which the photocurable resin is stored, and the photocurable resin in the light irradiated area is cured and 3 It will form the dimensional structure. That is, as light is irradiated in a form corresponding to the cross-sectional shape of the three-dimensional structure, the three-dimensional structure may be printed by a method in which the cured portions are stacked in multiple layers as the molding plate is raised.
그러나, 종래의 DLP 방식의 3차원 프린터의 경우, 3차원 구조물의 출력을 시작하기 위해서는 조형 플레이트가 저장조의 바닥면에 접촉된 상태인 위치, 즉, 원점으로 이동되어야 하는데, 사용자가 수동으로 조형 플레이트를 원점으로 이동시키는 경우 조형 플레이트와 저장조의 접촉 여부를 확인하기가 어렵고, 조형 플레이트와 저장조가 제대로 접촉하지 않은 상태에서 출력이 시작되는 경우 조형되는 3차원 구조물의 형태에 불량이 발생할 수 있어 3차원 구조물의 출력 안정성이 저하되는 문제점이 있다.However, in the case of the conventional DLP three-dimensional printer, in order to start the output of the three-dimensional structure, the molding plate must be moved to the position, that is, the origin, in contact with the bottom surface of the reservoir, and the user manually It is difficult to check the contact between the molding plate and the storage tank when moving to the origin, and when the output starts when the molding plate and the storage tank are not properly contacted, defects may occur in the shape of the three-dimensional structure to be molded. There is a problem that the output stability of the structure is lowered.
[선행기술문헌] 대한민국공개특허공보 제10-2016-0055707호[Patent Document] Republic of Korea Patent Publication No. 10-2016-0055707
본 발명은 상술한 문제를 해결하기 위해 제안된 것으로서, 정밀 힘센서를 이용하여 자동으로 원점을 찾을 수 있는 오토레벨링 기능을 제공함으로써, 정확한 원점에서 출력이 시작되므로 고품질의 3차원 구조물을 프린팅할 수 있는 조형 플레이트 원점조절 장치를 구비한 3차원 프린터를 제공하는 데 있다.The present invention has been proposed to solve the above problems, by providing an autoleveling function that can automatically find the origin using a precision force sensor, it is possible to print high-quality three-dimensional structure because the output is started at the exact origin The present invention provides a three-dimensional printer with a molding plate origin adjustment device.
상기 기술적 과제를 달성하기 위해 개시된 기술은, 광경화성 수지를 저장하고, 하부가 투명 재질인 수지저장부; 상기 수지저장부 하부로 광을 조사하는 광원; 수직으로 형성된 직립지지체; 상기 직립지지체를 따라 승강가능하게 외팔보 지지된 수평지지체; 상기 수평지지체를 상하 방향으로 승강시키는 구동부; 상기 수평지지체에 결합되어 상기 수지저장부 위에서 승하강하도록 배치되고, 하부에 3차원 구조물이 조형되는 조형 플레이트; 상기 수평지지체에 가해지는 힘을 측정하는 힘센서; 및 상기 3차원 구조물의 조형 영역에 대응하여 상기 광원 및 상기 구동부를 제어하는 제어부를 포함하고, 상기 제어부는, 상기 3차원 구조물의 출력 시작 시 상기 힘센서에 의해 측정된 힘에 따라 상기 조형 플레이트가 원점에 배치되도록 상기 구동부를 제어한다.The disclosed technology to achieve the above technical problem, the resin storage unit for storing the photocurable resin, the lower portion of the transparent material; A light source for irradiating light to the resin storage unit; An upright support formed vertically; A horizontal support cantilevered up and down along the upright support; A driving unit for elevating the horizontal support in the vertical direction; A molding plate coupled to the horizontal support and disposed to ascend and descend above the resin storage unit, and having a three-dimensional structure formed thereon; A force sensor for measuring a force applied to the horizontal support; And a control unit controlling the light source and the driving unit corresponding to the molding area of the three-dimensional structure, wherein the control unit includes the molding plate according to the force measured by the force sensor at the start of output of the three-dimensional structure. The driving unit is controlled to be disposed at the origin.
여기서, 상기 수평지지체는, 상기 조형 플레이트에 결합되어 유동되는 하우징인 전면 유동부; 및 상기 직립지지체에 결합되어 고정되는 하우징인 후면 고정부를 포함하고, 상기 힘센서는, 상기 전면유동부에 가해지는 힘에 대응하는 전기 신호를 생성하고, 생성된 전기 신호를 상기 제어부로 출력할 수 있다.Here, the horizontal support, the front flow portion which is a housing that is coupled to the molding plate flows; And a rear fixing part that is a housing coupled to and fixed to the upright support, wherein the force sensor generates an electric signal corresponding to the force applied to the front flow part and outputs the generated electric signal to the controller. have.
또한, 상기 힘센서는, 일단은 상기 전면 유동부 내에 고정되고, 타단은 상기 후면 고정부 내에 고정되어, 접촉힘에 의해 변형하는 빔형 구조체; 및 상기 빔형 구조체의 변형을 감지하여 상기 전기 신호를 생성하는 압저항층을 포함할 수 있다.In addition, the force sensor, one end is fixed in the front flow portion, the other end is fixed in the rear fixed portion, the beam-like structure that is deformed by the contact force; And a piezoresistive layer configured to detect deformation of the beam structure to generate the electrical signal.
한편, 상기 제어부는, 상기 전기 신호에 의해 상기 조형 플레이트의 장착 여부를 판단할 수 있다.The controller may determine whether the molding plate is mounted based on the electrical signal.
또한, 상기 제어부는, 상기 전기 신호에 의해 상기 조형 플레이트에 부착된 3차원 구조물의 이탈 여부를 판단할 수 있다.The controller may determine whether the three-dimensional structure attached to the molding plate is separated by the electrical signal.
한편, 상기 제어부는, 상기 3차원 구조물의 출력 시작 시 상기 조형 플레이트를 최상부로 상승시키는 제1 단계, 상기 조형 플레이트를 상기 최상부보다 하부에 있고 상기 원점보다는 상부에 있는 미리 정해진 지점으로 하강시키는 제2 단계 및 상기 조형 플레이트를 상기 원점까지 하강시키는 제3 단계로 구분하여 상기 구동부를 제어하고, 상기 제2 단계의 하강 속도는 상기 제3 단계의 하강 속도를 초과할 수 있다.On the other hand, the control unit, the first step of raising the molding plate to the top at the start of the output of the three-dimensional structure, the second lowering the molding plate to a predetermined point that is lower than the top and above the origin; The driving unit may be divided into a third step of lowering the molding plate to the origin, and the descending speed of the second step may exceed the descending speed of the third step.
또한, 상기 제어부는, 상기 제3 단계에 있어서, 상기 조형 플레이트가 스텝식 하강 방식에 따라 일정 높이씩 간헐적으로 하강하도록 상기 구동부를 제어할 수 있다.In the third step, the control unit may control the driving unit such that the molding plate intermittently descends by a predetermined height according to a step-down descending method.
개시된 기술의 실시예들은 다음의 장점을 포함하는 효과를 가질 수 있다. 다만, 개시된 기술의 실시예들이 이를 전부 포함하여야 한다는 의미는 아니므로, 개시된 기술의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.Embodiments of the disclosed technology can have the effect of including the following advantages. However, the embodiments of the disclosed technology are not meant to include all of them, and thus the scope of the disclosed technology should not be understood as being limited thereto.
본 발명에 따른 조형 플레이트 원점조절 장치를 구비한 3차원 프린터는 정밀 힘센서를 이용하여 자동으로 원점을 찾을 수 있는 오토레벨링 기능을 제공하므로, 사용자가 수동으로 조형 플레이트를 이동시켜야 하는 불편이 감소될 뿐만 아니라, 자동 조절되어 정확한 원점에 배치된 조형 플레이트 상에서 3차원 구조물의 출력이 시작되므로 프린팅되는 3차원 구조물의 품질이 향상되는 효과가 있다.The three-dimensional printer with the molding plate origin adjustment device according to the present invention provides an autoleveling function to automatically find the origin by using a precision force sensor, thereby reducing the inconvenience of the user having to manually move the molding plate. In addition, since the output of the three-dimensional structure is started on the molding plate is automatically adjusted to the exact origin, there is an effect that the quality of the printed three-dimensional structure is improved.
도 1 및 도 2는 본 발명의 일 실시예에 따른 조형 플레이트 원점조절 장치를 구비한 3차원 프린터를 나타낸 도면이다.1 and 2 is a view showing a three-dimensional printer with a molding plate origin adjustment device according to an embodiment of the present invention.
도 3 및 도 4는 본 발명의 일 실시예에 따른 조형 플레이트 원점조절 장치를 구비한 3차원 프린터의 수평지지체 및 힘센서를 나타낸 도면이다.3 and 4 is a view showing a horizontal support and a force sensor of a three-dimensional printer with a molding plate homing device according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 조형 플레이트 원점조절 장치를 구비한 3차원 프린터의 동작을 나타낸 흐름도이다.Figure 5 is a flow chart showing the operation of the three-dimensional printer with a molding plate origin adjustment apparatus according to an embodiment of the present invention.
[부호의 설명][Description of the code]
100 : 수지저장부100: resin storage unit
200 : 광원200: light source
300 : 직립지지체300: upright support
400 : 수평지지체400: horizontal support
410 : 전면 유동부410: front flow portion
420 : 후면 고정부420 rear fixing part
500 : 구동부500 drive unit
600 : 조형 플레이트600: Molding Plate
700 : 힘센서700: force sensor
710 : 빔형 구조체710: beam structure
720 : 압저항층720: piezoresistive layer
800 : 제어부800: control unit
개시된 기술에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 개시된 기술의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 개시된 기술의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. Description of the disclosed technology is only an embodiment for structural or functional description, the scope of the disclosed technology should not be construed as limited by the embodiments described in the text. That is, the embodiments may be variously modified and may have various forms, and thus the scope of the disclosed technology should be understood to include equivalents capable of realizing the technical idea.
한편, 본 출원에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.On the other hand, the meaning of the terms described in the present application should be understood as follows.
'제1', '제2' 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.The terms 'first', 'second', etc. are used to distinguish one component from another component and the scope of rights should not be limited by these terms. For example, the first component may be named a second component, and similarly, the second component may also be named a first component.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결될 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is referred to as being "connected" to another component, it should be understood that there may be other components in between, although it may be directly connected to the other component. On the other hand, when a component is said to be "directly connected" to another component, it should be understood that there is no other component in between. On the other hand, other expressions describing the relationship between the components, such as "between" and "immediately between" or "neighboring to" and "directly neighboring to", should be interpreted as well.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions should be understood to include plural expressions unless the context clearly indicates otherwise, and terms such as "comprise" or "have" refer to a feature, number, step, operation, component, part or implementation thereof. It is to be understood that the combination is intended to be present, but not to exclude in advance the possibility of the presence or addition of one or more other features or numbers, steps, operations, components, parts or combinations thereof.
각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 단계들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.Each step may occur differently from the stated order unless the context clearly dictates the specific order. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 개시된 기술이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.All terms used herein have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise defined. The terms defined in the commonly used dictionary should be interpreted to coincide with the meanings in the context of the related art, and should not be interpreted as having ideal or excessively formal meanings unless clearly defined in the present application.
도 1 및 도 2는 본 발명의 일 실시예에 따른 조형 플레이트 원점조절 장치를 구비한 3차원 프린터를 도시한 도면으로, 본 발명의 조형 플레이트 원점조절 장치를 구비한 3차원 프린터는, 수지저장부(100), 광원(200), 직립지지체(300), 수평지지체(400), 구동부(500), 조형 플레이트(600), 힘센서(700) 및 제어부(800)를 포함할 수 있다.1 and 2 is a view showing a three-dimensional printer with a molding plate origin adjustment apparatus according to an embodiment of the present invention, the three-dimensional printer with a molding plate origin adjustment apparatus of the present invention, the resin storage unit The light source 200 may include a light source 200, an upright support 300, a horizontal support 400, a driver 500, a molding plate 600, a force sensor 700, and a controller 800.
수지저장부(VAT)(100)는, 3차원 구조물 형성을 위한 액체 재료인 광경화성 수지, 예를 들면, 아크릴(Acryl) 수지, 캐스터블(Castable) 수지 등을 저장하고, 투명 재질인 하부를 구비한다. 여기서, 수지저장부(100)의 투명 재질인 하부는 3차원 구조물과의 이형성, 광원(200)에서 조사되는 광의 투과성 및 내구성이 뛰어난 재료를 사용하는 것이 바람직하다. 또한, 수지저장부(100)는, 광경화성 수지가 광원(200)에서 조사되는 광에 의해 경화되는 공간을 제공하게 된다.The resin storage unit (VAT) 100 stores a photocurable resin that is a liquid material for forming a three-dimensional structure, for example, an acrylic resin, a castable resin, and the like, and stores a lower portion of the transparent material. Equipped. Here, the lower part of the transparent material of the resin storage part 100 may be a material having excellent releasability with the three-dimensional structure, light transmittance and durability of the light emitted from the light source 200. In addition, the resin storage unit 100 provides a space where the photocurable resin is cured by the light irradiated from the light source 200.
광원(200)은, 수지저장부(100)의 하부로 광경화성 수지를 경화시키는 광을 조사한다. 여기서, 광원(200)은, 제어부(800)로부터 분할 이미지, 예를 들면, 슬라이싱 소프트웨어에 의해 STL(STereoLithography) 파일 또는 OBJ 파일로부터 생성된 G 코드(code) 파일에 의한 이미지를 입력받고, 입력받은 이미지에 대응된 광을 조사하는 DLP 프로젝터일 수 있다.The light source 200 irradiates the light which hardens photocurable resin to the lower part of the resin storage part 100. Here, the light source 200 receives a split image from the controller 800, for example, an image by a G code file generated from an STL (STereoLithography) file or an OBJ file by slicing software, and received the received image. It may be a DLP projector for irradiating light corresponding to the image.
직립지지체(300)는, 수직으로 형성되어 수평지지체(400)에 부착된 조형 플레이트(600)가 승하강되는 경로를 제공한다.The upright support 300 is formed vertically to provide a path for lifting and lowering the molding plate 600 attached to the horizontal support 400.
수평지지체(400)는, 직립지지체(300)를 따라 상승 및 하강 가능하게 직립지지체(300)에 결합되며, 일단이 직립지지체(300)에 의해 지지되어 수평 방향으로 장축이 유지되는 외팔보 지지 형태를 가지게 된다. 또한, 수평지지체(400)의 타단에는 조형 플레이트(600)가 연결된다.The horizontal supporter 400 is coupled to the upright supporter 300 so as to be raised and lowered along the upright supporter 300, and has one end supported by the upright supporter 300 so that the long axis is maintained in the horizontal direction. Have. In addition, the molding plate 600 is connected to the other end of the horizontal support 400.
구동부(500)는, 제어부(800)의 제어에 의하여 수평지지체(400)가 직립지지체(300)를 따라 상승 및 하강하도록 동력을 제공한다. 일례로, 직립지지체(300)에 나사산이 형성되고, 수평지지체(400)의 직립지지체(300)에 결합되는 일단에는 회전 운동을 선형운동으로 전환하는 구조(도시되지 않음)를 구비하여, 구동부(500) 내 모터(도시되지 않음)의 정역회전에 따라 수평지지체(400)가 상승 및 하강할 수 있으나 이에 한정되지 않는다.The driver 500 provides power to the horizontal supporter 400 to rise and fall along the upright supporter 300 under the control of the controller 800. For example, a screw thread is formed on the upright support 300, and one end coupled to the upright support 300 of the horizontal support 400 includes a structure (not shown) for converting a rotational movement into a linear movement, and includes a driving unit ( According to the forward and reverse rotation of the motor (not shown) in the 500, the horizontal support member 400 may rise and fall, but is not limited thereto.
조형 플레이트(600)는, 수평지지체(400)에 결합되어 수지저장부(100) 위에서 상승 또는 하강되도록 배치되고, 하부에 수지저장부(100) 내 광경화성 수지가 경화되어 조형되는 3차원 구조물을 지지하게 된다. Molding plate 600 is coupled to the horizontal support 400 is disposed so as to rise or fall above the resin storage unit 100, the lower portion of the three-dimensional structure is formed by curing the photo-curable resin in the resin storage unit 100 Will be supported.
힘센서(Force Sensor)(700)는, 수평지지체에 가해지는 힘을 측정하고, 측정된 값을 제어부(800)로 출력한다. 이때, 힘센서(700)는, 약 10kg의 무게까지 지탱 가능한 고정밀 힘센서인 것이 바람직하나 이에 한정되지 않는다.The force sensor 700 measures the force applied to the horizontal support, and outputs the measured value to the controller 800. In this case, the force sensor 700 is preferably a high-precision force sensor capable of supporting a weight of about 10 kg, but is not limited thereto.
제어부(800)는, 3차원 구조물의 조형 영역에 대응하여 광원(200) 및 구동부(500)를 제어한다. 즉, 제어부(800)는, 계산 기능을 가진 PC(Personal Computer) 또는 USB 메모리 등으로부터 3차원 구조물의 단면 분할 이미지를 반영한 G 코드 등 제어 코드를 입력받고, 광원(200)에서 수지저장부(100)의 하부로 조사되는 광의 형상을 제어하게 된다. 또한, 제어부(800)는, 단면 분할 이미지가 적층되어 형성되는 3차원 구조물을 층마다 응고시키기 위하여, 조형 플레이트(600)가 직립지지체(300)의 장축과 나란한 방향으로 점진적으로 상승하도록 구동부(500)를 제어하게 된다. 이때, 제어부(800)는, STL 파일 또는 OBJ 파일을 슬라이싱 처리하여 G 코드 등 제어 코드를 생성하는 기능을 내장할 수도 있으나 이에 한정되지 않는다.The controller 800 controls the light source 200 and the driver 500 to correspond to the molding area of the 3D structure. That is, the controller 800 receives a control code such as a G code reflecting the cross-sectional image of the three-dimensional structure from a personal computer (PC) or a USB memory having a calculation function, and receives the resin storage unit 100 from the light source 200. The shape of the light irradiated to the lower part of the) is controlled. In addition, the controller 800 drives the 500 to gradually raise the molding plate 600 in a direction parallel to the long axis of the upright support 300 in order to solidify the three-dimensional structure formed by stacking the cross-sectional divided images for each layer. Will be controlled. In this case, the controller 800 may include a function of generating a control code such as a G code by slicing the STL file or the OBJ file, but is not limited thereto.
또한, 제어부(800)는, 3차원 구조물의 출력 시작 시 힘센서(700)에 의해 감지된 힘에 따라 조형 플레이트(600)를 원점(A)에 배치하도록 구동부(500)를 제어한다. 여기서, 원점(A)은, 3차원 프린터의 초기 출력 위치를 의미하며, 조형 플레이트(600)가 수지저장부(100)의 바닥에 접촉되는 위치가 된다.In addition, the controller 800 controls the driving unit 500 to arrange the molding plate 600 at the origin A according to the force detected by the force sensor 700 at the start of output of the 3D structure. Here, the origin (A) means the initial output position of the three-dimensional printer, the molding plate 600 is a position in contact with the bottom of the resin storage unit 100.
도 3 및 도 4는 본 발명의 일 실시예에 따른 조형 플레이트 원점조절 장치를 구비한 3차원 프린터의 수평지지체(400) 및 힘센서(700)를 나타낸 도면으로, 이에 대하여 설명하면 하기와 같다.3 and 4 is a view showing a horizontal support 400 and a force sensor 700 of the three-dimensional printer with a molding plate origin adjustment device according to an embodiment of the present invention, as described below.
수평지지체(400)는, 서로 분리된 하우징인 전면 유동부(410) 및 후면 고정부(420)를 포함할 수 있다.The horizontal supporter 400 may include a front flow part 410 and a rear fixing part 420 which are housings separated from each other.
전면 유동부(410)는, 조형 플레이트(600)에 결합되어 유동되는 하우징으로, 조형 플레이트(600)와의 결합을 위한 나사 구조를 포함할 수 있으나 이에 한정되지 않는다. 이때, 전면 유동부(410)는, 조형 플레이트(600)가 수지저장부(100)의 바닥에 접촉하는 경우에 힘을 받아 유동가능하도록 후면 고정부(420)와 소정의 이격 공간을 형성하면서 분리될 수 있다.The front flow part 410 is a housing which is coupled to the molding plate 600 and flows, and may include a screw structure for coupling with the molding plate 600, but is not limited thereto. At this time, the front flow portion 410 is separated while forming a predetermined spaced space with the rear fixing portion 420 so that the molding plate 600 is able to flow under the force when the molding plate 600 contacts the bottom of the resin storage unit 100. Can be.
또한, 후면 고정부(420)는, 직립지지체(300)에 결합되어 고정되는 하우징으로, 조형 플레이트(600)가 수지저장부(100)의 바닥에 접촉할 때 바닥 반대 방향으로 작용하는 힘에 의해 전면 유동부(410)가 유동하는 경우에도 고정된 상태를 유지할 수 있다.In addition, the rear fixing part 420 is a housing coupled to and fixed to the upright support 300, and is formed by a force acting in the opposite direction to the bottom when the molding plate 600 contacts the bottom of the resin storage part 100. Even when the front flow portion 410 flows, the fixed state may be maintained.
힘센서(700)는, 전면유동부(410)에 가해지는 힘에 대응하는 전기 신호를 생성하고, 생성된 전기 신호를 제어부(800)로 출력한다. 여기서, 힘센서(700)는, 빔형 구조체(710) 및 압저항층(720)을 포함할 수 있다.The force sensor 700 generates an electric signal corresponding to the force applied to the front flow unit 410, and outputs the generated electric signal to the controller 800. Here, the force sensor 700 may include a beam structure 710 and a piezoresistive layer 720.
빔형 구조체(710)는, 일단은 전면 유동부(410) 내에 고정되고, 타단은 후면 고정부(420) 내에 고정되어, 접촉힘에 의해 변형될 수 있다. 즉, 빔형 구조체(710)는, 서로 분리된 전면 유동부(410) 및 후면 고정부(420)의 연결 구조가 되는 동시에 조형 플레이트(600)가 수지저장부(100)의 바닥에 접촉되어 전면 유동부(410)가 상승함에 따라 일단이 변형되는 형태를 구비할 수 있다. 이때, 빔형 구조체(710)는, 전면 유동부(410)와 결합되기 위한 나사 구조 및 후면 고정부(420)와 결합되기 위한 나사 구조를 각각 별도로 구비할 수 있으나 이에 한정되지 않는다.The beam-shaped structure 710 is fixed at one end of the front flow portion 410 and the other end of the beam structure 420, and may be deformed by contact force. That is, the beam structure 710 is a connection structure of the front flow part 410 and the rear fixing part 420 separated from each other, and at the same time, the molding plate 600 contacts the bottom of the resin storage part 100 so as to provide a front structure. As the eastern portion 410 rises, one end may be deformed. In this case, the beam type structure 710 may be provided with a screw structure for coupling with the front flow portion 410 and a screw structure for coupling with the rear fixing portion 420, but is not limited thereto.
압저항층(720)은, 빔형 구조체(710)의 변형을 감지하여 전기 신호를 생성하고, 제어부(800)와 연결된 소정의 전선(도시되지 않음) 등을 통하여 생성된 전기 신호를 제어부(800)로 출력할 수 있다.The piezoresistive layer 720 detects deformation of the beam structure 710 to generate an electrical signal, and controls the electrical signal generated through a predetermined wire (not shown) connected to the controller 800, for example. You can output
빔형 구조체(710)는, 조형 플레이트(600)를 통하여 전달되는 힘에 의해 쉽게 변형되기 위하여 압저항층(720) 부근에 소정의 홀을 구비할 수 있다.The beam structure 710 may have a predetermined hole in the vicinity of the piezoresistive layer 720 in order to be easily deformed by the force transmitted through the molding plate 600.
제어부(800)는, 압저항층(720)으로부터 전기 신호를 입력받고, 입력된 전기 신호에 따라 전면 유동부(410)에 가해지는 힘을 산출할 수 있다.The controller 800 may receive an electric signal from the piezoresistive layer 720, and calculate a force applied to the front flow part 410 according to the input electric signal.
이때, 제어부(800)는, 산출된 값에 따라 조형 플레이트(600)가 수지저장부(100)의 바닥에 접촉되었는지 여부를 판단할 수 있을 뿐 아니라, 조형 플레이트(600)가 전면 유동부(410)에 장착되었는지 여부, 3차원 구조물 출력 중에 조형 플레이트(600)에 부착된 출력물이 이탈되었는지 여부를 판단할 수 있다. 즉, 빔형 구조체(710)는, 전면 유동부(410)와 결합된 부분이 중력 가속도 방향으로 변형될 수 있으며, 조형 플레이트(600)가 전면 유동부(410)에 장착되어 3차원 구조물이 조형 플레이트(600)의 하부에 부착된 제1 상태, 조형 플레이트(600)가 전면 유동부(410)에 장착되었으나 3차원 구조물이 하부에 부착되지 않은 제2 상태 및 조형 플레이트(600)가 전면 유동부(410)에 장착되지 않은 제3 상태를 가정하면, 제1 상태인 경우에 중력 가속도 방향으로 가장 많이 변형되고, 제2 상태 및 제3 상태의 순서로 변형 정도가 완화된다. 따라서, 제어부(800)는, 빔형 구조체(710)의 변형 정도에 대응하여 압저항층(720)에서 발생되는 전기 신호를 입력받아 3차원 프린터의 다양한 상태를 파악할 수 있다.In this case, the controller 800 may determine whether the molding plate 600 is in contact with the bottom of the resin storage part 100 according to the calculated value, and the molding plate 600 may have a front flow part 410. ), The output attached to the molding plate 600 during the output of the three-dimensional structure can be determined. That is, in the beam structure 710, the portion coupled with the front flow portion 410 may be deformed in the direction of gravity acceleration, and the molding plate 600 is mounted to the front flow portion 410 so that the three-dimensional structure is formed on the molding plate. The first state attached to the lower portion of the 600, the molding plate 600 is mounted to the front flow portion 410, but the second state that the three-dimensional structure is not attached to the bottom and the forming plate 600 is the front flow portion ( Assuming a third state that is not mounted on the 410, the first state is most deformed in the direction of gravity acceleration, and the degree of deformation is relaxed in the order of the second state and the third state. Accordingly, the controller 800 may receive various electrical signals generated from the piezoresistive layer 720 in response to the degree of deformation of the beam structure 710 to determine various states of the 3D printer.
도 5는 본 발명의 일 실시예에 따른 조형 플레이트 원점조절 장치를 구비한 3차원 프린터의 동작을 나타낸 흐름도로서, 도 1 내지 도 5를 참조하여 본 발명의 조형 플레이트 원점조절 장치를 구비한 3차원 프린터의 동작에 관하여 설명하면 하기와 같다.Figure 5 is a flow chart showing the operation of the three-dimensional printer with a molding plate origin adjustment apparatus according to an embodiment of the present invention, with reference to Figures 1 to 5 three-dimensional with a molding plate origin adjustment apparatus of the present invention. The operation of the printer will be described below.
먼저, 제어부(800)는, 사용자가 3차원 프린터를 사용하고자 하는 입력 신호가 감지되면, 현재의 힘센서(700)가 출력하고 있는 값, 즉, 압저항층(720)에서 생성되는 전기 신호에 의해 산출된 값을 저장한다(S100).First, when the user detects an input signal that the user wants to use the 3D printer, the controller 800 may apply to a value output from the current force sensor 700, that is, an electrical signal generated by the piezoresistive layer 720. The calculated value is stored (S100).
이후에, 제어부(800)는, 구동부(500) 내 모터의 회전 등에 의한 정보를 감지하여 조형 플레이트(600)와 결합된 수평지지체(400)가 직립지지체(300)의 제공 경로 상에서 최상부에 위치하는지 여부를 판단한다(S200).Subsequently, the controller 800 detects information by the rotation of the motor in the driving unit 500 and the like, so that the horizontal support 400 coupled with the molding plate 600 is positioned on the top of the upright support 300. It is determined whether or not (S200).
만약, 조형 플레이트(600)와 결합된 수평지지체(400)가 직립지지체(300)의 제공 경로 상에서 최상부에 위치하지 않는 경우에, 제어부(800)는 구동부(500)를 제어하여 조형 플레이트(600)와 결합된 수평지지체(400)를 최상부로 상승시킨다(S300).If the horizontal support 400 coupled with the molding plate 600 is not positioned at the top of the path of the upright support 300, the controller 800 controls the driving unit 500 to control the molding plate 600. Raise the horizontal support 400 coupled to the top (S300).
한편, 조형 플레이트(600)와 결합된 수평지지체(400)가 직립지지체(300)의 제공 경로 상에서 최상부에 위치하는 경우에, 제어부(800)는 구동부(500)를 제어하여 조형 플레이트(600)와 결합된 수평지지체(400)를 최상부보다 하부에 있고 원점보다는 상부에 있는 미리 정해진 지점인 제1 위치(B)로 하강시킨다(S400).On the other hand, when the horizontal support 400 coupled with the molding plate 600 is located at the top on the providing path of the upright support 300, the controller 800 controls the driving unit 500 to control the molding plate 600. The combined horizontal supporter 400 is lowered to the first position B, which is a predetermined point that is lower than the uppermost part and above the origin (S400).
이때, 제어부(800)는, 압저항층(720)에서 발생되는 전기 신호를 입력받아 힘센서(700)에 가해지는 힘이 정상 범위에 있는지 판단할 수 있다(S500).In this case, the controller 800 may receive an electric signal generated from the piezoresistive layer 720 and determine whether a force applied to the force sensor 700 is in a normal range (S500).
만약, 제어부(800)가 힘센서(700)에 가해지는 힘이 정상 범위가 아니라고 판단하면, 즉시 조형 플레이트(600)와 결합된 수평지지체(400)의 하강 동작을 정지시키고, 동작 오류 처리를 수행하게 된다(S600). 제어부(800)가 힘센서(700)에 가해지는 힘이 정상 범위가 아니라고 판단하는 일례로는 수평지지체(400)에 조형 플레이트(600)가 결합되지 않아 전면 유동부(410) 내에 고정된 빔형 구조체(710)에 중력 가속도 방향의 힘이 적게 가해지는 경우, 힘센서(700)가 파손된 경우 등이 있으며, 이외에도 제어부(800)가 비정상으로 판단할 수 있는 경우로는 힘센서(700)에 가해지는 힘의 크기와 방향에 따라 판단가능한 이상 상태를 모두 포함할 수 있다.If the control unit 800 determines that the force applied to the force sensor 700 is not in the normal range, immediately stops the lowering operation of the horizontal support 400 coupled with the molding plate 600, and performs operation error processing. It is made (S600). As an example in which the control unit 800 determines that the force applied to the force sensor 700 is not the normal range, the beam-type structure fixed in the front flow part 410 is not coupled to the horizontal plate 400 by the molding plate 600. When the force in the direction of gravity acceleration is less applied to the 710, the force sensor 700 is broken, etc. In addition, if the control unit 800 can determine that the abnormality is applied to the force sensor 700 Loss of force may include both an abnormal state that can be determined according to the magnitude and direction of the force.
한편, 제어부(800)가 힘센서(700)에 가해지는 힘이 정상 범위 내에 해당한다고 판단한 경우에는, 구동부(500)를 제어하여 제1 위치(B)에 정지된 조형 플레이트(600)와 결합된 수평지지체(400)를 원점(A)으로 하강시킨다(S700). 이때, 제어부(800)는, 조형 플레이트(600)와 결합된 수평지지체(400)를 최상부에서 제1 위치(B)로 하강시킬 때는 비교적 빠른 속도로, 조형 플레이트(600)와 결합된 수평지지체(400)를 제1 위치(B)에서 원점(A)으로 하강시킬 때는 비교적 느린 속도로 하강시킴으로써, 동작 속도를 높이면서도 원점 배치의 정밀성을 높일 수 있다.On the other hand, when the control unit 800 determines that the force applied to the force sensor 700 falls within the normal range, the driving unit 500 is controlled to be coupled with the molding plate 600 stopped at the first position B. FIG. The horizontal support 400 is lowered to the origin A (S700). At this time, the control unit 800, when lowering the horizontal support 400 coupled to the molding plate 600 to the first position (B) at the top, at a relatively high speed, the horizontal support coupled to the molding plate 600 ( When the 400 is lowered from the first position B to the origin A, it is lowered at a relatively slow speed, thereby increasing the operation speed and increasing the precision of the origin arrangement.
이때, 제어부(800)가 조형 플레이트(600)와 결합된 수평지지체(400)를 제1 위치(B)에서 원점(A)으로 하강시키는 경우에 수평지지체(400)가 스텝식 하강 방식으로 이동하도록 구동부(500)를 제어할 수 있으며, 예를 들면, 제어부(800)는, 수평지지체(400)를 약 20㎛씩 간헐적으로 하강시키면서 각 하강의 사이마다 힘센서(700)에서 입력되는 전기 신호가 미리 설정된 값, 즉, 조형 플레이트(600) 바닥이 원점에 이른 경우에 해당하는 값인지 확인할 수 있다(S800).At this time, when the control unit 800 lowers the horizontal support 400 coupled with the molding plate 600 from the first position B to the origin A, the horizontal support 400 moves in a step-down manner. For example, the controller 800 may control the driving unit 500. The control unit 800 intermittently lowers the horizontal supporter 400 by about 20 μm, and an electrical signal input from the force sensor 700 is applied between each drop. In operation S800, a predetermined value, that is, a value corresponding to the bottom of the molding plate 600 may be determined.
만약, 제어부(800)가 힘센서(700)에서 입력되는 전기 신호에 의하여 조형 플레이트(600) 바닥이 원점(A)에 이르지 않았다고 판단한 경우(S900), 제어부(800)는, 수평지지체(400)를 스텝식으로 하강시키면서 각 하강의 사이마다 힘센서(700)에서 입력되는 전기 신호가 미리 설정된 값인지 확인하는 동작을 다시 수행하게 된다.If the control unit 800 determines that the bottom of the molding plate 600 does not reach the origin A by the electric signal input from the force sensor 700 (S900), the control unit 800 includes the horizontal support 400. While descending in a stepwise manner, each operation is performed again to check whether the electric signal input from the force sensor 700 is a preset value.
한편, 제어부(800)가 힘센서(700)에서 입력되는 전기 신호에 의하여 조형 플레이트(600) 바닥이 원점(A)에 이르렀다고 판단한 경우에는, 제어부(800)는, 구동부(500)를 제어하여 수평지지체(400)의 이동을 정지시키고, 그 위치에서 3차원 구조물의 출력 동작이 시작될 수 있도록 광원(200), 구동부(500) 등을 제어한다.On the other hand, when the controller 800 determines that the bottom of the molding plate 600 has reached the origin A by the electric signal input from the force sensor 700, the controller 800 controls the drive unit 500. The movement of the horizontal support member 400 is stopped, and the light source 200, the driver 500, and the like are controlled to start the output operation of the 3D structure at the position.
이러한 개시된 기술인 방법 및 장치는 이해를 돕기 위하여 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 개시된 기술의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.The disclosed method and apparatus have been described with reference to the embodiments illustrated in the drawings for ease of understanding, but these are merely exemplary, and various modifications and equivalent other embodiments are possible to those skilled in the art. Will understand. Therefore, the true technical protection scope of the disclosed technology should be defined by the appended claims.

Claims (7)

  1. 광경화성 수지를 저장하고, 하부가 투명 재질인 수지저장부;A resin storage unit for storing a photocurable resin and a lower portion of the photocurable resin;
    상기 수지저장부 하부로 광을 조사하는 광원;A light source for irradiating light to the resin storage unit;
    수직으로 형성된 직립지지체;An upright support formed vertically;
    상기 직립지지체를 따라 승강가능하게 외팔보 지지된 수평지지체;A horizontal support cantilevered up and down along the upright support;
    상기 수평지지체를 상하 방향으로 승강시키는 구동부;A driving unit for elevating the horizontal support in the vertical direction;
    상기 수평지지체에 결합되어 상기 수지저장부 위에서 승하강하도록 배치되고, 하부에 3차원 구조물이 조형되는 조형 플레이트;A molding plate coupled to the horizontal support and disposed to ascend and descend above the resin storage unit, and having a three-dimensional structure formed thereon;
    상기 수평지지체에 가해지는 힘을 측정하는 힘센서; 및A force sensor for measuring a force applied to the horizontal support; And
    상기 3차원 구조물의 조형 영역에 대응하여 상기 광원 및 상기 구동부를 제어하는 제어부를 포함하고,A control unit for controlling the light source and the driving unit corresponding to the molding area of the three-dimensional structure,
    상기 제어부는, 상기 3차원 구조물의 출력 시작 시 상기 힘센서에 의해 측정된 힘에 따라 상기 조형 플레이트가 원점에 배치되도록 상기 구동부를 제어하는 조형 플레이트 원점조절 장치를 구비한 3차원 프린터.The control unit, a three-dimensional printer having a modeling plate homing device for controlling the drive unit to be positioned at the origin in accordance with the force measured by the force sensor when the output of the three-dimensional structure.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 수평지지체는,The horizontal support,
    상기 조형 플레이트에 결합되어 유동되는 하우징인 전면 유동부; 및A front flow part that is a housing coupled to the molding plate and flows; And
    상기 직립지지체에 결합되어 고정되는 하우징인 후면 고정부를 포함하고,A rear fixing part which is a housing coupled to and fixed to the upright support;
    상기 힘센서는, 상기 전면유동부에 가해지는 힘에 대응하는 전기 신호를 생성하고, 생성된 전기 신호를 상기 제어부로 출력하는 조형 플레이트 원점조절 장치를 구비한 3차원 프린터.The force sensor is a three-dimensional printer having a modeling plate homing device for generating an electrical signal corresponding to the force applied to the front flow portion, and outputs the generated electrical signal to the controller.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 힘센서는,The force sensor,
    일단은 상기 전면 유동부 내에 고정되고, 타단은 상기 후면 고정부 내에 고정되어, 접촉힘에 의해 변형하는 빔형 구조체; 및A beam structure having one end fixed in the front flow portion and the other end fixed in the rear fixed portion, and deformed by a contact force; And
    상기 빔형 구조체의 변형을 감지하여 상기 전기 신호를 생성하는 압저항층을 포함하는 조형 플레이트 원점조절 장치를 구비한 3차원 프린터.3D printer comprising a modeling plate homing device including a piezoresistive layer for generating the electrical signal by detecting the deformation of the beam-like structure.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 제어부는, 상기 전기 신호에 의해 상기 조형 플레이트의 장착 여부를 판단하는 조형 플레이트 원점조절 장치를 구비한 3차원 프린터.The control unit is a three-dimensional printer having a molding plate origin adjustment device for determining whether or not to mount the molding plate in accordance with the electrical signal.
  5. 청구항 3에 있어서,The method according to claim 3,
    상기 제어부는, 상기 전기 신호에 의해 상기 조형 플레이트에 부착된 3차원 구조물의 이탈 여부를 판단하는 조형 플레이트 원점조절 장치를 구비한 3차원 프린터.The control unit is a three-dimensional printer having a molding plate origin adjustment device for determining whether the three-dimensional structure attached to the molding plate by the electrical signal.
  6. 청구항 3에 있어서,The method according to claim 3,
    상기 제어부는, 상기 3차원 구조물의 출력 시작 시 상기 조형 플레이트를 최상부로 상승시키는 제1 단계, 상기 조형 플레이트를 상기 최상부보다 하부에 있고 상기 원점보다는 상부에 있는 미리 정해진 지점으로 하강시키는 제2 단계 및 상기 조형 플레이트를 상기 원점까지 하강시키는 제3 단계로 구분하여 상기 구동부를 제어하고,The control unit may include a first step of raising the molding plate to the top when the output of the three-dimensional structure starts, a second step of lowering the molding plate to a predetermined point below the top and above the origin; The driving unit is divided into a third step of lowering the molding plate to the origin,
    상기 제2 단계의 하강 속도는 상기 제3 단계의 하강 속도를 초과하는 조형 플레이트 원점조절 장치를 구비한 3차원 프린터.And a descending speed of the second step is greater than a falling speed of the third step.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 제어부는, 상기 제3 단계에 있어서, 상기 조형 플레이트가 스텝식 하강 방식에 따라 일정 높이씩 간헐적으로 하강하도록 상기 구동부를 제어하는 조형 플레이트 원점조절 장치를 구비한 3차원 프린터.The control unit, in the third step, a three-dimensional printer with a molding plate origin control device for controlling the drive unit so that the molding plate is intermittently lowered by a predetermined height in accordance with the step-down method.
PCT/KR2016/008237 2016-07-22 2016-07-27 Three-dimensional printer including molding plate origin adjustment device WO2018016668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0093238 2016-07-22
KR1020160093238A KR101849600B1 (en) 2016-07-22 2016-07-22 Three dimensional printer with auto leveling device for building plate

Publications (1)

Publication Number Publication Date
WO2018016668A1 true WO2018016668A1 (en) 2018-01-25

Family

ID=60992712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008237 WO2018016668A1 (en) 2016-07-22 2016-07-27 Three-dimensional printer including molding plate origin adjustment device

Country Status (2)

Country Link
KR (1) KR101849600B1 (en)
WO (1) WO2018016668A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108162383A (en) * 2018-02-07 2018-06-15 中国科学院福建物质结构研究所 A kind of automatic 3D printing device and method
CN108688152A (en) * 2018-05-22 2018-10-23 张梦如 A kind of photocuring 3D printing method
CN113296472A (en) * 2021-05-25 2021-08-24 北京太尔时代科技有限公司 System origin confirming method, system origin confirming device, processing equipment and readable storage medium
EP3814117A4 (en) * 2018-06-29 2022-09-21 Intrepid Automation Closed loop print process adjustment based on real time feedback
US11465338B2 (en) * 2017-03-21 2022-10-11 Zydex Pty Ltd Apparatus for making a stereolithographic object, methods for making a stereolithographic object, a method for locating the position of debris, and a method for monitoring consumption of a material for making a stereolithographic object

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102010811B1 (en) 2018-06-19 2019-08-16 주식회사 쓰리딜라이트 3D printer output device and desorption method
KR102151415B1 (en) * 2018-08-23 2020-09-04 한국기계연구원 3d printer holder equipped with a sensor, 3d printer device including the same, and preparation method of sculpture using the same
KR102415399B1 (en) * 2021-03-24 2022-07-01 한림대학교 산학협력단 A bio dlp 3d printer containing magnetically linked reservoir for multi cell or material printing
WO2023200089A1 (en) * 2022-04-12 2023-10-19 오스템임플란트 주식회사 Three-dimensional printer molded object processing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101390063B1 (en) * 2013-04-03 2014-04-30 파크시스템스 주식회사 Leveling apparatus and atomic force microscope including the same
US20150246487A1 (en) * 2007-07-04 2015-09-03 Envisiontec Gmbh Process and device for producing a three-dimensional object
KR101564554B1 (en) * 2014-06-03 2015-10-30 (주)하이비젼시스템 Level aligning device for bed of 3d printer
KR20160027666A (en) * 2014-09-02 2016-03-10 지헌길 3d printer with horizontal sensor
JP2016064652A (en) * 2014-09-18 2016-04-28 ローランドディー.ジー.株式会社 Three-dimensional molding device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150246487A1 (en) * 2007-07-04 2015-09-03 Envisiontec Gmbh Process and device for producing a three-dimensional object
KR101390063B1 (en) * 2013-04-03 2014-04-30 파크시스템스 주식회사 Leveling apparatus and atomic force microscope including the same
KR101564554B1 (en) * 2014-06-03 2015-10-30 (주)하이비젼시스템 Level aligning device for bed of 3d printer
KR20160027666A (en) * 2014-09-02 2016-03-10 지헌길 3d printer with horizontal sensor
JP2016064652A (en) * 2014-09-18 2016-04-28 ローランドディー.ジー.株式会社 Three-dimensional molding device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465338B2 (en) * 2017-03-21 2022-10-11 Zydex Pty Ltd Apparatus for making a stereolithographic object, methods for making a stereolithographic object, a method for locating the position of debris, and a method for monitoring consumption of a material for making a stereolithographic object
US11964424B2 (en) 2017-03-21 2024-04-23 Zydex Pty Ltd Apparatus for making a stereolithographic object, methods for making a stereolithographic object, a method for locating the position of debris, and a method for monitoring consumption of a material for making a stereolithographic object
CN108162383A (en) * 2018-02-07 2018-06-15 中国科学院福建物质结构研究所 A kind of automatic 3D printing device and method
CN108162383B (en) * 2018-02-07 2023-05-12 中国科学院福建物质结构研究所 Automatic 3D printing device and method
CN108688152A (en) * 2018-05-22 2018-10-23 张梦如 A kind of photocuring 3D printing method
CN108688152B (en) * 2018-05-22 2020-09-25 泰州市扬帆车件有限公司 Photocuring 3D printing method
EP3814117A4 (en) * 2018-06-29 2022-09-21 Intrepid Automation Closed loop print process adjustment based on real time feedback
US11820073B2 (en) 2018-06-29 2023-11-21 Intrepid Automation Closed loop print process adjustment based on real time feedback
CN113296472A (en) * 2021-05-25 2021-08-24 北京太尔时代科技有限公司 System origin confirming method, system origin confirming device, processing equipment and readable storage medium

Also Published As

Publication number Publication date
KR20180010697A (en) 2018-01-31
KR101849600B1 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2018016668A1 (en) Three-dimensional printer including molding plate origin adjustment device
CN108472867B (en) Method for producing three-dimensional objects
WO2017198057A1 (en) Novel laser 3d-printer
WO2017219942A1 (en) Resin reservoir for photocuring for use in 3d printer and 3d printer
US20230014765A1 (en) Apparatus for making a stereolithographic object, methods for making a stereolithographic object, a method for locating the position of debris, and a method for monitoring consumption of a material for making a stereolithographic object
WO2016200016A1 (en) Stacking-type stereolithography device
WO2018174338A1 (en) 3d printing system, error checking method thereof, and control method therefor
CN108943726B (en) Leveling device and leveling method for desktop type 3D printer
WO2019009679A1 (en) 3d printer for shaping three-dimensional object
CN214354193U (en) Projection distance adjustable photocuring printer
WO2018026045A1 (en) Three dimensional printer provided with resin storing part tilting device
CN109676923B (en) Desktop type photocuring 3D printer and control method thereof
CN109732912B (en) Control method of multi-station 3D printer, optical system and 3D printer
CN110884117A (en) 3D printer with automatic leveling device
CN217671113U (en) Compact 3D printer
WO2019078639A1 (en) Printer device using acoustic levitation
CN106541132B (en) Laser 3D printing machine and its focusing system and method
CN211251341U (en) 3D printer with automatic leveling device
CN211337898U (en) Online PCB laser coding machine
WO2016190547A1 (en) Stereoscopic colorful shape output machine
WO2018186515A1 (en) Three-dimensional printing apparatus using dlp projector and laser scanner in combination
CN217258445U (en) 3D printer leveling device based on pressure sensor
IT202000003647A1 (en) Bottom-up photo-hardening 3D printing apparatus, with variable refractive index rotary glass and related method of use
CN114290682A (en) Model-adaptive rapid surface exposure 3D printing method
WO2017034129A1 (en) Release water tank for 3d printer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909583

Country of ref document: EP

Kind code of ref document: A1